1
|
Moniwa K, Tokita S, Sumi T, Saijo H, Sugita S, Arioka K, Hirohashi Y, Chiba H, Kanaseki T, Torigoe T. Loss of Tapasin in Tumors Potentiates T-Cell Recognition and Anti-Tumor Effects of Immune Checkpoint Blockade. Cancer Sci 2025; 116:1203-1213. [PMID: 39989216 PMCID: PMC12044650 DOI: 10.1111/cas.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 02/25/2025] Open
Abstract
Tumors can evade host immune surveillance by compromising the intracellular antigen processing machinery (APM), such as beta 2 macroglobulin (β2m) or the transporter associated with antigen processing (TAP). Defects in the APM generally result in the downregulation of surface MHC class I (MHC-I) levels. Here, we show that the downregulation of a component of the peptide loading complex (PLC), tapasin, in tumors conversely induces CD8+ T-cell responses and inhibits tumor growth in vivo. Loss of tapasin enhanced the anti-tumor effects of immune checkpoint blockade (ICB) in mouse non-small cell lung and colon cancer models. In contrast to β2m-deficient tumors, the reduced levels of MHC-I in tapasin-deficient tumors were restored by IFN-γ treatment, allowing them to be recognized by CD8+ T cells. These results suggest the presence of a reactive CD8+ T-cell fraction and the ability of immune surveillance to eliminate tumor variants with impaired tapasin expression.
Collapse
Affiliation(s)
- Keigo Moniwa
- Department of PathologySapporo Medical UniversitySapporoJapan
- Department of Respiratory Medicine and AllergologySapporo Medical UniversitySapporoJapan
| | - Serina Tokita
- Department of PathologySapporo Medical UniversitySapporoJapan
- Joint Research Center for ImmunoproteogenomicsSapporo Medical UniversitySapporoJapan
| | - Toshiyuki Sumi
- Department of Respiratory MedicineHakodate Goryoukaku HospitalHakodateJapan
| | - Hiroshi Saijo
- Department of Respiratory MedicineSapporo Minami‐Sanjo HospitalSapporoJapan
| | - Shintaro Sugita
- Department of Surgical PathologySapporo Medical UniversitySapporoJapan
| | - Kotomi Arioka
- Department of Surgical PathologyHakodate Goryoukaku HospitalHakodateJapan
| | | | - Hirofumi Chiba
- Department of Respiratory Medicine and AllergologySapporo Medical UniversitySapporoJapan
| | - Takayuki Kanaseki
- Department of PathologySapporo Medical UniversitySapporoJapan
- Joint Research Center for ImmunoproteogenomicsSapporo Medical UniversitySapporoJapan
| | | |
Collapse
|
2
|
Lu C, Liu T, Yimin E, Miao L, Yu C, Zhang J, Luo X. FAM49B drives colorectal cancer progression by stabilizing c-Myc through NEK9 phosphorylation. Biofactors 2025; 51:e2158. [PMID: 39780509 DOI: 10.1002/biof.2158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent cancer globally and is the second leading cause of cancer mortality. FAM49B, a member of the FAM49 gene family, is a recently identified, evolutionarily conserved gene. Emerging studies indicate that FAM49B plays a role in various cancers, though its specific mechanism in CRC remains largely unexplored. In this study, we observed that FAM49B was abnormally expressed in CRC tissues and cell lines, with elevated expression correlating with poor patient prognosis. FAM49B knockdown markedly suppressed CRC cell proliferation by arresting the cell cycle and reducing cell migration and invasion. Single-cell RNA-seq (ScRNA-seq) analysis revealed that high FAM49B expression in malignant epithelial cell clusters was strongly linked to c-Myc oncogene activation. Further, FAM49B knockdown significantly reduced c-Myc expression by enhancing its K48 ubiquitination. We identified NEK9 as a direct interacting partner of FAM49B, with FAM49B knockdown inhibiting NEK9-Thr210 phosphorylation. Similarly, high NEK9 expression was linked to unfavorable prognosis in CRC. In FAM49B-overexpressing CRC cells, NEK9 knockdown significantly suppressed c-Myc expression, c-Myc-ser62 phosphorylation, and reduced cell proliferation, migration, and invasion. Thus, directly targeting the FAM49B/NEK9/c-Myc pathway presents a promising therapeutic approach for c-Myc positive CRC patients.
Collapse
Affiliation(s)
- Chen Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tianyu Liu
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - E Yimin
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Lin Miao
- Medical Centre for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunzhao Yu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianping Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| | - Xiagang Luo
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Tsao HW, Anderson S, Finn KJ, Perera JJ, Pass LF, Schneider EM, Jiang A, Fetterman R, Chuong CL, Kozuma K, Stickler MM, Creixell M, Klaeger S, Phulphagar KM, Rachimi S, Verzani EK, Olsson N, Dubrot J, Pech MF, Silkworth W, Lane-Reticker SK, Allen PM, Ibrahim K, Knudsen NH, Cheng AY, Long AH, Ebrahimi-Nik H, Kim SY, Du PP, Iracheta-Vellve A, Robitschek EJ, Suermondt JSMT, Davis TGR, Wolfe CH, Atluri T, Olander KE, Rush JS, Sundberg TB, McAllister FE, Abelin JG, Firestone A, Stokoe D, Carr SA, Harding FA, Yates KB, Manguso RT. Targeting the aminopeptidase ERAP enhances antitumor immunity by disrupting the NKG2A-HLA-E inhibitory checkpoint. Immunity 2024; 57:2863-2878.e12. [PMID: 39561763 DOI: 10.1016/j.immuni.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/12/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024]
Abstract
The aminopeptidase, endoplasmic reticulum aminopeptidase 1 (ERAP1), trims peptides for loading into major histocompatibility complex class I (MHC class I), and loss of this activity has broad effects on the MHC class I peptidome. Here, we investigated the impact of targeting ERAP1 in immune checkpoint blockade (ICB), as MHC class I interactions mediate both activating and inhibitory functions in antitumor immunity. Loss of ERAP sensitized mouse tumor models to ICB, and this sensitivity depended on CD8+ T cells and natural killer (NK) cells. In vivo suppression screens revealed that Erap1 deletion inactivated the inhibitory NKG2A-HLA-E checkpoint, which requires presentation of a restricted set of invariant epitopes (VL9) on HLA-E. Loss of ERAP altered the HLA-E peptidome, preventing NKG2A engagement. In humans, ERAP1 and ERAP2 showed functional redundancy for the processing and presentation of VL9, and loss of both inactivated the NKG2A checkpoint in cancer cells. Thus, loss of ERAP phenocopies the inhibition of the NKG2A-HLA-E pathway and represents an attractive approach to inhibit this critical checkpoint.
Collapse
Affiliation(s)
- Hsiao-Wei Tsao
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Seth Anderson
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | | | - Jonathan J Perera
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Lomax F Pass
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Emily M Schneider
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Aiping Jiang
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Rachel Fetterman
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Cun Lan Chuong
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Kaiya Kozuma
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Susan Klaeger
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | | | - Suzanna Rachimi
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Eva K Verzani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | | | - Juan Dubrot
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Sarah Kate Lane-Reticker
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Peter M Allen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Kyrellos Ibrahim
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Nelson H Knudsen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew Y Cheng
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Adrienne H Long
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hakimeh Ebrahimi-Nik
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Sarah Y Kim
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Peter P Du
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Arvin Iracheta-Vellve
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Emily J Robitschek
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Juliette S M T Suermondt
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Thomas G R Davis
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Clara H Wolfe
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Trisha Atluri
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Kira E Olander
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Jason S Rush
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Thomas B Sundberg
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | | | - Jennifer G Abelin
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | | | - David Stokoe
- Calico Life Sciences, South San Francisco, CA, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | | | - Kathleen B Yates
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| | - Robert T Manguso
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
4
|
Brackenridge S, John N, He W, Früh K, Borrow P, McMichael A. Regulation of the cell surface expression of classical and non-classical MHC proteins by the human cytomegalovirus UL40 and rhesus cytomegalovirus Rh67 proteins. J Virol 2024; 98:e0120624. [PMID: 39207137 PMCID: PMC11406984 DOI: 10.1128/jvi.01206-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The signal sequences of the human cytomegalovirus (CMV) UL40 protein and its rhesus CMV (RhCMV) counterpart, Rh67, contain a peptide (VMAPRT[L/V][F/I/L/V]L, VL9) that is presented by major histocompatibility complex (MHC) antigen E (MHC-E). The CMV VL9 peptides replace VL9 peptides derived from classical MHC (Ia) signal sequences, which are lost when CMV disrupts antigen processing and presentation and MHC Ia expression. This allows infected cells to maintain MHC-E surface expression and escape killing by Natural Killer cells. We demonstrate that processing of the Rh67 VL9 peptide mirrors that of UL40, despite the lack of sequence conservation between the two proteins. Processing of both VL9 peptides is dependent on cleavage of their signal sequences by the host protease signal peptide peptidase. As previously shown for UL40, up-regulation of MHC-E expression by Rh67 requires only its signal sequence, with sequences upstream of VL9 critical for conferring independence from TAP, the transporter associated with antigen processing. Our results also suggest that the mature UL40 and Rh67 proteins contribute to CMV immune evasion by decreasing surface expression of MHC Ia. Unexpectedly, while the Rh67 VL9 peptide is resistant to the effects of Rh67, UL40 can partially counteract the up-regulation of MHC-E expression mediated by its own VL9 peptide. This suggests differences in the mechanisms by which the two VL9 peptides up-regulate MHC-E, and further work will be required to determine if any such differences have implications for translating a RhCMV-vectored simian immunodeficiency virus (SIV) vaccine to HIV-1 using human CMV as a vector. IMPORTANCE The protective immune response induced by a rhesus cytomegalovirus (RhCMV)-vectored simian immunodeficiency virus (SIV) vaccine in rhesus macaques depends on the presence of the viral Rh67 gene in the vaccine. The Rh67 protein contains a peptide that allows the RhCMV-infected cells to maintain expression of major histocompatibility complex (MHC) antigen E at the cell surface. We show that production of this peptide, referred to as "VL9," mirrors that of the equivalent peptide present in the human cytomegalovirus (CMV) protein UL40, despite the little sequence similarity between the two CMV proteins. We also show that the mature UL40 and Rh67 proteins, which have no previously described function, also contribute to CMV immune evasion by reducing cell surface expression of MHC proteins important for the immune system to detect infected cells. Despite these similarities, our work also reveals possible differences between Rh67 and UL40, and these may have implications for the use of human CMV as the vector for a potential HIV-1 vaccine.
Collapse
Affiliation(s)
- Simon Brackenridge
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nessy John
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Wanlin He
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Klaus Früh
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Persephone Borrow
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew McMichael
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Kim HJ, Nakagawa H, Choi JY, Che X, Divris A, Liu Q, Wight AE, Zhang H, Saad A, Solhjou Z, Deban C, Azzi JR, Cantor H. A narrow T cell receptor repertoire instructs thymic differentiation of MHC class Ib-restricted CD8+ regulatory T cells. J Clin Invest 2024; 134:e170512. [PMID: 37934601 PMCID: PMC10760956 DOI: 10.1172/jci170512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
Although most CD8+ T cells are equipped to kill infected or transformed cells, a subset may regulate immune responses and preserve self-tolerance. Here, we describe a CD8 lineage that is instructed to differentiate into CD8 T regulatory cells (Tregs) by a surprisingly restricted set of T cell receptors (TCRs) that recognize MHC-E (mouse Qa-1) and several dominant self-peptides. Recognition and elimination of pathogenic target cells that express these Qa-1-self-peptide complexes selectively inhibits pathogenic antibody responses without generalized immune suppression. Immunization with synthetic agonist peptides that mobilize CD8 Tregs in vivo efficiently inhibit antigraft antibody responses and markedly prolong heart and kidney organ graft survival. Definition of TCR-dependent differentiation and target recognition by this lineage of CD8 Tregs may open the way to new therapeutic approaches to inhibit pathogenic antibody responses.
