1
|
Sun L, Yin Y, Cao Y, Chen C, Guo Y, Cai Z, Wu J, Li Q. Proteomic analysis of B cells in peripheral lymphatic system reveals the dynamics during the systemic lupus erythematosus progression. BIOPHYSICS REPORTS 2025; 11:129-142. [PMID: 40308935 PMCID: PMC12035744 DOI: 10.52601/bpr.2024.240045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/09/2024] [Indexed: 05/02/2025] Open
Abstract
In this study, we conducted a comprehensive proteomic analysis of B cells from the spleen, mesenteric lymph nodes (mLN), and peripheral blood mononuclear cells (PBMC) in a time-course model of systemic lupus erythematosus (SLE) using female MRL/lpr mice. By combining fluorescence-activated cell sorting (FACS) and 4D-Data-Independent Acquisition (4D-DIA) mass spectrometry, we quantified nearly 8000 proteins, identifying significant temporal and tissue-specific proteomic changes during SLE progression. PBMC-derived B cells exhibited early proteomic alterations by Week 9, while spleen-derived B cells showed similar changes by Week 12. We identified key regulatory proteins, including BAFF, BAFFR, and NFKB2, involved in B cell survival and activation, as well as novel markers such as CD11c and CD117, which have previously been associated with other immune cells. The study highlights the dynamic reprogramming of B cell proteomes across different tissues, with distinct contributions to SLE pathogenesis, providing valuable insights into the molecular mechanisms underlying B cell dysregulation in lupus. These findings offer potential therapeutic targets and biomarkers for SLE.
Collapse
Affiliation(s)
- Liming Sun
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yuanyuan Yin
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yuqing Cao
- School of Life Science and Technology, ShanghaiTech university, Shanghai 201210, China
| | - Chunlei Chen
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yutong Guo
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zeming Cai
- School of Life Science and Technology, ShanghaiTech university, Shanghai 201210, China
| | - Jiarui Wu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Qingrun Li
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
2
|
Shabani M, Rostamzadeh D, Mansouri M, Jeddi-Tehrani M. Overview on Immunopathology of Chronic Lymphocytic Leukemia and Tumor-Associated Antigens with Therapeutic Applications. Avicenna J Med Biotechnol 2024; 16:201-222. [PMID: 39606680 PMCID: PMC11589431 DOI: 10.18502/ajmb.v16i4.16737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/20/2024] [Indexed: 11/29/2024] Open
Abstract
Chronic Lymphocytic Leukemia (CLL) is a clinically and biologically heterogeneous disease with a variable clinical course. The induction of a generalized state of immuno-suppression, leading to susceptibility to infections and the failure of anti-tumor immune responses, is a key feature of the clinical course of CLL. In addition to B-cell receptor (BCR) signaling in CLL, several receptor tyrosine kinases (RTKs) have been reported to be constitutively active in leukemic B cells, resulting in promoted survival and resistance to apoptosis induced by chemotherapy. Several treatment options are available for CLL, including a watch-and-wait strategy, chemotherapy, targeted therapies, immunotherapies such as adoptive cellular therapy (CAR T-Cell Therapy), stem cell transplantation (allogeneic transplantation), radiation therapy and surgery. The identification of Tumor-Associated Antigens (TAAs) is the bottleneck of tumor immunology and immunotherapy, serving as promising targets for precise diagnosis, monitoring, or therapeutic approaches. Numerous TAAs have been identified, and their application in immunotherapy holds promise for the treatment of CLL. Furthermore, extensive ongoing research aims to identify new cancer TAAs. In this review, our objective is to provide a comprehensive overview of CLL immunology and recent findings regarding advances in TAAs with therapeutic applications in CLL.
Collapse
Affiliation(s)
- Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davoud Rostamzadeh
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mansoure Mansouri
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
3
|
Muto M, Suzuki H, Suzuki Y. New Insights and Future Perspectives of APRIL in IgA Nephropathy. Int J Mol Sci 2024; 25:10340. [PMID: 39408691 PMCID: PMC11476402 DOI: 10.3390/ijms251910340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
IgA nephropathy (IgAN) is characterized by immune-mediated glomerulonephritis, with the accumulation of galactose-deficient IgA1 (Gd-IgA1) in the glomeruli and increased levels of circulating Gd-IgA1 and Gd-IgA1-containing immune complexes. An incomplete understanding of the underlying mechanisms and differences in clinical and pathological features between individuals and ethnicities has contributed to the lack of established treatments for IgAN. A tumor necrosis factor (TNF) family member, a proliferation-inducing ligand (APRIL), is a crucial cytokine essential for the generation and survival of plasma cells. Recent studies demonstrated that APRIL is a pivotal mediator in the production of Gd-IgA1 in IgAN. As our understanding of the autoimmune pathogenesis underlying IgAN has improved, various pharmacological therapeutic targets, including APRIL antagonists, have emerged. Preliminary results showed that APRIL-targeting agents effectively reduced proteinuria and Gd-IgA1 levels without significantly increasing adverse events, indicating their potential as novel therapeutic agents for IgAN. In the present review, we discuss the current understanding of the role of APRIL in the pathogenesis of IgAN and novel therapeutic strategies focusing on APRIL-targeting agents for IgAN. APRIL inhibitors may offer new hope to patients with IgAN.
Collapse
Affiliation(s)
- Masahiro Muto
- Department of Nephrology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan; (M.M.); (H.S.)
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Hitoshi Suzuki
- Department of Nephrology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan; (M.M.); (H.S.)
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan; (M.M.); (H.S.)
| |
Collapse
|
4
|
Simpson MJ, Newen AM, McNees C, Sharma S, Pfannenstiel D, Moyer T, Stephany D, Douagi I, Wang Q, Mayer CT. Peripheral apoptosis and limited clonal deletion during physiologic murine B lymphocyte development. Nat Commun 2024; 15:4691. [PMID: 38824171 PMCID: PMC11144239 DOI: 10.1038/s41467-024-49062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
Self-reactive and polyreactive B cells generated during B cell development are silenced by either apoptosis, clonal deletion, receptor editing or anergy to avoid autoimmunity. The specific contribution of apoptosis to normal B cell development and self-tolerance is incompletely understood. Here, we quantify self-reactivity, polyreactivity and apoptosis during physiologic B lymphocyte development. Self-reactivity and polyreactivity are most abundant in early immature B cells and diminish significantly during maturation within the bone marrow. Minimal apoptosis still occurs at this site, however B cell receptors cloned from apoptotic B cells show comparable self-reactivity to that of viable cells. Apoptosis increases dramatically only following immature B cells leaving the bone marrow sinusoids, but above 90% of cloned apoptotic transitional B cells are not self-reactive/polyreactive. Our data suggests that an apoptosis-independent mechanism, such as receptor editing, removes most self-reactive B cells in the bone marrow. Mechanistically, lack of survival signaling rather than clonal deletion appears to be the underpinning cause of apoptosis in most transitional B cells in the periphery.
Collapse
Affiliation(s)
- Mikala JoAnn Simpson
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anna Minh Newen
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher McNees
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sukriti Sharma
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dylan Pfannenstiel
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Moyer
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David Stephany
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Iyadh Douagi
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Christian Thomas Mayer
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Saluja S, Bansal I, Bhardwaj R, Beg MS, Palanichamy JK. Inflammation as a driver of hematological malignancies. Front Oncol 2024; 14:1347402. [PMID: 38571491 PMCID: PMC10987768 DOI: 10.3389/fonc.2024.1347402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Hematopoiesis is a tightly regulated process that produces all adult blood cells and immune cells from multipotent hematopoietic stem cells (HSCs). HSCs usually remain quiescent, and in the presence of external stimuli like infection or inflammation, they undergo division and differentiation as a compensatory mechanism. Normal hematopoiesis is impacted by systemic inflammation, which causes HSCs to transition from quiescence to emergency myelopoiesis. At the molecular level, inflammatory cytokine signaling molecules such as tumor necrosis factor (TNF), interferons, interleukins, and toll-like receptors can all cause HSCs to multiply directly. These cytokines actively encourage HSC activation, proliferation, and differentiation during inflammation, which results in the generation and activation of immune cells required to combat acute injury. The bone marrow niche provides numerous soluble and stromal cell signals, which are essential for maintaining normal homeostasis and output of the bone marrow cells. Inflammatory signals also impact this bone marrow microenvironment called the HSC niche to regulate the inflammatory-induced hematopoiesis. Continuous pro-inflammatory cytokine and chemokine activation can have detrimental effects on the hematopoietic system, which can lead to cancer development, HSC depletion, and bone marrow failure. Reactive oxygen species (ROS), which damage DNA and ultimately lead to the transformation of HSCs into cancerous cells, are produced due to chronic inflammation. The biological elements of the HSC niche produce pro-inflammatory cytokines that cause clonal growth and the development of leukemic stem cells (LSCs) in hematological malignancies. The processes underlying how inflammation affects hematological malignancies are still not fully understood. In this review, we emphasize the effects of inflammation on normal hematopoiesis, the part it plays in the development and progression of hematological malignancies, and potential therapeutic applications for targeting these pathways for therapy in hematological malignancies.
Collapse
|
6
|
Mardani-Jouneghani R, Irani S, Habibi-Anbouhi M, Behdani M. Development and Characterization of a Novel Single-Chain Antibody Against B-Cell Activating Factor. Mol Biotechnol 2023; 65:1968-1978. [PMID: 36906729 DOI: 10.1007/s12033-023-00700-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/14/2023] [Indexed: 03/13/2023]
Abstract
As a member of the tumor necrosis factor (TNF) superfamily, the B-cell activating factor (BAFF) plays a crucial role in B-cell survival and differentiation. Overexpression of this protein has been closely linked to autoimmune disorders and some B-cell malignancies. Using monoclonal antibodies (mAbs) against the BAFF soluble domain appears to be a complementary treatment for some of these diseases. This study aimed to produce and develop a specific Nanobody (Nb), a variable camelid antibody domain, against the soluble domain of BAFF protein. After camel immunization with recombinant protein and preparing cDNA from total RNAs separated from camel lymphocytes, an Nb library was developed. Individual colonies capable of binding selectively to rBAFF were obtained by periplasmic-ELISA, sequenced, and expressed in a bacterial expression system. The specificity and affinity of selected Nb were determined and its target identification and functionality were evaluated using flow cytometry.
Collapse
Affiliation(s)
- Rasoul Mardani-Jouneghani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Biotechnology Research Centre, Venom and Biotherapeutics Molecules Laboratory, Pasteur Institute of Iran, Tehran, 1316543551, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Mahdi Behdani
- Biotechnology Research Centre, Venom and Biotherapeutics Molecules Laboratory, Pasteur Institute of Iran, Tehran, 1316543551, Iran.
- Zoonoses Research Centre, Pasteur Institute of Iran, Amol, Iran.
| |
Collapse
|
7
|
Guldenpfennig C, Teixeiro E, Daniels M. NF-kB's contribution to B cell fate decisions. Front Immunol 2023; 14:1214095. [PMID: 37533858 PMCID: PMC10391175 DOI: 10.3389/fimmu.2023.1214095] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
NF-κB signaling is essential to an effective innate and adaptive immune response. Many immune-specific functional and developmental outcomes depend in large on NF-κB. The formidable task of sorting out the mechanisms behind the regulation and outcome of NF-κB signaling remains an important area of immunology research. Here we briefly discuss the role of NF-κB in regulating cell fate decisions at various times in the path of B cell development, activation, and the generation of long-term humoral immunity.
