1
|
Xu M, Zhao J, Zhu L, Ge C, Sun Y, Wang R, Li Y, Dai X, Kuang Q, Hu L, Luo J, Kuang G, Ren Y, Wang B, Tan J, Shi S. Targeting PYK2 with heterobifunctional T6BP helps mitigate MASLD and MASH-HCC progression. J Hepatol 2025; 82:277-300. [PMID: 39260704 DOI: 10.1016/j.jhep.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND & AIMS The mechanisms underlying the regulation of hepatocyte non-receptor tyrosine kinases in metabolic dysfunction-associated steatohepatitis (MASH) remain largely unclear. METHODS Hepatocyte-specific overexpression or deletion and anti-protein tyrosine kinase 2 beta (PYK2) or anti-TRAF6-binding protein (T6BP) crosslinking were utilized to study fatty liver protection by T6BP. A P-PTC (peptide-proteolysis targeting chimera) degrades PYK2 to block MASH progression. RESULTS We found that T6BP is a novel and critical suppressor of PYK2 that reduces hepatic lipid accumulation, pro-inflammatory factor release, and pro-fibrosis production. Mechanistic evidence suggests that T6BP directly targets PYK2 and prevents its N-terminal FERM domain-triggered dimerization, disrupting downstream PYK2-JNK signaling hyperactivation. Additionally, T6BP favorably recruits CBL, a particular E3 ubiquitin ligase targeting PYK2, to form a complex and degrade PYK2. T6BP (F1), a core fragment of T6BP, directly blocks N-terminal FERM domain-associated dimerization of PYK2, followed by T6BP-recruiting CBL-mediated PYK2 degradation in a typical T6BP-dependent manner when the tiny fragment is specifically expressed using thyroxine binding globulin (TBG) vectors. This inhibits the progression of MASH, MASH-related hepatocellular carcinoma, and metabolic syndrome in dietary rodent models. We devised, and validated in animal models, the first-ever P-PTC based on the core segment of T6BP, as a ligand for the targeted recruitment of CBL, that could be used to target metabolic disorders like MASH. CONCLUSIONS Our study uncovered a previously unknown mechanism, with T6BP identified as a key suppressor of steatosis. This, alongside the discovery of crucial T6BP-based fragments that interrupt PYK2 dimerization hold much promise for the treatment of MASH. IMPACT AND IMPLICATIONS Excessive high-energy diet ingestion is critical in driving steatohepatitis via regulation of hepatocyte non-receptor tyrosine kinases. The mechanisms underlying the regulation of hepatocyte PYK2 in metabolic dysfunction-associated steatohepatitis remain largely unclear. Here, we found that T6BP as a critical fatty liver eliminator could be used for the development of promising therapeutic options. Additionally, vital T6BP-based pharmacon fragments that impede PYK2 dimerization have been found, offering new and effective treatments for advanced fatty liver symptoms and complications.
Collapse
Affiliation(s)
- Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| | - Junjie Zhao
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Yan Sun
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Ranran Wang
- College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China; School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing University of Education, Chongqing 400067, PR China
| | - Yuanyuan Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China
| | - Xianling Dai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Qin Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Linfeng Hu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Jing Luo
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China
| | - Gang Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China
| | - Yanrong Ren
- College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China; School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China.
| | - Shengbin Shi
- Department of Gastrointestinal Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, Jinan 250117, PR China.
| |
Collapse
|
2
|
White J, Choi YB, Zhang J, Vo MT, He C, Shaikh K, Harhaj EW. Phosphorylation of the selective autophagy receptor TAX1BP1 by TBK1 and IKBKE/IKKi promotes ATG8-family protein-dependent clearance of MAVS aggregates. Autophagy 2025; 21:160-177. [PMID: 39193925 DOI: 10.1080/15548627.2024.2394306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
TAX1BP1 is a selective macroautophagy/autophagy receptor that inhibits NFKB and RIGI-like receptor (RLR) signaling to prevent excessive inflammation and maintain homeostasis. Selective autophagy receptors such as SQSTM1/p62 and OPTN are phosphorylated by the kinase TBK1 to stimulate their selective autophagy function. However, it is unknown if TAX1BP1 is regulated by TBK1 or other kinases under basal conditions or during RNA virus infection. Here, we found that TBK1 and IKBKE/IKKi function redundantly to phosphorylate TAX1BP1 and regulate its autophagic turnover through canonical macroautophagy. TAX1BP1 phosphorylation promotes its localization to lysosomes, resulting in its degradation. Additionally, we found that during vesicular stomatitis virus infection, TAX1BP1 is targeted to lysosomes in an ATG8-family protein-independent manner. Furthermore, TAX1BP1 plays a critical role in the clearance of MAVS aggregates, and phosphorylation of TAX1BP1 controls its MAVS aggrephagy function. Together, our data support a model whereby TBK1 and IKBKE license TAX1BP1-selective autophagy function to inhibit MAVS and RLR signaling.Abbreviations: ATG: autophagy related; BafA1: bafilomycin A1; CALCOCO2: calcium binding and coiled-coil domain 2; GFP: green fluorescent protein; IFA: indirect immunofluorescence assay; IFN: interferon; IκB: inhibitor of nuclear factor kappa B; IKK: IκB kinase; IRF: interferon regulatory factor; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; MEF: mouse embryonic fibroblast; MOI: multiplicity of infection; IKBKG/NEMO: inhibitor of nuclear factor kappa B kinase regulatory subunit gamma; NFKB: nuclear factor kappa B; OPTN: optineurin; Poly(I:C): polyinosinic-polycytidylic acid; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RIGI: RNA sensor RIG-I; RLR: RIGI-like receptor; SDD-AGE: semi-denaturing detergent-agarose gel electrophoresis; SeV: Sendai virus; SLR: SQSTM1-like receptor; SQSTM1: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TNF: tumor necrosis factor; TRAF: TNF receptor associated factor; VSV: vesicular stomatitis virus; ZnF: zinc finger.
Collapse
Affiliation(s)
- Jesse White
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, USA
| | - Young Bong Choi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jiawen Zhang
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, USA
| | - Mai Tram Vo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chaoxia He
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kashif Shaikh
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, USA
| | - Edward W Harhaj
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
3
|
Chin J, Abeydeera N, Repasy T, Rivera-Lugo R, Mitchell G, Nguyen VQ, Zheng W, Richards A, Swaney DL, Krogan NJ, Ernst JD, Cox JS, Budzik JM. Tax1bp1 enhances bacterial virulence and promotes inflammatory responses during Mycobacterium tuberculosis infection of alveolar macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628616. [PMID: 39763950 PMCID: PMC11702572 DOI: 10.1101/2024.12.16.628616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Crosstalk between autophagy, host cell death, and inflammatory host responses to bacterial pathogens enables effective innate immune responses that limit bacterial growth while minimizing coincidental host damage. Mycobacterium tuberculosis (Mtb) thwarts innate immune defense mechanisms in alveolar macrophages (AMs) during the initial stages of infection and in recruited bone marrow-derived cells during later stages of infection. However, how protective inflammatory responses are achieved during Mtb infection and the variation of the response in different macrophage subtypes remain obscure. Here, we show that the autophagy receptor Tax1bp1 plays a critical role in enhancing inflammatory cytokine production and increasing the susceptibility of mice to Mtb infection. Surprisingly, although Tax1bp1 restricts Mtb growth during infection of bone marrow-derived macrophages (BMDMs) (Budzik et al. 2020) and terminates cytokine production in response to cytokine stimulation or viral infection, Tax1bp1 instead promotes Mtb growth in AMs, neutrophils, and a subset of recruited monocyte-derived cells from the bone marrow. Tax1bp1 also leads to increases in bacterial growth and inflammatory responses during infection of mice with Listeria monocytogenes, an intracellular pathogen that is not effectively targeted to canonical autophagy. In Mtb-infected AMs but not BMDMs, Tax1bp1 enhances necrotic-like cell death early after infection, reprogramming the mode of host cell death to favor Mtb replication in AMs. Tax1bp1's impact on host cell death is a mechanism that explains Tax1bp1's cell type-specific role in the control of Mtb growth. Similar to Tax1bp1-deficiency in AMs, the expression of phosphosite-deficient Tax1bp1 restricts Mtb growth. Together, these results show that Tax1bp1 plays a crucial role in linking the regulation of autophagy, cell death, and pro-inflammatory host responses and enhancing susceptibility to bacterial infection.
Collapse
Affiliation(s)
- Jeffrey Chin
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Nalin Abeydeera
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Teresa Repasy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Present address: Seattle Children's Hospital, Seattle, WA, USA
| | - Rafael Rivera-Lugo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Present address: Department of Biology, Stanford University, Stanford, CA, USA
| | - Gabriel Mitchell
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Present address: Open Innovation at Global Health Disease Area for Biomedical Research, Novartis, Emeryville, CA, USA
| | - Vinh Q Nguyen
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA, USA
| | - Weihao Zheng
- Division of Experiment Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Alicia Richards
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA USA
- J. David Gladstone Institutes, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA USA
- J. David Gladstone Institutes, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA USA
- J. David Gladstone Institutes, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Joel D Ernst
- Division of Experiment Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Jeffery S Cox
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Jonathan M Budzik
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
4
|
Cildir G, Aba U, Pehlivan D, Tvorogov D, Warnock NI, Ipsir C, Arik E, Kok CH, Bozkurt C, Tekeoglu S, Inal G, Cesur M, Kucukosmanoglu E, Karahan I, Savas B, Balci D, Yaman A, Demirbaş ND, Tezcan I, Haskologlu S, Dogu F, Ikinciogulları A, Keskin O, Tumes DJ, Erman B. Defective kinase activity of IKKα leads to combined immunodeficiency and disruption of immune tolerance in humans. Nat Commun 2024; 15:9944. [PMID: 39550372 PMCID: PMC11569180 DOI: 10.1038/s41467-024-54345-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
IKKα is a multifunctional serine/threonine kinase that controls various biological processes, either dependent on or independent of its kinase activity. However, the importance of the kinase function of IKKα in human physiology remains unknown since no biallelic variants disrupting its kinase activity have been reported. In this study, we present a homozygous germline missense variant in the kinase domain of IKKα, which is present in three children from two Turkish families. This variant, referred to as IKKαG167R, is in the activation segment of the kinase domain and affects the conserved (DF/LG) motif responsible for coordinating magnesium atoms for ATP binding. As a result, IKKαG167R abolishes the kinase activity of IKKα, leading to impaired activation of the non-canonical NF-κB pathway. Patients carrying IKKαG167R exhibit a range of immune system abnormalities, including the absence of secondary lymphoid organs, hypogammaglobulinemia and limited diversity of T and B cell receptors with evidence of autoreactivity. Overall, our findings indicate that, unlike a nonsense IKKα variant that results in early embryonic lethality in humans, the deficiency of IKKα's kinase activity is compatible with human life. However, it significantly disrupts the homeostasis of the immune system, underscoring the essential and non-redundant kinase function of IKKα in humans.
Collapse
Affiliation(s)
- Gökhan Cildir
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Umran Aba
- Department of Paediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Türkiye
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Türkiye
| | - Damla Pehlivan
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Türkiye
| | - Denis Tvorogov
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Nicholas I Warnock
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
- Data and Bioinformatics Innovation, Department of Genetics & Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia
| | - Canberk Ipsir
- Department of Paediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Türkiye
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Türkiye
| | - Elif Arik
- Division of Paediatric Allergy and Immunology, Department of Paediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye
| | - Chung Hoow Kok
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
- Data and Bioinformatics Innovation, Department of Genetics & Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Ceren Bozkurt
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Türkiye
| | - Sidem Tekeoglu
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Türkiye
| | - Gaye Inal
- Division of Paediatric Allergy and Immunology, Department of Paediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye
| | - Mahmut Cesur
- Division of Paediatric Allergy and Immunology, Department of Paediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye
| | - Ercan Kucukosmanoglu
- Division of Paediatric Allergy and Immunology, Department of Paediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye
| | - Ibrahim Karahan
- Division of Paediatric Allergy and Immunology, Department of Paediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye
| | - Berna Savas
- Department of Pathology, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Deniz Balci
- Department of General Surgery and Organ Transplantation, Bahcesehir University School of Medicine, Istanbul, Türkiye
| | - Ayhan Yaman
- Pediatric Intensive Care Unit, Department of Pediatrics, Istinye University, Bahcesehir Liv Hospital, Istanbul, Türkiye
| | - Nazli Deveci Demirbaş
- Department of Paediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Ilhan Tezcan
- Department of Paediatric Immunology, Hacettepe University Faculty of Medicine, İhsan Doğramacı Children's Hospital, Ankara, Türkiye
| | - Sule Haskologlu
- Department of Paediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Figen Dogu
- Department of Paediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Aydan Ikinciogulları
- Department of Paediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Ozlem Keskin
- Division of Paediatric Allergy and Immunology, Department of Paediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye.
| | - Damon J Tumes
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia.
| | - Baran Erman
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Türkiye.
