1
|
Liu YC, Eldomery MK, Maciaszek JL, Klco JM. Inherited Predispositions to Myeloid Neoplasms: Pathogenesis and Clinical Implications. ANNUAL REVIEW OF PATHOLOGY 2025; 20:87-114. [PMID: 39357070 PMCID: PMC12048009 DOI: 10.1146/annurev-pathmechdis-111523-023420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Myeloid neoplasms with and without preexisting platelet disorders frequently develop in association with an underlying germline predisposition. Germline alterations affecting ANKRD26, CEBPA, DDX41, ETV6, and RUNX1 are associated with nonsyndromic predisposition to the development of myeloid neoplasms including acute myeloid leukemia and myelodysplastic syndrome. However, germline predisposition to myeloid neoplasms is also associated with a wide range of other syndromes, including SAMD9/9L associated predisposition, GATA2 deficiency, RASopathies, ribosomopathies, telomere biology disorders, Fanconi anemia, severe congenital neutropenia, Down syndrome, and others. In the fifth edition of the World Health Organization (WHO) series on the classification of tumors of hematopoietic and lymphoid tissues, myeloid neoplasms associated with germline predisposition have been recognized as a separate entity. Here, we review several disorders from this WHO entity as well as other related conditions with an emphasis on the molecular pathogenesis of disease and accompanying somatic alterations. Finally, we provide an overview of establishing the molecular diagnosis of these germline genetic conditions and general recommendations for screening and management of the associated hematologic conditions.
Collapse
Affiliation(s)
- Yen-Chun Liu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| | - Mohammad K Eldomery
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| | - Jamie L Maciaszek
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| |
Collapse
|
2
|
Huang T, Fakurazi S, Cheah PS, Ling KH. Chromosomal and cellular therapeutic approaches for Down syndrome: A research update. Biochem Biophys Res Commun 2024; 735:150664. [PMID: 39260337 DOI: 10.1016/j.bbrc.2024.150664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
In individuals with Down syndrome (DS), an additional HSA21 chromosome copy leads to the overexpression of a myriad of HSA21 genes, disrupting the transcription of the entire genome. This dysregulation in transcription and post-transcriptional modifications contributes to abnormal phenotypes across nearly all tissues and organs in DS individuals. The array of severe clinical symptoms associated with trisomy 21 poses a considerable challenge in the quest for a cure for DS. Fortunately, a wealth of research suggests that chromosome therapy, hinging on cutting-edge genome editing technologies, can potentially eliminate the extra copy of the human chromosome 21. Genome editing tools have demonstrated their efficacy in restoring trisomy to a normal diploid state in vitro DS cell models. Furthermore, we delve into the noteworthy findings in cellular therapy for DS, with recent studies showcasing the increasing feasibility of strategies involving stem cells and CAR T-cells to address corresponding clinical phenotypes.
Collapse
Affiliation(s)
- Tan Huang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Malaysian Research Institute on Ageing (MyAgeing(TM)), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Malaysian Research Institute on Ageing (MyAgeing(TM)), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
3
|
Takasaki K, Wafula EK, Kumar SS, Smith D, Sit YT, Gagne AL, French DL, Thom CS, Chou ST. Single-cell transcriptomics reveal individual and synergistic effects of Trisomy 21 and GATA1s on hematopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595827. [PMID: 38826323 PMCID: PMC11142253 DOI: 10.1101/2024.05.24.595827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Trisomy 21 (T21), or Down syndrome (DS), is associated with baseline macrocytic erythrocytosis, thrombocytopenia, and neutrophilia, as well as transient abnormal myelopoiesis (TAM) and myeloid leukemia of DS (ML-DS). TAM and ML-DS blasts both arise from an aberrant megakaryocyte-erythroid progenitor and exclusively express GATA1s, the truncated isoform of GATA1 , while germline GATA1s mutations in a non-T21 context lead to congenital cytopenia(s) without a leukemic predisposition. This suggests that T21 and GATA1s both perturb hematopoiesis in multipotent progenitors, but studying their individual effects is challenging due to limited access to relevant human progenitor populations. To dissect individual developmental impacts, we used single-cell RNA-sequencing to interrogate hematopoietic progenitor cells (HPCs) from isogenic human induced pluripotent stem cells differing only by chromosome 21 and/or GATA1 status. The transcriptomes of these HPCs revealed significant heterogeneity and lineage skew dictated by T21 and/or GATA1s. T21 and GATA1s each disrupted temporal regulation of lineage-specific transcriptional programs and specifically perturbed cell cycle genes. Trajectory inference revealed that GATA1s nearly eliminated erythropoiesis, slowed MK maturation, and promoted myelopoiesis in the euploid context, while in T21 cells, GATA1s competed with the enhanced erythropoiesis and impaired megakaryopoiesis driven by T21 to promote production of immature erythrocytes, MKs, and myeloid cells. The use of isogenic cells revealed distinct transcriptional programs that can be attributed specifically to T21 and GATA1s, and how they independently and synergistically result in HPC proliferation at the expense of maturation, consistent with a pro-leukemic phenotype.
Collapse
|
4
|
Malinge S. Childhood leukaemia in Down's syndrome primed by blood-cell bias. Nature 2024; 634:40-42. [PMID: 39322696 DOI: 10.1038/d41586-024-02785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
|
5
|
Ong KOK, Mok MMH, Niibori-Nambu A, Du L, Yanagida M, Wang CQ, Bahirvani AG, Chin DWL, Koh CP, Ng KP, Yamashita N, Jacob B, Yokomizo T, Takizawa H, Matsumura T, Suda T, Lau JYA, Tan TZ, Mori S, Yang H, Iwasaki M, Minami T, Asou N, Sun QY, Ding LW, Koeffler HP, Tenen DG, Shimizu R, Yamamoto M, Ito Y, Kham SKY, Yeoh AEJ, Chng WJ, Osato M. Activation of NOTCH signaling impedes cell proliferation and survival in acute megakaryoblastic leukemia. Exp Hematol 2024; 137:104255. [PMID: 38876252 DOI: 10.1016/j.exphem.2024.104255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
The genetic lesions that drive acute megakaryoblastic leukemia (AMKL) have not been fully elucidated. To search for genetic alterations in AMKL, we performed targeted deep sequencing in 34 AMKL patient samples and 8 AMKL cell lines and detected frequent genetic mutations in the NOTCH pathway in addition to previously reported alterations in GATA-1 and the JAK-STAT pathway. Pharmacological and genetic NOTCH activation, but not inhibition, significantly suppressed AMKL cell proliferation in both in vitro and in vivo assays employing a patient-derived xenograft model. These results suggest that NOTCH inactivation underlies AMKL leukemogenesis. and NOTCH activation holds the potential for therapeutic application in AMKL.
Collapse
Affiliation(s)
- Kelly Ooi Kee Ong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Michelle Meng Huang Mok
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Akiko Niibori-Nambu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Linsen Du
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Masatoshi Yanagida
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chelsia Qiuxia Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Bioprocessing Technology Institute, A*STAR, Singapore
| | | | - Desmond Wai Loon Chin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Cai Ping Koh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - King Pan Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Namiko Yamashita
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Bindya Jacob
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Tomomasa Yokomizo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, Japan
| | - Hitoshi Takizawa
- International Research Center for Medical Sciences, Kumamoto University, Japan
| | - Takayoshi Matsumura
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jie-Ying Amelia Lau
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Seiichi Mori
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Masayuki Iwasaki
- Institute of Laboratory Animals, Tokyo Women's Medical University, Japan
| | - Takashi Minami
- Center for Animal Resources and Development, Kumamoto University, Japan
| | - Norio Asou
- International Medical Center, Saitama Medical University, Japan
| | - Qiao-Yang Sun
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Ling-Wen Ding
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | | | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Shirley Kow Yin Kham
- Department of Paediatrics, National University of Singapore, Singapore, Singapore
| | - Allen Eng-Juh Yeoh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Department of Paediatrics, National University of Singapore, Singapore, Singapore.
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, Japan; Department of Paediatrics, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Liao R, Bresnick EH. Endogenous small molecule effectors in GATA transcription factor mechanisms governing biological and pathological processes. Exp Hematol 2024; 137:104252. [PMID: 38876253 PMCID: PMC11381147 DOI: 10.1016/j.exphem.2024.104252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Transcriptional mechanisms establish and maintain complex genetic and protein networks to control cell state transitions. The hematopoietic transcription factor GATA1 is a master regulator of erythropoiesis and megakaryopoiesis, and human GATA1 genetic variants cause anemia and megakaryoblastic leukemia. Multiomic analyses revealed that GATA1 controls expression of transporters and metabolic enzymes that dictate intracellular levels of endogenous small molecules, including heme, metal ions, and sphingolipids. Besides its canonical function as a hemoglobin component, heme facilitates or antagonizes GATA1 function to regulate erythropoiesis via mechanisms dependent or independent of the heme-binding transcription factor BTB domain and CNC homology 1 (BACH1). GATA1 regulates the expression of genes encoding heme biosynthetic enzymes and BACH1. GATA1 maintains homeostasis of bioactive ceramides during erythroid differentiation by regulating genes encoding sphingolipid metabolic enzymes. Disrupting ceramide homeostasis impairs critical cytokine signaling and is detrimental to erythroid cells. During erythroid maturation, GATA1 induces a zinc transporter switch that favors export versus import, thus dictating the intracellular zinc level, erythroblast survival, and differentiation. In aggregate, these studies support an emerging paradigm in which GATA factor-dependent transcriptional mechanisms control the intracellular levels of endogenous small molecules and small molecule-dependent feedback loops that serve as vital effectors of transcription factor activity, genome function, and cell state transitions.
Collapse
Affiliation(s)
- Ruiqi Liao
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Emery H Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI.
| |
Collapse
|
7
|
Miladinovic M, Reinhardt D, Hasle H, Goemans BF, Tomizawa D, Hitzler J, Klusmann JH. Guideline for treating relapsed or refractory myeloid leukemia in children with Down syndrome. Pediatr Blood Cancer 2024; 71:e31141. [PMID: 38965693 DOI: 10.1002/pbc.31141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024]
Abstract
Treatment of relapsed and refractory myeloid leukemia in Down syndrome (r/r ML-DS) poses significant challenges, as prognosis is dire and there is no established standard treatment. This guideline provides treatment recommendations based on a literature review and collection of expert opinions, aiming to improve overall and event-free survival of patients. Treatment options include fludarabine and cytarabine (FLA) ± gemtuzumab ozogamicin (GO), azacytidine (AZA) ± panobinostat, and hematopoietic stem cell transplantation (HSCT). Preferred approaches are AZA ± panobinostat for cases with low blast count or FLA ± GO for cases with high blast count, followed by HSCT after remission. Further research is crucial for the investigation of targeted therapies (e.g., BH3 mimetics, LSD1, JAK inhibitors).
Collapse
Affiliation(s)
- Milica Miladinovic
- Department of Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
| | - Dirk Reinhardt
- Pediatric Hematology and Oncology, Pediatrics III, University Hospital Essen, Essen, Germany
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Bianca F Goemans
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Johann Hitzler
- Division of Hematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
8
|
Kozlov G, Franceschi C, Vedunova M. Intricacies of aging and Down syndrome. Neurosci Biobehav Rev 2024; 164:105794. [PMID: 38971514 DOI: 10.1016/j.neubiorev.2024.105794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Down syndrome is the most frequently occurring genetic condition, with a substantial escalation in risk associated with advanced maternal age. The syndrome is characterized by a diverse range of phenotypes, affecting to some extent all levels of organization, and its progeroid nature - early manifestation of aspects of the senile phenotype. Despite extensive investigations, many aspects and mechanisms of the disease remain unexplored. The current review aims to provide an overview of the main causes and manifestations of Down syndrome, while also examining the phenomenon of accelerated aging and exploring potential therapeutic strategies.