Collapse
Affiliation(s)
- Caitlyn Guldenpfennig
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Emma Teixeiro
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Mark Daniels
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| |
Collapse
|
8
|
Shimojima Y, Kishida D, Ichikawa T, Takamatsu R, Nomura S, Sekijima Y. Features of BAFF and APRIL receptors on circulating B cells in antineutrophil cytoplasmic antibody-associated vasculitis. Clin Exp Immunol 2023; 213:125-137. [PMID: 36794867 PMCID: PMC10324548 DOI: 10.1093/cei/uxad024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/17/2023] Open
Abstract
To investigate the features of circulating B cells, their expressing receptors, serum levels of B-cell activation factor of the TNF family (BAFF), and a proliferation-inducing ligand (APRIL) in antineutrophil cytoplasmic antibody-associated vasculitis (AAV). Blood samples from 24 patients with active AAV (a-AAV), 13 with inactive AAV (i-AAV), and 19 healthy controls (HC) were included in this study. The proportion of B cells and their expressing BAFF receptor (BAFF-R), transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI), and B-cell maturation antigen were analyzed via flow cytometry. Serum levels of BAFF, APRIL, and interleukin (IL)-4, IL-6, IL-10, and IL-13 were also evaluated using an enzyme-linked immunosorbent assay. The proportion of plasmablasts (PB)/plasma cells (PC) and serum levels of BAFF, APRIL, IL-4, and IL-6 were significantly higher in a-AAV than in HC. Higher serum levels of BAFF, APRIL, and IL-4 were observed in i-AAV than in HC. Lower expression of BAFF-R on memory B cells and higher expression of TACI on CD19+ cells, immature B cells, and PB/PC were demonstrated in a-AAV and i-AAV than in HC. The population of memory B cells was positively associated with serum APRIL levels and BAFF-R expression in a-AAV. In conclusion, decreased expression of BAFF-R on memory B cells and increased expression of TACI on CD19+ cells, immature B cells, and PB/PC, as well as increased serum levels of BAFF and APRIL, were sustained even in the remission phase of AAV. Persistent aberrant signaling of BAFF/APRIL may contribute to disease relapse.
Collapse
Affiliation(s)
- Yasuhiro Shimojima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Dai Kishida
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Takanori Ichikawa
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Ryota Takamatsu
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Shun Nomura
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoshiki Sekijima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
9
|
Willett MJ, McNees C, Sharma S, Newen AM, Pfannenstiel D, Moyer T, Stephany D, Douagi I, Wang Q, Mayer CT. Peripheral death by neglect and limited clonal deletion during physiologic B lymphocyte development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542923. [PMID: 37502950 PMCID: PMC10370189 DOI: 10.1101/2023.05.30.542923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Autoreactive B cells generated during B cell development are inactivated by clonal deletion, receptor editing or anergy. Up to 97% of immature B cells appear to die before completing maturation, but the anatomic sites and reasons underlying this massive cell loss are not fully understood. Here, we directly quantitated apoptosis and clonal deletion during physiologic B lymphocyte development using Rosa26INDIA apoptosis indicator mice. Immature B cells displayed low levels of apoptosis in the bone marrow but started dying at high levels in the periphery upon release from bone marrow sinusoids into the blood circulation. Clonal deletion of self-reactive B cells was neither a major contributor to apoptosis in the bone marrow nor the periphery. Instead, most peripheral transitional 1 B cells did not encounter the signals required for positive selection into the mature B cell compartments. This study sheds new light on B cell development and suggests that receptor editing and/or anergy efficiently control most primary autoreactivity in mice.
Collapse
Affiliation(s)
- Mikala JoAnn Willett
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health; Bethesda, MD 20892, USA
| | - Christopher McNees
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health; Bethesda, MD 20892, USA
| | - Sukriti Sharma
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health; Bethesda, MD 20892, USA
| | - Anna Minh Newen
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health; Bethesda, MD 20892, USA
| | - Dylan Pfannenstiel
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health; Bethesda, MD 20892, USA
| | - Thomas Moyer
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - David Stephany
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Iyadh Douagi
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University; Shanghai, China, 200032
| | - Christian Thomas Mayer
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health; Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Singh A, Kaileh M, De S, Mazan-Mamczarz K, Bayarsaihan D, Sen R, Roy AL. Transcription factor TFII-I fine tunes innate properties of B lymphocytes. Front Immunol 2023; 14:1067459. [PMID: 36756127 PMCID: PMC9900109 DOI: 10.3389/fimmu.2023.1067459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
The ubiquitously expressed transcription factor TFII-I is a multifunctional protein with pleiotropic roles in gene regulation. TFII-I associated polymorphisms are implicated in Sjögren's syndrome and Lupus in humans and, germline deletion of the Gtf2i gene in mice leads to embryonic lethality. Here we report a unique role for TFII-I in homeostasis of innate properties of B lymphocytes. Loss of Gtf2i in murine B lineage cells leads to an alteration in transcriptome, chromatin landscape and associated transcription factor binding sites, which exhibits myeloid-like features and coincides with enhanced sensitivity to LPS induced gene expression. TFII-I deficient B cells also show increased switching to IgG3, a phenotype associated with inflammation. These results demonstrate a role for TFII-I in maintaining immune homeostasis and provide clues for GTF2I polymorphisms associated with B cell dominated autoimmune diseases in humans.
Collapse
Affiliation(s)
- Amit Singh
- Laboratory of Molecular Biology and Immunology, National Institutes of Health, National Institute on Aging, Baltimore, MD, United States
| | - Mary Kaileh
- Laboratory of Molecular Biology and Immunology, National Institutes of Health, National Institute on Aging, Baltimore, MD, United States
| | - Supriyo De
- Laboratory of Genetics & Genomics, National Institutes of Health, National Institute on Aging, Baltimore, MD, United States
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics & Genomics, National Institutes of Health, National Institute on Aging, Baltimore, MD, United States
| | - Dashzeveg Bayarsaihan
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, United States
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institutes of Health, National Institute on Aging, Baltimore, MD, United States
| | - Ananda L Roy
- Laboratory of Molecular Biology and Immunology, National Institutes of Health, National Institute on Aging, Baltimore, MD, United States
| |
Collapse
|
11
|
D Lempicki M, Paul S, Serbulea V, Upchurch CM, Sahu S, Gray JA, Ailawadi G, Garcia BL, McNamara CA, Leitinger N, Meher AK. BAFF antagonism via the BAFF receptor 3 binding site attenuates BAFF 60-mer-induced classical NF-κB signaling and metabolic reprogramming of B cells. Cell Immunol 2022; 381:104603. [PMID: 36182705 PMCID: PMC10691782 DOI: 10.1016/j.cellimm.2022.104603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/03/2022]
Abstract
Human recombinant B cell activating factor (BAFF) is secreted as 3-mers, which can associate to form 60-mers in culture supernatants. However, the presence of BAFF multimers in humans is still debated and it is incompletely understood how BAFF multimers activate the B cells. Here, we demonstrate that BAFF can exist as 60-mers or higher order multimers in human plasma. In vitro, BAFF 60-mer strongly induced the transcriptome of B cells which was partly attenuated by antagonism using a soluble fragment of BAFF receptor 3. Furthermore, compared to BAFF 3-mer, BAFF 60-mer strongly induced a transient classical and prolonged alternate NF-κB signaling, glucose oxidation by both aerobic glycolysis and oxidative phosphorylation, and succinate utilization by mitochondria. BAFF antagonism selectively attenuated classical NF-κB signaling and glucose oxidation. Altogether, our results suggest critical roles of BAFF 60-mer and its BAFF receptor 3 binding site in hyperactivation of B cells.
Collapse
Affiliation(s)
- Melissa D Lempicki
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States
| | - Saikat Paul
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States
| | - Vlad Serbulea
- Department of Pharmacology, University of Virginia, VA 22908, United States
| | - Clint M Upchurch
- Department of Pharmacology, University of Virginia, VA 22908, United States
| | - Srabani Sahu
- Department of Pharmacology, University of Virginia, VA 22908, United States
| | - Jake A Gray
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States
| | - Gorav Ailawadi
- Department of Surgery, University of Virginia, VA 22908, United States
| | - Brandon L Garcia
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States
| | - Coleen A McNamara
- Robert M. Berne Cardiovascular Research Center, University of Virginia, VA 22908, United States
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia, VA 22908, United States
| | - Akshaya K Meher
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States; Department of Pharmacology, University of Virginia, VA 22908, United States.
| |
Collapse
|
12
|
Corneth OBJ, Neys SFH, Hendriks RW. Aberrant B Cell Signaling in Autoimmune Diseases. Cells 2022; 11:cells11213391. [PMID: 36359789 PMCID: PMC9654300 DOI: 10.3390/cells11213391] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022] Open
Abstract
Aberrant B cell signaling plays a critical in role in various systemic and organ-specific autoimmune diseases. This is supported by genetic evidence by many functional studies in B cells from patients or specific animal models and by the observed efficacy of small-molecule inhibitors. In this review, we first discuss key signal transduction pathways downstream of the B cell receptor (BCR) that ensure that autoreactive B cells are removed from the repertoire or functionally silenced. We provide an overview of aberrant BCR signaling that is associated with inappropriate B cell repertoire selection and activation or survival of peripheral B cell populations and plasma cells, finally leading to autoantibody formation. Next to BCR signaling, abnormalities in other signal transduction pathways have been implicated in autoimmune disease. These include reduced activity of several phosphates that are downstream of co-inhibitory receptors on B cells and increased levels of BAFF and APRIL, which support survival of B cells and plasma cells. Importantly, pathogenic synergy of the BCR and Toll-like receptors (TLR), which can be activated by endogenous ligands, such as self-nucleic acids, has been shown to enhance autoimmunity. Finally, we will briefly discuss therapeutic strategies for autoimmune disease based on interfering with signal transduction in B cells.
Collapse
|
13
|
Leveille E, Chan LN, Mirza AS, Kume K, Müschen M. SYK and ZAP70 kinases in autoimmunity and lymphoid malignancies. Cell Signal 2022; 94:110331. [PMID: 35398488 DOI: 10.1016/j.cellsig.2022.110331] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022]
Abstract
SYK and ZAP70 nonreceptor tyrosine kinases serve essential roles in initiating B-cell receptor (BCR) and T-cell receptor (TCR) signaling in B- and T-lymphocytes, respectively. Despite their structural and functional similarity, expression of SYK and ZAP70 is strictly separated during B- and T-lymphocyte development, the reason for which was not known. Aberrant co-expression of ZAP70 with SYK was first identified in B-cell chronic lymphocytic leukemia (CLL) and is considered a biomarker of aggressive disease and poor clinical outcomes. We recently found that aberrant ZAP70 co-expression not only functions as an oncogenic driver in CLL but also in various other B-cell malignancies, including acute lymphoblastic leukemia (B-ALL) and mantle cell lymphoma. Thereby, aberrantly expressed ZAP70 redirects SYK and BCR-downstream signaling from NFAT towards activation of the PI3K-pathway. In the sole presence of SYK, pathological BCR-signaling in autoreactive or premalignant cells induces NFAT-activation and NFAT-dependent anergy and negative selection. In contrast, negative selection of pathological B-cells is subverted when ZAP70 diverts SYK from activation of NFAT towards tonic PI3K-signaling, which promotes survival instead of cell death. We discuss here how both B-cell malignancies and autoimmune diseases frequently evolve to harness this mechanism, highlighting the importance of developmental separation of the two kinases as an essential safeguard.
Collapse
Affiliation(s)
- Etienne Leveille
- Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA; Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Lai N Chan
- Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA; Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Abu-Sayeef Mirza
- Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA; Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kohei Kume
- Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA
| | - Markus Müschen
- Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA; Department of Immunobiology, Yale University, CT 06520, USA.
| |
Collapse
|
14
|
Gómez Atria D, Gaudette BT, Londregan J, Kelly S, Perkey E, Allman A, Srivastava B, Koch U, Radtke F, Ludewig B, Siebel CW, Ryan RJ, Robertson TF, Burkhardt JK, Pear WS, Allman D, Maillard I. Stromal Notch ligands foster lymphopenia-driven functional plasticity and homeostatic proliferation of naïve B cells. J Clin Invest 2022; 132:158885. [PMID: 35579963 PMCID: PMC9246379 DOI: 10.1172/jci158885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
In lymphopenic environments, secondary lymphoid organs regulate the size of B and T-cell compartments by supporting homeostatic proliferation of mature lymphocytes. The molecular mechanisms underlying these responses and their functional consequences remain incompletely understood. To evaluate homeostasis of the mature B-cell pool during lymphopenia, we turned to an adoptive transfer model of purified follicular B-cells into Rag2-/- mouse recipients. Highly purified follicular B-cells transdifferentiated into marginal zone-like B-cells when transferred into Rag2-/- lymphopenic hosts, but not into wild-type hosts. In lymphopenic spleens, transferred B-cells gradually lost their follicular phenotype and acquired characteristics of marginal zone B-cells, as judged by cell surface phenotype, expression of integrins and chemokine receptors, positioning close to the marginal sinus, and an ability to rapidly generate functional plasma cells. Initiation of follicular to marginal zone B-cell transdifferentiation preceded proliferation. Furthermore, the transdifferentiation process was dependent on Notch2 receptors in B-cells and expression of Delta-like1 Notch ligands by splenic Ccl19-Cre+ fibroblastic stromal cells. Gene expression analysis showed rapid induction of Notch-regulated transcripts followed by upregulated Myc expression and acquisition of broad transcriptional features of marginal zone B-cells. Thus, naïve mature B-cells are endowed with plastic transdifferentiation potential in response to increased stromal Notch ligand availability during lymphopenia.
