1
|
Noor Z, Guo S, Zhao Z, Qin Y, Shi G, Ma H, Zhang Y, Li J, Yu Z. Identification and involvement of DAX1 gene in spermatogenesis of boring giant clam Tridacna crocea. Gene 2024; 911:148338. [PMID: 38438056 DOI: 10.1016/j.gene.2024.148338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
DAX1 (dosage-sensitive sex reversal, adrenal hypoplasia congenital critical region on X chromosome gene 1), a key sex determinant in various species, plays a vital role in gonad differentiation and development and controls spermatogenesis. However, the identity and function of DAX1 are still unclear in bivalves. In the present study, we identified a DAX1 (designed as Tc-DAX1) gene from the boring giant clam Tridacna crocea, a tropical marine bivalve. The full length of Tc-DAX1 was 1877 bp, encoding 462 amino acids, with a Molecular weight of 51.81 kDa and a theoretical Isoelectric point of 5.87 (pI). Multiple sequence alignments and phylogenetic analysis indicated a putative ligand binding domain (LBD) conserved regions clustered with molluscans DAX1 homologs. The tissue distributions in different reproductive stages revealed a dimorphic pattern, with the highest expression trend in the male reproductive stage, indicating its role in spermatogenesis. The DAX1 expression data from embryonic stages shows its highest expression profile (P < 0.05) in the zygote stage, followed by decreasing trends in the larvae stages (P > 0.05). The localization of DAX1 transcripts has also been confirmed by whole mount in situ hybridization, showing high positive signals in the fertilized egg, 2, and 4-cell stage, and gastrula. Moreover, RNAi knockdown of the Tc-DAX1 transcripts shows a significantly lower expression profile in the ds-DAX1 group compared to the ds-EGFP group. Subsequent histological analysis of gonads revealed that spermatogenesis was affected in a ds-DAX1 group compared to the ds-EGFP group. All these results indicate that Tc-DAX1 is involved in the spermatogenesis and early embryonic development of T. crocea, providing valuable information for the breeding and aquaculture of giant clams.
Collapse
Affiliation(s)
- Zohaib Noor
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China; Hainan Key Laboratory of Tropical Marine Biotechnology, Hainan Sanya Marine Ecosystem National Observation and Research Station, Sanya 572024, China
| | - Shuming Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China; Hainan Key Laboratory of Tropical Marine Biotechnology, Hainan Sanya Marine Ecosystem National Observation and Research Station, Sanya 572024, China
| | - Zhen Zhao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Hainan Key Laboratory of Tropical Marine Biotechnology, Hainan Sanya Marine Ecosystem National Observation and Research Station, Sanya 572024, China
| | - Yanpin Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Hainan Key Laboratory of Tropical Marine Biotechnology, Hainan Sanya Marine Ecosystem National Observation and Research Station, Sanya 572024, China
| | - Gongpengyang Shi
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Hainan Key Laboratory of Tropical Marine Biotechnology, Hainan Sanya Marine Ecosystem National Observation and Research Station, Sanya 572024, China
| | - Haitao Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Hainan Key Laboratory of Tropical Marine Biotechnology, Hainan Sanya Marine Ecosystem National Observation and Research Station, Sanya 572024, China
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China; Hainan Key Laboratory of Tropical Marine Biotechnology, Hainan Sanya Marine Ecosystem National Observation and Research Station, Sanya 572024, China
| | - Jun Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Hainan Key Laboratory of Tropical Marine Biotechnology, Hainan Sanya Marine Ecosystem National Observation and Research Station, Sanya 572024, China.
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Hainan Key Laboratory of Tropical Marine Biotechnology, Hainan Sanya Marine Ecosystem National Observation and Research Station, Sanya 572024, China.
| |
Collapse
|
2
|
Gregoire EP, De Cian MC, Migale R, Perea-Gomez A, Schaub S, Bellido-Carreras N, Stévant I, Mayère C, Neirijnck Y, Loubat A, Rivaud P, Sopena ML, Lachambre S, Linssen MM, Hohenstein P, Lovell-Badge R, Nef S, Chalmel F, Schedl A, Chaboissier MC. The -KTS splice variant of WT1 is essential for ovarian determination in mice. Science 2023; 382:600-606. [PMID: 37917714 PMCID: PMC7615308 DOI: 10.1126/science.add8831] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/29/2023] [Indexed: 11/04/2023]
Abstract
Sex determination in mammals depends on the differentiation of the supporting lineage of the gonads into Sertoli or pregranulosa cells that govern testis and ovary development, respectively. Although the Y-linked testis-determining gene Sry has been identified, the ovarian-determining factor remains unknown. In this study, we identified -KTS, a major, alternatively spliced isoform of the Wilms tumor suppressor WT1, as a key determinant of female sex determination. Loss of -KTS variants blocked gonadal differentiation in mice, whereas increased expression, as found in Frasier syndrome, induced precocious differentiation of ovaries independently of their genetic sex. In XY embryos, this antagonized Sry expression, resulting in male-to-female sex reversal. Our results identify -KTS as an ovarian-determining factor and demonstrate that its time of activation is critical in gonadal sex differentiation.
Collapse
Affiliation(s)
- Elodie P Gregoire
- Université Côte d’Azur, Inserm, CNRS, Institut de Biologie Valrose (iBV), 06108 Nice, France
| | - Marie-Cécile De Cian
- Université Côte d’Azur, Inserm, CNRS, Institut de Biologie Valrose (iBV), 06108 Nice, France
| | - Roberta Migale
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Aitana Perea-Gomez
- Université Côte d’Azur, Inserm, CNRS, Institut de Biologie Valrose (iBV), 06108 Nice, France
| | - Sébastien Schaub
- Sorbonne Université, CNRS, Development Biology Laboratory (LBDV), 06234 Villefranche sur Mer, France
| | | | - Isabelle Stévant
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
- iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva Switzerland
| | - Chloé Mayère
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
- iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva Switzerland
| | - Yasmine Neirijnck
- Université Côte d’Azur, Inserm, CNRS, Institut de Biologie Valrose (iBV), 06108 Nice, France
| | - Agnès Loubat
- Université Côte d’Azur, Inserm, CNRS, Institut de Biologie Valrose (iBV), 06108 Nice, France
| | - Paul Rivaud
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, 35000 Rennes, France
| | | | - Simon Lachambre
- Infinity, Inserm, CNRS, University Toulouse III, 31024 Toulouse, France
| | - Margot M. Linssen
- Central Animal and Transgenic Facility and Dept. Human Genetics, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Peter Hohenstein
- Central Animal and Transgenic Facility and Dept. Human Genetics, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | | | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
- iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva Switzerland
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, 35000 Rennes, France
| | - Andreas Schedl
- Université Côte d’Azur, Inserm, CNRS, Institut de Biologie Valrose (iBV), 06108 Nice, France
| | | |
Collapse
|
3
|
Caranica C, Lu M. A data-driven optimization method for coarse-graining gene regulatory networks. iScience 2023; 26:105927. [PMID: 36698721 PMCID: PMC9868542 DOI: 10.1016/j.isci.2023.105927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
One major challenge in systems biology is to understand how various genes in a gene regulatory network (GRN) collectively perform their functions and control network dynamics. This task becomes extremely hard to tackle in the case of large networks with hundreds of genes and edges, many of which have redundant regulatory roles and functions. The existing methods for model reduction usually require the detailed mathematical description of dynamical systems and their corresponding kinetic parameters, which are often not available. Here, we present a data-driven method for coarse-graining large GRNs, named SacoGraci, using ensemble-based mathematical modeling, dimensionality reduction, and gene circuit optimization by Markov Chain Monte Carlo methods. SacoGraci requires network topology as the only input and is robust against errors in GRNs. We benchmark and demonstrate its usage with synthetic, literature-based, and bioinformatics-derived GRNs. We hope SacoGraci will enhance our ability to model the gene regulation of complex biological systems.
Collapse
Affiliation(s)
- Cristian Caranica
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA,Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02115, USA
| | - Mingyang Lu
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA,Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02115, USA,The Jackson Laboratory, Bar Harbor, ME 04609, USA,Corresponding author
| |
Collapse
|
4
|
Meinel JA, Yumiceba V, Künstner A, Schultz K, Kruse N, Kaiser FJ, Holterhus PM, Claviez A, Hiort O, Busch H, Spielmann M, Werner R. Disruption of the topologically associated domain at Xp21.2 is related to 46,XY gonadal dysgenesis. J Med Genet 2022; 60:469-476. [PMID: 36227713 PMCID: PMC10176412 DOI: 10.1136/jmg-2022-108635] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/25/2022] [Indexed: 11/03/2022]
Abstract
BackgroundDuplications at the Xp21.2 locus have previously been linked to 46,XY gonadal dysgenesis (GD), which is thought to result from gene dosage effects of NR0B1 (DAX1), but the exact disease mechanism remains unknown.MethodsPatients with 46,XY GD were analysed by whole genome sequencing. Identified structural variants were confirmed by array CGH and analysed by high-throughput chromosome conformation capture (Hi-C).ResultsWe identified two unrelated patients: one showing a complex rearrangement upstream of NR0B1 and a second harbouring a 1.2 Mb triplication, including NR0B1. Whole genome sequencing and Hi-C analysis revealed the rewiring of a topological-associated domain (TAD) boundary close to NR0B1 associated with neo-TAD formation and may cause enhancer hijacking and ectopic NR0B1 expression. Modelling of previous Xp21.2 structural variations associated with isolated GD support our hypothesis and predict similar neo-TAD formation as well as TAD fusion.ConclusionHere we present a general mechanism how deletions, duplications or inversions at the NR0B1 locus can lead to partial or complete GD by disrupting the cognate TAD in the vicinity of NR0B1. This model not only allows better diagnosis of GD with copy number variations (CNVs) at Xp21.2, but also gives deeper insight on how spatiotemporal activation of developmental genes can be disrupted by reorganised TADs causing impairment of gonadal development.
