1
|
Yap YT, Pan J, Xu J, Yuan S, Niu C, Zheng C, Li W, Zhou T, Li T, Zhang Y, Holtzman MJ, Pazour GJ, Hess RA, Kelly CV, Touré A, Brody SL, Zhang Z. Role of intraflagellar transport protein IFT140 in the formation and function of motile cilia in mammals. Cell Mol Life Sci 2025; 82:198. [PMID: 40348912 PMCID: PMC12065702 DOI: 10.1007/s00018-025-05710-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 04/05/2025] [Accepted: 04/10/2025] [Indexed: 05/14/2025]
Abstract
Cilia are microtubular structures extending from the surface of most mammalian cells. They can be categorized as motile cilia and primary sensory cilia. Both types possess intraflagellar transport (IFT) machinery, composed of unique protein complexes that travel along the microtubules to deliver proteins for ciliary and flagellar assembly, disassembly, and homeostasis. Although the role of IFT in primary cilia formation has been well studied, little is known about its role in mammalian motile cilia assembly. We generated conditional knockout mice by breeding floxed Ift140 mice with the FOXJ1-Cre transgenic mouse line to specifically delete Ift140 from cells that assemble motile cilia. Mice with Ift140 deficiency did not have laterality defects or gross; however most died prior to sexual maturity. Those mutants that survived to adulthood were completely infertile. Males demonstrated abnormal spermatogenesis associated with reduced sperm count and motility, together with short length flagella, and abnormal morphology. Cilia length was diminished in the epithelial cells of the efferent ductules and airways. Cilia from cultured tracheal epithelial cells were also short and had reduced beat frequency (CBF). Ultrastructural studies revealed the presence of inner and outer dynein arms, but an abnormal central apparatus, and the accumulation of particles within the cilia. Overall, the short length and abnormal localization of ciliary proteins in Ift140 conditional mutants resulted in inadequate cilia function despite proper localization of the dynein motor complexes. We propose a key role of Ift140 for motile cilia assembly in certain tissues and suggest that genetic alterations of IFT140 could be associated with motile ciliopathies.
Collapse
Affiliation(s)
- Yi Tian Yap
- Department of Physiology, Wayne State University, 275 E Hancock Street, Detroit, MI, 48201, USA
| | - Jiehong Pan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jian Xu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Shuo Yuan
- Department of Physiology, Wayne State University, 275 E Hancock Street, Detroit, MI, 48201, USA
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Changmin Niu
- Department of Physiology, Wayne State University, 275 E Hancock Street, Detroit, MI, 48201, USA
- School of Nursing, School of Public Health, Yangzhou University, Yangzhou, Jiangsu, China
| | - Cheng Zheng
- Department of Physiology, Wayne State University, 275 E Hancock Street, Detroit, MI, 48201, USA
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Wei Li
- Department of Physiology, Wayne State University, 275 E Hancock Street, Detroit, MI, 48201, USA
| | - Ting Zhou
- Department of Physiology, Wayne State University, 275 E Hancock Street, Detroit, MI, 48201, USA
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Tao Li
- Department of Physiology, Wayne State University, 275 E Hancock Street, Detroit, MI, 48201, USA
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yong Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael J Holtzman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001S. Lincoln, Urbana, IL, USA
| | - Christopher V Kelly
- Department of Physics and Astronomy, Wayne State University, Detroit, MI, USA
| | - Aminata Touré
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team Physiology and Pathophysiology of Sperm cells, 38000, Grenoble, France
| | - Steven L Brody
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, 275 E Hancock Street, Detroit, MI, 48201, USA.
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
2
|
Nakayama T, Kulkarni S. Genomic Complexity of ccdc40 in Xenopus : Implications for CRISPR Targeting and Disease Modeling. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001596. [PMID: 40415903 PMCID: PMC12100157 DOI: 10.17912/micropub.biology.001596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 04/25/2025] [Accepted: 05/03/2025] [Indexed: 05/27/2025]
Abstract
Mutations in CCDC40 cause primary ciliary dyskinesia in humans. To evaluate the pathogenicity of variants in CCDC40 , we examined the genomic structure of this gene in Xenopus tropicalis , a diploid frog suitable as a model for genetic studies. We identified inconsistencies in the current ccdc40 gene model and discovered two distinct ccdc40 genes near the previously annotated locus. Surprisingly, Xenopus laevis , an allotetraploid species that typically has two homoeologs, contains only one homoeolog ( ccdc40.S ), making it a more suitable genetic model for studying ccdc40 function and potentially expediting the functional characterization of CCDC40 variants linked to primary ciliary dyskinesia.
Collapse
Affiliation(s)
- Takuya Nakayama
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States
| | - Saurabh Kulkarni
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
3
|
Xu L, Feng Z, Dai Z, Qiu Y, Wu Z, Zhu Z. Novel rare variation of CCDC40 plays a role in the development of idiopathic scoliosis possibly via dysfunction of cilia motility. Spine J 2025; 25:797-804. [PMID: 39662682 DOI: 10.1016/j.spinee.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/22/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND CONTEXT Motile cilia dysfunction was reported to lead to scoliosis-like phenotypes in zebrafish models. There is still a lack of population-based study supporting the role of cilia motility associated genes in the etiology of idiopathic scoliosis (IS). PURPOSE To investigate the molecular mechanism underlying the relationship between cilia motility associated genes and the development of adolescent idiopathic scoliosis (AIS). STUDY DESIGN Population-based genetic study. METHODS A cohort of 56 female AIS patients and 30 age-matched nonscoliotic controls were included for tissue expression analysis. 28 patients with lower CCDC40 expression were selected for the exon sequencing. The novel variation was replicated in an independent cohort of 1326 AIS patients and 954 healthy controls. Exogenous versions of WT or mutant human CCDC40 mRNAs were expressed in zebrafish and the phenotype of body axis curvature was observed. RESULTS CCDC40 was found significantly down-expressed in AIS patients as compared with the nonscoliotic controls. A novel coding variant rs185157579 (c.1459G>A) was found significantly associated with AIS, with the mutant allele A adding to the risk of AIS by 2.44 folds. Zebrafish embryo injected with CCDC40 mRNAs containing mutant c.1459G>A presented significantly higher incidence of scoliosis-like phenotype than the wild group. CONCLUSIONS The mutation c.1459G>A in the exon 10 of CCDC40 may lead to body axis curvature of zebrafish by impacting mRNA expression. The underlying molecular mechanism is worthy of further investigation. CLINICAL SIGNIFICANCE Our findings shed a new light on the etiopathogenesis of AIS. The downstream signaling of CCDC40 may be candidate for potential drug targets to prevent the development of AIS. Moreover, the novel variation can be used as a genetic marker of polygenic risk score predicting the risk of AIS.
Collapse
Affiliation(s)
- Leilei Xu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Zhenhua Feng
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Zhicheng Dai
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yong Qiu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Zhichong Wu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Żak MM, Zangi L. Clinical development of therapeutic mRNA applications. Mol Ther 2025:S1525-0016(25)00208-4. [PMID: 40143545 DOI: 10.1016/j.ymthe.2025.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/21/2025] [Accepted: 03/21/2025] [Indexed: 03/28/2025] Open
Abstract
mRNA therapeutics are emerging as a transformative approach in modern medicine, providing innovative, highly adaptable solutions for a wide range of diseases, from viral infections to cancer. Since the approval of the first mRNA therapeutic-the coronavirus disease 2019 vaccines in 2021-we have identified more than 70 current clinical trials utilizing mRNA for various diseases. We propose classifying mRNA therapeutics into four main categories: vaccines, protein replacement therapies, antibodies, and mRNA-based cell and gene therapies. Each category can be further divided into subcategories. Vaccines include those targeting viral antigens, bacterial or parasitic antigens, general and individualized cancer antigens, and self-antigens. Protein replacement therapies include maintenance therapeutics designed to treat genetic disorders and interventional therapeutics, where delivering therapeutic proteins could improve patient outcomes, such as vascular endothelial growth factor A for ischemic heart disease or proinflammatory cytokines in cancer. Therapeutic antibodies are based on mRNA sequences encoding the heavy and light chains of clinically relevant antibodies, enabling patient cells to produce them directly, bypassing the costly and complex process of manufacturing protein-ready antibodies. Another category of mRNA-based therapeutics encompasses cell and gene therapies, including CRISPR with mRNA-mediated delivery of Cas9 and the in vivo generation of cells expressing CAR through mRNA. We discuss examples of mRNA therapeutics currently in clinical trials within each category, providing a comprehensive overview of the field's progress and highlighting key advancements as of the end of 2024.
Collapse
Affiliation(s)
- Magdalena M Żak
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Lior Zangi
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
5
|
McCafferty CL, Papoulas O, Lee C, Bui KH, Taylor DW, Marcotte EM, Wallingford JB. An amino acid-resolution interactome for motile cilia identifies the structure and function of ciliopathy protein complexes. Dev Cell 2025; 60:965-978.e3. [PMID: 39674175 PMCID: PMC11945580 DOI: 10.1016/j.devcel.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/04/2024] [Accepted: 11/21/2024] [Indexed: 12/16/2024]
Abstract
Motile cilia are ancient, evolutionarily conserved organelles whose dysfunction underlies motile ciliopathies, a broad class of human diseases. Motile cilia contain a myriad of different proteins that assemble into an array of distinct machines, and understanding the interactions and functional hierarchies among them presents an important challenge. Here, we defined the protein interactome of motile axonemes using cross-linking mass spectrometry in Tetrahymena thermophila. From over 19,000 cross-links, we identified over 4,700 unique amino acid interactions among over 1,100 distinct proteins, providing both macromolecular and atomic-scale insights into diverse ciliary machines, including the intraflagellar transport system, axonemal dynein arms, radial spokes, the 96-nm ruler, and microtubule inner proteins. Guided by this dataset, we used vertebrate multiciliated cells to reveal functional interactions among several poorly defined human ciliopathy proteins. This dataset provides a resource for studying the biology of an ancient organelle and the molecular etiology of human genetic disease.
Collapse
Affiliation(s)
- Caitlyn L McCafferty
- Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712, USA; Biozentrum, University of Basel, 4056 Basel, Switzerland.
| | - Ophelia Papoulas
- Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712, USA
| | - Chanjae Lee
- Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712, USA
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - David W Taylor
- Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712, USA.
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712, USA.
| |
Collapse
|
6
|
Karakoç E, Hjeij R, Kaya ZB, Emiralioğlu N, Ademhan Tural D, Atilla P, Özçelik U, Omran H. Diagnostic Role of Immunofluorescence Analysis in Primary Ciliary Dyskinesia-Suspected Individuals. J Clin Med 2025; 14:1941. [PMID: 40142748 PMCID: PMC11942966 DOI: 10.3390/jcm14061941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Primary ciliary dyskinesia (PCD) (OMIM: 244400) is a hereditary, rare disorder with a high prevalence in Turkey due to a high rate of consanguinity. The disorder is caused by malfunctioning motile cilia and is characterized by a variety of clinical symptoms including sinusitis, otitis media and chronic obstructive pulmonary disease. This study presents the first assessment of the efficacy of immunofluorescence (IF) labeling for diagnosing PCD in Turkey by correlating IF with clinical observations when genetic data are scarce. Methods: We have a cohort of 54 PCD-suspected individuals with an age range of 5-27 years classified into two groups: group A with available genomic data (8 individuals) and group B with no available genomic data (46 individuals). We performed immunofluorescence analysis to confirm the pathogenicity of the variants in individuals with a prior genetic diagnosis and to confirm a PCD diagnosis in individuals with typical PCD symptoms and no genetic diagnosis. Results: All individuals had airway infections and displayed clinical symptoms of PCD. Our data revealed an absence of outer dynein arm dynein heavy chain DNAH5 in individuals with pathogenic variants in DNAH5 and DNAAF1 and in 17 other PCD-suspected individuals, an absence of nexin-dynein regulatory complex component GAS8 in 8 PCD-suspected individuals, an absence of outer dynein arm dynein heavy chain DNAH11 in 6 PCD-suspected individuals and an absence of radial spoke head component RSPH9 in 2 PCD-suspected individuals. Furthermore, the pathogenicity of ARMC4 variants was confirmed by the absence of the outer dynein arm docking complex component ARMC4 and the proximal localization of DNAH5. Conclusions: Immunofluorescence analysis, owing to its lower cost and quicker turnaround time, proves to be a powerful tool for diagnosing PCD even in the absence of genetic data or electron microscopy results.
Collapse
Affiliation(s)
- Elif Karakoç
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey; (Z.B.K.); (P.A.)
| | - Rim Hjeij
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany;
| | - Zeynep Bengisu Kaya
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey; (Z.B.K.); (P.A.)
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Nagehan Emiralioğlu
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey; (N.E.); (D.A.T.)
| | - Dilber Ademhan Tural
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey; (N.E.); (D.A.T.)
| | - Pergin Atilla
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey; (Z.B.K.); (P.A.)
| | - Uğur Özçelik
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey; (N.E.); (D.A.T.)
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany;
| |
Collapse
|
7
|
Szenker-Ravi E, Ott T, Yusof A, Chopra M, Khatoo M, Pak B, Xuan Goh W, Beckers A, Brady AF, Ewans LJ, Djaziri N, Almontashiri NAM, Alghamdi MA, Alharby E, Dasouki M, Romo L, Tan WH, Maddirevula S, Alkuraya FS, Giordano JL, Alkelai A, Wapner RJ, Stals K, Alfadhel M, Alswaid AF, Bogusch S, Schafer-Kosulya A, Vogel S, Vick P, Schweickert A, Wakeling M, Moreau de Bellaing A, Alshamsi AM, Sanlaville D, Mbarek H, Saad C, Ellard S, Eisenhaber F, Tripolszki K, Beetz C, Bauer P, Gossler A, Eisenhaber B, Blum M, Bouvagnet P, Bertoli-Avella A, Amiel J, Gordon CT, Reversade B. CIROZ is dispensable in ancestral vertebrates but essential for left-right patterning in humans. Am J Hum Genet 2025; 112:353-373. [PMID: 39753129 PMCID: PMC11866977 DOI: 10.1016/j.ajhg.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 02/09/2025] Open
Abstract
Four genes-DAND5, PKD1L1, MMP21, and CIROP-form a genetic module that has specifically evolved in vertebrate species that harbor motile cilia in their left-right organizer (LRO). We find here that CIROZ (previously known as C1orf127) is also specifically expressed in the LRO of mice, frogs, and fish, where it encodes a protein with a signal peptide followed by 3 zona pellucida N domains, consistent with extracellular localization. We report 16 individuals from 10 families with bi-allelic CIROZ inactivation variants, which cause heterotaxy with congenital heart defects. While the knockout of Ciroz in mice also leads to situs anomalies, we unexpectedly find that its targeted inactivation in zebrafish and Xenopus does not lead to observable LR anomalies. Moreover, CIROZ is absent or obsolete in select animals with motile cilia at their LRO, including Carnivora, Atherinomorpha fish, or jawless vertebrates. In summary, this evo-devo study identifies CIROZ as an essential gene for breaking bilateral embryonic symmetry in humans and mice, whereas we witness its contemporary pseudogenization in discrete vertebrate species.