Collapse
Affiliation(s)
- Daniela Gómez Atria
- Department of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Brian T Gaudette
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Jennifer Londregan
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, United States of America
| | - Samantha Kelly
- Department of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Eric Perkey
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, United States of America
| | - Anneka Allman
- Department of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Bhaskar Srivastava
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Ute Koch
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Freddy Radtke
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Christian W Siebel
- Department of Discovery Oncology, Genentech Inc., South San Francisco, United States of America
| | - Russell Jh Ryan
- Department of Pathology, University of Michigan, Ann Arbor, United States of America
| | - Tanner F Robertson
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, United States of America
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Warren S Pear
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - David Allman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Ivan Maillard
- University of Pennsylvania, Philadelphia, United States of America
| |
Collapse
|
15
|
Neys SFH, Verstappen GM, Bootsma H, Kroese FGM, Hendriks RW, Corneth OBJ. Decreased BAFF Receptor Expression and Unaltered B Cell Receptor Signaling in Circulating B Cells from Primary Sjögren's Syndrome Patients at Diagnosis. Int J Mol Sci 2022; 23:ijms23095101. [PMID: 35563492 PMCID: PMC9103204 DOI: 10.3390/ijms23095101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 02/04/2023] Open
Abstract
Animal models of autoimmunity and human genetic association studies indicate that the dysregulation of B-cell receptor (BCR) signaling is an important driver of autoimmunity. We previously showed that in circulating B cells from primary Sjögren’s syndrome (pSS) patients with high systemic disease activity, protein expression of the BCR signaling molecule Bruton’s tyrosine kinase (BTK) was increased and correlated with T-cell infiltration in the target organ. We hypothesized that these alterations could be driven by increased B-cell activating factor (BAFF) levels in pSS. Here, we investigated whether altered BCR signaling was already present at diagnosis and distinguished pSS from non-SS sicca patients. Using (phospho-)flow cytometry, we quantified the phosphorylation of BCR signaling molecules, and investigated BTK and BAFF receptor (BAFFR) expression in circulating B cell subsets in an inception cohort of non-SS sicca and pSS patients, as well as healthy controls (HCs). We found that both BTK protein levels and BCR signaling activity were comparable among groups. Interestingly, BAFFR expression was significantly downregulated in pSS, but not in non-SS sicca patients, compared with HCs, and correlated with pSS-associated alterations in B cell subsets. These data indicate reduced BAFFR expression as a possible sign of early B cell involvement and a diagnostic marker for pSS.
Collapse
Affiliation(s)
- Stefan F. H. Neys
- Department of Pulmonary Medicine, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Gwenny M. Verstappen
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (G.M.V.); (H.B.); (F.G.M.K.)
| | - Hendrika Bootsma
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (G.M.V.); (H.B.); (F.G.M.K.)
| | - Frans G. M. Kroese
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (G.M.V.); (H.B.); (F.G.M.K.)
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands;
- Correspondence: (R.W.H.); (O.B.J.C.)
| | - Odilia B. J. Corneth
- Department of Pulmonary Medicine, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands;
- Correspondence: (R.W.H.); (O.B.J.C.)
| |
Collapse
|
16
|
Merino-Vico A, van Hamburg JP, Tas SW. B Lineage Cells in ANCA-Associated Vasculitis. Int J Mol Sci 2021; 23:387. [PMID: 35008813 PMCID: PMC8745114 DOI: 10.3390/ijms23010387] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a systemic autoimmune disease that affects small sized blood vessels and can lead to serious complications in the lungs and kidneys. The prominent presence of ANCA autoantibodies in this disease implicates B cells in its pathogenesis, as these are the precursors of the ANCA-producing plasma cells (PCs). Further evidence supporting the potential role of B lineage cells in vasculitis are the increased B cell cytokine levels and the dysregulated B cell populations in patients. Confirmation of the contribution of B cells to pathology arose from the beneficial effect of anti-CD20 therapy (i.e., rituximab) in AAV patients. These anti-CD20 antibodies deplete circulating B cells, which results in amelioration of disease. However, not all patients respond completely, and this treatment does not target PCs, which can maintain ANCA production. Hence, it is important to develop more specific therapies for AAV patients. Intracellular signalling pathways may be potential therapeutic targets as they can show (disease-specific) alterations in certain B lineage cells, including pathogenic B cells, and contribute to differentiation and survival of PCs. Preliminary data on the inhibition of certain signalling molecules downstream of receptors specific for B lineage cells show promising therapeutic effects. In this narrative review, B cell specific receptors and their downstream signalling molecules that may contribute to pathology in AAV are discussed, including the potential to therapeutically target these pathways.
Collapse
Affiliation(s)
- Ana Merino-Vico
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.M.-V.); (J.P.v.H.)
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Jan Piet van Hamburg
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.M.-V.); (J.P.v.H.)
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Sander W. Tas
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.M.-V.); (J.P.v.H.)
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
17
|
BAFF, involved in B cell activation through the NF-κB pathway, is related to disease activity and bone destruction in rheumatoid arthritis. Acta Pharmacol Sin 2021; 42:1665-1675. [PMID: 33483588 PMCID: PMC8463593 DOI: 10.1038/s41401-020-00582-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 11/16/2020] [Indexed: 02/02/2023]
Abstract
B cell activating factor of TNF family (BAFF) is a member of TNF ligand superfamily and plays a key role in B cell homeostasis, proliferation, maturation, and survival. In this study, we detected BAFF level, the expressions of BAFF receptors and important molecules in NF-κB pathway in rheumatoid arthritis (RA) patients and analyzed the correlation between BAFF level and clinical variables, laboratory parameters or X-ray scores in order to elucidate the roles of BAFF in RA. A total of 50 RA patients and 50 healthy controls (HCs) were enrolled. We showed that the serum BAFF level in RA patients was significantly higher than that of HCs, and the percentages of B cell subsets (CD19+ B cells, CD19+CD27+ B cells, CD19+CD20+CD27+ B cells, and CD19+CD20-CD27+ B cells) in the serum of RA patients were significantly increased compared with those of HCs. The percentages of CD19+BAFFR+ B cells, CD19+ BCMA+ B cells, and CD19+ TACI+ B cells in RA patients were significantly increased compared with those in HCs. The expression of important molecules in the NF-κB pathway (MKK3, MKK6, p-P38, p-P65, TRAF2, and p52) was significantly higher in RA patients than in HCs, but p100 level in RA patients was lower than that in HCs. The serum BAFF level was positively correlated with C-reactive protein, rheumatoid factor, disease activity score (in 28 joints), swollen joint counts, tender joint counts, and X-ray scores. When normal B cells were treated with BAFF in vitro, the percentages of the B cell subset and the expression of BAFF receptors were significantly upregulated. BAFF also promoted the expression of MKK3, MKK6, p-P38, p-P65, TRAF2, and p52. In conclusion, this study demonstrates that BAFF level is correlated with the disease activity and bone destruction of RA. BAFF is involved in the differentiation, proliferation, and activation of B cells in RA through NF-κB signaling pathway, suggesting that BAFF might be an ideal therapeutic target for RA.
Collapse
|
18
|
Ren A, Sun J, Yin W, Westerberg LS, Miller H, Lee P, Candotti F, Guan F, Lei J, Gong Q, Chen Y, Liu C. Signaling networks in B cell development and related therapeutic strategies. J Leukoc Biol 2021; 111:877-891. [PMID: 34528729 DOI: 10.1002/jlb.2ru0221-088rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
B cells are essential for Ab production during humoral immune responses. From decades of B cell research, there is now a detailed understanding of B cell subsets, development, functions, and most importantly, signaling pathways. The complicated pathways in B cells and their interactions with each other are stage-dependent, varying with surface marker expression during B cell development. With the increasing understanding of B cell development and signaling pathways, the mechanisms underlying B cell related diseases are being unraveled as well, making it possible to provide more precise and effective treatments. In this review, we describe several essential and recently discovered signaling pathways in B cell development and take a look at newly developed therapeutic strategies targeted at B cell signaling.
Collapse
Affiliation(s)
- Anwen Ren
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianxuan Sun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Heather Miller
- The Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Neys SFH, Rip J, Hendriks RW, Corneth OBJ. Bruton's Tyrosine Kinase Inhibition as an Emerging Therapy in Systemic Autoimmune Disease. Drugs 2021; 81:1605-1626. [PMID: 34609725 PMCID: PMC8491186 DOI: 10.1007/s40265-021-01592-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 12/14/2022]
Abstract
Systemic autoimmune disorders are complex heterogeneous chronic diseases involving many different immune cells. A significant proportion of patients respond poorly to therapy. In addition, the high burden of adverse effects caused by "classical" anti-rheumatic or immune modulatory drugs provides a need to develop more specific therapies that are better tolerated. Bruton's tyrosine kinase (BTK) is a crucial signaling protein that directly links B-cell receptor (BCR) signals to B-cell activation, proliferation, and survival. BTK is not only expressed in B cells but also in myeloid cells, and is involved in many different signaling pathways that drive autoimmunity. This makes BTK an interesting therapeutic target in the treatment of autoimmune diseases. The past decade has seen the emergence of first-line BTK small-molecule inhibitors with great efficacy in the treatment of B-cell malignancies, but with unfavorable safety profiles for use in autoimmunity due to off-target effects. The development of second-generation BTK inhibitors with superior BTK specificity has facilitated the investigation of their efficacy in clinical trials with autoimmune patients. In this review, we discuss the role of BTK in key signaling pathways involved in autoimmunity and provide an overview of the different inhibitors that are currently being investigated in clinical trials of systemic autoimmune diseases, including rheumatoid arthritis and systemic lupus erythematosus, as well as available results from completed trials.
Collapse
Affiliation(s)
- Stefan F H Neys
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jasper Rip
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | - Odilia B J Corneth
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
20
|
Wright JA, Bazile C, Clark ES, Carlesso G, Boucher J, Kleiman E, Mahmoud T, Cheng LI, López-Rodríguez DM, Satterthwaite AB, Altman NH, Greidinger EL, Khan WN. Impaired B Cell Apoptosis Results in Autoimmunity That Is Alleviated by Ablation of Btk. Front Immunol 2021; 12:705307. [PMID: 34512628 PMCID: PMC8427801 DOI: 10.3389/fimmu.2021.705307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/30/2021] [Indexed: 01/23/2023] Open
Abstract
While apoptosis plays a role in B-cell self-tolerance, its significance in preventing autoimmunity remains unclear. Here, we report that dysregulated B cell apoptosis leads to delayed onset autoimmune phenotype in mice. Our longitudinal studies revealed that mice with B cell-specific deletion of pro-apoptotic Bim (BBimfl/fl ) have an expanded B cell compartment with a notable increase in transitional, antibody secreting and recently described double negative (DN) B cells. They develop greater hypergammaglobulinemia than mice lacking Bim in all cells and accumulate several autoantibodies characteristic of Systemic Lupus Erythematosus (SLE) and related Sjögren's Syndrome (SS) including anti-nuclear, anti-Ro/SSA and anti-La/SSB at a level comparable to NODH2h4 autoimmune mouse model. Furthermore, lymphocytes infiltrated the tissues including submandibular glands and formed follicle-like structures populated with B cells, plasma cells and T follicular helper cells indicative of ongoing immune reaction. This autoimmunity was ameliorated upon deletion of Bruton's tyrosine kinase (Btk) gene, which encodes a key B cell signaling protein. These studies suggest that Bim-mediated apoptosis suppresses and B cell tyrosine kinase signaling promotes B cell-mediated autoimmunity.