Collapse
Affiliation(s)
- Jakob A Meinel
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Endocrinology and Diabetes, Universität zu Lübeck, Lubeck, Germany
| | | | - Axel Künstner
- Group of Medical Systems Biology, Lübeck Institute of Experimental Dermatology, Universität zu Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, Universität zu Lübeck, Lübeck, Germany
| | - Kristin Schultz
- Institute of Human Genetics, Universität zu Lübeck, Lübeck, Germany
| | - Nathalie Kruse
- Institute of Human Genetics, Universität zu Lübeck, Lübeck, Germany
| | - Frank J Kaiser
- Institute of Human Genetics, Universität Duisburg-Essen, Duisburg, Germany
- Essen Center for Rare Diseases (EZSE), University Hospital Essen, Essen, Germany
| | - Paul-Martin Holterhus
- University Medical Center for Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine I, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Alexander Claviez
- Department of Pediatrics and Adolescent Medicine I, Division of Pediatric Oncology and Hematology, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Olaf Hiort
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Endocrinology and Diabetes, Universität zu Lübeck, Lubeck, Germany
| | - Hauke Busch
- Group of Medical Systems Biology, Lübeck Institute of Experimental Dermatology, Universität zu Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, Universität zu Lübeck, Lübeck, Germany
| | - Malte Spielmann
- Institute of Human Genetics, Universität zu Lübeck, Lübeck, Germany
- Partner Site Hamburg/Kiel/Lübeck, German Center for Cardiovascular Disease, Berlin, Germany
| | - Ralf Werner
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Endocrinology and Diabetes, Universität zu Lübeck, Lubeck, Germany
- Institute of Molecular Medicine, Universität zu Lübeck, Lübeck, Germany
| |
Collapse
|
5
|
Mammalian X-chromosome inactivation: proposed role in suppression of the male programme in genetic females. J Genet 2022. [DOI: 10.1007/s12041-022-01363-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Kulibin AY, Malolina EA. The Rete Testis: Development and Role in Testis Function. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421060072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
The rete testis connects seminiferous tubules in which germ cells develop to the efferent ducts and the epididymis, where gametes mature and gain mobility. Several recent studies have thoroughly explored the morphogenesis of this structure in mice during embryonic and postnatal periods. A part of the rete testis has been shown to derive from the precursors of gonad somatic cells before sex determination. The other part forms from embryonal Sertoli cells of testis cords adjacent to the mesonephros. The transformation of Sertoli cells into rete testis cells is apparently not limited to the embryonic stage of development and continues during postnatal testis development. Recently, it was found that the rete testis participates in the formation and maintenance of specialized Sertoli cells in terminal segments of seminiferous tubules, transitional zones. Current views suggest that the transitional zones of the seminiferous tubules may represent a niche for spermatogonial stem cells, the site of the prolonged proliferation of Sertoli cells in the pubertal and postpubertal periods of testis development, and also could be a generator of spermatogenic waves. To sum up, the rete testis transports gametes from the testis to the epididymis, maintains pressure within seminiferous tubules, regulates the composition of the testicular fluid, and impacts the spermatogenic process itself.
Collapse
|
7
|
Poulat F. Non-Coding Genome, Transcription Factors, and Sex Determination. Sex Dev 2021; 15:295-307. [PMID: 34727549 DOI: 10.1159/000519725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/15/2021] [Indexed: 11/19/2022] Open
Abstract
In vertebrates, gonadal sex determination is the process by which transcription factors drive the choice between the testicular and ovarian identity of undifferentiated somatic progenitors through activation of 2 different transcriptional programs. Studies in animal models suggest that sex determination always involves sex-specific transcription factors that activate or repress sex-specific genes. These transcription factors control their target genes by recognizing their regulatory elements in the non-coding genome and their binding motifs within their DNA sequence. In the last 20 years, the development of genomic approaches that allow identifying all the genomic targets of a transcription factor in eukaryotic cells gave the opportunity to globally understand the function of the nuclear proteins that control complex genetic programs. Here, the major transcription factors involved in male and female vertebrate sex determination and the genomic profiling data of mouse gonads that contributed to deciphering their transcriptional regulation role will be reviewed.
Collapse
Affiliation(s)
- Francis Poulat
- Institute of Human Genetics, CNRS UMR9002 University of Montpellier, Montpellier, France
| |
Collapse
|
8
|
Ramos L, Mares L. Hamster DAX1: Molecular insights, specific expression, and its role in the Harderian gland. Comp Biochem Physiol A Mol Integr Physiol 2021; 263:111096. [PMID: 34653610 DOI: 10.1016/j.cbpa.2021.111096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
DAX1 plays an essential role in the differentiation and physiology of the Hypothalamic-Pituitary-Adrenal-Gonadal (HPAG) axis during embryogenesis. However, in adult tissues, in addition to the HPAG axis, evidence has not been found for its differential expression and function. We isolated the DAX1 cDNA to analyze its tissue localization and gene expression profiles in male and female hamsters' Harderian glands (HGs), Mesocricetus auratus. The isolated cDNA clone contains 1848 base pairs (bp), and a 1428-bp open reading frame (ORF) encodes a 476 amino acid protein. Sequence alignments and the phylogenetic tree display a relevant percentage of similarity with human (66%), rat (81%), and mouse (84%) sequences. In adult tissues, the mRNA distribution demonstrated that DAX1 is present in testis, ovaries, and male and female HGs. The highest expression profiles were identified in the adrenal glands, where females exhibit higher mRNA levels than males. The sexually dimorphic expression of DAX1 in adrenals suggests that its presence could be associated with regulating, functioning, and maintaining this endocrine tissue. These findings indicate that the DAX1 gene is limitedly expressed in adult tissues. In the HGs, we demonstrate the absence of sexually dimorphic gene expression. Our results suggest that DAX1 might have an additional physiological function outside of the HPAG axis, specifically in the HG, which may be required for the regulation of intracrine steroidogenesis, secretion, and maintenance of exocrine tissue.
Collapse
Affiliation(s)
- L Ramos
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico.
| | - L Mares
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| |
Collapse
|
9
|
Shi H, Ru X, Mustapha UF, Jiang D, Huang Y, Pan S, Zhu C, Li G. Characterization, expression, and regulatory effects of nr0b1a and nr0b1b in spotted scat (Scatophagus argus). Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110644. [PMID: 34224854 DOI: 10.1016/j.cbpb.2021.110644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022]
Abstract
Nuclear receptor subfamily 0 group B member 1 (Nr0b1) belongs to the nuclear receptor (NR) superfamily. It plays critical roles in sex determination, sex differentiation, and gonadal development in mammals. In this study, the duplicated genes nr0b1a and nr0b1b were identified in spotted scat (Scatophagus argus). Phylogenetic and synteny analyses revealed that, unlike nr0b1a, nr0b1b was retained in several species of teleosts after an nr0b1 gene duplication event but was secondarily lost in other fish species, amphibians, reptiles, birds, and mammals. In a sequence analysis, only 1.5 LXXLL-related repeat motifs were identified in spotted scat Nr0b1a, Nr0b1b, and non-mammalian Nr0b1a/Nr0b1, different from the 3.5 repeat motifs in mammalian Nr0b1. By qPCR, nr0b1a and nr0b1b were highly expressed in testes from stages IV to V and in ovaries from stages II to IV, respectively. Male-to-female sex reversal was induced in XY spotted scat by the administration of exogenous E2. A qPCR analysis showed that nr0b1b mRNA expression was higher in sex-reversed XY fish than in control XY fish, with no difference in nr0b1a. A luciferase assay showed that spotted scat Nr0b1a and Nr0b1b did not individually activate cyp19a1a gene transcription. As in mammals, spotted scat Nr0b1a suppressed Nr5a1-mediated cyp19a1a expression, despite containing only 1.5 LXXLL-related repeat motifs in its N-terminal region, while Nr0b1b stimulated Nr5a1-mediated cyp19a1a transcription. These results demonstrated that nr0b1a and nr0b1b in spotted scat have distinct expression patterns and regulatory effects and further indicate that nr0b1b might be involved in ovarian development by regulating Nr5a1-mediated cyp19a1a expression.
Collapse
Affiliation(s)
- Hongjuan Shi
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoying Ru
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang 524088, China
| | - Umar Farouk Mustapha
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dongneng Jiang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yang Huang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shuhui Pan
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chunhua Zhu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
10
|
Planells B, Gómez-Redondo I, Sánchez JM, McDonald M, Cánovas Á, Lonergan P, Gutiérrez-Adán A. Gene expression profiles of bovine genital ridges during sex determination and early differentiation of the gonads†. Biol Reprod 2021; 102:38-52. [PMID: 31504197 DOI: 10.1093/biolre/ioz170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/02/2019] [Accepted: 08/23/2019] [Indexed: 12/23/2022] Open
Abstract
Most current knowledge of sex determination in mammals has emerged from mouse and human studies. To investigate the molecular regulation of the sex determination process in cattle, we used an RNA sequencing strategy to analyze the transcriptome landscape of male and female bovine fetal gonads collected in vivo at key developmental stages: before, during, and after SRY gene activation on fetal days D35 (bipotential gonad formation), D39 (peak SRY expression), and D43 (early gonad differentiation). Differentially expressed genes (DEGs) were identified in male vs. female germinal ridges and among group genes showing similar expression profiles during the three periods. There were 143, 96, and 658 DEG between males and female fetuses at D35, D39, and D43, respectively. On D35, genes upregulated in females were enriched in translation, nuclear export, RNA localization, and mRNA splicing events, whereas those upregulated in males were enriched in cell proliferation regulation and male sex determination terms. In time-course experiments, 767 DEGs in males and 545 DEGs in females were identified between D35 vs. D39, and 3157 DEGs in males and 2008 in females were identified between D39 vs. D43. Results highlight unique aspects of sex determination in cattle, such as the expression of several Y chromosome genes (absent in mice and humans) before SRY expression and an abrupt increase in the nuclear expression of SOX10 (instead of SOX9 expression in the Sertoli cell cytoplasm as observed in mice) during male determination and early differentiation.
Collapse
Affiliation(s)
- Benjamín Planells
- Departamento de Reproducción Animal, INIA, Madrid, Spain.,School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | | | - José María Sánchez
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Michael McDonald
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Ángela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
11
|
Kumar S, Kim HJ, Lee CH, Choi HS, Lee K. Leydig Cell-Specific DAX1-Deleted Mice Has Higher Testosterone Level in the Testis During Pubertal Development. Reprod Sci 2021; 29:955-962. [PMID: 33891289 DOI: 10.1007/s43032-021-00554-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/22/2021] [Indexed: 11/28/2022]
Abstract
Testosterone, the male sex hormone, is necessary for the development and function of the male reproductive system. Biosynthesis of testosterone in mammals mainly occurs in testicular Leydig cells. Many proteins such as P450c17, 3β-HSD, and StAR are involved in testicular steroidogenesis. DAX1 is essential for sex development and interacts with nuclear receptors such as steroidogenic factor 1 to inhibit steroidogenesis. In this study, we investigated the role of DAX1 in testicular steroidogenesis in vivo by generating Leydig cell-specific DAX1-knockout mice. Radioimmunoassay revealed that the levels of testosterone and progesterone were higher in Leydig cell-specific DAX1-knockout testes than in the testes from wild-type mice during the first 3-4 weeks of aging. In addition, the expression levels of steroidogenic genes, such as StAR, P450c17, P450scc, and 3β-HSD, were considerably higher in the testes from DAX1-knockout mice. DAX1-deficient mouse testes seemed to attain early puberty with the acceleration of germ cell development. These data suggest that DAX1 regulates the expression of steroidogenic genes, and thereby controls and fine-tunes steroidogenesis during testis development.