Collapse
Affiliation(s)
- Hye-Jung Kim
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology and
| | - Hidetoshi Nakagawa
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology and
| | - John Y. Choi
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Transplant Research Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Xuchun Che
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Andrew Divris
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Qingshi Liu
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Andrew E. Wight
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology and
| | - Hengcheng Zhang
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Transplant Research Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Anis Saad
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Transplant Research Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Zhabiz Solhjou
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Transplant Research Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Christa Deban
- Transplant Research Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Jamil R. Azzi
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Transplant Research Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Harvey Cantor
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology and
| |
Collapse
|
6
|
Stern LJ, Clement C, Galluzzi L, Santambrogio L. Non-mutational neoantigens in disease. Nat Immunol 2024; 25:29-40. [PMID: 38168954 PMCID: PMC11075006 DOI: 10.1038/s41590-023-01664-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/29/2023] [Indexed: 01/05/2024]
Abstract
The ability of mammals to mount adaptive immune responses culminating with the establishment of immunological memory is predicated on the ability of the mature T cell repertoire to recognize antigenic peptides presented by syngeneic MHC class I and II molecules. Although it is widely believed that mature T cells are highly skewed towards the recognition of antigenic peptides originating from genetically diverse (for example, foreign or mutated) protein-coding regions, preclinical and clinical data rather demonstrate that novel antigenic determinants efficiently recognized by mature T cells can emerge from a variety of non-mutational mechanisms. In this Review, we describe various mechanisms that underlie the formation of bona fide non-mutational neoantigens, such as epitope mimicry, upregulation of cryptic epitopes, usage of non-canonical initiation codons, alternative RNA splicing, and defective ribosomal RNA processing, as well as both enzymatic and non-enzymatic post-translational protein modifications. Moreover, we discuss the implications of the immune recognition of non-mutational neoantigens for human disease.
Collapse
Affiliation(s)
- Lawrence J Stern
- Department of Pathology, UMass Chan Medical School, Worcester, MA, USA
- Immunology and Microbiology Program, UMass Chan Medical School, Worcester, MA, USA
| | - Cristina Clement
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Guan J, Peske JD, Manoharan Valerio M, Park C, Robey EA, Sadegh-Nasseri S. Commensal bacteria maintain a Qa-1 b-restricted unconventional CD8 + T population in gut epithelium. eLife 2023; 12:RP90466. [PMID: 38127067 PMCID: PMC10735220 DOI: 10.7554/elife.90466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Intestinal intraepithelial lymphocytes (IELs) are characterized by an unusual phenotype and developmental pathway, yet their specific ligands and functions remain largely unknown. Here by analysis of QFL T cells, a population of CD8+ T cells critical for monitoring the MHC I antigen processing pathway, we established that unconventional Qa-1b-restricted CD8+ T cells are abundant in intestinal epithelium. We found that QFL T cells showed a Qa-1b-dependent unconventional phenotype in the spleen and small intestine of naïve wild-type mice. The splenic QFL T cells showed innate-like functionality exemplified by rapid response to cytokines or antigens, while the gut population was refractory to stimuli. Microbiota was required for the maintenance, but not the initial gut homing of QFL T cells. Moreover, monocolonization with Pediococcus pentosaceus, which expresses a peptide that cross-activated QFL T cells, was sufficient to maintain QFL T cells in the intestine. Thus, microbiota is critical for shaping the Qa-1b-restricted IEL landscape.
Collapse
Affiliation(s)
- Jian Guan
- Department of Pathology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Institute of Cell Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - J David Peske
- Department of Pathology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Institute of Cell Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Michael Manoharan Valerio
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Chansu Park
- Department of Pathology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Institute of Cell Engineering, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Ellen A Robey
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | | |
Collapse
|
8
|
Manoharan Valerio M, Arana K, Guan J, Chan SW, Yang X, Kurd N, Lee A, Shastri N, Coscoy L, Robey EA. The promiscuous development of an unconventional Qa1b-restricted T cell population. Front Immunol 2023; 14:1250316. [PMID: 38022509 PMCID: PMC10644506 DOI: 10.3389/fimmu.2023.1250316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
MHC-E restricted CD8 T cells show promise in vaccine settings, but their development and specificity remain poorly understood. Here we focus on a CD8 T cell population reactive to a self-peptide (FL9) bound to mouse MHC-E (Qa-1b) that is presented in response to loss of the MHC I processing enzyme ERAAP, termed QFL T cells. We find that mature QFL thymocytes are predominantly CD8αβ+CD4-, show signs of agonist selection, and give rise to both CD8αα and CD8αβ intraepithelial lymphocytes (IEL), as well as memory phenotype CD8αβ T cells. QFL T cells require the MHC I subunit β-2 microglobulin (β2m), but do not require Qa1b or classical MHC I for positive selection. However, QFL thymocytes do require Qa1b for agonist selection and full functionality. Our data highlight the relaxed requirements for positive selection of an MHC-E restricted T cell population and suggest a CD8αβ+CD4- pathway for development of CD8αα IELs.
Collapse
Affiliation(s)
- Michael Manoharan Valerio
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Kathya Arana
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Jian Guan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shiao Wei Chan
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Xiaokun Yang
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Nadia Kurd
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Angus Lee
- Gene Targeting Facility Cancer Research Laboratory, University of California Berkeley, Berkeley, CA, United States
| | - Nilabh Shastri
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Laurent Coscoy
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| | - Ellen A. Robey
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, United States
| |
Collapse
|
9
|
Guan J, Peske JD, Valerio MM, Park C, Robey EA, Sadegh-Nasseri S. Commensal Bacteria Maintain a Qa-1 b -restricted Unconventional CD8 + T Population in Gut Epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530600. [PMID: 36909616 PMCID: PMC10002720 DOI: 10.1101/2023.03.01.530600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Intestinal intraepithelial lymphocytes (IELs) are characterized by an unusual phenotype and developmental pathway, yet their specific ligands and functions remain largely unknown. Here by analysis of QFL T cells, a population of CD8 + T cells critical for monitoring the MHC I antigen processing pathway, we established that unconventional Qa-1 b -restricted CD8 + T cells are abundant in intestinal epithelium. We found that QFL T cells showed a Qa-1 b -dependent unconventional phenotype in the spleen and small intestine of naïve wild-type mice. The splenic QFL T cells showed innate-like functionality exemplified by rapid response to cytokines or antigen, while the gut population was refractory to stimuli. Microbiota was required for the maintenance, but not the initial gut homing of QFL T cells. Moreover, monocolonization with Pediococcus pentosaceus, which expresses a peptide that cross-activated QFL T cells, was sufficient to maintain QFL T cells in the intestine. Thus, microbiota is critical for shaping the Qa-1 b -restricted IEL landscape.
Collapse
|
10
|
Geiger KM, Manoharan M, Coombs R, Arana K, Park CS, Lee AY, Shastri N, Robey EA, Coscoy L. Murine cytomegalovirus downregulates ERAAP and induces an unconventional T cell response to self. Cell Rep 2023; 42:112317. [PMID: 36995940 PMCID: PMC10539480 DOI: 10.1016/j.celrep.2023.112317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 01/02/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
The endoplasmic reticulum aminopeptidase associated with antigen processing (ERAAP) plays a crucial role in shaping the peptide-major histocompatibility complex (MHC) class I repertoire and maintaining immune surveillance. While murine cytomegalovirus (MCMV) has multiple strategies for manipulating the antigen processing pathway to evade immune responses, the host has also developed ways to counter viral immune evasion. In this study, we find that MCMV modulates ERAAP and induces an interferon γ (IFN-γ)-producing CD8+ T cell effector response that targets uninfected ERAAP-deficient cells. We observe that ERAAP downregulation during infection leads to the presentation of the self-peptide FL9 on non-classical Qa-1b, thereby eliciting Qa-1b-restricted QFL T cells to proliferate in the liver and spleen of infected mice. QFL T cells upregulate effector markers upon MCMV infection and are sufficient to reduce viral load after transfer to immunodeficient mice. Our study highlights the consequences of ERAAP dysfunction during viral infection and provides potential targets for anti-viral therapies.
Collapse
Affiliation(s)
- Kristina M Geiger
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA; Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael Manoharan
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rachel Coombs
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kathya Arana
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chan-Su Park
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Angus Y Lee
- Cancer Research Lab, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nilabh Shastri
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ellen A Robey
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA; Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Laurent Coscoy
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA; Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
11
|
Limanaqi F, Vicentini C, Saulle I, Clerici M, Biasin M. The role of endoplasmic reticulum aminopeptidases in type 1 diabetes mellitus. Life Sci 2023; 323:121701. [PMID: 37059356 DOI: 10.1016/j.lfs.2023.121701] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Type-I diabetes mellitus (T1DM) is generally considered as a chronic, T-cell mediated autoimmune disease. This notwithstanding, both the endogenous characteristics of β-cells, and their response to environmental factors and exogenous inflammatory stimuli are key events in disease progression and exacerbation. As such, T1DM is now recognized as a multifactorial condition, with its onset being influenced by both genetic predisposition and environmental factors, among which, viral infections represent major triggers. In this frame, endoplasmic reticulum aminopeptidase 1 (ERAP1) and 2 (ERAP2) hold center stage. ERAPs represent the main hydrolytic enzymes specialized in trimming of N-terminal antigen peptides to be bound by MHC class I molecules and presented to CD8+ T cells. Thus, abnormalities in ERAPs expression alter the peptide-MHC-I repertoire both quantitatively and qualitatively, fostering both autoimmune and infectious diseases. Although only a few studies succeeded in determining direct associations between ERAPs variants and T1DM susceptibility/outbreak, alterations of ERAPs do impinge on a plethora of biological events which might indeed contribute to the disease development/exacerbation. Beyond abnormal self-antigen peptide trimming, these include preproinsulin processing, nitric oxide (NO) production, ER stress, cytokine responsiveness, and immune cell recruitment/activity. The present review brings together direct and indirect evidence focused on the immunobiological role of ERAPs in T1DM onset and progression, covering both genetic and environmental aspects.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
| | - Chiara Vicentini
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy; Don C. Gnocchi Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation, Via A. Capecelatro 66, 20148 Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy.
| |
Collapse
|
12
|
Kessler BM. Nilabh Shastri - Towards understanding classical and non-classical MHC-I antigen processing and presentation. Cell Immunol 2022; 382:104638. [PMID: 36371991 DOI: 10.1016/j.cellimm.2022.104638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Major histocompatibility complex (MHC-I) peptide antigen processing and presentation has experienced a revived interest in the context of immuno oncology, immune surveillance escape by pathogen mutations and technical advances that accelerate vaccine design. This sheds new light on the discoveries made by Nilabh Shastri and colleagues that includes the characterisation of cryptic MHC-I peptide antigen epitopes derived from untranslated regions and the N-terminal trimming of peptide antigen precursors by the aminopeptidase ERAAP (ERAP1/2 / ARTS1/LRAP) in the endoplasmic reticulum (ER) prior to the complete assembly of MHC-I complexes and their subsequent exposure to the cell surface. These scientific findings have important implications for developing novel therapeutic approaches in immunotherapy and modern vaccine design.
