1
|
Ghebremedhin A, Varner JA. PI3Kγ in Tumour Inflammation: Bridging Immune Response and Cancer Progression-A Mini-Review. Immunology 2025. [PMID: 40434054 DOI: 10.1111/imm.13959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 05/04/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Phosphatidylinositol 3-kinase gamma (PI3Kγ), a class I PI3K family member, plays a critical role in modulating inflammation and immune responses within the tumour microenvironment. Emerging evidence suggests that PI3Kγ promotes myeloid cell trafficking and transcription, leading to tumour progression and metastasis. This review explores the multifaceted roles of PI3Kγ in tumour-associated inflammation, highlighting its involvement in immune cell polarisation, cytokine production, and the dynamic interaction between tumour cells and the surrounding stromal environment. We also discuss the potential therapeutic implications of targeting PI3Kγ to modulate inflammation and inhibit tumour growth. Given its pivotal role in immune response and tumour progression, PI3Kγ represents a promising target for future cancer therapies to reduce inflammation-driven tumorigenesis.
Collapse
Affiliation(s)
- Anghesom Ghebremedhin
- Moores Cancer Center, University of California, San Diego, California, USA
- Department of Pathology, University of California, San Diego, California, USA
| | - Judith A Varner
- Moores Cancer Center, University of California, San Diego, California, USA
- Department of Pathology, University of California, San Diego, California, USA
| |
Collapse
|
2
|
Mantoan Ritter L, Annear NMP, Baple EL, Ben-Chaabane LY, Bodi I, Brosson L, Cadwgan JE, Coslett B, Crosby AH, Davies DM, Daykin N, Dedeurwaerdere S, Dühring Fenger C, Dunlop EA, Elmslie FV, Girodengo M, Hambleton S, Jansen AC, Johnson SR, Kearley KC, Kingswood JC, Laaniste L, Lachlan K, Latchford A, Madsen RR, Mansour S, Mihaylov SR, Muhammed L, Oliver C, Pepper T, Rawlins LE, Schim van der Loeff I, Siddiqui A, Takhar P, Tatton-Brown K, Tee AR, Tibarewal P, Tye C, Ultanir SK, Vanhaesebroeck B, Zare B, Pal DK, Bateman JM. mTOR pathway diseases: challenges and opportunities from bench to bedside and the mTOR node. Orphanet J Rare Dis 2025; 20:256. [PMID: 40426219 PMCID: PMC12107773 DOI: 10.1186/s13023-025-03740-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/16/2025] [Indexed: 05/29/2025] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a highly conserved serine/threonine kinase that regulates key cellular processes including cell growth, autophagy and metabolism. Hyperactivation of the mTOR pathway causes a group of rare and ultrarare genetic diseases. mTOR pathway diseases have diverse clinical manifestations that are managed by distinct medical disciplines but share a common underlying molecular basis. There is a now a deep understanding of the molecular underpinning that regulates the mTOR pathway but effective treatments for most mTOR pathway diseases are lacking. Translating scientific knowledge into clinical applications to benefit the unmet clinical needs of patients is a major challenge common to many rare diseases. In this article we expound how mTOR pathway diseases provide an opportunity to coordinate basic and translational disease research across the group, together with industry, medical research foundations, charities and patient groups, by pooling expertise and driving progress to benefit patients. We outline the germline and somatic mutations in the mTOR pathway that cause rare diseases and summarise the prevalence, genetic basis, clinical manifestations, pathophysiology and current treatments for each disease in this group. We describe the challenges and opportunities for progress in elucidating the underlying mechanisms, improving diagnosis and prognosis, as well as the development and approval of new therapies for mTOR pathway diseases. We illustrate the crucial role of patient public involvement and engagement in rare disease and mTOR pathway disease research. Finally, we explain how the mTOR Pathway Diseases node, part of the Research Disease Research UK Platform, will address these challenges to improve the understanding, diagnosis and treatment of mTOR pathway diseases.
Collapse
Affiliation(s)
- Laura Mantoan Ritter
- King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK
- King's College Hospital NHS Foundation Trust, London, UK
| | - Nicholas M P Annear
- St George's University Hospitals NHS Foundation Trust, London, UK
- School of Health & Medical Sciences, City St George's, University of London, London, UK
| | | | - Leila Y Ben-Chaabane
- King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK
| | - Istvan Bodi
- King's College Hospital NHS Foundation Trust, London, UK
| | | | | | | | | | | | | | | | | | | | - Frances V Elmslie
- St George's University Hospitals NHS Foundation Trust, London, UK
- School of Health & Medical Sciences, City St George's, University of London, London, UK
| | - Marie Girodengo
- King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK
- The Francis Crick Institute, London, UK
| | - Sophie Hambleton
- Newcastle University Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Simon R Johnson
- Centre for Respiratory Research, NIHR Nottingham Biomedical Research Centre and Biodiscovery Institute, Translational Medical Sciences, University of Nottingham, Nottingham, UK
| | - Kelly C Kearley
- mTOR Node Advisory Panel (MAP), London, UK
- PTEN UK and Ireland Patient Group, London, UK
| | - John C Kingswood
- St George's University Hospitals NHS Foundation Trust, London, UK
| | | | - Katherine Lachlan
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Andrew Latchford
- Polyposis Registry, St Mark's Hospital, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | | - Sahar Mansour
- St George's University Hospitals NHS Foundation Trust, London, UK
- School of Health & Medical Sciences, City St George's, University of London, London, UK
| | | | | | | | - Tom Pepper
- PTEN Research, Cheltenham, Gloucestershire, UK
| | | | - Ina Schim van der Loeff
- Newcastle University Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Ata Siddiqui
- King's College Hospital NHS Foundation Trust, London, UK
| | | | - Katrina Tatton-Brown
- St George's University Hospitals NHS Foundation Trust, London, UK
- School of Health & Medical Sciences, City St George's, University of London, London, UK
| | | | | | - Charlotte Tye
- King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK
| | | | | | | | - Deb K Pal
- King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK
| | - Joseph M Bateman
- King's College London Institute of Psychiatry Psychology and Neuroscience, London, UK.
| |
Collapse
|
3
|
Xiang QY, Zuo M, Zhou JH, Feng C. EBV-positive diffuse large B cell lymphoma secondary to activated phosphoinositide 3 kinase δ syndrome type 1 (APDS1): a case report and literature review. Front Immunol 2025; 16:1583405. [PMID: 40406111 PMCID: PMC12095188 DOI: 10.3389/fimmu.2025.1583405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/11/2025] [Indexed: 05/26/2025] Open
Abstract
Activated phosphoinositide 3-kinase δ syndrome (APDS), an inborn error of immunity associated with gain-of-function mutations in the PIK3CD gene, is characterized by dysregulated PI3Kδ signaling. The clinical spectrum commonly includes recurrent respiratory infections and lymphoproliferative manifestations. We present an adolescent male with APDS1 manifesting recurrent sinopulmonary infections, generalized lymphadenopathy, hepatosplenomegaly, gastrointestinal manifestations, and combined T-cell/B-cell lymphopenia, complicated by Epstein-Barr virus-positive diffuse large B-cell lymphoma (EBV+ DLBCL). Whole-exome sequencing identified a heterozygous PIK3CD variant (c.3061G>A p.Glu1021Lys), supporting the molecular diagnosis of APDS1. This case adds to emerging evidence linking APDS1 with EBV-driven lymphomagenesis, thereby further supporting the critical role of PI3K δ pathway dysregulation in promoting EBV-associated lymphoid malignancies.