Collapse
Affiliation(s)
- Sudeep Kumar
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Hyo Jeong Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hueng-Sik Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Keesook Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
12
|
Hasegawa Y, Takahashi Y, Kezuka Y, Obara W, Kato Y, Tamura S, Onodera K, Segawa T, Oda T, Sato M, Nata K, Nonaka T, Ishigaki Y. Identification and Analysis of a Novel NR0B1 Mutation in Late-Onset Adrenal Hypoplasia Congenita and Hypogonadism. J Endocr Soc 2021; 5:bvaa176. [PMID: 33381670 PMCID: PMC7757432 DOI: 10.1210/jendso/bvaa176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Objective X-linked adrenal hypoplasia congenita (AHC) is a rare disorder characterized by primary adrenal insufficiency and hypogonadotropic hypogonadism (HHG) caused by mutations of the NR0B1/DAX1 gene. We aimed to search for the presence of any NR0B1/DAX1 gene mutations in a referred patient and to further characterize the phenotypes of the identified mutation. Case Presentation Herein, we report a Japanese patient with a novel missense mutation of the NR0B1/DAX1 gene resulting in adult-onset AHC and HHG. The patient was referred with diffuse skin pigmentation at 28 years of age, presented partial adrenal insufficiency and had undiagnosed incomplete HHG. Urological examination revealed severe oligospermia and testicular microlithiasis. Results The NR0B1/DAX1 gene mutation was identified by exome sequencing as a novel missense mutation (c.884A>T, p.Leu295His). We conducted in silico modeling of this mutant NR0B1/DAX1 protein (p.Leu295His) which affected the conserved hydrophobic core of the putative ligand-binding domain (LBD). In addition, functional analysis revealed that this mutant showed a decreased ability as a transcriptional repressor to suppress target genes, such as STAR and LHB. Furthermore, this mutant showed functionally impaired repression of steroidogenesis in human adrenocortical H295R cells. Conclusions We identified a novel missense mutation of the NR0B1/DAX1 gene in a patient suffering from late-onset AHC and HHG, who presented with oligospermia and testicular microlithiasis. This mutant NR0B1/DAX1 protein was found to have reduced repressor activity, according to in vitro studies, clinically consistent with the patient’s phenotypic features.
Collapse
Affiliation(s)
- Yutaka Hasegawa
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Yahaba, Japan
| | - Yoshihiko Takahashi
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Yahaba, Japan
| | - Yuichiro Kezuka
- Division of Structural Biology, Department of Pharmaceutical Sciences, Iwate Medical University, Yahaba, Japan.,Thermo Fisher Scientific, Life Technologies Japan Ltd., Tokyo, Japan
| | - Wataru Obara
- Department of Urology, School of Medicine, Iwate Medical University, Yahaba, Japan
| | - Yoichiro Kato
- Department of Urology, School of Medicine, Iwate Medical University, Yahaba, Japan
| | - Shukuko Tamura
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Yahaba, Japan
| | - Ken Onodera
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Yahaba, Japan
| | - Toshie Segawa
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Yahaba, Japan
| | - Tomoyasu Oda
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Yahaba, Japan
| | - Marino Sato
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Yahaba, Japan
| | - Koji Nata
- Division of Medical Biochemistry, School of Pharmacy, Iwate Medical University, Yahaba, Japan
| | - Takamasa Nonaka
- Division of Structural Biology, Department of Pharmaceutical Sciences, Iwate Medical University, Yahaba, Japan
| | - Yasushi Ishigaki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Yahaba, Japan
| |
Collapse
|
13
|
Kulibin AY, Malolina EA. Formation of the rete testis during mouse embryonic development. Dev Dyn 2020; 249:1486-1499. [DOI: 10.1002/dvdy.242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/18/2020] [Accepted: 08/22/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Andrey Yu. Kulibin
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences Moscow Russia
| | - Ekaterina A. Malolina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences Moscow Russia
| |
Collapse
|
14
|
Seo BK, Jeong SA, Cho JY, Park JS, Seo JH, Park ES, Lim JY, Woo HO, Youn HS. Report: central diabetes insipidus and schwannoma in a male with X-linked congenital adrenal hypoplasia. BMC Endocr Disord 2020; 20:73. [PMID: 32460754 PMCID: PMC7254651 DOI: 10.1186/s12902-020-00553-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 05/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DAX1 mutations are related to the X-linked form of adrenal hypoplasia congenita (AHC) in infancy and to hypogonadotropic hypogonadism (HH) in puberty. We report a male patient affected by X-linked AHC who presented with central diabetes insipidus and schwannoma in adulthood, which has not been described in association with AHC. CASE PRESENTATION A 36-day-old male infant who presented with severe dehydration was admitted to the intensive care unit. His laboratory findings showed hyponatremia, hyperkalemia, hypoglycemia, and metabolic acidosis. After hormonal evaluation, he was diagnosed with adrenal insufficiency, and he recovered after treatment with hydrocortisone and a mineralocorticoid. He continued to take hydrocortisone and the mineralocorticoid after discharge. At the age of 17, he did not show any signs of puberty. On the basis of a GnRH test, a diagnosis of HH was made. At the age of 24, he was hospitalized with thirst, polydipsia and polyuria. He underwent a water deprivation test for polydipsia and was diagnosed with central diabetes insipidus. By quantitative polymerase chain reaction analysis, we identified a hemizygous frameshift mutation in DAX1 (c.543delA). CONCLUSIONS We suggest that DAX1 mutations affect a wider variety of endocrine organs than previously known, including the posterior pituitary gland.
Collapse
Affiliation(s)
- Boo Kyeong Seo
- Department of Pediatrics, Gyeongsang National University School of Medicine, 92 Chilam-dong, Jinju, Gyeongnam, 660-751, South Korea
- Gyeongsang Institute of Health Science, Jinju, Korea
| | - Seul Ah Jeong
- Department of Pediatrics, Gyeongsang National University School of Medicine, 92 Chilam-dong, Jinju, Gyeongnam, 660-751, South Korea
- Gyeongsang Institute of Health Science, Jinju, Korea
| | - Jae Young Cho
- Department of Pediatrics, Gyeongsang National University School of Medicine, 92 Chilam-dong, Jinju, Gyeongnam, 660-751, South Korea
- Gyeongsang Institute of Health Science, Jinju, Korea
| | - Ji Sook Park
- Department of Pediatrics, Gyeongsang National University School of Medicine, 92 Chilam-dong, Jinju, Gyeongnam, 660-751, South Korea
- Gyeongsang Institute of Health Science, Jinju, Korea
| | - Ji-Hyun Seo
- Department of Pediatrics, Gyeongsang National University School of Medicine, 92 Chilam-dong, Jinju, Gyeongnam, 660-751, South Korea
- Gyeongsang Institute of Health Science, Jinju, Korea
| | - Eun Sil Park
- Department of Pediatrics, Gyeongsang National University School of Medicine, 92 Chilam-dong, Jinju, Gyeongnam, 660-751, South Korea
- Gyeongsang Institute of Health Science, Jinju, Korea
| | - Jae-Young Lim
- Department of Pediatrics, Gyeongsang National University School of Medicine, 92 Chilam-dong, Jinju, Gyeongnam, 660-751, South Korea.
- Gyeongsang Institute of Health Science, Jinju, Korea.
| | - Hyang-Ok Woo
- Department of Pediatrics, Gyeongsang National University School of Medicine, 92 Chilam-dong, Jinju, Gyeongnam, 660-751, South Korea
- Gyeongsang Institute of Health Science, Jinju, Korea
| | - Hee-Shang Youn
- Department of Pediatrics, Gyeongsang National University School of Medicine, 92 Chilam-dong, Jinju, Gyeongnam, 660-751, South Korea
- Gyeongsang Institute of Health Science, Jinju, Korea
| |
Collapse
|
15
|
Vargas MCC, Moura FS, Elias CP, Carvalho SR, Rassi N, Kunii IS, Dias-da-Silva MR, Costa-Barbosa FA. Spontaneous fertility and variable spectrum of reproductive phenotype in a family with adult-onset X-linked adrenal insufficiency harboring a novel DAX-1/NR0B1 mutation. BMC Endocr Disord 2020; 20:21. [PMID: 32028936 PMCID: PMC7006140 DOI: 10.1186/s12902-020-0500-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/27/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Adrenal hypoplasia congenita (AHC) is an X-linked disorder that affects the adrenal cortex and hypothalamus-pituitary-gonadal axis (HPG), leading to primary adrenocortical insufficiency (PAI) and hypogonadotropic hypogonadism. AHC is caused by a mutation in the DAX-1 gene (NR0B1). More commonly, this disease is characterized by early-onset PAI, with symptoms in the first months of life. However, a less severe phenotype termed late-onset AHC has been described, as PAI signs and symptoms may begin in adolescence and adulthood. Here we describe a family report of a novel mutation within NR0B1 gene and variable reproductive phenotypes, including spontaneous fertility, in a very late-onset X-linked AHC kindred. CASE PRESENTATION Three affected maternal male relatives had confirmed PAI diagnosis between 30 y and at late 64 y. The X-linked pattern has made the endocrinology team to AHC suspicion. Regarding the HPG axis, all males presented a distinct degree of testosterone deficiency and fertility phenotypes, varying from a variable degree of hypogonadism, oligoasthenoteratozoospermia to spontaneous fertility. Interestingly, the other five maternal male relatives unexpectedly died during early adulthood, most likely due to undiagnosed PAI/adrenal crisis as the probable cause of their premature deaths. Sequencing analysis of the NR0B1 gene has shown a novel NR0B1 mutation (p.Tyr378Cys) that segregated in three AHC family members. CONCLUSIONS NR0B1 p.Tyr378Cys segregates in an AHC family with a variable degree of adrenal and gonadal phenotypes, and its hemizygous trait explains the disease in affected family members. We recommend that NR0B1 mutation carriers, even those that are allegedly asymptomatic, be carefully monitored while reinforcing education to prevent PAI and consider early sperm banking when spermatogenesis still viable.