- Institute of Child Health, Hacettepe University, Ankara, Türkiye.
| |
Collapse
|
5
|
Chen YG, Rieser E, Bhamra A, Surinova S, Kreuzaler P, Ho MH, Tsai WC, Peltzer N, de Miguel D, Walczak H. LUBAC enables tumor-promoting LTβ receptor signaling by activating canonical NF-κB. Cell Death Differ 2024; 31:1267-1284. [PMID: 39215104 PMCID: PMC11445442 DOI: 10.1038/s41418-024-01355-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Lymphotoxin β receptor (LTβR), a member of the TNF receptor superfamily (TNFR-SF), is essential for development and maturation of lymphoid organs. In addition, LTβR activation promotes carcinogenesis by inducing a proinflammatory secretome. Yet, we currently lack a detailed understanding of LTβR signaling. In this study we discovered the linear ubiquitin chain assembly complex (LUBAC) as a previously unrecognized and functionally crucial component of the native LTβR signaling complex (LTβR-SC). Mechanistically, LUBAC-generated linear ubiquitin chains enable recruitment of NEMO, OPTN and A20 to the LTβR-SC, where they act coordinately to regulate the balance between canonical and non-canonical NF-κB pathways. Thus, different from death receptor signaling, where LUBAC prevents inflammation through inhibition of cell death, in LTβR signaling LUBAC is required for inflammatory signaling by enabling canonical and interfering with non-canonical NF-κB activation. This results in a LUBAC-dependent LTβR-driven inflammatory, protumorigenic secretome. Intriguingly, in liver cancer patients with high LTβR expression, high expression of LUBAC correlates with poor prognosis, providing clinical relevance for LUBAC-mediated inflammatory LTβR signaling.
Collapse
Affiliation(s)
- Yu-Guang Chen
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
- Division of Hematology/Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Eva Rieser
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
- CECAD Research Centre, University of Cologne, Cologne, Germany
| | - Amandeep Bhamra
- Proteomics Research Translational Technology Platform, UCL Ciancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, UK
| | - Silvia Surinova
- Proteomics Research Translational Technology Platform, UCL Ciancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, UK
| | - Peter Kreuzaler
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
- CECAD Research Centre, University of Cologne, Cologne, Germany
| | - Meng-Hsing Ho
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Nieves Peltzer
- CECAD Research Centre, University of Cologne, Cologne, Germany
- Department of Translational Genomics and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Medical Faculty, Cologne, Germany
- Department of Genome Editing, University of Stuttgart, Stuttgart, Germany
| | - Diego de Miguel
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
- CECAD Research Centre, University of Cologne, Cologne, Germany
- Aragon Health Research Institute (IIS Aragon), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain
| | - Henning Walczak
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK.
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany.
- CECAD Research Centre, University of Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Herold K, Ruffin A, Chmura JC, Dellomo AJ, Ehrlich ES. Kaposi's sarcoma herpesvirus viral FLICE inhibitory protein modulates A20 deubiquitinase activity. Access Microbiol 2024; 6:000625.v4. [PMID: 38868372 PMCID: PMC11165616 DOI: 10.1099/acmi.0.000625.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 03/19/2024] [Indexed: 06/14/2024] Open
Abstract
KSHV viral FLICE inhibitory protein (vFLIP) is a potent activator of NF-κB signalling and an inhibitor of apoptosis and autophagy. Inhibition of vFLIP function and NF-κB signalling promotes lytic reactivation. Here we provide evidence for a novel function of vFLIP through inhibition of the deubiquitinating (DUB) activity of the negative regulator, A20. We demonstrate direct interaction of vFLIP with Itch and A20 and provide evidence for subsequent loss of A20 DUB activity. Our results provide further insight into the function of vFLIP in the regulation of NF-κB signalling.
Collapse
Affiliation(s)
- Kevin Herold
- Department of Biological Sciences, Towson University, Towson, MD, USA
| | - Ayana Ruffin
- Department of Biological Sciences, Towson University, Towson, MD, USA
- Cancer Reserach Institute, Emory University, Atlanta, GA, USA
| | | | - Anna J. Dellomo
- Department of Biological Sciences, Towson University, Towson, MD, USA
| | - Elana S. Ehrlich
- Department of Biological Sciences, Towson University, Towson, MD, USA
| |
Collapse
|
7
|
Wang J, Wu Y, Lin R, Zhang Y, Li L. TRAM deletion attenuates monocyte exhaustion and alleviates sepsis severity. Front Immunol 2023; 14:1297329. [PMID: 38162637 PMCID: PMC10756061 DOI: 10.3389/fimmu.2023.1297329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Monocyte exhaustion characterized by immune-suppressive features can develop during sepsis and contribute to adverse patient outcomes. However, molecular mechanisms responsible for the establishment of immune-suppressive monocytes with reduced expression of immune-enhancing mediators such as CD86 during sepsis are not well understood. In this study, we identified that the TLR4 intracellular adaptor TRAM plays a key role in mediating the sustained reduction of CD86 expression on exhausted monocytes and generating an immune-suppressive monocyte state. TRAM contributes to the prolonged suppression of CD86 through inducing TAX1BP1 as well as SARM1, collectively inhibiting Akt and NFκB. TRAM deficient mice are protected from cecal slurry-induced experimental sepsis and retain immune-competent monocytes with CD86 expression. Our data reveal a key molecular circuitry responsible for monocyte exhaustion and provide a viable target for rejuvenating functional monocytes and treating sepsis.
Collapse
Affiliation(s)
| | | | | | | | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
8
|
Qian T, Huo B, Deng X, Song X, Jiang Y, Yang J, Hao F. Decreased TAX1BP1 participates in systemic lupus erythematosus by regulating monocyte/macrophage function. Int Immunol 2023; 35:483-495. [PMID: 37465957 DOI: 10.1093/intimm/dxad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023] Open
Abstract
Systemic lupus erythematosus (SLE) involves disorders of innate and adaptive immune pathways. Tax1-binding protein 1 (TAX1BP1) modulates the production of antibodies in B cells and the T-cell cycle by regulating the NF-κB signaling pathway. However, the potential association of TAX1BP1 with SLE and its role in monocytes/macrophages have not been fully elucidated. In this study, we utilized whole-exome sequencing (WES) in combination with Sanger sequencing and identified 16 gene mutations, including in TAX1BP1, in an SLE family. TAX1BP1 protein expression with western blotting detection was reduced in SLE patients and correlated with disease activity negatively. Furthermore, RNA sequencing and 4D Label-Free Phosphoproteomic analysis were employed to characterize the transcriptome and phosphoproteome profiles in THP-1 and THP-1-differentiated M1 macrophages with TAX1BP1 knockdown. Silencing of TAX1BP1 in THP-1 and THP-1-differentiated M1 macrophages led to an increase in cluster of differentiation 80 (CD80) expression and differential changes in CD14 and CD16 expression, as assessed by flow cytometry. Additionally, western blot analysis showed that knockdown of TAX1BP1 led to a reduction in TRAF6 and p-p65 in THP-1-differentiated macrophages, with or without lipopolysaccharide (LPS) or tumor necrosis factor (TNF)-α stimulation. Taken together, our findings suggest that TAX1BP1 participates in SLE activity by regulating antigen presentation in monocytes and inflammatory responses in M1 macrophages.
Collapse
Affiliation(s)
- Tian Qian
- Dermatology and Plastic Surgery Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Bengang Huo
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Xiaorong Deng
- Dermatology and Plastic Surgery Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Xiaoli Song
- Department of Rheumatology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yiwei Jiang
- Dermatology and Plastic Surgery Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Jurong Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Fei Hao
- Dermatology and Plastic Surgery Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| |
Collapse
|
9
|
He L, Yu X, Zhao Y, Lin H, Zhang Y, Lu D. TLR5S negatively regulates the TLR5M-mediated NF-κB signaling pathway in Epinephelus coioides. Int J Biol Macromol 2023; 249:126048. [PMID: 37517756 DOI: 10.1016/j.ijbiomac.2023.126048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Nuclear factor kappa-B (NF-κB) pathway is a key mediator of inflammation response that plays a role in host defense for pathogen elimination, but excessive activation may lead to tissue damage or pathogen transmission. The negative regulation of NF-κB in lower vertebrates is largely unknown, hindering further understanding of immune signaling evolution. Here, we provided evidence that Epinephelus coioides soluble toll-like receptor 5 (TLR5S), a member of the TLR5 subfamily, has been newly identified as a negative regulator of NF-κB signaling. EcTLR5S was a cytoplasmic protein consisting of 17 leucine-rich repeat domains, which specifically responded to Vibrio flagellin and suppressed flagellin-induced NF-κB signaling activation and cytokine expression. The amino-terminal LRR 1-5 region was necessary for its negative regulatory function. Dual-luciferase reporter assay showed that EcTLR5S significantly inhibited the NF-κB-luc activity induced by inhibitor of NF-κB kinase α (IKKα) and IKKβ. Subsequently, the functional relationship between EcTLR5M and EcTLR5S was analyzed, revealing that the negative regulatory function of EcTLR5S targeted the activation of the NF-κB pathway mediated by EcTLR5M. The above results reveal that EcTLR5S negatively regulates the flagellin-induced EcTLR5M-NF-κB pathway activation, which may prevent over-activation of immune signaling and restore homeostasis.
Collapse
Affiliation(s)
- Liangge He
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Xue Yu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yulin Zhao
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Haoran Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, PR China; College of Ocean, Hainan University, Haikou 570228, PR China
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, PR China; Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Danqi Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, PR China.
| |
Collapse
|
10
|
The long non-coding RNA SNHG1 attenuates chondrocyte apoptosis and inflammation via the miR-195/IKK-α axis. Cell Tissue Bank 2023; 24:167-180. [PMID: 35796880 DOI: 10.1007/s10561-022-10019-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2022] [Indexed: 11/02/2022]
Abstract
Multiple studies have suggested that long non-coding RNAs (lncRNAs) are involved in the development and progression of osteoarthritis (OA). However, how lncRNA SNHG1 regulates OA remains unknown. This study aimed to explore how SNHG1 regulates chondrocyte apoptosis and inflammation. Our data showed that H2O2-treated chondrocytes exhibited lower expression of SNHG1 and secreted higher levels of IL-6, IL-8, and TNF-α than untreated cells. Further, overexpressing SNHG1 reduced chondrocyte apoptosis and production of inflammatory factors. Additionally, SNHG1 targets miR-195 directly, and IKK-α has direct biding sites for miR-195. Of note, IKK-α acts as an inhibitor of the NF-κB signaling pathway. These findings suggest that SNHG1 can upregulate IKK-α by inhibiting miR-195 and thus, inhibit NF-κB activity. Our in vivo experiments validate our in vitro findings. Thus, under oxidative stress, SNHG1 inhibits the activation of NF-κB to attenuate chondrocyte apoptosis and inflammation via the miR-195/IKK-α axis. Targeting SNHG1 may serve as a potential novel therapeutic approach for OA.
Collapse
|
11
|
White J, Suklabaidya S, Vo MT, Choi YB, Harhaj EW. Multifaceted roles of TAX1BP1 in autophagy. Autophagy 2023; 19:44-53. [PMID: 35470757 PMCID: PMC9809930 DOI: 10.1080/15548627.2022.2070331] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 01/09/2023] Open
Abstract
TAX1BP1 is a selective macroautophagy/autophagy receptor that plays a central role in host defense to pathogens and in regulating the innate immune system. TAX1BP1 facilitates the xenophagic clearance of pathogenic bacteria such as Salmonella typhimurium and Mycobacterium tuberculosis and regulates TLR3 (toll-like receptor 3)-TLR4 and DDX58/RIG-I-like receptor (RLR) signaling by targeting TICAM1 and MAVS for autophagic degradation respectively. In addition to these canonical autophagy receptor functions, TAX1BP1 can also exert multiple accessory functions that influence the biogenesis and maturation of autophagosomes. In this review, we will discuss and integrate recent findings related to the autophagy function of TAX1BP1 and highlight outstanding questions regarding its functions in autophagy and regulation of innate immunity and host defense.Abbreviations: ATG: autophagy related; CALCOCO: calcium binding and coiled-coil domain; CC: coiled-coil; CHUK/IKKα: conserved helix-loop-helix ubiquitous kinase; CLIR: noncanonical LC3-interacting region; GABARAP: gamma-aminobutyric acid receptor associated protein; HTLV-1: human T-lymphotropic virus 1; IFN: interferon; IL1B/IL1β: interleukin 1 beta; LIR: LC3-interacting region; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK/JNK: mitogen-activated protein kinase; mATG8: mammalian Atg8 homolog; MAVS: mitochondrial antiviral signaling protein; MEF: mouse embryonic fibroblast; MTB: Mycobacterium tuberculosis; MYD88: myeloid differentiation primary response gene 88; NBR1: NBR1, autophagy cargo receptor; NFKB/NF-κB: nuclear factor of kappa light polypeptide gene enhancer in B cells; OPTN: optineurin; Poly(I:C): polyinosinic:polycytidylic acid; PTM: post-translational modification; RB1CC1: RB1-inducible coiled-coil 1; RIPK: receptor (TNFRSF)-interacting serine-threonine kinase; RLR: DDX58/RIG-I-like receptor; RSV: respiratory syncytia virus; SKICH: SKIP carboxyl homology; SLR: SQSTM1 like receptor; SQSTM1: sequestosome 1; TAX1BP1: Tax1 (human T cell leukemia virus type I) binding protein 1; TBK1: TANK-binding kinase 1; TICAM1: toll-like receptor adaptor molecule 1; TLR: toll-like receptor; TNF: tumor necrosis factor; TNFAIP3: TNF alpha induced protein 3; TNFR: tumor necrosis factor receptor; TOM1: target of myb1 trafficking protein; TRAF: TNF receptor-associated factor; TRIM32: tripartite motif-containing 32; UBD: ubiquitin binding domain; ZF: zinc finger.