Collapse
Affiliation(s)
- Qiu-yuan Xiang
- Department of Hematology, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Min Zuo
- Department of Pathology, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Ji-Hao Zhou
- Department of Hematology, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Chun Feng
- Department of Hematology, The Second Clinical Medical College of Jinan University, Shenzhen, China
| |
Collapse
|
4
|
Mahendran M, Upton JEM, Ramasubramanian R, Memmott HL, Germain G, Büsch K, Laliberté F, Harrington A. Overall survival among patients with activated phosphoinositide 3-kinase delta syndrome (APDS). Orphanet J Rare Dis 2025; 20:212. [PMID: 40319290 PMCID: PMC12049806 DOI: 10.1186/s13023-025-03734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/15/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND This study aimed to describe overall survival (OS) of patients with APDS relative to the global population as well as among subsets of patients with concurrent lymphoma or hematopoietic stem cell transplant (HSCT) relative to the overall APDS population. METHODS Patient-level data were extracted from a recent systematic literature review of 351 unique patients with APDS. OS was evaluated using the Kaplan-Meier method up to age 65 years. OS rate and corresponding 95% CI were reported at each decade of age. Global mortality estimates were obtained from World Health Organization life tables for 2019. RESULTS Of the 351 patients with APDS (APDS1, 267 [76.1%]; APDS2, 83 [23.6%]; unspecified, 1 [0.3%]), 41 (11.7%) died. The OS rate was 25.0% (95% CI, 1.6-62.7%) by the last death event at 64 years of age. Starting at 12 years of age, the OS rate was numerically lower in patients with APDS relative to the global population (median OS, 64 vs. 75 years, respectively). Relative to the overall APDS population, OS rates were numerically similar in those who underwent HSCT (median OS, 64 years for both; p = 0.569), whereas OS rates were numerically lower in patients with concurrent lymphoma (median OS, 41 vs. 64 years, respectively; p = 0.109). Publication bias in source data was a possible limitation. CONCLUSION Reduced survival in patients with APDS suggests a high disease burden, particularly in those with concurrent lymphoma. These results highlight the unmet need for disease-modifying treatments for APDS.
Collapse
Affiliation(s)
| | - Julia E M Upton
- Clinical Immunology and Allergy, Department of Pediatrics, The Hospital For Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
5
|
Huang L, Zhang C, Jiang A, Lin A, Zhu L, Mou W, Zeng D, Liu Z, Tang B, Zhang J, Cheng Q, Miao K, Wei T, Luo P. T-cell Senescence in the Tumor Microenvironment. Cancer Immunol Res 2025; 13:618-632. [PMID: 40232041 DOI: 10.1158/2326-6066.cir-24-0894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/07/2024] [Accepted: 01/24/2025] [Indexed: 04/16/2025]
Abstract
T-cell senescence occurs in the tumor microenvironment (TME) and influences cancer outcomes as well as the effectiveness of immunotherapies. The TME triggers this T-cell senescence via multiple pathways, including persistent stimulation with tumor-associated antigens, altered metabolic pathways, and activation of chronic inflammatory responses. Senescent T cells exhibit characteristics such as genomic instability, loss of protein homeostasis, metabolic dysregulation, and epigenetic alterations. Direct cross-talk between senescent T cells and other immune cells further exacerbates the immunosuppressive TME. This immune-tumor cell interaction within the TME contributes to impaired tumor antigen recognition and surveillance by T cells. The presence of senescent T cells is often associated with poor prognosis and reduced efficacy of immunotherapies; thus, targeting the tumor-promoting mechanisms of T-cell senescence may provide novel insights into improving tumor immunotherapy and patient outcomes. This review explores the contributors to tumor-derived T-cell senescence, the link between T-cell senescence and tumor prognosis, and the potential for targeting T-cell senescence to enhance tumor immunotherapy.
Collapse
Affiliation(s)
- Lihaoyun Huang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lingxuan Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weiming Mou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Cancer Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bufu Tang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| | - Kai Miao
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Ting Wei
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
6
|
Nguyen TH, Chandrakasan S. Biomarkers of Immune Dysregulation and What They Tell Us: Gene Sequencing Is Not the Answer to Every Question. Immunol Allergy Clin North Am 2025; 45:173-188. [PMID: 40287167 DOI: 10.1016/j.iac.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Primary immune regulatory disorders (PIRDs) are inborn errors of immunity, with autoimmune, hyperinflammatory, and lymphoproliferative manifestations as presenting features rather than recurrent infections. Genetic testing remains the primary tool for diagnosing patients with immune defects. Not all suspected PIRDs have a known genetic cause. Many hyperinflammatory disorders require urgent intervention, limiting the usefulness of gene sequencing in some cases. Current clinically approved immunology tests can detect immune dysregulation even without apparent immune deficiency. This review presents commonly known patterns of immune dysregulation that can be detected with currently available immune testing and additional testing in the clinical immunology laboratories' pipeline.
Collapse
Affiliation(s)
- Thinh H Nguyen
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115-5737, USA
| | - Shanmuganathan Chandrakasan
- Immune Dysregulation and Immunohematology Program, Department of Pediatrics, Aflac Cancer and Blood Disorder Center, Children's Healthcare of Atlanta, Emory University School of Medicine, 1760 Haygood Drive NE, W-368, Atlanta, GA 30322, USA.
| |
Collapse
|
7
|
Nguyen AA, Platt CD. Flow Cytometry-based Immune Phenotyping of T and B Lymphocytes in the Evaluation of Immunodeficiency and Immune Dysregulation. Immunol Allergy Clin North Am 2025; 45:189-203. [PMID: 40287168 DOI: 10.1016/j.iac.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
There are approximately 500 congenital disorders that impair immune cell development and/or function. Patients with these disorders may present with a wide range of symptoms, including increased susceptibility to infection, autoimmunity, autoinflammation, lymphoproliferation, and/or atopy. Flow cytometry-based immune phenotyping of T and B lymphocytes plays an essential role in the evaluation of patients with these presentations. In this review, we describe the clinical utility of flow cytometry as part of a comprehensive evaluation of immune function and how this testing may be used as a diagnostic tool to identify underlying aberrant immune pathways, monitor disease activity, and assess infection risk.
Collapse
Affiliation(s)
- Alan A Nguyen
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Fegan Building 6th Floor, Boston, MA 02115, USA
| | - Craig D Platt
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, 1 Blackfan Circle, Karp Building 10th Floor, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Nieto-Patlán A, Ross J, Mohan S, Paczosa MK, Soliman R, Sarmento O, Aliu E, Thiyagarajan L, Chandra A, Picard C, Warnatz K, Jolles S, Lesmana H, Maglione PJ, Platt CD, Sediva A, Sullivan KE, Zhang K, Raval F, Tangye SG, Abraham RS. Curation of gene-disease relationships in primary antibody deficiencies using the ClinGen validation framework. J Allergy Clin Immunol 2025; 155:1647-1663. [PMID: 39826876 DOI: 10.1016/j.jaci.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/01/2025] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND The Clinical Genome Resource (ClinGen) is an international collaborative effort among scientists and clinicians, diagnostic and research laboratories, and the patient community. Using a standardized framework, ClinGen has established guidelines to classify gene-disease relationships as definitive, strong, moderate, and limited on the basis of available scientific and clinical evidence. When the genetic and functional evidence for a gene-disease relationship has conflicting interpretations or contradictory evidence, they can be disputed or refuted. OBJECTIVE We assessed genes related to primary antibody deficiencies. METHODS The ClinGen Antibody Deficiencies Gene Curation Expert Panel, using the ClinGen framework, classified genes related to primary antibody deficiency that primarily affect B-cell development and/or function, and that account for the largest proportion of inborn errors of immunity or primary immunodeficiencies. RESULTS The expert panel curated a total of 65 genes associated with humoral immune defects to validate 74 gene-disease relationships. Of these, 40 were classified as definitive, 1 as strong, 16 as moderate, 15 as limited, and 2 as disputed. The curation process involved reviewing 490 patient records and 3546 associated human phenotype ontology entries. The 3 most frequently observed terms related to primary antibody deficiency were decreased circulating antibody level, pneumonia, and lymphadenopathy. CONCLUSIONS These curations (publicly available at ClinicalGenome.org) represent the first effort to provide a comprehensive genetic and phenotypic revision of genetic disorders affecting humoral immunity, as reviewed and approved by experts in the field.