Collapse
Affiliation(s)
| | - Felipe Scipião Moura
- Department of Medicine, Division of Endocrinology, Escola Paulista de Medicina, Laboratory of Molecular and Translational Endocrinology, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Sao Paulo, SP, 04039-032, Brazil
| | - Cecília P Elias
- Endocrinology Unit, Hospital Geral Alberto Rassi, Goiânia, Brazil
| | - Sara R Carvalho
- Endocrinology Unit, Hospital Geral Alberto Rassi, Goiânia, Brazil
| | - Nelson Rassi
- Endocrinology Unit, Hospital Geral Alberto Rassi, Goiânia, Brazil
| | - Ilda S Kunii
- Department of Medicine, Division of Endocrinology, Escola Paulista de Medicina, Laboratory of Molecular and Translational Endocrinology, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Sao Paulo, SP, 04039-032, Brazil
| | - Magnus R Dias-da-Silva
- Department of Medicine, Division of Endocrinology, Escola Paulista de Medicina, Laboratory of Molecular and Translational Endocrinology, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Sao Paulo, SP, 04039-032, Brazil.
| | - Flavia Amanda Costa-Barbosa
- Department of Medicine, Division of Endocrinology, Escola Paulista de Medicina, Laboratory of Molecular and Translational Endocrinology, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Sao Paulo, SP, 04039-032, Brazil
| |
Collapse
|
16
|
Bowles J, Feng CW, Ineson J, Miles K, Spiller CM, Harley VR, Sinclair AH, Koopman P. Retinoic Acid Antagonizes Testis Development in Mice. Cell Rep 2019; 24:1330-1341. [PMID: 30067986 DOI: 10.1016/j.celrep.2018.06.111] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/26/2018] [Accepted: 06/27/2018] [Indexed: 12/29/2022] Open
Abstract
Mammalian sex determination depends on a complex interplay of signals that promote the bipotential fetal gonad to develop as either a testis or an ovary, but the details are incompletely understood. Here, we investigated whether removal of the signaling molecule retinoic acid (RA) by the degradative enzyme CYP26B1 is necessary for proper development of somatic cells of the testes. Gonadal organ culture experiments suggested that RA promotes expression of some ovarian markers and suppresses expression of some testicular markers, acting downstream of Sox9. XY Cyp26b1-null embryos, in which endogenous RA is not degraded, develop mild ovotestes, but more important, steroidogenesis is impaired and the reproductive tract feminized. Experiments involving purified gonadal cells showed that these effects are independent of germ cells and suggest the direct involvement of the orphan nuclear receptor DAX1. Our results reveal that active removal of endogenous RA is required for normal testis development in the mouse.
Collapse
Affiliation(s)
- Josephine Bowles
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Chun-Wei Feng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jessica Ineson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kim Miles
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Cassy M Spiller
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Vincent R Harley
- Hudson Institute of Medical Research, Clayton, Melbourne, VIC 3168, Australia
| | - Andrew H Sinclair
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
17
|
Mäkelä JA, Koskenniemi JJ, Virtanen HE, Toppari J. Testis Development. Endocr Rev 2019; 40:857-905. [PMID: 30590466 DOI: 10.1210/er.2018-00140] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/17/2018] [Indexed: 12/28/2022]
Abstract
Production of sperm and androgens is the main function of the testis. This depends on normal development of both testicular somatic cells and germ cells. A genetic program initiated from the Y chromosome gene sex-determining region Y (SRY) directs somatic cell specification to Sertoli cells that orchestrate further development. They first guide fetal germ cell differentiation toward spermatogenic destiny and then take care of the full service to spermatogenic cells during spermatogenesis. The number of Sertoli cells sets the limits of sperm production. Leydig cells secrete androgens that determine masculine development. Testis development does not depend on germ cells; that is, testicular somatic cells also develop in the absence of germ cells, and the testis can produce testosterone normally to induce full masculinization in these men. In contrast, spermatogenic cell development is totally dependent on somatic cells. We herein review germ cell differentiation from primordial germ cells to spermatogonia and development of the supporting somatic cells. Testicular descent to scrota is necessary for normal spermatogenesis, and cryptorchidism is the most common male birth defect. This is a mild form of a disorder of sex differentiation. Multiple genetic reasons for more severe forms of disorders of sex differentiation have been revealed during the last decades, and these are described along with the description of molecular regulation of testis development.
Collapse
Affiliation(s)
- Juho-Antti Mäkelä
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jaakko J Koskenniemi
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Helena E Virtanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pediatrics, Turku University Hospital, Turku, Finland
| |
Collapse
|
18
|
Huang CCJ, Kang Y. The transient cortical zone in the adrenal gland: the mystery of the adrenal X-zone. J Endocrinol 2019; 241:R51-R63. [PMID: 30817316 PMCID: PMC6675673 DOI: 10.1530/joe-18-0632] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 02/22/2019] [Indexed: 12/20/2022]
Abstract
The X-zone is a transient cortical region enriched in eosinophilic cells located in the cortical-medullary boundary of the mouse adrenal gland. Similar to the X-zone, the fetal zone in human adrenals is also a transient cortical compartment, comprising the majority of the human fetal adrenal gland. During adrenal development, fetal cortical cells are gradually replaced by newly formed adult cortical cells that develop into outer definitive zones. In mice, the regression of this fetal cell population is sexually dimorphic. Many mouse models with mutations associated with endocrine factors have been reported with X-zone phenotypes. Increasing findings indicate that the cell fate of this aged cell population of the adrenal cortex can be manipulated by many hormonal and nonhormonal factors. This review summarizes the current knowledge of this transient adrenocortical zone with an emphasis on genes and signaling pathways that affect X-zone cells.
Collapse
Affiliation(s)
- Chen-Che Jeff Huang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Yuan Kang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
19
|
García-Acero M, Molina M, Moreno O, Ramirez A, Forero C, Céspedes C, Prieto JC, Pérez J, Suárez-Obando F, Rojas A. Gene dosage of DAX-1, determining in sexual differentiation: duplication of DAX-1 in two sisters with gonadal dysgenesis. Mol Biol Rep 2019; 46:2971-2978. [PMID: 30879272 DOI: 10.1007/s11033-019-04758-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/12/2019] [Indexed: 10/27/2022]
Abstract
Two sisters phenotypically normal females, presenting with tumor abdominal mass with histopathological findings of teratoma and gonadoblastoma associated to 46,XY male-to-female sex reversal syndrome, secondary to a duplication in DAX-1, possibly inherited of maternal gonadal mosaicism. Copy number variation and functional effects of the duplication were done by MLPA multiplex ligation-dependent probe amplification and real time PCR. DAX-1, also known as dosage sensitive sex reversal gene (DSS), is considered the most likely candidate gene involved in XY gonadal dysgenesis when overexpressed. The excess of DAX-1 gene disturbs testicular development by down regulation of SF-1, WT1, and SOX9. This is the first report of 46,XY sex reversal in two siblings who have a maternally inherited duplication of DAX-1 associated with reduced levels of expression of downstream genes as SOX9-SF1.
Collapse
Affiliation(s)
- Mary García-Acero
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Cra 7 No. 40-62, Bogotá, 110231, Colombia
| | - Mónica Molina
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Cra 7 No. 40-62, Bogotá, 110231, Colombia
| | - Olga Moreno
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Cra 7 No. 40-62, Bogotá, 110231, Colombia
| | - Andrea Ramirez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Cra 7 No. 40-62, Bogotá, 110231, Colombia
| | - Catalina Forero
- Pediatric Endocrinology, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Camila Céspedes
- Pediatric Endocrinology, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Juan Carlos Prieto
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Cra 7 No. 40-62, Bogotá, 110231, Colombia
| | - Jaime Pérez
- Department of Urology, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Fernando Suárez-Obando
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Cra 7 No. 40-62, Bogotá, 110231, Colombia.,Clinical Genetics Service, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Adriana Rojas
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Cra 7 No. 40-62, Bogotá, 110231, Colombia.
| |
Collapse
|
20
|
Xia X, Huo W, Wan R, Wang P, Chang Z. Cloning, characterization and function analysis of DAX1 in Chinese loach (Paramisgurnus dabryanus). Genetica 2018; 146:487-496. [PMID: 30206752 DOI: 10.1007/s10709-018-0039-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 09/06/2018] [Indexed: 02/02/2023]
Abstract
The mechanisms of sex determination and differentiation have not been elucidated in most fish species. In this study, the full-length cDNAs of DAX1 was cloned and characterized in aquaculture fish Chinese loach (Paramisgurnus dabryanus), designated as Pd-DAX1. The cDNA sequence of Pd-DAX1 was 1261 bp, including 795 bp open reading frame (ORF) encoding 264 amino acids. Pd-DAX1 shares highly identical sequence with DAX1 homologues from different species. The expression profiles of Pd-DAX1 in different developmental stages and diverse adult tissues were analyzed by quantitative real-time RT-PCR and in situ hybridization (ISH). Pd-DAX1 was continuously expressed during embryogenesis, with the extensive distribution in the development of the central nervous system. Tissue distribution analysis revealed that Pd-DAX1 expressed widely in adult tissues, with the highest expression level found in testis, moderate level in ovary, showing a sex-dimorphic expression pattern. Pd-DAX1 mainly located in spermatogonia cells, spermatocytes, primary oocytes and previtellogenic oocyte cells, implying that Pd-DAX1 may involve in gametogenesis. These preliminary findings suggest that Pd-DAX1 gene is highly conserved during vertebrate evolution and involved in a wide range of developmental processes including embryogenesis, central nervous system development and gonad development.