Collapse
Affiliation(s)
- Jesse White
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, Pennsylvania, USA
| | - Sujit Suklabaidya
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, Pennsylvania, USA
| | - Mai Tram Vo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Young Bong Choi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Edward W. Harhaj
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
12
|
Saito Y, Otaki Y, Watanabe T, Tachibana S, Sato J, Kobayashi Y, Aono T, Goto J, Wanezaki M, Kutsuzawa D, Kato S, Tamura H, Nishiyama S, Arimoto T, Takahashi H, Watanabe M. Cardiac-specific ITCH overexpression ameliorates septic cardiomyopathy via inhibition of the NF-κB signaling pathway. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2022; 2:100018. [PMID: 39802494 PMCID: PMC11708253 DOI: 10.1016/j.jmccpl.2022.100018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/23/2022] [Accepted: 10/31/2022] [Indexed: 01/16/2025]
Abstract
Background Septic cardiomyopathy is a common complication of septic shock and organ dysfunction. ITCH is a HECT (homologous to the E6-AP carboxyl-terminus)-type ubiquitin E3 ligase that plays a critical role in inflammatory suppression. Herein, we focused on the interaction between ITCH and key regulators of nuclear factor-κB (NF-κB), such as tumor necrosis factor receptor-associated factor 6 (TRAF6) and transforming growth factor-β activated kinase 1 (TAK1), and examined the impact of ITCH on the development of septic cardiomyopathy. Methods and results In H9C2 cardiomyocytes, ITCH protein expression decreased in response to lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNFα). The protein interactions of ITCH with TRAF6 and TAK1 were confirmed by immunoprecipitation in vitro and in vivo. Based on overexpression and knockdown studies of ITCH in H9C2 cardiomyocytes, ITCH regulates the phosphorylation of NF-κB and subsequent interleukin 6 (IL-6) expression in response to LPS and TNFα stimulation. LPS was intraperitoneally injected into transgenic mice with cardiac-specific overexpression of ITCH (ITCH-Tg) and wild-type (WT) mice. Compared with WT mice, phosphorylation of NF-κB and subsequent IL-6 expression were inhibited in ITCH-Tg mice. Cardiac systolic dysfunction after LPS administration was ameliorated in ITCH-Tg mice, and the survival rate was higher in ITCH-Tg mice than in WT mice. Conclusion ITCH interacts with TRAF6 and TAK1 in cardiomyocytes and improves cardiac function and survival rates in septic cardiomyopathy by suppressing the NF-κB pathway.
Collapse
Affiliation(s)
- Yuji Saito
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Yoichiro Otaki
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Tetsu Watanabe
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Shingo Tachibana
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Junya Sato
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Yuta Kobayashi
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Tomonori Aono
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Jun Goto
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Masahiro Wanezaki
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Daisuke Kutsuzawa
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Shigehiko Kato
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Harutoshi Tamura
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Satoshi Nishiyama
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Takanori Arimoto
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Hiroki Takahashi
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Masafumi Watanabe
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| |
Collapse
|
13
|
IKKα plays a major role in canonical NF-kB signalling in colorectal cells. Biochem J 2022; 479:305-325. [PMID: 35029639 PMCID: PMC8883499 DOI: 10.1042/bcj20210783] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/17/2022]
Abstract
Inhibitor of kappa B (IκB) kinase β (IKKβ) has long been viewed as the dominant IKK in the canonical nuclear factor-κB (NF-κB) signalling pathway, with IKKα being more important in non-canonical NF-κB activation. Here we have investigated the role of IKKα and IKKβ in canonical NF-κB activation in colorectal cells using CRISPR–Cas9 knock-out cell lines, siRNA and selective IKKβ inhibitors. IKKα and IKKβ were redundant for IκBα phosphorylation and turnover since loss of IKKα or IKKβ alone had little (SW620 cells) or no (HCT116 cells) effect. However, in HCT116 cells IKKα was the dominant IKK required for basal phosphorylation of p65 at S536, stimulated phosphorylation of p65 at S468, nuclear translocation of p65 and the NF-κB-dependent transcriptional response to both TNFα and IL-1α. In these cells, IKKβ was far less efficient at compensating for the loss of IKKα than IKKα was able to compensate for the loss of IKKβ. This was confirmed when siRNA was used to knock-down the non-targeted kinase in single KO cells. Critically, the selective IKKβ inhibitor BIX02514 confirmed these observations in WT cells and similar results were seen in SW620 cells. Notably, whilst IKKα loss strongly inhibited TNFα-dependent p65 nuclear translocation, IKKα and IKKβ contributed equally to c-Rel nuclear translocation indicating that different NF-κB subunits exhibit different dependencies on these IKKs. These results demonstrate a major role for IKKα in canonical NF-κB signalling in colorectal cells and may be relevant to efforts to design IKK inhibitors, which have focused largely on IKKβ to date.
Collapse
|
14
|
Descamps D, Peres de Oliveira A, Gonnin L, Madrières S, Fix J, Drajac C, Marquant Q, Bouguyon E, Pietralunga V, Iha H, Morais Ventura A, Tangy F, Vidalain PO, Eléouët JF, Galloux M. Depletion of TAX1BP1 Amplifies Innate Immune Responses during Respiratory Syncytial Virus Infection. J Virol 2021; 95:e0091221. [PMID: 34431698 PMCID: PMC8549506 DOI: 10.1128/jvi.00912-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the main cause of acute respiratory infections in young children and also has a major impact on the elderly and immunocompromised people. In the absence of a vaccine or efficient treatment, a better understanding of RSV interactions with the host antiviral response during infection is needed. Previous studies revealed that cytoplasmic inclusion bodies (IBs), where viral replication and transcription occur, could play a major role in the control of innate immunity during infection by recruiting cellular proteins involved in the host antiviral response. We recently showed that the morphogenesis of IBs relies on a liquid-liquid-phase separation mechanism depending on the interaction between viral nucleoprotein (N) and phosphoprotein (P). These scaffold proteins are expected to play a central role in the recruitment of cellular proteins to IBs. Here, we performed a yeast two-hybrid screen using RSV N protein as bait and identified the cellular protein TAX1BP1 as a potential partner of this viral protein. This interaction was validated by pulldown and immunoprecipitation assays. We showed that TAX1BP1 suppression has only a limited impact on RSV infection in cell cultures. However, RSV replication is decreased in TAX1BP1-deficient (TAX1BP1 knockout [TAX1BP1KO]) mice, whereas the production of inflammatory and antiviral cytokines is enhanced. In vitro infection of wild-type or TAX1BP1KO alveolar macrophages confirmed that the innate immune response to RSV infection is enhanced in the absence of TAX1BP1. Altogether, our results suggest that RSV could hijack TAX1BP1 to restrain the host immune response during infection. IMPORTANCE Respiratory syncytial virus (RSV), which is the leading cause of lower respiratory tract illness in infants, remains a medical problem in the absence of a vaccine or efficient treatment. This virus is also recognized as a main pathogen in the elderly and immunocompromised people, and the occurrence of coinfections (with other respiratory viruses and bacteria) amplifies the risks of developing respiratory distress. In this context, a better understanding of the pathogenesis associated with viral respiratory infections, which depends on both viral replication and the host immune response, is needed. The present study reveals that the cellular protein TAX1BP1, which interacts with the RSV nucleoprotein N, participates in the control of the innate immune response during RSV infection, suggesting that the N-TAX1BP1 interaction represents a new target for the development of antivirals.
Collapse
Affiliation(s)
| | - Andressa Peres de Oliveira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Lorène Gonnin
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Sarah Madrières
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Jenna Fix
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Carole Drajac
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Quentin Marquant
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Edwige Bouguyon
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | - Hidekatsu Iha
- Department of Infectious Diseases, Faculty of Medicine, Oita University Idaiga-oka, Hasama Yufu, Japan
| | - Armando Morais Ventura
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Frédéric Tangy
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Pierre-Olivier Vidalain
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
- CIRI, Centre International de Recherche en Infectiologie, Université Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | | | - Marie Galloux
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| |
Collapse
|
15
|
Forlani G, Shallak M, Accolla RS, Romanelli MG. HTLV-1 Infection and Pathogenesis: New Insights from Cellular and Animal Models. Int J Mol Sci 2021; 22:ijms22158001. [PMID: 34360767 PMCID: PMC8347336 DOI: 10.3390/ijms22158001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022] Open
Abstract
Since the discovery of the human T-cell leukemia virus-1 (HTLV-1), cellular and animal models have provided invaluable contributions in the knowledge of viral infection, transmission and progression of HTLV-associated diseases. HTLV-1 is the causative agent of the aggressive adult T-cell leukemia/lymphoma and inflammatory diseases such as the HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). Cell models contribute to defining the role of HTLV proteins, as well as the mechanisms of cell-to-cell transmission of the virus. Otherwise, selected and engineered animal models are currently applied to recapitulate in vivo the HTLV-1 associated pathogenesis and to verify the effectiveness of viral therapy and host immune response. Here we review the current cell models for studying virus–host interaction, cellular restriction factors and cell pathway deregulation mediated by HTLV products. We recapitulate the most effective animal models applied to investigate the pathogenesis of HTLV-1-associated diseases such as transgenic and humanized mice, rabbit and monkey models. Finally, we summarize the studies on STLV and BLV, two closely related HTLV-1 viruses in animals. The most recent anticancer and HAM/TSP therapies are also discussed in view of the most reliable experimental models that may accelerate the translation from the experimental findings to effective therapies in infected patients.
Collapse
Affiliation(s)
- Greta Forlani
- Laboratory of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (G.F.); (M.S.); (R.S.A.)
| | - Mariam Shallak
- Laboratory of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (G.F.); (M.S.); (R.S.A.)
| | - Roberto Sergio Accolla
- Laboratory of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (G.F.); (M.S.); (R.S.A.)
| | - Maria Grazia Romanelli
- Department of Biosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- Correspondence:
| |
Collapse
|
16
|
Maculins T, Verschueren E, Hinkle T, Choi M, Chang P, Chalouni C, Rao S, Kwon Y, Lim J, Katakam AK, Kunz RC, Erickson BK, Huang T, Tsai TH, Vitek O, Reichelt M, Senbabaoglu Y, Mckenzie B, Rohde JR, Dikic I, Kirkpatrick DS, Murthy A. Multiplexed proteomics of autophagy-deficient murine macrophages reveals enhanced antimicrobial immunity via the oxidative stress response. eLife 2021; 10:e62320. [PMID: 34085925 PMCID: PMC8177894 DOI: 10.7554/elife.62320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Defective autophagy is strongly associated with chronic inflammation. Loss-of-function of the core autophagy gene Atg16l1 increases risk for Crohn's disease in part by enhancing innate immunity through myeloid cells such as macrophages. However, autophagy is also recognized as a mechanism for clearance of certain intracellular pathogens. These divergent observations prompted a re-evaluation of ATG16L1 in innate antimicrobial immunity. In this study, we found that loss of Atg16l1 in myeloid cells enhanced the killing of virulent Shigella flexneri (S.flexneri), a clinically relevant enteric bacterium that resides within the cytosol by escaping from membrane-bound compartments. Quantitative multiplexed proteomics of murine bone marrow-derived macrophages revealed that ATG16L1 deficiency significantly upregulated proteins involved in the glutathione-mediated antioxidant response to compensate for elevated oxidative stress, which simultaneously promoted S.flexneri killing. Consistent with this, myeloid-specific deletion of Atg16l1 in mice accelerated bacterial clearance in vitro and in vivo. Pharmacological induction of oxidative stress through suppression of cysteine import enhanced microbial clearance by macrophages. Conversely, antioxidant treatment of macrophages permitted S.flexneri proliferation. These findings demonstrate that control of oxidative stress by ATG16L1 and autophagy regulates antimicrobial immunity against intracellular pathogens.
Collapse
Affiliation(s)
- Timurs Maculins
- Department of Cancer Immunology, GenentechSouth San FranciscoUnited States
- Institute of Biochemistry II, Goethe UniversityFrankfurt am MainGermany
| | - Erik Verschueren
- Department of Microchemistry, Proteomics and Lipidomics, GenentechSouth San FranciscoUnited States
| | - Trent Hinkle
- Department of Microchemistry, Proteomics and Lipidomics, GenentechSouth San FranciscoUnited States
| | - Meena Choi
- Department of Microchemistry, Proteomics and Lipidomics, GenentechSouth San FranciscoUnited States
- Khoury College of Computer Sciences, Northeastern UniversityBostonUnited States
| | - Patrick Chang
- Department of Pathology, GenentechSouth San FranciscoUnited States
| | - Cecile Chalouni
- Department of Pathology, GenentechSouth San FranciscoUnited States
| | - Shilpa Rao
- Department of Oncology Bioinformatics, GenentechSouth San FranciscoUnited States
| | - Youngsu Kwon
- Department of Translational Immunology, GenentechSouth San FranciscoUnited States
| | - Junghyun Lim
- Department of Cancer Immunology, GenentechSouth San FranciscoUnited States
| | | | | | | | - Ting Huang
- Khoury College of Computer Sciences, Northeastern UniversityBostonUnited States
| | - Tsung-Heng Tsai
- Khoury College of Computer Sciences, Northeastern UniversityBostonUnited States
- Department of Mathematical Sciences, Kent State UniversityKentUnited States
| | - Olga Vitek
- Khoury College of Computer Sciences, Northeastern UniversityBostonUnited States
| | - Mike Reichelt
- Department of Pathology, GenentechSouth San FranciscoUnited States
| | - Yasin Senbabaoglu
- Department of Oncology Bioinformatics, GenentechSouth San FranciscoUnited States
| | - Brent Mckenzie
- Department of Translational Immunology, GenentechSouth San FranciscoUnited States
| | - John R Rohde
- Department of Microbiology and Immunology, Dalhousie UniversityHalifaxCanada
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe UniversityFrankfurt am MainGermany
- Department of Infectious Diseases, GenentechSouth San FranciscoUnited States
| | | | - Aditya Murthy
- Interline TherapeuticsSouth San FranciscoUnited States
| |
Collapse
|
17
|
Sokolova O, Naumann M. Manifold role of ubiquitin in Helicobacter pylori infection and gastric cancer. Cell Mol Life Sci 2021; 78:4765-4783. [PMID: 33825941 PMCID: PMC8195768 DOI: 10.1007/s00018-021-03816-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/22/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
Infection with H. pylori induces a strong host cellular response represented by induction of a set of molecular signaling pathways, expression of proinflammatory cytokines and changes in proliferation. Chronic infection and inflammation accompanied by secretory dysfunction can result in the development of gastric metaplasia and gastric cancer. Currently, it has been determined that the regulation of many cellular processes involves ubiquitinylation of molecular effectors. The binding of ubiquitin allows the substrate to undergo a change in function, to interact within multimolecular signaling complexes and/or to be degraded. Dysregulation of the ubiquitinylation machinery contributes to several pathologies, including cancer. It is not understood in detail how H. pylori impacts the ubiquitinylation of host substrate proteins. The aim of this review is to summarize the existing literature in this field, with an emphasis on the role of E3 ubiquitin ligases in host cell homeodynamics, gastric pathophysiology and gastric cancer.
