1
|
Savelieva O, Karunas A, Prokopenko I, Balkhiyarova Z, Gilyazova I, Khidiyatova I, Khusnutdinova E. Evaluation of Polygenic Risk Score for Prediction of Childhood Onset and Severity of Asthma. Int J Mol Sci 2024; 26:103. [PMID: 39795959 PMCID: PMC11719589 DOI: 10.3390/ijms26010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Asthma is a common complex disease with susceptibility defined through an interplay of genetic and environmental factors. Responsiveness to asthma treatment varies between individuals and is largely determined by genetic variability. The polygenic score (PGS) approach enables an individual risk of asthma and respective response to drug therapy. PGS models could help to predict the individual risk of asthma using 26 SNPs of drug pathway genes involved in the metabolism of glucocorticosteroids (GCS), and beta-2-agonists, antihistamines, and antileukotriene drugs associated with the response to asthma treatment within GWAS were built. For PGS, summary statistics from the Trans-National Asthma Genetic Consortium GWAS meta-analysis, and genotype data for 882 individuals with asthma/controls from the Volga-Ural region, were used. The study group was comprised of Russian, Tatar, Bashkir, and mixed ethnicity individuals with asthma (N = 378) aged 2-18 years. and individuals without features of atopic disease (N = 504) aged 4-67 years from the Volga-Ural region. The DNA samples for the study were collected from 2000 to 2021. The drug pathway genes' PGS revealed a higher odds for childhood asthma risk (p = 2.41 × 10-12). The receiver operating characteristic (ROC) analysis showed an Area Under the Curve, AUC = 0.63. The AUC of average significance for moderate-to-severe and severe asthma was observed (p = 5.7 × 10-9, AUC = 0.64). Asthma drug response pathway gene variant PGS models may contribute to the development of modern approaches to optimise asthma diagnostics and treatment.
Collapse
Affiliation(s)
- Olga Savelieva
- Institute of Biochemistry and Genetics, Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia; (O.S.)
- Laboratory of Genomic and Postgenomic Technologies, Federal State Budgetary Educational Institution of Higher Education, Ufa University of Science and Technology, 450076 Ufa, Russia
- Faculty of Biology, Federal State Budgetary Educational Institution of Higher Education “Saint-Petersburg State University”, 199034 St. Petersburg, Russia
| | - Alexandra Karunas
- Institute of Biochemistry and Genetics, Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia; (O.S.)
- Laboratory of Genomic and Postgenomic Technologies, Federal State Budgetary Educational Institution of Higher Education, Ufa University of Science and Technology, 450076 Ufa, Russia
- Department of Medical Genetics and Fundamental Medicine, Federal State Budgetary Educational Institution of Higher Education, Bashkir State Medical University, Russian Ministry of Health, 450008 Ufa, Russia
| | - Inga Prokopenko
- Department of Clinical & Experimental Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Zhanna Balkhiyarova
- Department of Clinical & Experimental Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Irina Gilyazova
- Institute of Biochemistry and Genetics, Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia; (O.S.)
- Department of Medical Genetics and Fundamental Medicine, Federal State Budgetary Educational Institution of Higher Education, Bashkir State Medical University, Russian Ministry of Health, 450008 Ufa, Russia
| | - Irina Khidiyatova
- Institute of Biochemistry and Genetics, Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia; (O.S.)
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia; (O.S.)
- Laboratory of Genomic and Postgenomic Technologies, Federal State Budgetary Educational Institution of Higher Education, Ufa University of Science and Technology, 450076 Ufa, Russia
- Faculty of Biology, Federal State Budgetary Educational Institution of Higher Education “Saint-Petersburg State University”, 199034 St. Petersburg, Russia
- Department of Medical Genetics and Fundamental Medicine, Federal State Budgetary Educational Institution of Higher Education, Bashkir State Medical University, Russian Ministry of Health, 450008 Ufa, Russia
| |
Collapse
|
2
|
Xia B, Chen H, Taleb SJ, Xi X, Shaheen N, Baoyinna B, Soni S, Mebratu YA, Yount JS, Zhao J, Zhao Y. FBXL19 in endothelial cells protects the heart from influenza A infection by enhancing antiviral immunity and reducing cellular senescence programs. Am J Physiol Heart Circ Physiol 2024; 327:H937-H946. [PMID: 39150394 PMCID: PMC11482256 DOI: 10.1152/ajpheart.00371.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/25/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
Influenza A virus (IAV) infection while primarily affecting the lungs, is often associated with cardiovascular complications. However, the mechanisms underlying this association are not fully understood. Here, we investigated the potential role of FBXL19, a member of the Skp1-Cullin-1-F-box family of E3 ubiquitin ligase, in IAV-induced cardiac inflammation. We demonstrated that FBXL19 overexpression in endothelial cells (ECs) reduced viral titers and IAV matrix protein 1 (M1) levels while increasing antiviral gene expression, including interferon (IFN)-α, -β, and -γ and RANTES (regulated on activation normal T cell expressed and secreted) in the cardiac tissue of IAV-infected mice. Moreover, EC-specific overexpression of FBXL19 attenuated the IAV infection-reduced interferon regulatory factor 3 (IRF3) level without altering its mRNA level and suppressed cardiac inflammation. Furthermore, IAV infection triggered cellular senescence programs in the heart as indicated by the upregulation of p16 and p21 mRNA levels and the downregulation of lamin-B1 levels, which were partially reversed by FBXL19 overexpression in ECs. Our findings indicate that EC-specific overexpression of FBXL19 protects against IAV-induced cardiac damage by enhancing interferon-mediated antiviral signaling, reducing cardiac inflammation, and suppressing cellular senescence programs.NEW & NOTEWORTHY Our study reveals a novel facet of IAV infection, demonstrating that it can trigger cellular senescence within the heart. Intriguingly, upregulation of endothelial FBXL19 promotes host innate immunity, reduces cardiac senescence, and diminishes inflammation. These findings highlight the therapeutic potential of targeting FBXL19 to mitigate IAV-induced cardiovascular complications.
Collapse
Affiliation(s)
- Boyu Xia
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Huilong Chen
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Sarah J Taleb
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Xiaoqing Xi
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Nargis Shaheen
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Boina Baoyinna
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Sourabh Soni
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Yohannes A Mebratu
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States
| | - Jing Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Yutong Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
3
|
Assarsson M, Söderman J, Seifert O. Significant Correlation Between Cutaneous Abundance of Streptococcus and Psoriasis Severity in Patients with FBXL19 Gene Variants. Acta Derm Venereol 2024; 104:adv34892. [PMID: 38898675 PMCID: PMC11210493 DOI: 10.2340/actadv.v104.34892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Psoriasis results from both genetic predisposition and environmental triggers, such as Streptococcal infections. This study aimed to explore the correlation between the abundance of the Streptococcus genus on the skin and psoriasis severity in individuals carrying specific psoriasis-associated genetic variants. Studying 39 chronic plaque psoriasis patients, the elbow skin microbiome and 49 psoriasis-related single nucleotide polymorphisms (SNPs) were analysed using a MiSeq instrument for 16S rDNA sequencing, and CLC Genomic Workbench for processing and analysis. Through multivariate linear regression analysis, a positive correlation was found between Streptococcus genus abundance and psoriasis severity in patients with certain FBXL19 gene-related heterozygous SNPs (rs12924903, rs10782001, rs12445568). Conversely, a negative association was observed in patients with homozygous genotypes. Moreover, we identified an association between Streptococcus abundance and psoriasis severity in patients with genetic variants related to IL-22, ERAP1, NOS2, and ILF3. This is the first study highlighting a positive association between Streptococcus skin colonization and psoriasis severity in patients with heterozygous genotypes within the FBXL19 gene region. FXBL19 targets the IL-33/IL1RL1 axis, crucial in infectious diseases and innate immunity promotion. These novel results suggests an intricate interaction among host genetics, Streptococcus skin colonization, and psoriasis inflammation, offering potential avenues for novel treatment approaches.
Collapse
Affiliation(s)
- Malin Assarsson
- Department of Biomedical and Clinical Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden; Division of Dermatology and Venereology, Region Jönköping County, Jönköping, Sweden.
| | - Jan Söderman
- Department of Biomedical and Clinical Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden; Laboratory Medicine, Region Jönköping County, Jönköping, Sweden
| | - Oliver Seifert
- Department of Biomedical and Clinical Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden; Division of Dermatology and Venereology, Region Jönköping County, Jönköping, Sweden
| |
Collapse
|
4
|
Danto SI, Tsamandouras N, Reddy P, Gilbert S, Mancuso J, Page K, Peeva E, Vincent MS, Beebe JS. Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of PF-06817024 in Healthy Participants, Participants with Chronic Rhinosinusitis with Nasal Polyps, and Participants with Atopic Dermatitis: A Phase 1, Randomized, Double-Blind, Placebo-Controlled Study. J Clin Pharmacol 2024; 64:529-543. [PMID: 37772436 DOI: 10.1002/jcph.2360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
PF-06817024 is a high affinity, humanized antibody that binds interleukin-33, a proinflammatory type 2 cytokine, and thereby has the potential to inhibit downstream type 2 inflammation. This Phase 1, randomized, placebo-controlled study was conducted in 3 parts to evaluate the safety, tolerability, pharmacokinetics (PK), immunogenicity, and pharmacodynamics of escalating single and limited repeat PF-06817024 doses in healthy participants (Part 1), a single dose of PF-06817024 in participants with chronic rhinosinusitis with nasal polyps (Part 2), and repeat doses of PF-06817024 in participants with moderate to severe atopic dermatitis (atoptic dermatitis; Part 3). PF-06817024 was generally well tolerated in all participant populations. Most participants experienced a treatment-emergent adverse event (healthy participants, 78.4% and 100%; participants with chronic rhinosinusitis with nasal polyps, 90.9% and 88.9%; and participants with atoptic dermatitis, 60.0% and 62.5% in the PF-06817024 and placebo groups, respectively). No substantial deviations from dose proportionality were observed for single intravenous doses of 10-1000 mg, indicating linear PK in healthy participants. Mean terminal half-life ranged from 83 to 94 days after single intravenous administration in healthy participants and was similar to that observed after administration in the studied patient populations. Incidences of antidrug antibodies in the studied populations were 10.8%, 9.1%, and 5.0% for healthy participants, participants with chronic rhinosinusitis with nasal polyps, and participants with atoptic dermatitis, respectively. In addition, dose-dependent increases were observed in total serum interleukin-33 levels of treated participants, indicating target engagement. Overall, the PK and safety profile of PF-06817024 supports further investigation of the drug as a potential treatment for allergic diseases.
Collapse
|
5
|
Booms A, Pierce SE, van der Schans EJ, Coetzee GA. Parkinson's disease risk enhancers in microglia. iScience 2024; 27:108921. [PMID: 38323005 PMCID: PMC10845915 DOI: 10.1016/j.isci.2024.108921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/05/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Genome-wide association studies have identified thousands of single nucleotide polymorphisms that associate with increased risk for Parkinson's disease (PD), but the functions of most of them are unknown. Using assay for transposase-accessible chromatin (ATAC) and H3K27ac chromatin immunoprecipitation (ChIP) sequencing data, we identified 73 regulatory elements in microglia that overlap PD risk SNPs. To determine the target genes of a "risk enhancer" within intron two of SNCA, we used CRISPR-Cas9 to delete the open chromatin region where two PD risk SNPs reside. The loss of the enhancer led to reduced expression of multiple genes including SNCA and the adjacent gene MMRN1. It also led to expression changes of genes involved in glucose metabolism, a process that is known to be altered in PD patients. Our work expands the role of SNCA in PD and provides a connection between PD-associated genetic variants and underlying biology that points to a risk mechanism in microglia.