Collapse
Affiliation(s)
- Emmanuelle Szenker-Ravi
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore; Laboratory of Human Genetics & Therapeutics, BESE, KAUST, Thuwal, Saudi Arabia.
| | - Tim Ott
- Institute of Biology, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Amirah Yusof
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore; Laboratory of Human Genetics & Therapeutics, BESE, KAUST, Thuwal, Saudi Arabia
| | - Maya Chopra
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Muznah Khatoo
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore
| | - Beatrice Pak
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore
| | - Wei Xuan Goh
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore
| | - Anja Beckers
- Institute for Molecular Biology, OE5250, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Angela F Brady
- North West Thames Regional Genetics Service, London North West University Healthcare NHS Trust, Northwick Park Hospital, Harrow HA1 3UJ, UK
| | - Lisa J Ewans
- Center for Clinical Genetics, Sydney Children's Hospitals Network Randwick, Discipline of Pediatrics and Child Health, Faculty of Medicine and Health, UNSW, Center for Community Genomics, the Garvan Institute, Sydney, NSW, Australia
| | - Nabila Djaziri
- Université de Paris, Imagine Institute, Laboratory of Embryology and Genetics of Malformations, INSERM UMR 1163, 75015 Paris, France
| | - Naif A M Almontashiri
- Center for Genetics and Inherited Diseases, Taibah University, Medina, Saudi Arabia; Faculty of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Malak Ali Alghamdi
- Medical Genetics Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Essa Alharby
- Center for Genetics and Inherited Diseases, Taibah University, Medina, Saudi Arabia
| | - Majed Dasouki
- AdventHealth Genomics & Personalized Health at Orlando, Department of Medical Genetics & Genomics, 601 E. Rollins St., Suite 125, Orlando, FL 32804, USA
| | - Lindsay Romo
- Boston Children's Hospital and Harvard Medical School, Division of Genetics and Genomics, Boston, MA, USA; Harvard Medical Genetics Training Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Wen-Hann Tan
- Boston Children's Hospital and Harvard Medical School, Division of Genetics and Genomics, Boston, MA, USA
| | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Jessica L Giordano
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna Alkelai
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Ronald J Wapner
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Karen Stals
- Institute for Clinical and Biomedical Science, University of Exeter Medical School, Exeter, UK
| | - Majid Alfadhel
- Genetics and Precision Medicine Department King Abdullah Specialized Children Hospital (KASCH), King Abdulaziz Medical City (KAMC), MNG-HA, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, MNG-HA, Riyadh, Saudi Arabia
| | - Abdulrahman Faiz Alswaid
- Genetics and Precision Medicine Department King Abdullah Specialized Children Hospital (KASCH), King Abdulaziz Medical City (KAMC), MNG-HA, Riyadh, Saudi Arabia
| | - Susanne Bogusch
- University of Hohenheim, Institute of Biology, Department of Zoology, Garbenstr. 30, 70593 Stuttgart, Germany
| | - Anna Schafer-Kosulya
- University of Hohenheim, Institute of Biology, Department of Zoology, Garbenstr. 30, 70593 Stuttgart, Germany
| | - Sebastian Vogel
- University of Hohenheim, Institute of Biology, Department of Zoology, Garbenstr. 30, 70593 Stuttgart, Germany
| | - Philipp Vick
- University of Hohenheim, Institute of Biology, Department of Zoology, Garbenstr. 30, 70593 Stuttgart, Germany
| | - Axel Schweickert
- University of Hohenheim, Institute of Biology, Department of Zoology, Garbenstr. 30, 70593 Stuttgart, Germany
| | - Matthew Wakeling
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | - Anne Moreau de Bellaing
- Service de Génétique, Groupe Hospitalier Est, Hospices Civils de Lyon, Lyon, France; Université Lyon 1 Claude Bernard, Lyon, France
| | - Aisha M Alshamsi
- Department of Pediatrics, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Damien Sanlaville
- Service de Génétique, Groupe Hospitalier Est, Hospices Civils de Lyon, Lyon, France; Université Lyon 1, CNRS, INSERM, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008 Lyon, France
| | - Hamdi Mbarek
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Chadi Saad
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Sian Ellard
- Institute for Clinical and Biomedical Science, University of Exeter Medical School, Exeter, UK; Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), A(∗)STAR, Singapore, Singapore; Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore; School of Biological Sciences (SBS), Nanyang Technological University (NTU), Singapore, Singapore
| | | | | | | | - Achim Gossler
- Institute for Molecular Biology, OE5250, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Birgit Eisenhaber
- Bioinformatics Institute (BII), A(∗)STAR, Singapore, Singapore; Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore
| | - Martin Blum
- Institute of Biology, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Patrice Bouvagnet
- CPDP, Hôpital MFME, CHU de Martinique, BP632, 97200 Fort de France, France
| | | | - Jeanne Amiel
- Université de Paris, Imagine Institute, Laboratory of Embryology and Genetics of Malformations, INSERM UMR 1163, 75015 Paris, France; Fédération de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Christopher T Gordon
- Université de Paris, Imagine Institute, Laboratory of Embryology and Genetics of Malformations, INSERM UMR 1163, 75015 Paris, France
| | - Bruno Reversade
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore; Laboratory of Human Genetics & Therapeutics, BESE, KAUST, Thuwal, Saudi Arabia; Department of Physiology, Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
8
|
Brody SL, Pan J, Huang T, Xu J, Xu H, Koenitizer JR, Brennan SK, Nanjundappa R, Saba TG, Rumman N, Berical A, Hawkins FJ, Wang X, Zhang R, Mahjoub MR, Horani A, Dutcher SK. Undocking of an extensive ciliary network induces proteostasis and cell fate switching resulting in severe primary ciliary dyskinesia. Sci Transl Med 2025; 17:eadp5173. [PMID: 39879322 PMCID: PMC12108131 DOI: 10.1126/scitranslmed.adp5173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/04/2024] [Indexed: 01/31/2025]
Abstract
Primary ciliary dyskinesia is a rare monogenic syndrome that is associated with chronic respiratory disease, infertility, and laterality defects. Although more than 50 genes causative of primary ciliary dyskinesia have been identified, variants in the genes encoding coiled-coil domain-containing 39 (CCDC39) and CCDC40 in particular cause severe disease that is not explained by loss of ciliary motility alone. Here, we sought to understand the consequences of these variants on cellular functions beyond impaired motility. We used human cells with pathogenic variants in CCDC39 and CCDC40, Chlamydomonas reinhardtii genetics, cryo-electron microscopy, and proteomics to define perturbations in ciliary assembly and cilia stability, as well as multiple motility-independent pathways. Analysis of proteomics of cilia from patient cells identified that the absence of the axonemal CCDC39/CCDC40 heterodimer resulted in the loss of a network of more than 90 ciliary structural proteins, including 14 that were defined as ciliary address recognition proteins, which provide docking for the missing structures. The absence of the network impaired microtubule architecture, activated cell quality control pathways, switched multiciliated cell fate to mucus-producing cells and resulted in a defective periciliary barrier. In CCDC39 variant cells, these phenotypes were reversed through expression of a normal CCDC39 transgene. These findings indicate that the CCDC39/CCDC40 heterodimer functions as a scaffold to support the assembly of an extensive network of ciliary proteins, whose loss results in both motility-dependent and motility-independent phenotypes that may explain the severity of disease. Gene therapy might be a potential treatment option to be explored in future studies.
Collapse
Affiliation(s)
- Steven L. Brody
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jiehong Pan
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Tao Huang
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jian Xu
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Huihui Xu
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jeffrey R. Koenitizer
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Steven K. Brennan
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Rashmi Nanjundappa
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Thomas G. Saba
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48108, USA
| | - Nisreen Rumman
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Pediatrics, Faculty of Medicine, Al-Quds University, Abu-Deis, 91220, Palestine
| | - Andrew Berical
- Center for Regenerative Medicine, Boston University, Boston, MA, 02118, USA
| | - Finn J. Hawkins
- Center for Regenerative Medicine, Boston University, Boston, MA, 02118, USA
| | - Xiangli Wang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Moe R. Mahjoub
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Amjad Horani
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48108, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Susan K. Dutcher
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| |
Collapse
|
9
|
Wang L, Zhang A, Hu Y, Yang W, Zhong L, Shi J, Wang Z, Tao Q, Liang Q, Yao X. Landscape of multiple tissues' gene expression pattern associated with severe sepsis: Genetic insights from Mendelian randomization and trans-omics analysis. Life Sci 2024; 358:123181. [PMID: 39471899 DOI: 10.1016/j.lfs.2024.123181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
BACKGROUND Sepsis, a systemic syndrome often culminating in multiple organ failure (MOF), poses a substantial global health threat. However, the gene expression pattern of various tissues associated with severe sepsis remains elusive. METHODS Applying the summary data-based Mendelian randomization (SMR) method, we integrated sepsis genome-wide association study (GWAS) data and expression quantitative trait loci (eQTLs) summaries. This facilitated the investigation of gene causality across 12 tissue types within 26 cohorts linked to adverse sepsis outcomes, including critical care and 28-day mortality. Additionally, trans-omics analyses, including blood transcriptome and single-cell RNA sequencing, were conducted to examine cellular origins and gene functions. The effects of ST7L on sepsis were validated in vivo and in vitro. RESULTS We identified 127 genes associated with severe sepsis across diverse tissues. Cross-tissue analysis highlighted ST7L as a significant pan-tissue risk factor for severe sepsis, displaying significance across 11 tissues for both critical care sepsis (meta OR 1.19, 95 % CI: 1.14-1.25, meta p < 0.0001) and 28-day-death sepsis (meta OR: 1.22, 95 % CI: 1.17-1.27, meta p < 0.0001). Notably, independent blood single-cell RNA sequencing data showed specific expression of ST7L in dendritic cells (DCs). ST7L+ DCs were elevated in non-surviving sepsis patients and exhibited an augmented inflammatory molecular pattern compared to ST7L- DCs. Both transcription and translation level of ST7L in DCs exhibited a dose-dependent pattern with LPS. Knocking down ST7L by siRNA was sufficient to alleviate the inflammation phenotype of DCs, including inhibiting p65/NF-kB pathway and inflammatory factors. CONCLUSION Our findings underscore ST7L as a pan-tissue risk factor for severe sepsis, specifically manifested in DCs and associated with an inflammatory phenotype. These results offer essential insights into the gene expression profiles across multiple tissues in severe sepsis, potentially identifying therapeutic targets for effective sepsis management.
Collapse
Affiliation(s)
- Lei Wang
- Department of Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Aiping Zhang
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China; Critical Care Medicine Department, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Yehong Hu
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China; Critical Care Medicine Department, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Wanwei Yang
- Department of Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Li Zhong
- Department of Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Jianfeng Shi
- Department of Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Zhiguo Wang
- Department of Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Qing Tao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Qiao Liang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, Jiangsu, China.
| | - Xiaoming Yao
- Department of Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| |
Collapse
|
10
|
Zanetti A, Dujardin G, Fares-Taie L, Amiel J, Roger JE, Audo I, Robert MP, David P, Jung V, Goudin N, Guerrera IC, Moriceau S, Amana D, Assia Batzir N, Bachar-Zipori A, Basel Salmon L, Boddaert N, Briault S, Bruel AL, Costet-Fighiera C, Coutinho Santos L, Gitiaux C, Kaminska K, Kuentz P, Orenstein N, Philip-Sarles N, Plutino M, Quinodoz M, Santos C, Sigaudy S, Soeiro E Sá M, Sofrin E, Sousa AB, Sousa-Luis R, Thauvin-Robinet C, van Dijk EL, Zaafrane-Khachnaoui K, Zur D, Kaplan J, Rivolta C, Rozet JM, Perrault I. GPATCH11 variants cause mis-splicing and early-onset retinal dystrophy with neurological impairment. Nat Commun 2024; 15:10096. [PMID: 39572588 PMCID: PMC11582697 DOI: 10.1038/s41467-024-54549-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
Here we conduct a study involving 12 individuals with retinal dystrophy, neurological impairment, and skeletal abnormalities, with special focus on GPATCH11, a lesser-known G-patch domain-containing protein, regulator of RNA metabolism. To elucidate its role, we study fibroblasts from unaffected individuals and patients carrying the recurring c.328+1 G > T mutation, which specifically removes the main part of the G-patch domain while preserving the other domains. Additionally, we generate a mouse model replicating the patients' phenotypic defects, including retinal dystrophy and behavioral abnormalities. Our results reveal a subcellular localization of GPATCH11 characterized by a diffuse presence in the nucleoplasm, as well as centrosomal localization, suggesting potential functions in RNA and cilia metabolism. Transcriptomic analysis performed on mouse retina detect dysregulation in both gene expression and splicing activity, impacting key processes such as photoreceptor light responses, RNA regulation, and primary cilia-associated metabolism. Proteomic analysis of mouse retina confirms the roles GPATCH11 plays in RNA processing, splicing, and transcription regulation, while also suggesting additional functions in synaptic plasticity and nuclear stress response. Our research provides insights into the diverse roles of GPATCH11 and identifies that the mutations affecting this protein are responsible for a recently characterized described syndrome.
Collapse
Affiliation(s)
- Andrea Zanetti
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Cité University, Paris, France
| | - Gwendal Dujardin
- Génétique, Génomique fonctionnelle et Biotechnologies (GGB), Université de Brest, INSERM UMR1078, EFS, Brest, France
| | - Lucas Fares-Taie
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Cité University, Paris, France
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Malformations, INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Cité University, Paris, France
| | - Jérôme E Roger
- Paris-Saclay Institute of Neurosciences, CERTO-Retina France, CNRS, Paris-Saclay University, Saclay, France
| | - Isabelle Audo
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET F-, Paris, France
| | - Matthieu P Robert
- Ophthalmology Department, University Hospital Necker-Enfants Malades, APHP, Paris, France
| | - Pierre David
- Transgenesis platform, Laboratory of Animal Experimentation and Transgenesis (LEAT) of the Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMSS3633, Institute of Genetic Diseases, Imagine, Paris, France
| | - Vincent Jung
- Proteomic Platform Necker, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR 3633, Paris, France
| | - Nicolas Goudin
- Necker Bioimage Analysis Core Facility of the Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR 3633, Paris, France
| | - Ida Chiara Guerrera
- Proteomic Platform Necker, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR 3633, Paris, France
| | - Stéphanie Moriceau
- Platform for Neurobehavioral and metabolism, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR 3633, Institute of Genetic Diseases, Imagine, Paris, France
| | - Danielle Amana
- Ophthalmology Department, Hospital Center of Orleans, Orleans, France
| | - Nurit Assia Batzir
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Anat Bachar-Zipori
- Ophthalmology Division, Tel Aviv Medical Center; Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Lina Basel Salmon
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Recanati Genetics Institute, Rabin Medical Center, Petah Tikva, Israel
- Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Nathalie Boddaert
- Pediatric-Radiology Department, University Hospital Necker-Enfants Malades, APHP, Paris Cité University, INSERM UMR1163, Paris, France
| | - Sylvain Briault
- Genetics Department, Regional Hospital of Orleans (CHRO), Orleans, France
| | - Ange-Line Bruel
- INSERM UMR1231, GAD team Université de Bourgogne-Franche Comté, FHU-TRANSLAD, CHU Dijon, Dijon, France
| | | | | | - Cyril Gitiaux
- Department of Clinical Neurophysiology, Reference center for neuromuscular pathologies Paris Nord Est, University Hospital Necker-Enfants Malades, Paris Cité University, Paris, France
| | - Karolina Kaminska
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Paul Kuentz
- INSERM UMR1231, GAD team Université de Bourgogne-Franche Comté, FHU-TRANSLAD, CHU Dijon, Dijon, France
| | - Naama Orenstein
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | - Morgane Plutino
- Service de Génétique Médicale, Hôpital l'Archet 2, CHU de Nice, Nice, France
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Cristina Santos
- Instituto de Oftalmologia Dr. Gama Pinto (IOGP), Lisboa, Portugal
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Sabine Sigaudy
- Medical Genetics Department, Hospital Timone Enfant, Marseille, France
| | - Mariana Soeiro E Sá
- Department of Medical Genetics, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Efrat Sofrin
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Ana Berta Sousa
- Department of Medical Genetics, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
- Laboratory of Basic Immunology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Rui Sousa-Luis
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Christel Thauvin-Robinet
- INSERM UMR1231, GAD team Université de Bourgogne-Franche Comté, FHU-TRANSLAD, CHU Dijon, Dijon, France
- Reference Center for Rare Diseases "Developmental Abnormalities and Malformation Syndromes" of the East, Genetic center, Hopital d'Enfants, FHU TRANSLAD, CHU Dijon, Dijon, France
| | - Erwin L van Dijk
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette Cedex, France
| | | | - Dinah Zur
- Ophthalmology Division, Tel Aviv Medical Center; Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Josseline Kaplan
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Cité University, Paris, France
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Cité University, Paris, France
| | - Isabelle Perrault
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Cité University, Paris, France.