Collapse
Affiliation(s)
- Xiaohua Xia
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, People's Republic of China.
| | - Weiran Huo
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, People's Republic of China
| | - Ruyan Wan
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, People's Republic of China
| | - Peijin Wang
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, People's Republic of China
| | - Zhongjie Chang
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, People's Republic of China
| |
Collapse
|
21
|
Campbell DEK, Langlois VS. Expression of sf1 and dax-1 are regulated by thyroid hormones and androgens during Silurana tropicalis early development. Gen Comp Endocrinol 2018; 259:34-44. [PMID: 29107601 DOI: 10.1016/j.ygcen.2017.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 11/27/2022]
Abstract
Thyroid hormones (THs) and androgens have been shown to be extensively involved in sexual development; however, relatively little is known with regard to TH-related and androgenic actions in sex determination. We first established expression profiles of three sex-determining genes (sf1, dax-1, and sox9) during the embryonic development of Western clawed frogs (Silurana tropicalis). Transcripts of sf1 and sox9 were detected in embryos before the period in which embryonic transcription commences indicating maternal transfer, whereas dax-1 transcripts were not detected until later in development. To examine whether TH status affects sex-determining gene expression in embryonic S. tropicalis, embryos were exposed to co-treatments of iopanoic acid (IOP), thyroxine (T4), or triiodothyronine (T3) for 96 h. Expression profiles of TH receptors and deiodinases reflect inhibition of peripheral deiodinase activity by IOP and recovery by T3. Relevantly, elevated TH levels significantly increased the expression of sf1 and dax-1 in embryonic S. tropicalis. Further supporting TH-mediated regulation, examination of the presence and frequency of transcription factor binding sites in the putative promoter regions of sex-determining genes in S. tropicalis and rodent and fish models using in silico analysis also identified TH motifs in the putative promoter regions of sf1 and dax-1. Together these findings advocate that TH actions as early as the period of embryogenesis may affect gonadal fate in frogs. Mechanisms of TH and androgenic crosstalk in relation to the regulation of steroid-related gene expression were also investigated.
Collapse
Affiliation(s)
| | - Valerie S Langlois
- Biology Department, Queen's University, Kingston, ON Canada; Institut National de la recherche scientifique (INRS) - Centre Eau Terre Environnement (ETE), Quebec, QC, Canada; Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON Canada.
| |
Collapse
|
22
|
Piprek RP, Damulewicz M, Kloc M, Kubiak JZ. Transcriptome analysis identifies genes involved in sex determination and development of Xenopus laevis gonads. Differentiation 2018. [PMID: 29518581 DOI: 10.1016/j.diff.2018.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Development of the gonads is a complex process, which starts with a period of undifferentiated, bipotential gonads. During this period the expression of sex-determining genes is initiated. Sex determination is a process triggering differentiation of the gonads into the testis or ovary. Sex determination period is followed by sexual differentiation, i.e. appearance of the first testis- and ovary-specific features. In Xenopus laevis W-linked DM-domain gene (DM-W) had been described as a master determinant of the gonadal female sex. However, the data on the expression and function of other genes participating in gonad development in X. laevis, and in anurans, in general, are very limited. We applied microarray technique to analyze the expression pattern of a subset of X. laevis genes previously identified to be involved in gonad development in several vertebrate species. We also analyzed the localization and the expression level of proteins encoded by these genes in developing X. laevis gonads. These analyses pointed to the set of genes differentially expressed in developing testes and ovaries. Gata4, Sox9, Dmrt1, Amh, Fgf9, Ptgds, Pdgf, Fshr, and Cyp17a1 expression was upregulated in developing testes, while DM-W, Fst, Foxl2, and Cyp19a1 were upregulated in developing ovaries. We discuss the possible roles of these genes in development of X. laevis gonads.
Collapse
Affiliation(s)
- Rafal P Piprek
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
| | - Milena Damulewicz
- Department of Cell Biology and Imagining, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA; Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA; University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Jacek Z Kubiak
- Univ Rennes, UMR 6290, Institute of Genetics and Development of Rennes, Cell Cycle Group, Faculty of Medicine, F-35000 Rennes, France; Laboratory of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland
| |
Collapse
|
23
|
Falah N, Posey JE, Thorson W, Benke P, Tekin M, Tarshish B, Lupski JR, Harel T. 22q11.2q13 duplication including SOX10 causes sex-reversal and peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, Waardenburg syndrome, and Hirschsprung disease. Am J Med Genet A 2017; 173:1066-1070. [PMID: 28328136 DOI: 10.1002/ajmg.a.38109] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/18/2016] [Accepted: 12/09/2016] [Indexed: 11/12/2022]
Abstract
Diagnosis of genetic syndromes may be difficult when specific components of a disorder manifest at a later age. We present a follow up of a previous report [Seeherunvong et al., (2004); AJMGA 127: 149-151], of an individual with 22q duplication and sex-reversal syndrome. The subject's phenotype evolved to include peripheral and central demyelination, Waardenburg syndrome type IV, and Hirschsprung disease (PCWH; MIM 609136). DNA microarray analysis defined the duplication at 22q11.2q13, including SOX10. Sequencing of the coding region of SOX10 did not reveal any mutations. Our data suggest that SOX10 duplication can cause disorders of sex development and PCWH, supporting the hypothesis that SOX10 toxic gain of function rather than dominant negative activity underlies PCWH.
Collapse
Affiliation(s)
- Nadia Falah
- Division of Clinical and Translational Genetics, Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics Miller School of Medicine, University of Miami and Jackson Memorial Hospital, Miami, Florida
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Willa Thorson
- Division of Clinical and Translational Genetics, Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics Miller School of Medicine, University of Miami and Jackson Memorial Hospital, Miami, Florida
| | - Paul Benke
- Memorial HealthCare System, Hollywood, Florida
| | - Mustafa Tekin
- Division of Clinical and Translational Genetics, Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics Miller School of Medicine, University of Miami and Jackson Memorial Hospital, Miami, Florida
| | - Brocha Tarshish
- Division of Clinical and Translational Genetics, Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics Miller School of Medicine, University of Miami and Jackson Memorial Hospital, Miami, Florida
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Texas Children's Hospital, Houston, Texas
| | - Tamar Harel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
24
|
Lima Amato LG, Latronico AC, Gontijo Silveira LF. Molecular and Genetic Aspects of Congenital Isolated Hypogonadotropic Hypogonadism. Endocrinol Metab Clin North Am 2017; 46:283-303. [PMID: 28476224 DOI: 10.1016/j.ecl.2017.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Congenital isolated hypogonadotropic hypogonadism (IHH) is a clinically and genetically heterogenous disorder characterized by abnormal synthesis, secretion, or action of gonadotropin-releasing hormone, a key hypothalamic decapeptide that orchestrates the reproductive axis. Several modes of inheritance have been identified. A growing list of causative genes has been implicated in the molecular pathogenesis of syndromic and nonsyndromic IHH, largely contributing for better understanding the complex neuroendocrine control of reproduction. This article summarizes the great advances of molecular genetics of IHH and pointed up the heterogeneity and complexity of the genetic basis of this condition.
Collapse
Affiliation(s)
- Lorena Guimaraes Lima Amato
- Division of Endocrinology, Development Endocrinology Unit, Laboratory of Hormones and Molecular Genetics/LIM42, Clinical Hospital, Sao Paulo Medical School, Sao Paulo University, Av. Dr. Eneas de Carvalho Aguiar 255, 7 andar, sala 7037, Sao Paulo, SP 05403-000, Brazil
| | - Ana Claudia Latronico
- Division of Endocrinology, Development Endocrinology Unit, Laboratory of Hormones and Molecular Genetics/LIM42, Clinical Hospital, Sao Paulo Medical School, Sao Paulo University, Av. Dr. Eneas de Carvalho Aguiar 255, 7 andar, sala 7037, Sao Paulo, SP 05403-000, Brazil.
| | - Leticia Ferreira Gontijo Silveira
- Division of Endocrinology, Development Endocrinology Unit, Laboratory of Hormones and Molecular Genetics/LIM42, Clinical Hospital, Sao Paulo Medical School, Sao Paulo University, Av. Dr. Eneas de Carvalho Aguiar 255, 7 andar, sala 7037, Sao Paulo, SP 05403-000, Brazil.
| |
Collapse
|
25
|
Song S, Yu H, Li Q. Genome survey and characterization of reproduction-related genes in the Pacific oyster. INVERTEBR REPROD DEV 2017. [DOI: 10.1080/07924259.2017.1287780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shanshan Song
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| | - Hong Yu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| |
Collapse
|
26
|
Identification of mutations in Iranian patients’ DAX-1 gene with X-linked adrenal hypoplasia congenital. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2017. [DOI: 10.1016/j.ejmhg.2016.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
27
|
CONSIDERACIONES GENERALES EN EL ESTABLECIMIENTO DEL SEXO EN MAMÍFEROS. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2017. [DOI: 10.1016/j.recqb.2016.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
28
|
Parma P, Veyrunes F, Pailhoux E. Sex Reversal in Non-Human Placental Mammals. Sex Dev 2016; 10:326-344. [PMID: 27529721 DOI: 10.1159/000448361] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Indexed: 01/31/2023] Open
Abstract
Gonads are very peculiar organs given their bipotential competence. Indeed, early differentiating genital ridges evolve into either of 2 very distinct organs: the testis or the ovary. Accumulating evidence now demonstrates that both genetic pathways must repress the other in order for the organs to differentiate properly, meaning that if this repression is disrupted or attenuated, the other pathway may completely or partially be expressed, leading to disorders of sex development. Among these disorders are the cases of XY male-to-female and XX female-to-male sex reversals as well as true hermaphrodites, in which there is a discrepancy between the chromosomal and gonadal sex. Here, we review known cases of XY and XX sex reversals described in mammals, focusing mostly on domestic animals where sex reversal pathologies occur and on wild species in which deviations from the usual XX/XY system have been documented.