Collapse
Affiliation(s)
- Alix Booms
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
- Van Andel Institute graduate student, Grand Rapids, MI 49503, USA
| | - Steven E. Pierce
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | | | - Gerhard A. Coetzee
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
6
|
Miao J, Li L, Shaheen N, Wei J, Jacko AM, Sundd P, Taleb SJ, Mallampalli RK, Zhao Y, Zhao J. The deubiquitinase USP40 preserves endothelial integrity by targeting the heat shock protein HSP90β. Exp Mol Med 2024; 56:395-407. [PMID: 38307937 PMCID: PMC10907362 DOI: 10.1038/s12276-024-01160-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/16/2023] [Accepted: 11/09/2023] [Indexed: 02/04/2024] Open
Abstract
Endothelial cell (EC) barrier disruption and inflammation are the pathological hallmarks of vascular disorders and acute infectious diseases and related conditions, including the coronavirus disease 2019 (COVID-19) and sepsis. Ubiquitination plays a critical role in regulating the stability, intracellular trafficking, and enzymatic activity of proteins and is reversed by deubiquitinating enzymes (DUBs). The role of DUBs in endothelial biology is largely unknown. In this study, we report that USP40, a poorly characterized DUB, prevents EC barrier disruption through reductions in the activation of RhoA and phosphorylation of myosin light chain (MLC) and cofilin. Furthermore, USP40 reduces EC inflammation through the attenuation of NF-ĸB activation, ICAM1 expression, and leukocyte-EC adhesion. We further show that USP40 activity and expression are reduced in response to endotoxin challenge. Global depletion of USP40 and EC-targeted USP40 depletion in mice exacerbated experimental lung injury, whereas lentiviral gene transfer of USP40 protected against endotoxin-induced lung injury. Using an unbiased approach, we discovered that the protective effect of USP40 occurs through the targeting of heat shock protein 90β (HSP90β) for its deubiquitination and inactivation. Together, these data reveal a critical protective role of USP40 in vascular injury, identifying a unique mechanistic pathway that profoundly impacts endothelial function via DUBs.
Collapse
Affiliation(s)
- Jiaxing Miao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH, USA
| | - Lian Li
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH, USA
| | - Nargis Shaheen
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH, USA
| | - Jianxin Wei
- Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, USA
| | - Anastasia M Jacko
- Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, USA
| | - Prithu Sundd
- Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah J Taleb
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH, USA
| | - Rama K Mallampalli
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH, USA.
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA.
| | - Jing Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH, USA.
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
7
|
Reese A, de Moliner F, Mendive-Tapia L, Benson S, Kuru E, Bridge T, Richards J, Rittichier J, Kitamura T, Sachdeva A, McSorley HJ, Vendrell M. Inserting "OFF-to-ON" BODIPY Tags into Cytokines: A Fluorogenic Interleukin IL-33 for Real-Time Imaging of Immune Cells. ACS CENTRAL SCIENCE 2024; 10:143-154. [PMID: 38292608 PMCID: PMC10823590 DOI: 10.1021/acscentsci.3c01125] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2024]
Abstract
The essential functions that cytokine/immune cell interactions play in tissue homeostasis and during disease have prompted the molecular design of targeted fluorophores to monitor their activity in real time. Whereas activatable probes for imaging immune-related enzymes are common, many immunological functions are mediated by binding events between cytokines and their cognate receptors that are hard to monitor by live-cell imaging. A prime example is interleukin-33 (IL-33), a key cytokine in innate and adaptive immunity, whose interaction with the ST2 cell-surface receptor results in downstream signaling and activation of NF-κB and AP-1 pathways. In the present work, we have designed a chemical platform to site-specifically introduce OFF-to-ON BODIPY fluorophores into full cytokine proteins and generate the first nativelike fluorescent analogues of IL-33. Among different incorporation strategies, chemical aminoacylation followed by bioorthogonal derivatization led to the best labeling results. Importantly, the BODIPY-labeled IL-33 derivatives-unlike IL-33-GFP constructs-exhibited ST2-specific binding and downstream bioactivity profiles comparable to those of the wild-type interleukin. Real-time fluorescence microscopy assays under no wash conditions confirmed the internalization of IL-33 through ST2 receptors and its intracellular trafficking through the endosomal pathway. We envision that the modularity and versatility of our BODIPY labeling platform will facilitate the synthesis of minimally tagged fluorogenic cytokines as the next generation of imaging reagents for real-time visualization of signaling events in live immune cells.
Collapse
Affiliation(s)
- Abigail
E. Reese
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, United Kingdom
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, United Kingdom
| | - Fabio de Moliner
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, United Kingdom
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, United Kingdom
| | - Lorena Mendive-Tapia
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, United Kingdom
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, United Kingdom
| | - Sam Benson
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, United Kingdom
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, United Kingdom
| | - Erkin Kuru
- Department
of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, United States
| | - Thomas Bridge
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Josh Richards
- Division
of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom
| | - Jonathan Rittichier
- Department
of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Takanori Kitamura
- Centre
for Reproductive Health, The University
of Edinburgh, EH16 4UU Edinburgh, United Kingdom
| | - Amit Sachdeva
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Henry J. McSorley
- Division
of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom
| | - Marc Vendrell
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, United Kingdom
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, United Kingdom
| |
Collapse
|
8
|
Li W, Liu M, Chu M. Strategies targeting IL-33/ST2 axis in the treatment of allergic diseases. Biochem Pharmacol 2023; 218:115911. [PMID: 37981174 DOI: 10.1016/j.bcp.2023.115911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Interleukin-33 (IL-33) and its receptor Serum Stimulation-2 (ST2, also called Il1rl1) are members of the IL-1 superfamily that plays a crucial role in allergic diseases. The interaction of IL-33 and ST2 mainly activates NF-κB signaling and MAPK signaling via the MyD88/IRAK/TRAF6 module, resulting in the production and secretion of pro-inflammatory cytokines. The IL-33/ST2 axis participates in the pathogenesis of allergic diseases, and therefore serves as a promising strategy for allergy treatment. In recent years, strategies blocking IL-33/ST2 through targeting regulation of IL-33 and ST2 or targeting the molecules involved in the signal transduction have been extensively studied mostly in animal models. These studies provide various potential therapeutic agents other than antibodies, such as small molecules, nucleic acids and traditional Chinese medicines. Herein, we reviewed potential targets and agents targeting IL-33/ST2 axis in the treatment of allergic diseases, providing directions for further investigations on treatments for IL-33 induced allergic diseases.
Collapse
Affiliation(s)
- Wenran Li
- Department of Immunology, School of Basic Medical Sciences, Health Science Centre, Peking University. Beijing, China
| | - Mengqi Liu
- Department of Immunology, School of Basic Medical Sciences, Health Science Centre, Peking University. Beijing, China
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Health Science Centre, Peking University. Beijing, China; Beijing Life Science Academy, Beijing, China.
| |
Collapse
|
9
|
Sumida K, Mozhui K, Liang X, Mallisetty Y, Han Z, Kovesdy CP. Association of DNA methylation signatures with premature ageing and cardiovascular death in patients with end-stage kidney disease: a pilot epigenome-wide association study. Epigenetics 2023; 18:2214394. [PMID: 37207321 PMCID: PMC10202091 DOI: 10.1080/15592294.2023.2214394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023] Open
Abstract
Patients with end-stage kidney disease (ESKD) display features of premature aging. There is strong evidence that changes in DNA methylation (DNAm) contribute to age-related pathologies; however, little is known about their association with premature aging and cardiovascular mortality in patients with ESKD. We assayed genome-wide DNAm in a pilot case-control study of 60 hemodialysis patients with (n=30, cases) and without (n=30, controls) a fatal cardiovascular event. DNAm was profiled on the Illumina EPIC BeadChip. Four established DNAm clocks (i.e., Horvath-, Hannum-, Pheno-, and GrimAge) were used to estimate epigenetic age (DNAmAge). Epigenetic age acceleration (EAA) was derived as the residuals of regressing DNAmAge on chronological age (chroAge), and its association with cardiovascular death was examined using multivariable conditional logistic regression. An epigenome-wide association study (EWAS) was performed to identify differentially methylated CpGs associated with cardiovascular death. All clocks performed well at predicting chroAge (correlation between DNAmAges and chroAge of r=0.76-0.89), with GrimAge showing the largest deviation from chroAge (a mean of +21.3 years). There was no significant association of EAAs with cardiovascular death. In the EWAS, a CpG (cg22305782) in the FBXL19 gene had the strongest association with cardiovascular death with significantly lower DNAm in cases vs. controls (PFDR=2.0x10-6). FBXL19 is involved in cell apoptosis, inflammation, and adipogenesis. Overall, we observed more accelerated aging in patients with ESKD, although there was no significant association of EAAs with cardiovascular death. EWAS suggests a potential novel DNAm biomarker for premature cardiovascular mortality in ESKD.
Collapse
Affiliation(s)
- Keiichi Sumida
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Khyobeni Mozhui
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Xiaoyu Liang
- Department of Epidemiology and Biostatistics, Michigan State University College of Human Medicine, East Lansing, MI, USA
| | - Yamini Mallisetty
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Zhongji Han
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Csaba P Kovesdy
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
10
|
Vuic B, Milos T, Tudor L, Nikolac Perkovic M, Konjevod M, Nedic Erjavec G, Farkas V, Uzun S, Mimica N, Svob Strac D. Pharmacogenomics of Dementia: Personalizing the Treatment of Cognitive and Neuropsychiatric Symptoms. Genes (Basel) 2023; 14:2048. [PMID: 38002991 PMCID: PMC10671071 DOI: 10.3390/genes14112048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Dementia is a syndrome of global and progressive deterioration of cognitive skills, especially memory, learning, abstract thinking, and orientation, usually affecting the elderly. The most common forms are Alzheimer's disease, vascular dementia, and other (frontotemporal, Lewy body disease) dementias. The etiology of these multifactorial disorders involves complex interactions of various environmental and (epi)genetic factors and requires multiple forms of pharmacological intervention, including anti-dementia drugs for cognitive impairment, antidepressants, antipsychotics, anxiolytics and sedatives for behavioral and psychological symptoms of dementia, and other drugs for comorbid disorders. The pharmacotherapy of dementia patients has been characterized by a significant interindividual variability in drug response and the development of adverse drug effects. The therapeutic response to currently available drugs is partially effective in only some individuals, with side effects, drug interactions, intolerance, and non-compliance occurring in the majority of dementia patients. Therefore, understanding the genetic basis of a patient's response to pharmacotherapy might help clinicians select the most effective treatment for dementia while minimizing the likelihood of adverse reactions and drug interactions. Recent advances in pharmacogenomics may contribute to the individualization and optimization of dementia pharmacotherapy by increasing its efficacy and safety via a prediction of clinical outcomes. Thus, it can significantly improve the quality of life in dementia patients.
Collapse
Affiliation(s)
- Barbara Vuic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Tina Milos
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Vladimir Farkas
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Suzana Uzun
- Department for Biological Psychiatry and Psychogeriatry, University Hospital Vrapce, 10000 Zagreb, Croatia; (S.U.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ninoslav Mimica
- Department for Biological Psychiatry and Psychogeriatry, University Hospital Vrapce, 10000 Zagreb, Croatia; (S.U.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| |
Collapse
|
11
|
Xun M, Wang J, Xie Q, Peng B, Li Z, Guo Z, Zeng Y, Su H, Yao M, Liao L, Li Y, Yuan G, Chen S, He S. FBXL19 promotes malignant behaviours by activating MAPK signalling and negatively correlates with prognosis in hepatocellular carcinoma. Heliyon 2023; 9:e21771. [PMID: 38027627 PMCID: PMC10651507 DOI: 10.1016/j.heliyon.2023.e21771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/17/2023] Open
Abstract
FBXL19 is a member of the Skp1-Cullin-F-box family of E3 ubiquitin ligases and is linked to a variety of vital biological processes, such as cell proliferation, migration, and differentiation. Previous studies have identified it as an oncogene in breast cancer and glioma. However, its role in hepatocellular carcinoma (HCC) remains unclear. To comprehensively elucidate its role in tumour biology and its underlying mechanisms, a variety of sophisticated methods, including bioinformatics analysis, RNA-sequencing technique, and in vitro cell biology experiments, were used. Here, we found that FBXL19 was upregulated in patients with HCC and correlated with poor prognosis. In in vitro experiments, the specific targeting of short hairpin RNAs via lentiviruses successfully induced the knockdown of FBXL19, resulting in notable inhibition of the proliferation, migration, and invasion of HCC cells. Furthermore, FBXL19 downregulation resulted in significant induction of G0/G1 phase cell cycle arrest. Importantly, FBXL19 knockdown inhibited tumour malignant behaviour primarily by inactivating extracellular signal-regulated protein kinase 1/2 and p38 mitogen-activated protein kinases. In conclusion, this study revealed that FBXL19 was upregulated in patients with HCC, and that its expression was negatively correlated with prognosis. Thus, FBXL19 displays oncogenic properties in HCC by activating mitogen-activated protein kinase signalling.