Collapse
Affiliation(s)
- Jacqueline A. Wright
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Cassandra Bazile
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Emily S. Clark
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Gianluca Carlesso
- Early Oncology Discovery, Early Oncology R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Justin Boucher
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Eden Kleiman
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Tamer Mahmoud
- Early Oncology Discovery, Early Oncology R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Lily I. Cheng
- Oncology Safety/Pathology, Clinical Pharmacology and Safety Sciences, AstraZeneca, Gaithersburg, MD, United States
| | - Darlah M. López-Rodríguez
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Anne B. Satterthwaite
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Norman H. Altman
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Eric L. Greidinger
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Wasif N. Khan
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
21
|
Neys SFH, Hendriks RW, Corneth OBJ. Targeting Bruton's Tyrosine Kinase in Inflammatory and Autoimmune Pathologies. Front Cell Dev Biol 2021; 9:668131. [PMID: 34150760 PMCID: PMC8213343 DOI: 10.3389/fcell.2021.668131] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Bruton's tyrosine kinase (BTK) was discovered due to its importance in B cell development, and it has a critical role in signal transduction downstream of the B cell receptor (BCR). Targeting of BTK with small molecule inhibitors has proven to be efficacious in several B cell malignancies. Interestingly, recent studies reveal increased BTK protein expression in circulating resting B cells of patients with systemic autoimmune disease (AID) compared with healthy controls. Moreover, BTK phosphorylation following BCR stimulation in vitro was enhanced. In addition to its role in BCR signaling, BTK is involved in many other pathways, including pattern recognition, Fc, and chemokine receptor signaling in B cells and myeloid cells. This broad involvement in several immunological pathways provides a rationale for the targeting of BTK in the context of inflammatory and systemic AID. Accordingly, numerous in vitro and in vivo preclinical studies support the potential of BTK targeting in these conditions. Efficacy of BTK inhibitors in various inflammatory and AID has been demonstrated or is currently evaluated in clinical trials. In addition, very recent reports suggest that BTK inhibition may be effective as immunosuppressive therapy to diminish pulmonary hyperinflammation in coronavirus disease 2019 (COVID-19). Here, we review BTK's function in key signaling pathways in B cells and myeloid cells. Further, we discuss recent advances in targeting BTK in inflammatory and autoimmune pathologies.
Collapse
|
22
|
Álvarez K, Villar-Vesga J, Ortiz-Reyes B, Vanegas-García A, Castaño D, Rojas M, Vásquez G. Induction of NF-κB inflammatory pathway in monocytes by microparticles from patients with systemic lupus erythematosus. Heliyon 2020; 6:e05815. [PMID: 33409392 PMCID: PMC7773880 DOI: 10.1016/j.heliyon.2020.e05815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/21/2020] [Accepted: 12/18/2020] [Indexed: 12/26/2022] Open
Abstract
Background Elevated levels of circulating microparticles (MPs) and molecules of the complement system have been reported in patients with systemic lupus erythematosus (SLE). Moreover, microparticles isolated from patients with SLE (SLE-MPs) contain higher levels of damage-associated molecular patterns (DAMPs) than MPs from healthy controls (CMPs). We hypothesize that the uptake of MPs by monocytes could contribute to the chronic inflammatory processes observed in patients with SLE. Therefore, the aim of this study was to evaluate the expression of activation markers, production of proinflammatory mediators, and activation of the NF-κB signaling pathway in monocytes treated with CMPs and SLE-MPs. Methodology Monocytes isolated from healthy individuals were pretreated or not with pyrrolidine dithiocarbamate (PDTC) and cultured with CMPs and SLE-MPs. The cell surface expression of CD69 and HLA-DR were evaluated by flow cytometry; cytokine and eicosanoid levels were quantified in culture supernatants by Cytokine Bead Array and ELISA, respectively; and the NF-κB activation was evaluated by Western blot and epifluorescence microscopy. Results The cell surface expression of HLA-DR and CD69, and the supernatant levels of IL-6, IL-1β, PGE2, and LTB4 were higher in cultures of monocytes treated with SLE-MPs than CMPs. These responses were blocked in the presence of PDTC, a pharmacological inhibitor of the NF-κB pathway, with concomitant reduction of IκBα and cytoplasmic p65, and increased nuclear translocation of p65. Conclusions The present findings indicate that significant uptake of SLE-MPs by monocytes results in activation, production of inflammatory mediators, and triggering of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Karen Álvarez
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de Investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia (UDEA), Carrera 53 No.61-30, Medellín, Colombia
| | - Juan Villar-Vesga
- Grupo de Neurociencias de Antioquia, Área de Neurobiología Celular y Molecular, Facultad de Medicina. Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Calle 70 No.52-21, Medellín, Colombia
| | - Blanca Ortiz-Reyes
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de Investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia (UDEA), Carrera 53 No.61-30, Medellín, Colombia
| | - Adriana Vanegas-García
- Grupo de Reumatología, Facultad de Medicina, Universidad de Antioquia (UDEA), Carrera 53 No.61-30, Medellín, Colombia.,Sección de Reumatología, Hospital Universitario San Vicente Fundación, Calle 64 No.51D-154, Medellín, Colombia
| | - Diana Castaño
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de Investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia (UDEA), Carrera 53 No.61-30, Medellín, Colombia
| | - Mauricio Rojas
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de Investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia (UDEA), Carrera 53 No.61-30, Medellín, Colombia.,Unidad de Citometría de Flujo, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Carrera 53 No.61-30, Medellín, Colombia
| | - Gloria Vásquez
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de Investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia (UDEA), Carrera 53 No.61-30, Medellín, Colombia.,Grupo de Reumatología, Facultad de Medicina, Universidad de Antioquia (UDEA), Carrera 53 No.61-30, Medellín, Colombia
| |
Collapse
|
23
|
Möckel T, Basta F, Weinmann-Menke J, Schwarting A. B cell activating factor (BAFF): Structure, functions, autoimmunity and clinical implications in Systemic Lupus Erythematosus (SLE). Autoimmun Rev 2020; 20:102736. [PMID: 33333233 DOI: 10.1016/j.autrev.2020.102736] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/28/2020] [Indexed: 12/30/2022]
Abstract
The B cell activating factor (BAFF), or B lymphocyte stimulator (BLyS), is a B cell survival factor which supports autoreactive B cells and prevents their deletion. BAFF expression is closely linked with autoimmunity and is enhanced by genetic alterations and viral infections. Furthermore, BAFF seems to be involved in adipogenesis, atherosclerosis, neuro-inflammatory processes and ischemia reperfusion (I/R) injury. BAFF is commonly overexpressed in Systemic Lupus Erythematosus (SLE) and strongly involved in the pathogenesis of the disease. The relationship between BAFF levels, disease activity and damage accrual in SLE is controversial, but growing evidence is emerging on its role in renal involvement. Belimumab, a biologic BAFF inhibitor, has been the first biologic agent licensed for SLE therapy so far. As Rituximab (RTX) has been shown to increase BAFF levels following B cell depletion, the combination therapy of RTX plus belimumab (being evaluated in two RCT) seems to be a valuable option for several clinical scenarios. In this review we will highlight the growing body of evidence of immune and non-immune related BAFF expression in experimental and clinical settings.
Collapse
Affiliation(s)
- Tamara Möckel
- Department of Internal Medicine I, Division of Rheumatology and Clinical Immunology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Fabio Basta
- Acura Rheumatology Center Rhineland Palatinate, Bad Kreuznach, Germany
| | - Julia Weinmann-Menke
- Department of Internal Medicine I, Division of Nephrology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Andreas Schwarting
- Department of Internal Medicine I, Division of Rheumatology and Clinical Immunology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany; Acura Rheumatology Center Rhineland Palatinate, Bad Kreuznach, Germany
| |
Collapse
|
24
|
Wong AHH, Shin EM, Tergaonkar V, Chng WJ. Targeting NF-κB Signaling for Multiple Myeloma. Cancers (Basel) 2020; 12:cancers12082203. [PMID: 32781681 PMCID: PMC7463546 DOI: 10.3390/cancers12082203] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy in the world. Even though survival rates have significantly risen over the past years, MM remains incurable, and is also far from reaching the point of being managed as a chronic disease. This paper reviews the evolution of MM therapies, focusing on anti-MM drugs that target the molecular mechanisms of nuclear factor kappa B (NF-κB) signaling. We also provide our perspectives on contemporary research findings and insights for future drug development.
Collapse
Affiliation(s)
- Ada Hang-Heng Wong
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore; (E.M.S.); (V.T.)
- AW Medical Company Limited, Macau, China
- Correspondence: (A.H.-H.W.); (W.-J.C.); Tel.: +65-6586-9709 (A.H.-H.W.); +65-6772-4612 (W.-J.C.)
| | - Eun Myoung Shin
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore; (E.M.S.); (V.T.)
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore; (E.M.S.); (V.T.)
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
- Department of Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore 119074, Singapore
- Correspondence: (A.H.-H.W.); (W.-J.C.); Tel.: +65-6586-9709 (A.H.-H.W.); +65-6772-4612 (W.-J.C.)
| |
Collapse
|
25
|
Chen Z, Krinsky A, Woolaver RA, Wang X, Chen SMY, Popolizio V, Xie P, Wang JH. TRAF3 Acts as a Checkpoint of B Cell Receptor Signaling to Control Antibody Class Switch Recombination and Anergy. THE JOURNAL OF IMMUNOLOGY 2020; 205:830-841. [PMID: 32591397 DOI: 10.4049/jimmunol.2000322] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
The BCR recognizes foreign Ags to initiate humoral immunity that needs isotype-switched Abs generated via class switch recombination (CSR); however, stimulating the BCR in the absence of costimulation (e.g., CD40) does not induce CSR; thus, it remains elusive whether and how the BCR induces CSR mechanistically. Autoreactive B cells can maintain anergy via unresponsiveness of their BCRs to self-antigens. However, it remains unknown what molecule(s) restrict BCR signaling strength for licensing BCR-induced CSR and whether deficiency of such molecule(s) disrupts autoreactive B cell anergy and causes B cell-mediated diseases by modulating BCR signaling. In this study, we employ mouse models to show that the BCR's capacity to induce CSR is restrained by B cell-intrinsic checkpoints TRAF3 and TRAF2, whose deletion in B cells enables the BCR to induce CSR in the absence of costimulation. TRAF3 deficiency permits BCR-induced CSR by elevating BCR-proximal signaling intensity. Furthermore, NF-κB2 is required for BCR-induced CSR in TRAF3-deficient B cells but not for CD40-induced or LPS-induced CSR, suggesting that TRAF3 restricts NF-κB2 activation to specifically limit the BCR's ability to induce CSR. TRAF3 deficiency also disrupts autoreactive B cell anergy by elevating calcium influx in response to BCR stimulation, leading to lymphoid organ disorders and autoimmune manifestations. We showed that TRAF3 deficiency-associated autoimmune phenotypes can be rectified by limiting BCR repertoires or attenuating BCR signaling strength. Thus, our studies highlight the importance of TRAF3-mediated restraint on BCR signaling strength for controlling CSR, B cell homeostasis, and B cell-mediated disorders.
Collapse
Affiliation(s)
- Zhangguo Chen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045;
| | - Alexandra Krinsky
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Rachel A Woolaver
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Xiaoguang Wang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Samantha M Y Chen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Vince Popolizio
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854; and.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901
| | - Jing H Wang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045;
| |
Collapse
|
26
|
Giltiay NV, Giordano D, Clark EA. The Plasticity of Newly Formed B Cells. THE JOURNAL OF IMMUNOLOGY 2020; 203:3095-3104. [PMID: 31818922 DOI: 10.4049/jimmunol.1900928] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022]
Abstract
Newly formed B cells (NF-B cells) that emerge from the bone marrow to the periphery have often been referred to as immature or transitional B cells. However, NF-B cells have several striking characteristics, including a distinct BCR repertoire, high expression of AID, high sensitivity to PAMPs, and the ability to produce cytokines. A number of findings do not support their designation as immature because NF-B cells have the potential to become Ab-producing cells and to undergo class-switch recombination. In this review, we provide a fresh perspective on NF-B cell functions and describe some of the signals driving their activation. We summarize growing evidence supporting a role for NF-B cells in protection against infections and as a potential source of autoantibody-producing cells in autoimmune diseases such as systemic lupus erythematosus.