Collapse
Affiliation(s)
- G Kozlov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Gagarin ave., 23, 603022, Russia
| | - C Franceschi
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Gagarin ave., 23, 603022, Russia
| | - M Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Gagarin ave., 23, 603022, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., 119991 Moscow, Russia.
| |
Collapse
|
9
|
Miyauchi J. The hematopoietic microenvironment of the fetal liver and transient abnormal myelopoiesis associated with Down syndrome: A review. Crit Rev Oncol Hematol 2024; 199:104382. [PMID: 38723838 DOI: 10.1016/j.critrevonc.2024.104382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024] Open
Abstract
Transient abnormal myelopoiesis (TAM) in neonates with Down syndrome is a distinct form of leukemia or preleukemia that mirrors the hematological features of acute megakaryoblastic leukemia. However, it typically resolves spontaneously in the early stages. TAM originates from fetal liver (FL) hematopoietic precursor cells and emerges due to somatic mutations in GATA1 in utero. In TAM, progenitor cells proliferate and differentiate into mature megakaryocytes and granulocytes. This process occurs both in vitro, aided by hematopoietic growth factors (HGFs) produced in the FL, and in vivo, particularly in specific anatomical sites like the FL and blood vessels. The FL's hematopoietic microenvironment plays a crucial role in TAM's pathogenesis and may contribute to its spontaneous regression. This review presents an overview of current knowledge regarding the unique features of TAM in relation to the FL hematopoietic microenvironment, focusing on the functions of HGFs and the pathological features of TAM.
Collapse
Affiliation(s)
- Jun Miyauchi
- Department of Diagnostic Pathology, Saitama City Hospital, Saitama, Saitama-ken, Japan.
| |
Collapse
|
10
|
Musleh M, Alhusein Q. A rare presentation and treatment challenges for multiple myeloma in down syndrome: A case report and literature review. Clin Case Rep 2024; 12:e9154. [PMID: 38962468 PMCID: PMC11220454 DOI: 10.1002/ccr3.9154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024] Open
Abstract
Down syndrome (DS), characterized by trisomy 21, significantly increases susceptibility to leukemia, although the occurrence of multiple myeloma (MM) in DS is exceedingly rare. This report details the case of a 45-year-old female with DS who was diagnosed with MM, highlighting diagnostic and therapeutic complexities. It emphasizes the importance of tailored therapeutic strategies for treating MM in individuals with DS and the need for specialized approaches in these cases.
Collapse
Affiliation(s)
- Mais Musleh
- Department of HematologyFaculty of Medicine, Al Assad University HospitalDamascusSyria
| | - Qossay Alhusein
- Department of HematologyFaculty of Medicine, Al‐Mouwasat University HospitalDamascusSyria
| |
Collapse
|
11
|
Sato T, Yoshida K, Toki T, Kanezaki R, Terui K, Saiki R, Ojima M, Ochi Y, Mizuno S, Yoshihara M, Uechi T, Kenmochi N, Tanaka S, Matsubayashi J, Kisai K, Kudo K, Yuzawa K, Takahashi Y, Tanaka T, Yamamoto Y, Kobayashi A, Kamio T, Sasaki S, Shiraishi Y, Chiba K, Tanaka H, Muramatsu H, Hama A, Hasegawa D, Sato A, Koh K, Karakawa S, Kobayashi M, Hara J, Taneyama Y, Imai C, Hasegawa D, Fujita N, Yoshitomi M, Iwamoto S, Yamato G, Saida S, Kiyokawa N, Deguchi T, Ito M, Matsuo H, Adachi S, Hayashi Y, Taga T, Saito AM, Horibe K, Watanabe K, Tomizawa D, Miyano S, Takahashi S, Ogawa S, Ito E. Landscape of driver mutations and their clinical effects on Down syndrome-related myeloid neoplasms. Blood 2024; 143:2627-2643. [PMID: 38513239 DOI: 10.1182/blood.2023022247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
ABSTRACT Transient abnormal myelopoiesis (TAM) is a common complication in newborns with Down syndrome (DS). It commonly progresses to myeloid leukemia (ML-DS) after spontaneous regression. In contrast to the favorable prognosis of primary ML-DS, patients with refractory/relapsed ML-DS have poor outcomes. However, the molecular basis for refractoriness and relapse and the full spectrum of driver mutations in ML-DS remain largely unknown. We conducted a genomic profiling study of 143 TAM, 204 ML-DS, and 34 non-DS acute megakaryoblastic leukemia cases, including 39 ML-DS cases analyzed by exome sequencing. Sixteen novel mutational targets were identified in ML-DS samples. Of these, inactivations of IRX1 (16.2%) and ZBTB7A (13.2%) were commonly implicated in the upregulation of the MYC pathway and were potential targets for ML-DS treatment with bromodomain-containing protein 4 inhibitors. Partial tandem duplications of RUNX1 on chromosome 21 were also found, specifically in ML-DS samples (13.7%), presenting its essential role in DS leukemia progression. Finally, in 177 patients with ML-DS treated following the same ML-DS protocol (the Japanese Pediatric Leukemia and Lymphoma Study Group acute myeloid leukemia -D05/D11), CDKN2A, TP53, ZBTB7A, and JAK2 alterations were associated with a poor prognosis. Patients with CDKN2A deletions (n = 7) or TP53 mutations (n = 4) had substantially lower 3-year event-free survival (28.6% vs 90.5%; P < .001; 25.0% vs 89.5%; P < .001) than those without these mutations. These findings considerably change the mutational landscape of ML-DS, provide new insights into the mechanisms of progression from TAM to ML-DS, and help identify new therapeutic targets and strategies for ML-DS.
Collapse
Affiliation(s)
- Tomohiko Sato
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Cancer Evolution, National Cancer Center Research Institute, Tokyo, Japan
| | - Tsutomu Toki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Rika Kanezaki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kiminori Terui
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ryunosuke Saiki
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masami Ojima
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yotaro Ochi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center and Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Masaharu Yoshihara
- Laboratory Animal Resource Center and Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Tamayo Uechi
- Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Naoya Kenmochi
- Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shiro Tanaka
- Department of Clinical Biostatistics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jun Matsubayashi
- Center for Clinical Research and Advanced Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Kenta Kisai
- Department of Clinical Biostatistics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ko Kudo
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kentaro Yuzawa
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yuka Takahashi
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tatsuhiko Tanaka
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yohei Yamamoto
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akie Kobayashi
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takuya Kamio
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shinya Sasaki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenichi Chiba
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroko Tanaka
- M and D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Asahito Hama
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, Nagoya, Japan
| | - Daisuke Hasegawa
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan
| | - Atsushi Sato
- Department of Hematology and Oncology, Miyagi Children's Hospital, Sendai, Japan
| | - Katsuyoshi Koh
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Junichi Hara
- Department of Hematology and Oncology, Osaka City General Hospital, Osaka, Japan
| | - Yuichi Taneyama
- Department of Hematology/Oncology, Chiba Children's Hospital, Chiba, Japan
| | - Chihaya Imai
- Department of Pediatrics, Niigata University Graduate School Medical and Dental Sciences, Niigata, Japan
| | - Daiichiro Hasegawa
- Department of Hematology and Oncology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Naoto Fujita
- Department of Pediatrics, Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Masahiro Yoshitomi
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shotaro Iwamoto
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Genki Yamato
- Department of pediatrics, Gunma University Graduate School of Medicine, Maebashi City, Japan
| | - Satoshi Saida
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Takao Deguchi
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Masafumi Ito
- Department of Pathology, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, Nagoya, Japan
| | - Hidemasa Matsuo
- Department of Human Health Sciences, Kyoto University, Kyoto, Japan
| | - Souichi Adachi
- Department of Human Health Sciences, Kyoto University, Kyoto, Japan
| | - Yasuhide Hayashi
- Department of Hematology and Oncology, Gunma Children's Medical Center, Gunma, Japan
- Institute of Physiology and Medicine, Jobu University, Takasaki, Japan
| | - Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | - Akiko M Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Kenichiro Watanabe
- Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Satoru Miyano
- M and D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Department of Community Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
12
|
Ramakrishnan R, Munir F, Quesada AE, Hitzler J, Cuglievan B. Low-dose cytarabine and hypomethylating agents for Down syndrome with acute myeloid leukemia. Pediatr Blood Cancer 2024; 71:e30974. [PMID: 38523255 DOI: 10.1002/pbc.30974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Affiliation(s)
- Ramya Ramakrishnan
- Department of Pediatrics, Pediatric Hematology Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Faryal Munir
- Department of Pediatrics, Pediatric Hematology Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Andres Ernesto Quesada
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Johann Hitzler
- Division of Hematology Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Branko Cuglievan
- Department of Pediatrics, Pediatric Hematology Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
13
|
Tanaka T, Kudo K, Kanezaki R, Yuzawa K, Toki T, Okuse R, Kobayashi A, Sato T, Kamio T, Terui K, Ito E. Antileukemic effect of azacitidine, a DNA methyltransferase inhibitor, on cell lines of myeloid leukemia associated with Down syndrome. Exp Hematol 2024; 132:104179. [PMID: 38342295 DOI: 10.1016/j.exphem.2024.104179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/12/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Myeloid leukemia associated with Down syndrome (ML-DS) responds well to chemotherapy and has a favorable prognosis, but the clinical outcome of patients with refractory or relapsed ML-DS is dismal. We recently reported a case of relapsed ML-DS with an effective response to a DNA methyltransferase inhibitor, azacitidine (AZA). However, the efficacy of AZA for refractory or relapsed ML-DS remains uncertain. Here, we investigated the effects and mechanism of action of AZA on three ML-DS cell lines derived from relapsed cases. AZA inhibited the proliferation of all examined ML-DS cell lines to the same extent as that of AZA-sensitive acute myeloid leukemia non-Down syndrome cell lines. Transient low-dose AZA treatment exerted durable antileukemic effects on ML-DS cells. The inhibitory effect included cell cycle arrest, apoptosis, and reduction of aldehyde dehydrogenase activity. Comprehensive differential gene expression analysis showed that AZA induced megakaryocytic differentiation in all ML-DS cell lines examined. Furthermore, AZA induced activation of type I interferon-stimulated genes, primarily involved in antiproliferation signaling, without stimulation of the interferon receptor-mediated autocrine system. Activation of the type I interferon pathway by stimulation with interferon-α exerted antiproliferative effects on ML-DS cells, suggesting that AZA exerts its antileukemic effects on ML-DS cells at least partially through the type I interferon pathway. Moreover, the effect of AZA on normal hematopoiesis did not differ significantly between individuals with non-Down syndrome and Down syndrome. In summary, this study suggests that AZA is a potentially effective treatment option for ML-DS disease control, including relapsed cases, and has reduced side effects.
Collapse
Affiliation(s)
- Tatsuhiko Tanaka
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ko Kudo
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Rika Kanezaki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kentaro Yuzawa
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tsutomu Toki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ryo Okuse
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akie Kobayashi
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomohiko Sato
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takuya Kamio
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kiminori Terui
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan; Department of Community Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| |
Collapse
|
14
|
Jin M, Ma Z, Dang R, Zhang H, Kim R, Xue H, Pascual J, Finkbeiner S, Head E, Liu Y, Jiang P. A Trisomy 21-linked Hematopoietic Gene Variant in Microglia Confers Resilience in Human iPSC Models of Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584646. [PMID: 38559257 PMCID: PMC10979994 DOI: 10.1101/2024.03.12.584646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
While challenging, identifying individuals displaying resilience to Alzheimer's disease (AD) and understanding the underlying mechanism holds great promise for the development of new therapeutic interventions to effectively treat AD. Down syndrome (DS), or trisomy 21, is the most common genetic cause of AD. Interestingly, some people with DS, despite developing AD neuropathology, show resilience to cognitive decline. Furthermore, DS individuals are at an increased risk of myeloid leukemia due to somatic mutations in hematopoietic cells. Recent studies indicate that somatic mutations in hematopoietic cells may lead to resilience to neurodegeneration. Microglia, derived from hematopoietic lineages, play a central role in AD etiology. We therefore hypothesize that microglia carrying the somatic mutations associated with DS myeloid leukemia may impart resilience to AD. Using CRISPR-Cas9 gene editing, we introduce a trisomy 21-linked hotspot CSF2RB A455D mutation into human pluripotent stem cell (hPSC) lines derived from both DS and healthy individuals. Employing hPSC-based in vitro microglia culture and in vivo human microglia chimeric mouse brain models, we show that in response to pathological tau, the CSF2RB A455D mutation suppresses microglial type-1 interferon signaling, independent of trisomy 21 genetic background. This mutation reduces neuroinflammation and enhances phagocytic and autophagic functions, thereby ameliorating senescent and dystrophic phenotypes in human microglia. Moreover, the CSF2RB A455D mutation promotes the development of a unique microglia subcluster with tissue repair properties. Importantly, human microglia carrying CSF2RB A455D provide protection to neuronal function, such as neurogenesis and synaptic plasticity in chimeric mouse brains where human microglia largely repopulate the hippocampus. When co-transplanted into the same mouse brains, human microglia with CSF2RB A455D mutation phagocytize and replace human microglia carrying the wildtype CSF2RB gene following pathological tau treatment. Our findings suggest that hPSC-derived CSF2RB A455D microglia could be employed to develop effective microglial replacement therapy for AD and other age-related neurodegenerative diseases, even without the need to deplete endogenous diseased microglia prior to cell transplantation.