Collapse
Affiliation(s)
- Min Xun
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jiming Wang
- Chongqing University FuLing Hospital, Chongqing 408099, China
| | - Qiuli Xie
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Bo Peng
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zeyuan Li
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Zhengya Guo
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Yonglian Zeng
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Huizhao Su
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Mei Yao
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Lijuan Liao
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Yan Li
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Shilian Chen
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| | - Songqing He
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi 530021, China
| |
Collapse
|
12
|
Wang Y, He C, Xin S, Liu X, Zhang S, Qiao B, Shang H, Gao L, Xu J. A Deep View of the Biological Property of Interleukin-33 and Its Dysfunction in the Gut. Int J Mol Sci 2023; 24:13504. [PMID: 37686309 PMCID: PMC10487440 DOI: 10.3390/ijms241713504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Intestinal diseases have always posed a serious threat to human health, with inflammatory bowel disease (IBD) being one of them. IBD is an autoimmune disease characterized by chronic inflammation, including ulcerative colitis (UC) and Crohn's disease (CD). The "alarm" cytokine IL-33, which is intimately associated with Th2 immunity, is a highly potent inflammatory factor that is considered to have dual functions-operating as both a pro-inflammatory cytokine and a transcriptional regulator. IL-33 has been shown to play a crucial role in both the onset and development of IBD. Therefore, this review focuses on the pathogenesis of IBD, the major receptor cell types, and the activities of IL-33 in innate and adaptive immunity, as well as its underlying mechanisms and conflicting conclusions in IBD. We have also summarized different medicines targeted to IL-33-associated diseases. Furthermore, we have emphasized the role of IL-33 in gastrointestinal cancer and parasitic infections, giving novel prospective therapeutic utility in the future application of IL-33.
Collapse
Affiliation(s)
- Yi Wang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.W.); (S.Z.); (B.Q.)
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (C.H.); (S.X.); (X.L.)
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (C.H.); (S.X.); (X.L.)
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (C.H.); (S.X.); (X.L.)
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.W.); (S.Z.); (B.Q.)
| | - Boya Qiao
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.W.); (S.Z.); (B.Q.)
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing 100069, China;
| | - Lei Gao
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (C.H.); (S.X.); (X.L.)
| |
Collapse
|
13
|
Pisani LF, Teani I, Vecchi M, Pastorelli L. Interleukin-33: Friend or Foe in Gastrointestinal Tract Cancers? Cells 2023; 12:1481. [PMID: 37296602 PMCID: PMC10252908 DOI: 10.3390/cells12111481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Accumulating evidence suggests that Interleukin-33 (IL-33), a member of the IL-1 family, has crucial roles in tissue homeostasis and repair, type 2 immunity, inflammation, and viral infection. IL-33 is a novel contributing factor in tumorigenesis and plays a critical role in regulating angiogenesis and cancer progression in a variety of human cancers. The partially unraveled role of IL-33/ST2 signaling in gastrointestinal tract cancers is being investigated through the analysis of patients' samples and by studies in murine and rat models. In this review, we discuss the basic biology and mechanisms of release of the IL-33 protein and its involvement in gastrointestinal cancer onset and progression.
Collapse
Affiliation(s)
- Laura Francesca Pisani
- Gastroenterology and Endoscopy Unit, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
- Immunology and Functional Genomics Unit, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
| | - Isabella Teani
- Department of Medicine, University of Verona, 37129 Verona, Italy;
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Luca Pastorelli
- Department of Health Sciences, University of Milan, 20122 Milan, Italy
- Gastroenterology and Liver Unit, ASST Santi Paolo e Carlo, 20142 Milan, Italy
| |
Collapse
|
14
|
Riera-Martínez L, Cànaves-Gómez L, Iglesias A, Martin-Medina A, Cosío BG. The Role of IL-33/ST2 in COPD and Its Future as an Antibody Therapy. Int J Mol Sci 2023; 24:ijms24108702. [PMID: 37240045 DOI: 10.3390/ijms24108702] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
COPD is a leading cause of mortality and morbidity worldwide and is associated with a high socioeconomic burden. Current treatment includes the use of inhaled corticosteroids and bronchodilators, which can help to improve symptoms and reduce exacerbations; however, there is no solution for restoring lung function and the emphysema caused by loss of the alveolar tissue. Moreover, exacerbations accelerate progression and challenge even more the management of COPD. Mechanisms of inflammation in COPD have been investigated over the past years, thus opening new avenues to develop novel targeted-directed therapies. Special attention has been paid to IL-33 and its receptor ST2, as they have been found to mediate immune responses and alveolar damage, and their expression is upregulated in COPD patients, which correlates with disease progression. Here we summarize the current knowledge on the IL-33/ST2 pathway and its involvement in COPD, with a special focus on developed antibodies and the ongoing clinical trials using anti-IL-33 and anti-ST2 strategies in COPD patients.
Collapse
Affiliation(s)
- Lluc Riera-Martínez
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Laura Cànaves-Gómez
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Amanda Iglesias
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Aina Martin-Medina
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Borja G Cosío
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Respiratory Medicine, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| |
Collapse
|
15
|
Li L, Miao J, Shaheen N, Taleb SJ, Hu J, Ye Q, He J, Yan J, Mallampalli RK, Zhao J, Zhao Y. ISGylation of NF-κBp65 by SCF FBXL19 E3 Ligase Diminishes Endothelial Inflammation. Arterioscler Thromb Vasc Biol 2023; 43:674-683. [PMID: 36994728 PMCID: PMC10133096 DOI: 10.1161/atvbaha.122.318894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND NF-κB (nuclear factor kappa B) plays a pivotal role in endothelial cell (EC) inflammation. Protein ISGylation is regulated by E3 ISG15 (interferon-stimulated gene 15) ligases; however, ISGylation of NF-κBp65 and its role in EC functions have not been investigated. Here, we investigate whether p65 is ISGylated and the role of its ISGylation in endothelial functions. METHODS In vitro ISGylation assay and EC inflammation were performed. EC-specific transgenic mice were utilized in a murine model of acute lung injury. RESULTS We find that NF-κBp65 is ISGylated in resting ECs and that the posttranslational modification is reversible. TNFα (tumor necrosis factor alpha) and endotoxin stimulation of EC reduce p65 ISGylation, promoting its serine phosphorylation through reducing its association with a phosphatase WIP1 (wild-type p53-induced phosphatase 1). Mechanistically, an SCF (Skp1-Cul1-F-box) protein E3 ligase SCFFBXL19 is identified as a new ISG15 E3 ligase that targets and catalyzes ISGylation of p65. Depletion of FBXL19 (F-box and leucine-rich repeat protein 19) increases p65 phosphorylation and EC inflammation, suggesting a negative correlation between p65 ISGylation and phosphorylation. Moreover, EC-specific FBXL19 overexpressing humanized transgenic mice exhibit reduced lung inflammation and severity of experimental acute lung injury. CONCLUSIONS Together, our data reveal a new posttranslational modification of p65 catalyzed by a previously unrecognized role of SCFFBXL19 as an ISG15 E3 ligase that modulates EC inflammation.
Collapse
Affiliation(s)
- Lian Li
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH
| | - Jiaxing Miao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH
| | - Nargis Shaheen
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH
| | - Sarah J. Taleb
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH
| | - Jian Hu
- Department of Internal Medicine, the Ohio State University, Columbus, OH
| | - Qinmao Ye
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH
| | - Jinshan He
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH
| | - Jiasheng Yan
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH
| | | | - Jing Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH
- Department of Internal Medicine, the Ohio State University, Columbus, OH
| | - Yutong Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH
- Department of Internal Medicine, the Ohio State University, Columbus, OH
| |
Collapse
|
16
|
Chen Z, Zheng B, Zhang Z, Huang Z. Protective role of FBXL19 in Streptococcus pneumoniae-induced lung injury in pneumonia immature mice. J Cardiothorac Surg 2023; 18:92. [PMID: 36964598 PMCID: PMC10037874 DOI: 10.1186/s13019-023-02186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/12/2023] [Indexed: 03/26/2023] Open
Abstract
OBJECTIVE Streptococcus pneumoniae (Spn) is a common pathogen for pediatric pneumonia and leads to severe lung injury. This study is conducted to analyze the role of F-box and leucine rich repeat protein 19 (FBXL19) in Spn-induced lung injury in immature mice. METHODS Immature mice were infected with Spn to record the survival rates and bacterial loads in bronchoalveolar lavage fluid. Levels of FBXL19 and FOXM1 in lung tissues were determined via real-time quantitative polymerase chain reaction or Western blotting. After the interference of FBXL19, its impacts on lung inflammatory injury were appraised by the lung wet/dry weight ratio, myeloperoxidase activity, hematoxylin and eosin staining, and enzyme-linked immunosorbent assay. The binding of FBXL19 to forkhead box M1 (FOXM1) in mouse lung epithelial cells was determined. After MG132 treatment, the protein and ubiquitination levels of FOXM1 were measured. The functional rescue experiments were performed to analyze the role of FOXM1 in FBXL19-regulated lung injury. RESULTS FBXL19 was downregulated while FOXM1 was upregulated in lung tissues of Spn-infected immature mice. Overexpression of FBXL19 reduced the degree of lung injury and inflammation. FBXL19 can bind to FOXM1 to reduce its protein level via ubiquitination degradation. MG132 reduced the ubiquitination and increased the protein level of FOXM1. Overexpression of FOXM1 reversed the protective role of FBXL19 overexpression in lung injury of Spn immature mice. CONCLUSION FBXL19 was downregulated by Spn and FBXL19 overexpression alleviated lung injury by inducing ubiquitination and degradation of FOXM1 in Spn immature mice.
Collapse
Affiliation(s)
- Zhiqiang Chen
- Department of Neonatology, The Affiliated Hospital of Putian University, Putian, 351100, China.
| | - Bijuan Zheng
- Department of Neonatology, The Affiliated Hospital of Putian University, Putian, 351100, China
| | - Zhiwei Zhang
- Department of Neonatology, The Affiliated Hospital of Putian University, Putian, 351100, China
| | - Zhiyong Huang
- Department of Neonatology, The Affiliated Hospital of Putian University, Putian, 351100, China
| |
Collapse
|
17
|
Zhang X, Liu Y, Zhang T, Tan Y, Dai X, Yang YG, Zhang X. Advances in the potential roles of Cullin-RING ligases in regulating autoimmune diseases. Front Immunol 2023; 14:1125224. [PMID: 37006236 PMCID: PMC10064048 DOI: 10.3389/fimmu.2023.1125224] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Cullin-RING ligases (CRLs) are the largest class of E3 ubiquitin ligases regulating the stability and subsequent activity of a large number of important proteins responsible for the development and progression of various diseases, including autoimmune diseases (AIDs). However, the detailed mechanisms of the pathogenesis of AIDs are complicated and involve multiple signaling pathways. An in-depth understanding of the underlying regulatory mechanisms of the initiation and progression of AIDs will aid in the development of effective therapeutic strategies. CRLs play critical roles in regulating AIDs, partially by affecting the key inflammation-associated pathways such as NF-κB, JAK/STAT, and TGF-β. In this review, we summarize and discuss the potential roles of CRLs in the inflammatory signaling pathways and pathogenesis of AIDs. Furthermore, advances in the development of novel therapeutic strategies for AIDs through targeting CRLs are also highlighted.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Yu’e Liu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Tong Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Yuying Tan
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
- *Correspondence: Xiangpeng Dai, ; Yong-Guang Yang, ; Xiaoling Zhang,
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
- *Correspondence: Xiangpeng Dai, ; Yong-Guang Yang, ; Xiaoling Zhang,
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
- *Correspondence: Xiangpeng Dai, ; Yong-Guang Yang, ; Xiaoling Zhang,
| |
Collapse
|
18
|
MiR-223-3p regulates the eosinophil degranulation and enhances the inflammation in allergic rhinitis by targeting FBXW7. Int Immunopharmacol 2023; 118:110007. [PMID: 36924565 DOI: 10.1016/j.intimp.2023.110007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
OBJECTIVES MiR-223-3p is a multifunctional microRNA regulated by multiple transcription factors and plays a critical role in inflammation. This paper was designed to investigate the regulatory role and mechanism of miR-223-3p in eosinophils degranulation and allergic rhinitis (AR) inflammation. METHODS OVA sensitized AR mouse model and EOL-1 cells model were established. RT-qPCR and FISH were performed to detect the miR-223-3p expression. ELISA and WB were utilized to evaluate mRNA and protein expression. HE staining and transmission electron microscopy were applied to observe the morphological changes in nasal mucosa. Flow cytometry and immunofluorescence staining were performed to measure the proportion of eosinophils and eosinophilic major basic protein expression. The targeting relationship between miR-223-3p and FBXW7 was verified by bioinformatic analysis and dual-luciferase reporter gene assay. The expression of FBXW7 was detected by immunohistochemistry. RESULTS The level of miR-223-3p in nasal mucosa was significantly up-regulated in AR group. The expression of miR-223-3p, ECP, MBP, and EPO were increased in EOL-1 cells, further increasing the miR-223-3p level could promote the ECP and EPO mRNA expression. Upregulation of miR-223-3p increased eosinophils granule protein expression, aggravated mucosal destruction and enhanced AR inflammation. Luciferase assay verified miR-223-3p directly target the 3'-UTR of FBXW7. In vitro, overexpression of FBXW7 could reverse the increase in MBP expression caused by the up-regulation of miR-223-3p. In vivo, knockdown of FBXW7 could reverse the down-regulation in granule protein level caused by the down-regulation of miR-223-3p, thereby aggravating AR inflammation. CONCLUSION Collected evidence elucidated that miR-223-3p could regulate the eosinophil degranulation and enhances the inflammation in AR by targeting FBXW7. The miR-223-3p/FBXW7 axis may provide a novel approach for AR treatment.