Collapse
Affiliation(s)
- Olga Sokolova
- Medical Faculty, Otto Von Guericke University, Institute of Experimental Internal Medicine, 39120 Magdeburg, Germany
| | - Michael Naumann
- Medical Faculty, Otto Von Guericke University, Institute of Experimental Internal Medicine, 39120 Magdeburg, Germany
| |
Collapse
|
18
|
Li X, Hu Y. Attribution of NF-κB Activity to CHUK/IKKα-Involved Carcinogenesis. Cancers (Basel) 2021; 13:cancers13061411. [PMID: 33808757 PMCID: PMC8003426 DOI: 10.3390/cancers13061411] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary CHUK/IKKα has emerged as a novel tumor suppressor in several organs of humans and mice. In general, activation of NF-κB promotes inflammation and tumorigenesis. IKKα reduction stimulates inflammatory responses including NF-κB’s targets and NF-κB-independent pathways for tumor promotion. Specific phenomena from genetically-modified mice and human TCGA database show the crosstalk between IKKα and NF-κB although their nature paths for normal organ development and the disease and cancer pathogenesis remains largely under investigation. In this review, we focus on the interplay between IKKα and NF-κB signaling during carcinogenesis. A better understanding of their relationship will provide insight into therapeutic targets of cancer. Abstract Studies analyzing human cancer genome sequences and genetically modified mouse models have extensively expanded our understanding of human tumorigenesis, even challenging or reversing the dogma of certain genes as originally characterized by in vitro studies. Inhibitor-κB kinase α (IKKα), which is encoded by the conserved helix-loop-helix ubiquitous kinase (CHUK) gene, is first identified as a serine/threonine protein kinase in the inhibitor-κB kinase complex (IKK), which is composed of IKKα, IKKβ, and IKKγ (NEMO). IKK phosphorylates serine residues 32 and 36 of IκBα, a nuclear factor-κB (NF-κB) inhibitor, to induce IκBα protein degradation, resulting in the nuclear translocation of NF-κB dimers that function as transcriptional factors to regulate immunity, infection, lymphoid organ/cell development, cell death/growth, and tumorigenesis. NF-κB and IKK are broadly and differentially expressed in the cells of our body. For a long time, the idea that the IKK complex acts as a direct upstream activator of NF-κB in carcinogenesis has been predominately accepted in the field. Surprisingly, IKKα has emerged as a novel suppressor for skin, lung, esophageal, and nasopharyngeal squamous cell carcinoma, as well as lung and pancreatic adenocarcinoma (ADC). Thus, Ikkα loss is a tumor driver in mice. On the other hand, lacking the RANKL/RANK/IKKα pathway impairs mammary gland development and attenuates oncogene- and chemical carcinogen-induced breast and prostate tumorigenesis and metastasis. In general, NF-κB activation leads one of the major inflammatory pathways and stimulates tumorigenesis. Since IKKα and NF-κB play significant roles in human health, revealing the interplay between them greatly benefits the diagnosis, treatment, and prevention of human cancer. In this review, we discuss the intriguing attribution of NF-κB to CHUK/IKKα-involved carcinogenesis.
Collapse
|
19
|
Zhou M, He J, Shi Y, Liu X, Luo S, Cheng C, Ge W, Qu C, Du P, Chen Y. ABIN3 Negatively Regulates Necroptosis-induced Intestinal Inflammation Through Recruiting A20 and Restricting the Ubiquitination of RIPK3 in Inflammatory Bowel Disease. J Crohns Colitis 2021; 15:99-114. [PMID: 32599618 DOI: 10.1093/ecco-jcc/jjaa131] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS There is evidence for a disturbed necroptosis function in many inflammatory diseases, but its role in inflammatory bowel diseases [IBD] and the underlying mechanisms are unclear. Here, we studied the functional significance and molecular mechanisms of ABIN3, a ubiquitin-binding protein, in regulating the ubiquitination and activation of necroptosis in IBD. METHODS The expression of necroptosis hallmarks and ABIN3 were assessed in inflamed samples of IBD patients, dextran sodium sulphate [DSS]-induced colitis models, and azoxymethane [AOM]/DSS models in mice. ABIN3 was overexpressed and silenced to explore its function in regulating necroptosis, inflammation, and intestinal barrier function. Immuoprecipitiation [IP] and co-IP assays were performed to investigate the cross-talk between ABIN3 and deubiquitinating enzyme A20, and the mechanisms of coordinating ubiquitination modification to regulate necroptosis. RESULTS Excessive necroptosis is an important contributory factor towards the uncontrolled inflammation and intestinal barrier defects in IBD and experimental colitis. Blocking necroptosis by Nec-1s or GSK'872 significantly prevented cell death and alleviated DSS-induced colitis in vivo, whereas in the AOM/DSS model, necroptosis inhibitors aggravated the severity of colitis-associated colon carcinogenesis [CAC]. Mechanistically, ABIN3 is rapidly recruited to the TNF-RSC complex, which interacts and coordinates with deubiquitinating enzyme A20 to control the K63 deubiquitination modification and subsequent activation of the critical necroptosis kinase, RIPK3, to suppress necroptosis. CONCLUSIONS ABIN3 regulates inflammatory response and intestinal barrier function by interacting with A20 and coordinating the K63 deubiquitination modification of necroptosis in IBD.
Collapse
Affiliation(s)
- Mingxia Zhou
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jing He
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingying Shi
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Xiaoman Liu
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Shangjian Luo
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Cheng Cheng
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Wensong Ge
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunying Qu
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Du
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingwei Chen
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
20
|
Motolani A, Martin M, Sun M, Lu T. Phosphorylation of the Regulators, a Complex Facet of NF-κB Signaling in Cancer. Biomolecules 2020; 11:E15. [PMID: 33375283 PMCID: PMC7823564 DOI: 10.3390/biom11010015] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
The nuclear factor kappa B (NF-κB) is a ubiquitous transcription factor central to inflammation and various malignant diseases in humans. The regulation of NF-κB can be influenced by a myriad of post-translational modifications (PTMs), including phosphorylation, one of the most popular PTM formats in NF-κB signaling. The regulation by phosphorylation modification is not limited to NF-κB subunits, but it also encompasses the diverse regulators of NF-κB signaling. The differential site-specific phosphorylation of NF-κB itself or some NF-κB regulators can result in dysregulated NF-κB signaling, often culminating in events that induce cancer progression and other hyper NF-κB related diseases, such as inflammation, cardiovascular diseases, diabetes, as well as neurodegenerative diseases, etc. In this review, we discuss the regulatory role of phosphorylation in NF-κB signaling and the mechanisms through which they aid cancer progression. Additionally, we highlight some of the known and novel NF-κB regulators that are frequently subjected to phosphorylation. Finally, we provide some future perspectives in terms of drug development to target kinases that regulate NF-κB signaling for cancer therapeutic purposes.
Collapse
Affiliation(s)
- Aishat Motolani
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.); (M.M.); (M.S.)
| | - Matthew Martin
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.); (M.M.); (M.S.)
| | - Mengyao Sun
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.); (M.M.); (M.S.)
| | - Tao Lu
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.); (M.M.); (M.S.)
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
21
|
Mohanty S, Han T, Choi YB, Lavorgna A, Zhang J, Harhaj EW. The E3/E4 ubiquitin conjugation factor UBE4B interacts with and ubiquitinates the HTLV-1 Tax oncoprotein to promote NF-κB activation. PLoS Pathog 2020; 16:e1008504. [PMID: 33362245 PMCID: PMC7790423 DOI: 10.1371/journal.ppat.1008504] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 01/07/2021] [Accepted: 11/13/2020] [Indexed: 11/18/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), and the neurological disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 Tax protein persistently activates the NF-κB pathway to enhance the proliferation and survival of HTLV-1 infected T cells. Lysine 63 (K63)-linked polyubiquitination of Tax provides an important regulatory mechanism that promotes Tax-mediated interaction with the IKK complex and activation of NF-κB; however, the host proteins regulating Tax ubiquitination are largely unknown. To identify new Tax interacting proteins that may regulate its ubiquitination we conducted a yeast two-hybrid screen using Tax as bait. This screen yielded the E3/E4 ubiquitin conjugation factor UBE4B as a novel binding partner for Tax. Here, we confirmed the interaction between Tax and UBE4B in mammalian cells by co-immunoprecipitation assays and demonstrated colocalization by proximity ligation assay and confocal microscopy. Overexpression of UBE4B specifically enhanced Tax-induced NF-κB activation, whereas knockdown of UBE4B impaired Tax-induced NF-κB activation and the induction of NF-κB target genes in T cells and ATLL cell lines. Furthermore, depletion of UBE4B with shRNA resulted in apoptotic cell death and diminished the proliferation of ATLL cell lines. Finally, overexpression of UBE4B enhanced Tax polyubiquitination, and knockdown or CRISPR/Cas9-mediated knockout of UBE4B attenuated both K48- and K63-linked polyubiquitination of Tax. Collectively, these results implicate UBE4B in HTLV-1 Tax polyubiquitination and downstream NF-κB activation. Infection with the retrovirus HTLV-1 leads to the development of either CD4+CD25+ leukemia/lymphoma (ATLL) or a demyelinating neuroinflammatory disease (HAM/TSP) in a subset of infected individuals. The HTLV-1 Tax protein is a regulatory protein which regulates viral gene expression and persistently activates cellular signaling pathways such as NF-κB to drive the clonal expansion and longevity of HTLV-1 infected CD4+ T cells. Polyubiquitination of Tax is a key mechanism of NF-κB activation by assembling and activating IκB kinase (IKK) signaling complexes; however, the host factors regulating Tax ubiquitination have remained elusive. Here, we have identified the E3/E4 ubiquitin conjugation factor UBE4B as a novel Tax binding protein that promotes both K48- and K63-linked polyubiquitination of Tax. Knockdown or knockout of UBE4B impairs Tax-induced NF-κB activation and triggers apoptosis of HTLV-1-transformed cells. Therefore, UBE4B is an integral host factor that supports HTLV-1 Tax polyubiquitination, NF-κB activation and cell survival.
Collapse
Affiliation(s)
- Suchitra Mohanty
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, Pennsylvania, United States of America
| | - Teng Han
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Young Bong Choi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Alfonso Lavorgna
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Jiawen Zhang
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, Pennsylvania, United States of America
| | - Edward William Harhaj
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, Pennsylvania, United States of America
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
22
|
Shao Z, Tu Z, Shi Y, Li S, Wu A, Wu Y, Tian N, Sun L, Pan Z, Chen L, Gao W, Zhou Y, Wang X, Zhang X. RNA-Binding Protein HuR Suppresses Inflammation and Promotes Extracellular Matrix Homeostasis via NKRF in Intervertebral Disc Degeneration. Front Cell Dev Biol 2020; 8:611234. [PMID: 33330514 PMCID: PMC7732619 DOI: 10.3389/fcell.2020.611234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) has been reported to be a major cause of low back pain. Studies have demonstrated that IVDD may be dysregulated at the transcriptional level; however, whether post-transcriptional regulation is involved is still unknown. The current study aimed to illustrate the role of Human antigen R (HuR), an RNA binding protein involved in post-transcriptional regulation, in IVDD. The results showed that the expression of HuR was decreased in degenerative nucleus pulposus (NP) tissues as well as in TNF-α-treated NP cells. Downregulation of HuR may lead to increased inflammation and extracellular matrix (ECM) degradation in TNF-α-treated NP cells; however, these effects were not reversed in HuR overexpressed NP cells. Inhibition of the NF-κB signaling pathway attenuates inflammation and ECM degradation in HuR-deficient NP cells. A mechanism study showed that HuR prompted NKRF mRNA stability via binding to its AU-rich elements, and upregulation of NKRF suppressed inflammation and ECM degradation in HuR-deficient NP cells. Furthermore, we found that NKRF, but not HuR, overexpression ameliorated the process of IVDD in rats in vivo. In conclusion, HuR suppressed inflammation and ECM degradation in NP cells via stabilizing NKRF and inhibiting the NF-κB signaling pathway; NKRF, but not HuR, may serve as a potential therapeutic target for IVDD.