Collapse
Affiliation(s)
- Mengmeng Jin
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Ziyuan Ma
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Rui Dang
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Haiwei Zhang
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Rachael Kim
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Haipeng Xue
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Jesse Pascual
- Department of Pathology and Laboratory Medicine, Department of Neurology, University of California, Irvine, CA 92697, USA
| | - Steven Finkbeiner
- Ceter for Systems and Therapeutics and the Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes; University of California, San Francisco, CA 94158, USA
- Departments of Neurology and Physiology, University of California, San Francisco, CA 94158, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, Department of Neurology, University of California, Irvine, CA 92697, USA
| | - Ying Liu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| |
Collapse
|
15
|
Barwe SP, Kolb EA, Gopalakrishnapillai A. Down syndrome and leukemia: An insight into the disease biology and current treatment options. Blood Rev 2024; 64:101154. [PMID: 38016838 DOI: 10.1016/j.blre.2023.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/31/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023]
Abstract
Children with Down syndrome (DS) have a 10- to 20-fold greater predisposition to develop acute leukemia compared to the general population, with a skew towards myeloid leukemia (ML-DS). While ML-DS is known to be a subtype with good outcome, patients who relapse face a dismal prognosis. Acute lymphocytic leukemia in DS (DS-ALL) is considered to have poor prognosis. The relapse rate is high in DS-ALL compared to their non-DS counterparts. We have a better understanding about the mutational spectrum of DS leukemia. Studies using animal, embryonic stem cell- and induced pluripotent stem cell-based models have shed light on the mechanism by which these mutations contribute to disease initiation and progression. In this review, we list the currently available treatment strategies for DS-leukemias along with their outcome with emphasis on challenges with chemotherapy-related toxicities in children with DS. We focus on the mechanisms of initiation and progression of leukemia in children with DS and highlight the novel molecular targets with greater success in preclinical trials that have the potential to progress to the clinic.
Collapse
Affiliation(s)
- Sonali P Barwe
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA
| | - E Anders Kolb
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA
| | - Anilkumar Gopalakrishnapillai
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA.
| |
Collapse
|
16
|
Chen CC, Silberman RE, Ma D, Perry JA, Khalid D, Pikman Y, Amon A, Hemann MT, Rowe RG. Inherent genome instability underlies trisomy 21-associated myeloid malignancies. Leukemia 2024; 38:521-529. [PMID: 38245602 DOI: 10.1038/s41375-024-02151-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Constitutional trisomy 21 (T21) is a state of aneuploidy associated with high incidence of childhood acute myeloid leukemia (AML). T21-associated AML is preceded by transient abnormal myelopoiesis (TAM), which is triggered by truncating mutations in GATA1 generating a short GATA1 isoform (GATA1s). T21-associated AML emerges due to secondary mutations in hematopoietic clones bearing GATA1s. Since aneuploidy generally impairs cellular fitness, the paradoxically elevated risk of myeloid malignancy in T21 is not fully understood. We hypothesized that individuals with T21 bear inherent genome instability in hematopoietic lineages that promotes leukemogenic mutations driving the genesis of TAM and AML. We found that individuals with T21 show increased chromosomal copy number variations (CNVs) compared to euploid individuals, suggesting that genome instability could be underlying predisposition to TAM and AML. Acquisition of GATA1s enforces myeloid skewing and maintenance of the hematopoietic progenitor state independently of T21; however, GATA1s in T21 hematopoietic progenitor cells (HPCs) further augments genome instability. Increased dosage of the chromosome 21 (chr21) gene DYRK1A impairs homology-directed DNA repair as a mechanism of elevated mutagenesis. These results posit a model wherein inherent genome instability in T21 drives myeloid malignancy in concert with GATA1s mutations.
Collapse
Affiliation(s)
- Chun-Chin Chen
- Stem Cell Transplantation Program, Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Rebecca E Silberman
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- RA Capital, Boston, MA, USA
| | - Duanduan Ma
- The Barbara K. Ostrom (1978) Bioinformatics and Computing Facility, Swanson Biotechnology Center, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jennifer A Perry
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Delan Khalid
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael T Hemann
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - R Grant Rowe
- Stem Cell Transplantation Program, Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Martinez TC, McNerney ME. Haploinsufficient Transcription Factors in Myeloid Neoplasms. ANNUAL REVIEW OF PATHOLOGY 2024; 19:571-598. [PMID: 37906947 DOI: 10.1146/annurev-pathmechdis-051222-013421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Many transcription factors (TFs) function as tumor suppressor genes with heterozygous phenotypes, yet haploinsufficiency generally has an underappreciated role in neoplasia. This is no less true in myeloid cells, which are normally regulated by a delicately balanced and interconnected transcriptional network. Detailed understanding of TF dose in this circuitry sheds light on the leukemic transcriptome. In this review, we discuss the emerging features of haploinsufficient transcription factors (HITFs). We posit that: (a) monoallelic and biallelic losses can have distinct cellular outcomes; (b) the activity of a TF exists in a greater range than the traditional Mendelian genetic doses; and (c) how a TF is deleted or mutated impacts the cellular phenotype. The net effect of a HITF is a myeloid differentiation block and increased intercellular heterogeneity in the course of myeloid neoplasia.
Collapse
Affiliation(s)
- Tanner C Martinez
- Department of Pathology, Department of Pediatrics, Section of Hematology/Oncology, The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois, USA;
- Medical Scientist Training Program, The University of Chicago, Chicago, Illinois, USA
| | - Megan E McNerney
- Department of Pathology, Department of Pediatrics, Section of Hematology/Oncology, The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois, USA;
| |
Collapse
|
18
|
de Smith AJ, Spector LG. In Utero Origins of Acute Leukemia in Children. Biomedicines 2024; 12:236. [PMID: 38275407 PMCID: PMC10813074 DOI: 10.3390/biomedicines12010236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Acute leukemias, mainly consisting of acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), comprise a major diagnostic group among hematologic cancers. Due to the early age at onset of ALL, particularly, it has long been suspected that acute leukemias of childhood may have an in utero origin. This supposition has motivated many investigations seeking direct proof of prenatal leukemogenesis, in particular, twin and "backtracking studies". The suspected in utero origin has also focused on gestation as a critical window of risk, resulting in a rich literature on prenatal risk factors for pediatric acute leukemias. In this narrative review, we recount the circumstantial and direct evidence for an in utero origin of childhood acute leukemias.
Collapse
Affiliation(s)
- Adam J. de Smith
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Logan G. Spector
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
19
|
Takasaki K, Chou ST. GATA1 in Normal and Pathologic Megakaryopoiesis and Platelet Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:261-287. [PMID: 39017848 DOI: 10.1007/978-3-031-62731-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
GATA1 is a highly conserved hematopoietic transcription factor (TF), essential for normal erythropoiesis and megakaryopoiesis, that encodes a full-length, predominant isoform and an amino (N) terminus-truncated isoform GATA1s. It is consistently expressed throughout megakaryocyte development and interacts with its target genes either independently or in association with binding partners such as FOG1 (friend of GATA1). While the N-terminus and zinc finger have classically been demonstrated to be necessary for the normal regulation of platelet-specific genes, murine models, cell-line studies, and human case reports indicate that the carboxy-terminal activation domain and zinc finger also play key roles in precisely controlling megakaryocyte growth, proliferation, and maturation. Murine models have shown that disruptions to GATA1 increase the proliferation of immature megakaryocytes with abnormal architecture and impaired terminal differentiation into platelets. In humans, germline GATA1 mutations result in variable cytopenias, including macrothrombocytopenia with abnormal platelet aggregation and excessive bleeding tendencies, while acquired GATA1s mutations in individuals with trisomy 21 (T21) result in transient abnormal myelopoiesis (TAM) and myeloid leukemia of Down syndrome (ML-DS) arising from a megakaryocyte-erythroid progenitor (MEP). Taken together, GATA1 plays a key role in regulating megakaryocyte differentiation, maturation, and proliferative capacity. As sequencing and proteomic technologies expand, additional GATA1 mutations and regulatory mechanisms contributing to human diseases of megakaryocytes and platelets are likely to be revealed.
Collapse
Affiliation(s)
- Kaoru Takasaki
- Department of Pediatrics, Division of Hematology, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stella T Chou
- Department of Pediatrics, Division of Hematology, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Satty A, Stieglitz E, Kucine N. Too many white cells-TAM, JMML, or something else? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:37-42. [PMID: 38066851 PMCID: PMC10727065 DOI: 10.1182/hematology.2023000464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Leukocytosis is a common finding in pediatric patients, and the differential diagnosis can be broad, including benign reactive leukocytosis and malignant myeloproliferative disorders. Transient abnormal myelopoiesis is a myeloproliferative disorder that occurs in young infants with constitutional trisomy 21 and somatic GATA1 mutations. Most patients are observed, but outcomes span the spectrum from spontaneous resolution to life-threatening complications. Juvenile myelomonocytic leukemia is a highly aggressive myeloproliferative disorder associated with altered RAS-pathway signaling that occurs in infants and young children. Treatment typically involves hematopoietic stem cell transplantation, but certain patients can be observed. Early recognition of these and other myeloproliferative disorders is important and requires a clinician to be aware of these diagnoses and have a clear understanding of their presentations. This paper discusses the presentation and evaluation of leukocytosis when myeloproliferative disorders are part of the differential and reviews different concepts regarding treatment strategies.
Collapse
Affiliation(s)
- Alexandra Satty
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Elliot Stieglitz
- Department of Pediatrics, Benioff Children's Hospitals, University of California San Francisco, San Francisco, CA
| | - Nicole Kucine
- Department of Pediatrics, Weill Cornell Medicine, New York, NY
| |
Collapse
|
21
|
Raghuram N, Hasegawa D, Nakashima K, Rahman S, Antoniou E, Skajaa T, Merli P, Verma A, Rabin KR, Aftandilian C, Kotecha RS, Cheuk D, Jahnukainen K, Kolenova A, Balwierz W, Norton A, O’Brien M, Cellot S, Chopek A, Arad-Cohen N, Goemans B, Rojas-Vasquez M, Ariffin H, Bartram J, Kolb EA, Locatelli F, Klusmann JH, Hasle H, McGuire B, Hasnain A, Sung L, Hitzler J. Survival outcomes of children with relapsed or refractory myeloid leukemia associated with Down syndrome. Blood Adv 2023; 7:6532-6539. [PMID: 36735769 PMCID: PMC10632607 DOI: 10.1182/bloodadvances.2022009381] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Children with Down syndrome (DS) are at a significantly higher risk of developing acute myeloid leukemia, also termed myeloid leukemia associated with DS (ML-DS). In contrast to the highly favorable prognosis of primary ML-DS, the limited data that are available for children who relapse or who have refractory ML-DS (r/r ML-DS) suggest a dismal prognosis. There are few clinical trials and no standardized treatment approach for this population. We conducted a retrospective analysis of international study groups and pediatric oncology centers and identified 62 patients who received treatment with curative intent for r/r ML-DS between year 2000 to 2021. Median time from diagnosis to relapse was 6.8 (range, 1.1-45.5) months. Three-year event-free survival (EFS) and overall survival (OS) were 20.9 ± 5.3% and 22.1 ± 5.4%, respectively. Survival was associated with receipt of hematopoietic stem cell transplantation (HSCT) (hazard ratio [HR], 0.28), duration of first complete remission (CR1) (HR, 0.31 for > 12 months) and attainment of remission after relapse (HR, 4.03). Patients who achieved complete remission (CR) before HSCT, had an improved OS and EFS of 56.0 ± 11.8% and 50.5 ± 11.9%, respectively compared to those who underwent HSCT without CR (3-year OS and EFS of 10.0 ± 9.5%). Treatment failure after HSCT was predominantly because of disease recurrence (52%) followed by treatment-related mortality (10%). The prognosis of r/r ML-DS remains dismal even in the current treatment period and serve as a reference point for current prognostication and future interventional studies. Clinical trials aimed at improving the survival of patients with r/r ML-DS are needed.