Collapse
Affiliation(s)
- Pietro Parma
- Department of Agricultural and Environmental Sciences, Milan University, Milan, Italy
| | | | | |
Collapse
|
29
|
Stojkov-Mimic NJ, Bjelic MM, Radovic SM, Mihajlovic AI, Sokanovic SJ, Baburski AZ, Janjic MM, Kostic TS, Andric SA. Intratesticular alpha1-adrenergic receptors mediate stress-disturbed transcription of steroidogenic stimulator NUR77 as well as steroidogenic repressors DAX1 and ARR19 in Leydig cells of adult rats. Mol Cell Endocrinol 2015; 412:309-19. [PMID: 26003139 DOI: 10.1016/j.mce.2015.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 05/16/2015] [Accepted: 05/17/2015] [Indexed: 11/21/2022]
Abstract
The aim of the present study was to define the role of testicular α1-adrenergic receptors (α1-ADRs) in stress-triggered adaptation of testosterone-producing Leydig cells of adult rats. Results showed that in vivo blockade of testicular α1-ADRs prevented partial recovery of circulating androgen levels registered after 10× repeated immobilization stress (10 × IMO). Moreover, α1-ADR-blockade diminished 10 × IMO-triggered recovery of Leydig cell androgen production, and abolished mitochondrial membrane potential recovery. In the same cells, 10 × IMO-induced increase in Star transcript was abolished, Lhcgr transcript decreased, while transcription of other steroidogenic proteins was not changed. α1-ADR-blockade recovered stress-induced decrease of Nur77, one of the main steroidogenic stimulator, while significantly reduced 10 × IMO-increased in the transcription of the main steroidogenic repressors, Arr19 and Dax1. In vitro experiments revealed an adrenaline-induced α1-ADR-mediated decrease in Nur77 transcription in Leydig cells. Adrenaline-induced increase of repressor Dax1 also involves ADRs in Leydig cells. Accordingly, α1-ADRs participate in some of the stress-triggered effects on the steroidogenic machinery of Leydig cells.
Collapse
Affiliation(s)
- Natasa J Stojkov-Mimic
- Reproductive Endocrinology and Signaling Group, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Maja M Bjelic
- Reproductive Endocrinology and Signaling Group, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Sava M Radovic
- Reproductive Endocrinology and Signaling Group, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Aleksandar I Mihajlovic
- Reproductive Endocrinology and Signaling Group, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Srdjan J Sokanovic
- Reproductive Endocrinology and Signaling Group, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Aleksandar Z Baburski
- Reproductive Endocrinology and Signaling Group, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Marija M Janjic
- Reproductive Endocrinology and Signaling Group, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Tatjana S Kostic
- Reproductive Endocrinology and Signaling Group, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Silvana A Andric
- Reproductive Endocrinology and Signaling Group, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia.
| |
Collapse
|
30
|
Abstract
Secretory azoospermia is a severe form of male infertility caused by unknown factors. DAX-1 is predominantly expressed in mammalian reproductive tissues and plays an important role in spermatogenesis because Dax-1 knockout male mice show spermatogenesis defects. To examine whether DAX-1 is involved in the pathogenesis of secretory azoospermia in humans, we sequenced all of the exons of DAX-1 in 776 patients diagnosed with secretory azoospermia and 709 proven fertile men. A number of coding mutations unique to the patient group, including two synonymous mutations and six missense mutations, were identified. Of the missense mutations, our functional assay demonstrated that the V385L mutation caused the reduced functioning of DAX-1. This novel mutation (p. V385L) of DAX-1 is the first to be identified in association with secretory azoospermia, thereby highlighting the important role of DAX-1 in spermatogenesis.
Collapse
Affiliation(s)
- Lisha Mou
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Domesticated Organ Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Nie Xie
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Domesticated Organ Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Lihua Yang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Yuchen Liu
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Domesticated Organ Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Ruiying Diao
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Domesticated Organ Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Zhiming Cai
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Domesticated Organ Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Honggang Li
- The Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- * E-mail: (YG); (HL)
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Biomedical Research Institute, Shenzhen PKU-HKUST Medical Center, Shenzhen, 518036, China
- * E-mail: (YG); (HL)
| |
Collapse
|
31
|
Kohno S, Bernhard MC, Katsu Y, Zhu J, Bryan TA, Doheny BM, Iguchi T, Guillette LJ. Estrogen receptor 1 (ESR1; ERα), not ESR2 (ERβ), modulates estrogen-induced sex reversal in the American alligator, a species with temperature-dependent sex determination. Endocrinology 2015; 156:1887-99. [PMID: 25714813 PMCID: PMC5393338 DOI: 10.1210/en.2014-1852] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
All crocodilians and many turtles exhibit temperature-dependent sex determination where the temperature of the incubated egg, during a thermo-sensitive period (TSP), determines the sex of the offspring. Estrogens play a critical role in sex determination in crocodilians and turtles, as it likely does in most nonmammalian vertebrates. Indeed, administration of estrogens during the TSP induces male to female sex reversal at a male-producing temperature (MPT). However, it is not clear how estrogens override the influence of temperature during sex determination in these species. Most vertebrates have 2 forms of nuclear estrogen receptor (ESR): ESR1 (ERα) and ESR2 (ERβ). However, there is no direct evidence concerning which ESR is involved in sex determination, because a specific agonist or antagonist for each ESR has not been tested in nonmammalian species. We identified specific pharmaceutical agonists for each ESR using an in vitro transactivation assay employing American alligator ESR1 and ESR2; these were 4,4',4''-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) and 7-bromo-2-(4-hydroxyphenyl)-1,3-benzoxazol-5-ol (WAY 200070), respectively. Alligator eggs were exposed to PPT or WAY 200070 at a MPT just before the TSP, and their sex was examined at the last stage of embryonic development. Estradiol-17β and PPT, but not WAY 200070, induced sex reversal at a MPT. PPT-exposed embryos exposed to the highest dose (5.0 μg/g egg weight) exhibited enlargement and advanced differentiation of the Müllerian duct. These results indicate that ESR1 is likely the principal ESR involved in sex reversal as well as embryonic Müllerian duct survival and growth in American alligators.
Collapse
Affiliation(s)
- Satomi Kohno
- Department of Obstetrics and Gynecology (S.K., J.Z., T.A.B., L.J.G.), Medical University of South Carolina, Charleston, South Carolina 29425; Marine Biomedicine and Environmental Science Center (S.K., M.C.B., T.A.B., B.M.D., L.J.G.), Hollings Marine Laboratory, Charleston, South Carolina 29412; Graduate Program in Marine Biology at the College of Charleston (M.C.B.), Charleston, South Carolina 29412; Graduate School of Life Science and Department of Biological Sciences (Y.K.), Hokkaido University, Sapporo, 060-0808 Japan; Department of Biology (T.A.B.), University of Florida, Gainesville, Florida 32611; Okazaki Institute for Integrative Bioscience (T.I.), National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, 444-8585 Japan; and Department of Basic Biology (T.I.), The Graduate University for Advanced Studies (SOKENDAI), Okazaki, 444-8585 Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Stickels R, Clark K, Heider TN, Mattiske DM, Renfree MB, Pask AJ. DAX1/NR0B1 Was Expressed During Mammalian Gonadal Development and Gametogenesis Before It Was Recruited to the Eutherian X Chromosome1. Biol Reprod 2015; 92:22. [DOI: 10.1095/biolreprod.114.119362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
33
|
Abstract
Mammalian sex determination is the unique process whereby a single organ, the bipotential gonad, undergoes a developmental switch that promotes its differentiation into either a testis or an ovary. Disruptions of this complex genetic process during human development can manifest as disorders of sex development (DSDs). Sex development can be divided into two distinct processes: sex determination, in which the bipotential gonads form either testes or ovaries, and sex differentiation, in which the fully formed testes or ovaries secrete local and hormonal factors to drive differentiation of internal and external genitals, as well as extragonadal tissues such as the brain. DSDs can arise from a number of genetic lesions, which manifest as a spectrum of gonadal (gonadal dysgenesis to ovotestis) and genital (mild hypospadias or clitoromegaly to ambiguous genitalia) phenotypes. The physical attributes and medical implications associated with DSDs confront families of affected newborns with decisions, such as gender of rearing or genital surgery, and additional concerns, such as uncertainty over the child's psychosexual development and personal wishes later in life. In this Review, we discuss the underlying genetics of human sex determination and focus on emerging data, genetic classification of DSDs and other considerations that surround gender development and identity in individuals with DSDs.
Collapse
Affiliation(s)
- Valerie A Arboleda
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095-7088, USA
| | - David E Sandberg
- Department of Pediatrics, Division of Child Behavioral Health and Child Health Evaluation &Research (CHEAR) Unit, University of Michigan, 300 North Ingalls Street, Ann Arbor, MI 48109-5456, USA
| | - Eric Vilain
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095-7088, USA
| |
Collapse
|
34
|
Role of Orphan Nuclear Receptor DAX-1/NR0B1 in Development, Physiology, and Disease. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/582749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DAX-1/NR0B1 is an unusual orphan receptor that has a pivotal role in the development and function of steroidogenic tissues and of the reproductive axis. Recent studies have also indicated that this transcription factor has an important function in stem cell biology and in several types of cancer. Here I critically review the most important findings on the role of DAX-1 in development, physiology, and disease of endocrine tissues since the cloning of its gene twenty years ago.
Collapse
|
35
|
Rahmoun M, Perez J, Saunders PA, Boizet-Bonhoure B, Wilhelm D, Poulat F, Veyrunes F. Anatomical and Molecular Analyses of XY Ovaries from the African Pygmy MouseMus minutoides. Sex Dev 2014; 8:356-63. [DOI: 10.1159/000368664] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2014] [Indexed: 11/19/2022] Open
|
36
|
DAX1 regulatory networks unveil conserved and potentially new functions. Gene 2013; 530:66-74. [PMID: 23954228 DOI: 10.1016/j.gene.2013.07.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 07/09/2013] [Indexed: 11/22/2022]
Abstract
DAX1 is an orphan nuclear receptor with actions in mammalian sex determination, regulation of steroidogenesis, embryonic development and neural differentiation. Conserved patterns of DAX1 gene expression from mammals to fish have been taken to suggest conserved function. In the present study, the European sea bass, Dicentrarchus labrax, DAX1 promoter was isolated and its conserved features compared to other fish and mammalian DAX1 promoters in order to derive common regulators and functional gene networks. Fish and mammalian DAX1 promoters share common sets of transcription factor frameworks which were also present in the promoter region of another 127 genes. Pathway analysis clustered these into candidate gene networks associated with the fish and mammalian DAX1. The networks identified are concordant with described functions for DAX1 in embryogenesis, regulation of transcription, endocrine development and steroid production. Novel candidate gene network partners were also identified, which implicate DAX1 in ion homeostasis and transport, lipid transport and skeletal development. Experimental evidence is provided supporting roles for DAX1 in steroid signalling and osmoregulation in fish. These results highlight the usefulness of the in silico comparative approach to analyse gene regulation for hypothesis generation. Conserved promoter architecture can be used also to predict potentially new gene functions. The approach reported can be applied to genes from model and non-model species.