Collapse
|
19
|
Li S, Ye Q, Wei J, Taleb SJ, Wang H, Zhang Y, Kass DJ, Horowitz JC, Zhao J, Zhao Y. Nedd4L suppression in lung fibroblasts facilitates pathogenesis of lung fibrosis. Transl Res 2023; 253:1-7. [PMID: 36257596 PMCID: PMC10167741 DOI: 10.1016/j.trsl.2022.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Ubiquitination-mediated protein degradation is associated with the development of pulmonary fibrosis. We and others have shown that Nedd4L plays anti-inflammatory and anti-fibrotic roles by targeting lysophosphatidic acid receptor 1 (LPAR1), p-Smad2/3, and β-catenin, and other molecules for their degradation in lung epithelial cells and fibroblasts. However, the molecular regulation of Nedd4L expression in lung fibroblasts has not been studied. In this study, we find that Nedd4L levels are significantly suppressed in lung myofibroblasts in IPF patients and in experimental pulmonary fibrosis, and in TGF-β1-treated lung fibroblasts. Nedd4L knockdown promotes TGF-β1-mediated phosphorylation of Smad2/3 and lung myofibroblast differentiation. Mechanistically, Nedd4L targets TGF-β receptor II (TβRII), the first key enzyme of TGF-β1-mediated signaling, for its ubiquitination and degradation. Further, we show that inhibition of transcriptional factor E2F rescues Nedd4L levels and mitigates experimental pulmonary fibrosis. Together, our data reveal insight into mechanisms by which E2F-mediated Nedd4L suppression contributes to the pathogenesis of lung fibrosis. This study provides evidence showing that upregulation of Nedd4L is a potential therapeutic strategy to treat fibrotic disorders including lung fibrosis.
Collapse
Affiliation(s)
- Shuang Li
- Department of Medicine, The University of Pittsburgh, Pittsburgh, PA
| | - Qinmao Ye
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH; Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH
| | - Jianxin Wei
- Department of Medicine, The University of Pittsburgh, Pittsburgh, PA
| | - Sarah J Taleb
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH; Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH
| | - Heather Wang
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH; Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH
| | - Yingze Zhang
- Department of Medicine, The University of Pittsburgh, Pittsburgh, PA
| | - Daniel J Kass
- Department of Medicine, The University of Pittsburgh, Pittsburgh, PA
| | - Jeffrey C Horowitz
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH; The Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Jing Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH; Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH; The Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Yutong Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH; Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH; The Department of Internal Medicine, The Ohio State University, Columbus, OH.
| |
Collapse
|
20
|
Decreased ubiquitin modifying enzyme A20 associated with hyper-responsiveness to ovalbumin challenge following intrauterine growth restriction. Respir Res 2023; 24:50. [PMID: 36788604 PMCID: PMC9926749 DOI: 10.1186/s12931-023-02360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) is strongly correlated with an increased risk of asthma later in life. Farm dust protects mice from developing house dust mite-induced asthma, and loss of ubiquitin modifying enzyme A20 in lung epithelium would abolish this protective effect. However, the mechanisms of A20 in the development of asthma following IUGR remains unknown. METHODS An IUGR rat model induced by maternal nutrient restriction was used for investigating the role of A20 in the response characteristics of IUGR rats to ovalbumin (OVA) challenge. The ubiquitination of proteins and N6-methyladenosine (m6A) modifications were used to further assess the potential mechanism of A20. RESULTS IUGR can reduce the expression of A20 protein in lung tissue of newborn rats and continue until 10 weeks after birth. OVA challenging can increase the expression of A20 protein in lung tissue of IUGR rats, but its level was still significantly lower than the control OVA group. The differentially ubiquitinated proteins in lung tissues were also observed in IUGR and normal newborn rats. Furthermore, this ubiquitination phenomenon continued from the newborn to adulthood. In the detected RNA methylations, m6A abundance of the motif GGACA was the highest. The higher abundances of m6A modification of A20 mRNA from IUGR were negatively correlated with the trend of A20 protein levels. CONCLUSION These findings indicate A20 as a key regulator during the development of asthma following IUGR, providing further insight into the prevention of asthma induced by environmental factors.
Collapse
|
21
|
Gaurav R, Poole JA. Interleukin (IL)-33 immunobiology in asthma and airway inflammatory diseases. J Asthma 2022; 59:2530-2538. [PMID: 34928757 PMCID: PMC9234100 DOI: 10.1080/02770903.2021.2020815] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Identify key features of IL-33 immunobiology important in allergic and nonallergic airway inflammatory diseases and potential therapeutic strategies to reduce disease burden. DATA SOURCES PubMed, clinicaltrials.gov. STUDY SELECTIONS A systematic and focused literature search was conducted of PubMed from March 2021 to December 2021 using keywords to either PubMed or BioMed Explorer including IL-33/ST2, genetic polymorphisms, transcription, translation, post-translation modification, nuclear protein, allergy, asthma, and lung disease. Clinical trial information on IL-33 was extracted from clinicaltrials.gov in August 2021. RESULTS In total, 72 publications with relevance to IL-33 immunobiology and/or clinical lung disease were identified (allergic airway inflammation/allergic asthma n = 26, non-allergic airway inflammation n = 9, COPD n = 8, lung fibrosis n = 10). IL-33 levels were higher in serum, BALF and/or lungs across inflammatory lung diseases. Eight studies described viral infections and IL-33 and 4 studies related to COVID-19. Mechanistic studies (n = 39) including transcript variants and post-translational modifications related to the immunobiology of IL-33. Single nucleotide polymorphism in IL-33 or ST2 were described in 9 studies (asthma n = 5, inflammatory bowel disease n = 1, mycosis fungoides n = 1, ankylosing spondylitis n = 1, coronary artery disease n = 1). Clinicaltrials.gov search yielded 84 studies of which 17 were related to therapeutic or biomarker relevance in lung disease. CONCLUSION An integral role of IL-33 in the pathogenesis of allergic and nonallergic airway inflammatory disease is evident with several emerging clinical trials investigating therapeutic approaches. Current data support a critical role of IL-33 in damage signaling, repair and regeneration of lungs.
Collapse
Affiliation(s)
- Rohit Gaurav
- Division of Allergy and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, USA
| | - Jill A. Poole
- Division of Allergy and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, USA
| |
Collapse
|
22
|
Yoshimoto T, Kittaka M, Doan AAP, Urata R, Prideaux M, Rojas RE, Harding CV, Henry Boom W, Bonewald LF, Greenfield EM, Ueki Y. Osteocytes directly regulate osteolysis via MYD88 signaling in bacterial bone infection. Nat Commun 2022; 13:6648. [PMID: 36333322 PMCID: PMC9636212 DOI: 10.1038/s41467-022-34352-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
The impact of bone cell activation on bacterially-induced osteolysis remains elusive. Here, we show that matrix-embedded osteocytes stimulated with bacterial pathogen-associated molecular patterns (PAMPs) directly drive bone resorption through an MYD88-regulated signaling pathway. Mice lacking MYD88, primarily in osteocytes, protect against osteolysis caused by calvarial injections of bacterial PAMPs and resist alveolar bone resorption induced by oral Porphyromonas gingivalis (Pg) infection. In contrast, mice with targeted MYD88 restoration in osteocytes exhibit osteolysis with inflammatory cell infiltration. In vitro, bacterial PAMPs induce significantly higher expression of the cytokine RANKL in osteocytes than osteoblasts. Mechanistically, activation of the osteocyte MYD88 pathway up-regulates RANKL by increasing binding of the transcription factors CREB and STAT3 to Rankl enhancers and by suppressing K48-ubiquitination of CREB/CREB binding protein and STAT3. Systemic administration of an MYD88 inhibitor prevents jawbone loss in Pg-driven periodontitis. These findings reveal that osteocytes directly regulate inflammatory osteolysis in bone infection, suggesting that MYD88 and downstream RANKL regulators in osteocytes are therapeutic targets for osteolysis in periodontitis and osteomyelitis.
Collapse
Affiliation(s)
- Tetsuya Yoshimoto
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202-5126, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Mizuho Kittaka
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202-5126, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Andrew Anh Phuong Doan
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202-5126, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Rina Urata
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202-5126, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Matthew Prideaux
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | | | - Clifford V Harding
- Department of Pathology, Case Western Reserve University & University Hospitals Cleveland Medical Center, Cleveland, OH, 44106-4960, USA
| | - W Henry Boom
- Department of Pathology, Case Western Reserve University & University Hospitals Cleveland Medical Center, Cleveland, OH, 44106-4960, USA
- Department of Medicine, Case Western Reserve University & University Hospitals Cleveland Medical Center, Cleveland, OH, 44106-4960, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University & University Hospitals Cleveland Medical Center, Cleveland, OH, 44106-4960, USA
| | - Lynda F Bonewald
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Edward M Greenfield
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Yasuyoshi Ueki
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202-5126, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA.
| |
Collapse
|
23
|
Duchesne M, Okoye I, Lacy P. Epithelial cell alarmin cytokines: Frontline mediators of the asthma inflammatory response. Front Immunol 2022; 13:975914. [PMID: 36311787 PMCID: PMC9616080 DOI: 10.3389/fimmu.2022.975914] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
The exposure of the airway epithelium to external stimuli such as allergens, microbes, and air pollution triggers the release of the alarmin cytokines IL-25, IL-33 and thymic stromal lymphopoietin (TSLP). IL-25, IL-33 and TSLP interact with their ligands, IL-17RA, IL1RL1 and TSLPR respectively, expressed by hematopoietic and non-hematopoietic cells including dendritic cells, ILC2 cells, endothelial cells, and fibroblasts. Alarmins play key roles in driving type 2-high, and to a lesser extent type 2-low responses, in asthma. In addition, studies in which each of these three alarmins were targeted in allergen-challenged mice showed decreased chronicity of type-2 driven disease. Consequently, ascertaining the mechanism of activity of these upstream mediators has implications for understanding the outcome of targeted therapies designed to counteract their activity and alleviate downstream type 2-high and low effector responses. Furthermore, identifying the factors which shift the balance between the elicitation of type 2-high, eosinophilic asthma and type-2 low, neutrophilic-positive/negative asthma by alarmins is essential. In support of these efforts, observations from the NAVIGATOR trial imply that targeting TSLP in patients with tezepelumab results in reduced asthma exacerbations, improved lung function and control of the disease. In this review, we will discuss the mechanisms surrounding the secretion of IL-25, IL-33, and TSLP from the airway epithelium and how this influences the allergic airway cascade. We also review in detail how alarmin-receptor/co-receptor interactions modulate downstream allergic inflammation. Current strategies which target alarmins, their efficacy and inflammatory phenotype will be discussed.