Collapse
Affiliation(s)
- Nikhil Raghuram
- Division of Hematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Daisuke Hasegawa
- Department of Pediatrics, St. Luke's International Hospital, 9-1, Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan
| | - Kentaro Nakashima
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Syaza Rahman
- Division of Paediatric Haematology-Oncology and BM Transplantation, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Evangelia Antoniou
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Torjus Skajaa
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Pietro Merli
- Department of Pediatric Hematology/Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Sapienza University of Rome, Rome, Italy
| | - Anupam Verma
- Division of Hematology/Oncology, Department of Pediatrics, University of Utah and Primary Children's Hospital, Salt Lake City, UT
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Karen R. Rabin
- Pediatric Hematology-Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
| | - Catherine Aftandilian
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Rishi S. Kotecha
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, WA, Australia
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, University of WA, Perth, WA, Australia
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Daniel Cheuk
- Department of Paediatrics and Adolescent Medicine, the University of Hong Kong and Hong Kong Children's Hospital, Hong Kong, China
| | - Kirsi Jahnukainen
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | - Walentyna Balwierz
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Alice Norton
- Department of Haematology, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, United Kingdom
| | - Maureen O’Brien
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Sonia Cellot
- Division of Hematology, Department of Pediatrics, Ste-Justine Hospital, Montréal, Université de Montréal, Montréal, QC, Canada
| | - Ashley Chopek
- Pediatric Blood and Marrow Transplant Program, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Nira Arad-Cohen
- Pediatric Hematology-Oncology Department, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Bianca Goemans
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marta Rojas-Vasquez
- Department of Pediatric Hematology-Oncology, Stollery Children's Hospital, University of Alberta, Edmonton, Canada
| | - Hany Ariffin
- Division of Paediatric Haematology-Oncology and BM Transplantation, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Jack Bartram
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - E. Anders Kolb
- Nemours Center for Cancer and Blood Disorders/Alfred I. DuPont Hospital for Children, Wilmington, DE
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Sapienza University of Rome, Rome, Italy
| | | | - Henrik Hasle
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Bryan McGuire
- Division of Hematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Afia Hasnain
- Division of Genome Diagnostics, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lillian Sung
- Division of Hematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Johann Hitzler
- Division of Hematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| |
Collapse
|
22
|
He B, Wang C, Niu J, Wang F, Zhang Y, Gao Y, Yang Q. Fasudil promotes polyploidization of megakaryoblasts in an acute megakaryocyte leukemia model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3101-3110. [PMID: 37162543 DOI: 10.1007/s00210-023-02513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023]
Abstract
Acute megakaryocytic leukemia (AMKL) is a rare neoplasm caused by abnormal megakaryoblasts. Megakaryoblasts keep dividing and avoid undergoing polyploidization to escape maturation. Small-molecule probes inducing polyploidization of megakaryocytic leukemia cells accelerate the differentiation of megakaryocytes. This study aims to determine that Rho kinase (ROCK) inhibition on megakaryoblasts enhances polyploidization and the inhibition of ROCK1 by fasudil benefits AMKL mice. The study investigated fasudil on the megakaryoblast cells in vitro and in vivo. With the differentiation and apoptosis induction, fasudil was used to treat 6133/MPLW515L mice, and the differentiation level was evaluated. Fasudil could reduce proliferation and promote the polyploidization of megakaryoblasts. Meanwhile, fasudil reduced the disease burden of 6133/MPLW515L AMKL mice at a dose that is safe for healthy mice. Combination therapy of ROCK1 inhibitor fasudil and reported clinical AURKA inhibitor MLN8237 achieved a better antileukemia effect in vivo, which alleviated hepatosplenomegaly and promoted the differentiation of megakaryoblast cells. ROCK1 inhibitor fasudil is a good proliferation inhibitor and polyploidization inducer of megakaryoblast cells and might be a novel rationale for clinical AMKL treatment.
Collapse
Affiliation(s)
- Binghong He
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Chen Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jiajia Niu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Fuping Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yuting Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Ying Gao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Qiong Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
23
|
Sun XH, Liu Q, Wu SN, Xu WH, Chen K, Shao JB, Jiang H. Cytopenia: a report of haplo-cord transplantation in twin brothers caused by a novel germline GATA1 mutation and family survey. Ann Hematol 2023; 102:3177-3184. [PMID: 37460606 DOI: 10.1007/s00277-023-05363-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/07/2023] [Indexed: 10/12/2023]
Abstract
Cytopenia due to the abnormal regulation of GATA1 could manifest as varying degrees of thrombocytopenia and/or anemia and more severely in male children than in female children. Here, we describe the case of pancytopenic and transfusion-dependent twin brothers at our center whose bone marrow puncture revealed low bone marrow hyperplasia. Whole-exome sequencing revealed that the twins had a new germline GATA1 mutation (nm_002049: exon 3:c.515 T >C:p.F172S), which confirmed the diagnosis of GATA1 mutation-related pancytopenia. The mutation was inherited from their mother, who was heterozygous for the mutation. Sanger sequencing verified the pathogenicity of the mutation. Further family morbidity survey confirmed that GATA1 mutation-related pancytopenia is an X-linked recessive genetic disorder. We developed haploid hematopoietic stem cell transplantation programs for twins, with the father as the only donor, and finally, the hematopoietic reconstruction was successful. Although they experienced acute graft-versus-host disease, hemorrhagic cystitis, and a viral infection in the early stage, no abnormal manifestations or transplant-related complications were observed 3 months after transplantation. Through hematopoietic stem cell transplantation technology for one donor and two receptors, we eventually cured the twins. The p.F172S variant in the new germline GATA1 mutation may play an essential role in the pathogenesis of GATA1 mutation-related cytopenia.
Collapse
Affiliation(s)
- Xing-Hua Sun
- Department of Hematology and Oncology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 24, Lane 1400, Beijing West Road, Jing'an District, Shanghai, 200040, China
| | - Qin Liu
- Department of Hematology and Oncology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 24, Lane 1400, Beijing West Road, Jing'an District, Shanghai, 200040, China
| | - Sheng-Nan Wu
- Central Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wu-Hen Xu
- Central Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Chen
- Department of Hematology and Oncology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 24, Lane 1400, Beijing West Road, Jing'an District, Shanghai, 200040, China.
| | - Jing-Bo Shao
- Department of Hematology and Oncology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 24, Lane 1400, Beijing West Road, Jing'an District, Shanghai, 200040, China
| | - Hui Jiang
- Department of Hematology and Oncology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 24, Lane 1400, Beijing West Road, Jing'an District, Shanghai, 200040, China
| |
Collapse
|
24
|
Sit YT, Takasaki K, An HH, Xiao Y, Hurtz C, Gearhart PA, Zhang Z, Gadue P, French DL, Chou ST. Synergistic roles of DYRK1A and GATA1 in trisomy 21 megakaryopoiesis. JCI Insight 2023; 8:e172851. [PMID: 37906251 PMCID: PMC10895998 DOI: 10.1172/jci.insight.172851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
Patients with Down syndrome (DS), or trisomy 21 (T21), are at increased risk of transient abnormal myelopoiesis (TAM) and acute megakaryoblastic leukemia (ML-DS). Both TAM and ML-DS require prenatal somatic mutations in GATA1, resulting in the truncated isoform GATA1s. The mechanism by which individual chromosome 21 (HSA21) genes synergize with GATA1s for leukemic transformation is challenging to study, in part due to limited human cell models with wild-type GATA1 (wtGATA1) or GATA1s. HSA21-encoded DYRK1A is overexpressed in ML-DS and may be a therapeutic target. To determine how DYRK1A influences hematopoiesis in concert with GATA1s, we used gene editing to disrupt all 3 alleles of DYRK1A in isogenic T21 induced pluripotent stem cells (iPSCs) with and without the GATA1s mutation. Unexpectedly, hematopoietic differentiation revealed that DYRK1A loss combined with GATA1s leads to increased megakaryocyte proliferation and decreased maturation. This proliferative phenotype was associated with upregulation of D-type cyclins and hyperphosphorylation of Rb to allow E2F release and derepression of its downstream targets. Notably, DYRK1A loss had no effect in T21 iPSCs or megakaryocytes with wtGATA1. These surprising results suggest that DYRK1A and GATA1 may synergistically restrain megakaryocyte proliferation in T21 and that DYRK1A inhibition may not be a therapeutic option for GATA1s-associated leukemias.
Collapse
Affiliation(s)
- Ying Ting Sit
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kaoru Takasaki
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hyun Hyung An
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Yan Xiao
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christian Hurtz
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Peter A. Gearhart
- Deparment of Obstetrics and Gynecology, Pennsylvania Hospital, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Zhe Zhang
- Department of Biomedical Informatics and
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Deborah L. French
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stella T. Chou
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
25
|
Tang H, Hu J, Liu L, Lv L, Lu J, Yang J, Lu J, Chen Z, Yang C, Chen D, Fu J, Wu J. Prenatal diagnosis of Down syndrome combined with transient abnormal myelopoiesis in foetuses with a GATA1 gene variant: two case reports. Mol Cytogenet 2023; 16:27. [PMID: 37858167 PMCID: PMC10588144 DOI: 10.1186/s13039-023-00658-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Down syndrome myeloid hyperplasia includes transient abnormal myelopoiesis (TAM) and the myeloid leukemia associated with Down syndrome (ML-DS). The mutation of GATA1 gene is essential in the development of Down syndrome combined with TAM or ML-DS. Some patients with TAM are asymptomatic and may also present with severe manifestations such as hepatosplenomegaly and hydrops. CASE PRESENTATION We report two cases of prenatally diagnosed TAM. One case was a rare placental low percentage 21 trisomy mosiacism, resulting in the occurrence of a false negative NIPT. The final diagnosis was made at 36 weeks of gestation when ultrasound revealed significant enlargement of the foetal liver and spleen and an enlarged heart; the foetus eventually died in utero. We detected a placenta with a low percentage (5-8%) of trisomy 21 mosiacism by Copy Number Variation Sequencing (CNV-seq) and Fluorescence in situ hybridization (FISH). In another case, foetal oedema was detected by ultrasound at 31 weeks of gestation. Two foetuses were diagnosed with Down syndrome by chromosomal microarray analysis via umbilical vein puncture and had significantly elevated cord blood leucocyte counts with large numbers of blasts. The GATA1 Sanger sequencing results suggested the presence of a [NM_002049.4(GATA1):c.220G > A (p. Val74Ile)] hemizygous variant and a [NM_002049.4(GATA1):c.49dupC(p. Gln17ProfsTer23)] hemizygous variant of the GATA1 gene in two cases. CONCLUSION It seems highly likely that these two identified mutations are the genetic cause of prenatal TAM in foetuses with Down syndrome.