Collapse
Affiliation(s)
- Benedikt M Kessler
- Chinese Academy of Medical Science Oxford Institute, Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, UK.
| |
Collapse
|
13
|
Vargas-Zapata V, Geiger KM, Tran D, Ma J, Mao X, Puschnik AS, Coscoy L. SARS-CoV-2 Envelope-mediated Golgi pH dysregulation interferes with ERAAP retention in cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.29.518257. [PMID: 36482965 PMCID: PMC9727756 DOI: 10.1101/2022.11.29.518257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Endoplasmic reticulum (ER) aminopeptidase associated with antigen processing (ERAAP) trims peptide precursors in the ER for presentation by major histocompatibility (MHC)-I molecules to surveying CD8+ T-cells. This function allows ERAAP to regulate the nature and quality of the peptide repertoire and, accordingly, the resulting immune responses. We recently showed that infection with murine cytomegalovirus leads to a dramatic loss of ERAAP levels in infected cells. In mice, this loss is associated with the activation of QFL T-cells, a subset of T-cells that monitor ERAAP integrity and eliminate cells experiencing ERAAP dysfunction. In this study, we aimed to identify host factors that regulate ERAAP expression level and determine whether these could be manipulated during viral infections. We performed a CRISPR knockout screen and identified ERp44 as a factor promoting ERAAP retention in the ER. ERp44's interaction with ERAAP is dependent on the pH gradient between the ER and Golgi. We hypothesized that viruses that disrupt the pH of the secretory pathway interfere with ERAAP retention. Here, we demonstrate that expression of the Envelope (E) protein from Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) leads to Golgi pH neutralization and consequently decrease of ERAAP intracellular levels. Furthermore, SARS-CoV-2-induced ERAAP loss correlates with its release into the extracellular environment. ERAAP's reliance on ERp44 and a functioning ER/Golgi pH gradient for proper localization and function led us to propose that ERAAP serves as a sensor of disturbances in the secretory pathway during infection and disease.
Collapse
Affiliation(s)
- Valerie Vargas-Zapata
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Kristina M Geiger
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Dan Tran
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jessica Ma
- Division of Microbial Biology, Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xiaowen Mao
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | | | - Laurent Coscoy
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
14
|
Ruibal P, Franken KLMC, van Meijgaarden KE, van Wolfswinkel M, Derksen I, Scheeren FA, Janssen GMC, van Veelen PA, Sarfas C, White AD, Sharpe SA, Palmieri F, Petrone L, Goletti D, Abeel T, Ottenhoff THM, Joosten SA. Identification of HLA-E Binding Mycobacterium tuberculosis-Derived Epitopes through Improved Prediction Models. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1555-1565. [PMID: 36096642 PMCID: PMC9536328 DOI: 10.4049/jimmunol.2200122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/03/2022] [Indexed: 01/04/2023]
Abstract
Tuberculosis (TB) remains one of the deadliest infectious diseases worldwide, posing great social and economic burden to affected countries. Novel vaccine approaches are needed to increase protective immunity against the causative agent Mycobacterium tuberculosis (Mtb) and to reduce the development of active TB disease in latently infected individuals. Donor-unrestricted T cell responses represent such novel potential vaccine targets. HLA-E-restricted T cell responses have been shown to play an important role in protection against TB and other infections, and recent studies have demonstrated that these cells can be primed in vitro. However, the identification of novel pathogen-derived HLA-E binding peptides presented by infected target cells has been limited by the lack of accurate prediction algorithms for HLA-E binding. In this study, we developed an improved HLA-E binding peptide prediction algorithm and implemented it to identify (to our knowledge) novel Mtb-derived peptides with capacity to induce CD8+ T cell activation and that were recognized by specific HLA-E-restricted T cells in Mycobacterium-exposed humans. Altogether, we present a novel algorithm for the identification of pathogen- or self-derived HLA-E-presented peptides.
Collapse
Affiliation(s)
- Paula Ruibal
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Kees L M C Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Ian Derksen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ferenc A Scheeren
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - George M C Janssen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Charlotte Sarfas
- Research and Development Department, UK Health Security Agency, Salisbury, United Kingdom
| | - Andrew D White
- Research and Development Department, UK Health Security Agency, Salisbury, United Kingdom
| | - Sally A Sharpe
- Research and Development Department, UK Health Security Agency, Salisbury, United Kingdom
| | - Fabrizio Palmieri
- National Institute for Infectious Diseases Lazzaro Spallanzani Scientific Institute for Research, Hospitalization and Healthcare, Rome, Italy
| | - Linda Petrone
- National Institute for Infectious Diseases Lazzaro Spallanzani Scientific Institute for Research, Hospitalization and Healthcare, Rome, Italy
| | - Delia Goletti
- National Institute for Infectious Diseases Lazzaro Spallanzani Scientific Institute for Research, Hospitalization and Healthcare, Rome, Italy
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, Delft, the Netherlands; and
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands;
| |
Collapse
|
15
|
Van Kaer L, Postoak JL, Song W, Wu L. Innate and Innate-like Effector Lymphocytes in Health and Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:199-207. [PMID: 35821102 PMCID: PMC9285656 DOI: 10.4049/jimmunol.2200074] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/11/2022] [Indexed: 04/20/2023]
Abstract
Lymphocytes can be functionally partitioned into subsets belonging to the innate or adaptive arms of the immune system. Subsets of innate and innate-like lymphocytes may or may not express Ag-specific receptors of the adaptive immune system, yet they are poised to respond with innate-like speed to pathogenic insults but lack the capacity to develop classical immunological memory. These lymphocyte subsets display a number of common properties that permit them to integrate danger and stress signals dispatched by innate sensor cells to facilitate the generation of specialized effector immune responses tailored toward specific pathogens or other insults. In this review, we discuss the functions of distinct subsets of innate and innate-like lymphocytes. A better understanding of the mechanisms by which these cells are activated in different contexts, their interactions with other immune cells, and their role in health and disease may inform the development of new or improved immunotherapies.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - J Luke Postoak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Wenqiang Song
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
16
|
Chen Y, Jiang Y, Lao J, Zhou Y, Su L, Huang X. Characterization and Functional Study of FAM49B Reveals Its Effect on Cell Proliferation in HEK293T Cells. Genes (Basel) 2022; 13:genes13020388. [PMID: 35205432 PMCID: PMC8872254 DOI: 10.3390/genes13020388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/25/2023] Open
Abstract
FAM49B/Fam49b is a member of the Fam49 (Family with sequence similarity 49) gene family, which is characterized by the conserved domain, DUF1394 (Domain of Unknown Function 1394). It has also been named CYRI-B (CYFIP related RAC1 interactor B), implicating its important function of regulating RAC1-driven cytoskeleton remolding. In this study, to further investigate its functions and mechanisms affecting cell behaviors, HEK293T cells (where FAM49B is highly expressed) were used to establish a FAM49B knockout cell line by CRISPR/Cas9 genome editing technology. Our data have clearly revealed that there are triple alleles of FAM49B in the genome of HEK293T cells. Meanwhile, the proliferation deficiency of the FAM49B KO HEK293T cell line and the significantly changed cell proliferation related gene expression profiles, such as CCND1, have been uncovered. At the same time, the existence of isoform 3 has been confirmed in HEK293T cells. Our studies have suggested that FAM49B may also affect cell proliferation via Cyclins, besides its influence on the cytoskeleton.
Collapse
Affiliation(s)
- Yijian Chen
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.J.); (J.L.); (Y.Z.)
| | - Yuyan Jiang
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.J.); (J.L.); (Y.Z.)
| | - Jihui Lao
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.J.); (J.L.); (Y.Z.)
| | - Yankuan Zhou
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.J.); (J.L.); (Y.Z.)
| | - Lida Su
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310009, China
- Correspondence: (L.S.); (X.H.); Tel.: +86-571-8820-6786 (X.H.)
| | - Xiao Huang
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.J.); (J.L.); (Y.Z.)
- Correspondence: (L.S.); (X.H.); Tel.: +86-571-8820-6786 (X.H.)
| |
Collapse
|
17
|
Li Y, Xiong Y, Wang Z, Han J, Shi S, He J, Shen N, Wu W, Wang R, Lv W, Deng Y, Liu W. FAM49B promotes breast cancer proliferation, metastasis, and chemoresistance by stabilizing ELAVL1 protein and regulating downstream Rab10/TLR4 pathway. Cancer Cell Int 2021; 21:534. [PMID: 34645466 PMCID: PMC8513284 DOI: 10.1186/s12935-021-02244-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/02/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is one of the most common cancers and the leading cause of death in women. Previous studies have demonstrated that FAM49B is implicated in several tumor progression, however, the role and mechanism of FAM49B in BC remain to be explored. Therefore, in this study, we aimed to systematically study the role of FAM49B in the proliferation, metastasis, apoptosis, and chemoresistance of BC, as well as the corresponding molecular mechanisms and downstream target. METHODS The ONCOMINE databases and Kaplan-Meier plotter databases were analyzed to find FAM49B and its prognostic values in BC. FAM49B expression in BC and adjacent non-tumor tissues was detected by western blot and IHC. Kaplan-Meier analysis was used to identify the prognosis of BC patients. After FAM49B knockdown in MCF-7 and MDA-MB-231 cells, a combination of co-immunoprecipitation, MTT, migration, and apoptosis assays, nude mouse xenograft tumor model, in addition to microarray detection and data analysis was used for further mechanistic studies. RESULTS In BC, the results showed that the expression level of FAM49B was significantly higher than that in normal breast tissue, and highly expression of FAM49B was significantly positively correlated with tumor volume, histological grade, lymph node metastasis rate, and poor prognosis. Knockdown of FAM49B inhibited the proliferation and migration of BC cells in vitro and in vivo. Microarray analysis revealed that the Toll-like receptor signaling pathway was inhibited upon FAM49B knockdown. In addition, the gene interaction network and downstream protein validation of FAM49B revealed that FAM49B positively regulates BC cell proliferation and migration by promoting the Rab10/TLR4 pathway. Furthermore, endogenous FAM49B interacted with ELAVL1 and positively regulated Rab10 and TLR4 expression by stabilizing ELAVL1. Moreover, mechanistic studies indicated that the lack of FAM49B expression in BC cells conferred more sensitivity to anthracycline and increased cell apoptosis by downregulating the ELAVL1/Rab10/TLR4/NF-κB signaling pathway. CONCLUSION These results demonstrate that FAM49B functions as an oncogene in BC progression, and may provide a promising target for clinical diagnosis and therapy of BC.