| |
Collapse
|
11
|
Berical AC, Kiyokawa H, Beermann ML, Wallman D, Cherfane G, Dunphy V, Pan J, Tilston-Lunel A, Varelas X, Horani A, Brody SL, Kotton DN, Hawkins FJ. Airway Disease Modeling with Gene-edited Human Basal Cell Transplantation. Am J Respir Crit Care Med 2024; 211:131-134. [PMID: 39514838 PMCID: PMC11755362 DOI: 10.1164/rccm.202406-1110rl] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Andrew C Berical
- Boston University Chobanian & Avedisian School of Medicine, Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, United States
- Boston University Chobanian & Avedisian School of Medicine, The Pulmonary Center, Boston, Massachusetts, United States;
| | - Hirofumi Kiyokawa
- Boston University Chobanian & Avedisian School of Medicine, Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, United States
| | - Mary Lou Beermann
- Boston University Chobanian & Avedisian School of Medicine, Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, United States
| | - Daniel Wallman
- Boston University Chobanian & Avedisian School of Medicine, Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, United States
- Boston University Chobanian & Avedisian School of Medicine, The Pulmonary Center, Boston, Massachusetts, United States
| | - Gabrielle Cherfane
- Boston University Chobanian & Avedisian School of Medicine, Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, United States
| | - Victoria Dunphy
- Boston University Chobanian & Avedisian School of Medicine, Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, United States
| | - Jiehong Pan
- Washington University School of Medicine in Saint Louis, Departments of Medicine and Pediatrics, Saint Louis, Missouri, United States
| | - Andrew Tilston-Lunel
- Boston University Chobanian & Avedisian School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States
| | - Xaralabos Varelas
- Boston University Chobanian & Avedisian School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States
| | - Amjad Horani
- Washington University in St Louis, Departments of Medicine and Pediatrics, St Louis, Missouri, United States
| | - Steven L Brody
- Washington University in Saint Louis, Departments of Medicine and Pediatrics, Saint Louis, Missouri, United States
| | - Darrell N Kotton
- Boston University Chobanian & Avedisian School of Medicine, Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, United States
- Boston University Chobanian & Avedisian School of Medicine, The Pulmonary Center, Boston, Massachusetts, United States
| | - Finn J Hawkins
- Boston University Chobanian & Avedisian School of Medicine, Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, United States
- Boston University Chobanian & Avedisian School of Medicine, The Pulmonary Center, Boston, Massachusetts, United States
| |
Collapse
|
12
|
Zhang XJ, Hou XN, Zhou JT, Shi BL, Ye JW, Yang ML, Jiang XH, Xu B, Wu LM, Shi QH. CCDC181 is required for sperm flagellum biogenesis and male fertility in mice. Zool Res 2024; 45:1061-1072. [PMID: 39245650 PMCID: PMC11491787 DOI: 10.24272/j.issn.2095-8137.2024.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/20/2024] [Indexed: 09/10/2024] Open
Abstract
The structural integrity of the sperm flagellum is essential for proper sperm function. Flagellar defects can result in male infertility, yet the precise mechanisms underlying this relationship are not fully understood. CCDC181, a coiled-coil domain-containing protein, is known to localize on sperm flagella and at the basal regions of motile cilia. Despite this knowledge, the specific functions of CCDC181 in flagellum biogenesis remain unclear. In this study, Ccdc181 knockout mice were generated. The absence of CCDC181 led to defective sperm head shaping and flagellum formation. Furthermore, the Ccdc181 knockout mice exhibited extremely low sperm counts, grossly aberrant sperm morphologies, markedly diminished sperm motility, and typical multiple morphological abnormalities of the flagella (MMAF). Additionally, an interaction between CCDC181 and the MMAF-related protein LRRC46 was identified, with CCDC181 regulating the localization of LRRC46 within sperm flagella. These findings suggest that CCDC181 plays a crucial role in both manchette formation and sperm flagellum biogenesis.
Collapse
Affiliation(s)
- Xiang-Jun Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiao-Ning Hou
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jian-Teng Zhou
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Bao-Lu Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jing-Wei Ye
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Meng-Lei Yang
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiao-Hua Jiang
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Bo Xu
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Li-Min Wu
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230001, China. E-mail:
| | - Qing-Hua Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, Anhui 230001, China. E-mail:
| |
Collapse
|
13
|
Ahmed M, Fischer S, Robert KL, Lange KI, Stuck MW, Best S, Johnson CA, Pazour GJ, Blacque OE, Nandadasa S. Two functional forms of the Meckel-Gruber syndrome protein TMEM67 generated by proteolytic cleavage by ADAMTS9 mediate Wnt signaling and ciliogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611229. [PMID: 39282264 PMCID: PMC11398388 DOI: 10.1101/2024.09.04.611229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
TMEM67 mutations are the major cause of Meckel-Gruber syndrome. TMEM67 is involved in both ciliary transition zone assembly, and non-canonical Wnt signaling mediated by its extracellular domain. How TMEM67 performs these two separate functions is not known. We identify a novel cleavage motif in the extracellular domain of TMEM67 cleaved by the extracellular matrix metalloproteinase ADAMTS9. This cleavage regulates the abundance of two functional forms: A C-terminal portion which localizes to the ciliary transition zone regulating ciliogenesis, and a non-cleaved form which regulates Wnt signaling. By characterizing three TMEM67 ciliopathy patient variants within the cleavage motif utilizing mammalian cell culture and C. elegans, we show the cleavage motif is essential for cilia structure and function, highlighting its clinical significance. We generated a novel non-cleavable TMEM67 mouse model which develop severe ciliopathies phenocopying Tmem67 -/- mice, but in contrast, undergo normal Wnt signaling, substantiating the existence of two functional forms of TMEM67.
Collapse
Affiliation(s)
- Manu Ahmed
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA
| | - Sydney Fischer
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA
| | - Karyn L. Robert
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA
| | - Karen I. Lange
- School of Biomolecular & Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael W. Stuck
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Sunayna Best
- Division of Molecular Medicine, Leeds Institute of Medical Research, The University of Leeds, Leeds, UK
- Department of Clinical Genetics, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Colin A. Johnson
- Division of Molecular Medicine, Leeds Institute of Medical Research, The University of Leeds, Leeds, UK
| | - Gregory J. Pazour
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Oliver E. Blacque
- School of Biomolecular & Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sumeda Nandadasa
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA
| |
Collapse
|
14
|
Wang P, Shi W, Liu S, Shi Y, Jiang X, Li F, Chen S, Sun K, Xu R. ccdc141 is required for left-right axis development by regulating cilia formation in the Kupffer's vesicle of zebrafish. J Genet Genomics 2024; 51:934-946. [PMID: 39047937 DOI: 10.1016/j.jgg.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Laterality is a crucial physiological process intricately linked to the cilium-centrosome complex during embryo development. Defects in the process can result in severe organ mispositioning. Coiled-coil domain containing 141 (CCDC141) has been previously known as a centrosome-related gene, but its role in left-right (LR) asymmetry has not been characterized. In this study, we utilize the zebrafish model and human exome analysis to elucidate the function of ccdc141 in laterality defects. The knockdown of ccdc141 in zebrafish disrupts early LR signaling pathways, cilia function, and Kupffer's vesicle formation. Unlike ccdc141-knockdown embryos exhibiting aberrant LR patterns, ccdc141-null mutants show no apparent abnormality, suggesting a genetic compensation response effect. In parallel, we observe a marked reduction in α-tubulin acetylation levels in the ccdc141 crispants. The treatment with histone deacetylase (HDAC) inhibitors, particularly the HDAC6 inhibitor, rescues the ccdc141 crispant phenotypes. Furthermore, exome analysis of 70 patients with laterality defects reveals an increased burden of CCDC141 mutations, with in-vivo studies verifying the pathogenicity of the patient mutation CCDC141-R123G. Our findings highlight the critical role of ccdc141 in ciliogenesis and demonstrate that CCDC141 mutations lead to abnormal LR patterns, identifying it as a candidate gene for laterality defects.
Collapse
Affiliation(s)
- Pengcheng Wang
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Wenxiang Shi
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Sijie Liu
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yunjing Shi
- Department of Cardiovascular Medicine, Heart Failure Center, Ruijin Hospital, Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xuechao Jiang
- Scientific Research Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Fen Li
- Department of Pediatric Cardiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Sun Chen
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Rang Xu
- Scientific Research Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
15
|
Liu Z, Wang C, Ni F, Li T, Yang F, Wei H, Li T, Huang C, Wang J, Wang B. Identification of a Homozygous Mutation of CCDC40 in a Chinese Infertile Man with MMAF and PCD-like Phenotypes. Genet Test Mol Biomarkers 2024; 28:337-341. [PMID: 38837151 DOI: 10.1089/gtmb.2023.0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Aims: Asthenozoospermia is the most common factor of male infertility, mainly caused by multiple morphological abnormalities of the sperm flagella (MMAF) and primary ciliary dyskinesia (PCD). Previous studies have shown that genetic factors may contribute to MMAF and PCD. The study aimed to identify novel potentially pathogenic gene mutations in a Chinese infertile man with MMAF and PCD-like phenotypes. Methods: A Chinese infertile man with MMAF and PCD was enrolled in this study. Whole exome sequencing and Sanger sequencing were performed to identify potential causative genes and mutations. Results: A novel homozygous missense mutation (c.1450G>A; p.E484K) of CCDC40 was finally identified and Sanger sequencing confirmed that the patient carried the homozygous mutation, which was inherited from his parents. We reported the first homozygous missense CCDC40 mutation in infertile men with MMAF but had other milder PCD symptoms. Conclusion: Our findings not only broaden the disease-causing mutation spectrum of CCDC40 but also provide new insight into the correlation between CCDC40 mutations and MMAF.
Collapse
Affiliation(s)
- Zhonglin Liu
- Center of Reproductive Medicine, Affiliated hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Chunyan Wang
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
- Center for Genetics, National Research Institute of Family Planning, Beijing, China
| | - Feng Ni
- Medicine Center, 901st hospital of PLA Joint Logistic Support Force, Hefei, China
| | - Tingshu Li
- Center of Reproductive Medicine, Affiliated hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Fenglian Yang
- Industrial College of biomedicine and health industry, Youjiang Medical University for Nationalities, Baise, China
| | - Han Wei
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
- Center for Genetics, National Research Institute of Family Planning, Beijing, China
| | - Tengyan Li
- Center for Genetics, National Research Institute of Family Planning, Beijing, China
| | - Changhui Huang
- Department of Radiology, Affiliated hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Junli Wang
- Center of Reproductive Medicine, Affiliated hospital of Youjiang Medical University for Nationalities, Baise, China
- Industrial College of biomedicine and health industry, Youjiang Medical University for Nationalities, Baise, China
| | - Binbin Wang
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
- Center for Genetics, National Research Institute of Family Planning, Beijing, China
- NHC Key Laboratory of Reproductive Health Engineering Technology Research (NRIFP), Beijing, China
| |
Collapse
|
16
|
Wilken A, Höben IM, Wolter A, Loges NT, Olbrich H, Aprea I, Dworniczak B, Raidt J, Omran H. Primary Ciliary Dyskinesia Associated Disease-Causing Variants in CCDC39 and CCDC40 Cause Axonemal Absence of Inner Dynein Arm Heavy Chains DNAH1, DNAH6, and DNAH7. Cells 2024; 13:1200. [PMID: 39056782 PMCID: PMC11274998 DOI: 10.3390/cells13141200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Disease-causing bi-allelic DNA variants in CCDC39 and CCDC40 are frequent causes of the hereditary disorder of primary ciliary dyskinesia (PCD). The encoded proteins form a molecular ruler complex, crucial for maintaining the 96 nm repeat units along the ciliary axonemes. Defects of those proteins cause a stiff, rapid, and flickery ciliary beating pattern, recurrent respiratory infections, axonemal disorganization, and abnormal assembly of GAS8, CCDC39, and DNALI1. We performed molecular characterization of the defects in the 96 nm axonemal ruler due to disease-causing variants in CCDC39 and CCDC40 and analyzed the effect on additional axonemal components. We identified a cohort of 51 individuals with disease-causing variants in CCDC39 and CCDC40 via next-generation sequencing techniques and demonstrated that the IDA heavy chains DNAH1, DNAH6, and DNAH7 are conspicuously absent within the respiratory ciliary axonemes by immunofluorescence analyses. Hence, we show for the first time that the centrin2 (CETN2) containing IDAs are also affected. These findings underscore the crucial role of CCDC39 and CCDC40 in the assembly and function of IDAs in human respiratory cilia. Thus, our data improve the diagnostics of axonemal ruler defects by further characterizing the associated molecular IDA defects.
Collapse
Affiliation(s)
- Alina Wilken
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Inga Marlena Höben
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Alexander Wolter
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, 44791 Bochum, Germany
| | - Niki Tomas Loges
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Heike Olbrich
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Isabella Aprea
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Bernd Dworniczak
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Johanna Raidt
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany
| |
Collapse
|
17
|
Despotes KA, Zariwala MA, Davis SD, Ferkol TW. Primary Ciliary Dyskinesia: A Clinical Review. Cells 2024; 13:974. [PMID: 38891105 PMCID: PMC11171568 DOI: 10.3390/cells13110974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare, genetically heterogeneous, motile ciliopathy, characterized by neonatal respiratory distress, recurrent upper and lower respiratory tract infections, subfertility, and laterality defects. Diagnosis relies on a combination of tests for confirmation, including nasal nitric oxide (nNO) measurements, high-speed videomicroscopy analysis (HSVMA), immunofluorescent staining, axonemal ultrastructure analysis via transmission electron microscopy (TEM), and genetic testing. Notably, there is no single gold standard confirmatory or exclusionary test. Currently, 54 causative genes involved in cilia assembly, structure, and function have been linked to PCD; this rare disease has a spectrum of clinical manifestations and emerging genotype-phenotype relationships. In this review, we provide an overview of the structure and function of motile cilia, the emerging genetics and pathophysiology of this rare disease, as well as clinical features associated with motile ciliopathies, novel diagnostic tools, and updates on genotype-phenotype relationships in PCD.