Collapse
Affiliation(s)
- Hui Tang
- Gentic Medical Center, Guangdong Women and Children Hospital, Guangzhou, People's Republic of China
| | - Jingjing Hu
- Gentic Medical Center, Guangdong Women and Children Hospital, Guangzhou, People's Republic of China
| | - Ling Liu
- Gentic Medical Center, Guangdong Women and Children Hospital, Guangzhou, People's Republic of China
| | - Lijuan Lv
- Gentic Medical Center, Guangdong Women and Children Hospital, Guangzhou, People's Republic of China
| | - Jian Lu
- Gentic Medical Center, Guangdong Women and Children Hospital, Guangzhou, People's Republic of China
| | - Jiexia Yang
- Gentic Medical Center, Guangdong Women and Children Hospital, Guangzhou, People's Republic of China
| | - Jiaqi Lu
- Gentic Medical Center, Guangdong Women and Children Hospital, Guangzhou, People's Republic of China
| | - Zhenhui Chen
- Laboratory Department, Guangdong Women and Children Hospital, Guangzhou, People's Republic of China
| | - Chaoxiang Yang
- Radiology Department, Guangdong Women and Children Hospital, Guangzhou, People's Republic of China
| | - Dan Chen
- Ultrasound Department, Guangdong Women and Children Hospital, Guangzhou, People's Republic of China
| | - Jintao Fu
- Pathology Department, Guangdong Women and Children Hospital, Guangzhou, People's Republic of China
| | - Jing Wu
- Gentic Medical Center, Guangdong Women and Children Hospital, Guangzhou, People's Republic of China.
| |
Collapse
|
26
|
Peroni E, Gottardi M, D’Antona L, Randi ML, Rosato A, Coltro G. Hematologic Neoplasms Associated with Down Syndrome: Cellular and Molecular Heterogeneity of the Diseases. Int J Mol Sci 2023; 24:15325. [PMID: 37895004 PMCID: PMC10607483 DOI: 10.3390/ijms242015325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The molecular basis of Down syndrome (DS) predisposition to leukemia is not fully understood but involves various factors such as chromosomal abnormalities, oncogenic mutations, epigenetic alterations, and changes in selection dynamics. Myeloid leukemia associated with DS (ML-DS) is preceded by a preleukemic phase called transient abnormal myelopoiesis driven by GATA1 gene mutations and progresses to ML-DS via additional mutations in cohesin genes, CTCF, RAS, or JAK/STAT pathway genes. DS-related ALL (ALL-DS) differs from non-DS ALL in terms of cytogenetic subgroups and genetic driver events, and the aberrant expression of CRLF2, JAK2 mutations, and RAS pathway-activating mutations are frequent in ALL-DS. Recent advancements in single-cell multi-omics technologies have provided unprecedented insights into the cellular and molecular heterogeneity of DS-associated hematologic neoplasms. Single-cell RNA sequencing and digital spatial profiling enable the identification of rare cell subpopulations, characterization of clonal evolution dynamics, and exploration of the tumor microenvironment's role. These approaches may help identify new druggable targets and tailor therapeutic interventions based on distinct molecular profiles, ultimately improving patient outcomes with the potential to guide personalized medicine approaches and the development of targeted therapies.
Collapse
Affiliation(s)
- Edoardo Peroni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy
| | - Michele Gottardi
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology, IOV-IRCCS, 31033 Padua, Italy
| | - Lucia D’Antona
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy
| | - Maria Luigia Randi
- First Medical Clinic, Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy
- Department of Surgery Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy
| | - Giacomo Coltro
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
- Center of Research and Innovation for Myeloproliferative Neoplasms, CRIMM, AOU Careggi, 50134 Florence, Italy
| |
Collapse
|
27
|
Verma A, Lupo PJ, Shah NN, Hitzler J, Rabin KR. Management of Down Syndrome-Associated Leukemias: A Review. JAMA Oncol 2023; 9:1283-1290. [PMID: 37440251 DOI: 10.1001/jamaoncol.2023.2163] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Importance Down syndrome (DS), caused by an extra copy of material from chromosome 21, is one of the most common genetic conditions. The increased risk of acute leukemia in DS (DS-AL) has been recognized for decades, consisting of an approximately 150-fold higher risk of acute myeloid leukemia (AML) before age 4 years, and a 10- to 20-fold higher risk of acute lymphoblastic leukemia (ALL), compared with children without DS. Observations A recent National Institutes of Health-sponsored conference, ImpacT21, reviewed research and clinical trials in children, adolescents, and young adults (AYAs) with DS-AL and are presented herein, including presentation and treatment, clinical trial design, and ethical considerations for this unique population. Between 10% to 30% of infants with DS are diagnosed with transient abnormal myelopoiesis (TAM), which spontaneously regresses. After a latency period of up to 4 years, 20% to 30% develop myeloid leukemia associated with DS (ML-DS). Recent studies have characterized somatic mutations associated with progression from TAM to ML-DS, but predicting which patients will progress to ML-DS remains elusive. Clinical trials for DS-AL have aimed to reduce treatment-related mortality (TRM) and improve survival. Children with ML-DS have better outcomes compared with non-DS AML, but outcomes remain dismal in relapse. In contrast, patients with DS-ALL have inferior outcomes compared with those without DS, due to both higher TRM and relapse. Management of relapsed leukemia poses unique challenges owing to disease biology and increased vulnerability to toxic effects. Late effects in survivors of DS-AL are an important area in need of further study because they may demonstrate unique patterns in the setting of chronic medical conditions associated with DS. Conclusions and Relevance Optimal management of DS-AL requires specific molecular testing, meticulous supportive care, and tailored therapy to reduce TRM while optimizing survival. There is no standard approach to treatment of relapsed disease. Future work should include identification of biomarkers predictive of toxic effects; enhanced clinical and scientific collaborations; promotion of access to novel agents through innovative clinical trial design; and dedicated studies of late effects of treatment.
Collapse
Affiliation(s)
- Anupam Verma
- Pediatric Oncology Branch, Center for Cancer Research (CCR), NCI, NIH, Bethesda, Maryland
| | - Philip J Lupo
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research (CCR), NCI, NIH, Bethesda, Maryland
| | - Johann Hitzler
- Division of Hematology Oncology, The Hospital for Sick Children, Toronto, Canada
| | - Karen R Rabin
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
28
|
Ling T, Zhang K, Yang J, Gurbuxani S, Crispino JD. Gata1s mutant mice display persistent defects in the erythroid lineage. Blood Adv 2023; 7:3253-3264. [PMID: 36350717 PMCID: PMC10336263 DOI: 10.1182/bloodadvances.2022008124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/23/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
GATA1 mutations that result in loss of the N-terminal 83 amino acids are a feature of myeloid leukemia in children with Down syndrome, rare familial cases of dyserythropoietic anemia, and a subset of cases of Diamond-Blackfan anemia. The Gata1s mouse model, which expresses only the short GATA1 isoform that begins at methionine 84, has been shown to have a defect in hematopoiesis, especially impaired erythropoiesis with expanded megakaryopoiesis, during gestation. However, these mice reportedly did not show any postnatal phenotype. Here, we demonstrate that Gata1s mutant mice display macrocytic anemia and features of aberrant megakaryopoiesis throughout life, culminating in profound splenomegaly and bone marrow fibrosis. These data support the use of this animal model for studies of GATA1 deficiencies.
Collapse
Affiliation(s)
- Te Ling
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kevin Zhang
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jiayue Yang
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Champaign, IL
| | | | - John D. Crispino
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
29
|
Chen Y, Xiao Y, Zhang Y, Wang R, Wang F, Gao H, Liu Y, Zhang R, Sun H, Zhou Z, Wang S, Chen K, Sun Y, Tu M, Li J, Luo Q, Wu Y, Zhu L, Huang Y, Sun X, Guo G, Zhang D. Single-cell landscape analysis reveals systematic senescence in mammalian Down syndrome. Clin Transl Med 2023; 13:e1310. [PMID: 37461266 PMCID: PMC10352595 DOI: 10.1002/ctm2.1310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/28/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Down syndrome (DS), which is characterized by various malfunctions, is the most common chromosomal disorder. As the DS population continues to grow and most of those with DS live beyond puberty, early-onset health problems have become apparent. However, the cellular landscape and molecular alterations have not been thoroughly studied. METHODS This study utilized single-cell resolution techniques to examine DS in humans and mice, spanning seven distinct organs. A total of 71 934 mouse and 98 207 human cells were analyzed to uncover the molecular alterations occurring in different cell types and organs related to DS, specifically starting from the fetal stage. Additionally, SA-β-Gal staining, western blot, and histological study were employed to verify the alterations. RESULTS In this study, we firstly established the transcriptomic profile of the mammalian DS, deciphering the cellular map and molecular mechanism. Our analysis indicated that DS cells across various types and organs experienced senescence stresses from as early as the fetal stage. This was marked by elevated SA-β-Gal activity, overexpression of cell cycle inhibitors, augmented inflammatory responses, and a loss of cellular identity. Furthermore, we found evidence of mitochondrial disturbance, an increase in ribosomal protein transcription, and heightened apoptosis in fetal DS cells. This investigation also unearthed a regulatory network driven by an HSA21 gene, which leads to genome-wide expression changes. CONCLUSION The findings from this study offer significant insights into the molecular alterations that occur in DS, shedding light on the pathological processes underlying this disorder. These results can potentially guide future research and treatment development for DS.
Collapse
Affiliation(s)
- Yao Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanyu Xiao
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanye Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Renying Wang
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Feixia Wang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huajing Gao
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifeng Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Runju Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huiyu Sun
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziming Zhou
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Siwen Wang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yixi Sun
- Department of Reproductive Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mixue Tu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingyi Li
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Birth Defect Control and Prevention Research Center of Zhejiang Province, Hangzhou, China
| | - Qiong Luo
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Birth Defect Control and Prevention Research Center of Zhejiang Province, Hangzhou, China
| | - Yiqing Wu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Birth Defect Control and Prevention Research Center of Zhejiang Province, Hangzhou, China
| | - Linling Zhu
- Department of Gynecology, Hangzhou Women's Hospital, Hangzhou, China
| | - Yun Huang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Birth Defect Control and Prevention Research Center of Zhejiang Province, Hangzhou, China
| | - Xiao Sun
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Birth Defect Control and Prevention Research Center of Zhejiang Province, Hangzhou, China
| |
Collapse
|
30
|
Li J, Kalev‐Zylinska ML. Advances in molecular characterization of pediatric acute megakaryoblastic leukemia not associated with Down syndrome; impact on therapy development. Front Cell Dev Biol 2023; 11:1170622. [PMID: 37325571 PMCID: PMC10267407 DOI: 10.3389/fcell.2023.1170622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Acute megakaryoblastic leukemia (AMKL) is a rare subtype of acute myeloid leukemia (AML) in which leukemic blasts have megakaryocytic features. AMKL makes up 4%-15% of newly diagnosed pediatric AML, typically affecting young children (less than 2 years old). AMKL associated with Down syndrome (DS) shows GATA1 mutations and has a favorable prognosis. In contrast, AMKL in children without DS is often associated with recurrent and mutually exclusive chimeric fusion genes and has an unfavorable prognosis. This review mainly summarizes the unique features of pediatric non-DS AMKL and highlights the development of novel therapies for high-risk patients. Due to the rarity of pediatric AMKL, large-scale multi-center studies are needed to progress molecular characterization of this disease. Better disease models are also required to test leukemogenic mechanisms and emerging therapies.
Collapse
Affiliation(s)
- Jixia Li
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, China
| | - Maggie L. Kalev‐Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Haematology Laboratory, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
31
|
Martin-Rufino JD, Castano N, Pang M, Grody EI, Joubran S, Caulier A, Wahlster L, Li T, Qiu X, Riera-Escandell AM, Newby GA, Al'Khafaji A, Chaudhary S, Black S, Weng C, Munson G, Liu DR, Wlodarski MW, Sims K, Oakley JH, Fasano RM, Xavier RJ, Lander ES, Klein DE, Sankaran VG. Massively parallel base editing to map variant effects in human hematopoiesis. Cell 2023; 186:2456-2474.e24. [PMID: 37137305 PMCID: PMC10225359 DOI: 10.1016/j.cell.2023.03.035] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/26/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023]
Abstract
Systematic evaluation of the impact of genetic variants is critical for the study and treatment of human physiology and disease. While specific mutations can be introduced by genome engineering, we still lack scalable approaches that are applicable to the important setting of primary cells, such as blood and immune cells. Here, we describe the development of massively parallel base-editing screens in human hematopoietic stem and progenitor cells. Such approaches enable functional screens for variant effects across any hematopoietic differentiation state. Moreover, they allow for rich phenotyping through single-cell RNA sequencing readouts and separately for characterization of editing outcomes through pooled single-cell genotyping. We efficiently design improved leukemia immunotherapy approaches, comprehensively identify non-coding variants modulating fetal hemoglobin expression, define mechanisms regulating hematopoietic differentiation, and probe the pathogenicity of uncharacterized disease-associated variants. These strategies will advance effective and high-throughput variant-to-function mapping in human hematopoiesis to identify the causes of diverse diseases.