Collapse
Affiliation(s)
- Yanhui Li
- Clinical School of Medicine, Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Yue Xiong
- Clinical School of Medicine, Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Zhen Wang
- Department of Laboratory Medicine, Medical College, Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Jianjun Han
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Sufang Shi
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Jinglan He
- Department of Orthopedic Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Na Shen
- Science and Education Division, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Wenjuan Wu
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Rui Wang
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Weiwei Lv
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Yajun Deng
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Weiguang Liu
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China.
| |
Collapse
|
18
|
The nonclassical immune surveillance for ERAAP function. Curr Opin Immunol 2021; 70:105-111. [PMID: 34098489 DOI: 10.1016/j.coi.2021.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 01/04/2023]
Abstract
The peptide repertoire presented by MHC class I molecules on the cell surface is essential for the immune surveillance of intracellular pathogens and transformed cells. The generation of this peptide repertoire is critically dependent on the endoplasmic reticulum aminopeptidase associated with antigen processing (ERAAP). Loss of ERAAP function leads to the generation of a profoundly disrupted peptide repertoire including many novel and immunogenic peptides. Strikingly, a large fraction of these novel peptides on ERAAP-KO cells are presented by the nonclassical MHC Ib molecule, Qa-1b. One immunodominant Qa-1b-restricted novel peptide is recognized by a unique CD8+ T cell population showing features of both conventional cytotoxic T cells and unconventional innate-like T cells. While much remains to be uncovered, here we summarize the latest discoveries of our lab on the important immune surveillance of ERAAP function mediated by nonclassical MHC Ib molecules and their unusual cognate T cells.
Collapse
|
19
|
Andrieu JM, Lu W. Evidence of a tolerogenic vaccine against AIDS in the Chinese macaque prefigures a potential human vaccine. Arch Virol 2021; 166:1273-1282. [PMID: 33507389 PMCID: PMC8036203 DOI: 10.1007/s00705-020-04935-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/18/2020] [Indexed: 12/04/2022]
Abstract
In 2006 we discovered a new type of mucosal vaccine against simian immunodeficiency virus (SIV) in Chinese macaques. Here, we review 15 years of our published work on this vaccine, which consists of inactivated SIVmac239 particles adjuvanted with Bacillus Calmette-Guérin, Lactobacillus plantarum, or Lactobacillus rhamnosus. Without adjuvant, the vaccine administered by the intragastric route induced the usual SIV-specific humoral and cellular immune responses but provided no protection against intrarectal challenge with SIVmac239. In contrast, out of 24 macaques immunized with the adjuvanted vaccine and challenged intrarectally with SIVmac239 or SIVB670, 23 were sterilely protected for up to five years, while all control macaques were infected. This protection was confirmed by an independent group from the Pasteur Institute. During the past 15 years, we have identified the mechanism of action of the vaccine and discovered that the vaccinated macaques produced a previously unrecognized class of MHC-Ib/E-restricted CD8+ T cells (which we refer to as tolerogenic CD8+ T cells) that suppressed the activation of SIV-RNA-infected CD4+ T cells and thereby inhibited the (activation-dependent) reverse transcription of the virus, which in turn prevented the establishment of SIV infection. Importantly, we discovered also that the tolerogenic CD8+ T cell subset observed in vaccinated Chinese macaques could also be found in human elite controllers, a small group of HIV-infected patients in whom these tolerogenic CD8+ T cells were shown to naturally suppress viral replication. Given that SIV and HIV require activated immune cells in which to replicate, the specific prevention of activation of SIV-RNA-containing CD4+ T cells by a tolerogenic vaccine approach offers an exciting new avenue in HIV vaccine research.
Collapse
Affiliation(s)
- Jean-Marie Andrieu
- Laboratory of Autoimmunity and Inflammation, Cochin Institute, Université de Paris, 75013, Paris, France. .,Institut de Recherche sur les Vaccins et l'Immunothérapie des Cancers et du SIDA, Centre Universitaire des Saints Pères, Université de Paris, 75006, Paris, France.
| | - Wei Lu
- Laboratory of Autoimmunity and Inflammation, Cochin Institute, Université de Paris, 75013, Paris, France. .,Institut de Recherche sur les Vaccins et l'Immunothérapie des Cancers et du SIDA, Centre Universitaire des Saints Pères, Université de Paris, 75006, Paris, France. .,Institut de Recherche pour le Développement (IRD), 13000, Marseille, France.
| |
Collapse
|
20
|
Mpakali A, Stratikos E. The Role of Antigen Processing and Presentation in Cancer and the Efficacy of Immune Checkpoint Inhibitor Immunotherapy. Cancers (Basel) 2021; 13:E134. [PMID: 33406696 PMCID: PMC7796214 DOI: 10.3390/cancers13010134] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Recent clinical successes of cancer immunotherapy using immune checkpoint inhibitors (ICIs) are rapidly changing the landscape of cancer treatment. Regardless of initial impressive clinical results though, the therapeutic benefit of ICIs appears to be limited to a subset of patients and tumor types. Recent analyses have revealed that the potency of ICI therapies depends on the efficient presentation of tumor-specific antigens by cancer cells and professional antigen presenting cells. Here, we review current knowledge on the role of antigen presentation in cancer. We focus on intracellular antigen processing and presentation by Major Histocompatibility class I (MHCI) molecules and how it can affect cancer immune evasion. Finally, we discuss the pharmacological tractability of manipulating intracellular antigen processing as a complementary approach to enhance tumor immunogenicity and the effectiveness of ICI immunotherapy.
Collapse
Affiliation(s)
- Anastasia Mpakali
- National Centre for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15784 Athens, Greece
| |
Collapse
|
21
|
Walters LC, McMichael AJ, Gillespie GM. Detailed and atypical HLA-E peptide binding motifs revealed by a novel peptide exchange binding assay. Eur J Immunol 2020; 50:2075-2091. [PMID: 32716529 DOI: 10.1002/eji.202048719] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/19/2020] [Accepted: 07/23/2020] [Indexed: 11/05/2022]
Abstract
Diverse SIV and HIV epitopes that bind the rhesus homolog of HLA-E, Mamu-E, have recently been identified in SIVvaccine studies using a recombinant Rhesus cytomegalovirus (RhCMV 68-1) vector, where unprecedented protection against SIV challenge was achieved. Additionally, several Mycobacterial peptides identified both algorithmically and following elution from infected cells, are presented to CD8+ T cells by HLA-E in humans. Yet, a comparative and comprehensive analysis of relative HLA-E peptide binding strength via a reliable, high throughput in vitro assay is currently lacking. To address this, we developed and optimized a novel, highly sensitive peptide exchange ELISA-based assay that relatively quantitates peptide binding to HLA-E. Using this approach, we screened multiple peptides, including peptide panels derived from HIV, SIV, and Mtb predicted to bind HLA-E. Our results indicate that although HLA-E preferentially accommodates canonical MHC class I leader peptides, many non-canonical, sequence diverse, pathogen-derived peptides also bind HLA-E, albeit generally with lower relative binding strength. Additionally, our screens demonstrate that the majority of peptides tested, including some key Mtb and SIV epitopes that have been shown to elicit strong Mamu-E-restricted T cell responses, either bind HLA-E extremely weakly or give signals that are indistinguishable from the negative, peptide-free controls.
Collapse
Affiliation(s)
- Lucy C Walters
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew J McMichael
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Geraldine M Gillespie
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
22
|
Ruibal P, Franken KLMC, van Meijgaarden KE, van Loon JJF, van der Steen D, Heemskerk MHM, Ottenhoff THM, Joosten SA. Peptide Binding to HLA-E Molecules in Humans, Nonhuman Primates, and Mice Reveals Unique Binding Peptides but Remarkably Conserved Anchor Residues. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:2861-2872. [PMID: 33020145 PMCID: PMC7653511 DOI: 10.4049/jimmunol.2000810] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022]
Abstract
Ag presentation via the nonclassical MHC class Ib molecule HLA-E, with nearly complete identity between the two alleles expressed in humans, HLA-E*01:01 and HLA-E*01:03, can lead to the activation of unconventional T cells in humans. Despite this virtual genetic monomorphism, differences in peptide repertoires binding to the two allelic variants have been reported. To further dissect and compare peptide binding to HLA-E*01:01 and HLA-E*01:03, we used an UV-mediated peptide exchange binding assay and an HPLC-based competition binding assay. In addition, we investigated binding of these same peptides to Mamu-E, the nonhuman primate homologue of human HLA-E, and to the HLA-E-like molecule Qa-1b in mice. We next exploited the differences and homologies in the peptide binding pockets of these four molecules to identify allele specific as well as common features of peptide binding motifs across species. Our results reveal differences in peptide binding preferences and intensities for each human HLA-E variant compared with Mamu-E and Qa-1b Using extended peptide libraries, we identified and refined the peptide binding motifs for each of the four molecules and found that they share main anchor positions, evidenced by conserved amino acid preferences across the four HLA-E molecules studied. In addition, we also identified differences in peptide binding motifs, which could explain the observed variations in peptide binding preferences and affinities for each of the four HLA-E-like molecules. Our results could help with guiding the selection of candidate pathogen-derived peptides with the capacity to target HLA-E-restricted T cells that could be mobilized in vaccination and immunotherapeutic strategies.
Collapse
Affiliation(s)
- Paula Ruibal
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Kees L M C Franken
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Krista E van Meijgaarden
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Joeri J F van Loon
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Dirk van der Steen
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| |
Collapse
|
23
|
Anderson CK, Reilly EC, Lee AY, Brossay L. Qa-1-Restricted CD8 + T Cells Can Compensate for the Absence of Conventional T Cells during Viral Infection. Cell Rep 2020; 27:537-548.e5. [PMID: 30970256 PMCID: PMC6472915 DOI: 10.1016/j.celrep.2019.03.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 02/18/2019] [Accepted: 03/15/2019] [Indexed: 12/30/2022] Open
Abstract
The role of non-classical T cells during viral infection remains poorly understood. Using the well-established murine model of CMV infection (MCMV) and mice deficient in MHC class Ia molecules, we found that non-classical CD8+ T cells robustly expand after MCMV challenge, become highly activated effectors, and are capable of forming durable memory. Interestingly, although these cells are restricted by MHC class Ib molecules, they respond similarly to conventional T cells. Remarkably, when acting as the sole component of the adaptive immune response, non-classical CD8+ T cells are sufficient to protect against MCMV-induced lethality. We also demonstrate that the MHC class Ib molecule Qa-1 (encoded by H2-T23) restricts a large, and critical, portion of this population. These findings reveal a potential adaptation of the host immune response to compensate for viral evasion of classical T cell immunity. Anderson et al. describe a heterogenous population of non-classical CD8+ T cells responding to MCMV. Importantly, this population can protect mice from MCMV-induced lethality in the absence of other adaptive immune cells. Among the MHC class Ib-restricted CD8+ T cells responding, Qa-1-specific cells are required for protection.