Collapse
Affiliation(s)
- Natalia V Giltiay
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA 98109; and
| | - Daniela Giordano
- Department of Immunology, University of Washington, Seattle, WA 98109
| | - Edward A Clark
- Department of Immunology, University of Washington, Seattle, WA 98109
| |
Collapse
|
27
|
Berry CT, Liu X, Myles A, Nandi S, Chen YH, Hershberg U, Brodsky IE, Cancro MP, Lengner CJ, May MJ, Freedman BD. BCR-Induced Ca 2+ Signals Dynamically Tune Survival, Metabolic Reprogramming, and Proliferation of Naive B Cells. Cell Rep 2020; 31:107474. [PMID: 32294437 PMCID: PMC7301411 DOI: 10.1016/j.celrep.2020.03.038] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/10/2020] [Accepted: 03/12/2020] [Indexed: 01/06/2023] Open
Abstract
B cell receptor (BCR) engagement induces naive B cells to differentiate and perform critical immune-regulatory functions. Acquisition of functional specificity requires that a cell survive, enter the cell cycle, and proliferate. We establish that quantitatively distinct Ca2+ signals triggered by variations in the extent of BCR engagement dynamically regulate these transitions by controlling nuclear factor κB (NF-κB), NFAT, and mTORC1 activity. Weak BCR engagement induces apoptosis by failing to activate NF-κB-driven anti-apoptotic gene expression. Stronger signals that trigger more robust Ca2+ signals promote NF-κB-dependent survival and NFAT-, mTORC1-, and c-Myc-dependent cell-cycle entry and proliferation. Finally, we establish that CD40 or TLR9 costimulation circumvents these Ca2+-regulated checkpoints of B cell activation and proliferation. As altered BCR signaling is linked to autoimmunity and B cell malignancies, these results have important implications for understanding the pathogenesis of aberrant B cell activation and differentiation and therapeutic approaches to target these responses.
Collapse
Affiliation(s)
- Corbett T Berry
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; School of Biomedical Engineering, Science and Health Systems, Drexel University, PA 19104, USA
| | - Xiaohong Liu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arpita Myles
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Satabdi Nandi
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Youhai H Chen
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Uri Hershberg
- School of Biomedical Engineering, Science and Health Systems, Drexel University, PA 19104, USA; Department of Human Biology, Faculty of Sciences, University of Haifa, Haifa 3498838, Israel
| | - Igor E Brodsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; University of Pennsylvania Institute for Regenerative Medicine, Philadelphia, PA 19104, USA
| | - Michael J May
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bruce D Freedman
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
28
|
Jackson SW, Davidson A. BAFF inhibition in SLE-Is tolerance restored? Immunol Rev 2019; 292:102-119. [PMID: 31562657 PMCID: PMC6935406 DOI: 10.1111/imr.12810] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023]
Abstract
The B cell activating factor (BAFF) inhibitor, belimumab, is the first biologic drug approved for the treatment of SLE, and exhibits modest, but durable, efficacy in decreasing disease flares and organ damage. BAFF and its homolog APRIL are TNF-like cytokines that support the survival and differentiation of B cells at distinct developmental stages. BAFF is a crucial survival factor for transitional and mature B cells that acts as rheostat for the maturation of low-affinity autoreactive cells. In addition, BAFF augments innate B cell responses via complex interactions with the B cell receptor (BCR) and Toll like receptor (TLR) pathways. In this manner, BAFF impacts autoreactive B cell activation via extrafollicular pathways and fine tunes affinity selection within germinal centers (GC). Finally, BAFF and APRIL support plasma cell survival, with differential impacts on IgM- and IgG-producing populations. Therapeutically, BAFF and combined BAFF/APRIL inhibition delays disease onset in diverse murine lupus strains, although responsiveness to BAFF inhibition is model dependent, in keeping with heterogeneity in clinical responses to belimumab treatment in humans. In this review, we discuss the mechanisms whereby BAFF/APRIL signals promote autoreactive B cell activation, discuss whether altered selection accounts for therapeutic benefits of BAFF inhibition, and address whether new insights into BAFF/APRIL family complexity can be exploited to improve human lupus treatments.
Collapse
Affiliation(s)
- Shaun W Jackson
- Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Anne Davidson
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| |
Collapse
|
29
|
Das S, Sutoh Y, Cancro MP, Rast JP, Han Q, Bommakanti G, Cooper MD, Hirano M. Ancient BCMA-like Genes Herald B Cell Regulation in Lampreys. THE JOURNAL OF IMMUNOLOGY 2019; 203:2909-2916. [PMID: 31666307 DOI: 10.4049/jimmunol.1900026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 09/25/2019] [Indexed: 11/19/2022]
Abstract
The TNF superfamily ligands BAFF and APRIL interact with three receptors, BAFFR, BCMA, and TACI, to play discrete and crucial roles in regulating B cell selection and homeostasis in mammals. The interactions between these ligands and receptors are both specific and redundant: BAFFR binds BAFF, whereas BCMA and TACI bind to either BAFF or APRIL. In a previous phylogenetic inquiry, we identified and characterized a BAFF-like gene in lampreys, which, with hagfish, are the only extant jawless vertebrates, both of which have B-like and T-like lymphocytes. To gain insight into lymphocyte regulation in jawless vertebrates, in this study we identified two BCMA-like genes in lampreys, BCMAL1 and BCMAL2, which were found to be preferentially expressed by B-like lymphocytes. In vitro analyses indicated that the lamprey BAFF-like protein can bind to a BCMA-like receptor Ig fusion protein and to both BCMAL1- and BCMAL2-transfected cells. Discriminating regulatory roles for the two BCMA-like molecules are suggested by their differential expression before and after activation of the B-like lymphocytes in lampreys. Our composite results imply that BAFF-based mechanisms for B cell regulation evolved before the divergence of jawed and jawless vertebrates.
Collapse
Affiliation(s)
- Sabyasachi Das
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322; .,Emory Vaccine Center, Emory University, Atlanta, GA 30317; and
| | - Yoichi Sutoh
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322.,Emory Vaccine Center, Emory University, Atlanta, GA 30317; and
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jonathan P Rast
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322.,Emory Vaccine Center, Emory University, Atlanta, GA 30317; and
| | - Qifeng Han
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322.,Emory Vaccine Center, Emory University, Atlanta, GA 30317; and
| | - Gayathri Bommakanti
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322.,Emory Vaccine Center, Emory University, Atlanta, GA 30317; and
| | - Max D Cooper
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322.,Emory Vaccine Center, Emory University, Atlanta, GA 30317; and
| | - Masayuki Hirano
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322; .,Emory Vaccine Center, Emory University, Atlanta, GA 30317; and
| |
Collapse
|
30
|
Fang J, Muto T, Kleppe M, Bolanos LC, Hueneman KM, Walker CS, Sampson L, Wellendorf AM, Chetal K, Choi K, Salomonis N, Choi Y, Zheng Y, Cancelas JA, Levine RL, Starczynowski DT. TRAF6 Mediates Basal Activation of NF-κB Necessary for Hematopoietic Stem Cell Homeostasis. Cell Rep 2019; 22:1250-1262. [PMID: 29386112 PMCID: PMC5971064 DOI: 10.1016/j.celrep.2018.01.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/14/2017] [Accepted: 01/04/2018] [Indexed: 11/03/2022] Open
Abstract
Basal nuclear factor κB (NF-κB) activation is required for hematopoietic stem cell (HSC) homeostasis in the absence of inflammation; however, the upstream mediators of basal NF-κB signaling are less well understood. Here, we describe TRAF6 as an essential regulator of HSC homeostasis through basal activation of NF-κB. Hematopoietic-specific deletion of Traf6 resulted in impaired HSC self-renewal and fitness. Gene expression, RNA splicing, and molecular analyses of Traf6-deficient hematopoietic stem/progenitor cells (HSPCs) revealed changes in adaptive immune signaling, innate immune signaling, and NF-κB signaling, indicating that signaling via TRAF6 in the absence of cytokine stimulation and/or infection is required for HSC function. In addition, we established that loss of IκB kinase beta (IKKβ)-mediated NF-κB activation is responsible for the major hematopoietic defects observed in Traf6-deficient HSPC as deletion of IKKβ similarly resulted in impaired HSC self-renewal and fitness. Taken together, TRAF6 is required for HSC homeostasis by maintaining a minimal threshold level of IKKβ/NF-κB signaling.
Collapse
Affiliation(s)
- Jing Fang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tomoya Muto
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Maria Kleppe
- Human Oncology and Pathogenesis Program and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lyndsey C Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kathleen M Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Callum S Walker
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Leesa Sampson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ashley M Wellendorf
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jose A Cancelas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
31
|
Shabgah AG, Shariati-Sarabi Z, Tavakkol-Afshari J, Mohammadi M. The role of BAFF and APRIL in rheumatoid arthritis. J Cell Physiol 2019; 234:17050-17063. [PMID: 30941763 DOI: 10.1002/jcp.28445] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 12/17/2022]
Abstract
Development and activation of B cells quickly became clear after identifying new ligands and receptors in the tumor necrosis factor superfamily. B cell-activating factor (BAFF) and a proliferation-inducing ligand (APRIL) are the members of membrane proteins Type 2 family released by proteolytic cleavage of furin to form active, soluble homotrimers. Except for B cells, ligands are expressed by all such immune cells like T cells, dendritic cells, monocytes, and macrophages. BAFF and APRIL have two common receptors, namely TNFR homolog transmembrane activator and Ca2+ modulator and CAML interactor (TACI) and B cell-maturation antigen. BAFF alone can also be coupled with a third receptor called BAFFR (also called BR3 or BLyS Receptor). These receptors are often expressed by immune cells in the B-cell lineage. The binding of BAFF or APRIL to their receptors supports B cells differentiation and proliferation, immunoglobulin production and the upregulation of B cell-effector molecules expression. It is possible that the overexpression of BAFF and APRIL contributes to the pathogenesis of autoimmune diseases. In BAFF transgenic mice, there is a pseudo-autoimmune manifestation, which is associated with an increase in B-lymphocytes, hyperglobulinemia, anti-single stranded DNA, and anti-double-stranded DNA antibodies, and immune complexes in their peripheral blood. Furthermore, overexpressing BAFF augments the number of peripheral B220+ B cells with a normal proliferation rate, high levels of Bcl2, and prolonged survival and hyperactivity. Therefore, in this review article, we studied BAFF and APRIL as important mediators in B-cell and discussed their role in rheumatoid arthritis.
Collapse
Affiliation(s)
- Arezoo G Shabgah
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zhaleh Shariati-Sarabi
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mojgan Mohammadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
32
|
Gomes de Castro MA, Wildhagen H, Sograte-Idrissi S, Hitzing C, Binder M, Trepel M, Engels N, Opazo F. Differential organization of tonic and chronic B cell antigen receptors in the plasma membrane. Nat Commun 2019; 10:820. [PMID: 30778055 PMCID: PMC6379438 DOI: 10.1038/s41467-019-08677-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/24/2019] [Indexed: 11/09/2022] Open
Abstract
Stimulation of the B cell antigen receptor (BCR) triggers signaling pathways that promote the differentiation of B cells into plasma cells. Despite the pivotal function of BCR in B cell activation, the organization of the BCR on the surface of resting and antigen-activated B cells remains unclear. Here we show, using STED super-resolution microscopy, that IgM-containing BCRs exist predominantly as monomers and dimers in the plasma membrane of resting B cells, but form higher oligomeric clusters upon stimulation. By contrast, a chronic lymphocytic leukemia-derived BCR forms dimers and oligomers in the absence of a stimulus, but a single amino acid exchange reverts its organization to monomers in unstimulated B cells. Our super-resolution microscopy approach for quantitatively analyzing cell surface proteins may thus help reveal the nanoscale organization of immunoreceptors in various cell types.