Collapse
Affiliation(s)
- Katherine A. Despotes
- Department of Pediatrics, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Maimoona A. Zariwala
- Department of Pediatrics, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Marsico Lung Institute, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie D. Davis
- Department of Pediatrics, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas W. Ferkol
- Department of Pediatrics, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Marsico Lung Institute, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
18
|
Zheng H, Gong C, Li J, Hou J, Gong X, Zhu X, Deng H, Wu H, Zhang F, Shi Q, Zhou J, Shi B, Yang X, Xi Y. CCDC157 is essential for sperm differentiation and shows oligoasthenoteratozoospermia-related mutations in men. J Cell Mol Med 2024; 28:e18215. [PMID: 38509755 PMCID: PMC10955179 DOI: 10.1111/jcmm.18215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/09/2024] [Accepted: 02/09/2024] [Indexed: 03/22/2024] Open
Abstract
Oligoasthenoteratospermia (OAT), characterized by abnormally low sperm count, poor sperm motility, and abnormally high number of deformed spermatozoa, is an important cause of male infertility. Its genetic basis in many affected individuals remains unknown. Here, we found that CCDC157 variants are associated with OAT. In two cohorts, a 21-bp (g.30768132_30768152del21) and/or 24-bp (g.30772543_30772566del24) deletion of CCDC157 were identified in five sporadic OAT patients, and 2 cases within one pedigree. In a mouse model, loss of Ccdc157 led to male sterility with OAT-like phenotypes. Electron microscopy revealed misstructured acrosome and abnormal head-tail coupling apparatus in the sperm of Ccdc157-null mice. Comparative transcriptome analysis showed that the Ccdc157 mutation alters the expressions of genes involved in cell migration/motility and Golgi components. Abnormal Golgi apparatus and decreased expressions of genes involved in acrosome formation and lipid metabolism were detected in Ccdc157-deprived mouse germ cells. Interestingly, we attempted to treat infertile patients and Ccdc157 mutant mice with a Chinese medicine, Huangjin Zanyu, which improved the fertility in one patient and most mice that carried the heterozygous mutation in CCDC157. Healthy offspring were produced. Our study reveals CCDC157 is essential for sperm maturation and may serve as a marker for diagnosis of OAT.
Collapse
Affiliation(s)
- Huimei Zheng
- Division of Human Reproduction and Developmental Genetics, the Women's HospitalZhejiang University School of MedicineHangzhouChina
| | - Chenjia Gong
- Hefei National Laboratory for Physical Sciences at Microscale, the First Affiliated Hospital of USTC, USTC‐SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and DevelopmentUniversity of Science and Technology of ChinaHefeiChina
| | - Jingping Li
- Division of Human Reproduction and Developmental Genetics, the Women's HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiaru Hou
- Division of Human Reproduction and Developmental Genetics, the Women's HospitalZhejiang University School of MedicineHangzhouChina
- Institute of GeneticsZhejiang UniversityYiwuChina
- Center for Genetic Medicine, the Fourth Affiliated HospitalZhejiang University School of MedicineYiwuChina
| | - Xinhan Gong
- Division of Human Reproduction and Developmental Genetics, the Women's HospitalZhejiang University School of MedicineHangzhouChina
- Institute of GeneticsZhejiang UniversityYiwuChina
- Center for Genetic Medicine, the Fourth Affiliated HospitalZhejiang University School of MedicineYiwuChina
| | - Xinhai Zhu
- College of Life SciencesZhejiang UniversityHangzhouChina
| | - Huan Deng
- Division of Human Reproduction and Developmental Genetics, the Women's HospitalZhejiang University School of MedicineHangzhouChina
- Institute of GeneticsZhejiang UniversityYiwuChina
- Center for Genetic Medicine, the Fourth Affiliated HospitalZhejiang University School of MedicineYiwuChina
| | - Haoyue Wu
- Division of Human Reproduction and Developmental Genetics, the Women's HospitalZhejiang University School of MedicineHangzhouChina
- Institute of GeneticsZhejiang UniversityYiwuChina
- Center for Genetic Medicine, the Fourth Affiliated HospitalZhejiang University School of MedicineYiwuChina
| | - Fengbin Zhang
- Division of Human Reproduction and Developmental Genetics, the Women's HospitalZhejiang University School of MedicineHangzhouChina
| | - Qinghua Shi
- Hefei National Laboratory for Physical Sciences at Microscale, the First Affiliated Hospital of USTC, USTC‐SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and DevelopmentUniversity of Science and Technology of ChinaHefeiChina
| | - Jianteng Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, the First Affiliated Hospital of USTC, USTC‐SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and DevelopmentUniversity of Science and Technology of ChinaHefeiChina
| | - Baolu Shi
- Hefei National Laboratory for Physical Sciences at Microscale, the First Affiliated Hospital of USTC, USTC‐SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and DevelopmentUniversity of Science and Technology of ChinaHefeiChina
| | - Xiaohang Yang
- Division of Human Reproduction and Developmental Genetics, the Women's HospitalZhejiang University School of MedicineHangzhouChina
- Institute of GeneticsZhejiang UniversityYiwuChina
- Center for Genetic Medicine, the Fourth Affiliated HospitalZhejiang University School of MedicineYiwuChina
| | - Yongmei Xi
- Division of Human Reproduction and Developmental Genetics, the Women's HospitalZhejiang University School of MedicineHangzhouChina
- Institute of GeneticsZhejiang UniversityYiwuChina
- Center for Genetic Medicine, the Fourth Affiliated HospitalZhejiang University School of MedicineYiwuChina
| |
Collapse
|
19
|
Brody SL, Pan J, Huang T, Xu J, Xu H, Koenitizer J, Brennan SK, Nanjundappa R, Saba TG, Berical A, Hawkins FJ, Wang X, Zhang R, Mahjoub MR, Horani A, Dutcher SK. Loss of an extensive ciliary connectome induces proteostasis and cell fate switching in a severe motile ciliopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585965. [PMID: 38562900 PMCID: PMC10983967 DOI: 10.1101/2024.03.20.585965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Motile cilia have essential cellular functions in development, reproduction, and homeostasis. Genetic causes for motile ciliopathies have been identified, but the consequences on cellular functions beyond impaired motility remain unknown. Variants in CCDC39 and CCDC40 cause severe disease not explained by loss of motility. Using human cells with pathological variants in these genes, Chlamydomonas genetics, cryo-electron microscopy, single cell RNA transcriptomics, and proteomics, we identified perturbations in multiple cilia-independent pathways. Absence of the axonemal CCDC39/CCDC40 heterodimer results in loss of a connectome of over 90 proteins. The undocked connectome activates cell quality control pathways, switches multiciliated cell fate, impairs microtubule architecture, and creates a defective periciliary barrier. Both cilia-dependent and independent defects are likely responsible for the disease severity. Our findings provide a foundation for reconsidering the broad cellular impact of pathologic variants in ciliopathies and suggest new directions for therapies.
Collapse
Affiliation(s)
- Steven L. Brody
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jiehong Pan
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Tao Huang
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jian Xu
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Huihui Xu
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jeffrey Koenitizer
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Steven K. Brennan
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Rashmi Nanjundappa
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Thomas G. Saba
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, 48108, USA
| | - Andrew Berical
- Center for Regenerative Medicine, Boston University, Boston, MA, 02118, USA
| | - Finn J. Hawkins
- Center for Regenerative Medicine, Boston University, Boston, MA, 02118, USA
| | - Xiangli Wang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Moe R. Mahjoub
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Cell Biology and Physisology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Amjad Horani
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, 48108, USA
- Department of Cell Biology and Physisology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Susan K. Dutcher
- Department of Cell Biology and Physisology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| |
Collapse
|
20
|
Yu H, Khanshour AM, Ushiki A, Otomo N, Koike Y, Einarsdottir E, Fan Y, Antunes L, Kidane YH, Cornelia R, Sheng RR, Zhang Y, Pei J, Grishin NV, Evers BM, Cheung JPY, Herring JA, Terao C, Song YQ, Gurnett CA, Gerdhem P, Ikegawa S, Rios JJ, Ahituv N, Wise CA. Association of genetic variation in COL11A1 with adolescent idiopathic scoliosis. eLife 2024; 12:RP89762. [PMID: 38277211 PMCID: PMC10945706 DOI: 10.7554/elife.89762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is a common and progressive spinal deformity in children that exhibits striking sexual dimorphism, with girls at more than fivefold greater risk of severe disease compared to boys. Despite its medical impact, the molecular mechanisms that drive AIS are largely unknown. We previously defined a female-specific AIS genetic risk locus in an enhancer near the PAX1 gene. Here, we sought to define the roles of PAX1 and newly identified AIS-associated genes in the developmental mechanism of AIS. In a genetic study of 10,519 individuals with AIS and 93,238 unaffected controls, significant association was identified with a variant in COL11A1 encoding collagen (α1) XI (rs3753841; NM_080629.2_c.4004C>T; p.(Pro1335Leu); p=7.07E-11, OR = 1.118). Using CRISPR mutagenesis we generated Pax1 knockout mice (Pax1-/-). In postnatal spines we found that PAX1 and collagen (α1) XI protein both localize within the intervertebral disc-vertebral junction region encompassing the growth plate, with less collagen (α1) XI detected in Pax1-/- spines compared to wild-type. By genetic targeting we found that wild-type Col11a1 expression in costal chondrocytes suppresses expression of Pax1 and of Mmp3, encoding the matrix metalloproteinase 3 enzyme implicated in matrix remodeling. However, the latter suppression was abrogated in the presence of the AIS-associated COL11A1P1335L mutant. Further, we found that either knockdown of the estrogen receptor gene Esr2 or tamoxifen treatment significantly altered Col11a1 and Mmp3 expression in chondrocytes. We propose a new molecular model of AIS pathogenesis wherein genetic variation and estrogen signaling increase disease susceptibility by altering a PAX1-COL11a1-MMP3 signaling axis in spinal chondrocytes.
Collapse
Affiliation(s)
- Hao Yu
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
| | - Anas M Khanshour
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
| | - Aki Ushiki
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
| | - Nao Otomo
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical SciencesTokyoJapan
| | - Yoshinao Koike
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical SciencesTokyoJapan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical SciencesYokohamaJapan
| | - Elisabet Einarsdottir
- Science for Life Laboratory, Department of Gene Technology, KTH-Royal Institute of TechnologySolnaSweden
| | - Yanhui Fan
- School of Biomedical Sciences, The University of Hong KongHong Kong SARChina
| | - Lilian Antunes
- Department of Neurology, Washington University in St. LouisSt. LouisUnited States
| | - Yared H Kidane
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
| | - Reuel Cornelia
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
| | - Rory R Sheng
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
| | - Yichi Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
- School of Pharmaceutical Sciences, Tsinghua UniversityBeijingChina
| | - Jimin Pei
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Bret M Evers
- Department of Pathology, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Ophthalmology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology LKS Faculty of Medicine, The University of Hong KongHong Kong SARChina
| | - John A Herring
- Department of Orthopedic Surgery, Scottish Rite for ChildrenDallasUnited States
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical CenterDallasUnited States
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical SciencesYokohamaJapan
| | - You-qiang Song
- School of Biomedical Sciences, The University of Hong KongHong Kong SARChina
| | - Christina A Gurnett
- Department of Neurology, Washington University in St. LouisSt. LouisUnited States
| | - Paul Gerdhem
- Department of Surgical Sciences, Uppsala UniversityUppsalaSweden
- Department of Orthopaedics and Hand Surgery, Uppsala University HospitalUppsalaSweden
- Department of Clinical Science, Intervention & Technology (CLINTEC), Karolinska Institutet, Stockholm, Uppsala UniversityUppsalaSweden
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical SciencesTokyoJapan
| | - Jonathan J Rios
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical CenterDallasUnited States
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Pediatrics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
| | - Carol A Wise
- Center for Translational Research, Scottish Rite for ChildrenDallasUnited States
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical CenterDallasUnited States
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Pediatrics, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
21
|
Rayamajhi D, Ege M, Ukhanov K, Ringers C, Zhang Y, Jung I, D’Gama PP, Li SS, Cosacak MI, Kizil C, Park HC, Yaksi E, Martens JR, Brody SL, Jurisch-Yaksi N, Roy S. The forkhead transcription factor Foxj1 controls vertebrate olfactory cilia biogenesis and sensory neuron differentiation. PLoS Biol 2024; 22:e3002468. [PMID: 38271330 PMCID: PMC10810531 DOI: 10.1371/journal.pbio.3002468] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
In vertebrates, olfactory receptors localize on multiple cilia elaborated on dendritic knobs of olfactory sensory neurons (OSNs). Although olfactory cilia dysfunction can cause anosmia, how their differentiation is programmed at the transcriptional level has remained largely unexplored. We discovered in zebrafish and mice that Foxj1, a forkhead domain-containing transcription factor traditionally linked with motile cilia biogenesis, is expressed in OSNs and required for olfactory epithelium (OE) formation. In keeping with the immotile nature of olfactory cilia, we observed that ciliary motility genes are repressed in zebrafish, mouse, and human OSNs. Strikingly, we also found that besides ciliogenesis, Foxj1 controls the differentiation of the OSNs themselves by regulating their cell type-specific gene expression, such as that of olfactory marker protein (omp) involved in odor-evoked signal transduction. In line with this, response to bile acids, odors detected by OMP-positive OSNs, was significantly diminished in foxj1 mutant zebrafish. Taken together, our findings establish how the canonical Foxj1-mediated motile ciliogenic transcriptional program has been repurposed for the biogenesis of immotile olfactory cilia, as well as for the development of the OSNs.
Collapse
Affiliation(s)
- Dheeraj Rayamajhi
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Mert Ege
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kirill Ukhanov
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States of America
| | - Christa Ringers
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yiliu Zhang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Inyoung Jung
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biomedical Sciences, Korea University, Ansan, South Korea
| | - Percival P. D’Gama
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Summer Shijia Li
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Mehmet Ilyas Cosacak
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Dresden, Germany
| | - Caghan Kizil
- Department of Neurology and The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Hae-Chul Park
- Department of Biomedical Sciences, Korea University, Ansan, South Korea
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
- Koç University Research Center for Translational Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Jeffrey R. Martens
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States of America
| | - Steven L. Brody
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- Department of Paediatrics, National University of Singapore, Singapore
| |
Collapse
|
22
|
Shaikh Qureshi WM, Hentges KE. Functions of cilia in cardiac development and disease. Ann Hum Genet 2024; 88:4-26. [PMID: 37872827 PMCID: PMC10952336 DOI: 10.1111/ahg.12534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023]
Abstract
Errors in embryonic cardiac development are a leading cause of congenital heart defects (CHDs), including morphological abnormalities of the heart that are often detected after birth. In the past few decades, an emerging role for cilia in the pathogenesis of CHD has been identified, but this topic still largely remains an unexplored area. Mouse forward genetic screens and whole exome sequencing analysis of CHD patients have identified enrichment for de novo mutations in ciliary genes or non-ciliary genes, which regulate cilia-related pathways, linking cilia function to aberrant cardiac development. Key events in cardiac morphogenesis, including left-right asymmetric development of the heart, are dependent upon cilia function. Cilia dysfunction during left-right axis formation contributes to CHD as evidenced by the substantial proportion of heterotaxy patients displaying complex CHD. Cilia-transduced signaling also regulates later events during heart development such as cardiac valve formation, outflow tract septation, ventricle development, and atrioventricular septa formation. In this review, we summarize the role of motile and non-motile (primary cilia) in cardiac asymmetry establishment and later events during heart development.