Collapse
Affiliation(s)
- Courtney K Anderson
- Department of Molecular Microbiology & Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Emma C Reilly
- Department of Molecular Microbiology & Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Angus Y Lee
- Cancer Research Laboratory, University of California, Berkeley, Berkeley, CA 94702, USA
| | - Laurent Brossay
- Department of Molecular Microbiology & Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
24
|
Maben Z, Arya R, Rane D, An WF, Metkar S, Hickey M, Bender S, Ali A, Nguyen TT, Evnouchidou I, Schilling R, Stratikos E, Golden J, Stern LJ. Discovery of Selective Inhibitors of Endoplasmic Reticulum Aminopeptidase 1. J Med Chem 2019; 63:103-121. [PMID: 31841350 DOI: 10.1021/acs.jmedchem.9b00293] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ERAP1 is an endoplasmic reticulum-resident zinc aminopeptidase that plays an important role in the immune system by trimming peptides for loading onto major histocompatibility complex proteins. Here, we report discovery of the first inhibitors selective for ERAP1 over its paralogues ERAP2 and IRAP. Compound 1 (N-(N-(2-(1H-indol-3-yl)ethyl)carbamimidoyl)-2,5-difluorobenzenesulfonamide) and compound 2 (1-(1-(4-acetylpiperazine-1-carbonyl)cyclohexyl)-3-(p-tolyl)urea) are competitive inhibitors of ERAP1 aminopeptidase activity. Compound 3 (4-methoxy-3-(N-(2-(piperidin-1-yl)-5-(trifluoromethyl)phenyl)sulfamoyl)benzoic acid) allosterically activates ERAP1's hydrolysis of fluorogenic and chromogenic amino acid substrates but competitively inhibits its activity toward a nonamer peptide representative of physiological substrates. Compounds 2 and 3 inhibit antigen presentation in a cellular assay. Compound 3 displays higher potency for an ERAP1 variant associated with increased risk of autoimmune disease. These inhibitors provide mechanistic insights into the determinants of specificity for ERAP1, ERAP2, and IRAP and offer a new therapeutic approach of specifically inhibiting ERAP1 activity in vivo.
Collapse
Affiliation(s)
| | | | - Digamber Rane
- Kansas University Specialized Chemistry Center , Lawrence , Kansas 66047 , United States
| | - W Frank An
- Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Shailesh Metkar
- Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Marc Hickey
- Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Samantha Bender
- Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | | | | | - Irini Evnouchidou
- National Centre for Scientific Research Demokritos , Agia Paraskevi, Athens 15341 , Greece
| | - Roger Schilling
- Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos , Agia Paraskevi, Athens 15341 , Greece
| | - Jennifer Golden
- Kansas University Specialized Chemistry Center , Lawrence , Kansas 66047 , United States
| | | |
Collapse
|
25
|
Abstract
Modulating unconventional antigen presentation could treat infections and cancer
Collapse
Affiliation(s)
- Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands.
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
26
|
Wasnik S, Baylink DJ, Leavenworth J, Liu C, Bi H, Tang X. Towards Clinical Translation of CD8 + Regulatory T Cells Restricted by Non-Classical Major Histocompatibility Complex Ib Molecules. Int J Mol Sci 2019; 20:E4829. [PMID: 31569411 PMCID: PMC6801908 DOI: 10.3390/ijms20194829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 11/17/2022] Open
Abstract
In central lymphoid tissues, mature lymphocytes are generated and pathogenic autoreactive lymphocytes are deleted. However, it is currently known that a significant number of potentially pathogenic autoreactive lymphocytes escape the deletion and populate peripheral lymphoid tissues. Therefore, peripheral mechanisms are present to prevent these potentially pathogenic autoreactive lymphocytes from harming one's own tissues. One such mechanism is dictated by regulatory T (Treg) cells. So far, the most extensively studied Treg cells are CD4+Foxp3+ Treg cells. However, recent clinical trials for the treatment of immune-mediated diseases using CD4+ Foxp3+ Treg cells met with limited success. Accordingly, it is necessary to explore the potential importance of other Treg cells such as CD8+ Treg cells. In this regard, one extensively studied CD8+ Treg cell subset is Qa-1(HLA-E in human)-restricted CD8+ Treg cells, in which Qa-1(HLA-E) molecules belong to a group of non-classical major histocompatibility complex Ib molecules. This review will first summarize the evidence for the presence of Qa-1-restricted CD8+ Treg cells and their regulatory mechanisms. Major discussions will then focus on the potential clinical translation of Qa-1-restricted CD8+ Treg cells. At the end, we will briefly discuss the current status of human studies on HLA-E-restricted CD8+ Treg cells as well as potential future directions.
Collapse
Affiliation(s)
- Samiksha Wasnik
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | - David J Baylink
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Jianmei Leavenworth
- Department of Neurosurgery, the University of Alabama at Birmingham, Birmingham, AL 35294, USA.
- Department of Microbiology, the University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Chenfan Liu
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Hongzheng Bi
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Xiaolei Tang
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA.
| |
Collapse
|
27
|
Georgiadis D, Mpakali A, Koumantou D, Stratikos E. Inhibitors of ER Aminopeptidase 1 and 2: From Design to Clinical Application. Curr Med Chem 2019; 26:2715-2729. [PMID: 29446724 DOI: 10.2174/0929867325666180214111849] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/04/2018] [Accepted: 01/31/2018] [Indexed: 12/19/2022]
Abstract
Endoplasmic Reticulum aminopeptidase 1 and 2 are two homologous enzymes that help generate peptide ligands for presentation by Major Histocompatibility Class I molecules. Their enzymatic activity influences the antigenic peptide repertoire and indirectly controls adaptive immune responses. Accumulating evidence suggests that these two enzymes are tractable targets for the regulation of immune responses with possible applications ranging from cancer immunotherapy to treating inflammatory autoimmune diseases. Here, we review the state-of-the-art in the development of inhibitors of ERAP1 and ERAP2 as well as their potential and limitations for clinical applications.
Collapse
Affiliation(s)
- Dimitris Georgiadis
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771, Athens, Greece
| | - Anastasia Mpakali
- National Center for Scientific Research Demokritos, Agia Paraskevi, 15341, Greece
| | - Despoina Koumantou
- National Center for Scientific Research Demokritos, Agia Paraskevi, 15341, Greece
| | - Efstratios Stratikos
- National Center for Scientific Research Demokritos, Agia Paraskevi, 15341, Greece
| |
Collapse
|
28
|
Koumantou D, Barnea E, Martin-Esteban A, Maben Z, Papakyriakou A, Mpakali A, Kokkala P, Pratsinis H, Georgiadis D, Stern LJ, Admon A, Stratikos E. Editing the immunopeptidome of melanoma cells using a potent inhibitor of endoplasmic reticulum aminopeptidase 1 (ERAP1). Cancer Immunol Immunother 2019; 68:1245-1261. [PMID: 31222486 PMCID: PMC6684451 DOI: 10.1007/s00262-019-02358-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/11/2019] [Indexed: 12/19/2022]
Abstract
The efficacy of cancer immunotherapy, including treatment with immune-checkpoint inhibitors, often is limited by ineffective presentation of antigenic peptides that elicit T-cell-mediated anti-tumor cytotoxic responses. Manipulation of antigen presentation pathways is an emerging approach for enhancing the immunogenicity of tumors in immunotherapy settings. ER aminopeptidase 1 (ERAP1) is an intracellular enzyme that trims peptides as part of the system that generates peptides for binding to MHC class I molecules (MHC-I). We hypothesized that pharmacological inhibition of ERAP1 in cells could regulate the cellular immunopeptidome. To test this hypothesis, we treated A375 melanoma cells with a recently developed potent ERAP1 inhibitor and analyzed the presented MHC-I peptide repertoire by isolating MHC-I, eluting bound peptides, and identifying them using capillary chromatography and tandem mass spectrometry (LC-MS/MS). Although the inhibitor did not reduce cell-surface MHC-I expression, it induced qualitative and quantitative changes in the presented peptidomes. Specifically, inhibitor treatment altered presentation of about half of the total 3204 identified peptides, including about one third of the peptides predicted to bind tightly to MHC-I. Inhibitor treatment altered the length distribution of eluted peptides without change in the basic binding motifs. Surprisingly, inhibitor treatment enhanced the average predicted MHC-I binding affinity, by reducing presentation of sub-optimal long peptides and increasing presentation of many high-affinity 9-12mers, suggesting that baseline ERAP1 activity in this cell line is destructive for many potential epitopes. Our results suggest that chemical inhibition of ERAP1 may be a viable approach for manipulating the immunopeptidome of cancer.
Collapse
MESH Headings
- Aminopeptidases/antagonists & inhibitors
- Aminopeptidases/metabolism
- Antigen Presentation
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Antineoplastic Agents/pharmacology
- Cancer Vaccines/immunology
- Cell Line, Tumor
- Cytotoxicity, Immunologic
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- HLA Antigens/metabolism
- Histocompatibility Antigens Class I/metabolism
- Humans
- Immunogenicity, Vaccine
- Immunotherapy/methods
- Lymphocyte Activation
- Melanoma/drug therapy
- Minor Histocompatibility Antigens/metabolism
- Molecular Targeted Therapy
- Peptides/genetics
- Peptides/immunology
- Peptides/metabolism
- Protease Inhibitors/pharmacology
- Protein Binding
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Despoina Koumantou
- National Centre for Scientific Research Demokritos, Patriarchou Gregoriou and Neapoleos 27, Agia Paraskevi, 15341, Athens, Greece
| | - Eilon Barnea
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Adrian Martin-Esteban
- Centro de Biologia Molecular Severo Ochoa (Consejo Superior de Investigaciones Cientificas, Universidad Autonoma), Madrid, Spain
| | - Zachary Maben
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Athanasios Papakyriakou
- National Centre for Scientific Research Demokritos, Patriarchou Gregoriou and Neapoleos 27, Agia Paraskevi, 15341, Athens, Greece
| | - Anastasia Mpakali
- National Centre for Scientific Research Demokritos, Patriarchou Gregoriou and Neapoleos 27, Agia Paraskevi, 15341, Athens, Greece
| | - Paraskevi Kokkala
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Harris Pratsinis
- National Centre for Scientific Research Demokritos, Patriarchou Gregoriou and Neapoleos 27, Agia Paraskevi, 15341, Athens, Greece
| | - Dimitris Georgiadis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Lawrence J Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Arie Admon
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos, Patriarchou Gregoriou and Neapoleos 27, Agia Paraskevi, 15341, Athens, Greece.
| |
Collapse
|
29
|
ERAP1 promotes Hedgehog-dependent tumorigenesis by controlling USP47-mediated degradation of βTrCP. Nat Commun 2019; 10:3304. [PMID: 31341163 PMCID: PMC6656771 DOI: 10.1038/s41467-019-11093-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
The Hedgehog (Hh) pathway is essential for embryonic development and tissue homeostasis. Aberrant Hh signaling may occur in a wide range of human cancers, such as medulloblastoma, the most common brain malignancy in childhood. Here, we identify endoplasmic reticulum aminopeptidase 1 (ERAP1), a key regulator of innate and adaptive antitumor immune responses, as a previously unknown player in the Hh signaling pathway. We demonstrate that ERAP1 binds the deubiquitylase enzyme USP47, displaces the USP47-associated βTrCP, the substrate-receptor subunit of the SCFβTrCP ubiquitin ligase, and promotes βTrCP degradation. These events result in the modulation of Gli transcription factors, the final effectors of the Hh pathway, and the enhancement of Hh activity. Remarkably, genetic or pharmacological inhibition of ERAP1 suppresses Hh-dependent tumor growth in vitro and in vivo. Our findings unveil an unexpected role for ERAP1 in cancer and indicate ERAP1 as a promising therapeutic target for Hh-driven tumors. ERAP1 is an endoplasmic reticulum aminopeptidase that trims MHC Class-I peptides for antigen presentation. Here, the authors show that ERAP1 enhances Hedgehog signalling by sequestering USP47 from βTrCP and promoting tumorigenesis through βTrCP degradation and increased Gli protein stability.