Collapse
MESH Headings
- B-Lymphocytes/metabolism
- Burkitt Lymphoma/pathology
- Cell Line, Tumor
- Cell Membrane/metabolism
- Humans
- Immunoglobulin Fab Fragments/genetics
- Immunoglobulin Fab Fragments/metabolism
- Immunoglobulin M/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Microscopy, Fluorescence/methods
- Protein Multimerization
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
Collapse
Affiliation(s)
- Maria Angela Gomes de Castro
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Hanna Wildhagen
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Shama Sograte-Idrissi
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, von-Siebold-Straße 3a, 37075, Göttingen, Germany
| | - Christoffer Hitzing
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Humboldtallee 34, 37073, Göttingen, Germany
| | - Mascha Binder
- Department of Oncology and Hematology, BMT with section Pneumology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Martin Trepel
- Department of Oncology and Hematology, BMT with section Pneumology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- Department of Hematology and Oncology, Augsburg Medical Center, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Niklas Engels
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Humboldtallee 34, 37073, Göttingen, Germany.
| | - Felipe Opazo
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, von-Siebold-Straße 3a, 37075, Göttingen, Germany.
| |
Collapse
|
33
|
Granja AG, Tafalla C. Different IgM + B cell subpopulations residing within the peritoneal cavity of vaccinated rainbow trout are differently regulated by BAFF. FISH & SHELLFISH IMMUNOLOGY 2019; 85:9-17. [PMID: 28989090 DOI: 10.1016/j.fsi.2017.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
In teleost fish, IgM+ B cells are one of the main responders against inflammatory stimuli in the peritoneal cavity, as IgM+ B cells dominate the peritoneum after intraperitoneal stimulation, also increasing the levels of secreted IgM. BAFF, a cytokine known to play a major role in B cell biology, has been shown to be up-regulated along with its receptors in the peritoneum of rainbow trout upon antigenic exposure, however, the regulatory mechanisms underneath this response remain unclear. In this study, we have identified two different IgM+ B cell types residing in the peritoneal cavity of previously vaccinated rainbow trout (Oncorhynchus mykiss): IgD+IgMhiMHCIIhi cells, resembling naïve B cells, and IgD-IgMloMHCIIlo cells, resembling antibody-secreting cells. Based on their membrane IgM levels, these cell types were named IgMhi and IgMlo B cells, respectively. As each of these B cell populations showed a distinct expression pattern for the different BAFF receptors, we studied the effect of BAFF individually on each cell subset. Recombinant BAFF promoted the survival of IgMlo but not IgMhi B cells in vitro, resulting in increased levels of IgM-secreting cells. In contrast, BAFF increased the levels of membrane MHC II only on IgMhi B cells, suggesting different functions on these B cell subsets. Moreover, we also showed that peritoneal IgMhi B cells expressed BAFF at levels comparable to those seen on myeloid cells. These results point to BAFF as a main regulator of B cell homeostasis in the peritoneal cavity, suggesting that this cytokine can trigger different signals on different peritoneal B cell subsets in a specific manner.
Collapse
Affiliation(s)
- Aitor G Granja
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain.
| | - Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain.
| |
Collapse
|
34
|
Khoenkhoen S, Erikson E, Ádori M, Stark JM, Scholz JL, Cancro MP, Pedersen GK, Karlsson Hedestam GB. TACI expression and plasma cell differentiation are impaired in the absence of functional IκBNS. Immunol Cell Biol 2019; 97:485-497. [PMID: 30597621 PMCID: PMC6850186 DOI: 10.1111/imcb.12228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 12/17/2018] [Accepted: 12/27/2018] [Indexed: 12/15/2022]
Abstract
Impaired classical NF‐κB pathway signaling causes reduced antibody responses to T‐independent (TI) antigens. We investigated the potential reasons for defective TI responses in mice lacking the atypical inhibitory kappa B (IκB) protein of the NF‐κB pathway, IκBNS. Analyses of the plasma cell compartment in vitro and in vivo after challenge with lipopolysaccharide (LPS) showed significant decreases in the frequencies of plasma cells in the absence of IκBNS. In vitro activation of B cells via the B cell receptor or via Toll‐like receptor 4 revealed that early activation events were unaffected in IκBNS‐deficient B cells, while proliferation was reduced compared to in similarly stimulated wildtype (wt) B cells. IκBNS‐deficient B cells also displayed impaired upregulation of the transmembrane activator and calcium modulator cyclophilin ligand interactor (TACI), which is essential for TI responses, and decreased sensitivity to TACI ligands upon stimulation. Furthermore, IκBNS‐deficient B cells, in contrast to wt B cells, displayed altered expression of IRF4, Blimp‐1 and Pax5 upon LPS‐induced differentiation, indicating impaired transcriptional regulation of plasma cell generation.
Collapse
Affiliation(s)
- Sharesta Khoenkhoen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Elina Erikson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Monika Ádori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Julian M Stark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jean L Scholz
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P Cancro
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabriel K Pedersen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
35
|
B cell therapy in ANCA-associated vasculitis: current and emerging treatment options. Nat Rev Rheumatol 2018; 14:580-591. [DOI: 10.1038/s41584-018-0065-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/10/2018] [Indexed: 12/19/2022]
|
36
|
Hobeika E, Dautzenberg M, Levit-Zerdoun E, Pelanda R, Reth M. Conditional Selection of B Cells in Mice With an Inducible B Cell Development. Front Immunol 2018; 9:1806. [PMID: 30127788 PMCID: PMC6087743 DOI: 10.3389/fimmu.2018.01806] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/23/2018] [Indexed: 11/13/2022] Open
Abstract
Developing B cells undergo defined maturation steps in the bone marrow and in the spleen. The timing and the factors that control these differentiation steps are not fully understood. By targeting the B cell-restricted mb-1 locus to generate an mb-1 allele that expresses a tamoxifen inducible Cre and another allele in which mb-1 expression can be controlled by Cre, we have established a mouse model with an inducible B cell compartment. With these mice, we studied in detail the kinetics of B cell development and the consequence of BCR activation at a defined B cell maturation stage. Contrary to expectations, transitional 1-B cells exposed to anti-IgM reagents in vivo did not die but instead developed into transitional 2 (T2)-B cells with upregulated Bcl-2 expression. We show, however, that these T2-B cells had an increased dependency on the B cell survival factor B cell activating factor when compared to non-stimulated B cells. Overall, our findings indicate that the inducible mb-1 mouse strain represents a useful model, which allows studying the signals that control the selection of B cells in greater detail.
Collapse
Affiliation(s)
- Elias Hobeika
- Centre for Biological Signaling Studies (BIOSS), Biology III, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Marcel Dautzenberg
- Centre for Biological Signaling Studies (BIOSS), Biology III, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ella Levit-Zerdoun
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,International Max Planck Research School for Molecular and Cellular Biology, Freiburg, Germany
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Michael Reth
- Centre for Biological Signaling Studies (BIOSS), Biology III, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
37
|
STIM- and Orai-mediated calcium entry controls NF-κB activity and function in lymphocytes. Cell Calcium 2018; 74:131-143. [PMID: 30048879 DOI: 10.1016/j.ceca.2018.07.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 12/24/2022]
Abstract
The central role of Ca2+ signaling in the development of functional immunity and tolerance is well established. These signals are initiated by antigen binding to cognate receptors on lymphocytes that trigger store operated Ca2+ entry (SOCE). The underlying mechanism of SOCE in lymphocytes involves TCR and BCR mediated activation of Stromal Interaction Molecule 1 and 2 (STIM1/2) molecules embedded in the ER membrane leading to their activation of Orai channels in the plasma membrane. STIM/Orai dependent Ca2+ signals guide key antigen induced lymphocyte development and function principally through direct regulation of Ca2+ dependent transcription factors. The role of Ca2+ signaling in NFAT activation and signaling is well known and has been studied extensively, but a wide appreciation and mechanistic understanding of how Ca2+ signals also shape the activation and specificity of NF-κB dependent gene expression has lagged. Here we discuss and interpret what is known about Ca2+ dependent mechanisms of NF-kB activation, including what is known and the gaps in our understanding of how these signals control lymphocyte development and function.
Collapse
|
38
|
Tafalla C, Granja AG. Novel Insights on the Regulation of B Cell Functionality by Members of the Tumor Necrosis Factor Superfamily in Jawed Fish. Front Immunol 2018; 9:1285. [PMID: 29930556 PMCID: PMC6001812 DOI: 10.3389/fimmu.2018.01285] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022] Open
Abstract
Most ligands and receptors from the tumor necrosis factor (TNF) superfamily play very important roles in the immune system. In particular, many of these molecules are essential in the regulation of B cell biology and B cell-mediated immune responses. Hence, in mammals, it is known that many TNF family members play a key role on B cell development, maturation, homeostasis, activation, and differentiation, also influencing the ability of B cells to present antigens or act as regulators of immune responses. Evolutionarily, jawed fish (including cartilaginous and bony fish) constitute the first animal group in which an adaptive immune response based on B cells and immunoglobulins is present. However, until recently, not much was known about the expression of TNF ligands and receptors in these species. The sequences of many members of the TNF superfamily have been recently identified in different species of jawed fish, thus allowing posterior analysis on the role that these ligands and receptors have on B cell functionality. In this review, we summarize the current knowledge on the impact that the TNF family members have in different aspects of B cell functionality in fish, also providing an in depth comparison with functional aspects of TNF members in mammals, that will permit a further understanding of how B cell functionality is regulated in these distant animal groups.
Collapse
Affiliation(s)
| | - Aitor G Granja
- Animal Health Research Center (CISA-INIA), Madrid, Spain
| |
Collapse
|
39
|
Chiu YH, Chung CH, Lin KT, Lin CS, Chen JH, Chen HC, Huang RY, Wu CT, Liu FC, Chien WC. Predictable biomarkers of developing lymphoma in patients with Sjögren syndrome: a nationwide population-based cohort study. Oncotarget 2018; 8:50098-50108. [PMID: 28177920 PMCID: PMC5564832 DOI: 10.18632/oncotarget.15100] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/23/2017] [Indexed: 12/13/2022] Open
Abstract
Sjögren syndrome (SS) is commonly known to be correlated with lymphoma. This study included 16,396 individuals in the SS cohort and 65,584 individuals in the non-SS cohort, all of whom were enrolled in the Taiwan National Health Insurance database between 2000 and 2010. We evaluated the risk factors of non-Hodgkin's lymphoma (NHL) in the primary SS cohort by applying a Cox multivariable proportional-hazards model. We increased the correlation of patients with SS and NHL, with an adjusted HR of 4.314 (95% CI 2.784 – 6.685). Of the 16,396 SS patients, 66 individuals had salivary gland slices without NHL development, while the other 16,330 individuals that did not have salivary gland slices revealed 30 individuals that developed NHL. Of the 16,396 SS patients, 128 individuals underwent immunomodulator agent therapy (including hydroxychloroquine, azathioprine, cyclosporine, methotrexate, and rituximab) without NHL development. None of the 30 individuals that developed NHL from SS received immunomodulator agents. We found that patients with SS were at an increased risk of developing NHL, with the most common NHL subgroup being diffused large B-cell lymphoma. SS patients who were candidates for salivary gland slices or immunomodulator agents were associated with a lower risk of developing lymphoma over time. We recommend that patients at a higher risk upon diagnosis of SS receive close follow-up and aggressive treatment.