Collapse
Affiliation(s)
- Alejandro Nieto-Patlán
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Allergy, Immunology and Rheumatology, Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex; Departamento de Genética, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Justyne Ross
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Shruthi Mohan
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC
| | | | - Rasha Soliman
- Queen Mary University of London, London, United Kingdom
| | | | - Ermal Aliu
- Milton S. Hershey Medical Center, Hershey, Pa
| | - Lavvina Thiyagarajan
- Sydney Children's Hospitals Network, Sydney, Australia; School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - Anita Chandra
- Department of Clinical Immunology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Capucine Picard
- Université Paris Cité, Paris, France; Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris (APHP), Paris, France; Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Institut Imagine, Paris, France
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, United Kingdom
| | - Harry Lesmana
- Department of Medical Genetics and Genomics, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio; Department of Pediatric Hematology, Oncology and BMT, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Paul J Maglione
- Department of Medicine, Boston University Chobanian, and Avedisian School of Medicine, Boston, Mass
| | | | - Anna Sediva
- Motol University Hospital and the 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Kejian Zhang
- GoBroad Healthcare Group, GoBroad Clinical Research Center, Boren Hospital, Beijing, China
| | | | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | | |
Collapse
|
9
|
Esposto MP, Mahlaoui N, Abolhassani H, Van Aerde K, Cesaro S, Chandra A, Ehl S, Kracker S, Suarez F, Barlogis V, Parisi A, Maccari ME, Chinello M. Case Report: Activated PI3-kinase-δ syndrome and ovarian malignancies: a case series from the European ESID-APDS registry. Front Immunol 2025; 16:1572194. [PMID: 40370432 PMCID: PMC12075536 DOI: 10.3389/fimmu.2025.1572194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Activated phosphoinositide-3-kinase-delta (PI3Kδ) syndrome (APDS) is an autosomal dominant inborn error of immunity (IEI) characterized by combined immunodeficiency and immune dysregulation with increased risk for lymphoma and other non-lymphoid malignancies. We describe five patients with ovarian malignancies among 110 female APDS patients participating in the European Society for Immunodeficiencies (ESID) registry and identified three additional cases in the literature. These findings document a relevant predisposition to these non-hematological malignancies in APDS patients.
Collapse
Affiliation(s)
- Maria Pia Esposto
- Pediatric Hematology Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Nizar Mahlaoui
- Pediatric Immuno-Haematology and Rheumatology Unit, Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Hassan Abolhassani
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Koen Van Aerde
- Department of pediatric infectious disease and immunology, Amalia Children’s Hospital, Radboudumc, Nijmegen, Netherlands
| | - Simone Cesaro
- Pediatric Hematology Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Anita Chandra
- Department of Clinical Immunology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sven Kracker
- Laboratory of Lymphocyte Activation and Susceptibility to Epstein Barr Virus (EBV) infection, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | - Felipe Suarez
- Université Paris Cité, Inserm U-1163, Institut Imagine, Laboratoire of Hematological Disorders, Paris, France
- Service d’Hématologie Adulte and Centre de référence des déficits immunitaires héréditaires (CEREDIH), AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - Vincent Barlogis
- Department of Pediatric Hematology, Immunology and Oncology, APHM, Hôpital de la Timone Enfants, Marseille, France
- CEReSS Research Unit EA 3279 and Department of Public Health, Aix Marseille University, School of Medicine, Marseille, France
- Aix Marseille University, School of Medicine, Marseille, France
| | - Alice Parisi
- Department of Pathological Anatomy, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Maria Elena Maccari
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Children’s Hospital, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matteo Chinello
- Pediatric Hematology Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| |
Collapse
|
10
|
Tabassum S, Grün S, Molloy B, Jones E, Buckley PG, Amet R, McElligott AM, Doherty DG, Ehl S, Leahy TR. A Novel Description of Immunodeficiency and Immune Dysregulation in a 14-Year-Old Girl with Noonan Syndrome 13. J Clin Immunol 2025; 45:87. [PMID: 40257485 PMCID: PMC12011885 DOI: 10.1007/s10875-025-01881-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Affiliation(s)
- Saira Tabassum
- Department of Paediatric Immunology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Sarah Grün
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Ben Molloy
- Genuity Science (Ireland), Cherrywood Business Park, Building 4, Dublin, Ireland
| | - Eppie Jones
- Genuity Science (Ireland), Cherrywood Business Park, Building 4, Dublin, Ireland
| | - Patrick G Buckley
- Genuity Science (Ireland), Cherrywood Business Park, Building 4, Dublin, Ireland
| | - Rebecca Amet
- John Durkan Leukaemia Laboratories, Trinity College, Dublin, Ireland
| | | | - Derek G Doherty
- Discipline of Immunology, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland
| | - Stephan Ehl
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg, Germany
| | - Timothy Ronan Leahy
- Department of Paediatric Immunology, Children's Health Ireland at Crumlin, Dublin, Ireland.
- Discipline of Paediatrics, School of Medicine, Trinity College, Dublin, Ireland.
| |
Collapse
|
11
|
Ranjbarnejad T, Abolhassani H, Sherkat R, Salehi M, Ranjbarnejad F, Vatandoost N, Sharifi M. Exploring Monogenic, Polygenic, and Epigenetic Models of Common Variable Immunodeficiency. Hum Mutat 2025; 2025:1725906. [PMID: 40265101 PMCID: PMC12014265 DOI: 10.1155/humu/1725906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 12/21/2024] [Accepted: 03/21/2025] [Indexed: 04/24/2025]
Abstract
Common variable immunodeficiency (CVID) is the most frequent symptomatic inborn error of immunity (IEI). CVID is genetically heterogeneous and occurs in sporadic or familial forms with different inheritance patterns. Monogenic mutations have been found in a low percentage of patients, and multifactorial or polygenic inheritance may be involved in unsolved patients. In the complex disease model, the epistatic effect of multiple variants in several genes and environmental factors such as infections may contribute. Epigenetic modifications, such as DNA methylation changes, are also proposed to be involved in CVID pathogenesis. In general, the pathogenic mechanism and molecular basis of CVID disease are still unknown, and identifying patterns of association across the genome in polygenic models and epigenetic modification profiles in CVID requires more studies. Here, we describe the current knowledge of the molecular genetic basis of CVID from monogenic, polygenic, and epigenetic aspects.
Collapse
Affiliation(s)
- Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansoor Salehi
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Science, Isfahan, Iran
| | - Fatemeh Ranjbarnejad
- Medical Biology Research Center, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Liu L, Hao Z, Yang X, Li Y, Wang S, Li L. Metabolic reprogramming in T cell senescence: a novel strategy for cancer immunotherapy. Cell Death Discov 2025; 11:161. [PMID: 40204707 PMCID: PMC11982223 DOI: 10.1038/s41420-025-02468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Abstract
The complex interplay between cancer progression and immune senescence is critically influenced by metabolic reprogramming in T cells. As T cells age, especially within the tumor microenvironment, they undergo significant metabolic shifts that may hinder their proliferation and functionality. This manuscript reviews how metabolic alterations contribute to T cell senescence in cancer and discusses potential therapeutic strategies aimed at reversing these metabolic changes. We explore interventions such as mitochondrial enhancement, glycolytic inhibition, and lipid metabolism adjustments that could rejuvenate senescent T cells, potentially restoring their efficacy in tumor suppression. This review also focuses on the significance of metabolic interventions in T cells with aging and further explores the future direction of the metabolism-based cancer immunotherapy in senescent T cells.