Collapse
|
24
|
Guo P, Gong W, Li Y, Liu L, Yan R, Wang Y, Zhang Y, Yuan Z. Pinpointing novel risk loci for Lewy body dementia and the shared genetic etiology with Alzheimer's disease and Parkinson's disease: a large-scale multi-trait association analysis. BMC Med 2022; 20:214. [PMID: 35729600 PMCID: PMC9214990 DOI: 10.1186/s12916-022-02404-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/13/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The current genome-wide association study (GWAS) of Lewy body dementia (LBD) suffers from low power due to a limited sample size. In addition, the genetic determinants underlying LBD and the shared genetic etiology with Alzheimer's disease (AD) and Parkinson's disease (PD) remain poorly understood. METHODS Using the largest GWAS summary statistics of LBD to date (2591 cases and 4027 controls), late-onset AD (86,531 cases and 676,386 controls), and PD (33,674 cases and 449,056 controls), we comprehensively investigated the genetic basis of LBD and shared genetic etiology among LBD, AD, and PD. We first conducted genetic correlation analysis using linkage disequilibrium score regression (LDSC), followed by multi-trait analysis of GWAS (MTAG) and association analysis based on SubSETs (ASSET) to identify the trait-specific SNPs. We then performed SNP-level functional annotation to identify significant genomic risk loci paired with Bayesian fine-mapping and colocalization analysis to identify potential causal variants. Parallel gene-level analysis including GCTA-fastBAT and transcriptome-wide association analysis (TWAS) was implemented to explore novel LBD-associated genes, followed by pathway enrichment analysis to understand underlying biological mechanisms. RESULTS Pairwise LDSC analysis found positive genome-wide genetic correlations between LBD and AD (rg = 0.6603, se = 0.2001; P = 0.0010), between LBD and PD (rg = 0.6352, se = 0.1880; P = 0.0007), and between AD and PD (rg = 0.2136, se = 0.0860; P = 0.0130). We identified 13 significant loci for LBD, including 5 previously reported loci (1q22, 2q14.3, 4p16.3, 4q22.1, and 19q13.32) and 8 novel biologically plausible genetic associations (5q12.1, 5q33.3, 6p21.1, 8p23.1, 8p21.1, 16p11.2, 17p12, and 17q21.31), among which APOC1 (19q13.32), SNCA (4q22.1), TMEM175 (4p16.3), CLU (8p21.1), MAPT (17q21.31), and FBXL19 (16p11.2) were also validated by gene-level analysis. Pathway enrichment analysis of 40 common genes identified by GCTA-fastBAT and TWAS implicated significant role of neurofibrillary tangle assembly (GO:1902988, adjusted P = 1.55 × 10-2). CONCLUSIONS Our findings provide novel insights into the genetic determinants of LBD and the shared genetic etiology and biological mechanisms of LBD, AD, and PD, which could benefit the understanding of the co-pathology as well as the potential treatment of these diseases simultaneously.
Collapse
Affiliation(s)
- Ping Guo
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Weiming Gong
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yuanming Li
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Lu Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ran Yan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yanjun Wang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yanan Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Zhongshang Yuan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
25
|
Chen Q, Li H, Liu Y, Zhao M. Epigenetic Regulation of Immune and Inflammatory Responses in Rheumatoid Arthritis. Front Immunol 2022; 13:881191. [PMID: 35479077 PMCID: PMC9035598 DOI: 10.3389/fimmu.2022.881191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Rheumatoid arthritis (RA) is a disease associated with multiple factors. Epigenetics can affect gene expression without altering the DNA sequence. In this study, we aimed to comprehensively analyze epigenetic regulation in RA. Methods Using the Gene Expression Omnibus database, we identified a methylation chip, RNA-sequencing, and miRNA microarray for RA. First, we searched for DNA methylation, genes, and miRNAs associated with RA using differential analysis. Second, we determined the regulatory networks for RA-specific methylation, miRNA, and m6A using cross-analysis. Based on these three regulatory networks, we built a comprehensive epigenetic regulatory network and identified hub genes. Results Using a differential analysis, we identified 16,852 differentially methylated sites, 4877 differentially expressed genes, and 32 differentially expressed miRNAs. The methylation-expression regulatory network was mainly associated with the PI3K-Akt and T-cell receptor signaling pathways. The miRNA expression regulatory network was mainly related to the MAPK and chemokine signaling pathways. M6A regulatory network was mainly associated with the MAPK signaling pathway. Additionally, five hub genes were identified in the epigenetic regulatory network: CHD3, SETD1B, FBXL19, SMARCA4, and SETD1A. Functional analysis revealed that these five genes were associated with immune cells and inflammatory responses. Conclusion We constructed a comprehensive epigenetic network associated with RA and identified core regulatory genes. This study provides a new direction for future research on the epigenetic mechanisms of RA.
Collapse
Affiliation(s)
- Qi Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hao Li
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yusi Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Min Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
26
|
Sarrand J, Soyfoo M. Involvement of IL-33 in the Pathophysiology of Systemic Lupus Erythematosus: Review. Int J Mol Sci 2022; 23:ijms23063138. [PMID: 35328556 PMCID: PMC8949418 DOI: 10.3390/ijms23063138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
IL-33 is a newly discovered cytokine displaying pleiotropic localizations and functions. More specifically, it also functions as an alarmin, following its release from cells undergoing cell death or necrosis, to alert the innate immune system. The role of IL-33 has been underlined in several inflammatory and autoimmune diseases including systemic lupus erythematosus (SLE). The expressions of IL-33 as well as its receptor, ST2, are significantly upregulated in SLE patients and in patients with lupus nephritis. This review discusses the involvement of IL-33 in the pathology of SLE.
Collapse
|
27
|
Reciprocal regulation of IL-33 receptor-mediated inflammatory response and pulmonary fibrosis by TRAF6 and USP38. Proc Natl Acad Sci U S A 2022; 119:e2116279119. [PMID: 35238669 PMCID: PMC8917384 DOI: 10.1073/pnas.2116279119] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Significance IL-33R mediates local inflammatory responses and plays crucial roles in the pathogenesis of immune diseases. In this study, we identified USP38, which negatively regulates IL-33-triggered signaling by mediating K27-linked deubiquitination of IL-33R at K511 and its autophagic degradation. USP38 deficiency aggravates IL-33-induced lung inflammatory response and bleomycin-induced pulmonary fibrosis. We further show that the E3 ubiquitin ligase TRAF6 catalyzes K27-linked polyubiquitination of IL-33R at K511, and that deficiency of TRAF6 inhibits IL-33-mediated signaling. Our findings reveal an important mechanism regarding how IL-33R is precisely regulated to ensure its inactivation in rest cells and proper activation following IL-33 stimulation.
Collapse
|
28
|
Ghafouri-Fard S, Gholami L, Nazer N, Hussen BM, Shadnoush M, Sayad A, Taheri M. Assessment of expression of NF-κB-related genes in periodontitis. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
29
|
Li R, Zhang Y, Garg A, Sui P, Sun X. E3 ubiquitin ligase FBXW7 balances airway cell fates. Dev Biol 2022; 483:89-97. [PMID: 34998785 DOI: 10.1016/j.ydbio.2021.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/10/2021] [Accepted: 12/30/2021] [Indexed: 12/15/2022]
Abstract
The airway epithelium is composed of multiple cell types each with designated roles. A stereotyped ratio of these cells is essential for proper airway function. Imbalance of airway cell types underlies many lung diseases, including chronic obstructive pulmonary disease (COPD) and asthma. While a number of signals and transcription factors have been implicated in airway cell specification, how cell numbers are coordinated, especially at the protein level is poorly understood. Here we show that in the mouse trachea which contain epithelial cell types similar to human airway, epithelium-specific inactivation of Fbxw7, which encodes an E3 ubiquitin ligase, led to reduced club and ciliated cells, increased goblet cells, and ectopic P63-negative, Keratin5-positive transitory basal cells in the luminal layer. The protein levels of FBXW7 targets including NOTCH1, KLF5 and TGIF were increased. Inactivation of either Notch1, Klf5 but not Tgif genes in the mutant background led to attenuation of selected aspects of the phenotypes, suggesting that FBXW7 acts through different targets to control different cell fates. These findings demonstrate that protein-level regulation by the ubiquitin proteasome system is critical for balancing airway cell fates.
Collapse
Affiliation(s)
- Rongbo Li
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Yan Zhang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ankur Garg
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Pengfei Sui
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
30
|
Onodera A, Kiuchi M, Kokubo K, Nakayama T. Epigenetic regulation of inflammation by CxxC domain‐containing proteins*. Immunol Rev 2022. [DOI: 10.1111/imr.13056
expr 964170082 + 969516512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Atsushi Onodera
- Department of Immunology Graduate School of Medicine Chiba University Chiba Japan
- Institute for Global Prominent Research Chiba University Chiba Japan
| | - Masahiro Kiuchi
- Department of Immunology Graduate School of Medicine Chiba University Chiba Japan
| | - Kota Kokubo
- Department of Immunology Graduate School of Medicine Chiba University Chiba Japan
| | - Toshinori Nakayama
- Department of Immunology Graduate School of Medicine Chiba University Chiba Japan
- AMED‐CREST, AMED Chiba Japan
| |
Collapse
|
31
|
Cayrol C. IL-33, an Alarmin of the IL-1 Family Involved in Allergic and Non Allergic Inflammation: Focus on the Mechanisms of Regulation of Its Activity. Cells 2021; 11:cells11010107. [PMID: 35011670 PMCID: PMC8750818 DOI: 10.3390/cells11010107] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 02/04/2023] Open
Abstract
Interleukin-33 (IL-33) is a member of the interleukin-1 (IL-1) family that is expressed in the nuclei of endothelial and epithelial cells of barrier tissues, among others. It functions as an alarm signal that is released upon tissue or cellular injury. IL-33 plays a central role in the initiation and amplification of type 2 innate immune responses and allergic inflammation by activating various target cells expressing its ST2 receptor, including mast cells and type 2 innate lymphoid cells. Depending on the tissue environment, IL-33 plays a wide variety of roles in parasitic and viral host defense, tissue repair and homeostasis. IL-33 has evolved a variety of sophisticated regulatory mechanisms to control its activity, including nuclear sequestration and proteolytic processing. It is involved in many diseases, including allergic, inflammatory and infectious diseases, and is a promising therapeutic target for the treatment of severe asthma. In this review, I will summarize the literature around this fascinating pleiotropic cytokine. In the first part, I will describe the basics of IL-33, from the discovery of interleukin-33 to its function, including its expression, release and signaling pathway. The second part will be devoted to the regulation of IL-33 protein leading to its activation or inactivation.
Collapse
Affiliation(s)
- Corinne Cayrol
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| |
Collapse
|
32
|
Onodera A, Kiuchi M, Kokubo K, Nakayama T. Epigenetic regulation of inflammation by CxxC domain-containing proteins. Immunol Rev 2021; 305:137-151. [PMID: 34935162 DOI: 10.1111/imr.13056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/03/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022]
Abstract
Epigenetic regulation of gene transcription in the immune system is important for proper control of protective and pathogenic inflammation. Aberrant epigenetic modifications are often associated with dysregulation of the immune cells, including lymphocytes and macrophages, leading to pathogenic inflammation and autoimmune diseases. Two classical epigenetic markers-histone modifications and DNA cytosine methylation, the latter is the 5 position of the cytosine base in the context of CpG dinucleotides-play multiple roles in the immune system. CxxC domain-containing proteins, which basically bind to the non-methylated CpG (i.e., epigenetic "readers"), often function as "writers" of the epigenetic markers via their catalytic domain within the proteins or by interacting with other epigenetic modifiers. We herein report the most recent advances in our understanding of the functions of CxxC domain-containing proteins in the immune system and inflammation, mainly focusing on T cells and macrophages.
Collapse
Affiliation(s)
- Atsushi Onodera
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Institute for Global Prominent Research, Chiba University, Chiba, Japan
| | - Masahiro Kiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kota Kokubo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,AMED-CREST, AMED, Chiba, Japan
| |
Collapse
|
33
|
Huang Y, Xiao Y, Zhang X, Huang X, Li Y. The Emerging Roles of Tripartite Motif Proteins (TRIMs) in Acute Lung Injury. J Immunol Res 2021; 2021:1007126. [PMID: 34712740 PMCID: PMC8548118 DOI: 10.1155/2021/1007126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/09/2021] [Indexed: 11/21/2022] Open
Abstract
Acute lung injury (ALI) is an inflammatory disorder of the lung that causes high mortality and lacks any pharmacological intervention. Ubiquitination plays a critical role in the pathogenesis of ALI as it regulates the alveolocapillary barrier and the inflammatory response. Tripartite motif (TRIM) proteins are one of the subfamilies of the RING-type E3 ubiquitin ligases, which contains more than 80 distinct members in humans involved in a broad range of biological processes including antivirus innate immunity, development, and tumorigenesis. Recently, some studies have shown that several members of TRIM family proteins play important regulatory roles in inflammation and ALI. Herein, we integrate emerging evidence regarding the roles of TRIMs in ALI. Articles were selected from the searches of PubMed database that had the terms "acute lung injury," "ubiquitin ligases," "tripartite motif protein," "inflammation," and "ubiquitination" using both MeSH terms and keywords. Better understanding of these mechanisms may ultimately lead to novel therapeutic approaches by targeting TRIMs for ALI treatment.