Collapse
|
37
|
Tao W, Yuan J, Zhou L, Sun L, Sun Y, Yang S, Li M, Zeng S, Huang B, Wang D. Characterization of gonadal transcriptomes from Nile tilapia (Oreochromis niloticus) reveals differentially expressed genes. PLoS One 2013; 8:e63604. [PMID: 23658843 PMCID: PMC3643912 DOI: 10.1371/journal.pone.0063604] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 04/06/2013] [Indexed: 12/12/2022] Open
Abstract
Four pairs of XX and XY gonads from Nile tilapia were sequenced at four developmental stages, 5, 30, 90, and 180 days after hatching (dah) using Illumina Hiseq(TM) technology. This produced 28 Gb sequences, which were mapped to 21,334 genes. Of these, 259 genes were found to be specifically expressed in XY gonads, and 69 were found to be specific to XX gonads. Totally, 187 XX- and 1,358 XY-enhanced genes were identified, and 2,978 genes were found to be co-expressed in XX and XY gonads. Almost all steroidogenic enzymes, including cyp19a1a, were up-regulated in XX gonads at 5 dah; but in XY gonads these enzymes, including cyp11b2, were significantly up-regulated at 90 dah, indicating that, at a time critical to sex determination, the XX fish produced estrogen and the XY fish did not produce androgens. The most pronounced expression of steroidogenic enzyme genes was observed at 30 and 90 dah for XX and XY gonads, corresponding to the initiation of germ cell meiosis in the female and male gonads, respectively. Both estrogen and androgen receptors were found to be expressed in XX gonads, but only estrogen receptors were expressed in XY gonads at 5 dah. This could explain why exogenous steroid treatment induced XX and XY sex reversal. The XX-enhanced expression of cyp19a1a and cyp19a1b at all stages suggests an important role for estrogen in female sex determination and maintenance of phenotypic sex. This work is the largest collection of gonadal transcriptome data in tilapia and lays the foundation for future studies into the molecular mechanisms of sex determination and maintenance of phenotypic sex in non-model teleosts.
Collapse
Affiliation(s)
- Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Jing Yuan
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Yunlv Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Shijie Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Sheng Zeng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Baofeng Huang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| |
Collapse
|
38
|
Yates R, Katugampola H, Cavlan D, Cogger K, Meimaridou E, Hughes C, Metherell L, Guasti L, King P. Adrenocortical Development, Maintenance, and Disease. Curr Top Dev Biol 2013; 106:239-312. [DOI: 10.1016/b978-0-12-416021-7.00007-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Sukumaran A, Desmangles JC, Gartner LA, Buchlis J. Duplication of dosage sensitive sex reversal area in a 46, XY patient with normal sex determining region of Y causing complete sex reversal. J Pediatr Endocrinol Metab 2013; 26:775-9. [PMID: 23612644 DOI: 10.1515/jpem-2012-0354] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/18/2013] [Indexed: 11/15/2022]
Abstract
BACKGROUND The sex chromosome composition of the primordial gonad, either 46XX or 46XY, determines its differentiation as ovaries or testes. Local hormones secreted by developing gonads and tissue specific transcription factors influence the differentiation of external and internal genital structures. Dosage sensitive sex reversal adrenal hypoplasia congenita critical region (DAX1) on Xp21 is a gene which is expressed in the developing adrenals, gonads, hypothalamus and pituitary gland. Duplication of this area causes dosage sensitive male-to-female sex reversal while mutation or deletion leads to adrenal hypoplasia congenita with hypogonadotropic hypogonadism in affected males. AIM To report a case with duplication of the X chromosome segment within the region of Xp21.1-22.2 resulting in 46 XY sex reversal and a literature review on DAX1 and dosage sensitive sex reversal (DSS). METHODS AND RESULTS We present the clinical history, physical findings, laboratory, and imaging study results in a newborn baby. This infant was sex assigned as female at birth and had normal female external genitalia. Chromosome analysis was done due to multiple minor malformations and showed a karyotype of 46 Xp+Y. Fluorescent in situ hybridization analysis revealed the duplication in the DSS area. CONCLUSION Duplication of the DAX1 gene on the X chromosome with normal sex determining region of Y (SRY) results in 46 XY sex reversal. This was inherited from the mother who had normal ovarian function. Additional problems include growth failure, mental retardation and multiple congenital anomalies. The baby did not have a mutation or deletion of DAX1, which would have caused adrenal insufficiency and hypogonadism.
Collapse
|
40
|
Valenzuela N, Neuwald JL, Literman R. Transcriptional evolution underlying vertebrate sexual development. Dev Dyn 2012; 242:307-19. [DOI: 10.1002/dvdy.23897] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2012] [Indexed: 12/30/2022] Open
Affiliation(s)
- Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology; Iowa State University; Ames; Iowa
| | - Jennifer L. Neuwald
- Department of Ecology, Evolution, and Organismal Biology; Iowa State University; Ames; Iowa
| | - Robert Literman
- Department of Ecology, Evolution, and Organismal Biology; Iowa State University; Ames; Iowa
| |
Collapse
|
41
|
Susaki Y, Inoue M, Minami M, Sawabata N, Shintani Y, Nakagiri T, Funaki S, Aozasa K, Okumura M, Morii E. Inhibitory effect of PPARγ on NR0B1 in tumorigenesis of lung adenocarcinoma. Int J Oncol 2012; 41:1278-84. [PMID: 22843091 DOI: 10.3892/ijo.2012.1571] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 05/18/2012] [Indexed: 11/05/2022] Open
Abstract
NR0B1, an orphan nuclear receptor, is expressed in side population cells and its knockdown reduces tumorigenic and anti-apoptotic potential in lung adenocarcinoma. Peroxisome proliferator-activated receptor γ (PPARγ) is another member of the nuclear receptor family which induces apoptosis in lung cancer. The interaction of NR0B1 with PPARγ was examined. The transactivation ability of PPARγ was inhibited by NR0B1 in lung adenocarcinoma, and the N-terminal region of NR0B1 containing LxxLL motifs mediated its inhibition. Co-immunoprecipitation experiments revealed that this N-terminal region of NR0B1 was essential for the physical interaction with PPARγ. Aldehyde dehydrogenase (ALDH) activity and ALDH3A1 expression, which are correlated with tumorigenic potential of lung adenocarcinoma, increased when NR0B1 expression was induced, but its increase was inhibited by PPARγ overexpression. ALDH activity increased by treatment with PPARγ inhibitor, and the increase was further enhanced when the expression of NR0B1 was induced. Furthermore, the high NR0B1 and low PPARγ expression was a negative prognostic factor in Pathological-Stage IA clinical cases. These results indicate the reciprocal relationship between NR0B1 and PPARγ on the malignant grade of lung adenocarcinoma.
Collapse
Affiliation(s)
- Yoshiyuki Susaki
- Department of Pathology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ehrlund A, Treuter E. Ligand-independent actions of the orphan receptors/corepressors DAX-1 and SHP in metabolism, reproduction and disease. J Steroid Biochem Mol Biol 2012; 130:169-79. [PMID: 21550402 DOI: 10.1016/j.jsbmb.2011.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 03/11/2011] [Accepted: 04/21/2011] [Indexed: 12/11/2022]
Abstract
DAX-1 and SHP are two closely related atypical orphan members of the nuclear receptor (NR) family that make up the NR0B subfamily. They combine properties of typical NRs and of NR-associated coregulators: both carry the characteristic NR ligand-binding domain but instead of a NR DNA-binding domain they have unique N-terminal regions that contain LxxLL-related NR-binding motifs often found in coregulators. Recent structural data indicate that DAX-1 lacks a ligand-binding pocket and thus should rely on ligand-independent mechanisms of regulation. This might be true, but remains to be proven, for SHP as well. DAX-1 and SHP have in common that they act as transcriptional corepressors of cholesterol metabolism pathways that are related on a molecular level. However, the expression patterns of the two NRs are largely different, with some notable exceptions, and so are the physiological processes they regulate. DAX-1 is mainly involved in steroidogenesis and reproductive development, while SHP plays major roles in maintaining cholesterol and glucose homeostasis. This review highlights the key similarities and differences between DAX-1 and SHP with regard to structure, function and biology and considers what can be learnt from recent research advances in the field. This article is part of a Special Issue entitled 'Orphan Receptors'.
Collapse
Affiliation(s)
- Anna Ehrlund
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institutet, S-14183 Huddinge/Stockholm, Sweden
| | | |
Collapse
|
43
|
The DAX1 mutation in a patient with hypogonadotropic hypogonadism and adrenal hypoplasia congenita causes functional disruption of induction of spermatogenesis. J Assist Reprod Genet 2012; 29:811-6. [PMID: 22562240 PMCID: PMC3430789 DOI: 10.1007/s10815-012-9778-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 04/18/2012] [Indexed: 11/08/2022] Open
|
44
|
Teets BW, Soprano KJ, Soprano DR. Role of SF-1 and DAX-1 during differentiation of P19 cells by retinoic acid. J Cell Physiol 2012; 227:1501-11. [PMID: 21678401 PMCID: PMC3175297 DOI: 10.1002/jcp.22866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Retinoic acid (RA) is critical for embryonic development and cellular differentiation. Previous work in our laboratory has shown that blocking the RA-dependent increase in pre-β cell leukemia transcription factors (PBX) mRNA and protein levels in P19 cells prevents endodermal and neuronal differentiation. Dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1 (DAX-1) and steroidogenic factor (SF-1) were found by microarray analysis to be regulated by PBX in P19 cells. To determine the roles of DAX-1 and SF-1 during RA-dependent differentiation, P19 cells that inducibly express either FLAG-DAX-1 or FLAG-SF-1 were prepared. Unexpectedly, overexpression of DAX-1 had no effect on the RA-induced differentiation of P19 cells to either endodermal or neuronal cells. However, SF-1 overexpression prevented the RA-dependent loss of OCT-4, DAX-1 and the increase in COUP-TFI, COUP-TFII, and ETS-1 mRNA levels during the commitment stages of both endodermal and neuronal differentiation. Surprisingly, continued expression of SF-1 for 7 days caused the RA-independent loss of OCT-4 protein and RA-dependent loss of SSEA-1 expression. Despite the loss of well-characterized pluripotency markers, these cells did not terminally differentiate into either endodermal or neuronal cells. Instead, the cells gained the expression of many steroidogenic enzymes with a pattern consistent with adrenal cells. Finally, we found evidence for a feedback loop in which PBX reduces SF-1 mRNA levels while continued SF-1 expression blocks the RA-dependent increase in PBX levels. Taken together, these data demonstrate that SF-1 plays a dynamic role during the differentiation of P19 cells and potentially during early embryogenesis.