Collapse
Affiliation(s)
- Wasay Mohiuddin Shaikh Qureshi
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| | - Kathryn E. Hentges
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| |
Collapse
|
23
|
Zhao X, Ge H, Xu W, Cheng C, Zhou W, Xu Y, Fan J, Liu Y, Tian X, Xu KF, Zhang X. Lack of CFAP54 causes primary ciliary dyskinesia in a mouse model and human patients. Front Med 2023; 17:1236-1249. [PMID: 37725231 DOI: 10.1007/s11684-023-0997-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/06/2023] [Indexed: 09/21/2023]
Abstract
Primary ciliary dyskinesia (PCD) is a highly heterogeneous recessive inherited disorder. FAP54, the homolog of CFAP54 in Chlamydomonas reinhardtii, was previously demonstrated as the C1d projection of the central microtubule apparatus of flagella. A Cfap54 knockout mouse model was then reported to have PCD-relevant phenotypes. Through whole-exome sequencing, compound heterozygous variants c.2649_2657delinC (p. E883Dfs*47) and c.7312_7313insCGCAGGCTGAATTCTTGG (p. T2438delinsTQAEFLA) in a new suspected PCD-relevant gene, CFAP54, were identified in an individual with PCD. Two missense variants, c.4112A>C (p. E1371A) and c.6559C>T (p. P2187S), in CFAP54 were detected in another unrelated patient. In this study, a minigene assay was conducted on the frameshift mutation showing a reduction in mRNA expression. In addition, a CFAP54 in-frame variant knock-in mouse model was established, which recapitulated the typical symptoms of PCD, including hydrocephalus, infertility, and mucus accumulation in nasal sinuses. Correspondingly, two missense variants were deleterious, with a dramatic reduction in mRNA abundance from bronchial tissue and sperm. The identification of PCD-causing variants of CFAP54 in two unrelated patients with PCD for the first time provides strong supportive evidence that CFAP54 is a new PCD-causing gene. This study further helps expand the disease-associated gene spectrum and improve genetic testing for PCD diagnosis in the future.
Collapse
Affiliation(s)
- Xinyue Zhao
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Haijun Ge
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Wenshuai Xu
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Chongsheng Cheng
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Wangji Zhou
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yan Xu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Junping Fan
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yaping Liu
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| | - Xinlun Tian
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Kai-Feng Xu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| |
Collapse
|
24
|
Liu J, Xie H, Wu M, Hu Y, Kang Y. The role of cilia during organogenesis in zebrafish. Open Biol 2023; 13:230228. [PMID: 38086423 PMCID: PMC10715920 DOI: 10.1098/rsob.230228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023] Open
Abstract
Cilia are hair-like organelles that protrude from the surface of eukaryotic cells and are present on the surface of nearly all human cells. Cilia play a crucial role in signal transduction, organ development and tissue homeostasis. Abnormalities in the structure and function of cilia can lead to a group of human diseases known as ciliopathies. Currently, zebrafish serves as an ideal model for studying ciliary function and ciliopathies due to its relatively conserved structure and function of cilia compared to humans. In this review, we will summarize the different types of cilia that present in embryonic and adult zebrafish, and provide an overview of the advantages of using zebrafish as a vertebrate model for cilia research. We will specifically focus on the roles of cilia during zebrafish organogenesis based on recent studies. Additionally, we will highlight future prospects for ciliary research in zebrafish.
Collapse
Affiliation(s)
- Junjun Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Haibo Xie
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Mengfan Wu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yidan Hu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yunsi Kang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
25
|
Yu H, Khanshour AM, Ushiki A, Otomo N, Koike Y, Einarsdottir E, Fan Y, Antunes L, Kidane YH, Cornelia R, Sheng R, Zhang Y, Pei J, Grishin NV, Evers BM, Cheung JPY, Herring JA, Terao C, Song YQ, Gurnett CA, Gerdhem P, Ikegawa S, Rios JJ, Ahituv N, Wise CA. Association of genetic variation in COL11A1 with adolescent idiopathic scoliosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542293. [PMID: 37292598 PMCID: PMC10245954 DOI: 10.1101/2023.05.26.542293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Adolescent idiopathic scoliosis (AIS) is a common and progressive spinal deformity in children that exhibits striking sexual dimorphism, with girls at more than five-fold greater risk of severe disease compared to boys. Despite its medical impact, the molecular mechanisms that drive AIS are largely unknown. We previously defined a female-specific AIS genetic risk locus in an enhancer near the PAX1 gene. Here we sought to define the roles of PAX1 and newly-identified AIS-associated genes in the developmental mechanism of AIS. In a genetic study of 10,519 individuals with AIS and 93,238 unaffected controls, significant association was identified with a variant in COL11A1 encoding collagen (α1) XI (rs3753841; NM_080629.2_c.4004C>T; p.(Pro1335Leu); P=7.07e-11, OR=1.118). Using CRISPR mutagenesis we generated Pax1 knockout mice (Pax1-/-). In postnatal spines we found that PAX1 and collagen (α1) XI protein both localize within the intervertebral disc (IVD)-vertebral junction region encompassing the growth plate, with less collagen (α1) XI detected in Pax1-/- spines compared to wildtype. By genetic targeting we found that wildtype Col11a1 expression in costal chondrocytes suppresses expression of Pax1 and of Mmp3, encoding the matrix metalloproteinase 3 enzyme implicated in matrix remodeling. However, this suppression was abrogated in the presence of the AIS-associated COL11A1P1335L mutant. Further, we found that either knockdown of the estrogen receptor gene Esr2, or tamoxifen treatment, significantly altered Col11a1 and Mmp3 expression in chondrocytes. We propose a new molecular model of AIS pathogenesis wherein genetic variation and estrogen signaling increase disease susceptibility by altering a Pax1-Col11a1-Mmp3 signaling axis in spinal chondrocytes.
Collapse
Affiliation(s)
- Hao Yu
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Anas M Khanshour
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Aki Ushiki
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Nao Otomo
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, JP
| | - Yoshinao Koike
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, JP
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, JP
| | - Elisabet Einarsdottir
- Science for Life Laboratory, Department of Gene Technology, KTH-Royal Institute of Technology, Solna, SE
| | - Yanhui Fan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, CN
| | - Lilian Antunes
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yared H Kidane
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Reuel Cornelia
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Rory Sheng
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Yichi Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, CN
| | - Jimin Pei
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bret M Evers
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, CN
| | - John A Herring
- Department of Orthopedic Surgery, Scottish Rite for Children, Dallas, TX, USA
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, JP
| | - You-Qiang Song
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, CN
| | - Christina A Gurnett
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Paul Gerdhem
- Department of Clinical Science, Intervention & Technology (CLINTEC), Karolinska Institutet, Stockholm, Uppsala University, Uppsala, SE
- Department of Surgical Sciences, Uppsala University and
- Department of Orthopaedics and Hand Surgery, Uppsala University Hospital, Uppsala, SE
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, JP
| | - Jonathan J Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Carol A Wise
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
26
|
Staar BO, Hegermann J, Auber B, Ewen R, von Hardenberg S, Olmer R, Pink I, Rademacher J, Wetzke M, Ringshausen FC. Ciliary Ultrastructure Assessed by Transmission Electron Microscopy in Adults with Bronchiectasis and Suspected Primary Ciliary Dyskinesia but Inconclusive Genotype. Cells 2023; 12:2651. [PMID: 37998386 PMCID: PMC10670349 DOI: 10.3390/cells12222651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Whole-exome sequencing has expedited the diagnostic work-up of primary ciliary dyskinesia (PCD), when used in addition to clinical phenotype and nasal nitric oxide. However, it reveals variants of uncertain significance (VUS) in established PCD genes or (likely) pathogenic variants in genes of uncertain significance in approximately 30% of tested individuals. We aimed to assess genotype-phenotype correlations in adults with bronchiectasis, clinical suspicion of PCD, and inconclusive whole-exome sequencing results using transmission electron microscopy (TEM) and ciliary image averaging by the PCD Detect software. We recruited 16 patients with VUS in CCDC39, CCDC40, CCDC103, DNAH5, DNAH5/CCDC40, DNAH8/HYDIN, DNAH11, and DNAI1 as well as variants in the PCD candidate genes DNAH1, DNAH7, NEK10, and NME5. We found normal ciliary ultrastructure in eight patients with VUS in CCDC39, DNAH1, DNAH7, DNAH8/HYDIN, DNAH11, and DNAI1. In six patients with VUS in CCDC40, CCDC103, DNAH5, and DNAI1, we identified a corresponding ultrastructural hallmark defect. In one patient with homozygous variant in NME5, we detected a central complex defect supporting clinical relevance. Using TEM as a targeted approach, we established important genotype-phenotype correlations and definite PCD in a considerable proportion of patients. Overall, the PCD Detect software proved feasible in support of TEM.
Collapse
Affiliation(s)
- Ben O. Staar
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School (MHH), 30625 Hannover, Germany; (B.O.S.); (R.E.); (I.P.); (J.R.)
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (J.H.); (R.O.); (M.W.)
- European Reference Network for Rare and Complex Lung Diseases (ERN-LUNG), 60596 Frankfurt am Main, Germany
| | - Jan Hegermann
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (J.H.); (R.O.); (M.W.)
- Research Core Unit Electron Microscopy, Institute of Functional and Applied Anatomy, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Bernd Auber
- Department of Human Genetics, Hannover Medical School (MHH), 30625 Hannover, Germany; (B.A.); (S.v.H.)
| | - Raphael Ewen
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School (MHH), 30625 Hannover, Germany; (B.O.S.); (R.E.); (I.P.); (J.R.)
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (J.H.); (R.O.); (M.W.)
- European Reference Network for Rare and Complex Lung Diseases (ERN-LUNG), 60596 Frankfurt am Main, Germany
| | - Sandra von Hardenberg
- Department of Human Genetics, Hannover Medical School (MHH), 30625 Hannover, Germany; (B.A.); (S.v.H.)
| | - Ruth Olmer
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (J.H.); (R.O.); (M.W.)
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School (MHH), 30625 Hannover, Germany
- REBIRTH—Research Center for Translational and Regenerative Medicine, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Isabell Pink
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School (MHH), 30625 Hannover, Germany; (B.O.S.); (R.E.); (I.P.); (J.R.)
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (J.H.); (R.O.); (M.W.)
- European Reference Network for Rare and Complex Lung Diseases (ERN-LUNG), 60596 Frankfurt am Main, Germany
| | - Jessica Rademacher
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School (MHH), 30625 Hannover, Germany; (B.O.S.); (R.E.); (I.P.); (J.R.)
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (J.H.); (R.O.); (M.W.)
- European Reference Network for Rare and Complex Lung Diseases (ERN-LUNG), 60596 Frankfurt am Main, Germany
| | - Martin Wetzke
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (J.H.); (R.O.); (M.W.)
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Felix C. Ringshausen
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School (MHH), 30625 Hannover, Germany; (B.O.S.); (R.E.); (I.P.); (J.R.)
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (J.H.); (R.O.); (M.W.)
- European Reference Network for Rare and Complex Lung Diseases (ERN-LUNG), 60596 Frankfurt am Main, Germany
| |
Collapse
|
27
|
Wang R, Yang D, Tu C, Lei C, Ding S, Guo T, Wang L, Liu Y, Lu C, Yang B, Ouyang S, Gong K, Tan Z, Deng Y, Tan Y, Qing J, Luo H. Dynein axonemal heavy chain 10 deficiency causes primary ciliary dyskinesia in humans and mice. Front Med 2023; 17:957-971. [PMID: 37314648 DOI: 10.1007/s11684-023-0988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/31/2023] [Indexed: 06/15/2023]
Abstract
Primary ciliary dyskinesia (PCD) is a congenital, motile ciliopathy with pleiotropic symptoms. Although nearly 50 causative genes have been identified, they only account for approximately 70% of definitive PCD cases. Dynein axonemal heavy chain 10 (DNAH10) encodes a subunit of the inner arm dynein heavy chain in motile cilia and sperm flagella. Based on the common axoneme structure of motile cilia and sperm flagella, DNAH10 variants are likely to cause PCD. Using exome sequencing, we identified a novel DNAH10 homozygous variant (c.589C > T, p.R197W) in a patient with PCD from a consanguineous family. The patient manifested sinusitis, bronchiectasis, situs inversus, and asthenoteratozoospermia. Immunostaining analysis showed the absence of DNAH10 and DNALI1 in the respiratory cilia, and transmission electron microscopy revealed strikingly disordered axoneme 9+2 architecture and inner dynein arm defects in the respiratory cilia and sperm flagella. Subsequently, animal models of Dnah10-knockin mice harboring missense variants and Dnah10-knockout mice recapitulated the phenotypes of PCD, including chronic respiratory infection, male infertility, and hydrocephalus. To the best of our knowledge, this study is the first to report DNAH10 deficiency related to PCD in human and mouse models, which suggests that DNAH10 recessive mutation is causative of PCD.
Collapse
Affiliation(s)
- Rongchun Wang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China
| | - Danhui Yang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China
| | - Cheng Lei
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China
| | - Shuizi Ding
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China
| | - Ting Guo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China
| | - Lin Wang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China
| | - Ying Liu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China
| | - Chenyang Lu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China
| | - Binyi Yang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China
| | - Shi Ouyang
- Zebrafish Genetics Laboratory, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Ke Gong
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, 410011, China
| | - Zhiping Tan
- Clinical Center for Gene Diagnosis and Therapy, Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Yun Deng
- Zebrafish Genetics Laboratory, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yueqiu Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China
| | - Jie Qing
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China.
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China.
| | - Hong Luo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China.
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China.
| |
Collapse
|
28
|
McCafferty CL, Papoulas O, Lee C, Bui KH, Taylor DW, Marcotte EM, Wallingford JB. An amino acid-resolution interactome for motile cilia illuminates the structure and function of ciliopathy protein complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.09.548259. [PMID: 37781579 PMCID: PMC10541116 DOI: 10.1101/2023.07.09.548259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Motile cilia are ancient, evolutionarily conserved organelles whose dysfunction underlies motile ciliopathies, a broad class of human diseases. Motile cilia contain myriad different proteins that assemble into an array of distinct machines, so understanding the interactions and functional hierarchies among them presents an important challenge. Here, we defined the protein interactome of motile axonemes using cross-linking mass spectrometry (XL/MS) in Tetrahymena thermophila. From over 19,000 XLs, we identified 4,757 unique amino acid interactions among 1,143 distinct proteins, providing both macromolecular and atomic-scale insights into diverse ciliary machines, including the Intraflagellar Transport system, axonemal dynein arms, radial spokes, the 96 nm ruler, and microtubule inner proteins, among others. Guided by this dataset, we used vertebrate multiciliated cells to reveal novel functional interactions among several poorly-defined human ciliopathy proteins. The dataset therefore provides a powerful resource for studying the basic biology of an ancient organelle and the molecular etiology of human genetic disease.