Collapse
Affiliation(s)
- Yu-Hsiang Chiu
- Department of Internal Medicine, Division of Rheumatology/Immunology/Allergies, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Hsiang Chung
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Kuen-Tze Lin
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chin-Sheng Lin
- Department of Internal Medicine, Division of Cardiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jia-Hong Chen
- Department of Internal Medicine, Division of Hematology/Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsiang-Cheng Chen
- Department of Internal Medicine, Division of Rheumatology/Immunology/Allergies, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ren-Yeong Huang
- Department of Periodontology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Tsung Wu
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Feng-Cheng Liu
- Department of Internal Medicine, Division of Rheumatology/Immunology/Allergies, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wu-Chien Chien
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,School of Public Health, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
40
|
Roy P, Sarkar UA, Basak S. The NF-κB Activating Pathways in Multiple Myeloma. Biomedicines 2018; 6:biomedicines6020059. [PMID: 29772694 PMCID: PMC6027071 DOI: 10.3390/biomedicines6020059] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 12/29/2022] Open
Abstract
Multiple myeloma(MM), an incurable plasma cell cancer, represents the second most prevalent hematological malignancy. Deregulated activity of the nuclear factor kappaB (NF-κB) family of transcription factors has been implicated in the pathogenesis of multiple myeloma. Tumor microenvironment-derived cytokines and cancer-associated genetic mutations signal through the canonical as well as the non-canonical arms to activate the NF-κB system in myeloma cells. In fact, frequent engagement of both the NF-κB pathways constitutes a distinguishing characteristic of myeloma. In turn, NF-κB signaling promotes proliferation, survival and drug-resistance of myeloma cells. In this review article, we catalog NF-κB activating genetic mutations and microenvironmental cues associated with multiple myeloma. We then describe how the individual canonical and non-canonical pathways transduce signals and contribute towards NF-κB -driven gene-expressions in healthy and malignant cells. Furthermore, we discuss signaling crosstalk between concomitantly triggered NF-κB pathways, and its plausible implication for anomalous NF-κB activation and NF-κB driven pro-survival gene-expressions in multiple myeloma. Finally, we propose that mechanistic understanding of NF-κB deregulations may provide for improved therapeutic and prognostic tools in multiple myeloma.
Collapse
Affiliation(s)
- Payel Roy
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Uday Aditya Sarkar
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
41
|
Liu J, Zhu H, Qian J, Xiong E, Zhang L, Wang YQ, Chu Y, Kubagawa H, Tsubata T, Wang JY. Fcµ Receptor Promotes the Survival and Activation of Marginal Zone B Cells and Protects Mice against Bacterial Sepsis. Front Immunol 2018; 9:160. [PMID: 29459869 PMCID: PMC5807594 DOI: 10.3389/fimmu.2018.00160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/18/2018] [Indexed: 11/14/2022] Open
Abstract
The marginal zone B cells (MZB) are located at the interface between the circulation and lymphoid tissue and as a gatekeeper play important roles in both innate and adaptive immune responses. We have previously found that MZB are significantly reduced in mice deficient in the IgM Fc receptor (FcμR) but how FcμR regulates the development and function of MZB remains unknown. In this study, we found that both marginal zone precursor (MZP) and MZB were decreased in FcμR−/− mice. The reduction of MZP and MZB was not due to impaired proliferation of these cells but rather due to their increased death. Further analysis revealed that FcμR−/− MZB had reduced tonic BCR signal, as evidenced by their decreased levels of phosphorylated SYK and AKT relative to WT MZB. MZB in FcμR−/− mice responded poorly to LPS in vivo when compared with MZB in WT mice. Consistent with the reduced proportion of MZB and their impaired response to LPS, antibody production against the type 1 T-independent Ag, NP-LPS, was significantly reduced in FcμR−/− mice. Moreover, FcμR−/− mice were highly susceptible to Citrobacter rodentium-induced sepsis. These results reveal a critical role for FcμR in the survival and activation of MZB and in protection against acute bacterial infection.
Collapse
Affiliation(s)
- Jun Liu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hanying Zhu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiawen Qian
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ermeng Xiong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lumin Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences; Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | | | - Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
42
|
Wu JL, Chiang MF, Hsu PH, Tsai DY, Hung KH, Wang YH, Angata T, Lin KI. O-GlcNAcylation is required for B cell homeostasis and antibody responses. Nat Commun 2017; 8:1854. [PMID: 29187734 PMCID: PMC5707376 DOI: 10.1038/s41467-017-01677-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 10/06/2017] [Indexed: 01/10/2023] Open
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) transferase (Ogt) catalyzes O-GlcNAc modification. O-GlcNAcylation is increased after cross-linking of the B-cell receptor (BCR), but the physiological function of this reaction is unknown. Here we show that lack of Ogt in B-cell development not only causes severe defects in the activation of BCR signaling, but also perturbs B-cell homeostasis by enhancing apoptosis of mature B cells, partly as a result of impaired response to B-cell activating factor. O-GlcNAcylation of Lyn at serine 19 is crucial for efficient Lyn activation and Syk interaction in BCR-mediated B-cell activation and expansion. Ogt deficiency in germinal center (GC) B cells also results in enhanced apoptosis of GC B cells and memory B cells in an immune response, consequently causing a reduction of antibody levels. Together, these results demonstrate that B cells rely on O-GlcNAcylation to maintain homeostasis, transduce BCR-mediated activation signals and activate humoral immunity. Post-translational modification has a variety of regulatory functions for important immune molecules. Here the authors use B-cell specific knockout mice to show how O-GlcNAcylation is required for functional B cell responses and humoral immunity.
Collapse
Affiliation(s)
- Jung-Lin Wu
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 115, Taiwan
| | - Ming-Feng Chiang
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 115, Taiwan
| | - Pan-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, No. 2, Beining Road, Jhongjheng District, Keelung, 202, Taiwan
| | - Dong-Yen Tsai
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 115, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Section 2, Linong Street, Beitou District, Taipei, 112, Taiwan
| | - Kuo-Hsuan Hung
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 115, Taiwan
| | - Ying-Hsiu Wang
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 115, Taiwan.,Graduate Institute of Life Sciences, National Defense Medical Center, No. 161, Section 6, Minquan East Road, Neihu District, Taipei, 114, Taiwan
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 115, Taiwan.
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 115, Taiwan.
| |
Collapse
|
43
|
Abstract
The two ligands B cell-activating factor of the tumor necrosis factor family (BAFF) and a proliferation-inducing ligand (APRIL) and the three receptors BAFF receptor (BAFF-R), transmembrane activator and calcium-modulating cyclophilin ligand interactor (TACI), and B cell maturation antigen (BCMA) are members of the "BAFF system molecules." BAFF system molecules are primarily involved in B cell homeostasis. The relevance of BAFF system molecules in host responses to microbial assaults has been investigated in clinical studies and in mice deficient for each of these molecules. Many microbial products modulate the expression of these molecules. Data from clinical studies suggest a correlation between increased expression levels of BAFF system molecules and elevated B cell responses. Depending on the pathogen, heightened B cell responses may strengthen the host response or promote susceptibility. Whereas pathogen-mediated increases in the expression levels of the ligands and/or the receptors appear to promote microbial clearance, certain pathogens have evolved to ablate B cell responses by suppressing the expression of TACI and/or BAFF-R on B cells. Other than its well-established role in B cell responses, the TACI-mediated activation of macrophages is also implicated in resistance to intracellular pathogens. An improved understanding of the role that BAFF system molecules play in infection may assist in devising novel strategies for vaccine development.
Collapse
Affiliation(s)
- Jiro Sakai
- Laboratory of Bacterial Polysaccharides, Division of Bacterial Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Mustafa Akkoyunlu
- Laboratory of Bacterial Polysaccharides, Division of Bacterial Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
44
|
Metzler G, Dai X, Thouvenel CD, Khim S, Habib T, Buckner JH, Rawlings DJ. The Autoimmune Risk Variant PTPN22 C1858T Alters B Cell Tolerance at Discrete Checkpoints and Differentially Shapes the Naive Repertoire. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:2249-2260. [PMID: 28801357 PMCID: PMC6791366 DOI: 10.4049/jimmunol.1700601] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/23/2017] [Indexed: 12/28/2022]
Abstract
A common genetic variant in the gene encoding the protein tyrosine phosphatase nonreceptor type 22 (PTPN22 C1858T) has been linked to a wide range of autoimmune disorders. Although a B cell-intrinsic role in promoting disease has been reported, the mechanism(s) through which this variant functions to alter the preimmune B cell repertoire remains unknown. Using a series of polyclonal and transgenic self-reactive models harboring the analogous mutation in murine Ptpn22, we show evidence for enhanced BCR, B cell-activating factor receptor, and CD40 coreceptor programs, leading to broadly enhanced positive selection of B cells at two discrete checkpoints in the bone marrow and spleen. We further identified a bias for selection of B cells into the follicular mature versus marginal zone B cell compartment. Using a biomarker to track a self-reactive H chain in peripheral blood, we found evidence of similarly enhanced positive selection in human carriers of the PTPN22 C1858T variant. Our combined data support a model whereby the risk variant augments the BCR and coreceptor programs throughout B cell development, promoting enrichment of self-reactive specificities into the follicular mature compartment and thereby likely increasing the risk for seeding of autoimmune B cell responses.
Collapse
Affiliation(s)
- Genita Metzler
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195
| | - Xuezhi Dai
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| | - Christopher D Thouvenel
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| | - Socheath Khim
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| | - Tania Habib
- Translational Research Program, Benaroya Research Institute, Seattle, WA 98101; and
| | - Jane H Buckner
- Translational Research Program, Benaroya Research Institute, Seattle, WA 98101; and
| | - David J Rawlings
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101;
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195
| |
Collapse
|
45
|
Hayakawa K, Formica AM, Zhou Y, Ichikawa D, Asano M, Li YS, Shinton SA, Brill-Dashoff J, Núñez G, Hardy RR. NLR Nod1 signaling promotes survival of BCR-engaged mature B cells through up-regulated Nod1 as a positive outcome. J Exp Med 2017; 214:3067-3083. [PMID: 28878001 PMCID: PMC5626402 DOI: 10.1084/jem.20170497] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/11/2017] [Accepted: 07/24/2017] [Indexed: 11/04/2022] Open
Abstract
The microenvironment, including microbial products, plays a role in mature B cell survival. Hayakawa et al. show that B cell antigen receptor ligand–mediated Nod1 up-regulation in vivo in B cell development leads to preferential mature B cell survival as a competitive survival, increasing the Nod1+ B cell pool with age. Although B cell development requires expression of the B cell antigen receptor (BCR), it remains unclear whether engagement of self-antigen provides a positive impact for most B cells. Here, we show that BCR engagement by self-ligand during development in vivo results in up-regulation of the Nod-like receptor member Nod1, which recognizes the products of intestinal commensal bacteria. In anti-thymocyte/Thy-1 autoreactive BCR knock-in mice lacking self–Thy-1 ligand, immunoglobulin light chain editing occurred, generating B cells with up-regulated Nod1, including follicular and marginal zone B cells with natural autoreactivity. This BCR editing with increased Nod1 resulted in preferential survival. In normal adult mice, most mature B cells are enriched for Nod1 up-regulated cells, and signaling through Nod1 promotes competitive survival of mature B cells. These findings demonstrate a role for microbial products in promoting survival of mature B cells through up-regulated Nod1, providing a positive effect of BCR engagement on development of most B cells.
Collapse
Affiliation(s)
| | | | - Yan Zhou
- Fox Chase Cancer Center, Philadelphia, PA
| | | | | | | | | | | | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI
| | | |
Collapse
|
46
|
Bertocci B, Lecoeuche D, Sterlin D, Kühn J, Gaillard B, De Smet A, Lembo F, Bole-Feysot C, Cagnard N, Fadeev T, Dahan A, Weill JC, Reynaud CA. Klhl6 Deficiency Impairs Transitional B Cell Survival and Differentiation. THE JOURNAL OF IMMUNOLOGY 2017; 199:2408-2420. [PMID: 28807996 DOI: 10.4049/jimmunol.1700708] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/17/2017] [Indexed: 12/21/2022]
Abstract
Klhl6 belongs to the KLHL gene family, which is composed of an N-terminal BTB-POZ domain and four to six Kelch motifs in tandem. Several of these proteins function as adaptors of the Cullin3 E3 ubiquitin ligase complex. In this article, we report that Klhl6 deficiency induces, as previously described, a 2-fold reduction in mature B cells. However, we find that this deficit is centered on the inability of transitional type 1 B cells to survive and to progress toward the transitional type 2 B cell stage, whereas cells that have passed this step generate normal germinal centers (GCs) upon a T-dependent immune challenge. Klhl6-deficient type 1 B cells showed a 2-fold overexpression of genes linked with cell proliferation, including most targets of the anaphase-promoting complex/cyclosome complex, a set of genes whose expression is precisely downmodulated upon culture of splenic transitional B cells in the presence of BAFF. These results thus suggest a delay in the differentiation process of Klhl6-deficient B cells between the immature and transitional stage. We further show, in the BL2 Burkitt's lymphoma cell line, that KLHL6 interacts with Cullin3, but also that it binds to HBXIP/Lamtor5, a protein involved in cell-cycle regulation and cytokinesis. Finally, we report that KLHL6, which is recurrently mutated in B cell lymphomas, is an off-target of the normal somatic hypermutation process taking place in GC B cells in both mice and humans, thus leaving open whether, despite the lack of impact of Klhl6 deficiency on GC B cell expansion, mutants could contribute to the oncogenic process.