Collapse
Affiliation(s)
- Jorge D Martin-Rufino
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; PhD Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Nicole Castano
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael Pang
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Samantha Joubran
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Chemical Biology PhD Program, Harvard Medical School, Boston, MA 02115, USA
| | - Alexis Caulier
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lara Wahlster
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tongqing Li
- Department of Pharmacology and Yale Cancer Biology Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xiaojie Qiu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | - Gregory A Newby
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Aziz Al'Khafaji
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Susan Black
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chen Weng
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Glen Munson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David R Liu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Marcin W Wlodarski
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kacie Sims
- St. Jude Affiliate Clinic at Our Lady of the Lake Children's Health, Baton Rouge, LA 70809, USA
| | - Jamie H Oakley
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| | - Ross M Fasano
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daryl E Klein
- Department of Pharmacology and Yale Cancer Biology Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
32
|
Mendoza-Castrejon J, Magee JA. Layered immunity and layered leukemogenicity: Developmentally restricted mechanisms of pediatric leukemia initiation. Immunol Rev 2023; 315:197-215. [PMID: 36588481 PMCID: PMC10301262 DOI: 10.1111/imr.13180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hematopoietic stem cells (HSCs) and multipotent progenitor cells (MPPs) arise in successive waves during ontogeny, and their properties change significantly throughout life. Ontological changes in HSCs/MPPs underlie corresponding changes in mechanisms of pediatric leukemia initiation. As HSCs and MPPs progress from fetal to neonatal, juvenile and adult stages of life, they undergo transcriptional and epigenetic reprogramming that modifies immune output to meet age-specific pathogenic challenges. Some immune cells arise exclusively from fetal HSCs/MPPs. We propose that this layered immunity instructs cell fates that underlie a parallel layered leukemogenicity. Indeed, some pediatric leukemias, such as juvenile myelomonocytic leukemia, myeloid leukemia of Down syndrome, and infant pre-B-cell acute lymphoblastic leukemia, are age-restricted. They only present during infancy or early childhood. These leukemias likely arise from fetal progenitors that lose competence for transformation as they age. Other childhood leukemias, such as non-infant pre-B-cell acute lymphoblastic leukemia and acute myeloid leukemia, have mutation profiles that are common in childhood but rare in morphologically similar adult leukemias. These differences could reflect temporal changes in mechanisms of mutagenesis or changes in how progenitors respond to a given mutation at different ages. Interactions between leukemogenic mutations and normal developmental switches offer potential targets for therapy.
Collapse
Affiliation(s)
- Jonny Mendoza-Castrejon
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
| | - Jeffrey A. Magee
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
| |
Collapse
|
33
|
Malinge S. It is more "unbalanced" than you think. Blood 2023; 141:1095-1096. [PMID: 36893009 DOI: 10.1182/blood.2022019194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
|
34
|
Gialesaki S, Bräuer-Hartmann D, Issa H, Bhayadia R, Alejo-Valle O, Verboon L, Schmell AL, Laszig S, Regényi E, Schuschel K, Labuhn M, Ng M, Winkler R, Ihling C, Sinz A, Glaß M, Hüttelmaier S, Matzk S, Schmid L, Strüwe FJ, Kadel SK, Reinhardt D, Yaspo ML, Heckl D, Klusmann JH. RUNX1 isoform disequilibrium promotes the development of trisomy 21-associated myeloid leukemia. Blood 2023; 141:1105-1118. [PMID: 36493345 PMCID: PMC10023736 DOI: 10.1182/blood.2022017619] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Gain of chromosome 21 (Hsa21) is among the most frequent aneuploidies in leukemia. However, it remains unclear how partial or complete amplifications of Hsa21 promote leukemogenesis and why children with Down syndrome (DS) (ie, trisomy 21) are particularly at risk of leukemia development. Here, we propose that RUNX1 isoform disequilibrium with RUNX1A bias is key to DS-associated myeloid leukemia (ML-DS). Starting with Hsa21-focused CRISPR-CRISPR-associated protein 9 screens, we uncovered a strong and specific RUNX1 dependency in ML-DS cells. Expression of the RUNX1A isoform is elevated in patients with ML-DS, and mechanistic studies using murine ML-DS models and patient-derived xenografts revealed that excess RUNX1A synergizes with the pathognomonic Gata1s mutation during leukemogenesis by displacing RUNX1C from its endogenous binding sites and inducing oncogenic programs in complex with the MYC cofactor MAX. These effects were reversed by restoring the RUNX1A:RUNX1C equilibrium in patient-derived xenografts in vitro and in vivo. Moreover, pharmacological interference with MYC:MAX dimerization using MYCi361 exerted strong antileukemic effects. Thus, our study highlights the importance of alternative splicing in leukemogenesis, even on a background of aneuploidy, and paves the way for the development of specific and targeted therapies for ML-DS, as well as for other leukemias with Hsa21 aneuploidy or RUNX1 isoform disequilibrium.
Collapse
Affiliation(s)
- Sofia Gialesaki
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Daniela Bräuer-Hartmann
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Hasan Issa
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Raj Bhayadia
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Oriol Alejo-Valle
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Lonneke Verboon
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anna-Lena Schmell
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stephanie Laszig
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Enikő Regényi
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Konstantin Schuschel
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maurice Labuhn
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Michelle Ng
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Robert Winkler
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Markus Glaß
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sören Matzk
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lena Schmid
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | - Sofie-Katrin Kadel
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Dirk Reinhardt
- Pediatric Hematology and Oncology, Pediatrics III, University Hospital Essen, Essen, Germany
| | | | - Dirk Heckl
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Dirk Heckl, Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany;
| | - Jan-Henning Klusmann
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Correspondence: Jan-Henning Klusmann, Department of Pediatrics, Goethe University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt, Germany;
| |
Collapse
|
35
|
Koulmane Laxminarayana SL, Kohli S, Agrohi J, Belurkar S. Pediatric Non-Down Syndrome Acute Megakaryoblastic Leukemia With Unusual Immunophenotype. Cureus 2023; 15:e35965. [PMID: 36911590 PMCID: PMC9999050 DOI: 10.7759/cureus.35965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 03/12/2023] Open
Abstract
Acute megakaryoblastic leukemia (AMKL) is a rare subtype of acute myeloid leukemia (AML) characterized by abnormal megakaryoblasts expressing platelet-specific surface antigens. 4%-16% of childhood AMLs are AMKL. Childhood AMKL is usually associated with Down syndrome (DS). It is 500 times more common in patients with DS when compared to the general population. In contrast, non-DS-AMKL is much rarer. We describe a case of de novo non-DS-AMKL in a teenage girl child who presented with a history of excessive tiredness, fever, abdominal pain for three months, and vomiting for four days. She had lost appetite, and weight. On examination she was pale; there was no clubbing, hepatosplenomegaly or lymphadenopathy. There were no dysmorphic features or neurocutaneous markers. Laboratory tests showed bicytopenia (Hb: 6.5g/dL, total WBC count: 700/µL, platelet count: 216,000/ µL, Reticulocyte %: 0.42) and 14% blasts on the peripheral blood smear. Platelet clumps and anisocytosis were also noted. Bone marrow aspirate showed a few hypocellular particles with dilute cell trails but showed 42% blasts. Mature megakaryocytes showed marked dyspoiesis. Flow cytometry on bone marrow aspirate showed myeloblasts and megakaryoblasts. Karyotyping showed 46 XX. Hence, a final diagnosis of non-DS-AMKL was established. She was treated symptomatically. However, she was discharged on request. Interestingly, the expression of erythroid markers such as CD36 and lymphoid markers like CD7 is usually seen in DS-AMKL and not in non-DS-AMKL. AMKL is treated with AML-directed chemotherapies. Although complete remission rates are similar to other AML subtypes, overall survival is only about 18-40 weeks.
Collapse
Affiliation(s)
| | - Saksham Kohli
- Department of Pathology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Udupi, IND
| | - Jhalak Agrohi
- Department of Pathology, Kasturba Medical College, Manipal, Manipal academy of Higher Education, Udupi, IND
| | - Sushma Belurkar
- Department of Pathology, Kasturba Medical College, Manipal, Manipal academy of Higher Education, Udupi, IND
| |
Collapse
|
36
|
Fabozzi F, Mastronuzzi A. Genetic Predisposition to Hematologic Malignancies in Childhood and Adolescence. Mediterr J Hematol Infect Dis 2023; 15:e2023032. [PMID: 37180200 PMCID: PMC10171214 DOI: 10.4084/mjhid.2023.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/19/2023] [Indexed: 05/16/2023] Open
Abstract
Advances in molecular biology and genetic testing have greatly improved our understanding of the genetic basis of hematologic malignancies and have enabled the identification of new cancer predisposition syndromes. Recognizing a germline mutation in a patient affected by a hematologic malignancy allows for a tailored treatment approach to minimize toxicities. It informs the donor selection, the timing, and the conditioning strategy for hematopoietic stem cell transplantation, as well as the comorbidities evaluation and surveillance strategies. This review provides an overview of germline mutations that predispose to hematologic malignancies, focusing on those most common during childhood and adolescence, based on the new International Consensus Classification of Myeloid and Lymphoid Neoplasms.
Collapse
Affiliation(s)
- Francesco Fabozzi
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| |
Collapse
|
37
|
Roberts I. Leukemogenesis in infants and young children with trisomy 21. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:1-8. [PMID: 36485097 PMCID: PMC9820574 DOI: 10.1182/hematology.2022000395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Children with Down syndrome (DS) have a greater than 100-fold increased risk of developing acute myeloid leukemia (ML) and an approximately 30-fold increased risk of acute lymphoblastic leukemia (ALL) before their fifth birthday. ML-DS originates in utero and typically presents with a self-limiting, neonatal leukemic syndrome known as transient abnormal myelopoiesis (TAM) that is caused by cooperation between trisomy 21-associated abnormalities of fetal hematopoiesis and somatic N-terminal mutations in the transcription factor GATA1. Around 10% of neonates with DS have clinical signs of TAM, although the frequency of hematologically silent GATA1 mutations in DS neonates is much higher (~25%). While most cases of TAM/silent TAM resolve without treatment within 3 to 4 months, in 10% to 20% of cases transformation to full-blown leukemia occurs within the first 4 years of life when cells harboring GATA1 mutations persist and acquire secondary mutations, most often in cohesin genes. By contrast, DS-ALL, which is almost always B-lineage, presents after the first few months of life and is characterized by a high frequency of rearrangement of the CRLF2 gene (60%), often co-occurring with activating mutations in JAK2 or RAS genes. While treatment of ML-DS achieves long-term survival in approximately 90% of children, the outcome of DS-ALL is inferior to ALL in children without DS. Ongoing studies in primary cells and model systems indicate that the role of trisomy 21 in DS leukemogenesis is complex and cell context dependent but show promise in improving management and the treatment of relapse, in which the outcome of both ML-DS and DS-ALL remains poor.
Collapse
Affiliation(s)
- Irene Roberts
- Correspondence Irene Roberts, Department of Paediatrics, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford OX3 9DS, United Kingdom; e-mail: ,
| |
Collapse
|
38
|
Kanezaki R, Toki T, Terui K, Sato T, Kobayashi A, Kudo K, Kamio T, Sasaki S, Kawaguchi K, Watanabe K, Ito E. Mechanism of KIT gene regulation by GATA1 lacking the N-terminal domain in Down syndrome-related myeloid disorders. Sci Rep 2022; 12:20587. [PMID: 36447001 PMCID: PMC9708825 DOI: 10.1038/s41598-022-25046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Children with Down syndrome (DS) are at high risk of transient abnormal myelopoiesis (TAM) and myeloid leukemia of DS (ML-DS). GATA1 mutations are detected in almost all TAM and ML-DS samples, with exclusive expression of short GATA1 protein (GATA1s) lacking the N-terminal domain (NTD). However, it remains to be clarified how GATA1s is involved with both disorders. Here, we established the K562 GATA1s (K562-G1s) clones expressing only GATA1s by CRISPR/Cas9 genome editing. The K562-G1s clones expressed KIT at significantly higher levels compared to the wild type of K562 (K562-WT). Chromatin immunoprecipitation studies identified the GATA1-bound regulatory sites upstream of KIT in K562-WT, K562-G1s clones and two ML-DS cell lines; KPAM1 and CMK11-5. Sonication-based chromosome conformation capture (3C) assay demonstrated that in K562-WT, the - 87 kb enhancer region of KIT was proximal to the - 115 kb, - 109 kb and + 1 kb region, while in a K562-G1s clone, CMK11-5 and primary TAM cells, the - 87 kb region was more proximal to the KIT transcriptional start site. These results suggest that the NTD of GATA1 is essential for proper genomic conformation and regulation of KIT gene expression, and that perturbation of this function might be involved in the pathogenesis of TAM and ML-DS.