Collapse
Affiliation(s)
- Caitlyn L. McCafferty
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Ophelia Papoulas
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Chanjae Lee
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences McGill University, Québec, Canada
| | - David W. Taylor
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Edward M. Marcotte
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - John B. Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
29
|
Raidt J, Loges NT, Olbrich H, Wallmeier J, Pennekamp P, Omran H. Primary ciliary dyskinesia. Presse Med 2023; 52:104171. [PMID: 37516247 DOI: 10.1016/j.lpm.2023.104171] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Primary ciliary dyskinesia (PCD, ORPHA:244) is a group of rare genetic disorders characterized by dysfunction of motile cilia. It is phenotypically and genetically heterogeneous, with more than 50 genes involved. Thanks to genetic, clinical, and functional characterization, immense progress has been made in the understanding and diagnosis of PCD. Nevertheless, it is underdiagnosed due to the heterogeneous phenotype and complexity of diagnosis. This review aims to help clinicians navigate this heterogeneous group of diseases. Here, we describe the broad spectrum of phenotypes associated with PCD and address pitfalls and difficult-to-interpret findings to avoid misinterpretation. METHOD Review of literature CONCLUSION: PCD diagnosis is complex and requires integration of history, clinical picture, imaging, functional and structural analysis of motile cilia and, if available, genetic analysis to make a definitive diagnosis. It is critical that we continue to expand our knowledge of this group of rare disorders to improve the identification of PCD patients and to develop evidence-based therapeutic approaches.
Collapse
Affiliation(s)
- Johanna Raidt
- Department of General Pediatrics, University Children's Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Niki Tomas Loges
- Department of General Pediatrics, University Children's Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Heike Olbrich
- Department of General Pediatrics, University Children's Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Julia Wallmeier
- Department of General Pediatrics, University Children's Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Children's Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Heymut Omran
- Department of General Pediatrics, University Children's Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| |
Collapse
|
30
|
Moreau MX, Saillour Y, Elorriaga V, Bouloudi B, Delberghe E, Deutsch Guerrero T, Ochandorena-Saa A, Maeso-Alonso L, Marques MM, Marin MC, Spassky N, Pierani A, Causeret F. Repurposing of the multiciliation gene regulatory network in fate specification of Cajal-Retzius neurons. Dev Cell 2023; 58:1365-1382.e6. [PMID: 37321213 DOI: 10.1016/j.devcel.2023.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/06/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Cajal-Retzius cells (CRs) are key players in cerebral cortex development, and they display a unique transcriptomic identity. Here, we use scRNA-seq to reconstruct the differentiation trajectory of mouse hem-derived CRs, and we unravel the transient expression of a complete gene module previously known to control multiciliogenesis. However, CRs do not undergo centriole amplification or multiciliation. Upon deletion of Gmnc, the master regulator of multiciliogenesis, CRs are initially produced but fail to reach their normal identity resulting in their massive apoptosis. We further dissect the contribution of multiciliation effector genes and identify Trp73 as a key determinant. Finally, we use in utero electroporation to demonstrate that the intrinsic competence of hem progenitors as well as the heterochronic expression of Gmnc prevent centriole amplification in the CR lineage. Our work exemplifies how the co-option of a complete gene module, repurposed to control a distinct process, may contribute to the emergence of novel cell identities.
Collapse
Affiliation(s)
- Matthieu X Moreau
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Yoann Saillour
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Vicente Elorriaga
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Benoît Bouloudi
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Elodie Delberghe
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Tanya Deutsch Guerrero
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Amaia Ochandorena-Saa
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Laura Maeso-Alonso
- Instituto de Biomedicina, y Departamento de Biología Molecular, Universidad de León, 24071 Leon, Spain
| | - Margarita M Marques
- Instituto de Desarrollo Ganadero y Sanidad Animal, y Departamento de Producción Animal, Universidad de León, 24071 Leon, Spain
| | - Maria C Marin
- Instituto de Biomedicina, y Departamento de Biología Molecular, Universidad de León, 24071 Leon, Spain
| | - Nathalie Spassky
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Alessandra Pierani
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Frédéric Causeret
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France.
| |
Collapse
|
31
|
Deniz E, Pasha M, Guerra ME, Viviano S, Ji W, Konstantino M, Jeffries L, Lakhani SA, Medne L, Skraban C, Krantz I, Khokha MK. CFAP45, a heterotaxy and congenital heart disease gene, affects cilia stability. Dev Biol 2023; 499:75-88. [PMID: 37172641 PMCID: PMC10373286 DOI: 10.1016/j.ydbio.2023.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/07/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Congenital heart disease (CHD) is the most common and lethal birth defect, affecting 1.3 million individuals worldwide. During early embryogenesis, errors in Left-Right (LR) patterning called Heterotaxy (Htx) can lead to severe CHD. Many of the genetic underpinnings of Htx/CHD remain unknown. In analyzing a family with Htx/CHD using whole-exome sequencing, we identified a homozygous recessive missense mutation in CFAP45 in two affected siblings. CFAP45 belongs to the coiled-coil domain-containing protein family, and its role in development is emerging. When we depleted Cfap45 in frog embryos, we detected abnormalities in cardiac looping and global markers of LR patterning, recapitulating the patient's heterotaxy phenotype. In vertebrates, laterality is broken at the Left-Right Organizer (LRO) by motile monocilia that generate leftward fluid flow. When we analyzed the LRO in embryos depleted of Cfap45, we discovered "bulges" within the cilia of these monociliated cells. In addition, epidermal multiciliated cells lost cilia with Cfap45 depletion. Via live confocal imaging, we found that Cfap45 localizes in a punctate but static position within the ciliary axoneme, and depletion leads to loss of cilia stability and eventual detachment from the cell's apical surface. This work demonstrates that in Xenopus, Cfap45 is required to sustain cilia stability in multiciliated and monociliated cells, providing a plausible mechanism for its role in heterotaxy and congenital heart disease.
Collapse
Affiliation(s)
- E Deniz
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| | - M Pasha
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - M E Guerra
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - S Viviano
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - W Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - M Konstantino
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - L Jeffries
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - S A Lakhani
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - L Medne
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, USA
| | - C Skraban
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, USA
| | - I Krantz
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, USA
| | - M K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| |
Collapse
|
32
|
Koslow M, Zhu P, McCabe C, Xu X, Lin X. Kidney transcriptome and cystic kidney disease genes in zebrafish. Front Physiol 2023; 14:1184025. [PMID: 37256068 PMCID: PMC10226271 DOI: 10.3389/fphys.2023.1184025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/20/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction: Polycystic kidney disease (PKD) is a condition where fluid filled cysts form on the kidney which leads to overall renal failure. Zebrafish has been recently adapted to study polycystic kidney disease, because of its powerful embryology and genetics. However, there are concerns on the conservation of this lower vertebrate in modeling polycystic kidney disease. Methods: Here, we aim to assess the molecular conservation of zebrafish by searching homologues polycystic kidney disease genes and carrying transcriptome studies in this animal. Results and Discussion: We found that out of 82 human cystic kidney disease genes, 81 have corresponding zebrafish homologs. While 75 of the genes have a single homologue, only 6 of these genes have two homologs. Comparison of the expression level of the transcripts enabled us to identify one homolog over the other homolog with >70% predominance, which would be prioritized for future experimental studies. Prompted by sexual dimorphism in human and rodent kidneys, we studied transcriptome between different sexes and noted significant differences in male vs. female zebrafish, indicating that sex dimorphism also occurs in zebrafish. Comparison between zebrafish and mouse identified 10% shared genes and 38% shared signaling pathways. String analysis revealed a cluster of genes differentially expressed in male vs. female zebrafish kidneys. In summary, this report demonstrated remarkable molecular conservation, supporting zebrafish as a useful animal model for cystic kidney disease.
Collapse
Affiliation(s)
- Matthew Koslow
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Ping Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Chantal McCabe
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, United States
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
33
|
Li L, Li J, Ou Y, Wu J, Li H, Wang X, Tang L, Dai X, Yang C, Wei Z, Yin Z, Shu Y. Ccdc57 is required for straightening the body axis by regulating ciliary motility in the brain ventricle of zebrafish. J Genet Genomics 2023; 50:253-263. [PMID: 36669737 DOI: 10.1016/j.jgg.2022.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/22/2022] [Accepted: 12/31/2022] [Indexed: 01/19/2023]
Abstract
Recently, cilia defects have been proposed to contribute to scoliosis. Here, we demonstrate that coiled-coil domain-containing 57 (Ccdc57) plays an essential role in straightening the body axis of zebrafish by regulating ciliary beating in the brain ventricle (BV). Zygotic ccdc57 (Zccdc57) mutant zebrafish developes scoliosis without significant changes in their bone density and calcification, and the maternal-zygotic ccdc57 (MZccdc57) mutant embryos display curved bodies since the long-pec stage. The expression of ccdc57 is enriched in ciliated tissues and immunofluorescence analysis reveals colocalization of Ccdc57-HA with acetylated α-tubulin, implicating it in having a role in ciliary function. Further examination reveals that it is the coordinated cilia beating of multiple cilia bundles (MCB) in the MZccdc57 mutant embryos that is affected at 48 hours post fertilization, when the compromised cerebrospinal fluid flow and curved body axis have already occurred. Either ccdc57 mRNA injection or epinephrine treatment reverses the spinal curvature in MZccdc57 mutant larvae from ventrally curly to straight or even dorsally curly and significantly upregulates urotensin signaling. This study reveals the role of ccdc57 in maintaining coordinated cilia beating of MCB in the BV.
Collapse
Affiliation(s)
- Lu Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Juan Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yuan Ou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Jiaxin Wu
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Huilin Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xin Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Liying Tang
- College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xiangyan Dai
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Conghui Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Zehong Wei
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Yuqin Shu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China.
| |
Collapse
|
34
|
Characterization of a DRC1 null variant associated with primary ciliary dyskinesia and female infertility. J Assist Reprod Genet 2023; 40:765-778. [PMID: 36856967 DOI: 10.1007/s10815-023-02755-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
PROPOSE We here present a female case with primary ciliary dyskinesia (PCD) and infertility. In this report, we also present the evaluation of the patient family, including her twin sister, also with PCD and infertility. METHODS Confirmation of the PCD clinical diagnosis was performed through assessment of cilia motility, by high-speed video microscopy (HSVM), axoneme ultrastructure, by transmission electron microscopy (TEM), and genetic characterization, by whole-exome sequence (WES). Gene expression studies used qPCR for mRNA expression and immunofluorescence to determine cell protein localization. RESULTS We identified a homozygous nonsense variant in the DRC1 gene (NM 145038.5:c.352C>T (p.Gln118Ter)) in the female patient with PCD and infertility that fit the model of autosomal recessive genetic transmission. This variant eventually results in a dyskinetic ciliary beat with a lower frequency and a partial lack of both dynein arms as revealed by TEM analysis. Moreover, this variant implies a decrease in the expression of DRC1 mRNA and protein. Additionally, expression analysis suggested that DRC1 may interact with other DRC elements. CONCLUSIONS Our findings suggest that the DRC1 null variant leads to PCD associated with infertility, likely caused by defects in axoneme from Fallopian tube cilia. Overall, our outcomes contribute to a better understanding of the genetic factors involved in the pathophysiology of PCD and infertility, and they highlight the interaction of different genes in the patient phenotype, which should be investigated further because it may explain the high heterogeneity observed in PCD patients.
Collapse
|
35
|
Barber AT, Shapiro AJ, Davis SD, Ferkol TW, Atkinson JJ, Sagel SD, Dell SD, Olivier KN, Milla CE, Rosenfeld M, Li L, Lin FC, Sullivan KM, Capps NA, Zariwala MA, Knowles MR, Leigh MW. Laterality Defects in Primary Ciliary Dyskinesia: Relationship to Ultrastructural Defect or Genotype. Ann Am Thorac Soc 2023; 20:397-405. [PMID: 36342963 PMCID: PMC9993158 DOI: 10.1513/annalsats.202206-487oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
Rationale: The association between organ laterality abnormalities and ciliary ultrastructural defect or genotype in primary ciliary dyskinesia is poorly understood. Objectives: To determine if there is an association between presence and/or type of laterality abnormality and ciliary ultrastructural defect or genotype. Methods: Participants with primary ciliary dyskinesia in a multicenter, prospective study were grouped based on ciliary ultrastructural defect or genotype. In a retrospective analysis of these data, the association of ciliary ultrastructural defect or genotype and likelihood of a laterality abnormality was evaluated by logistic regression adjusted for presence of two loss-of-function versus one or more not-loss-of-function variants. Results: Of 559 participants, 286 (51.2%), 215 (38.5%), and 58 (10.4%) were identified as having situs solitus, situs inversustotalis, and situs ambiguus, respectively; heterotaxy, defined as situs ambiguus with complex cardiovascular defects, was present in 14 (2.5%). Compared with the group with inner dynein arm defects with microtubular disorganization, laterality defects were more likely in the outer dynein arm defects group (odds ratio [OR], 2.07; 95% confidence interval [CI], 1.21-3.54; P < 0.01) and less likely in the normal/near normal ultrastructure group (OR, 0.04; 95% CI, 0.013-0.151; P < 0.01). Heterotaxy was present in 11 of 242 (4.5%) in the outer dynein arm defects group but 0 of 96 in the inner dynein arm defects with microtubular disorganization group (P = 0.038). Conclusion: In primary ciliary dyskinesia, risk of a laterality abnormality differs by ciliary ultrastructural defect. Pathophysiologic mechanisms underlying these differences require further exploration.
Collapse
Affiliation(s)
| | - Adam J. Shapiro
- Department of Pediatrics, McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | | | | | - Jeffrey J. Atkinson
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Scott D. Sagel
- Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Sharon D. Dell
- Department of Pediatrics, BC Children’s Hospital, Vancouver, British Columbia, Canada
| | - Kenneth N. Olivier
- Pulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Carlos E. Milla
- Department of Pediatrics, Stanford University, Palo Alto, California
| | - Margaret Rosenfeld
- Department of Pediatrics, Seattle Children’s Hospital, University of Washington School of Medicine, Seattle, Washington; and
| | - Lang Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Feng-Chang Lin
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | | | - Margaret W. Leigh
- Marsico Lung Institute
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
36
|
Rabiasz A, Ziętkiewicz E. Schmidtea mediterranea as a Model Organism to Study the Molecular Background of Human Motile Ciliopathies. Int J Mol Sci 2023; 24:ijms24054472. [PMID: 36901899 PMCID: PMC10002865 DOI: 10.3390/ijms24054472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Cilia and flagella are evolutionarily conserved organelles that form protrusions on the surface of many growth-arrested or differentiated eukaryotic cells. Due to the structural and functional differences, cilia can be roughly classified as motile and non-motile (primary). Genetically determined dysfunction of motile cilia is the basis of primary ciliary dyskinesia (PCD), a heterogeneous ciliopathy affecting respiratory airways, fertility, and laterality. In the face of the still incomplete knowledge of PCD genetics and phenotype-genotype relations in PCD and the spectrum of PCD-like diseases, a continuous search for new causative genes is required. The use of model organisms has been a great part of the advances in understanding molecular mechanisms and the genetic basis of human diseases; the PCD spectrum is not different in this respect. The planarian model (Schmidtea mediterranea) has been intensely used to study regeneration processes, and-in the context of cilia-their evolution, assembly, and role in cell signaling. However, relatively little attention has been paid to the use of this simple and accessible model for studying the genetics of PCD and related diseases. The recent rapid development of the available planarian databases with detailed genomic and functional annotations prompted us to review the potential of the S. mediterranea model for studying human motile ciliopathies.