Collapse
Affiliation(s)
- Zhenxuan Shao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhuolong Tu
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yifeng Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Sunlong Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Aimin Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Liaojun Sun
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zongyou Pan
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Linwei Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Chinese Orthopedic Regenerative Medicine Society, Hangzhou, China
| |
Collapse
|
23
|
Sarraf SA, Shah HV, Kanfer G, Pickrell AM, Holtzclaw LA, Ward ME, Youle RJ. Loss of TAX1BP1-Directed Autophagy Results in Protein Aggregate Accumulation in the Brain. Mol Cell 2020; 80:779-795.e10. [PMID: 33207181 DOI: 10.1016/j.molcel.2020.10.041] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 09/02/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
Abstract
Protein aggregates disrupt cellular homeostasis, causing toxicity linked to neurodegeneration. Selective autophagic elimination of aggregates is critical to protein quality control, but how aggregates are selectively targeted for degradation is unclear. We compared the requirements for autophagy receptor proteins: OPTN, NBR1, p62, NDP52, and TAX1BP1 in clearance of proteotoxic aggregates. Endogenous TAX1BP1 is recruited to and required for the clearance of stress-induced aggregates, whereas ectopic expression of TAX1BP1 increases clearance through autophagy, promoting viability of human induced pluripotent stem cell-derived neurons. In contrast, TAX1BP1 depletion sensitizes cells to several forms of aggregate-induced proteotoxicity. Furthermore, TAX1BP1 is more specifically expressed in the brain compared to other autophagy receptor proteins. In vivo, loss of TAX1BP1 results in accumulation of high molecular weight ubiquitin conjugates and premature lipofuscin accumulation in brains of young TAX1BP1 knockout mice. TAX1BP1 mediates clearance of a broad range of cytotoxic proteins indicating therapeutic potential in neurodegenerative diseases.
Collapse
Affiliation(s)
- Shireen A Sarraf
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Hetal V Shah
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742, USA
| | - Gil Kanfer
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alicia M Pickrell
- School of Neuroscience, College of Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Lynne A Holtzclaw
- Microscopy and Imaging Core, Office of the Scientific Director, Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael E Ward
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
24
|
Mollaei M, Abbasi A, Hassan ZM, Pakravan N. The intrinsic and extrinsic elements regulating inflammation. Life Sci 2020; 260:118258. [PMID: 32818542 DOI: 10.1016/j.lfs.2020.118258] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022]
Abstract
Inflammation is a sophisticated biological tissue response to both extrinsic and intrinsic stimuli. Although the pathological aspects of inflammation are well appreciated, there are still rooms for understanding the physiological functions of the inflammation. Recent studies have focused on mechanisms, context and the role of physiological inflammation. Besides, there have been progress in the comprehension of commensal microbiota, immunometabolism, cancer and intracellular signaling events' roles that impact on the regulation of inflammation. Despite the fact that inflammatory responses are vital through tissue damage, understanding the mechanisms to turn off the finished or unnecessary inflammation is crucial for restoring homeostasis. Inflammation seems to be a smart process that acts like two edges of a sword, meaning that it has both protective and deleterious consequences. Knowing both edges and the regulation processes will help the future understanding and therapy for various diseases.
Collapse
Affiliation(s)
- M Mollaei
- Department of Immunology, School of Medicine, Tarbiat Modares University, Iran.
| | - A Abbasi
- Department of Immunology, School of Medicine, Tarbiat Modares University, Iran
| | - Z M Hassan
- Department of Immunology, School of Medicine, Tarbiat Modares University, Iran
| | - N Pakravan
- Department of Immunology, School of Medicine, Alborz University of Medical Science, Iran
| |
Collapse
|
25
|
Identification and Characterization of MAPK Signaling Pathway Genes and Associated lncRNAs in the Ileum of Piglets Infected by Clostridium perfringens Type C. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8496872. [PMID: 32855971 PMCID: PMC7443001 DOI: 10.1155/2020/8496872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/16/2020] [Accepted: 07/17/2020] [Indexed: 01/18/2023]
Abstract
Clostridium perfringens type C (C. perfringens type C) is one of the main microbial pathogens responsible for piglet diarrhea worldwide, causing substantial economic losses for pig-rearing industries. The mitogen-activated protein kinase (MAPK) signaling pathway is a key regulator of inflammatory bowel disease, especially necrotic enteritis. However, whether and how the MAPK signaling pathway is involved in regulating the process of piglet diarrhea when challenged by C. perfringens type C are still unknown. Here, we screened 38 differentially expressed genes (DEGs) in piglets' ileum tissues experimentally infected with C. perfringens type C that were enriched in the Sus scrofa MAPK signaling pathway, based on our previous transcriptome data. Of these DEGs, 12 genes (TRAF2, MAPK8, and GADD45G, among others) were upregulated whereas 26 genes (MAPK1, TP53, and CHUK, among others) were downregulated in the infected group. Our results showed that MAPK1, TP53, MAPK8, MYC, and CHUK were in the core nodes of the PPI network. Additionally, we obtained 35 lncRNAs from the sequencing data, which could be trans-targeted to MAPK signaling pathway genes and were differentially expressed in the ileum tissues infected with C. perfringens. We used qRT-PCR to verify the expression levels of genes and lncRNAs related to the MAPK signaling pathway; their expression patterns were consistent with RNA sequencing data. Our results provide strong support for deeply exploring the role of the MAPK signaling pathway in diarrhea caused by C. perfringens type C.
Collapse
|
26
|
Yang Q, Tang J, Xu C, Zhao H, Zhou Y, Wang Y, Yang M, Chen X, Chen J. Histone deacetylase 4 inhibits NF-κB activation by facilitating IκBα sumoylation. J Mol Cell Biol 2020; 12:933-945. [PMID: 32770227 PMCID: PMC7948076 DOI: 10.1093/jmcb/mjaa043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/07/2020] [Accepted: 07/27/2020] [Indexed: 11/18/2022] Open
Abstract
Protein modification by small ubiquitin-like modifier (SUMO) is an important regulatory mechanism for multiple cellular processes. Although the canonical pathway involving the ubiquitylation or phosphorylation of IκBα has been well characterized, little is known about the sumoylation of IκBα in the control of NF-κB activity. Here, we find that histone deacetylase 4 (HDAC4) negatively regulates tumor necrosis factor-alpha- or lipopolysaccharide-triggered NF-κB activation. HDAC4 belongs to the SUMO E3 ligase family and can directly sumoylate IκBα. The cytoplasm location of HDAC4 is essential for IκBα sumoylation. The Cys292 of HDAC4 is a key site for its SUMO E3 ligase activity. The sumoylation of IκBα prevents its polyubiquitination and degradation because these two modifications occur both at the Lys21. Our findings reveal a previously undiscovered role for HDAC4 in the inflammatory response as a SUMO E3 ligase for IκBα sumoylation. Our work provides insight into mechanisms ensuring optimal mediation of the NF-κB pathway.
Collapse
Affiliation(s)
- Qi Yang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou 510623, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jielin Tang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chonghui Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yuan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yanyi Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Min Yang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou 510623, China
| | - Xinwen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jizheng Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
27
|
Mohanty S, Harhaj EW. Mechanisms of Oncogenesis by HTLV-1 Tax. Pathogens 2020; 9:E543. [PMID: 32645846 PMCID: PMC7399876 DOI: 10.3390/pathogens9070543] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 01/23/2023] Open
Abstract
The human T-cell lymphotropic virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), a neoplasm of CD4+CD25+ T cells that occurs in 2-5% of infected individuals after decades of asymptomatic latent infection. Multiple HTLV-1-encoded regulatory proteins, including Tax and HTLV-1 basic leucine zipper factor (HBZ), play key roles in viral persistence and latency. The HTLV-1 Tax oncoprotein interacts with a plethora of host cellular proteins to regulate viral gene expression and also promote the aberrant activation of signaling pathways such as NF-κB to drive clonal proliferation and survival of T cells bearing the HTLV-1 provirus. Tax undergoes various post-translational modifications such as phosphorylation and ubiquitination that regulate its function and subcellular localization. Tax shuttles in different subcellular compartments for the activation of anti-apoptotic genes and deregulates the cell cycle with the induction of DNA damage for the accumulation of genomic instability that can result in cellular immortalization and malignant transformation. However, Tax is highly immunogenic and therefore HTLV-1 has evolved numerous strategies to tightly regulate Tax expression while maintaining the pool of anti-apoptotic genes through HBZ. In this review, we summarize the key findings on the oncogenic mechanisms used by Tax that set the stage for the development of ATLL, and the strategies used by HTLV-1 to tightly regulate Tax expression for immune evasion and viral persistence.
Collapse
Affiliation(s)
| | - Edward W. Harhaj
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA;
| |
Collapse
|
28
|
McCormack R, Hunte R, Podack ER, Plano GV, Shembade N. An Essential Role for Perforin-2 in Type I IFN Signaling. THE JOURNAL OF IMMUNOLOGY 2020; 204:2242-2256. [PMID: 32161097 DOI: 10.4049/jimmunol.1901013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/12/2020] [Indexed: 01/14/2023]
Abstract
Type I IFNs play a complex role in determining the fate of microbial pathogens and may also be deleterious to the host during bacterial and viral infections. Upon ligand binding, a receptor proximal complex consisting of IFN-α and -β receptors 1 and 2 (IFNAR1, IFNAR2, respectively), tyrosine kinase 2 (Tyk2), Jak1, and STAT2 are assembled and promote the phosphorylation of STAT1 and STAT2. However, how the IFNARs proximal complex is assembled upon binding to IFN is poorly understood. In this study, we show that the membrane-associated pore-forming protein Perforin-2 (P2) is critical for LPS-induced endotoxic shock in wild-type mice. Type I IFN-mediated JAK-STAT signaling is severely impaired, and activation of MAPKs and PI3K signaling pathways are delayed in P2-deficient mouse bone marrow-derived macrophages, mouse embryonic fibroblasts (MEFs), and human HeLa cells upon IFN stimulation. The P2 N-glycosylated extracellular membrane attack complex/perforin domain and the P2 domain independently associate with the extracellular regions of IFNAR1 and IFNAR2, respectively, in resting MEFs. In addition, the P2 cytoplasmic tail domain mediated the constitutive interaction between STAT2 and IFNAR2 in resting MEFs, an interaction that is dependent on the association of the extracellular regions of P2 and IFNAR2. Finally, the constitutive association of P2 with both receptors and STAT2 is critical for the receptor proximal complex assembly and reciprocal transphosphorylation of Jak1 and Tyk2 as well as the phosphorylation and activation of STAT1 and STAT2 upon IFN-β stimulation.
Collapse
Affiliation(s)
- Ryan McCormack
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Richard Hunte
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Eckhard R Podack
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136
| | - Gregory V Plano
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Noula Shembade
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136 .,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136
| |
Collapse
|
29
|
Budzik JM, Swaney DL, Jimenez-Morales D, Johnson JR, Garelis NE, Repasy T, Roberts AW, Popov LM, Parry TJ, Pratt D, Ideker T, Krogan NJ, Cox JS. Dynamic post-translational modification profiling of Mycobacterium tuberculosis-infected primary macrophages. eLife 2020; 9:e51461. [PMID: 31951200 PMCID: PMC7030789 DOI: 10.7554/elife.51461] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/16/2020] [Indexed: 12/23/2022] Open
Abstract
Macrophages are highly plastic cells with critical roles in immunity, cancer, and tissue homeostasis, but how these distinct cellular fates are triggered by environmental cues is poorly understood. To uncover how primary murine macrophages respond to bacterial pathogens, we globally assessed changes in post-translational modifications of proteins during infection with Mycobacterium tuberculosis, a notorious intracellular pathogen. We identified hundreds of dynamically regulated phosphorylation and ubiquitylation sites, indicating that dramatic remodeling of multiple host pathways, both expected and unexpected, occurred during infection. Most of these cellular changes were not captured by mRNA profiling, and included activation of ubiquitin-mediated autophagy, an evolutionarily ancient cellular antimicrobial system. This analysis also revealed that a particular autophagy receptor, TAX1BP1, mediates clearance of ubiquitylated Mtb and targets bacteria to LC3-positive phagophores. These studies provide a new resource for understanding how macrophages shape their proteome to meet the challenge of infection.