Collapse
Affiliation(s)
- Rika Kanezaki
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan
| | - Tsutomu Toki
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan
| | - Kiminori Terui
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan
| | - Tomohiko Sato
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan
| | - Akie Kobayashi
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan
| | - Ko Kudo
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan
| | - Takuya Kamio
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan
| | - Shinya Sasaki
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan
| | - Koji Kawaguchi
- grid.415798.60000 0004 0378 1551Department of Hematology and Oncology, Shizuoka Children’s Hospital, Shizuoka, Japan
| | - Kenichiro Watanabe
- grid.415798.60000 0004 0378 1551Department of Hematology and Oncology, Shizuoka Children’s Hospital, Shizuoka, Japan
| | - Etsuro Ito
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan ,grid.257016.70000 0001 0673 6172Department of Community Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
39
|
A Novel GATA1 Variant in the C-Terminal Zinc Finger Compared with the Platelet Phenotype of Patients with A Likely Pathogenic Variant in the N-Terminal Zinc Finger. Cells 2022; 11:cells11203223. [PMID: 36291092 PMCID: PMC9600848 DOI: 10.3390/cells11203223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/22/2022] [Accepted: 10/10/2022] [Indexed: 01/19/2023] Open
Abstract
The GATA1 transcription factor is essential for normal erythropoiesis and megakaryocytic differentiation. Germline GATA1 pathogenic variants in the N-terminal zinc finger (N-ZF) are typically associated with X-linked thrombocytopenia, platelet dysfunction, and dyserythropoietic anemia. A few variants in the C-terminal ZF (C-ZF) domain are described with normal platelet count but altered platelet function as the main characteristic. Independently performed molecular genetic analysis identified a novel hemizygous variant (c.865C>T, p.H289Y) in the C-ZF region of GATA1 in a German patient and in a Spanish patient. We characterized the bleeding and platelet phenotype of these patients and compared these findings with the parameters of two German siblings carrying the likely pathogenic variant p.D218N in the GATA1 N-ZF domain. The main difference was profound thrombocytopenia in the brothers carrying the p.D218N variant compared to a normal platelet count in patients carrying the p.H289Y variant; only the Spanish patient occasionally developed mild thrombocytopenia. A functional platelet defect affecting αIIbβ3 integrin activation and α-granule secretion was present in all patients. Additionally, mild anemia, anisocytosis, and poikilocytosis were observed in the patients with the C-ZF variant. Our data support the concept that GATA1 variants located in the different ZF regions can lead to clinically diverse manifestations.
Collapse
|
40
|
Li F, Xiong Y, Yang M, Chen P, Zhang J, Wang Q, Xu M, Wang Y, He Z, Zhao X, Huang J, Gu X, Zhang L, Sun R, Sun X, Li J, Ou J, Xu T, Huang X, Cao Y, Xu XR, Karakas D, Li J, Ni H, Zhang Q. c-Mpl-del, a c-Mpl alternative splicing isoform, promotes AMKL progression and chemoresistance. Cell Death Dis 2022; 13:869. [PMID: 36229456 PMCID: PMC9561678 DOI: 10.1038/s41419-022-05315-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Acute megakaryocytic leukemia (AMKL) is a clinically heterogeneous subtype of acute myeloid leukemia characterized by unrestricted megakaryoblast proliferation and poor prognosis. Thrombopoietin receptor c-Mpl is a primary regulator of megakaryopoeisis and a potent mitogenic receptor. Aberrant c-Mpl signaling has been implicated in a myriad of myeloid proliferative disorders, some of which can lead to AMKL, however, the role of c-Mpl in AMKL progression remains largely unexplored. Here, we identified increased expression of a c-Mpl alternative splicing isoform, c-Mpl-del, in AMKL patients. We found that c-Mpl-del expression was associated with enhanced AMKL cell proliferation and chemoresistance, and decreased survival in xenografted mice, while c-Mpl-del knockdown attenuated proliferation and restored apoptosis. Interestingly, we observed that c-Mpl-del exhibits preferential utilization of phosphorylated c-Mpl-del C-terminus Y607 and biased activation of PI3K/AKT pathway, which culminated in upregulation of GATA1 and downregulation of DDIT3-related apoptotic responses conducive to AMKL chemoresistance and proliferation. Thus, this study elucidates the critical roles of c-Mpl alternative splicing in AMKL progression and drug resistance, which may have important diagnostic and therapeutic implications for leukemia accelerated by c-Mpl-del overexpression.
Collapse
Affiliation(s)
- Fei Li
- grid.12981.330000 0001 2360 039XState Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuanyan Xiong
- grid.12981.330000 0001 2360 039XState Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mo Yang
- grid.12981.330000 0001 2360 039XThe Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Peiling Chen
- grid.12981.330000 0001 2360 039XState Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jingkai Zhang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiong Wang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XInstitute of Sun Yat-sen University in Shenzhen, Shenzhen, China
| | - Miao Xu
- grid.17063.330000 0001 2157 2938Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, and Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Canada
| | - Yiming Wang
- grid.17063.330000 0001 2157 2938Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, and Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Canada ,Canadian Blood Services Centre for Innovation, Toronto, Canada
| | - Zuyong He
- grid.12981.330000 0001 2360 039XState Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xin Zhao
- grid.12981.330000 0001 2360 039XState Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Junyu Huang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaoqiong Gu
- grid.410737.60000 0000 8653 1072Department of Blood Transfusion, Clinical Biological Resource Bank and Clinical Lab, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Zhang
- grid.410737.60000 0000 8653 1072Department of Blood Transfusion, Clinical Biological Resource Bank and Clinical Lab, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Rui Sun
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xunsha Sun
- grid.12981.330000 0001 2360 039XNational Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingyao Li
- grid.12981.330000 0001 2360 039XState Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jinxin Ou
- grid.12981.330000 0001 2360 039XState Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ting Xu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xueying Huang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yange Cao
- grid.12981.330000 0001 2360 039XState Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Ruby Xu
- grid.17063.330000 0001 2157 2938Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, and Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Canada
| | - Danielle Karakas
- grid.17063.330000 0001 2157 2938Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, and Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Canada
| | - June Li
- grid.17063.330000 0001 2157 2938Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, and Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Canada ,Canadian Blood Services Centre for Innovation, Toronto, Canada
| | - Heyu Ni
- grid.17063.330000 0001 2157 2938Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, and Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Canada ,Canadian Blood Services Centre for Innovation, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Physiology, University of Toronto, Toronto, Canada
| | - Qing Zhang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XInstitute of Sun Yat-sen University in Shenzhen, Shenzhen, China
| |
Collapse
|
41
|
Li J, Kalev-Zylinska ML. Advances in molecular characterization of myeloid proliferations associated with Down syndrome. Front Genet 2022; 13:891214. [PMID: 36035173 PMCID: PMC9399805 DOI: 10.3389/fgene.2022.891214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid leukemia associated with Down syndrome (ML-DS) has a unique molecular landscape that differs from other subtypes of acute myeloid leukemia. ML-DS is often preceded by a myeloproliferative neoplastic condition called transient abnormal myelopoiesis (TAM) that disrupts megakaryocytic and erythroid differentiation. Over the last two decades, many genetic and epigenetic changes in TAM and ML-DS have been elucidated. These include overexpression of molecules and micro-RNAs located on chromosome 21, GATA1 mutations, and a range of other somatic mutations and chromosomal alterations. In this review, we summarize molecular changes reported in TAM and ML-DS and provide a comprehensive discussion of these findings. Recent advances in the development of CRISPR/Cas9-modified induced pluripotent stem cell-based disease models are also highlighted. However, despite significant progress in this area, we still do not fully understand the pathogenesis of ML-DS, and there are no targeted therapies. Initial diagnosis of ML-DS has a favorable prognosis, but refractory and relapsed disease can be difficult to treat; therapeutic options are limited in Down syndrome children by their stronger sensitivity to the toxic effects of chemotherapy. Because of the rarity of TAM and ML-DS, large-scale multi-center studies would be helpful to advance molecular characterization of these diseases at different stages of development and progression.
Collapse
Affiliation(s)
- Jixia Li
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, China
- *Correspondence: Jixia Li, ; Maggie L. Kalev-Zylinska,
| | - Maggie L. Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Haematology Laboratory, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
- *Correspondence: Jixia Li, ; Maggie L. Kalev-Zylinska,
| |
Collapse
|
42
|
Camargo R, Sahoo SS, Córdoba JC, Magalhães IQ. Germline GATA1 exon 2 mutation associated with chronic cytopenia and a non-down syndrome transient abnormal myelopoiesis with clonal trisomy 21. Leukemia 2022; 36:2347-2350. [PMID: 35941211 DOI: 10.1038/s41375-022-01638-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 11/09/2022]
|
43
|
Qi K, Hu X, Yu X, Cheng H, Wang C, Wang S, Wang Y, Li Y, Cao J, Pan B, Wu Q, Qiao J, Zeng L, Li Z, Xu K, Fu C. Targeting cyclin-dependent kinases 4/6 inhibits survival of megakaryoblasts in acute megakaryoblastic leukaemia. Leuk Res 2022; 120:106920. [PMID: 35872339 DOI: 10.1016/j.leukres.2022.106920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/19/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022]
Abstract
Acute megakaryoblastic leukaemia (AMKL) is characterized by expansion of megakaryoblasts, which are hyper-proliferative cells that fail to undergo differentiation. Insight to the cell-cycle regulation revealed important events in early or late megakaryocytes (MKs) maturation; the cyclin-dependent kinases 4 and 6 (CDK4/6) have been reported to participate in the development of progenitor megakaryocytes, mainly by promoting cell cycle progression and DNA polyploidization. However, it remains unclear whether the continuous proliferation, but not differentiation, of megakaryoblasts is related to an aberrant regulation of CDK4/6 in AMKL. Here, we found that CDK4/6 were up regulated in patients with AMKL, and persistently maintained at a high level during the differentiation of abnormal megakaryocytes in vitro, according to a database and western blot. Additionally, AMKL cells were exceptionally reliant on the cell cycle regulators CDK4 or 6, as blocking their activity using an inhibitor or short hairpin RNA (shRNA) significantly reduced the proliferation of 6133/MPL megakaryocytes, reduced DNA polyploidy, induced apoptosis, decreased the level of phosphorylated retinoblastoma protein (p-Rb), and activation of caspase 3. Additionally, CDK4/6 inhibitors and shRNA reduced the numbers of leukemia cells in the liver and bone marrow (BM), alleviated hepatosplenomegaly, and prolonged the survival of AMKL-transplanted mice. These results suggested that blocking the activity of CDK4/6 may represent an effective approach to control megakaryoblasts in AMKL.
Collapse
Affiliation(s)
- Kunming Qi
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Xueting Hu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Xiangru Yu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Hai Cheng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Chunqing Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shujin Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Ying Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Yanjie Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Jiang Cao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Bin Pan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Qingyun Wu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.
| | - Chunling Fu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.
| |
Collapse
|
44
|
EAHP 2020 workshop proceedings, pediatric myeloid neoplasms. Virchows Arch 2022; 481:621-646. [PMID: 35819517 PMCID: PMC9534825 DOI: 10.1007/s00428-022-03375-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022]
Abstract
The first section of the bone marrow workshop of the European Association of Haematopathology (EAHP) 2020 Virtual Meeting was dedicated to pediatric myeloid neoplasms. The section covered the whole spectrum of myeloid neoplasms, including myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), myelodysplastic/myeloproliferative neoplasms (MDS/MPN), and acute myeloid leukemia (AML). The workshop cases are hereby presented, preceded by an introduction on these overall rare diseases in this age group. Very rare entities such as primary myelofibrosis, pediatric MDS with fibrosis, and MDS/MPN with JMML-like features and t(4;17)(q12;q21); FIP1L1::RARA fusion, are described in more detail.