Collapse
Affiliation(s)
- Bryan W Teets
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
45
|
Barbaro M, Cook J, Lagerstedt-Robinson K, Wedell A. Multigeneration Inheritance through Fertile XX Carriers of an NR0B1 (DAX1) Locus Duplication in a Kindred of Females with Isolated XY Gonadal Dysgenesis. Int J Endocrinol 2012; 2012:504904. [PMID: 22518125 PMCID: PMC3299259 DOI: 10.1155/2012/504904] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/21/2011] [Accepted: 11/21/2011] [Indexed: 11/30/2022] Open
Abstract
A 160 kb minimal common region in Xp21 has been determined as the cause of XY gonadal dysgenesis, if duplicated. The region contains the MAGEB genes and the NR0B1 gene; this is the candidate for gonadal dysgenesis if overexpressed. Most patients present gonadal dysgenesis within a more complex phenotype. However, few independent cases have recently been described presenting with isolated XY gonadal dysgenesis caused by relatively small NR0B1 locus duplications. We have identified another NR0B1 duplication in two sisters with isolated XY gonadal dysgenesis with an X-linked inheritance pattern. We performed X-inactivation studies in three fertile female carriers of three different small NR0B1 locus duplications identified by our group. The carrier mothers did not show obvious skewing of X-chromosome inactivation, suggesting that NR0B1 overexpression does not impair ovarian function. We furthermore emphasize the importance to investigate the NR0B1 locus also in patients with isolated XY gonadal dysgenesis.
Collapse
Affiliation(s)
- Michela Barbaro
- Department of Molecular Medicine and Surgery, Karolinska Institut, Karolinska University Hospital, CMM L8:02, 17176 Stockholm, Sweden
- *Michela Barbaro:
| | - Jackie Cook
- Department of Clinical Genetics, Sheffield Children's Hospital, Sheffield S 102 TH, UK
| | - Kristina Lagerstedt-Robinson
- Department of Molecular Medicine and Surgery, Karolinska Institut, Karolinska University Hospital, CMM L8:02, 17176 Stockholm, Sweden
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Karolinska Institut, Karolinska University Hospital, CMM L8:02, 17176 Stockholm, Sweden
| |
Collapse
|
46
|
Abstract
Disorders of sex development often arise from anomalies in the molecular or cellular networks that guide the differentiation of the embryonic gonad into either a testis or an ovary, two functionally distinct organs. The activation of the Y-linked gene Sry (sex-determining region Y) and its downstream target Sox9 (Sry box-containing gene 9) triggers testis differentiation by stimulating the differentiation of Sertoli cells, which then direct testis morphogenesis. Once engaged, a genetic pathway promotes the testis development while actively suppressing genes involved in ovarian development. This review focuses on the events of testis determination and the struggle to maintain male fate in the face of antagonistic pressure from the underlying female programme.
Collapse
|
47
|
Jadhav U, Harris RM, Jameson JL. Hypogonadotropic hypogonadism in subjects with DAX1 mutations. Mol Cell Endocrinol 2011; 346:65-73. [PMID: 21672607 PMCID: PMC3185185 DOI: 10.1016/j.mce.2011.04.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 04/07/2011] [Indexed: 11/17/2022]
Abstract
DAX1 (dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1; also known as NROB1, nuclear receptor subfamily 0, group B, member 1) encodes a nuclear receptor that is expressed in embryonic stem (ES) cells, steroidogenic tissues (gonads, adrenals), the ventromedial hypothalamus (VMH), and pituitary gonadotropes. Humans with DAX1 mutations develop an X-linked syndrome referred to as adrenal hypoplasia congenita (AHC). These boys typically present in infancy with adrenal failure but later fail to undergo puberty because of hypogonadotropic hypogonadism (HHG). The adrenal failure reflects a developmental abnormality in the transition of the fetal to adult zone, resulting in glucocorticoid and mineralocorticoid deficiency. The etiology of HHG involves a combined and variable deficiency of hypothalamic GnRH secretion and/or pituitary responsiveness to GnRH resulting in low LH, FSH and testosterone. Treatment with exogenous gonadotropins generally does not induce spermatogenesis. Animal models indicate that DAX1 also plays a critical role in testis development and function. As a nuclear receptor, DAX1 has been shown to function as a transcriptional repressor, particularly of pathways regulated by other nuclear receptors, such as steroidogenic factor 1 (SF1). In addition to reproductive tissues, DAX1 is also expressed at high levels in ES cells and plays a role in the maintenance of pluripotentiality. Here we review the clinical manifestations associated with DAX1 mutations as well as the evolving information about its function based on animal models and in vitro studies.
Collapse
Affiliation(s)
| | | | - J. Larry Jameson
- Division of Endocrinology, Department of Medicine, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Chicago, IL 60611
| |
Collapse
|
48
|
Abstract
Gonadal cellular organization is very similar in all vertebrates, though different processes can trigger bipotential gonads to develop into either testes or ovaries. While mammals and birds, apart from some exceptions, show genetic sex determination (GSD), other animals, like turtles and crocodiles, express temperature-dependent sex determination. In some groups of animals, GSD can also be overridden by hormone or temperature influences, indicating how fragile this system can be. This review aims to explain the fundamental molecular mechanisms involved in mammalian GSD, mainly referring to mouse as a major model. Conceivably, other mammals might show a molecular mechanism different from the commonly investigated murine species.
Collapse
Affiliation(s)
- P Parma
- Department of Animal Science, Agricultural Faculty of Science, Milan University, Milan, Italy.
| | | |
Collapse
|
49
|
White S, Ohnesorg T, Notini A, Roeszler K, Hewitt J, Daggag H, Smith C, Turbitt E, Gustin S, van den Bergen J, Miles D, Western P, Arboleda V, Schumacher V, Gordon L, Bell K, Bengtsson H, Speed T, Hutson J, Warne G, Harley V, Koopman P, Vilain E, Sinclair A. Copy number variation in patients with disorders of sex development due to 46,XY gonadal dysgenesis. PLoS One 2011; 6:e17793. [PMID: 21408189 PMCID: PMC3049794 DOI: 10.1371/journal.pone.0017793] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 02/14/2011] [Indexed: 01/07/2023] Open
Abstract
Disorders of sex development (DSD), ranging in severity from mild genital abnormalities to complete sex reversal, represent a major concern for patients and their families. DSD are often due to disruption of the genetic programs that regulate gonad development. Although some genes have been identified in these developmental pathways, the causative mutations have not been identified in more than 50% 46,XY DSD cases. We used the Affymetrix Genome-Wide Human SNP Array 6.0 to analyse copy number variation in 23 individuals with unexplained 46,XY DSD due to gonadal dysgenesis (GD). Here we describe three discrete changes in copy number that are the likely cause of the GD. Firstly, we identified a large duplication on the X chromosome that included DAX1 (NR0B1). Secondly, we identified a rearrangement that appears to affect a novel gonad-specific regulatory region in a known testis gene, SOX9. Surprisingly this patient lacked any signs of campomelic dysplasia, suggesting that the deletion affected expression of SOX9 only in the gonad. Functional analysis of potential SRY binding sites within this deleted region identified five putative enhancers, suggesting that sequences additional to the known SRY-binding TES enhancer influence human testis-specific SOX9 expression. Thirdly, we identified a small deletion immediately downstream of GATA4, supporting a role for GATA4 in gonad development in humans. These CNV analyses give new insights into the pathways involved in human gonad development and dysfunction, and suggest that rearrangements of non-coding sequences disturbing gene regulation may account for significant proportion of DSD cases.
Collapse
Affiliation(s)
- Stefan White
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas Ohnesorg
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Amanda Notini
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Kelly Roeszler
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Jacqueline Hewitt
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Hinda Daggag
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Craig Smith
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Erin Turbitt
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Sonja Gustin
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Jocelyn van den Bergen
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Denise Miles
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Patrick Western
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Valerie Arboleda
- Department of Medical Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Valerie Schumacher
- Pediatrics Department, Children's Hospital, Boston, Massachusetts, United States of America
| | - Lavinia Gordon
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Katrina Bell
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | | | - Terry Speed
- Walter and Eliza Hall Institute, Melbourne, Victoria, Australia
| | - John Hutson
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Garry Warne
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Vincent Harley
- Prince Henry's Institute of Medical Research, Melbourne, Victoria, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Eric Vilain
- Department of Medical Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Andrew Sinclair
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
50
|
Paliwal P, Sharma A, Birla S, Kriplani A, Khadgawat R, Sharma A. Identification of novel SRY mutations and SF1 (NR5A1) changes in patients with pure gonadal dysgenesis and 46,XY karyotype. Mol Hum Reprod 2011; 17:372-8. [PMID: 21242195 DOI: 10.1093/molehr/gar002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Primary amenorrhea due to 46,XY disorders of sexual development (DSD) is complex with the involvement of several genes. Karyotyping of such patients is important as they may develop dysgerminoma and molecular analysis is important to identify the underlying mechanism and explore the cascade of events occurring during sexual development. The present study was undertaken for the genetic analysis in seven patients from five families presenting with primary amenorrhea and diagnosed with pure gonadal dysgenesis. Karyotyping was done and the patients were screened for underlying changes in SRY, desert hedgehog (DHH), DAX1 (NR0B1) and SF1 (NR5A1) genes, mutations in which are implicated in DSD. All the patients had 46,XY karyotype and two novel SRY mutations were found. In Family 1 (Patient S1.1) a missense mutation c.294G>A was seen, which results in a stop codon at the corresponding amino acid (Trp98X) and in Family 2 (Patients S2.1, S2.2 and S2.3), a missense mutation c.334G>A (Glu112Leu) was identified in all affected sisters. Both mutations were seen to occur in the conserved high mobility group box of SRY gene. One heterozygous change c.427G>A resulting in Glu143Lys in DHH gene in one patient and two heterozygous changes in the intronic region of SF1 (NR5A1) gene (c.244+80G>A+ c.1068-20C>T) in another patient were noted. One individual did not show changes in any of the genes analyzed. These results reiterate the importance of SRY and others, such as SF1 (NR5A1) and DHH, that are involved in the cascade of events leading to sex determination and also their role in sex reversal.
Collapse
Affiliation(s)
- Preeti Paliwal
- Laboratory of Cyto-Molecular Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | |
Collapse
|