Collapse
|
30
|
Evnouchidou I, van Endert P. Peptide trimming by endoplasmic reticulum aminopeptidases: Role of MHC class I binding and ERAP dimerization. Hum Immunol 2019; 80:290-295. [DOI: 10.1016/j.humimm.2019.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 12/27/2022]
|
31
|
Pump WC, Kraemer T, Huyton T, Hò GGT, Blasczyk R, Bade-Doeding C. Between Innate and Adaptive Immune Responses: NKG2A, NKG2C, and CD8⁺ T Cell Recognition of HLA-E Restricted Self-Peptides Acquired in the Absence of HLA-Ia. Int J Mol Sci 2019; 20:E1454. [PMID: 30909402 PMCID: PMC6471057 DOI: 10.3390/ijms20061454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
On healthy cells the non-classical HLA class Ib molecule HLA-E displays the cognate ligand for the NK cell receptor NKG2A/CD94 when bound to HLA class I signal peptide sequences. In a pathogenic situation when HLA class I is absent, HLA-E is bound to a diverse set of peptides and enables the stimulatory NKG2C/CD94 receptor to bind. The activation of CD8⁺ T cells by certain p:HLA-E complexes illustrates the dual role of this low polymorphic HLA molecule in innate and adaptive immunity. Recent studies revealed a shift in the HLA-E peptide repertoire in cells with defects in the peptide loading complex machinery. We recently showed that HLA-E presents a highly diverse set of peptides in the absence of HLA class Ia and revealed a non-protective feature against NK cell cytotoxicity mediated by these peptides. In the present study we have evaluated the molecular basis for the impaired NK cell inhibition by these peptides and determined the cell surface stability of individual p:HLA-E complexes and their binding efficiency to soluble NKG2A/CD94 or NKG2C/CD94 receptors. Additionally, we analyzed the recognition of these p:HLA-E epitopes by CD8⁺ T cells. We show that non-canonical peptides provide stable cell surface expression of HLA-E, and these p:HLA-E complexes still bind to NKG2/CD94 receptors in a peptide-restricted fashion. Furthermore, individual p:HLA-E complexes elicit activation of CD8⁺ T cells with an effector memory phenotype. These novel HLA-E epitopes provide new implications for therapies targeting cells with abnormal HLA class I expression.
Collapse
Affiliation(s)
- Wiebke C Pump
- Institute for Transfusion Medicine, Hannover Medical School, Medical Park, Feodor-Lynen-Str. 5, 30625 Hannover, Germany.
| | - Thomas Kraemer
- Institute for Transfusion Medicine, Hannover Medical School, Medical Park, Feodor-Lynen-Str. 5, 30625 Hannover, Germany.
| | - Trevor Huyton
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Gia-Gia T Hò
- Institute for Transfusion Medicine, Hannover Medical School, Medical Park, Feodor-Lynen-Str. 5, 30625 Hannover, Germany.
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Medical Park, Feodor-Lynen-Str. 5, 30625 Hannover, Germany.
| | - Christina Bade-Doeding
- Institute for Transfusion Medicine, Hannover Medical School, Medical Park, Feodor-Lynen-Str. 5, 30625 Hannover, Germany.
| |
Collapse
|
32
|
Calvo Tardón M, Allard M, Dutoit V, Dietrich PY, Walker PR. Peptides as cancer vaccines. Curr Opin Pharmacol 2019; 47:20-26. [PMID: 30831470 DOI: 10.1016/j.coph.2019.01.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/30/2022]
Abstract
Cancer vaccines based on synthetic peptides are a safe, well-tolerated immunotherapy able to specifically stimulate tumor-reactive T cells. However, their clinical efficacy does not approach that achieved with other immunotherapies such as immune checkpoint blockade. Nevertheless, major advances have been made in selecting tumor antigens to target, identifying epitopes binding to classical and non-classical HLA molecules, and incorporating these into optimal sized peptides for formulation into a vaccine. Limited potency of currently used adjuvants and the immunosuppressive tumor microenvironment are now understood to be major impediments to vaccine efficacy that need to be overcome. Rationally designed combination therapies are now being tested and should ultimately enable peptide vaccination to be added to immuno-oncology treatment options.
Collapse
Affiliation(s)
- Marta Calvo Tardón
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Mathilde Allard
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Valérie Dutoit
- Center for Translational Research in Onco-Hematology, Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Pierre-Yves Dietrich
- Center for Translational Research in Onco-Hematology, Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Paul R Walker
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.
| |
Collapse
|
33
|
Wang X, Piersma SJ, Nelson CA, Dai YN, Christensen T, Lazear E, Yang L, Sluijter M, van Hall T, Hansen TH, Yokoyama WM, Fremont DH. A herpesvirus encoded Qa-1 mimic inhibits natural killer cell cytotoxicity through CD94/NKG2A receptor engagement. eLife 2018; 7:38667. [PMID: 30575523 PMCID: PMC6320069 DOI: 10.7554/elife.38667] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/20/2018] [Indexed: 11/13/2022] Open
Abstract
A recurrent theme in viral immune evasion is the sabotage of MHC-I antigen presentation, which brings virus the concomitant issue of ‘missing-self’ recognition by NK cells that use inhibitory receptors to detect surface MHC-I proteins. Here, we report that rodent herpesvirus Peru (RHVP) encodes a Qa-1 like protein (pQa-1) via RNA splicing to counteract NK activation. While pQa-1 surface expression is stabilized by the same canonical peptides presented by murine Qa-1, pQa-1 is GPI-anchored and resistant to the activity of RHVP pK3, a ubiquitin ligase that targets MHC-I for degradation. pQa-1 tetramer staining indicates that it recognizes CD94/NKG2A receptors. Consistently, pQa-1 selectively inhibits NKG2A+ NK cells and expression of pQa-1 can protect tumor cells from NK control in vivo. Collectively, these findings reveal an innovative NK evasion strategy wherein RHVP encodes a modified Qa-1 mimic refractory to MHC-I sabotage and capable of specifically engaging inhibitory receptors to circumvent NK activation.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Sytse J Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Christopher A Nelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Ya-Nan Dai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Ted Christensen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Eric Lazear
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Liping Yang
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Marjolein Sluijter
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Ted H Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Wayne M Yokoyama
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States.,Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States.,Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
34
|
Lim YW, Chen-Harris H, Mayba O, Lianoglou S, Wuster A, Bhangale T, Khan Z, Mariathasan S, Daemen A, Reeder J, Haverty PM, Forrest WF, Brauer M, Mellman I, Albert ML. Germline genetic polymorphisms influence tumor gene expression and immune cell infiltration. Proc Natl Acad Sci U S A 2018; 115:E11701-E11710. [PMID: 30463956 PMCID: PMC6294879 DOI: 10.1073/pnas.1804506115] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cancer immunotherapy has emerged as an effective therapy in a variety of cancers. However, a key challenge in the field is that only a subset of patients who receive immunotherapy exhibit durable response. It has been hypothesized that host genetics influences the inherent immune profiles of patients and may underlie their differential response to immunotherapy. Herein, we systematically determined the association of common germline genetic variants with gene expression and immune cell infiltration of the tumor. We identified 64,094 expression quantitative trait loci (eQTLs) that associated with 18,210 genes (eGenes) across 24 human cancers. Overall, eGenes were enriched for their being involved in immune processes, suggesting that expression of immune genes can be shaped by hereditary genetic variants. We identified the endoplasmic reticulum aminopeptidase 2 (ERAP2) gene as a pan-cancer type eGene whose expression levels stratified overall survival in a subset of patients with bladder cancer receiving anti-PD-L1 (atezolizumab) therapy. Finally, we identified 103 gene signature QTLs (gsQTLs) that were associated with predicted immune cell abundance within the tumor microenvironment. Our findings highlight the impact of germline SNPs on cancer-immune phenotypes and response to therapy; and these analyses provide a resource for integration of germline genetics as a component of personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Yoong Wearn Lim
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080
| | - Haiyin Chen-Harris
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080
| | - Oleg Mayba
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080
| | - Steve Lianoglou
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080
| | - Arthur Wuster
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080
- Department of Human Genetics, Genentech, South San Francisco, CA 94080
| | - Tushar Bhangale
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080
- Department of Human Genetics, Genentech, South San Francisco, CA 94080
| | - Zia Khan
- Department of Human Genetics, Genentech, South San Francisco, CA 94080
| | | | - Anneleen Daemen
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080
| | - Jens Reeder
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080
| | - Peter M Haverty
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080
| | - William F Forrest
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080
| | - Matthew Brauer
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080
| | - Ira Mellman
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080
| | - Matthew L Albert
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080;
| |
Collapse
|
35
|
Zhang J, Yang SJ, Gonzalez F, Yang J, Zhang Y, He M, Shastri N, Murthy N. A peptide-based fluorescent probe images ERAAP activity in cells and in high throughput assays. Chem Commun (Camb) 2018; 54:7215-7218. [PMID: 29897370 DOI: 10.1039/c7cc09598h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ERAAP is an intracellular amino-peptidase that plays a central role in determining the repertoire of peptides displayed by cells by MHC class I molecules, and dysfunctions in ERAAP are linked to a variety of diseases. There is therefore great interest in developing probes that can image ERAAP in cells. In this report we present a fluorescent probe, termed Ep, that can image ERAAP activity in live cells. Ep is composed of a 10 amino acid ERAAP substrate that has a donor quencher pair conjugated to it, composed of BODIPY and dinitro-toluene. Ep undergoes a 20-fold increase in fluorescence after ERAAP cleavage, and was able to image ERAAP activity in cell culture via fluorescence microscopy. In addition, we used Ep to develop a high throughput screen for ERAAP inhibitors, and screened an electrophile library containing 1460 compounds. From this Ep based screen we identified aromatic alkyne-ketone as a lead fragment that can irreversibly inhibit ERAAP activity. We anticipate numerous applications of Ep given its unique ability to image ERAAP within cells.
Collapse
Affiliation(s)
- Jingtuo Zhang
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Marijt KA, Doorduijn EM, van Hall T. TEIPP antigens for T-cell based immunotherapy of immune-edited HLA class I low cancers. Mol Immunol 2018; 113:43-49. [PMID: 29627136 DOI: 10.1016/j.molimm.2018.03.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/11/2018] [Accepted: 03/29/2018] [Indexed: 12/30/2022]
Abstract
T-cell based immunotherapies through checkpoint blockade or adoptive transfer are effective treatments for a wide range of cancers like melanomas and lung carcinomas that harbor a high mutational load. The HLA class I and class II (HLA-I and HLA-II) presented neoantigens arise from genetic mutations in the cancerous cells and are ideal non-self targets for the T cell-based treatments. Although some cancer patients responded with complete regression, many others are irresponsive to checkpoint blockade treatments, or relapse after initial success. One of the mechanisms by which tumors evade T cell recognition is by acquiring deficiencies in the HLA-I antigen-processing pathway, leading to downregulation of HLA-I molecules at the cell surface and thereby creating an 'invisible' tumor phenotype. Interestingly, an alternative antigen repertoire arises on these HLA-Ilow cancer cells. We refer to this alternative antigen repertoire as TEIPP: T cell epitopes associated with impaired peptide processing. TEIPP antigens are curious non-mutated peptides from housekeeping proteins that are not presented in homeostasis. In this review, for the first time we recapitulate all our published work on TEIPP antigens, including our recent understanding of the CD8 T cell repertoire. We are convinced that TEIPP-directed T cells will be valuable resources to target immune-edited tumors that have acquired resistance to checkpoint blockade therapy.