Collapse
Affiliation(s)
- Yingjie Huang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yue Xiao
- The First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Xuekang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Yong Li
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
34
|
Lai Y, Li X, Li T, Nyunoya T, Chen K, Kitsios GD, Nouraie SM, Zhang Y, McVerry BJ, Lee JS, Mallampalli RK, Zou C. Endotoxin stabilizes protein arginine methyltransferase 4 (PRMT4) protein triggering death of lung epithelia. Cell Death Dis 2021; 12:828. [PMID: 34480022 PMCID: PMC8414963 DOI: 10.1038/s41419-021-04115-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Lung epithelial cell death is a prominent feature of acute lung injury and acute respiratory distress syndrome (ALI/ARDS), which results from severe pulmonary infection leading to respiratory failure. Multiple mechanisms are believed to contribute to the death of epithelia; however, limited data propose a role for epigenetic modifiers. In this study, we report that a chromatin modulator protein arginine N-methyltransferase 4/coactivator-associated arginine methyltransferase 1 (PRMT4/CARM1) is elevated in human lung tissues with pneumonia and in experimental lung injury models. Here PRMT4 is normally targeted for its degradation by an E3 ubiquitin ligase, SCFFBXO9, that interacts with PRMT4 via a phosphodegron to ubiquitinate the chromatin modulator at K228 leading to its proteasomal degradation. Bacterial-derived endotoxin reduced levels of SCFFBXO9 thus increasing PRMT4 cellular concentrations linked to epithelial cell death. Elevated PRMT4 protein caused substantial epithelial cell death via caspase 3-mediated cell death signaling, and depletion of PRMT4 abolished LPS-mediated epithelial cell death both in cellular and murine injury models. These findings implicate a unique molecular interaction between SCFFBXO9 and PRMT4 and its regulation by endotoxin that impacts the life span of lung epithelia, which may play a key role in the pathobiology of tissue injury observed during critical respiratory illness.
Collapse
Affiliation(s)
- Yandong Lai
- grid.21925.3d0000 0004 1936 9000Division of Pulmonary, Allergy, Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Xiuying Li
- grid.413935.90000 0004 0420 3665Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA USA
| | - Tiao Li
- grid.21925.3d0000 0004 1936 9000Division of Pulmonary, Allergy, Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Toru Nyunoya
- grid.21925.3d0000 0004 1936 9000Division of Pulmonary, Allergy, Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA ,grid.413935.90000 0004 0420 3665Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA USA
| | - Kong Chen
- grid.21925.3d0000 0004 1936 9000Division of Pulmonary, Allergy, Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Georgios D. Kitsios
- grid.21925.3d0000 0004 1936 9000Division of Pulmonary, Allergy, Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Seyed Mehdi Nouraie
- grid.21925.3d0000 0004 1936 9000Division of Pulmonary, Allergy, Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Yingze Zhang
- grid.21925.3d0000 0004 1936 9000Division of Pulmonary, Allergy, Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Bryan J. McVerry
- grid.21925.3d0000 0004 1936 9000Division of Pulmonary, Allergy, Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA USA
| | - Janet S. Lee
- grid.21925.3d0000 0004 1936 9000Division of Pulmonary, Allergy, Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Rama K. Mallampalli
- grid.21925.3d0000 0004 1936 9000Division of Pulmonary, Allergy, Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA ,grid.261331.40000 0001 2285 7943Department of Medicine, Ohio State University College of Medicine, Columbus, OH USA
| | - Chunbin Zou
- grid.21925.3d0000 0004 1936 9000Division of Pulmonary, Allergy, Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA ,grid.413935.90000 0004 0420 3665Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
35
|
Sun Y, Wen Y, Wang L, Wen L, You W, Wei S, Mao L, Wang H, Chen Z, Yang X. Therapeutic Opportunities of Interleukin-33 in the Central Nervous System. Front Immunol 2021; 12:654626. [PMID: 34079543 PMCID: PMC8165230 DOI: 10.3389/fimmu.2021.654626] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/04/2021] [Indexed: 01/14/2023] Open
Abstract
Interleukin-33 (IL-33), a member of the IL-1 cytokine family, is involved in various diseases. IL-33 exerts its effects via its heterodimeric receptor complex, which comprises suppression of tumorigenicity 2 (ST2) and the IL-1 receptor accessory protein (IL-1RAP). Increasing evidence has demonstrated that IL-33/ST2 signaling plays diverse but crucial roles in the homeostasis of the central nervous system (CNS) and the pathogenesis of CNS diseases, including neurodegenerative diseases, cerebrovascular diseases, infection, trauma, and ischemic stroke. In the current review, we focus on the functional roles and cellular signaling mechanisms of IL-33 in the CNS and evaluate the potential for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Yun Sun
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yankai Wen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Luxi Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang Wen
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Wendong You
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Shuang Wei
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Lin Mao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Hao Wang
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zuobing Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiaofeng Yang
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Lau SF, Chen C, Fu WY, Qu JY, Cheung TH, Fu AKY, Ip NY. IL-33-PU.1 Transcriptome Reprogramming Drives Functional State Transition and Clearance Activity of Microglia in Alzheimer's Disease. Cell Rep 2021; 31:107530. [PMID: 32320664 DOI: 10.1016/j.celrep.2020.107530] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 02/11/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Impairment of microglial clearance activity contributes to beta-amyloid (Aβ) pathology in Alzheimer's disease (AD). While the transcriptome profile of microglia directs microglial functions, how the microglial transcriptome can be regulated to alleviate AD pathology is largely unknown. Here, we show that injection of interleukin (IL)-33 in an AD transgenic mouse model ameliorates Aβ pathology by reprogramming microglial epigenetic and transcriptomic profiles to induce a microglial subpopulation with enhanced phagocytic activity. These IL-33-responsive microglia (IL-33RMs) express a distinct transcriptome signature that is highlighted by increased major histocompatibility complex class II genes and restored homeostatic signature genes. IL-33-induced remodeling of chromatin accessibility and PU.1 transcription factor binding at the signature genes of IL-33RM control their transcriptome reprogramming. Specifically, disrupting PU.1-DNA interaction abolishes the microglial state transition and Aβ clearance that is induced by IL-33. Thus, we define a PU.1-dependent transcriptional pathway that drives the IL-33-induced functional state transition of microglia, resulting in enhanced Aβ clearance.
Collapse
Affiliation(s)
- Shun-Fat Lau
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Congping Chen
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Biophotonics Research Laboratory, Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Wing-Yu Fu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jianan Y Qu
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Biophotonics Research Laboratory, Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Tom H Cheung
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Amy K Y Fu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong 518057, China
| | - Nancy Y Ip
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
37
|
Li T, He X, Luo L, Zeng H, Ren S, Chen Y. F-Box Protein FBXW17-Mediated Proteasomal Degradation of Protein Methyltransferase PRMT6 Exaggerates CSE-Induced Lung Epithelial Inflammation and Apoptosis. Front Cell Dev Biol 2021; 9:599020. [PMID: 33959602 PMCID: PMC8095709 DOI: 10.3389/fcell.2021.599020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/02/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic debilitating lung disease, characterized by progressive airway inflammation and lung structural cell death. Cigarette smoke is considered the most common risk factor of COPD pathogenesis. Understanding the molecular mechanisms of persistent inflammation and epithelial apoptosis induced by cigarette smoke would be extremely beneficial for improving the treatment and prevention of COPD. A histone methyl modifier, protein arginine N-methyltransferase 6 (PRMT6), is reported to alleviate cigarette smoke extract (CSE)-induced emphysema through inhibiting inflammation and cell apoptosis. However, few studies have focused on the modulation of PRMT6 in regulating inflammation and cell apoptosis. In this study, we showed that protein expression of PRMT6 was aberrantly decreased in the lung tissue of COPD patients and CSE-treated epithelial cells. FBXW17, a member of the Skp1-Cullin-F-box (SCF) family of E3 ubiquitin ligases, selectively bound to PRMT6 in nuclei to modulate its elimination in the proteasome system. Proteasome inhibitor or silencing of FBXW17 abrogated CSE-induced PRMT6 protein degradation. Furthermore, negative alteration of FBXW17/PRMT6 signaling lessened the proapoptotic and proinflammatory effects of CSE in lung epithelial cells. Our study, therefore, provides a potential therapeutic target against the airway inflammation and cell death in CS-induced COPD.
Collapse
Affiliation(s)
- Tiao Li
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Xue He
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Lijuan Luo
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Huihui Zeng
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Siying Ren
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Yan Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| |
Collapse
|
38
|
Dong S, Wei J, Bowser RK, Chen BB, Mallampalli RK, Miao J, Ye Q, Tran KC, Zhao Y, Zhao J. SCF FBXW17 E3 ubiquitin ligase regulates FBXL19 stability and cell migration. J Cell Biochem 2021; 122:326-334. [PMID: 33053230 PMCID: PMC7887023 DOI: 10.1002/jcb.29860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 01/16/2023]
Abstract
The Skp1-Cul1-F-box protein (SCF) E3 ligase complex is one of the largest ubiquitin E3 ligase families. FBXL19, a F-box protein in SCFFBXL19 E3 ligase complex, regulates a variety of cellular responses including cell migration. We have shown that FBXL19 is not stable and its degradation is mediated by the ubiquitin-proteasome system, while the ubiquitin E3 ligase for FBXL19 ubiquitination and degradation has not been identified. In the study, we discovered that a new ubiquitin E3 ligase, SCFFBXW17 , ubiquitinates and induces FBXL19 degradation. Exogenous FBXW17 targets FBXL19 for its ubiquitination and degradation. Lysine 114 in FBXL19 is a potential ubiquitin acceptor site. Acetylation of FBXL19 attenuated SCFFBXW17 -mediated FBXL19 degradation. SCFFBXL19 E3 ligase reduced Rac1 levels and cell migration, while the effects were attenuated by exogenous FBXW17. Downregulation of FBXW17 attenuated lysophosphatidic acid-induced lamellipodia formation and Rac1 accumulation at migration leading edge. Taken together with our previous studies, FBXL19 is degraded by the ubiquitin-proteasome system and its site-specific ubiquitination is mediated by SCFFBXW17 E3 ligase, which promotes cell migration.
Collapse
Affiliation(s)
- Su Dong
- Department of Physiology and Cell Biology, Dorothy M. Davis
Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | - Jianxin Wei
- Department of Medicine, The University of Pittsburgh,
Pittsburgh, PA
| | - Rachel K. Bowser
- Department of Medicine, The University of Pittsburgh,
Pittsburgh, PA
| | - Bill B. Chen
- Department of Medicine, The University of Pittsburgh,
Pittsburgh, PA
| | - Rama K. Mallampalli
- Pulmonary, Critical Care & Sleep Medicine Division, The
Ohio State University, Columbus, OH
| | - Jiaxing Miao
- Department of Physiology and Cell Biology, Dorothy M. Davis
Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | - Qinmao Ye
- Department of Physiology and Cell Biology, Dorothy M. Davis
Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | - Kevin C. Tran
- Department of Physiology and Cell Biology, Dorothy M. Davis
Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | - Yutong Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis
Heart and Lung Research Institute, The Ohio State University, Columbus, OH,Pulmonary, Critical Care & Sleep Medicine Division, The
Ohio State University, Columbus, OH
| | - Jing Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis
Heart and Lung Research Institute, The Ohio State University, Columbus, OH,Pulmonary, Critical Care & Sleep Medicine Division, The
Ohio State University, Columbus, OH,Address correspondence to: Jing Zhao, MD, PhD,
Department of Physiology and Cell Biology, The Ohio State University, 333 10th
Avenue, Graves Hall 2166D, Columbus, OH, United States, 43065. Tel:
614-685-0024;
| |
Collapse
|
39
|
Mizoguchi I, Ohashi M, Hasegawa H, Chiba Y, Orii N, Inoue S, Kawana C, Xu M, Sudo K, Fujita K, Kuroda M, Hashimoto SI, Matsushima K, Yoshimoto T. EBV-induced gene 3 augments IL-23Rα protein expression through a chaperone calnexin. J Clin Invest 2021; 130:6124-6140. [PMID: 32809973 DOI: 10.1172/jci122732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/05/2020] [Indexed: 12/27/2022] Open
Abstract
Epstein-Barr virus-induced gene 3 (EBI3) is a subunit common to IL-27, IL-35, and IL-39. Here, we explore an intracellular role of EBI3 that is independent of its function in cytokines. EBI3-deficient naive CD4+ T cells had reduced IFN-γ production and failed to induce T cell-dependent colitis in mice. Similarly reduced IFN-γ production was observed in vitro in EBI3-deficient CD4+ T cells differentiated under pathogenic Th17 polarizing conditions with IL-23. This is because the induction of expression of one of the IL-23 receptor (IL-23R) subunits, IL-23Rα, but not another IL-23R subunit, IL-12Rβ1, was selectively decreased at the protein level, but not the mRNA level. EBI3 augmented IL-23Rα expression via binding to the chaperone molecule calnexin and to IL-23Rα in a peptide-dependent manner, but not a glycan-dependent manner. Indeed, EBI3 failed to augment IL-23Rα expression in the absence of endogenous calnexin. Moreover, EBI3 poorly augmented the expression of G149R, an IL-23Rα variant that protects against the development of human colitis, because binding of EBI3 to the variant was reduced. Taken together with the result that EBI3 expression is inducible in T cells, the present results suggest that EBI3 plays a critical role in augmenting IL-23Rα protein expression via calnexin under inflammatory conditions.