Collapse
Affiliation(s)
- Li Liu
- The Operation Room, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhanying Hao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xi Yang
- Department of General Surgery, Sanya People's Hospital, Sanya, China
| | - Yan Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Siyang Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Linze Li
- The Operation Room, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
13
|
Yu W, Jie S, Su G, Zhuangwei N, Yiqing Z, Suhong C, Guiyuan L. The ultrafine powder of atractylodis macrocephalae rhizoma improves immune function in naturally aging rats by regulating the PI3K/Akt/NF-κB signaling pathway. Front Pharmacol 2025; 16:1550357. [PMID: 40255567 PMCID: PMC12006087 DOI: 10.3389/fphar.2025.1550357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/21/2025] [Indexed: 04/22/2025] Open
Abstract
Background The phenomenon of population aging presents a significant global challenge, with the aging population in China steadily increasing. As individuals progress in age, there is a gradual deterioration of human organs and systems, as well as a decline in the immune system, referred to as immunosenescence. Atractylodis macrocephalae rhizoma (BZ) has been historically used in China for its medicinal properties, including gastrointestinal improvement, immunomodulation, anti-aging, antioxidant effects, and anti-tumor effects. Nevertheless, there remains a gap in understanding the pharmacological and molecular mechanisms underlying its anti-immunosenescence effects. Methods This study employed UPLC-ESI-MS and network pharmacology to create a network map of BZ ultrafine powder (BZU) and its aging targets. Enrichment analysis was then used to identify the primary mechanistic pathways underlying BZU's anti-immunosenescence effects. The primary components of BZU were quantitatively analyzed using high-performance liquid chromatography (HPLC). Naturally aging rats were used to examine the effects of different oral doses (0.25, 0.5, and 1 g/kg) of BZU over 5 weeks on aging performance, peripheral blood immunophenotyping and cell count, and splenic lymphocyte proliferation rate. To validate the findings of network pharmacology, quantitative RT-PCR, Western blotting, and immunofluorescence analyses were conducted. Results Our analyses demonstrated that BZU improved various indicators of aging in naturally aging rats, such as increasing the number of voluntary activities, enhance grip strength and fatigue resistance, increasing the microcirculatory blood flow and improving hematological levels. The BZU administration enhanced T and B lymphocyte proliferation and significantly improved the lymphocyte-to-T cell subpopulation ratio. It can elevate serum IL-2 and IL-4 levels while reducing IL-6, IFN-γ and TNF-α levels in naturally aging rats. Finally, it increased CD3 protein expression in the spleen while decreasing protein levels of PI3K, p-AKT, IKKα/β, and NF-κB. It also decreased the mRNA expression of Pik3cg, Akt1, Pdk1 and Nfκb1. Conclusion These findings suggest that BZU may enhance lymphocyte proliferation by inhibiting the PI3K/Akt/NF-κB signaling pathway, correcting immune cell imbalances, reducing inflammatory responses, and ultimately enhancing immune function and potentially delaying aging.
Collapse
Affiliation(s)
| | | | | | | | | | - Chen Suhong
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lv Guiyuan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
14
|
Yamamoto H, Matano T. SIV-specific neutralizing antibody induction following selection of a PI3K drive-attenuated nef variant. eLife 2025; 12:RP88849. [PMID: 40029304 PMCID: PMC11875539 DOI: 10.7554/elife.88849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
HIV and simian immunodeficiency virus (SIV) infections are known for impaired neutralizing antibody (NAb) responses. While sequential virus-host B cell interaction appears to be basally required for NAb induction, driver molecular signatures predisposing to NAb induction still remain largely unknown. Here we describe SIV-specific NAb induction following a virus-host interplay decreasing aberrant viral drive of phosphoinositide 3-kinase (PI3K). Screening of seventy difficult-to-neutralize SIVmac239-infected macaques found nine NAb-inducing animals, with seven selecting for a specific CD8+ T-cell escape mutation in viral nef before NAb induction. This Nef-G63E mutation reduced excess Nef interaction-mediated drive of B-cell maturation-limiting PI3K/mammalian target of rapamycin complex 2 (mTORC2). In vivo imaging cytometry depicted preferential Nef perturbation of cognate Envelope-specific B cells, suggestive of polarized contact-dependent Nef transfer and corroborating cognate B-cell maturation post-mutant selection up to NAb induction. Results collectively exemplify a NAb induction pattern extrinsically reciprocal to human PI3K gain-of-function antibody-dysregulating disease and indicate that harnessing the PI3K/mTORC2 axis may facilitate NAb induction against difficult-to-neutralize viruses including HIV/SIV.
Collapse
Grants
- JP24fk0410066 Japan Agency for Medical Research and Development
- JP21jk0210002 Japan Agency for Medical Research and Development
- 24K21287 Ministry of Education, Culture, Sports, Science and Technology
- 21H02745 Ministry of Education, Culture, Sports, Science and Technology
- JP22wm0325006 Japan Agency for Medical Research and Development
- JP19fm0208017 Japan Agency for Medical Research and Development
- JP20fk0410022 Japan Agency for Medical Research and Development
- JP18fk0410003 Japan Agency for Medical Research and Development
- JP20fk0410011 Japan Agency for Medical Research and Development
- JP20fk0108125 Japan Agency for Medical Research and Development
- JP20jm0110012 Japan Agency for Medical Research and Development
- JP21fk0410035 Japan Agency for Medical Research and Development
- 17H02185 Ministry of Education, Culture, Sports, Science and Technology
- 18K07157 Ministry of Education, Culture, Sports, Science and Technology
- Takeda Science Foundation
- Imai Memorial Trust for AIDS Research
- Mitsui Sumitomo Insurance Welfare Foundation
Collapse
Affiliation(s)
- Hiroyuki Yamamoto
- AIDS Research Center, National Institute of Infectious DiseasesTokyoJapan
- Department of Biomedicine, University Hospital BaselBaselSwitzerland
- Joint Research Center for Human Retrovirus Infection, Kumamoto UniversityKumamotoJapan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious DiseasesTokyoJapan
- Joint Research Center for Human Retrovirus Infection, Kumamoto UniversityKumamotoJapan
- The Institute of Medical Science, The University of TokyoTokyoJapan
| |
Collapse
|
15
|
Staniek J, Rizzi M. Signaling Activation and Modulation in Extrafollicular B Cell Responses. Immunol Rev 2025; 330:e70004. [PMID: 39917832 PMCID: PMC11803499 DOI: 10.1111/imr.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
The differentiation of naive follicular B cells into either the germinal center (GC) or extrafollicular (EF) pathway plays a critical role in shaping the type, affinity, and longevity of effector B cells. This choice also governs the selection and survival of autoreactive B cells, influencing their potential to enter the memory compartment. During the first 2-3 days following antigen encounter, initially activated B cells integrate activating signals from T cells, Toll-like receptors (TLRs), and cytokines, alongside inhibitory signals mediated by inhibitory receptors. This integration modulates the intensity of signaling, particularly of the PI3K/AKT/mTOR pathway, which plays a central role in guiding developmental decisions. These early signaling events determine whether B cells undergo GC maturation or differentiate rapidly into antibody-secreting cells (ASCs) via the EF pathway. Dysregulation of these signaling pathways-whether through excessive activation or defective regulatory mechanisms-can disrupt the balance between GC and EF fates, predisposing individuals to autoimmunity. Accordingly, aberrant PI3K/AKT/mTOR signaling has been implicated in the defective selection of autoreactive B cells, increasing the risk of autoimmune disease. This review focuses on the signaling events in newly activated B cells, with an emphasis on the induction and regulation of the PI3K/AKT/mTOR pathway. It also highlights gaps in our understanding of how alternative B cell fates are regulated. Both the physiological context and the implications of inborn errors of immunity (IEIs) and complex autoimmune conditions will be discussed in this regard.