Collapse
Affiliation(s)
- Jonathan M Budzik
- Department of MedicineUniversity of California, San FranciscoSan FranciscoUnited States
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Danielle L Swaney
- Department of Cellular and Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences InstituteUniversity of California, San FranciscoSan FranciscoUnited States
- Gladstone InstitutesSan FranciscoUnited States
| | - David Jimenez-Morales
- Department of Cellular and Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences InstituteUniversity of California, San FranciscoSan FranciscoUnited States
- Gladstone InstitutesSan FranciscoUnited States
- Department of Medicine, Division of Cardiovascular MedicineStanford UniversityStanfordUnited States
| | - Jeffrey R Johnson
- Department of Cellular and Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences InstituteUniversity of California, San FranciscoSan FranciscoUnited States
- Gladstone InstitutesSan FranciscoUnited States
| | - Nicholas E Garelis
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Teresa Repasy
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Allison W Roberts
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Lauren M Popov
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Trevor J Parry
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Dexter Pratt
- Department of MedicineUniversity of California, San DiegoLa JollaUnited States
| | - Trey Ideker
- Department of MedicineUniversity of California, San DiegoLa JollaUnited States
| | - Nevan J Krogan
- Department of Cellular and Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences InstituteUniversity of California, San FranciscoSan FranciscoUnited States
- Gladstone InstitutesSan FranciscoUnited States
| | - Jeffery S Cox
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
30
|
Tilstam PV, Soppert J, Hemmers C, Harlacher E, Döring Y, van der Vorst EP, Schulte C, Alampour-Rajabi S, Theelen W, Asare Y, de Winther MP, Lawrence T, Bernhagen J, Schober A, Zernecke A, Jankowski J, Weber C, Noels H. Non-activatable mutant of inhibitor of kappa B kinase α (IKKα) exerts vascular site-specific effects on atherosclerosis in Apoe-deficient mice. Atherosclerosis 2020; 292:23-30. [DOI: 10.1016/j.atherosclerosis.2019.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 10/25/2022]
|
31
|
Fochi S, Ciminale V, Trabetti E, Bertazzoni U, D’Agostino DM, Zipeto D, Romanelli MG. NF-κB and MicroRNA Deregulation Mediated by HTLV-1 Tax and HBZ. Pathogens 2019; 8:E290. [PMID: 31835460 PMCID: PMC6963194 DOI: 10.3390/pathogens8040290] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/27/2019] [Accepted: 12/06/2019] [Indexed: 12/17/2022] Open
Abstract
The risk of developing adult T-cell leukemia/lymphoma (ATLL) in individuals infected with human T-cell lymphotropic virus 1 (HTLV-1) is about 3-5%. The mechanisms by which the virus triggers this aggressive cancer are still an area of intensive investigation. The viral protein Tax-1, together with additional regulatory proteins, in particular HTLV-1 basic leucine zipper factor (HBZ), are recognized as relevant viral factors required for both viral replication and transformation of infected cells. Tax-1 deregulates several cellular pathways affecting the cell cycle, survival, and proliferation. The effects of Tax-1 on the NF-κB pathway have been thoroughly studied. Recent studies also revealed the impact of Tax-1 and HBZ on microRNA expression. In this review, we summarize the recent progress in understanding the contribution of HTLV-1 Tax- and HBZ-mediated deregulation of NF-κB and the microRNA regulatory network to HTLV-1 pathogenesis.
Collapse
Affiliation(s)
- Stefania Fochi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, 37134 Verona, Italy; (S.F.); (E.T.); (U.B.); (D.Z.)
| | - Vincenzo Ciminale
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy;
- Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Elisabetta Trabetti
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, 37134 Verona, Italy; (S.F.); (E.T.); (U.B.); (D.Z.)
| | - Umberto Bertazzoni
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, 37134 Verona, Italy; (S.F.); (E.T.); (U.B.); (D.Z.)
| | | | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, 37134 Verona, Italy; (S.F.); (E.T.); (U.B.); (D.Z.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, 37134 Verona, Italy; (S.F.); (E.T.); (U.B.); (D.Z.)
| |
Collapse
|
32
|
Yeh IJ, Esakov E, Lathia JD, Miyagi M, Reizes O, Montano MM. Phosphorylation of the histone demethylase KDM5B and regulation of the phenotype of triple negative breast cancer. Sci Rep 2019; 9:17663. [PMID: 31776402 PMCID: PMC6881367 DOI: 10.1038/s41598-019-54184-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Epigenetic modifications are known to play critical roles in the expression of genes related to differentiation and dedifferentiation. Histone lysine demethylase KDM5B (PLU-1) catalyzes the demethylation of histone H3 on Lys 4 (H3K4), which results in the repression of gene expression. KDM5B is involved in regulation of luminal and basal cell specific gene expression in breast cancers. However, the mechanisms by which KDM5B is regulated in breast cancer, in particular in response to post-translational signals is not well-defined. Here, we demonstrate that KDM5B is phosphorylated at Ser1456 by the cyclin-dependent kinase 1 (CDK1). Phosphorylation of KDM5B at Ser1456 attenuated the occupancy of KDM5B on the promoters of pluripotency genes. Moreover, KDM5B inhibited the expression of pluripotency genes, SOX2 and NANOG, and decreased the stem cell population in triple-negative breast cancer cell lines (TNBC). We previously reported that the tumor suppressor HEXIM1 is a mediator of KDM5B recruitment to its target genes, and HEXIM1 is required for the inhibition of nuclear hormone receptor activity by KDM5B. Similarly, HEXIM1 is required for regulation of pluripotency genes by KDM5B.
Collapse
Affiliation(s)
- I-Ju Yeh
- Department of Pharmacology, Case Western Reserve University Cleveland, Cleveland, OH, 44106, USA
| | - Emily Esakov
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, 9500 Euclid Ave., Cleveland, OH, 44195, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, 9500 Euclid Ave., Cleveland, OH, 44195, USA
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University Cleveland, Cleveland, OH, 44106, USA
| | - Ofer Reizes
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, 9500 Euclid Ave., Cleveland, OH, 44195, USA
| | - Monica M Montano
- Department of Pharmacology, Case Western Reserve University Cleveland, Cleveland, OH, 44106, USA.
| |
Collapse
|
33
|
Schwob A, Teruel E, Dubuisson L, Lormières F, Verlhac P, Abudu YP, Gauthier J, Naoumenko M, Cloarec-Ung FM, Faure M, Johansen T, Dutartre H, Mahieux R, Journo C. SQSTM-1/p62 potentiates HTLV-1 Tax-mediated NF-κB activation through its ubiquitin binding function. Sci Rep 2019; 9:16014. [DOI: https:/doi.org/10.1038/s41598-019-52408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2023] Open
Abstract
AbstractThe NF-κB pathway is constitutively activated in adult T cell leukemia, an aggressive malignancy caused by Human T Leukemia Virus type 1 (HTLV-1). The viral oncoprotein Tax triggers this constitutive activation by interacting with the ubiquitin-rich IKK complex. We previously demonstrated that Optineurin and TAX1BP1, two members of the ubiquitin-binding, Sequestosome-1 (SQSTM-1/p62)-like selective autophagy receptor family, are involved in Tax-mediated NF-κB signaling. Here, using a proximity-dependent biotinylation approach (BioID), we identify p62 as a new candidate partner of Tax and confirm the interaction in infected T cells. We then demonstrate that p62 knock-out in MEF cells as well as p62 knock-down in HEK293T cells significantly reduces Tax-mediated NF-κB activity. We further show that although p62 knock-down does not alter NF-κB activation in Jurkat T cells nor in infected T cells, p62 does potentiate Tax-mediated NF-κB activity upon over-expression in Jurkat T cells. We next show that p62 associates with the Tax/IKK signalosome in cells, and identify the 170–206 domain of p62 as sufficient for the direct, ubiquitin-independent interaction with Tax. However, we observe that this domain is dispensable for modulating Tax activity in cells, and functional analysis of p62 mutants indicates that p62 could potentiate Tax activity in cells by facilitating the association of ubiquitin chains with the Tax/IKK signalosome. Altogether, our results identify p62 as a new ubiquitin-dependent modulator of Tax activity on NF-κB, further highlighting the importance of ubiquitin in the signaling activity of the viral Tax oncoprotein.
Collapse
|
34
|
SQSTM-1/p62 potentiates HTLV-1 Tax-mediated NF-κB activation through its ubiquitin binding function. Sci Rep 2019; 9:16014. [PMID: 31690813 PMCID: PMC6831704 DOI: 10.1038/s41598-019-52408-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022] Open
Abstract
The NF-κB pathway is constitutively activated in adult T cell leukemia, an aggressive malignancy caused by Human T Leukemia Virus type 1 (HTLV-1). The viral oncoprotein Tax triggers this constitutive activation by interacting with the ubiquitin-rich IKK complex. We previously demonstrated that Optineurin and TAX1BP1, two members of the ubiquitin-binding, Sequestosome-1 (SQSTM-1/p62)-like selective autophagy receptor family, are involved in Tax-mediated NF-κB signaling. Here, using a proximity-dependent biotinylation approach (BioID), we identify p62 as a new candidate partner of Tax and confirm the interaction in infected T cells. We then demonstrate that p62 knock-out in MEF cells as well as p62 knock-down in HEK293T cells significantly reduces Tax-mediated NF-κB activity. We further show that although p62 knock-down does not alter NF-κB activation in Jurkat T cells nor in infected T cells, p62 does potentiate Tax-mediated NF-κB activity upon over-expression in Jurkat T cells. We next show that p62 associates with the Tax/IKK signalosome in cells, and identify the 170–206 domain of p62 as sufficient for the direct, ubiquitin-independent interaction with Tax. However, we observe that this domain is dispensable for modulating Tax activity in cells, and functional analysis of p62 mutants indicates that p62 could potentiate Tax activity in cells by facilitating the association of ubiquitin chains with the Tax/IKK signalosome. Altogether, our results identify p62 as a new ubiquitin-dependent modulator of Tax activity on NF-κB, further highlighting the importance of ubiquitin in the signaling activity of the viral Tax oncoprotein.
Collapse
|
35
|
Autophagy Promotes Infectious Particle Production of Mopeia and Lassa Viruses. Viruses 2019; 11:v11030293. [PMID: 30909570 PMCID: PMC6466445 DOI: 10.3390/v11030293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
Lassa virus (LASV) and Mopeia virus (MOPV) are two closely related Old-World mammarenaviruses. LASV causes severe hemorrhagic fever with high mortality in humans, whereas no case of MOPV infection has been reported. Comparing MOPV and LASV is a powerful strategy to unravel pathogenic mechanisms that occur during the course of pathogenic arenavirus infection. We used a yeast two-hybrid approach to identify cell partners of MOPV and LASV Z matrix protein in which two autophagy adaptors were identified, NDP52 and TAX1BP1. Autophagy has emerged as an important cellular defense mechanism against viral infections but its role during arenavirus infection has not been shown. Here, we demonstrate that autophagy is transiently induced by MOPV, but not LASV, in infected cells two days after infection. Impairment of the early steps of autophagy significantly decreased the production of MOPV and LASV infectious particles, whereas a blockade of the degradative steps impaired only MOPV infectious particle production. Our study provides insights into the role played by autophagy during MOPV and LASV infection and suggests that this process could partially explain their different pathogenicity.
Collapse
|
36
|
The impact of NF-κB signaling on pathogenesis and current treatment strategies in multiple myeloma. Blood Rev 2019; 34:56-66. [DOI: 10.1016/j.blre.2018.11.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/14/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
|
37
|
Yagci ZB, Esvap E, Ozkara HA, Ulgen KO, Olmez EO. Inflammatory response and its relation to sphingolipid metabolism proteins: Chaperones as potential indirect anti-inflammatory agents. MOLECULAR CHAPERONES IN HUMAN DISORDERS 2019; 114:153-219. [PMID: 30635081 DOI: 10.1016/bs.apcsb.2018.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Di Rita A, Peschiaroli A, D Acunzo P, Strobbe D, Hu Z, Gruber J, Nygaard M, Lambrughi M, Melino G, Papaleo E, Dengjel J, El Alaoui S, Campanella M, Dötsch V, Rogov VV, Strappazzon F, Cecconi F. HUWE1 E3 ligase promotes PINK1/PARKIN-independent mitophagy by regulating AMBRA1 activation via IKKα. Nat Commun 2018; 9:3755. [PMID: 30217973 PMCID: PMC6138665 DOI: 10.1038/s41467-018-05722-3] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 06/27/2018] [Indexed: 01/18/2023] Open
Abstract
The selective removal of undesired or damaged mitochondria by autophagy, known as mitophagy, is crucial for cellular homoeostasis, and prevents tumour diffusion, neurodegeneration and ageing. The pro-autophagic molecule AMBRA1 (autophagy/beclin-1 regulator-1) has been defined as a novel regulator of mitophagy in both PINK1/PARKIN-dependent and -independent systems. Here, we identified the E3 ubiquitin ligase HUWE1 as a key inducing factor in AMBRA1-mediated mitophagy, a process that takes place independently of the main mitophagy receptors. Furthermore, we show that mitophagy function of AMBRA1 is post-translationally controlled, upon HUWE1 activity, by a positive phosphorylation on its serine 1014. This modification is mediated by the IKKα kinase and induces structural changes in AMBRA1, thus promoting its interaction with LC3/GABARAP (mATG8) proteins and its mitophagic activity. Altogether, these results demonstrate that AMBRA1 regulates mitophagy through a novel pathway, in which HUWE1 and IKKα are key factors, shedding new lights on the regulation of mitochondrial quality control and homoeostasis in mammalian cells. Mitophagy is crucial for mitochondrial quality control and maintenance of cellular homeostasis. Here the authors identify an E3 ubiquitin ligase, HUWE1, that collaborates with LC3-interacting protein AMBRA1 to induce mitochondrial clearance.