Collapse
|
37
|
Analysis of motility and mucociliary function of tracheal epithelial cilia. Methods Cell Biol 2023; 176:159-180. [PMID: 37164536 DOI: 10.1016/bs.mcb.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The airway epithelium contains numerous multiciliated cells. The apical surface of multiciliated cells is covered with cilia that move at 15-25Hz. Ciliary movement is not a simple reciprocal movement and distinctly has forward and reverse movements called effective and recovery strokes, respectively. These "asymmetric" ciliary strokes push away the mucus covering the mucosa of the airway epithelium. Mucus flow created by ciliary stroke is important for capturing and expelling dust, pollen, PM2.5, pathogens, and other particles that enter the airways from outside the body. This mechanism for protecting the airways produced by ciliary movement is called mucociliary function. Defects in ciliary motility lead to impairment of mucociliary function, resulting in recurrent airway infections such as bronchitis and pneumonia, and consequently, bronchiectasis. While the analysis of ciliary beat frequency is relatively easy, the analyses of the amplitude, velocities of strokes, and the asymmetric level require specific techniques and tips. In this chapter, we present methods for the analysis of ciliary movements of a group of cilia on the luminal surface of the trachea ex vivo and individually isolated and ATP-reactivated cilia in vitro. In addition, a method for the analysis of mucociliary function is also presented.
Collapse
|
38
|
Aprea I, Wilken A, Krallmann C, Nöthe-Menchen T, Olbrich H, Loges NT, Dougherty GW, Bracht D, Brenker C, Kliesch S, Strünker T, Tüttelmann F, Raidt J, Omran H. Pathogenic gene variants in CCDC39, CCDC40, RSPH1, RSPH9, HYDIN, and SPEF2 cause defects of sperm flagella composition and male infertility. Front Genet 2023; 14:1117821. [PMID: 36873931 PMCID: PMC9981940 DOI: 10.3389/fgene.2023.1117821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Primary Ciliary Dyskinesia (PCD) is a rare genetic disorder affecting the function of motile cilia in several organ systems. In PCD, male infertility is caused by defective sperm flagella composition or deficient motile cilia function in the efferent ducts of the male reproductive system. Different PCD-associated genes encoding axonemal components involved in the regulation of ciliary and flagellar beating are also reported to cause infertility due to multiple morphological abnormalities of the sperm flagella (MMAF). Here, we performed genetic testing by next generation sequencing techniques, PCD diagnostics including immunofluorescence-, transmission electron-, and high-speed video microscopy on sperm flagella and andrological work up including semen analyses. We identified ten infertile male individuals with pathogenic variants in CCDC39 (one) and CCDC40 (two) encoding ruler proteins, RSPH1 (two) and RSPH9 (one) encoding radial spoke head proteins, and HYDIN (two) and SPEF2 (two) encoding CP-associated proteins, respectively. We demonstrate for the first time that pathogenic variants in RSPH1 and RSPH9 cause male infertility due to sperm cell dysmotility and abnormal flagellar RSPH1 and RSPH9 composition. We also provide novel evidence for MMAF in HYDIN- and RSPH1-mutant individuals. We show absence or severe reduction of CCDC39 and SPEF2 in sperm flagella of CCDC39- and CCDC40-mutant individuals and HYDIN- and SPEF2-mutant individuals, respectively. Thereby, we reveal interactions between CCDC39 and CCDC40 as well as HYDIN and SPEF2 in sperm flagella. Our findings demonstrate that immunofluorescence microscopy in sperm cells is a valuable tool to identify flagellar defects related to the axonemal ruler, radial spoke head and the central pair apparatus, thus aiding the diagnosis of male infertility. This is of particular importance to classify the pathogenicity of genetic defects, especially in cases of missense variants of unknown significance, or to interpret HYDIN variants that are confounded by the presence of the almost identical pseudogene HYDIN2.
Collapse
Affiliation(s)
- I Aprea
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - A Wilken
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - C Krallmann
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - T Nöthe-Menchen
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - H Olbrich
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - N T Loges
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - G W Dougherty
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - D Bracht
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - C Brenker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - S Kliesch
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - T Strünker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - F Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - J Raidt
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - H Omran
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| |
Collapse
|
39
|
Forrest K, Barricella AC, Pohar SA, Hinman AM, Amack JD. Understanding laterality disorders and the left-right organizer: Insights from zebrafish. Front Cell Dev Biol 2022; 10:1035513. [PMID: 36619867 PMCID: PMC9816872 DOI: 10.3389/fcell.2022.1035513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Vital internal organs display a left-right (LR) asymmetric arrangement that is established during embryonic development. Disruption of this LR asymmetry-or laterality-can result in congenital organ malformations. Situs inversus totalis (SIT) is a complete concordant reversal of internal organs that results in a low occurrence of clinical consequences. Situs ambiguous, which gives rise to Heterotaxy syndrome (HTX), is characterized by discordant development and arrangement of organs that is associated with a wide range of birth defects. The leading cause of health problems in HTX patients is a congenital heart malformation. Mutations identified in patients with laterality disorders implicate motile cilia in establishing LR asymmetry. However, the cellular and molecular mechanisms underlying SIT and HTX are not fully understood. In several vertebrates, including mouse, frog and zebrafish, motile cilia located in a "left-right organizer" (LRO) trigger conserved signaling pathways that guide asymmetric organ development. Perturbation of LRO formation and/or function in animal models recapitulates organ malformations observed in SIT and HTX patients. This provides an opportunity to use these models to investigate the embryological origins of laterality disorders. The zebrafish embryo has emerged as an important model for investigating the earliest steps of LRO development. Here, we discuss clinical characteristics of human laterality disorders, and highlight experimental results from zebrafish that provide insights into LRO biology and advance our understanding of human laterality disorders.
Collapse
Affiliation(s)
- Kadeen Forrest
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Alexandria C. Barricella
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Sonny A. Pohar
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Anna Maria Hinman
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, NY, United States
| |
Collapse
|
40
|
Wang J, Wang W, Shen L, Zheng A, Meng Q, Li H, Yang S. Clinical detection, diagnosis and treatment of morphological abnormalities of sperm flagella: A review of literature. Front Genet 2022; 13:1034951. [PMID: 36425067 PMCID: PMC9679630 DOI: 10.3389/fgene.2022.1034951] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2023] Open
Abstract
Sperm carries male genetic information, and flagella help move the sperm to reach oocytes. When the ultrastructure of the flagella is abnormal, the sperm is unable to reach the oocyte and achieve insemination. Multiple morphological abnormalities of sperm flagella (MMAF) is a relatively rare idiopathic condition that is mainly characterized by multiple defects in sperm flagella. In the last decade, with the development of high-throughput DNA sequencing approaches, many genes have been revealed to be related to MMAF. However, the differences in sperm phenotypes and reproductive outcomes in many cases are attributed to different pathogenic genes or different pathogenic mutations in the same gene. Here, we will review information about the various phenotypes resulting from different pathogenic genes, including sperm ultrastructure and encoding proteins with their location and functions as well as assisted reproductive technology (ART) outcomes. We will share our clinical detection and diagnosis experience to provide additional clinical views and broaden the understanding of this disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shenmin Yang
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
41
|
Shoemark A, Griffin H, Wheway G, Hogg C, Lucas JS, Camps C, Taylor J, Carroll M, Loebinger MR, Chalmers JD, Morris-Rosendahl D, Mitchison HM, De Soyza A, Brown D, Ambrose JC, Arumugam P, Bevers R, Bleda M, Boardman-Pretty F, Boustred CR, Brittain H, Caulfield MJ, Chan GC, Fowler T, Giess A, Hamblin A, Henderson S, Hubbard TJP, Jackson R, Jones LJ, Kasperaviciute D, Kayikci M, Kousathanas A, Lahnstein L, Leigh SEA, Leong IUS, Lopez FJ, Maleady-Crowe F, McEntagart M, Minneci F, Moutsianas L, Mueller M, Murugaesu N, Need AC, O'Donovan P, Odhams CA, Patch C, Perez-Gil D, Pereira MB, Pullinger J, Rahim T, Rendon A, Rogers T, Savage K, Sawant K, Scott RH, Siddiq A, Sieghart A, Smith SC, Sosinsky A, Stuckey A, Tanguy M, Taylor Tavares AL, Thomas ERA, Thompson SR, Tucci A, Welland MJ, Williams E, Witkowska K, Wood SM. Genome sequencing reveals underdiagnosis of primary ciliary dyskinesia in bronchiectasis. Eur Respir J 2022; 60:13993003.00176-2022. [PMID: 35728977 DOI: 10.1183/13993003.00176-2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/12/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Bronchiectasis can result from infectious, genetic, immunological and allergic causes. 60-80% of cases are idiopathic, but a well-recognised genetic cause is the motile ciliopathy, primary ciliary dyskinesia (PCD). Diagnosis of PCD has management implications including addressing comorbidities, implementing genetic and fertility counselling and future access to PCD-specific treatments. Diagnostic testing can be complex; however, PCD genetic testing is moving rapidly from research into clinical diagnostics and would confirm the cause of bronchiectasis. METHODS This observational study used genetic data from severe bronchiectasis patients recruited to the UK 100,000 Genomes Project and patients referred for gene panel testing within a tertiary respiratory hospital. Patients referred for genetic testing due to clinical suspicion of PCD were excluded from both analyses. Data were accessed from the British Thoracic Society audit, to investigate whether motile ciliopathies are underdiagnosed in people with bronchiectasis in the UK. RESULTS Pathogenic or likely pathogenic variants were identified in motile ciliopathy genes in 17 (12%) out of 142 individuals by whole-genome sequencing. Similarly, in a single centre with access to pathological diagnostic facilities, 5-10% of patients received a PCD diagnosis by gene panel, often linked to normal/inconclusive nasal nitric oxide and cilia functional test results. In 4898 audited patients with bronchiectasis, <2% were tested for PCD and <1% received genetic testing. CONCLUSIONS PCD is underdiagnosed as a cause of bronchiectasis. Increased uptake of genetic testing may help to identify bronchiectasis due to motile ciliopathies and ensure appropriate management.
Collapse
Affiliation(s)
- Amelia Shoemark
- Respiratory Research Group, Molecular and Cellular Medicine, University of Dundee, Dundee, UK
- Royal Brompton Hospital and NHLI, Imperial College London, London, UK
- Newcastle University and NIHR Biomedical Research Centre for Ageing, Freeman Hospital, Newcastle upon Tyne, UK
| | - Helen Griffin
- Primary Immunodeficiency Group, Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
- Newcastle University and NIHR Biomedical Research Centre for Ageing, Freeman Hospital, Newcastle upon Tyne, UK
| | - Gabrielle Wheway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Claire Hogg
- Royal Brompton Hospital and NHLI, Imperial College London, London, UK
| | - Jane S Lucas
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Clinical and Experimental Sciences Academic Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | | | - Carme Camps
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Clinical Informatics Research Office, John Radcliffe Hospital, Oxford, UK
| | - Jenny Taylor
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Clinical Informatics Research Office, John Radcliffe Hospital, Oxford, UK
| | - Mary Carroll
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - James D Chalmers
- Respiratory Research Group, Molecular and Cellular Medicine, University of Dundee, Dundee, UK
| | - Deborah Morris-Rosendahl
- Clinical Genetics and Genomics, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust and NHLI, Imperial College London, London, UK
| | - Hannah M Mitchison
- Genetics and Genomic Medicine Department, University College London, UCL Great Ormond Street Institute of Child Health, London, UK
- These authors contributed equally to this manuscript
| | - Anthony De Soyza
- Newcastle University and NIHR Biomedical Research Centre for Ageing, Freeman Hospital, Newcastle upon Tyne, UK
- These authors contributed equally to this manuscript
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yoo T, Yoo YE, Kang H, Kim E. Age, brain region, and gene dosage-differential transcriptomic changes in Shank3-mutant mice. Front Mol Neurosci 2022; 15:1017512. [PMID: 36311023 PMCID: PMC9597470 DOI: 10.3389/fnmol.2022.1017512] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Shank3 is an abundant excitatory postsynaptic scaffolding protein implicated in various neurodevelopmental disorders, including autism spectrum disorder (ASD), Phelan-McDermid syndrome, intellectual disability, and schizophrenia. Shank3-mutant mice show various molecular, synaptic, and behavioral deficits, but little is known about how transcriptomic phenotypes vary across different ages, brain regions, and gene dosages. Here, we report transcriptomic patterns in the forebrains of juvenile and adult homozygous Shank3-mutant mice that lack exons 14-16 and also the prefrontal, hippocampal, and striatal transcriptomes in adult heterozygous and homozygous Shank3-mutant mice. The juvenile and adult mutant transcriptomes show patterns opposite from and similar to those observed in ASD (termed reverse-ASD and ASD-like patterns), respectively. The juvenile transcriptomic changes accompany synaptic upregulations and ribosomal and mitochondrial downregulations, whereas the adult transcriptome show opposite changes. The prefrontal, hippocampal, and striatal transcriptomes show differential changes in ASD-related gene expressions and biological functions associated with synapse, ribosome, mitochondria, and spliceosome. These patterns also differ across heterozygous and homozygous Shank3-mutant mice. These results suggest age, brain region, and gene dosage-differential transcriptomic changes in Shank3-mutant mice.
Collapse
Affiliation(s)
- Taesun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Ye-Eun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), Daejeon, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
43
|
Bebianno MJ, Mendes VM, O'Donovan S, Carteny CC, Keiter S, Manadas B. Effects of microplastics alone and with adsorbed benzo(a)pyrene on the gills proteome of Scrobicularia plana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156895. [PMID: 35753444 DOI: 10.1016/j.scitotenv.2022.156895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) are globally present in the marine environment, but the biological effects on marine organisms at the molecular and cellular levels remain scarce. Due to their lipophilic nature, MPs can adsorb other contaminants present in the marine environment, which may increase their detrimental effects once ingested by organisms. This study investigates the effects of low-density polyethylene (PE) MPs with and without adsorbed benzo[a]pyrene (BaP) in the gills proteome of the peppery furrow shell clam, Scrobicularia plana. Clams were exposed to PE MPs (11-13 μm; 1 mg L-1) for 14 days. BaP was analyzed in whole clams' soft tissues, and a proteomic approach was applied in the gills using SWATH/DIA analysis. Proteomic responses suggest that virgin MPs cause disturbance by altering cytoskeleton and cell structure, energy metabolism, conformational changes, oxidative stress, fatty acids, DNA binding and, neurotransmission highlighting the potential risk of this type of MPs for the clam health. Conversely, when clam gills were exposed to MPs adsorbed with BaP a higher differentiation of protein expression was observed that besides changes in cytoskeleton and cell structure, oxidative stress, energy metabolism and DNA binding also induce changes in glucose metabolism, RNA binding and apoptosis. These results indicate that the presence of both stressors (MPs and BaP) have a higher toxicological risk to the health of S. plana.