Collapse
Affiliation(s)
- Julian Staniek
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
- Faculty of Medicine, Center for Chronic Immunodeficiency, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
- Faculty of Medicine, Center for Chronic Immunodeficiency, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- CIBSS—Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| |
Collapse
|
16
|
Poudel K, Vithiananthan T, Kim JO, Tsao H. Recent progress in cancer vaccines and nanovaccines. Biomaterials 2025; 314:122856. [PMID: 39366184 DOI: 10.1016/j.biomaterials.2024.122856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
Vaccine science, nanotechnology, and immunotherapy are at the forefront of cancer treatment strategies, each offering significant potential for enhancing tumor-specific immunity and establishing long-lasting immune memory to prevent tumor recurrence. Despite the promise of these personalized and precision-based anti-cancer approaches, challenges such as immunosuppression, suboptimal immune activation, and T-cell exhaustion continue to hinder their effectiveness. The limited clinical success of cancer vaccines often stems from difficulties in identifying effective antigens, efficiently targeting immune cells, lymphoid organs, and the tumor microenvironment, overcoming immune evasion, enhancing immunogenicity, and avoiding lysosomal degradation. However, numerous studies have demonstrated that integrating nanotechnology with immunotherapeutic strategies in vaccine development can overcome these challenges, leading to potent antitumor immune responses and significant progress in the field. This review highlights the critical components of cancer vaccine and nanovaccine strategies for immunomodulatory antitumor therapy. It covers general vaccine strategies, types of vaccines, antigen forms, nanovaccine platforms, challenges faced, potential solutions, and key findings from preclinical and clinical studies, along with future perspectives. To fully unlock the potential of cancer vaccines and nanovaccines, precise immunological monitoring during early-phase trials is essential. This approach will help identify and address obstacles, ultimately expanding the available options for patients who are resistant to conventional cancer immunotherapies.
Collapse
Affiliation(s)
- Kishwor Poudel
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tulasi Vithiananthan
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Hensin Tsao
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Tse Y, Vasey N, Thomas R, Leech S, Owens S, Sayer J. How to use mTOR inhibitors in children. Arch Dis Child Educ Pract Ed 2025:edpract-2024-327852. [PMID: 39956550 DOI: 10.1136/archdischild-2024-327852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 01/31/2025] [Indexed: 02/18/2025]
Abstract
Paediatricians across many specialities and pharmacists are increasingly being asked to prescribe, or jointly look after, children treated with mammalian target of rapamycin (mTOR) inhibitors (eg, sirolimus and everolimus). There is an expanding list of conditions including tuberous sclerosis and vascular malformations where treatment with mTOR inhibitors may help. This brief practice pointer summarises the practical steps before starting these treatments, what potential side effects to discuss with families and what monitoring arrangements should be put in place.
Collapse
Affiliation(s)
- Yincent Tse
- Department of Paediatric Nephrology, Great North Children's Hospital, Newcastle upon Tyne, UK
- Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Nicola Vasey
- Pharmacy, Newcastle upon Tyne Hospital NHS Trust, Newcastle upon Tyne, UK
| | - Rhys Thomas
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Suzy Leech
- Department of Dermatology, Newcastle upon Tyne Hospital NHS Trust, Newcastle upon Tyne, UK
| | - Stephen Owens
- Paediatric Immunology and Infectious Diseases, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - John Sayer
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK
| |
Collapse
|
18
|
Bruno P, Pala D, Micoli A, Corsi M, Accetta A, Carzaniga L, Ronchi P, Fiorelli C, Formica M, Pizzirani D, Mazzucato R, Guariento S, Bertolini S, Martucci C, Allen AD, Mileo V, Capacchi S, Gallo PM, Fioni A, Xanxo Fernandez S, Villetti G, Puccini P, Civelli M, Guala M, Retini M, Martinelli P, Visentini F, Pavoni V, Daldosso M, Fontana S, Biagetti M, Capelli AM. Discovery of CHF-6523, an Inhaled Selective PI3Kδ Inhibitor for the Treatment of Chronic Obstructive Pulmonary Disease. J Med Chem 2025; 68:2444-2465. [PMID: 39635891 DOI: 10.1021/acs.jmedchem.4c02062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The design of inhaled selective phosphatidylinositol 3-kinase delta (PI3Kδ) inhibitors for the treatment of inflammatory lung diseases was pursued. Knowledge-based design of a novel isocoumarin scaffold that was able to adopt a propeller-shape topology ensured the desired PI3Kδ selectivity. Achievement of low nanomolar cellular potencies through hinge binder group optimization, reduction of intrinsic permeability through head group optimization to extend lung retention, and screening of crystalline forms suitable for administration as dry powders culminated in the identification of compound 18. This novel inhaled selective PI3Kδ inhibitor displayed durable anti-inflammatory activity in a disease-relevant rat model of Th-2-driven acute lung inflammation and safe in vitro and in vivo preclinical profiles. Therefore, compound 18 showed the appropriate discovery profile and was progressed to clinical trials in healthy volunteers and chronic obstructive pulmonary disease (COPD) patients as CHF-6523.
Collapse
Affiliation(s)
- Paolo Bruno
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Daniele Pala
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Alessandra Micoli
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Mauro Corsi
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Alessandro Accetta
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Laura Carzaniga
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Paolo Ronchi
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Claudio Fiorelli
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Michele Formica
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Daniela Pizzirani
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Roberta Mazzucato
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Sara Guariento
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Serena Bertolini
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Cataldo Martucci
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Andrew Dennis Allen
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Valentina Mileo
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Silvia Capacchi
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Paola Maria Gallo
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Alessandro Fioni
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | | | - Gino Villetti
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Paola Puccini
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Maurizio Civelli
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Matilde Guala
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Michele Retini
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Prisca Martinelli
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Filippo Visentini
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Valentina Pavoni
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Matteo Daldosso
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Stefano Fontana
- Aptuit, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Matteo Biagetti
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Anna Maria Capelli
- Chiesi Farmaceutici S.p.A, Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| |
Collapse
|
19
|
Büsch K, Memmott HL, McLaughlin HM, Upton JEM, Harrington A. Genetic Etiologies and Outcomes in Malignancy and Mortality in Activated Phosphoinositide 3-Kinase Delta Syndrome: A Systematic Review. Adv Ther 2025; 42:752-771. [PMID: 39636570 PMCID: PMC11787279 DOI: 10.1007/s12325-024-03066-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION This analysis evaluated literature on patients with activated phosphoinositide 3-kinase delta syndrome (APDS) to better understand the genetic etiologies and occurrence of mortality in this population. METHODS A systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses approach, including all articles published in English prior to March 13, 2023, in PubMed and Embase. Patients included in the study had reported either (1) APDS diagnosis or (2) ≥ 1 clinical sign consistent with APDS and a first-degree relative with genetically confirmed APDS. Reported age at last observation was also a required outcome. Publications not meeting these criteria were excluded. Data were summarized using descriptive statistics. RESULTS The search identified 108 publications describing 351 unique patients with 39 distinct disease-causing variants. Among these, 41 (12%) deaths were reported, with a mean age at last follow-up of 19.6 (range, 1-64) years. A cause of death was reported for 80% (33/41) of deaths; lymphoma (24%, 10/41) and infections (22%, 9/41) were the most common causes. Types of infections causing death were severe uncontrollable infections (n = 3), sepsis (n = 2), viral infection (varicella zoster pneumonitis [n = 1], cytomegalovirus and adenovirus [n = 1], and Epstein-Barr virus [n = 1]), and infection (n = 1). Mean age at death for lymphoma was 24.9 (range, 1-41) years, and all nine patients who died from infections died before the age of 15 years. The mean age at first APDS symptom was 2.0 (range, < 1-22) years, and mean age at APDS diagnosis was 13.4 (range, 0-56) years; the mean time between symptoms and diagnosis was 10.6 (range, 0-44) years. Limitations of the study were primarily related to the data source. CONCLUSION Patients with APDS suffer early mortality, largely from lymphoma and infection, with large time gaps between symptoms and diagnosis. These findings highlight the need for improved diagnostics, earlier genetic testing for APDS, increased awareness of familial testing, and targeted therapies.