Collapse
Affiliation(s)
- Anthea Di Rita
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy.,Department of Paediatric Haematology, Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.,IRCCS FONDAZIONE SANTA LUCIA, 00143, Rome, Italy
| | - Angelo Peschiaroli
- National Research Council of Italy (CNR), Institute of Translational Pharmacology IFT, Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Pasquale D Acunzo
- Department of Paediatric Haematology, Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Daniela Strobbe
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy.,IRCCS- Regina Elena, National Cancer Institute, 00133, Rome, Italy
| | - Zehan Hu
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jens Gruber
- Institute of Biophysical and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Mads Nygaard
- Computational Biology Laboratory, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Matteo Lambrughi
- Computational Biology Laboratory, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Gerry Melino
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Michelangelo Campanella
- IRCCS- Regina Elena, National Cancer Institute, 00133, Rome, Italy.,Department of Comparative Biomedical Sciences, Royal Veterinary College, London, NW1 0TU, UK.,University College London Consortium for Mitochondrial Research, University College London, London, WC1 6BT, UK
| | - Volker Dötsch
- Institute of Biophysical and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Vladimir V Rogov
- Institute of Biophysical and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Flavie Strappazzon
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy. .,IRCCS FONDAZIONE SANTA LUCIA, 00143, Rome, Italy.
| | - Francesco Cecconi
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy. .,Department of Paediatric Haematology, Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy. .,Unit of Cell Stress and Survival, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.
| |
Collapse
|
39
|
Thomas Y, Scott DC, Kristariyanto YA, Rinehart J, Clark K, Cohen P, Kurz T. The NEDD8 E3 ligase DCNL5 is phosphorylated by IKK alpha during Toll-like receptor activation. PLoS One 2018; 13:e0199197. [PMID: 29958295 PMCID: PMC6025869 DOI: 10.1371/journal.pone.0199197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/01/2018] [Indexed: 11/19/2022] Open
Abstract
The activity of Cullin-RING ubiquitin E3 ligases (CRL) is regulated by NEDD8 modification. DCN-like proteins promote Cullin neddylation as scaffold-like E3s. One DCNL, DCNL5, is highly expressed in immune tissue. Here, we provide evidence that DCNL5 may be involved in innate immunity, as it is a direct substrate of the kinase IKKα during immune signalling. We find that upon activation of Toll-like receptors, DCNL5 gets rapidly and transiently phosphorylated on a specific N-terminal serine residue (S41). This phosphorylation event is specifically mediated by IKKα and not IKKβ. Our data for the first time provides evidence that DCNL proteins are post-translationally modified in an inducible manner. Our findings also provide the first example of a DCNL member as a kinase substrate in a signalling pathway, indicating that the activity of at least some DCNLs may be regulated.
Collapse
Affiliation(s)
- Yann Thomas
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Daniel C. Scott
- Department of Structural Biology, Howard Hughes Medical Institute, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Yosua Adi Kristariyanto
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Jesse Rinehart
- Department of Cellular & Molecular Physiology, Yale University, New Haven, Connecticut, United States of America
- Systems Biology Institute, Yale University, West Haven, Connecticut, United States of America
| | - Kristopher Clark
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Philip Cohen
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Thimo Kurz
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
40
|
Zaidi D, Huynh HQ, Carroll MW, Baksh S, Wine E. Tumor necrosis factor α-induced protein 3 (A20) is dysregulated in pediatric Crohn disease. Clin Exp Gastroenterol 2018; 11:217-231. [PMID: 29881302 PMCID: PMC5985767 DOI: 10.2147/ceg.s148217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE A significant feature of pediatric inflammatory bowel diseases (IBD), which include Crohn disease (CD), and ulcerative colitis (UC), is failure to suppress inflammation. The inability to regulate inflammation renders a major challenge toward establishing effective treatments in IBD. Nuclear factor kappa-light-chain-enhancer of activated B-cells-induced inflammation is inhibited by A20 through interactions with TAX1BP1 (Tax1-binding protein 1) and A20-binding inhibitor of NF-κβ activation (ABIN)-1 (A20 binding and inhibitor of NF-κβ) and upon phosphorylation by inhibitor of nuclear factor kappa-β kinase subunit beta (IKKβ), which stabilizes it. We hypothesized that dysregulation of A20 is an important factor in uncontrolled inflammation in pediatric IBD. PATIENTS AND METHODS Gene expression of A20, IKKβ, ABIN-1, TAX1BP1, A20 protein, cytokine levels, and A20 phosphorylation was analyzed in the terminal ileum (TI) of 39 patients (14 non-IBD, 15 CD, and 10 UC). A20 expression and protein in T-84 cells and ex vivo biopsies of patients were measured after treatment with Escherichia coli strains or tumor necrosis factor (TNF)-α. RESULTS TNF-α levels and A20 expression were increased in the TI of CD patients. A20 protein levels and ABIN-1 expression were low, TAX1BP1 expression was high, and IKKβ was unchanged. A20 expression positively correlated with biopsy TNF-α levels and inflammatory markers in CD patients. A20 phosphorylation appeared lower in CD patients. A20 expression in TI biopsies from CD patients and T84 cells was triggered with E. coli, strain LF82, while A20 protein levels remained unchanged. CONCLUSION We describe a potential mechanism related to failure of A20 to suppress inflammation in CD, characterized by high A20 expression and low A20 protein levels. The dysregulation of A20 is potentially due to alterations in ABIN-1, and infection with E. coli strain LF82 could affect the function and stability of A20. Our study signifies an important finding in A20 regulation in IBD, which prevents it from suppressing inflammation.
Collapse
Affiliation(s)
- Deenaz Zaidi
- Department of Pediatrics
- Department of Medicine, Centre of Excellence for Gastrointestinal Inflammation and Immunity Research (CEGIIR)
| | | | | | - Shairaz Baksh
- Department of Pediatrics
- Department of Biochemistry
- Department of Oncology, Cancer Institute of Northern Alberta (CRINA)
| | - Eytan Wine
- Department of Pediatrics
- Department of Medicine, Centre of Excellence for Gastrointestinal Inflammation and Immunity Research (CEGIIR)
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
41
|
Harhaj EW, Giam CZ. NF-κB signaling mechanisms in HTLV-1-induced adult T-cell leukemia/lymphoma. FEBS J 2018; 285:3324-3336. [PMID: 29722927 DOI: 10.1111/febs.14492] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/12/2018] [Accepted: 04/26/2018] [Indexed: 12/27/2022]
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) is a complex deltaretrovirus linked to adult T-cell leukemia/lymphoma (ATLL), a fatal CD4 + malignancy in 3-5% of infected individuals. The HTLV-1 Tax regulatory protein plays indispensable roles in regulating viral gene expression and activating cellular signaling pathways that drive the proliferation and clonal expansion of T cells bearing HTLV-1 proviral integrations. Tax is a potent activator of NF-κB, a key signaling pathway that is essential for the survival and proliferation of HTLV-1-infected T cells. However, constitutive NF-κB activation by Tax also triggers a senescence response, suggesting the possibility that only T cells capable of overcoming NF-κB-induced senescence can selectively undergo clonal expansion after HTLV-1 infection. Tax expression is often silenced in the majority of ATLL due to genetic alterations in the tax gene or DNA hypermethylation of the 5'-LTR. Despite the loss of Tax, NF-κB activation remains persistently activated in ATLL due to somatic mutations in genes in the T/B-cell receptor (T/BCR) and NF-κB signaling pathways. In this review, we focus on the key events driving Tax-dependent and -independent mechanisms of NF-κB activation during the multistep process leading to ATLL.
Collapse
Affiliation(s)
- Edward William Harhaj
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chou-Zen Giam
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
42
|
Xiao Y, Wu QQ, Duan MX, Liu C, Yuan Y, Yang Z, Liao HH, Fan D, Tang QZ. TAX1BP1 overexpression attenuates cardiac dysfunction and remodeling in STZ-induced diabetic cardiomyopathy in mice by regulating autophagy. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1728-1743. [DOI: 10.1016/j.bbadis.2018.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/03/2018] [Accepted: 02/19/2018] [Indexed: 12/17/2022]
|
43
|
Göktuna SI, Diamanti MA, Chau TL. IKK
s and tumor cell plasticity. FEBS J 2018; 285:2161-2181. [DOI: 10.1111/febs.14444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/22/2018] [Accepted: 03/21/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Serkan I. Göktuna
- Department of Molecular Biology and Genetics Bilkent University Ankara Turkey
- National Nanotechnology Research Center (UNAM) Bilkent University Ankara Turkey
| | - Michaela A. Diamanti
- Georg‐Speyer‐Haus Institute for Tumor Biology and Experimental Therapy Frankfurt am Main Germany
| | - Tieu Lan Chau
- Department of Molecular Biology and Genetics Bilkent University Ankara Turkey
| |
Collapse
|
44
|
Yao D, Xu L, Xu O, Li R, Chen M, Shen H, Zhu H, Zhang F, Yao D, Chen YF, Oparil S, Zhang Z, Gong K. O-Linked β-N-Acetylglucosamine Modification of A20 Enhances the Inhibition of NF-κB (Nuclear Factor-κB) Activation and Elicits Vascular Protection After Acute Endoluminal Arterial Injury. Arterioscler Thromb Vasc Biol 2018; 38:1309-1320. [PMID: 29622561 DOI: 10.1161/atvbaha.117.310468] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 03/23/2018] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Recently, we have demonstrated that acute glucosamine-induced augmentation of protein O-linked β-N-acetylglucosamine (O-GlcNAc) levels inhibits inflammation in isolated vascular smooth muscle cells and neointimal formation in a rat model of carotid injury by interfering with NF-κB (nuclear factor-κB) signaling. However, the specific molecular target for O-GlcNAcylation that is responsible for glucosamine-induced vascular protection remains unclear. In this study, we test the hypothesis that increased A20 (also known as TNFAIP3 [tumor necrosis factor α-induced protein 3]) O-GlcNAcylation is required for glucosamine-mediated inhibition of inflammation and vascular protection. APPROACH AND RESULTS In cultured rat vascular smooth muscle cells, both glucosamine and the selective O-linked N-acetylglucosaminidase inhibitor thiamet G significantly increased A20 O-GlcNAcylation. Thiamet G treatment did not increase A20 protein expression but did significantly enhance binding to TAX1BP1 (Tax1-binding protein 1), a key regulatory protein for A20 activity. Adenovirus-mediated A20 overexpression further enhanced the effects of thiamet G on prevention of TNF-α (tumor necrosis factor-α)-induced IκB (inhibitor of κB) degradation, p65 phosphorylation, and increases in DNA-binding activity. A20 overexpression enhanced the inhibitory effects of thiamet G on TNF-α-induced proinflammatory cytokine expression and vascular smooth muscle cell migration and proliferation, whereas silencing endogenous A20 by transfection of specific A20 shRNA significantly attenuated these inhibitory effects. In balloon-injured rat carotid arteries, glucosamine treatment markedly inhibited neointimal formation and p65 activation compared with vehicle treatment. Adenoviral delivery of A20 shRNA to the injured arteries dramatically reduced balloon injury-induced A20 expression and inflammatory response compared with scramble shRNA and completely abolished the vascular protection of glucosamine. CONCLUSIONS These results suggest that O-GlcNAcylation of A20 plays a key role in the negative regulation of NF-κB signaling cascades in TNF-α-treated vascular smooth muscle cells in culture and in acutely injured arteries, thus protecting against inflammation-induced vascular injury.
Collapse
Affiliation(s)
- Dan Yao
- From the Department of Cardiology, the Affiliated Hospital of Yangzhou University (D.Y., L.X., O.X., R.L., M.C., H.S., H.Z., F.Z., D.Y., Z.Z., K.G.)
| | - Lijuan Xu
- From the Department of Cardiology, the Affiliated Hospital of Yangzhou University (D.Y., L.X., O.X., R.L., M.C., H.S., H.Z., F.Z., D.Y., Z.Z., K.G.)
| | - Oufan Xu
- From the Department of Cardiology, the Affiliated Hospital of Yangzhou University (D.Y., L.X., O.X., R.L., M.C., H.S., H.Z., F.Z., D.Y., Z.Z., K.G.)
| | - Rujun Li
- From the Department of Cardiology, the Affiliated Hospital of Yangzhou University (D.Y., L.X., O.X., R.L., M.C., H.S., H.Z., F.Z., D.Y., Z.Z., K.G.)
| | - Mingxing Chen
- From the Department of Cardiology, the Affiliated Hospital of Yangzhou University (D.Y., L.X., O.X., R.L., M.C., H.S., H.Z., F.Z., D.Y., Z.Z., K.G.)
| | - Hui Shen
- From the Department of Cardiology, the Affiliated Hospital of Yangzhou University (D.Y., L.X., O.X., R.L., M.C., H.S., H.Z., F.Z., D.Y., Z.Z., K.G.)
| | - Huajiang Zhu
- From the Department of Cardiology, the Affiliated Hospital of Yangzhou University (D.Y., L.X., O.X., R.L., M.C., H.S., H.Z., F.Z., D.Y., Z.Z., K.G.)
| | - Fengyi Zhang
- From the Department of Cardiology, the Affiliated Hospital of Yangzhou University (D.Y., L.X., O.X., R.L., M.C., H.S., H.Z., F.Z., D.Y., Z.Z., K.G.)
| | - Deshang Yao
- From the Department of Cardiology, the Affiliated Hospital of Yangzhou University (D.Y., L.X., O.X., R.L., M.C., H.S., H.Z., F.Z., D.Y., Z.Z., K.G.)
| | - Yiu-Fai Chen
- Hypertension and Vascular Biology Program, Division of Cardiovascular Diseases, University of Alabama at Birmingham (Y.-F.C., S.O.)
| | - Suzanne Oparil
- Hypertension and Vascular Biology Program, Division of Cardiovascular Diseases, University of Alabama at Birmingham (Y.-F.C., S.O.)
| | - Zhengang Zhang
- From the Department of Cardiology, the Affiliated Hospital of Yangzhou University (D.Y., L.X., O.X., R.L., M.C., H.S., H.Z., F.Z., D.Y., Z.Z., K.G.)
| | - Kaizheng Gong
- From the Department of Cardiology, the Affiliated Hospital of Yangzhou University (D.Y., L.X., O.X., R.L., M.C., H.S., H.Z., F.Z., D.Y., Z.Z., K.G.) .,Jiangsu Key Laboratory of Integrative Medicine for the Control of Geriatrics and Institute of Cardiovascular Disease (K.G.), Yangzhou University, China
| |
Collapse
|
45
|
Hunte R, Alonso P, Thomas R, Bazile CA, Ramos JC, van der Weyden L, Dominguez-Bendala J, Khan WN, Shembade N. CADM1 is essential for KSHV-encoded vGPCR-and vFLIP-mediated chronic NF-κB activation. PLoS Pathog 2018; 14:e1006968. [PMID: 29698475 PMCID: PMC5919438 DOI: 10.1371/journal.ppat.1006968] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
Approximately 12% of all human cancers worldwide are caused by infections with oncogenic viruses. Kaposi's sarcoma herpesvirus/human herpesvirus 8 (KSHV/HHV8) is one of the oncogenic viruses responsible for human cancers, including Kaposi's sarcoma (KS), Primary Effusion Lymphoma (PEL), and the lymphoproliferative disorder multicentric Castleman's disease (MCD). Chronic inflammation mediated by KSHV infection plays a decisive role in the development and survival of these cancers. NF-κB, a family of transcription factors regulating inflammation, cell survival, and proliferation, is persistently activated in KSHV-infected cells. The KSHV latent and lytic expressing oncogenes involved in NF-κB activation are vFLIP/K13 and vGPCR, respectively. However, the mechanisms by which NF-κB is activated by vFLIP and vGPCR are poorly understood. In this study, we have found that a host molecule, Cell Adhesion Molecule 1 (CADM1), is robustly upregulated in KSHV-infected PBMCs and KSHV-associated PEL cells. Further investigation determined that both vFLIP and vGPCR interacted with CADM1. The PDZ binding motif localized at the carboxyl terminus of CADM1 is essential for both vGPCR and vFLIP to maintain chronic NF-κB activation. Membrane lipid raft associated CADM1 interaction with vFLIP is critical for the initiation of IKK kinase complex and NF-κB activation in the PEL cells. In addition, CADM1 played essential roles in the survival of KSHV-associated PEL cells. These data indicate that CADM1 plays key roles in the activation of NF-κB pathways during latent and lytic phases of the KSHV life cycle and the survival of KSHV-infected cells.