Collapse
Affiliation(s)
- Barbara Bertocci
- Équipe Développement du Systéme Immunitaire, Institut Necker-Enfant Malades, INSERM U1151-CNRS UMR8253, Faculté de Médecine Paris Decartes, Université Paris Descartes, Sorbone Paris Cité, 75993 Paris Cedex 14, France;
| | - Damiana Lecoeuche
- Équipe Développement du Systéme Immunitaire, Institut Necker-Enfant Malades, INSERM U1151-CNRS UMR8253, Faculté de Médecine Paris Decartes, Université Paris Descartes, Sorbone Paris Cité, 75993 Paris Cedex 14, France
| | - Delphine Sterlin
- Équipe Développement du Systéme Immunitaire, Institut Necker-Enfant Malades, INSERM U1151-CNRS UMR8253, Faculté de Médecine Paris Decartes, Université Paris Descartes, Sorbone Paris Cité, 75993 Paris Cedex 14, France
| | - Julius Kühn
- Institute of Cellular and Molecular Immunology, Georg-August-University Medicine Göttingen, 37073 Göttingen, Germany
| | - Baptiste Gaillard
- Équipe Développement du Systéme Immunitaire, Institut Necker-Enfant Malades, INSERM U1151-CNRS UMR8253, Faculté de Médecine Paris Decartes, Université Paris Descartes, Sorbone Paris Cité, 75993 Paris Cedex 14, France
| | - Annie De Smet
- Équipe Développement du Systéme Immunitaire, Institut Necker-Enfant Malades, INSERM U1151-CNRS UMR8253, Faculté de Médecine Paris Decartes, Université Paris Descartes, Sorbone Paris Cité, 75993 Paris Cedex 14, France
| | - Frederique Lembo
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068-CNRS UMR7258, 13273 Marseille Cedex 09, France
| | - Christine Bole-Feysot
- Plateforme de Génomique, Imagine Institut des Maladies Génétiques-Structure Fédérative de Recherche Necker, INSERM 1163 and INSERM US24/CNRS UMS3633, 75015 Paris, France; and
| | - Nicolas Cagnard
- Plateforme de Bioinformatique, Université Paris Descartes-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, 75993 Paris Cedex 14, France
| | - Tatiana Fadeev
- Équipe Développement du Systéme Immunitaire, Institut Necker-Enfant Malades, INSERM U1151-CNRS UMR8253, Faculté de Médecine Paris Decartes, Université Paris Descartes, Sorbone Paris Cité, 75993 Paris Cedex 14, France
| | - Auriel Dahan
- Équipe Développement du Systéme Immunitaire, Institut Necker-Enfant Malades, INSERM U1151-CNRS UMR8253, Faculté de Médecine Paris Decartes, Université Paris Descartes, Sorbone Paris Cité, 75993 Paris Cedex 14, France
| | - Jean-Claude Weill
- Équipe Développement du Systéme Immunitaire, Institut Necker-Enfant Malades, INSERM U1151-CNRS UMR8253, Faculté de Médecine Paris Decartes, Université Paris Descartes, Sorbone Paris Cité, 75993 Paris Cedex 14, France
| | - Claude-Agnès Reynaud
- Équipe Développement du Systéme Immunitaire, Institut Necker-Enfant Malades, INSERM U1151-CNRS UMR8253, Faculté de Médecine Paris Decartes, Université Paris Descartes, Sorbone Paris Cité, 75993 Paris Cedex 14, France;
| |
Collapse
|
47
|
Rozovski U, Harris DM, Li P, Liu Z, Jain P, Veletic I, Ferrajoli A, Burger J, Thompson P, Jain N, Wierda W, Keating MJ, Estrov Z. Activation of the B-cell receptor successively activates NF-κB and STAT3 in chronic lymphocytic leukemia cells. Int J Cancer 2017; 141:2076-2081. [PMID: 28722170 DOI: 10.1002/ijc.30892] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/15/2017] [Accepted: 06/28/2017] [Indexed: 01/22/2023]
Abstract
In chronic lymphocytic leukemia (CLL) cells, both interleukin-6 (IL-6) and the B-cell receptor (BCR) activate Janus kinase 2 (JAK2) and induce the phosphorylation of signal transduction and activator of transcription 3 (STAT3) on tyrosine 705 residues. However, whereas IL-6 phosphorylates STAT3 within 15 min, stimulation of the BCR with anti-immunoglobulin M (IgM) antibodies phosphorylates STAT3 in 2-4 hr. Here, we show that this process takes longer because it requires transcriptional activity of NF-κB. Using an electromobility shift assay, we found that incubation with IgM antibodies for 4 or 18 hr, but not 15 min, increased NF-κB DNA-binding of CLL cells and increased binding was translated to increased transcriptional activity. Hence, 42% of the 83 NF-κB target genes were constitutively expressed in all CLL cells prior to any inducible stimuli. However, activation of the BCR increased the number of NF-κB target genes with detectable expression by 23%. Remarkably, prolonged incubation with anti-IgM antibodies induced a time-dependent transcription, production and secretion of IL-6 protein. The IgM-induced production of IL-6 prompted the phosphorylation of STAT3 on tyrosine residues. This effect was inhibited by the JAK1/2 inhibitor of the JAK/STAT3 pathway ruxolitinib. Taken together, these results suggest that in CLL cells, constitutive tonic activation of NF-κB can be further enhanced by the BCR and that the BCR-induced activation of the JAK/STAT3 pathway depends on the NF-κB induced production of IL-6.
Collapse
MESH Headings
- Humans
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Phosphorylation
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Uri Rozovski
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
- Division of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David M Harris
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ping Li
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Zhiming Liu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Preetesh Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ivo Veletic
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jan Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Philip Thompson
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - William Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
48
|
Pozzato G, Mazzaro C, Gattei V. Hepatitis C Virus-Associated Non-Hodgkin Lymphomas: Biology, Epidemiology, and Treatment. Clin Liver Dis 2017; 21:499-515. [PMID: 28689589 DOI: 10.1016/j.cld.2017.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Eradication of hepatitis C virus (HCV) in indolent non-Hodgkin lymphomas (NHLs), especially in marginal zone lymphomas, determines the regression of the hematologic disorder in a significant fraction of cases. Because direct antiviral agents show an excellent profile in terms of efficacy, safety, and rapid onset of action, these drugs can be used in any clinical situation and in the presence of any comorbidities. To avoid the progression of the NHL, despite HCV eradication, antiviral therapy should be provided as soon as the viral infection is discovered; before that, the chronic antigenic stimulation determines the irreversible proliferation of neoplastic B cells.
Collapse
Affiliation(s)
- Gabriele Pozzato
- Department of Clinical and Surgical Sciences, University of Trieste, Ematologia Clinica, Ospedale Maggiore, Piazza Ospedale 1, Trieste 34121, Italy.
| | - Cesare Mazzaro
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano 33081, Italy
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano 33081, Italy
| |
Collapse
|
49
|
Carter MJ, Cox KL, Blakemore SJ, Turaj AH, Oldham RJ, Dahal LN, Tannheimer S, Forconi F, Packham G, Cragg MS. PI3Kδ inhibition elicits anti-leukemic effects through Bim-dependent apoptosis. Leukemia 2017; 31:1423-1433. [PMID: 27843137 PMCID: PMC5467045 DOI: 10.1038/leu.2016.333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/21/2016] [Indexed: 12/12/2022]
Abstract
PI3Kδ plays pivotal roles in the maintenance, proliferation and survival of malignant B-lymphocytes. Although not curative, PI3Kδ inhibitors (PI3Kδi) demonstrate impressive clinical efficacy and, alongside other signaling inhibitors, are revolutionizing the treatment of hematological malignancies. However, only limited in vivo data are available regarding their mechanism of action. With the rising number of novel treatments, the challenge is to identify combinations that deliver curative regimes. A deeper understanding of the molecular mechanism is required to guide these selections. Currently, immunomodulation, inhibition of B-cell receptor signaling, chemokine/cytokine signaling and apoptosis represent potential therapeutic mechanisms for PI3Kδi. Here we characterize the molecular mechanisms responsible for PI3Kδi-induced apoptosis in an in vivo model of chronic lymphocytic leukemia (CLL). In vitro, PI3Kδi-induced substantive apoptosis and disrupted microenvironment-derived signaling in murine (Eμ-Tcl1) and human (CLL) leukemia cells. Furthermore, PI3Kδi imparted significant therapeutic responses in Eμ-Tcl1-bearing animals and enhanced anti-CD20 monoclonal antibody therapy. Responses correlated with upregulation of the pro-apoptotic BH3-only protein Bim. Accordingly, Bim-/- Eμ-Tcl1 Tg leukemias demonstrated resistance to PI3Kδi-induced apoptosis were refractory to PI3Kδi in vivo and failed to display combination efficacy with anti-CD20 monoclonal antibody therapy. Therefore, Bim-dependent apoptosis represents a key in vivo therapeutic mechanism for PI3Kδi, both alone and in combination therapy regimes.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Bcl-2-Like Protein 11/genetics
- Bcl-2-Like Protein 11/metabolism
- Cell Proliferation/drug effects
- Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors
- Disease Models, Animal
- Female
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Mice
- Mice, SCID
- Signal Transduction/drug effects
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M J Carter
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - K L Cox
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - S J Blakemore
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - A H Turaj
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - R J Oldham
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - L N Dahal
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | | | - F Forconi
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - G Packham
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - M S Cragg
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| |
Collapse
|
50
|
Rawlings DJ, Metzler G, Wray-Dutra M, Jackson SW. Altered B cell signalling in autoimmunity. Nat Rev Immunol 2017; 17:421-436. [PMID: 28393923 DOI: 10.1038/nri.2017.24] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent work has provided new insights into how altered B cell-intrinsic signals - through the B cell receptor (BCR) and key co-receptors - function together to promote the pathogenesis of autoimmunity. These combined signals affect B cells at two distinct stages: first, in the selection of the naive repertoire; and second, during extrafollicular or germinal centre activation responses. Thus, dysregulated signalling can lead to both an altered naive BCR repertoire and the generation of autoantibody-producing B cells. Strikingly, high-affinity autoantibodies predate and predict disease in several autoimmune disorders, including type 1 diabetes and systemic lupus erythematosus. This Review summarizes how, rather than being a downstream consequence of autoreactive T cell activation, dysregulated B cell signalling can function as a primary driver of many human autoimmune diseases.
Collapse
Affiliation(s)
- David J Rawlings
- Seattle Children's Research Institute, 1900 9th Avenue, Seattle, Washington 98101, USA.,Department of Immunology, University of Washington School of Medicine.,Department of Pediatrics, University of Washington School of Medicine, 750 Republican Street, Seattle, Washington 98109, USA
| | - Genita Metzler
- Seattle Children's Research Institute, 1900 9th Avenue, Seattle, Washington 98101, USA.,Department of Immunology, University of Washington School of Medicine
| | - Michelle Wray-Dutra
- Seattle Children's Research Institute, 1900 9th Avenue, Seattle, Washington 98101, USA.,Department of Immunology, University of Washington School of Medicine
| | - Shaun W Jackson
- Seattle Children's Research Institute, 1900 9th Avenue, Seattle, Washington 98101, USA.,Department of Pediatrics, University of Washington School of Medicine, 750 Republican Street, Seattle, Washington 98109, USA
| |
Collapse
|