Collapse
Affiliation(s)
- Katharina Büsch
- KJM Büsch Consulting GmbH, Industriestrasse 24, 6300, Zug, Switzerland
| | - Heidi L Memmott
- Pharming Healthcare, Inc., 10 Independence Blvd, Warren, NJ, 07059, USA
| | | | - Julia E M Upton
- Division of Immunology and Allergy, Department of Paediatrics, The Hospital For Sick Children, 175 Elizabeth St, Room 13-14-027, Toronto, ON, M5G 2G3, Canada
- Department of Paediatrics, Temerty School of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Amanda Harrington
- Pharming Healthcare, Inc., 10 Independence Blvd, Warren, NJ, 07059, USA.
| |
Collapse
|
20
|
Knight V. Phospho-flow cytometry assays for diagnostic use - A discussion of assay utility and assay development and validation challenges. J Immunol Methods 2025; 537:113818. [PMID: 39855543 DOI: 10.1016/j.jim.2025.113818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 11/03/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Detection of changes in phosphorylation of cell signaling molecules using flow cytometry is termed "phosphoflow" or "phospho-flow cytometry". Phosphoflow has wide application for basic research into the mechanics of cell signaling, for evaluating aberrant signaling in cancerous cells and tissues, for studying efficacy or off-target effects during drug and vaccine development, and for functional assessment of pathogenic variants of genes that are known to play a role in development or function of the immune system. Phosphoflow has not been widely adopted in clinical laboratories owing to the challenges with developing and validating robust assays consistent with clinical laboratory regulatory standards. This review provides a brief overview of the utility of phosphoflow and points of consideration for development and validation of phosphoflow assays for diagnostic use, with a focus on inborn errors of immunity.
Collapse
Affiliation(s)
- Vijaya Knight
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado School of Medicine, Immunopathology and Hematopathology Laboratory, Children's Hospital, 13123 East 16(th) Avenue, Aurora, CO 80045, United States of America.
| |
Collapse
|
21
|
Whalen J, Chandra A, Kracker S, Ehl S, Seidel MG, Gulas I, Dron L, Velummailum R, Nagamuthu C, Liu S, Tutein Nolthenius J, Maccari ME. Comparative efficacy of leniolisib (CDZ173) versus standard of care on rates of respiratory tract infection and serum immunoglobulin M (IgM) levels among individuals with activated phosphoinositide 3-kinase delta (PI3Kδ) syndrome (APDS): an externally controlled study. Clin Exp Immunol 2025; 219:uxae107. [PMID: 39673396 PMCID: PMC11754865 DOI: 10.1093/cei/uxae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/22/2024] [Accepted: 11/29/2024] [Indexed: 12/16/2024] Open
Abstract
Leniolisib, an oral, targeted phosphoinositide 3-kinase delta (PI3Kδ) inhibitor, was well-tolerated and efficacious versus placebo in treating individuals with activated PI3Kδ syndrome (APDS), an ultra-rare inborn error of immunity (IEI), in a 12-week randomised controlled trial. However, longer-term comparative data versus standard of care are lacking. This externally controlled study compared the long-term effects of leniolisib on annual rate of respiratory tract infections and change in serum immunoglobulin M (IgM) levels versus current standard of care, using data from the leniolisib single-arm open-label extension study 2201E1 (NCT02859727) and the European Society for Immunodeficiencies (ESID) registry. The endpoints were chosen following feasibility assessment considering comparability and availability of data from both sources. Baseline characteristics between groups were balanced through inverse probability of treatment weighting. The leniolisib-treated group included 37 participants, with 62 and 49 participants in the control group for the respiratory tract infections and serum IgM analyses, respectively. Significant reductions in the annual rate of respiratory tract infections (rate ratio: 0.34; 95% confidence interval [CI]: 0.19, 0.59) and serum IgM levels (treatment effect: -1.09 g/L; 95% CI: -1.78, -0.39, P = 0.002) were observed in leniolisib-treated individuals versus standard of care. The results were consistent across all sensitivity analyses, regardless of censoring, baseline infection rate definition, missing data handling, or covariate selection. These novel data provide an extended comparison of leniolisib treatment versus standard of care, highlighting the potential for leniolisib to deliver long-term benefits by restoring immune system function and reducing infection rate, potentially reducing complications and treatment burden.
Collapse
Affiliation(s)
- John Whalen
- Pharming Group N.V., Leiden, The Netherlands
| | - Anita Chandra
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Sven Kracker
- Université Paris Cité, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, F-7015, Paris, France
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus G Seidel
- Division of Pediatric Hematology Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Austria
| | | | | | | | | | | | | | - Maria Elena Maccari
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
22
|
Tomlinson PR, Knox RG, Perisic O, Su H, Brierley GV, Williams RL, Semple RK. Paradoxical dominant negative activity of an immunodeficiency-associated activating PIK3R1 variant. eLife 2025; 13:RP94420. [PMID: 39835783 PMCID: PMC11750134 DOI: 10.7554/elife.94420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
PIK3R1 encodes three regulatory subunits of class IA phosphoinositide 3-kinase (PI3K), each associating with any of three catalytic subunits, namely p110α, p110β, or p110δ. Constitutional PIK3R1 mutations cause diseases with a genotype-phenotype relationship not yet fully explained: heterozygous loss-of-function mutations cause SHORT syndrome, featuring insulin resistance and short stature attributed to reduced p110α function, while heterozygous activating mutations cause immunodeficiency, attributed to p110δ activation and known as APDS2. Surprisingly, APDS2 patients do not show features of p110α hyperactivation, but do commonly have SHORT syndrome-like features, suggesting p110α hypofunction. We sought to investigate this. In dermal fibroblasts from an APDS2 patient, we found no increased PI3K signalling, with p110δ expression markedly reduced. In preadipocytes, the APDS2 variant was potently dominant negative, associating with Irs1 and Irs2 but failing to heterodimerise with p110α. This attenuation of p110α signalling by a p110δ-activating PIK3R1 variant potentially explains co-incidence of gain-of-function and loss-of-function PIK3R1 phenotypes.