Collapse
Affiliation(s)
- Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science
| | - Mio Ohashi
- Department of Immunoregulation, Institute of Medical Science
| | | | - Yukino Chiba
- Department of Immunoregulation, Institute of Medical Science
| | - Naoko Orii
- Department of Immunoregulation, Institute of Medical Science
| | - Shinya Inoue
- Department of Immunoregulation, Institute of Medical Science
| | - Chiaki Kawana
- Department of Immunoregulation, Institute of Medical Science
| | - Mingli Xu
- Department of Immunoregulation, Institute of Medical Science
| | | | - Koji Fujita
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Shin-Ichi Hashimoto
- Department of Laboratory Medicine, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Kouji Matsushima
- Department of Molecular Preventive Medicine, School of Medicine, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
40
|
Ramezani F, Babaie F, Aslani S, Hemmatzadeh M, Mohammadi FS, Gowhari-Shabgah A, Jadidi-Niaragh F, Ezzatifar F, Mohammadi H. The Role of the IL-33/ST2 Immune Pathway in Autoimmunity: New Insights and Perspectives. Immunol Invest 2021; 51:1060-1086. [PMID: 33522348 DOI: 10.1080/08820139.2021.1878212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Interleukin (IL)-33, a member of IL-1 cytokine family, is produced by various immune cells and acts as an alarm to alert the immune system after epithelial or endothelial cell damage during cell necrosis, infection, stress, and trauma. The biological functions of IL-33 largely depend on its ligation to the corresponding receptor, suppression of tumorigenicity 2 (ST2). The pathogenic roles of this cytokine have been implicated in several disorders, including allergic disease, cardiovascular disease, autoimmune disease, infectious disease, and cancers. However, alerted levels of IL-33 may result in either disease amelioration or progression. Genetic variations of IL33 gene may confer protective or susceptibility risk in the onset of autoimmune diseases. The purpose of this review is to discuss the involvement of IL-33 and ST2 in the pathogenesis of a variety of autoimmune disorders, such as autoimmune rheumatic, neurodegenerative, and endocrine diseases.
Collapse
Affiliation(s)
- Faezeh Ramezani
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Babaie
- Department of Immunology and Genetic, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Saeed Aslani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadat Mohammadi
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Farhad Jadidi-Niaragh
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ezzatifar
- Molecular and Cell Biology Research Center, Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
41
|
Ge J, Chu H, Xiao Q, Hao W, Shang J, Zhu T, Sun Z, Wei X. BC and 1,4NQ-BC up-regulate the cytokines and enhance IL-33 expression in LPS pretreatment of human bronchial epithelial cells ☆. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116452. [PMID: 33486252 DOI: 10.1016/j.envpol.2021.116452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Black carbon (BC) reacts with different substances to form secondary pollutants called aged black carbon, which causes inflammation and lung damage. BC and aged BC may enhance IL-33 in vivo, which may be derived from macrophages. The pro-inflammatory effect of IL-33 makes it essential to determine the source of IL-33, so it guides us to explore how to alleviate lung injury. In this study, a human bronchial epithelial cell line of 16HBE cells was selected, and aged BC (1,4-NQ coated BC and ozone oxidized BC) was used. We found that both BC and aged BC were able to up-regulate the mRNA expression of IL-1β, IL-6, and IL-8 except IL-33. However, the Mitogen-activated protein kinases (MAPKs) and Phosphatidylinositol 3-kinase (PI3K)/Protein kinase B (AKTs) pathways remained inactive. After pretreatment with Lipopolysaccharide (LPS), IL-33 mRNA expression was significantly increased in 16HBE cells and MAPKs and PI3K/AKT were activated. These results suggested that MAPKs and PI3K/AKT pathways were involved in the elevation of IL-33. Furthermore, epithelial cells are unlikely to be the source of lung inflammation caused by elevated IL-33 in BC and aged BC.
Collapse
Affiliation(s)
- Jianhong Ge
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, PR China; Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, PR China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Jing Shang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Tong Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, PR China; Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China.
| |
Collapse
|
42
|
Li L, Wei J, Suber TL, Ye Q, Miao J, Li S, Taleb SJ, Tran KC, Tamaskar AS, Zhao J, Zhao Y. IL-37-induced activation of glycogen synthase kinase 3β promotes IL-1R8/Sigirr phosphorylation, internalization, and degradation in lung epithelial cells. J Cell Physiol 2021; 236:5676-5685. [PMID: 33400290 DOI: 10.1002/jcp.30253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022]
Abstract
Interleukin (IL)-37 diminishes a variety of inflammatory responses through ligation to its receptor IL-1R8/Sigirr. Sigirr is a Toll like receptor/IL-1R family member. We have shown that Sigirr is not stable in response to IL-37 treatment. IL-37-induced Sigirr degradation is mediated by the ubiquitin-proteasome system, and the process is reversed by a deubiquitinase, USP13. However, the molecular mechanisms by which USP13 regulates Sigirr stability have not been revealed. In this study, we investigate the roles of glycogen synthesis kinase 3β (GSK3β) in Sigirr phosphorylation and stability. IL-37 stimulation induced Sigirr phosphorylation and degradation, as well as activation of GSK3β. Inhibition of GSK3β attenuated IL-37-induced Sigirr phosphorylation, while exogenous expressed GSK3β promoted Sigirr phosphorylation at threonine (T)372 residue. Sigirr association with GSK3β was detected. Amino acid residues 51-101 in GSK3β were identified as the Sigirr binding domain. These data indicate that GSK3β mediates IL-37-induced threonine phosphorylation of Sigirr. Further, we investigated the role of GSK3β-mediated phosphorylation of Sigirr in Sigirr degradation. Inhibition of GSK3β attenuated IL-37-induced Sigirr degradation, while T372 mutant of Sigirr was resistant to IL-37-mediated degradation. Furthermore, inhibition of Sigirr phosphorylation prevented Sigirr internalization and association with USP13, suggesting GSK3β promotes Sigirr degradation through disrupting Sigirr association with USP13.
Collapse
Affiliation(s)
- Lian Li
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Jianxin Wei
- Department of Medicine, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tomeka L Suber
- Department of Medicine, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Qinmao Ye
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Jiaxing Miao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Shuang Li
- Department of Medicine, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah J Taleb
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Kevin C Tran
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Arya S Tamaskar
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Jing Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA.,Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA.,Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
43
|
Liu X, Wu P, Su R, Xue Y, Yang C, Wang D, Ruan X, Zheng J, Yang Y, Li Z, Liu Y. IGF2BP2 stabilized FBXL19-AS1 regulates the blood-tumour barrier permeability by negatively regulating ZNF765 by STAU1-mediated mRNA decay. RNA Biol 2020; 17:1777-1788. [PMID: 32713259 DOI: 10.1080/15476286.2020.1795583] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Blood-tumour barrier (BTB) has been known to significantly attenuate the efficacy of chemotherapy for glioma. In this report, we identified that insulin-like grown factor 2 mRNA-binding protein 2 (IGF2BP2) was over-expressed in glioma microvessel and glioma endothelial cells (GECs). Knockdown of IGF2BP2 decreased the expression of lncRNA FBXL19-AS1 and tight junction-related proteins, thereby promoting BTB permeability. FBXL19-AS1 was over-expressed and more enriched in the cytoplasm of GECs. In addition, FBXL19-AS1 could bind to 3'-UTR of ZNF765 mRNA and down-regulate ZNF765 mRNA expression through STAU1-mediated mRNA decay (SMD). The low expression of ZNF765 was discovered in GECs and verified to increase BTB permeability by inhibiting the promoter activities of tight junction-related proteins. Meanwhile, ZNF765 also inhibited the transcriptional activity of IGF2BP2, thereby forming a feedback loop in regulating the BTB permeability. Single or combined application of silenced IGF2BP2 and FBXL19-AS1 improved the delivery and antitumor efficiency of doxorubicin (DOX). In general, our study revealed the regulation mechanism of IGF2BP2/FBXL19-AS1/ZNF765 axis on BTB permeability, which may provide valuable insight into treatment strategy for glioma.
Collapse
Affiliation(s)
- Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, China
| | - Peiqi Wu
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, China
| | - Rui Su
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, China
| | - Yang Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, China
| |
Collapse
|
44
|
Chauché C, Vacca F, Chia SL, Richards J, Gregory WF, Ogunkanbi A, Wear M, McSorley HJ. A Truncated Form of HpARI Stabilizes IL-33, Amplifying Responses to the Cytokine. Front Immunol 2020; 11:1363. [PMID: 32695116 PMCID: PMC7338556 DOI: 10.3389/fimmu.2020.01363] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/28/2020] [Indexed: 12/26/2022] Open
Abstract
The murine intestinal nematode Heligmosomoides polygyrus releases the H. polygyrus Alarmin Release Inhibitor (HpARI) - a protein which binds to IL-33 and to DNA, effectively tethering the cytokine in the nucleus of necrotic cells. Previous work showed that a non-natural truncation consisting of the first 2 domains of HpARI (HpARI_CCP1/2) retains binding to both DNA and IL-33, and inhibited IL-33 release in vivo. Here, we show that the affinity of HpARI_CCP1/2 for IL-33 is significantly lower than that of the full-length protein, and that HpARI_CCP1/2 lacks the ability to prevent interaction of IL-33 with its receptor. When HpARI_CCP1/2 was applied in vivo it potently amplified IL-33-dependent immune responses to Alternaria alternata allergen, Nippostrongylus brasiliensis infection and recombinant IL-33 injection, in direct contrast to the IL-33-suppressive effects of full-length HpARI. Mechanistically, we found that HpARI_CCP1/2 is able to bind to and stabilize IL-33, preventing its degradation and maintaining the cytokine in its active form. This study highlights the importance of IL-33 inactivation, the potential for IL-33 stabilization in vivo, and describes a new tool for IL-33 research.
Collapse
Affiliation(s)
- Caroline Chauché
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.,Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Francesco Vacca
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.,Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Shin Li Chia
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Josh Richards
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - William F Gregory
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Adefunke Ogunkanbi
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Martin Wear
- The Edinburgh Protein Production Facility (EPPF), Wellcome Trust Centre for Cell Biology (WTCCB), University of Edinburgh, Edinburgh, United Kingdom
| | - Henry J McSorley
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.,Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
45
|
Aimo A, Januzzi JL, Bayes-Genis A, Vergaro G, Sciarrone P, Passino C, Emdin M. Clinical and Prognostic Significance of sST2 in Heart Failure: JACC Review Topic of the Week. J Am Coll Cardiol 2020; 74:2193-2203. [PMID: 31648713 DOI: 10.1016/j.jacc.2019.08.1039] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/07/2019] [Accepted: 08/31/2019] [Indexed: 02/07/2023]
Abstract
Soluble suppression of tumorigenesis-2 (sST2) is released in response to vascular congestion and inflammatory and pro-fibrotic stimuli, and is a strong, independent predictor of mortality and heart failure (HF) hospitalization in patients with acute or chronic HF. sST2 meets 2 fundamental criteria for clinically useful biomarkers: accurate, repeated measurements are available at a reasonable cost, and the biomarker provides information not already available from a careful clinical assessment. In particular, the prognostic value of sST2 is additive to natriuretic peptides and (in the case of chronic HF) to high-sensitivity troponin T. Nevertheless, the need for a multibiomarker approach to risk stratification and the role of sST2 as a guide to therapy decision-making remain to be established. Four years after a consensus document on sST2, and following major advances in the comprehension of the clinical value of this biomarker, the authors felt it worthwhile to reappraise current knowledge on sST2 in HF.