Collapse
Affiliation(s)
- M J Bebianno
- Centre for Marine and Environmental Research (CIMA), University of Algarve, Campus de Gambelas, 8000-397 Faro, Portugal.
| | - Vera M Mendes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sarit O'Donovan
- Centre for Marine and Environmental Research (CIMA), University of Algarve, Campus de Gambelas, 8000-397 Faro, Portugal
| | - Camila C Carteny
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Stephen Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro, Sweden
| | - Bruno Manadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
44
|
Ye Y, Huang Q, Chen L, Yuan F, Liu S, Zhang X, Chen R, Fu Y, Yue Y. Pathogenic variants identified using whole-exome sequencing in Chinese patients with primary ciliary dyskinesia. Am J Med Genet A 2022; 188:3024-3031. [PMID: 35869935 DOI: 10.1002/ajmg.a.62912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/13/2022] [Accepted: 07/07/2022] [Indexed: 01/31/2023]
Abstract
The genetic factors contributing to primary ciliary dyskinesia (PCD), a rare autosomal recessive disorder, remain elusive for ~20%-35% of patients with complex and abnormal clinical phenotypes. Our study aimed to identify causative variants of PCD-associated pathogenic candidate genes using whole-exome sequencing (WES). All patients were diagnosed with PCD based on clinical phenotype or transmission electron microscopy images of cilia. WES and bioinformatic analysis were then conducted on patients with PCD. Identified candidate variants were validated by Sanger sequencing. Pathogenicity of candidate variants was then evaluated using in silico software and the American College of Medical Genetics and Genomics (ACMG) database. In total, 13 rare variants were identified in patients with PCD, among which were three homozygous causative variants (including one splicing variant) in the PCD-associated genes CCDC40 and DNAI1. Moreover, two stop-gain heterozygous variants of DNAAF3 and DNAH1 were classified as pathogenic variants based on the ACMG criteria. This study identified novel potential pathogenic genetic factors associated with PCD. Noteworthy, the patients with PCD carried multiple rare causative gene variants, thereby suggesting that known causative genes along with other functional genes should be considered for such heterogeneous genetic disorders.
Collapse
Affiliation(s)
- Yutian Ye
- Shenzhen Institute of Respiratory Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Qijun Huang
- Shenzhen Institute of Respiratory Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Lipeng Chen
- Clinical Centre, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Fang Yuan
- Shenzhen Institute of Respiratory Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Shengguo Liu
- Shenzhen Institute of Respiratory Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Xiangxia Zhang
- Shenzhen Institute of Respiratory Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Rongchang Chen
- Shenzhen Institute of Respiratory Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, China.,State Key Laboratory of Respiration Diseases, The First Affiliated Hospital Of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yingyun Fu
- Shenzhen Institute of Respiratory Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Yongjian Yue
- Shenzhen Institute of Respiratory Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
45
|
Koch CM, Prigge AD, Setar L, Anekalla KR, Do-Umehara HC, Abdala-Valencia H, Politanska Y, Shukla A, Chavez J, Hahn GR, Coates BM. Cilia-related gene signature in the nasal mucosa correlates with disease severity and outcomes in critical respiratory syncytial virus bronchiolitis. Front Immunol 2022; 13:924792. [PMID: 36211387 PMCID: PMC9540395 DOI: 10.3389/fimmu.2022.924792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Respiratory syncytial virus (RSV) can cause life-threatening respiratory failure in infants. We sought to characterize the local host response to RSV infection in the nasal mucosa of infants with critical bronchiolitis and to identify early admission gene signatures associated with clinical outcomes. Methods Nasal scrape biopsies were obtained from 33 infants admitted to the pediatric intensive care unit (PICU) with critical RSV bronchiolitis requiring non-invasive respiratory support (NIS) or invasive mechanical ventilation (IMV), and RNA sequencing (RNA-seq) was performed. Gene expression in participants who required shortened NIS (</= 3 days), prolonged NIS (> 3 days), and IMV was compared. Findings Increased expression of ciliated cell genes and estimated ciliated cell abundance, but not immune cell abundance, positively correlated with duration of hospitalization in infants with critical bronchiolitis. A ciliated cell signature characterized infants who required NIS for > 3 days while a basal cell signature was present in infants who required NIS for </= 3 days, despite both groups requiring an equal degree of respiratory support at the time of sampling. Infants who required invasive mechanical ventilation had increased expression of genes involved in neutrophil activation and cell death. Interpretation Increased expression of cilia-related genes in clinically indistinguishable infants with critical RSV may differentiate between infants who will require prolonged hospitalization and infants who will recover quickly. Validation of these findings in a larger cohort is needed to determine whether a cilia-related gene signature can predict duration of illness in infants with critical bronchiolitis. The ability to identify which infants with critical RSV bronchiolitis may require prolonged hospitalization using non-invasive nasal samples would provide invaluable prognostic information to parents and medical providers.
Collapse
Affiliation(s)
- Clarissa M. Koch
- Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Andrew D. Prigge
- Department of Pediatrics, Northwestern University, Chicago, IL, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Leah Setar
- Department of Pediatrics, Northwestern University, Chicago, IL, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | | | | | | | - Yuliya Politanska
- Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Avani Shukla
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Jairo Chavez
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Grant R. Hahn
- Department of Pediatrics, Northwestern University, Chicago, IL, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Bria M. Coates
- Department of Pediatrics, Northwestern University, Chicago, IL, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
- *Correspondence: Bria M. Coates,
| |
Collapse
|
46
|
Levkova M, Radanova M, Angelova L. Potential role of dynein-related genes in the etiology of male infertility: A systematic review and a meta-analysis. Andrology 2022; 10:1484-1499. [PMID: 36057791 DOI: 10.1111/andr.13287] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/21/2022] [Accepted: 08/28/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The dynein-related genes may have a role in the etiology of male infertility, particularly in cases of impaired sperm motility. OBJECTIVES The goal of this review is to compile a list of the most important dynein-related candidate genes that may contribute to male factor infertility. MATERIALS AND METHODS Databases were searched using the keywords "dynein", "male", "infertility" and by applying strict inclusion criteria. A meta-analysis was also performed by using the eligible case-control studies. The odd ratios (OR), the Z-test score, and the level of significance were determined using a fixed model with a p value of 0.05. Funnel plots were used to check for publication bias. RESULTS There were 35 studies that met the inclusion criteria. There were a total of fifteen genes responsible for the production of dynein structural proteins, the production of dynein assembling factors, and potentially associated with male infertility. A total of five case-control studies were eligible for inclusion in the meta-analysis. Variants in the dynein-related genes were linked to an increased the risk of male infertility (OR = 21.52, 95% Confidence Interval (CI) 8.34 - 55.50, Z test = 6.35, p < 0.05). The percentage of heterogeneity, I2 , was 47.00%. The lack of variants in the dynein genes was an advantage and this was statistically significant. DISCUSSION The results from the present review illustrate that pathogenic variants in genes both for dynein synthesis and for dynein assembly factors could be associated with isolated cases of male infertility without any other symptoms. CONCLUSIONS The genes addressed in this study, which are involved in both the production and assembly of dynein, could be used as molecular targets for future research into the etiology of sperm motility problems. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mariya Levkova
- Department of Medical Genetics, Medical University Varna, Marin Drinov Str 55, Varna, 9000, Bulgaria.,Laboratory of Medical Genetics, St. Marina Hospital, Hristo Smirnenski Blv 1, Varna, 9000, Bulgaria
| | - Maria Radanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University Varna, Tzar Osvoboditel Str 84b, Varna, 9000, Bulgaria
| | - Lyudmila Angelova
- Department of Medical Genetics, Medical University Varna, Marin Drinov Str 55, Varna, 9000, Bulgaria
| |
Collapse
|
47
|
Xiang W, Zur Lage P, Newton FG, Qiu G, Jarman AP. The dynamics of protein localisation to restricted zones within Drosophila mechanosensory cilia. Sci Rep 2022; 12:13338. [PMID: 35922464 PMCID: PMC9349282 DOI: 10.1038/s41598-022-17189-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/21/2022] [Indexed: 12/02/2022] Open
Abstract
The Drosophila chordotonal neuron cilium is the site of mechanosensory transduction. The cilium has a 9 + 0 axoneme structure and is highly sub-compartmentalised, with proximal and distal zones harbouring different TRP channels and the proximal zone axoneme also being decorated with axonemal dynein motor complexes. The activity of the dynein complexes is essential for mechanotransduction. We investigate the localisation of TRP channels and dynein motor complexes during ciliogenesis. Differences in timing of TRP channel localisation correlate with order of construction of the two ciliary zones. Dynein motor complexes are initially not confined to their target proximal zone, but ectopic complexes beyond the proximal zone are later cleared, perhaps by retrograde transport. Differences in transient distal localisation of outer and inner dynein arm complexes (ODAs and IDAs) are consistent with previous suggestions from unicellular eukaryotes of differences in processivity during intraflagellar transport. Stable localisation depends on the targeting of their docking proteins in the proximal zone. For ODA, we characterise an ODA docking complex (ODA-DC) that is targeted directly to the proximal zone. Interestingly, the subunit composition of the ODA-DC in chordotonal neuron cilia appears to be different from the predicted ODA-DC in Drosophila sperm.
Collapse
Affiliation(s)
- Wangchu Xiang
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Department of Neurobiology, Harvard Medical School, Boston, MA, 02215, USA
| | - Petra Zur Lage
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Fay G Newton
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Guiyun Qiu
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Andrew P Jarman
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
48
|
In Silico Identification of lncRNAs Regulating Sperm Motility in the Turkey (Meleagris gallopavo L.). Int J Mol Sci 2022; 23:ijms23147642. [PMID: 35887003 PMCID: PMC9324027 DOI: 10.3390/ijms23147642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts not translated into proteins with a length of more than 200 bp. LncRNAs are considered an important factor in the regulation of countless biological processes, mainly through the regulation of gene expression and interactions with proteins. However, the detailed mechanism of interaction as well as functions of lncRNAs are still unclear and therefore constitute a serious research challenge. In this study, for the first time, potential mechanisms of lncRNA regulation of processes related to sperm motility in turkey were investigated and described. Customized bioinformatics analysis was used to detect and identify lncRNAs, and their correlations with differentially expressed genes and proteins were also investigated. Results revealed the expression of 863 new/unknown lncRNAs in ductus deferens, testes and epididymis of turkeys. Moreover, potential relationships of the lncRNAs with the coding mRNAs and their products were identified in turkey reproductive tissues. The results obtained from the OMICS study may be useful in describing and characterizing the way that lncRNAs regulate genes and proteins as well as signaling pathways related to sperm motility.
Collapse
|
49
|
Comparative Proteomic Analyses of Poorly Motile Swamp Buffalo Spermatozoa Reveal Low Energy Metabolism and Deficiencies in Motility-Related Proteins. Animals (Basel) 2022; 12:ani12131706. [PMID: 35804605 PMCID: PMC9264820 DOI: 10.3390/ani12131706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
The acquisition of mammalian sperm motility is a main indicator of epididymal sperm maturation and helps ensure fertilization. Poor sperm motility will prevent sperm cells from reaching the fertilization site, resulting in fertilization failure. To investigate the proteomic profiling of normal and poorly motile buffalo spermatozoa, a strategy applying liquid chromatography tandem mass spectrometry combined with tandem mass targeting was used. As a result, 145 differentially expressed proteins (DEPs) were identified in poorly motile spermatozoa (fold change > 1.5), including 52 upregulated and 93 downregulated proteins. The upregulated DEPs were mainly involved in morphogenesis and regulation of cell differentiation. The downregulated DEPs were involved with transport, oxidation-reduction, sperm motility, regulation of cAMP metabolism and regulation of DNA methylation. The mRNA and protein levels of PRM1 and AKAP3 were lower in poorly motile spermatozoa, while the expressions of SDC2, TEKT3 and IDH1 were not correlated with motility, indicating that their protein changes were affected by transcription or translation. Such changes in the expression of these proteins suggest that the formation of poorly motile buffalo spermatozoa reflects a low efficiency of energy metabolism, decreases in sperm protamine proteins, deficiencies in motility-related proteins, and variations in tail structural proteins. Such proteins could be biomarkers of poorly motile spermatozoa. These results illustrate some of the molecular mechanisms associated with poorly motile spermatozoa and provide clues for finding molecular markers of these pathways.
Collapse
|
50
|
Demir Eksi D, Yilmaz E, Basaran AE, Erduran G, Nur B, Mihci E, Karadag B, Bingol A, Alper OM. Novel Gene Variants Associated with Primary Ciliary Dyskinesia. Indian J Pediatr 2022; 89:682-691. [PMID: 35239159 DOI: 10.1007/s12098-022-04098-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To determine the demographic, clinical, and genetic profile of Turkish Caucasian PCD cases. METHODS Targeted next-generation sequencing (t-NGS) of 46 nuclear genes was performed in 21 unrelated PCD cases. Sanger sequencing confirmed of potentially disease-related variations, and genotype-phenotype correlations were evaluated. RESULTS Disease-related variations were identified in eight different genes (CCDC39, CCDC40, CCDC151, DNAAF2, DNAAF4, DNAH11, HYDIN, RSPH4A) in 52.4% (11/21) of the cases. The frequency of variations for CCDC151, DNAH11, and DNAAF2 genes which were highly mutated genes in the cohort was 18% in 11 patients. Each of the remaining gene variations was detected once (9%) in different patients. The variants, p.R482fs*12 in CCDC151, p.E216* in DNAAF2, p.I317* in DNAAF4, p.L318P and p.R1865* in DNAH11, and p.N1505D and p.L1167P in HYDIN gene were identified as novel variations. Interestingly, varying phenotypic findings were identified even in patients with the same mutation, which once again confirmed that PCD has a high phenotypic heterogeneity and shows individual differences. CONCLUSION This t-NGS panel is potentially helpful for exact and rapid identification of reported/novel PCD-disease-causing variants to establish the molecular diagnosis of ciliary diseases.
Collapse
Affiliation(s)
- Durkadin Demir Eksi
- Department of Medical Biology and Genetics, School of Medicine, Akdeniz University, Antalya, 07070, Turkey.
- Department of Medical Biology, School of Medicine, Alanya Alaaddin Keykubat University, Antalya, 07425, Turkey.
| | - Elanur Yilmaz
- Department of Medical Biology and Genetics, School of Medicine, Akdeniz University, Antalya, 07070, Turkey
- Department of Medical Genetics & Koç University Research Center for Translational Medicine (KUTTAM), School of Medicine, Koç University, Istanbul, Turkey
| | - A Erdem Basaran
- Department of Pediatric Pulmonology, School of Medicine, Akdeniz University, Antalya, Turkey
| | - Gizem Erduran
- Department of Medical Biology and Genetics, School of Medicine, Akdeniz University, Antalya, 07070, Turkey
| | - Banu Nur
- Department of Pediatric Genetics, School of Medicine, Akdeniz University, Antalya, Turkey
| | - Ercan Mihci
- Department of Pediatric Genetics, School of Medicine, Akdeniz University, Antalya, Turkey
| | - Bulent Karadag
- Department of Pediatric Pulmonology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Aysen Bingol
- Department of Pediatric Pulmonology, School of Medicine, Akdeniz University, Antalya, Turkey
| | - Ozgul M Alper
- Department of Medical Biology and Genetics, School of Medicine, Akdeniz University, Antalya, 07070, Turkey.
| |
Collapse
|