Collapse
Affiliation(s)
- Patsy R Tomlinson
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic ScienceCambridgeUnited Kingdom
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic ScienceCambridgeUnited Kingdom
| | - Rachel G Knox
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic ScienceCambridgeUnited Kingdom
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic ScienceCambridgeUnited Kingdom
- The National Institute for Health Research Cambridge Biomedical Research CentreCambridgeUnited Kingdom
| | - Olga Perisic
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Helen Su
- Laboratory of Clinical Immunology & Microbiology, Intramural Research Program, National Institute of Allergy and Infectious Disease, National Institutes of HealthBethesdaUnited States
| | - Gemma V Brierley
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic ScienceCambridgeUnited Kingdom
- Department of Comparative Biomedical Science, The Royal Veterinary CollegeLondonUnited Kingdom
| | | | - Robert K Semple
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic ScienceCambridgeUnited Kingdom
- The National Institute for Health Research Cambridge Biomedical Research CentreCambridgeUnited Kingdom
- Centre for Cardiovascular Science, University of EdinburghEdinburghUnited Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
23
|
FitzPatrick AM, Chin AT, Nirenberg S, Cunningham-Rundles C, Sacco K, Perlmutter J, Dasso JF, Tsalatsanis A, Maru J, Creech J, Walter JE, Hartog N, Izadi N, Palmucci M, Butte MJ, Loewy K, Relan A, Rider NL. Piloting an automated query and scoring system to facilitate APDS patient identification from health systems. Front Immunol 2025; 15:1508780. [PMID: 39906746 PMCID: PMC11790479 DOI: 10.3389/fimmu.2024.1508780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/20/2024] [Indexed: 02/06/2025] Open
Abstract
Introduction Patients with activated PI3Kδ syndrome (APDS) may elude diagnoses for nearly a decade. Methods to hasten the identification of these patients, and other patients with inborn errors of immunity (IEIs), are needed. We sought to demonstrate that querying electronic health record (EHR) systems by aggregating disparate signs into a risk score can identify these patients. Methods We developed a structured query language (SQL) script using literature-validated APDS-associated clinical concepts mapped to ICD-10-CM codes. We ran the query across EHRs from 7 large, US-based medical centers encompassing approximately 17 million patients. The query calculated an "APDS Score," which stratified risk for APDS for all individuals in these systems. Scores for all known patients with APDS (n=46) were compared. Results The query identified all but one known patient with APDS (98%; 45/46) as well as patients with other complex disease. Median score for all patients with APDS was 9 (IQR = 5.75; range 1-25). Sensitivity analysis suggested an optimal cutoff score of 7 (sensitivity = 0.70). Conclusion Disease-specific queries are a relatively simple method to foster patient identification across the rare-disease spectrum. Such methods are even more important for disorders such as APDS where an approved, pathway-specific treatment is available in the US.
Collapse
Affiliation(s)
| | - Aaron T. Chin
- Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sharon Nirenberg
- Division of Informatics and Data Architecture, Icahn School of Medicine, Departments of Scientific Computing and Data, Mount Sinai School of Medicine, New York, NY, United States
| | - Charlotte Cunningham-Rundles
- Division of Clinical Immunology, Icahn School of Medicine, Departments of Medicine and Pediatrics, Mount Sinai School of Medicine, New York, NY, United States
| | - Keith Sacco
- Department of Child Health, University of Arizona College of Medicine and Division of Pulmonology, Section of Allergy-Immunology, Phoenix Children’s Hospital, Phoenix, AZ, United States
| | | | - Joseph F. Dasso
- Department of Pediatric Allergy and Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Athanasios Tsalatsanis
- Research Methodology and Biostatistics Core, Morsani College of Medicine, University of South Florida Health, St. Petersburg, FL, United States
| | - Jay Maru
- Management Analyst, Research Methodology and Biostatistics Core, Morsani College of Medicine, University of South Florida Health, St. Petersburg, FL, United States
| | - Jessica Creech
- Department of Pediatrics, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Jolan E. Walter
- Department of Pediatric Allergy and Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Nicholas Hartog
- Division of Allergy and Immunology, Helen DeVos Children’s Hospital and Corewell Health, Grand Rapids, Michigan State University College of Human Medicine, East Lansing, MI, United States
| | - Neema Izadi
- Division of Clinical Immunology and Allergy, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Mandy Palmucci
- Division of Information Services, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Manish J. Butte
- Department of Pediatrics and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Klaus Loewy
- Department of Information Services, Texas Children’s Hospital, Houston, TX, United States
| | - Anurag Relan
- Pharming Healthcare, Inc., Warren, NJ, United States
| | - Nicholas L. Rider
- Department of Health Systems & Implementation Science, Virginia Tech Carilion School of Medicine, Division of Allergy-Immunology Carilion Clinic, Roanoke, VA, United States
| |
Collapse
|
24
|
Conti F, Moratti M, Sabattini E, Zinzani PL. Expert insights on Hodgkin's lymphoma development in an activated PI3K delta syndrome patient undergoing leniolisib treatment. Front Immunol 2025; 15:1517543. [PMID: 39872539 PMCID: PMC11770023 DOI: 10.3389/fimmu.2024.1517543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025] Open
Abstract
Activated PI3K delta syndrome (APDS) is a primary immunodeficiency that is caused by mutations in the PI3K signalling pathway resulting in either gain-of-function or loss-of-function phenotypes of APDS 1 and 2. Malignancy is one of the most serious complications associated with APDS patients, with the most commonly occurring of these being lymphoma, and is the most common cause of death in APDS patients. Management of APDS is complex and variable due to the heterogeneous nature of the disease and ranges from antimicrobial and immunosuppressant agents to haematopoetic stem cell transplantation. More recently, an increasing level of interest has been shown in the use of more targeted agents such as PI3Kδ-specific inhibitors. Here, we provide expert perspective on the suspected causality of a case of lymphoma observed in a 20-year-old female patient who was included in a clinical trial of leniolisib, a PI3K inhibitor.
Collapse
Affiliation(s)
- Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Mattia Moratti
- Specialty School of Paediatrics-Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Elena Sabattini
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Pier Luigi Zinzani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| |
Collapse
|
25
|
Abad MR, Alerany C, González LI, Neth O, Payares-Herrera C, Rodríguez-Gallego C, Trillo JL, Herrmann KH, Figueiredo R, Gil A. Value contribution of leniolisib in the Treatment of Activated PI3Kδ syndrome (APDS) in Spain using Multi-Criteria Decision Analysis (MCDA). GLOBAL & REGIONAL HEALTH TECHNOLOGY ASSESSMENT 2025; 12:9-15. [PMID: 39882388 PMCID: PMC11776101 DOI: 10.33393/grhta.2025.3199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/02/2024] [Indexed: 01/31/2025] Open
Abstract
Background Activated phosphoinositide 3-kinase (PI3K) δ Syndrome (APDS) is an ultra-rare, potentially life-threatening disease that lacks approved treatments in Spain. This study aimed to apply Multi-Criteria Decision Analysis (MCDA) to assess the value of the first pharmacological treatment for APDS in Spain. Methods A multidisciplinary group of 8 experts evaluated the selective PI3Kδ inhibitor leniolisib against Standard of Care (SoC). An MCDA framework tailored for Orphan Drugs (ODs), consisting of 5 comparative and 2 quantitative non-comparative criteria, was used. Re-scoring followed a group discussion. Results Leniolisib scored higher than SoC in all criteria, including efficacy and safety. It was deemed highly valuable as the first disease-modifying treatment, with a positive therapeutic impact and potential to improve patients' quality of life. Additionally, leniolisib may lead to cost savings. The supporting data was considered of high quality. Conclusion Based on MCDA methodology and stakeholder experience in APDS management, leniolisib is seen as a value-added treatment option compared to SoC in Spain.