Collapse
Affiliation(s)
- Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - James L Januzzi
- Massachusetts General Hospital and Baim Institute for Clinical Research, Boston, Massachusetts
| | - Antoni Bayes-Genis
- Hospital Universitari Germans Trias i Pujol, Badalona (Barcelona), CIBERCV, Barcelona, Spain
| | - Giuseppe Vergaro
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Department, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Paolo Sciarrone
- Cardiology Department, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Claudio Passino
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Department, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Cardiology Department, Fondazione Toscana Gabriele Monasterio, Pisa, Italy.
| |
Collapse
|
46
|
Liu G, Liu F. [Advances of IL-33/ST2 signaling pathway in allergic rhinitis]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2020; 34:565-568. [PMID: 32842193 PMCID: PMC10128328 DOI: 10.13201/j.issn.2096-7993.2020.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Indexed: 11/12/2022]
Abstract
Interleukin-33 that binds to the membrane receptor ST2L, can not only regulate mast cells, eosinophils, and group 2 innate lymphoid cells(ILC2s), but also affect the function of regulatory T cells(Treg) and Follicular helper T cells(Tfh). Interleukin-33 can activate the NF-κB and MAPK signaling pathways of the above cells, then participates in allergic immunity reaction. IL-33/ST2 signaling pathway is closely related to the allergic rhinitis(AR). IL-33 has been used as a new biomarker to evaluate the effect of AR treatment. At the same time, antagonizing IL-33 is also expected to become a new treatment. This article reviewed the latest research of IL-33/ST2 signaling pathway in the field of AR.
Collapse
|
47
|
Tong Y, Lear TB, Evankovich J, Chen Y, Londino JD, Myerburg MM, Zhang Y, Popescu ID, McDyer JF, McVerry BJ, Lockwood KC, Jurczak MJ, Liu Y, Chen BB. The RNFT2/IL-3Rα axis regulates IL-3 signaling and innate immunity. JCI Insight 2020; 5:133652. [PMID: 31990690 DOI: 10.1172/jci.insight.133652] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/09/2020] [Indexed: 01/01/2023] Open
Abstract
Interleukin-3 (IL-3) receptor α (IL-3Rα) is the α subunit of the ligand-specific IL-3R and initiates intracellular signaling in response to IL-3. IL-3 amplifies proinflammatory signaling and cytokine storm in murine sepsis models. Here we found that RNFT2 (RING finger transmembrane-domain containing protein 2, also TMEM118), a previously uncharacterized RING finger ubiquitin E3 ligase, negatively regulated IL-3-dependent cellular responses through IL-3Rα ubiquitination and degradation in the proteasome. In vitro, IL-3 stimulation promoted IL-3Rα proteasomal degradation dependent on RNFT2, and we identified IL-3Rα lysine 357 as a ubiquitin acceptor site. We determined that LPS priming reduces RNFT2 abundance, extends IL-3Rα half-life, and sensitizes cells to the effects of IL-3, acting synergistically to increase proinflammatory signaling. In vivo, IL-3 synergized with LPS to exacerbate lung inflammation in LPS and Pseudomonas aeruginosa-challenged mice; conversely, IL-3 neutralization reduced LPS-induced lung injury. Further, RNFT2 overexpression reduced lung inflammation and injury, whereas Rnft2 knockdown exacerbated inflammatory responses in LPS-induced murine lung injury. Last, we examined RNFT2 and IL-3Rα in human lung explants from patients with cystic fibrosis and also showed that IL-3 is elevated in mechanically ventilated critically ill humans at risk for acute respiratory distress syndrome. These results identify RNFT2 as a negative regulator of IL-3Rα and show a potential role for the RNFT2/IL-3Rα/IL-3 axis in regulating innate immune responses in the lung.
Collapse
Affiliation(s)
- Yao Tong
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Travis B Lear
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Environmental and Occupational Health, School of Public Health, and.,Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John Evankovich
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yanwen Chen
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - James D Londino
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Michael M Myerburg
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yingze Zhang
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Iulia D Popescu
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John F McDyer
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bryan J McVerry
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Environmental and Occupational Health, School of Public Health, and
| | - Karina C Lockwood
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael J Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine
| | - Yuan Liu
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,McGowan Institute for Regenerative Medicine, and
| | - Bill B Chen
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
48
|
Evankovich J, Lear T, Baldwin C, Chen Y, White V, Villandre J, Londino J, Liu Y, McVerry B, Kitsios GD, Mallampalli RK, Chen BB. Toll-like Receptor 8 Stability Is Regulated by Ring Finger 216 in Response to Circulating MicroRNAs. Am J Respir Cell Mol Biol 2020; 62:157-167. [PMID: 31385713 PMCID: PMC6993540 DOI: 10.1165/rcmb.2018-0373oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 08/01/2019] [Indexed: 01/16/2023] Open
Abstract
TLR8 (Toll-like receptor 8) is an intracellular pattern recognition receptor that senses RNA in endosomes to initiate innate immune signaling through NF-κB, and mechanisms regulating TLR8 protein abundance are not completely understood. Protein degradation is a cellular process controlling protein concentrations, accomplished largely through ubiquitin transfer directed by E3 ligase proteins to substrates. In the present study, we show that TLR8 has a short half-life in THP-1 monocytes (∼1 h) and that TLR8 is ubiquitinated and degraded in the proteasome. Treatment with the TLR8 agonist R848 causes rapid depletion of TLR8 concentrations at early time points, an effect blocked by proteasomal inhibition. We show a novel role for RNF216 (ring finger protein 216), an E3 ligase that targets TLR8 for ubiquitination and degradation. RNF216 overexpression reduces TLR8 concentrations, whereas RNF216 knockdown stabilizes TLR8. We describe a potential role for TLR8 activation by circulating RNA ligands in humans with acute respiratory distress syndrome (ARDS): Plasma and extracted RNA fractions from subjects with ARDS activated TLR8 in vitro. MicroRNA (miRNA) expression profiling revealed several circulating miRNAs from subjects with ARDS. miRNA mimics promoted TLR8 proteasomal degradation in THP-1 cells. These data show that TLR8 proteasomal disposal through RNF216 in response to RNA ligands regulates TLR8 cellular concentrations and may have implications for innate immune signaling. In addition, TLR8 activation by circulating RNA ligands may be a previously underrecognized stimulus contributing to excessive innate immune signaling characteristic of ARDS.
Collapse
Affiliation(s)
- John Evankovich
- Department of Medicine, Acute Lung Injury Center of Excellence
| | - Travis Lear
- Department of Environmental and Occupational Health, School of Public Health
| | | | | | - Virginia White
- Department of Medicine, Acute Lung Injury Center of Excellence
| | - John Villandre
- Department of Medicine, Acute Lung Injury Center of Excellence
| | - James Londino
- Department of Medicine, The Ohio State University, Columbus, Ohio; and
| | - Yuan Liu
- Department of Medicine, Acute Lung Injury Center of Excellence
- Aging Institute
- McGowan Institute for Regenerative Medicine
| | - Bryan McVerry
- Department of Medicine, Acute Lung Injury Center of Excellence
| | - Georgios D. Kitsios
- Department of Medicine, Acute Lung Injury Center of Excellence
- Center for Medicine and the Microbiome, and
| | - Rama K. Mallampalli
- Department of Medicine, Acute Lung Injury Center of Excellence
- Department of Medicine, The Ohio State University, Columbus, Ohio; and
- Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Bill B. Chen
- Department of Medicine, Acute Lung Injury Center of Excellence
- Aging Institute
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
49
|
Li L, Wei J, Mallampalli RK, Zhao Y, Zhao J. TRIM21 Mitigates Human Lung Microvascular Endothelial Cells' Inflammatory Responses to LPS. Am J Respir Cell Mol Biol 2019; 61:776-785. [PMID: 31184939 PMCID: PMC6890403 DOI: 10.1165/rcmb.2018-0366oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/16/2019] [Indexed: 01/16/2023] Open
Abstract
Endothelial cell (EC) inflammation is regarded as an important pathogenic feature of many inflammatory diseases, including acute lung injury and sepsis. An increase in EC inflammation results in neutrophil infiltration from the blood to the site of inflammation, further promoting EC permeability. The ubiquitin E3 ligase TRIM21 has been implicated in human disorders; however, the roles of TRIM21 in endothelial dysfunction and acute lung injury have not been reported. Here, we reveal an antiinflammatory property of TRIM21 in a mouse model of acute lung injury and human lung microvascular ECs. Overexpression of TRIM21 by lentiviral vector infection effectively dampened LPS-induced neutrophil infiltration, cytokine release, and edema in mice. TRIM21 inhibited human lung microvascular endothelial cell inflammatory responses as evidenced by attenuation of the NF-κB pathway, release of IL-8, expression of intercellular adhesion molecules, and adhesion of monocytes to ECs. Furthermore, we demonstrated that TRIM21 was predominantly degraded by an increase in its monoubiquitination and lysosomal degradation after inflammatory stimuli. Thus, inhibition of vascular endothelial inflammation by TRIM21 provides a novel therapeutic target to lessen pulmonary inflammation.
Collapse
Affiliation(s)
- Lian Li
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, China
- Department of Physiology and Cell Biology, and
| | - Jianxin Wei
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Yutong Zhao
- Department of Physiology and Cell Biology, and
| | - Jing Zhao
- Department of Physiology and Cell Biology, and
| |
Collapse
|
50
|
Zhou Q, Su Z, Li Y, Liu Y, Wang L, Lu S, Wang S, Gan T, Liu F, Zhou X, Wei M, Liu G, Chen S. Genome-Wide Association Mapping and Gene Expression Analyses Reveal Genetic Mechanisms of Disease Resistance Variations in Cynoglossus semilaevis. Front Genet 2019; 10:1167. [PMID: 31824570 PMCID: PMC6880758 DOI: 10.3389/fgene.2019.01167] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022] Open
Abstract
The sustainable development of aquaculture has been impeded by infectious diseases worldwide. However, the genomic architecture and the genetic basis underlying the disease resistance remain poorly understood, which severely hampers both the understanding of the evolution of fish disease resistance traits and the prevention of these diseases in the aquaculture community. Cynoglossus semilaevis is a representative and commercially-important flatfish species. Here we combined genome-wide association study and Fst and nucleotide diversity filtration to identify loci important for the disease resistance. Based on 1,016,774 single-nucleotide polymorphisms (SNPs) identified from 650 Gb genome resequencing data of 505 individuals, we detected 33 SNPs significantly associated with disease resistance and 79 candidate regions after filtration steps. Both the allele frequencies and genotype frequencies of the associated loci were significantly different between the resistant and susceptible fish, suggesting a role in the genetic basis of disease resistance. The SNP with strongest association with disease resistance was located in Chr 17, at 145 bp upstream of fblx19 gene, and overlapped with the major quantitative trait locus previously identified. Several genes, such as plekha7, nucb2, and fgfr2, were also identified to potentially play roles in the disease resistance. Furthermore, the expression of some associating genes were likely under epigenetic regulations between the bacterial resistant and susceptible families. These results provide insights into the mechanism that enable variation of disease resistance to bacterial pathogen infection. The identified polymorphisms and genes are valuable targets and molecular resources for disease resistance and other traits, and for advanced breeding practice for superior germplasm in fish aquaculture.
Collapse
Affiliation(s)
- Qian Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences/Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory for Marine Fishery Biotechnology and Genetic Breeding, Qingdao, China
| | - Zhencheng Su
- Novogene Bioinformatics Technology Co., Ltd, Beijing, China
| | - Yangzhen Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences/Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
| | - Yang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences/Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
| | - Lei Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences/Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
| | - Sheng Lu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences/Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
| | - Shuanyan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences/Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
| | - Tian Gan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences/Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
| | - Feng Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences/Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
| | - Xun Zhou
- Novogene Bioinformatics Technology Co., Ltd, Beijing, China
| | - Min Wei
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences/Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
| | - Guangjian Liu
- Novogene Bioinformatics Technology Co., Ltd, Beijing, China
| | - Songlin Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences/Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory for Marine Fishery Biotechnology and Genetic Breeding, Qingdao, China
| |
Collapse
|