Collapse
Affiliation(s)
- Koen A Marijt
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Elien M Doorduijn
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
| |
Collapse
|
37
|
Doorduijn EM, Sluijter M, Querido BJ, Seidel UJE, Oliveira CC, van der Burg SH, van Hall T. T Cells Engaging the Conserved MHC Class Ib Molecule Qa-1 b with TAP-Independent Peptides Are Semi-Invariant Lymphocytes. Front Immunol 2018; 9:60. [PMID: 29422902 PMCID: PMC5788890 DOI: 10.3389/fimmu.2018.00060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
The HLA-E homolog in the mouse (Qa-1b) is a conserved MHC class Ib molecule presenting monomorphic peptides to germline-encoded natural killer receptor CD94/NKG2A. Previously, we demonstrated the replacement of this canonical peptide by a diverse peptidome upon deficiency of the TAP peptide transporter. Analysis of this Qa-1b-restricted T cell repertoire against these non-mutated neoantigens revealed characteristics of conventional hypervariable CD8+ T cells, but also of invariant T cell receptor (TCR)αβ T cells. A shared TCR Vα chain was used by this subset in combination with a variety of Vβ chains. The TCRs target peptide ligands that are conserved between mouse and man, like the identified peptide derived from the transcriptional cofactor Med15. The thymus selection was studied in a TCR-transgenic mouse and emerging naïve CD8+ T cells displayed a slightly activated phenotype, as witnessed by higher CD122 and Ly6C expression. Moreover, the Qa-1b protein was dispensable for thymus selection. Importantly, no self-reactivity was observed as reported for other MHC class Ib-restricted subsets. Naïve Qa-1b restricted T cells expanded, contracted, and formed memory cells in vivo upon peptide vaccination in a similar manner as conventional CD8+ T cells. Based on these data, the Qa-1b restricted T cell subset might be positioned closest to conventional CD8+ T cells of all MHC class Ib populations.
Collapse
Affiliation(s)
- Elien M Doorduijn
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Marjolein Sluijter
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Bianca J Querido
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Ursula J E Seidel
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Claudia C Oliveira
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| |
Collapse
|
38
|
Xu Y, Wasnik S, Baylink DJ, Berumen EC, Tang X. Overlapping Peptide Library to Map Qa-1 Epitopes in a Protein. J Vis Exp 2017. [PMID: 29286392 DOI: 10.3791/56401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Qa-1 (HLA-E in human) belongs to a group of non-classical major histocompatibility complex 1b (MHC-Ib) molecules. Recent data suggest that Qa-1 molecules play important roles in surveying cells for structural and functional integrity, inducing immune regulation, and limiting immune responses to viral infections. Additionally, functional augmentation of Qa-1-restricted CD8+ T cells through epitope immunization has shown therapeutic effects in several autoimmune disease animal models, e.g. experimental allergic encephalomyelitis, collagen-induced arthritis, and non-obese diabetes. Therefore, there is an urgent need for a method that can efficiently and quickly identify functional Qa-1 epitopes in a protein. Here, we describe a protocol that utilizes Qa-1-restricted CD8+ T cell lines specific for an overlapping peptide (OLP) library for determining Qa-1 epitopes in a protein. This OLP library contains 15-mer overlapping peptides that cover the whole length of a protein, and adjacent peptides overlap by 11 amino acids. Using this protocol, we recently identified a 9-mer Qa-1 epitope in myelin oligodendrocyte glycoprotein (MOG). This newly mapped MOG Qa-1 epitope was shown to induce epitope-specific, Qa-1-restricted CD8+ T cells that enhanced myelin-specific immune regulation. Therefore, this protocol is useful for future investigation of novel targets and functions of Qa-1-restricted CD8+ T cells.
Collapse
Affiliation(s)
- Yi Xu
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University
| | - Samiksha Wasnik
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University
| | - David J Baylink
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University
| | | | - Xiaolei Tang
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University;
| |
Collapse
|
39
|
Bianchi F, Textor J, van den Bogaart G. Transmembrane Helices Are an Overlooked Source of Major Histocompatibility Complex Class I Epitopes. Front Immunol 2017; 8:1118. [PMID: 28959259 PMCID: PMC5604083 DOI: 10.3389/fimmu.2017.01118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/25/2017] [Indexed: 11/13/2022] Open
Abstract
About a fourth of the human proteome is anchored by transmembrane helices (TMHs) to lipid membranes. TMHs require multiple hydrophobic residues for spanning membranes, and this shows a striking resemblance with the requirements for peptide binding to major histocompatibility complex (MHC) class I. It, therefore, comes as no surprise that bioinformatics analysis predicts an over-representation of TMHs among strong MHC class I (MHC-I) binders. Published peptide elution studies confirm that TMHs are indeed presented by MHC-I. This raises the question how membrane proteins are processed for MHC-I (cross-)presentation, with current research focusing on soluble antigens. The presentation of membrane-buried peptides is likely important in health and disease, as TMHs are considerably conserved and their presentation might prevent escape mutations by pathogens. Therefore, it could contribute to the disease correlations described for many human leukocyte antigen haplotypes.
Collapse
Affiliation(s)
- Frans Bianchi
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johannes Textor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
40
|
McMichael AJ, Picker LJ. Unusual antigen presentation offers new insight into HIV vaccine design. Curr Opin Immunol 2017; 46:75-81. [PMID: 28505602 DOI: 10.1016/j.coi.2017.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/21/2017] [Accepted: 04/17/2017] [Indexed: 11/29/2022]
Abstract
Recent findings with a rhesus monkey cytomegalovirus based simian immunodeficiency virus vaccine have identified strong CD8+ T cell responses that are restricted by MHC-E. Also mycobacteria specific CD8+ T cells, that are MHC-E restricted, have been identified. MHC-E therefore can present a wide range of epitope peptides to CD8+ T cells, alongside its well defined role in presenting a conserved MHC-class I signal peptide to the NKG2A/C-CD94 receptor on natural killer cells. Here we explore the antigen processing pathways involved in these atypical T cell responses.
Collapse
Affiliation(s)
- Andrew J McMichael
- Nuffield Deparment of Medicine, Oxford University, Old Road Campus, Oxford OX37FZ, UK.
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006-3448, United States
| |
Collapse
|
41
|
Guan J, Yang SJ, Gonzalez F, Yin Y, Shastri N. Antigen Processing in the Endoplasmic Reticulum Is Monitored by Semi-Invariant αβ TCRs Specific for a Conserved Peptide-Qa-1 b MHC Class Ib Ligand. THE JOURNAL OF IMMUNOLOGY 2017; 198:2017-2027. [PMID: 28108559 DOI: 10.4049/jimmunol.1600764] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 12/19/2016] [Indexed: 12/11/2022]
Abstract
Ag processing in the endoplasmic reticulum (ER) by the ER aminopeptidase associated with Ag processing (ERAAP) is central to presentation of a normal peptide-MHC class I (MHC I) repertoire. Alternations in ERAAP function cause dramatic changes in the MHC I-presented peptides, which elicit potent immune responses. An unusual subset of CD8+ T cells monitor normal Ag processing by responding to a highly conserved FL9 peptide that is presented by Qa-1b, a nonclassical MHC Ib molecule (QFL) in ERAAP-deficient cells. To understand the structural basis for recognition of the conserved ligand, we analyzed the αβ TCRs of QFL-specific T cells. Individual cells in normal wild-type and TCRβ-transgenic mice were assessed for QFL-specific TCR α- and β-chains. The QFL-specific cells expressed a predominant semi-invariant TCR generated by DNA rearrangement of TRAV9d-3-TRAJ21 α-chain and TRBV5-TRBD1-TRBJ2-7 β-chain gene segments. Furthermore, the CDR3 regions of the α- as well as β-chains were required for QFL ligand recognition. Thus, the αβ TCRs used to recognize the peptide-Qa-1 ligand presented by ERAAP-deficient cells are semi-invariant and likely reflect a conserved mechanism for monitoring the fidelity of Ag processing in the ER.
Collapse
Affiliation(s)
- Jian Guan
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, People's Republic of China; and.,Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Soo Jung Yang
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Federico Gonzalez
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, People's Republic of China; and
| | - Nilabh Shastri
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
42
|
Long X, Cheng Q, Liang H, Zhao J, Wang J, Wang W, Tomlinson S, Chen L, Atkinson C, Zhang B, Chen X, Zhu P. Memory CD4 + T cells are suppressed by CD8 + regulatory T cells in vitro and in vivo. Am J Transl Res 2017; 9:63-78. [PMID: 28123634 PMCID: PMC5250704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 12/29/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Acute graft rejection mediated by alloreactive memory CD4+ T cells is a major obstacle to transplantation tolerance. It has been reported that CD8+ T regulatory cells (Tregs) have the ability to induce graft tolerance by restraining the function of activated CD4+ T cells, but not including memory T cells. The aim of this study is to elucidate the effect of CD8+ Tregs on alloreactive memory CD4+ T cells. METHODS We detected Qa-1 expression and performed proliferative assay on memory CD4+ T cells. All memory CD4+ T cells were purified from mice receiving skin allografts. We performed inhibitory and cytotoxic assays on CD8+ Tregs, which were isolated from a T cell vaccination mouse model, and IL-2, IL-4, IL-10 and IFN-γ levels were measured in co-culture supernatants by ELISA. To confirm CD8+ Tregs inhibition of memory CD4+ T cells in-vivo, we utilized a murine model of cardiac allograft transplantation. RESULTS Memory CD4+ T cells mediated acute allograft rejection, and CD8+ Tregs suppressed the proliferation of memory CD4+ T cells. In vitro, memory CD4+ T cells were inhibited and lysed by CD8+ Tregs. There was a positive correlation between IFN-γ levels, and cell lysis rate induced by CD8+ Tregs. In-vivo studies demonstrated CD8+ Tregs prolonged graft survival times, by inhibiting CD4+ memory T cells, through a Qa-1-peptide-TCR pathway. CONCLUSIONS CD8+ Tregs inhibit CD4+ memory T cell-mediated acute murine cardiac allograft rejection, and further prolong graft survival times. These results provide new insights into immune regulation of organ rejection.
Collapse
Affiliation(s)
- Xin Long
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Qi Cheng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Jianping Zhao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Jian Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Wei Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South CarolinaCharleston, SC 29466, USA
| | - Lin Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Carl Atkinson
- Department of Microbiology and Immunology, Medical University of South CarolinaCharleston, SC 29466, USA
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Peng Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| |
Collapse
|
43
|
Anderson CK, Brossay L. The role of MHC class Ib-restricted T cells during infection. Immunogenetics 2016; 68:677-91. [PMID: 27368413 DOI: 10.1007/s00251-016-0932-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/22/2016] [Indexed: 01/02/2023]
Abstract
Even though major histocompatibility complex (MHC) class Ia and many Ib molecules have similarities in structure, MHC class Ib molecules tend to have more specialized functions, which include the presentation of non-peptidic antigens to non-classical T cells. Likewise, non-classical T cells also have unique characteristics, including an innate-like phenotype in naïve animals and rapid effector functions. In this review, we discuss the role of MAIT and NKT cells during infection but also the contribution of less studied MHC class Ib-restricted T cells such as Qa-1-, Qa-2-, and M3-restricted T cells. We focus on describing the types of antigens presented to non-classical T cells, their response and cytokine profile following infection, as well as the overall impact of these T cells to the immune system.