Collapse
MESH Headings
- Cell Adhesion Molecule-1/genetics
- Cell Adhesion Molecule-1/metabolism
- Herpesvirus 8, Human/pathogenicity
- Humans
- Lymphoma, Primary Effusion/genetics
- Lymphoma, Primary Effusion/metabolism
- Lymphoma, Primary Effusion/virology
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/virology
- Tumor Cells, Cultured
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Richard Hunte
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Patricia Alonso
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Remy Thomas
- Qatar Biomedical Research Institute, Doha, Qatar
| | - Cassandra Alexandria Bazile
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Juan Carlos Ramos
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, and Center for AIDS Research and Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Louise van der Weyden
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Wasif Noor Khan
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Noula Shembade
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| |
Collapse
|
46
|
Roles of NF-κB Signaling in the Regulation of miRNAs Impacting on Inflammation in Cancer. Biomedicines 2018; 6:biomedicines6020040. [PMID: 29601548 PMCID: PMC6027290 DOI: 10.3390/biomedicines6020040] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022] Open
Abstract
The NF-κB family of transcription factors regulate the expression of genes encoding proteins and microRNAs (miRNA, miR) precursors that may either positively or negatively regulate a variety of biological processes such as cell cycle progression, cell survival, and cell differentiation. The NF-κB-miRNA transcriptional regulatory network has been implicated in the regulation of proinflammatory, immune, and stress-like responses. Gene regulation by miRNAs has emerged as an additional epigenetic mechanism at the post-transcriptional level. The expression of miRNAs can be regulated by specific transcription factors (TFs), including the NF-κB TF family, and vice versa. The interplay between TFs and miRNAs creates positive or negative feedback loops and also regulatory networks, which can control cell fate. In the current review, we discuss the impact of NF-κB-miRNA interplay and feedback loops and networks impacting on inflammation in cancer. We provide several paradigms of specific NF-κB-miRNA networks that can regulate inflammation linked to cancer. For example, the NF-κB-miR-146 and NF-κB-miR-155 networks fine-tune the activity, intensity, and duration of inflammation, while the NF-κB-miR-21 and NF-κB-miR-181b-1 amplifying loops link inflammation to cancer; and p53- or NF-κB-regulated miRNAs interconnect these pathways and may shift the balance to cancer development or tumor suppression. The availability of genomic data may be useful to verify and find novel interactions, and provide a catalogue of 162 miRNAs targeting and 40 miRNAs possibly regulated by NF-κB. We propose that studying active TF-miRNA transcriptional regulatory networks such as NF-κB-miRNA networks in specific cancer types can contribute to our further understanding of the regulatory interplay between inflammation and cancer, and also perhaps lead to the development of pharmacologically novel therapeutic approaches to combat cancer.
Collapse
|
47
|
D’Amore S, Härdfeldt J, Cariello M, Graziano G, Copetti M, Di Tullio G, Piglionica M, Scialpi N, Sabbà C, Palasciano G, Vacca M, Moschetta A. Identification of miR-9-5p as direct regulator of ABCA1 and HDL-driven reverse cholesterol transport in circulating CD14+ cells of patients with metabolic syndrome. Cardiovasc Res 2018; 114:1154-1164. [DOI: 10.1093/cvr/cvy077] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/22/2018] [Indexed: 01/01/2023] Open
Abstract
Abstract
Aims
Metabolic syndrome (MS) is a cluster of cardio-metabolic risk factors associated with atherosclerosis and low-grade inflammation. Using unbiased expression screenings in peripheral blood mononuclear cells, we depict here a novel expression chart of 678 genes and 84 microRNAs (miRNAs) controlling inflammatory, immune and metabolic responses. In order to further elucidate the link between inflammation and the HDL cholesterol pathway in MS, we focussed on the regulation of the ATP-binding cassette transporter A1 (ABCA1), a key player in cholesterol efflux (CE).
Methods and results
ABCA1 mRNA levels are suppressed in CD14+ cells of MS patients and are negatively correlated to body mass index (BMI), insulin-resistance (HOMA-IR) and cardiovascular risk, and positively to HDL cholesterol and CE. miRNA target in silico prediction identified a putative modulatory role of ABCA1 for the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) target miR-9-5p, whose expression pattern was up-regulated in CD14+ cells of MS patients, positively correlated to BMI, HOMA-IR, and triglycerides, and negatively to ABCA1 mRNA levels, HDL cholesterol and CE. Ectopic gain and loss of miR-9-5p function in macrophages modulated ABCA1 mRNA and protein levels, ABCA1 miRNA 3’-untranslated region target sequence reporter assay, and CE into HDL, thus confirming ABCA1 as a target of miR-9-5p.
Conclusions
We identified the NF-κB target miR-9-5p as a negative regulator of ABCA1 adding a novel target pathway in the relationship between inflammation and HDL-driven reverse cholesterol transport for prevention or treatment of atherosclerosis in MS.
Collapse
Affiliation(s)
- Simona D’Amore
- Department of Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
- National Cancer Research Center, IRCCS Istituto Tumori ‘Giovanni Paolo II’, Viale Orazio Flacco, 65, 70124 Bari, Italy
| | - Jennifer Härdfeldt
- Department of Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
- INBB, National Institute for Biostructures and Biosystems, Viale delle Medaglie d'Oro 305, 00136 Rome, Italy
| | - Marica Cariello
- Department of Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
- INBB, National Institute for Biostructures and Biosystems, Viale delle Medaglie d'Oro 305, 00136 Rome, Italy
| | - Giusi Graziano
- National Cancer Research Center, IRCCS Istituto Tumori ‘Giovanni Paolo II’, Viale Orazio Flacco, 65, 70124 Bari, Italy
| | - Massimiliano Copetti
- Unit of Biostatistics IRCCS ‘Casa Sollievo della Sofferenza’, Viale Cappuccini 1, 71013 San Giovanni Rotondo (FG), Italy
| | - Giuseppe Di Tullio
- De Matteis Laboratory, Telethon Institute of Genetics and Medicine, Piazza Aldo Moro 34, 80078 Pozzuoli (NA), Italy
| | - Marilidia Piglionica
- Department of Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Natasha Scialpi
- Department of Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Carlo Sabbà
- Department of Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giuseppe Palasciano
- Department of Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Michele Vacca
- Department of Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
- National Cancer Research Center, IRCCS Istituto Tumori ‘Giovanni Paolo II’, Viale Orazio Flacco, 65, 70124 Bari, Italy
| |
Collapse
|
48
|
Rothschild DE, McDaniel DK, Ringel-Scaia VM, Allen IC. Modulating inflammation through the negative regulation of NF-κB signaling. J Leukoc Biol 2018; 103:10.1002/JLB.3MIR0817-346RRR. [PMID: 29389019 PMCID: PMC6135699 DOI: 10.1002/jlb.3mir0817-346rrr] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/16/2022] Open
Abstract
Immune system activation is essential to thwart the invasion of pathogens and respond appropriately to tissue damage. However, uncontrolled inflammation can result in extensive collateral damage underlying a diverse range of auto-inflammatory, hyper-inflammatory, and neoplastic diseases. The NF-κB signaling pathway lies at the heart of the immune system and functions as a master regulator of gene transcription. Thus, this signaling cascade is heavily targeted by mechanisms designed to attenuate overzealous inflammation and promote resolution. Mechanisms associated with the negative regulation of NF-κB signaling are currently under intense investigation and have yet to be fully elucidated. Here, we provide an overview of mechanisms that negatively regulate NF-κB signaling through either attenuation of signal transduction, inhibition of posttranscriptional signaling, or interference with posttranslational modifications of key pathway components. While the regulators discussed for each group are far from comprehensive, they exemplify common mechanistic approaches that inhibit this critical biochemical signaling cascade. Despite their diversity, a commonality among these regulators is their selection of specific targets at key inflection points in the pathway, such as TNF-receptor-associated factor family members or essential kinases. A better understanding of these negative regulatory mechanisms will be essential to gain greater insight related to the maintenance of immune system homeostasis and inflammation resolution. These processes are vital elements of disease pathology and have important implications for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Daniel E. Rothschild
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg VA 24061
| | - Dylan K. McDaniel
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg VA 24061
| | - Veronica M. Ringel-Scaia
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg VA 24061
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016
| |
Collapse
|
49
|
Zaidi D, Wine E. Regulation of Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells (NF-κβ) in Inflammatory Bowel Diseases. Front Pediatr 2018; 6:317. [PMID: 30425977 PMCID: PMC6218406 DOI: 10.3389/fped.2018.00317] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/05/2018] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel diseases (IBD), encompassing both Crohn Disease (CD) and ulcerative colitis (UC) are globally prevalent diseases, impacting children of all ages. The hallmark of IBD is a perturbed immune system that leads to continuous inflammation in the gut and challenges optimal treatment. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κβ), a nuclear transcription factor, plays a major role in gut homeostasis and contributes significantly toward a balanced, homeostatic immune system. Dysregulation in the NF-κβ pathway and factors that regulate it lead to a state of uncontrolled inflammation and altered immunity, as typically observed in IBD. Levels of proinflammatory cytokines that are regulated through NF-κβ are increased in both CD and UC. Genes known to activate NF-κβ, such as, Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) and Interleukin 23 (IL-23), are associated with IBD. Factors involved in inhibition of NF-κβ, such as A20 and TOLLIP, are also affected in IBD, resulting in failed inflammation suppression/regulation. NOD-2 and A20 have specifically been found to be strongly associated with pediatric IBD. Gut commensals are known to exert anti-inflammatory activities toward NF-κβ and can have a potential role in attenuating inflammation that likely occurs due to microbial dysbiosis in IBD. Failure to terminate/downregulate NF-κβ signaling results in chronic inflammation in IBD. Well-regulated control of inflammation in children with IBD can help better control the disease and suppress immune responses. Better understanding of factors that control NF-κβ can potentially lead toward discovering targeted therapeutic interventions for IBD. Suppression of NF-κβ can be achieved through many modalities including anti-sense oligonucleotides (ASOs), siRNA (small interfering RNA), factors regulating NF-κβ, and microbes. This review focuses on the role of NF-κβ, especially in pediatric IBD, and potential therapeutic venues for attenuating NF-κβ-induced inflammation.
Collapse
Affiliation(s)
- Deenaz Zaidi
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.,Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB, Canada
| | - Eytan Wine
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.,Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB, Canada.,Department of Physiology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
50
|
TNF Tolerance in Monocytes and Macrophages: Characteristics and Molecular Mechanisms. J Immunol Res 2017; 2017:9570129. [PMID: 29250561 PMCID: PMC5698820 DOI: 10.1155/2017/9570129] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/25/2017] [Indexed: 01/07/2023] Open
Abstract
Tumor necrosis factor (TNF) tolerance in monocytes and macrophages means that preexposure to TNF reduces the sensitivity in these cells to a subsequent restimulation with this cytokine. Differential effects arise following preincubation with both low and high doses of TNF resulting in absolute as well as induction tolerance affecting specific immunologically relevant gene sets. In this review article, we summarize the relevance of TNF tolerance in vivo and the molecular mechanisms underlying these forms of tolerance including the role of transcription factors and signaling systems. In addition, the characteristics of cross-tolerance between TNF and lipopolysaccharide (LPS) as well as pathophysiological aspects of TNF tolerance are discussed. We conclude that TNF tolerance may represent a protective mechanism involved in the termination of inflammation and preventing excessive or prolonged inflammation. Otherwise, tolerance may also be a trigger of immune paralysis thus contributing to severe inflammatory diseases such as sepsis. An improved understanding of TNF tolerance will presumably facilitate the implementation of diagnostic or therapeutic approaches to more precisely assess and treat inflammation-related diseases.
Collapse
|