Collapse
|
45
|
Arkoun B, Robert E, Boudia F, Mazzi S, Dufour V, Siret A, Mammasse Y, Aid Z, Vieira M, Imanci A, Aglave M, Cambot M, Petermann R, Souquere S, Rameau P, Catelain C, Diot R, Tachdjian G, Hermine O, Droin N, Debili N, Plo I, Malinge S, Soler E, Raslova H, Mercher T, Vainchenker W. Stepwise GATA1 and SMC3 mutations alter megakaryocyte differentiation in a Down syndrome leukemia model. J Clin Invest 2022; 132:156290. [PMID: 35587378 PMCID: PMC9282925 DOI: 10.1172/jci156290] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Acute megakaryoblastic leukemia of Down syndrome (DS-AMKL) is a model of clonal evolution from a preleukemic transient myeloproliferative disorder requiring both a trisomy 21 (T21) and a GATA1s mutation to a leukemia driven by additional driver mutations. We modeled the megakaryocyte differentiation defect through stepwise gene editing of GATA1s, SMC3+/–, and MPLW515K, providing 20 different T21 or disomy 21 (D21) induced pluripotent stem cell (iPSC) clones. GATA1s profoundly reshaped iPSC-derived hematopoietic architecture with gradual myeloid-to-megakaryocyte shift and megakaryocyte differentiation alteration upon addition of SMC3 and MPL mutations. Transcriptional, chromatin accessibility, and GATA1-binding data showed alteration of essential megakaryocyte differentiation genes, including NFE2 downregulation that was associated with loss of GATA1s binding and functionally involved in megakaryocyte differentiation blockage. T21 enhanced the proliferative phenotype, reproducing the cellular and molecular abnormalities of DS-AMKL. Our study provides an array of human cell–based models revealing individual contributions of different mutations to DS-AMKL differentiation blockage, a major determinant of leukemic progression.
Collapse
Affiliation(s)
- Brahim Arkoun
- INSERM, UMR1287, Institut Gustave Roussy, Villejuif, France
| | - Elie Robert
- INSERM, UMR1170, Institut Gustave Roussy, Villejuif, France
| | - Fabien Boudia
- INSERM, UMR1170, Institut Gustave Roussy, Villejuif, France
| | - Stefania Mazzi
- INSERM, UMR1287, Institut Gustave Roussy, Villejuif, France
| | - Virginie Dufour
- INSERM, UMR1287, Institut National de la Transfusion Sanguine, Villejuif, France
| | - Aurelie Siret
- INSERM, UMR1170, Institut Gustave Roussy, Villejuif, France
| | - Yasmine Mammasse
- Département d'Immunologie Plaquettaire, Institut National de la Transfusion Sanguine, Paris, France
| | - Zakia Aid
- INSERM, UMR1170, Institut Gustave Roussy, Villejuif, France
| | - Mathieu Vieira
- INSERM, UMR1287, Institut Gustave Roussy, Villejuif, France
| | - Aygun Imanci
- INSERM, UMR1287, Institut Gustave Roussy, Villejuif, France
| | - Marine Aglave
- Plateforme de Bioinformatique, Institut Gustave Roussy, Villejuif, France
| | - Marie Cambot
- Département d'Immunologie Plaquettaire, Institut National de la Transfusion Sanguine, Paris, France
| | - Rachel Petermann
- Département d'Immunologie Plaquettaire, Institut National de Transfusion Sanguine, Paris, France
| | - Sylvie Souquere
- Centre National de la Recherche Scientifique, UMR8122, Institut Gustave Roussy, Villejuif, France
| | - Philippe Rameau
- UMS AMMICA, INSERM US23, Institut Gustave Roussy, Villejuif, France
| | - Cyril Catelain
- UMS AMMICA, INSERM US23, Institut Gustave Roussy, Villejuif, France
| | - Romain Diot
- Service d'Histologie, Embryologie et Cytogénétique, Hôpital Antoine Béclère, Clamart, France
| | - Gerard Tachdjian
- Service d'Histologie, Embryologie et Cytogénétique, Hôpital Antoine Béclère, Clamart, France
| | | | - Nathalie Droin
- INSERM, UMR1170, Institut Gustave Roussy, Villejuif, France
| | - Najet Debili
- INSERM, UMR1287, Institut Gustave Roussy, Villejuif, France
| | - Isabelle Plo
- INSERM, UMR1287, Institut Gustave Roussy, Villejuif, France
| | - Sebastien Malinge
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Eric Soler
- IGMM, University of Montpellier, Montpellier, France
| | - Hana Raslova
- INSERM, UMR1287, Institut Gustave Roussy, Villejuif, France
| | - Thomas Mercher
- INSERM, UMR1170, Institut Gustave Roussy, Villejuif, France
| | | |
Collapse
|
46
|
A R307H substitution in GATA1 that prevents S310 phosphorylation causes severe fetal anemia. Blood Adv 2022; 6:4330-4334. [PMID: 35580337 PMCID: PMC9327554 DOI: 10.1182/bloodadvances.2021006347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/08/2022] [Indexed: 01/19/2023] Open
|
47
|
Aziz-Bose R, Wachter F, Chiarle R, Lindeman NI, Kim AS, Degar BA, Davies K, Pikman Y. Rapid next-generation sequencing aids in diagnosis of transient abnormal myelopoiesis in a phenotypically normal newborn. Blood Adv 2022; 6:2893-2896. [PMID: 35090166 PMCID: PMC9092404 DOI: 10.1182/bloodadvances.2021006865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Rahela Aziz-Bose
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| | - Franziska Wachter
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| | - Roberto Chiarle
- Harvard Medical School, Boston, MA
- Department of Pathology, Boston Children’s Hospital, Boston, MA; and
| | - Neal I. Lindeman
- Harvard Medical School, Boston, MA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Annette S. Kim
- Harvard Medical School, Boston, MA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Barbara A. Degar
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| | - Kimberly Davies
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| | - Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| |
Collapse
|
48
|
Kobayashi K, Watanabe A, Mizuta S, Nishida Y, Heike T. Phenotypic switching to hypereosinophilia during cytoreductive therapy for transient abnormal myelopoiesis associated with Down syndrome. EJHAEM 2022; 3:543-544. [PMID: 35846025 PMCID: PMC9175812 DOI: 10.1002/jha2.385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Kenichiro Kobayashi
- Department of PediatricsHyogo Prefectural Amagasaki General Medical CenterHyogoJapan
- Department of Pediatric Hematology and OncologyHyogo Prefectural Amagasaki General Medical CenterHyogoJapan
- Department of Pediatric Hematology and Oncology ResearchResearch InstituteNational Center for Child Health and DevelopmentTokyoJapan
| | - Asami Watanabe
- Department of Clinical LaboratoryHyogo Prefectural Amagasaki General Medical CenterHyogoJapan
| | - Shumpei Mizuta
- Department of Clinical LaboratoryHyogo Prefectural Amagasaki General Medical CenterHyogoJapan
- Laboratory of HematologyDivision of Medical BiophysicsKobe University Graduate School of Health SciencesHyogoJapan
| | - Yoshinobu Nishida
- Department of PediatricsHyogo Prefectural Amagasaki General Medical CenterHyogoJapan
- Department of NeonatologyHyogo Prefectural Amagasaki General Medical CenterHyogoJapan
| | - Toshio Heike
- Department of PediatricsHyogo Prefectural Amagasaki General Medical CenterHyogoJapan
| |
Collapse
|
49
|
Gupte A, Al-Antary ET, Edwards H, Ravindranath Y, Ge Y, Taub JW. The Paradox of Myeloid Leukemia Associated with Down Syndrome. Biochem Pharmacol 2022; 201:115046. [PMID: 35483417 DOI: 10.1016/j.bcp.2022.115046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/03/2023]
Abstract
Children with Down syndrome constitute a distinct genetic population who has a greater risk of developing acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) compared to their non-Down syndrome counterparts. The risk for developing solid tumors is also distinct from the non-Down syndrome population. In the case of myeloid leukemias, the process of leukemogenesis in Trisomy 21 begins in early fetal life where genetic drivers including GATA1 mutations lead to the development of the preleukemic condition, transient abnormal myelopoiesis (TAM). Various other mutations in genes encoding cohesin, epigenetic regulators and RAS pathway can result in subsequent progression to Myeloid Leukemia associated with Down Syndrome (ML-DS). The striking paradoxical feature in the Down syndrome population is that even though there is a higher predisposition to developing AML, they are also very sensitive to chemotherapy agents, particularly cytarabine, thus accounting for the very high cure rates for ML-DS compared to AML in children without Down syndrome. Current clinical trials for ML-DS attempt to balance effective curative therapies while trying to reduce treatment-associated toxicities including infections by de-intensifying chemotherapy doses, if possible. The small proportion of patients with relapsed ML-DS have an extremely poor prognosis and require the development of new therapies.
Collapse
Affiliation(s)
- Avanti Gupte
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Eman T Al-Antary
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yaddanapudi Ravindranath
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jeffrey W Taub
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA; Discipline of Pediatrics, Central Michigan University, Saginaw, Michigan, USA.
| |
Collapse
|
50
|
Ludwig LS, Lareau CA, Bao EL, Liu N, Utsugisawa T, Tseng AM, Myers SA, Verboon JM, Ulirsch JC, Luo W, Muus C, Fiorini C, Olive ME, Vockley CM, Munschauer M, Hunter A, Ogura H, Yamamoto T, Inada H, Nakagawa S, Ohzono S, Subramanian V, Chiarle R, Glader B, Carr SA, Aryee MJ, Kundaje A, Orkin SH, Regev A, McCavit TL, Kanno H, Sankaran VG. Congenital anemia reveals distinct targeting mechanisms for master transcription factor GATA1. Blood 2022; 139:2534-2546. [PMID: 35030251 PMCID: PMC9029090 DOI: 10.1182/blood.2021013753] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/24/2021] [Indexed: 11/20/2022] Open
Abstract
Master regulators, such as the hematopoietic transcription factor (TF) GATA1, play an essential role in orchestrating lineage commitment and differentiation. However, the precise mechanisms by which such TFs regulate transcription through interactions with specific cis-regulatory elements remain incompletely understood. Here, we describe a form of congenital hemolytic anemia caused by missense mutations in an intrinsically disordered region of GATA1, with a poorly understood role in transcriptional regulation. Through integrative functional approaches, we demonstrate that these mutations perturb GATA1 transcriptional activity by partially impairing nuclear localization and selectively altering precise chromatin occupancy by GATA1. These alterations in chromatin occupancy and concordant chromatin accessibility changes alter faithful gene expression, with failure to both effectively silence and activate select genes necessary for effective terminal red cell production. We demonstrate how disease-causing mutations can reveal regulatory mechanisms that enable the faithful genomic targeting of master TFs during cellular differentiation.
Collapse
Affiliation(s)
- Leif S Ludwig
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Caleb A Lareau
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
- Department of Computer Science and
- Department of Genetics, Stanford University, Stanford, CA
| | - Erik L Bao
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
- Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA
| | - Nan Liu
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Taiju Utsugisawa
- Department of Transfusion Medicine and Cell Processing, Faculty of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Alex M Tseng
- Department of Computer Science and
- Department of Genetics, Stanford University, Stanford, CA
| | - Samuel A Myers
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
- La Jolla Institute for Immunology, La Jolla, CA
| | - Jeffrey M Verboon
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
| | - Jacob C Ulirsch
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA
| | - Wendy Luo
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
| | - Christoph Muus
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
- John A. Paulson School of Engineering and Applied Sciences, Faculty of Arts and Sciences, Harvard University, Cambridge, MA
| | - Claudia Fiorini
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
| | - Meagan E Olive
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
| | - Christopher M Vockley
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
| | - Mathias Munschauer
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz Center for Infection Research, Würzburg, Germany
- Infection and Immunity Department, Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | | | - Hiromi Ogura
- Department of Transfusion Medicine and Cell Processing, Faculty of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | | | - Shinichiro Nakagawa
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Shuichi Ohzono
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Vidya Subramanian
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
| | - Roberto Chiarle
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Bertil Glader
- Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
| | - Martin J Aryee
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Anshul Kundaje
- Department of Computer Science and
- Department of Genetics, Stanford University, Stanford, CA
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Aviv Regev
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
- Howard Hughes Medical Institute, Chevy Chase, MD
- Department of Biology and
- Koch Institute of Integrative Cancer Research, MIT, Cambridge, MA; and
| | | | - Hitoshi Kanno
- Department of Transfusion Medicine and Cell Processing, Faculty of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Vijay G Sankaran
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
| |
Collapse
|