Collapse
Affiliation(s)
- Courtney K Anderson
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Box G-B618, Providence, RI, 02912, USA
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Box G-B618, Providence, RI, 02912, USA.
| |
Collapse
|
44
|
Nagarajan NA, de Verteuil DA, Sriranganadane D, Yahyaoui W, Thibault P, Perreault C, Shastri N. ERAAP Shapes the Peptidome Associated with Classical and Nonclassical MHC Class I Molecules. THE JOURNAL OF IMMUNOLOGY 2016; 197:1035-43. [PMID: 27371725 DOI: 10.4049/jimmunol.1500654] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 04/19/2016] [Indexed: 11/19/2022]
Abstract
The peptide repertoire presented by classical as well as nonclassical MHC class I (MHC I) molecules is altered in the absence of the endoplasmic reticulum aminopeptidase associated with Ag processing (ERAAP). To characterize the extent of these changes, peptides from cells lacking ERAAP were eluted from the cell surface and analyzed by high-throughput mass spectrometry. We found that most peptides found in wild-type (WT) cells were retained in the absence of ERAAP. In contrast, a subset of "ERAAP-edited" peptides was lost in WT cells, and ERAAP-deficient cells presented a unique "unedited" repertoire. A substantial fraction of MHC-associated peptides from ERAAP-deficient cells contained N-terminal extensions and had a different molecular composition than did those from WT cells. We found that the number and immunogenicity of peptides associated with nonclassical MHC I was increased in the absence of ERAAP. Conversely, only peptides presented by classical MHC I were immunogenic in ERAAP-sufficient cells. Finally, MHC I peptides were also derived from different intracellular sources in ERAAP-deficient cells.
Collapse
Affiliation(s)
- Niranjana A Nagarajan
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720; and
| | - Danielle A de Verteuil
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Dev Sriranganadane
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Wafaa Yahyaoui
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Nilabh Shastri
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720; and
| |
Collapse
|
45
|
Sasaki T, Kanaseki T, Shionoya Y, Tokita S, Miyamoto S, Saka E, Kochin V, Takasawa A, Hirohashi Y, Tamura Y, Miyazaki A, Torigoe T, Hiratsuka H, Sato N. Microenvironmental stresses induce HLA-E/Qa-1 surface expression and thereby reduce CD8(+) T-cell recognition of stressed cells. Eur J Immunol 2016; 46:929-40. [PMID: 26711740 DOI: 10.1002/eji.201545835] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 11/29/2015] [Accepted: 12/23/2015] [Indexed: 02/04/2023]
Abstract
Hypoxia and glucose deprivation are often observed in the microenvironment surrounding solid tumors in vivo. However, how they interfere with MHC class I antigen processing and CD8(+) T-cell responses remains unclear. In this study, we analyzed the production of antigenic peptides presented by classical MHC class I in mice, and showed that it is quantitatively decreased in the cells exposed to either hypoxia or glucose deprivation. In addition, we unexpectedly found increased surface expression of HLA-E in human and Qa-1 in mouse tumor cells exposed to combined oxygen and glucose deprivation. The induced Qa-1 on the stressed tumor model interacted with an inhibitory NKG2/CD94 receptor on activated CD8(+) T cells and attenuated their specific response to the antigen. Our results thus suggest that microenvironmental stresses modulate not only classical but also nonclassical MHC class I presentation, and confer the stressed cells the capability to escape from the CD8(+) T-cell recognition.
Collapse
Affiliation(s)
- Takanori Sasaki
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
- Department of Oral Surgery, Sapporo Medical University, Sapporo, Japan
| | | | - Yosuke Shionoya
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
- Department of Respiratory Medicine and Allergology, Sapporo Medical University, Sapporo, Japan
| | - Serina Tokita
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Sho Miyamoto
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
- Department of Oral Surgery, Sapporo Medical University, Sapporo, Japan
| | - Eri Saka
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Vitaly Kochin
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Akira Takasawa
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | | | - Yasuaki Tamura
- Department of Molecular Therapeutics, Center for Food and Medical Innovation, Hokkaido University, Sapporo, Japan
| | - Akihiro Miyazaki
- Department of Oral Surgery, Sapporo Medical University, Sapporo, Japan
| | | | | | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
46
|
van der Burg SH, Arens R, Ossendorp F, van Hall T, Melief CJM. Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat Rev Cancer 2016; 16:219-33. [PMID: 26965076 DOI: 10.1038/nrc.2016.16] [Citation(s) in RCA: 523] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Therapeutic vaccines preferentially stimulate T cells against tumour-specific epitopes that are created by DNA mutations or oncogenic viruses. In the setting of premalignant disease, carcinoma in situ or minimal residual disease, therapeutic vaccination can be clinically successful as monotherapy; however, in established cancers, therapeutic vaccines will require co-treatments to overcome immune evasion and to become fully effective. In this Review, we discuss the progress that has been made in overcoming immune evasion controlled by tumour cell-intrinsic factors and the tumour microenvironment. We summarize how therapeutic benefit can be maximized in patients with established cancers by improving vaccine design and by using vaccines to increase the effects of standard chemotherapies, to establish and/or maintain tumour-specific T cells that are re-energized by checkpoint blockade and other therapies, and to sustain the antitumour response of adoptively transferred T cells.
Collapse
Affiliation(s)
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | | | - Cornelis J M Melief
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- ISA Pharmaceuticals, J. H. Oortweg 19, 2333 CH, Leiden, The Netherlands
| |
Collapse
|
47
|
Proteolytic enzymes involved in MHC class I antigen processing: A guerrilla army that partners with the proteasome. Mol Immunol 2015; 68:72-6. [DOI: 10.1016/j.molimm.2015.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 04/06/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
|
48
|
Goyos A, Guethlein LA, Horowitz A, Hilton HG, Gleimer M, Brodsky FM, Parham P. A Distinctive Cytoplasmic Tail Contributes to Low Surface Expression and Intracellular Retention of the Patr-AL MHC Class I Molecule. THE JOURNAL OF IMMUNOLOGY 2015; 195:3725-36. [PMID: 26371256 DOI: 10.4049/jimmunol.1500397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/07/2015] [Indexed: 01/24/2023]
Abstract
Chimpanzees have orthologs of the six fixed, functional human MHC class I genes. But, in addition, the chimpanzee has a seventh functional gene, Patr-AL, which is not polymorphic but contributes substantially to population diversity by its presence on only 50% of MHC haplotypes. The ancestral AL gene emerged long before the separation of human and chimpanzee ancestors and then subsequently and specifically lost function during human evolution, but was maintained in chimpanzees. Patr-AL is an alloantigen that participates in negative and positive selection of the T cell repertoire. The three-dimensional structure and the peptide-binding repertoire of Patr-AL and HLA-A*02 are surprisingly similar. In contrast, the expression of these two molecules is very different, as shown using specific mAbs and polyclonal Abs made against Patr-AL. Peripheral blood cells and B cell lines express low levels of Patr-AL at the cell surface. Higher levels are seen for 221-cell transfectants expressing Patr-AL, but in these cells a large majority of Patr-AL molecules are retained in the early compartments of the secretory pathway: mainly the endoplasmic reticulum, but also cis-Golgi. Replacing the cytoplasmic tail of Patr-AL with that of HLA-A*02 increased the cell-surface expression of Patr-AL substantially. Four substitutions distinguish the Patr-AL and HLA-A*02 cytoplasmic tails. Systematic mutagenesis showed that each substitution contributes changes in cell-surface expression. The combination of residues present in Patr-AL appears unique, but each individual residue is present in other primate MHC class I molecules, notably MHC-E, the most ancient of the functional human MHC class I molecules.
Collapse
Affiliation(s)
- Ana Goyos
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305; Stanford Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Lisbeth A Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Amir Horowitz
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305; Stanford Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Hugo G Hilton
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Michael Gleimer
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305; Stanford Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Frances M Brodsky
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143; Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94143; and Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305; Stanford Immunology, Stanford University School of Medicine, Stanford, CA 94305;
| |
Collapse
|
49
|
Oliveira CC, van Hall T. Alternative Antigen Processing for MHC Class I: Multiple Roads Lead to Rome. Front Immunol 2015; 6:298. [PMID: 26097483 PMCID: PMC4457021 DOI: 10.3389/fimmu.2015.00298] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/22/2015] [Indexed: 12/31/2022] Open
Abstract
The well described conventional antigen-processing pathway is accountable for most peptides that end up in MHC class I molecules at the cell surface. These peptides experienced liberation by the proteasome and transport by the peptide transporter TAP. However, there are multiple roads that lead to Rome, illustrated by the increasing number of alternative processing pathways that have been reported during last years. Interestingly, TAP-deficient individuals do not succumb to viral infections, suggesting that CD8 T cell immunity is sufficiently supported by alternative TAP-independent processing pathways. To date, a diversity of viral and endogenous TAP-independent peptides have been identified in the grooves of different MHC class I alleles. Some of these peptides are not displayed by normal TAP-positive cells and we therefore called them TEIPP, for “T-cell epitopes associated with impaired peptide processing.” TEIPPs are hidden self-antigens, are derived from normal housekeeping proteins, and are processed via unconventional processing pathways. Per definition, TEIPPs are presented via TAP-independent pathways, but recent data suggest that part of this repertoire still depend on proteasome and metalloprotease activity. An exception is the C-terminal peptide of the endoplasmic reticulum (ER)-membrane-spanning ceramide synthase Trh4 that is surprisingly liberated by the signal peptide peptidase (SPP), the proteolytic enzyme involved in cleaving leader sequences. The intramembrane cleaving SPP is thereby an important contributor of TAP-independent peptides. Its family members, like the Alzheimer’s related presenilins, might contribute as well, according to our preliminary data. Finally, alternative peptide routing is an emerging field and includes processes like the unfolded protein response, the ER-associated degradation, and autophagy-associated vesicular pathways. These data convince us that there is a world to be discovered in the field of unconventional antigen processing.
Collapse
Affiliation(s)
- Cláudia C Oliveira
- Department of Clinical Oncology, Leiden University Medical Center , Leiden , Netherlands
| | - Thorbald van Hall
- Department of Clinical Oncology, Leiden University Medical Center , Leiden , Netherlands
| |
Collapse
|
50
|
Fruci D, Romania P, D'Alicandro V, Locatelli F. Endoplasmic reticulum aminopeptidase 1 function and its pathogenic role in regulating innate and adaptive immunity in cancer and major histocompatibility complex class I-associated autoimmune diseases. ACTA ACUST UNITED AC 2015; 84:177-86. [PMID: 25066018 DOI: 10.1111/tan.12410] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Major histocompatibility complex (MHC) class I molecules present antigenic peptides on the cell surface to alert natural killer (NK) cells and CD8(+) T cells for the presence of abnormal intracellular events, such as virus infection or malignant transformation. The generation of antigenic peptides is a multistep process that ends with the trimming of N-terminal extensions in the endoplasmic reticulum (ER) by aminopeptidases ERAP1 and ERAP2. Recent studies have highlighted the potential role of ERAP1 in reprogramming the immunogenicity of tumor cells in order to elicit innate and adaptive antitumor immune responses, and in conferring susceptibility to autoimmune diseases in predisposed individuals. In this review, we will provide an overview of the current knowledge about the role of ERAP1 in MHC class I antigen processing and how its manipulation may constitute a promising tool for cancer immunotherapy and treatment of MHC class I-associated autoimmune diseases.
Collapse
Affiliation(s)
- D Fruci
- Paediatric Haematology/Oncology Department, IRCCS, Ospedale Pediatrico Bambino Gesù, 00165, Rome, Italy
| | | | | | | |
Collapse
|