Collapse
Affiliation(s)
| | - Carmen Alerany
- Pharmacy Department, H.U. Vall d’ Hebron, Barcelona - Spain
| | | | - Olaf Neth
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit H.U. Virgen del Rocío, Seville - Spain
| | | | - Carlos Rodríguez-Gallego
- Department of Immunology, University Hospital of Gran Canaria Dr Negrin, Las Palmas de Gran Canaria, Spain; Department of Medical and Surgical Sciences, School of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain; Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria - Spain
| | | | | | | | - Alicia Gil
- Omakase Consulting S.L., Barcelona - Spain
| |
Collapse
|
26
|
Fernandes-Pineda, M, Zea-Vera AF. Lymphoproliferation and hyper-IgM as the first manifestation of activated phosphoinositide 3-kinase δ syndrome: A case report. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2024; 44:10-15. [PMID: 39836850 PMCID: PMC11949422 DOI: 10.7705/biomedica.7436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/06/2024] [Indexed: 01/23/2025]
Abstract
Activated phosphoinositide 3-kinase δ syndrome is an inborn error of immunity due to mutations within the genes responsible for encoding PI3Kδ subunits. This syndrome results in an excessive activation of the phosphoinositide 3-kinase signaling pathway. Gainof-function mutations in the gene PIK3R1 (encoding p85α, p55α, and p50α) lead to the development of the activated PI3K δ syndrome. Notably, the clinical presentations of this syndrome often closely resemble those of other primary immunodeficiencies. We present a case involving a 15-year-old male who displayed an immunological phenotype that bore a striking resemblance to hyper-IgM syndrome. Whole exome sequencing was undertaken to pinpoint the underlying genetic mutation. Our investigation successfully identified a heterozygous splice site mutation previously reported within the well-established hotspot of the PIK3R1 gene (GRCh37, c.1425+1 G>T). The diverse spectrum of inborn errors of immunity underscores the pivotal role of identifying gene mutations, particularly in patients presenting clinical manifestations spanning autoimmune disorders, lymphoproliferative conditions, and antibody deficiencies. Such precise genetic diagnoses hold significant potential for improving patient care and management.
Collapse
Affiliation(s)
- Mónica Fernandes-Pineda,
- Departamento de Medicina Interna, Universidad del Valle, Cali, ColombiaUniversidad del ValleUniversidad del ValleCaliColombia
| | - Andrés F. Zea-Vera
- Departamento de Microbiología, Facultad de Salud, Universidad del Valle, Cali, ColombiaUniversidad del ValleUniversidad del ValleCaliColombia
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disorders, National Institutes of Health, Bethesda, MD, USANational Institutes of HealthNational Institutes of HealthBethesdaUSA
| |
Collapse
|
27
|
Barzaghi F, Moratti M, Panza G, Rivalta B, Giardino G, De Rosa A, Baselli LA, Chinello M, Marzollo A, Montin D, Marinoni M, Costagliola G, Ricci S, Lodi L, Martire B, Milito C, Trizzino A, Tommasini A, Zecca M, Badolato R, Cancrini C, Lougaris V, Pignata C, Conti F. Report of the Italian Cohort with Activated Phosphoinositide 3-Kinase δ Syndrome in the Target Therapy Era. J Clin Immunol 2024; 45:58. [PMID: 39714594 DOI: 10.1007/s10875-024-01835-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/05/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Activated Phosphoinositide 3-Kinase (PI3K) δ Syndrome (APDS), an inborn error of immunity due to upregulation of the PI3K pathway, leads to recurrent infections and immune dysregulation (lymphoproliferation and autoimmunity). METHODS Clinical and genetic data of 28 APDS patients from 25 unrelated families were collected from fifteen Italian centers. RESULTS Patients were genetically confirmed with APDS-1 (n = 20) or APDS-2 (n = 8), with pathogenic mutations in the PIK3CD or PIK3R1 genes. The median age at diagnosis was 15.5 years, with a median follow-up of 74 months (range 6-384). The main presenting symptoms were respiratory tract infections alone (57%) or associated with lymphoproliferation (17%). Later, non-clonal lymphoproliferation was the leading clinical sign (86%), followed by respiratory infections (79%) and gastrointestinal complications (43%). Malignant lymphoproliferative disorders, all EBV-encoding RNA (EBER)-positive at the histological analysis, occurred in 14% of patients aged 17-19 years, highlighting the role of EBV in lymphomagenesis in this disorder. Diffuse large B-cell lymphoma was the most frequent. Immunological work-up revealed combined T/B cell abnormalities in most patients. Treatment strategies included immunosuppression and PI3K/Akt/mTOR inhibitor therapy. Rapamycin, employed in 36% of patients, showed efficacy in controlling lymphoproliferation, while selective PI3Kδ inhibitor leniolisib, administered in 32% of patients, was beneficial on both infections and immune dysregulation. Additionally, three patients underwent successful HSCT due to recurrent infections despite ongoing prophylaxis or lymphoproliferation poorly responsive to Rapamycin. CONCLUSIONS This study underscores the clinical heterogeneity and challenging diagnosis of APDS, highlighting the importance of multidisciplinary management tailored to individual needs and further supporting leniolisib efficacy.
Collapse
Affiliation(s)
- Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mattia Moratti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Giuseppina Panza
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Beatrice Rivalta
- Research and Clinical Unit of Primary Immunodeficiencies, IRCCS Bambin Gesù Children Hospital, Rome, Italy
- PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Giuliana Giardino
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Antonio De Rosa
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Lucia Augusta Baselli
- Pediatric Immunorheumatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Matteo Chinello
- Pediatric Hematology-Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Davide Montin
- Department of Pediatric and Public Health Sciences, University of Torino and Regina Margherita Children's Hospital, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Maddalena Marinoni
- SSD Oncoematologia Pediatrica, Dipartimento materno infantile, Ospedale Filippo del Ponte, ASST Sette Laghi, Varese, Italy
| | - Giorgio Costagliola
- Section of Pediatric Hematology and Oncology, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Silvia Ricci
- Department of Health Sciences, University of Florence, Florence, Italy
- Immunology Unit, Department of Pediatrics, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Lorenzo Lodi
- Department of Health Sciences, University of Florence, Florence, Italy
- Immunology Unit, Department of Pediatrics, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Baldassarre Martire
- Maternal and Child Department, Unit of Pediatrics and Neonatology, "Monsignor A.R. Dimiccoli" Hospital, Barletta, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonino Trizzino
- Department of Pediatric Hematology and Oncology, "ARNAS Civico Di Cristina Benfratelli" Hospital, Palermo, Italy
| | - Alberto Tommasini
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health, IRCCS Burlo Garofalo, Trieste, Italy
| | - Marco Zecca
- Paediatric Haematology and Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Raffaele Badolato
- Molecular Medicine Institute "Angelo Nocivelli", Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali civili, Brescia, Italy
| | - Caterina Cancrini
- Research and Clinical Unit of Primary Immunodeficiencies, IRCCS Bambin Gesù Children Hospital, Rome, Italy
- Department of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
| | - Vassilios Lougaris
- Pediatrics Clinic, Department of Clinical and Experimental Sciences, University of Brescia, Azienda Socio Sanitaria Territoriale Spedali Civili di Brescia, Brescia, Italy
| | - Claudio Pignata
- Department of Translational Medical Science, Pediatric Section, Federico II University, Via S. Pansini, 5, 80131 , Naples, Italy.
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
28
|
Cortesi M, Dotta L, Cattalini M, Lougaris V, Soresina A, Badolato R. Unmasking inborn errors of immunity: identifying the red flags of immune dysregulation. Front Immunol 2024; 15:1497921. [PMID: 39749336 PMCID: PMC11693724 DOI: 10.3389/fimmu.2024.1497921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
Inborn errors of immunity (IEI) are rare diseases that affect the immune system. According to the latest International Union of Immunological Societies (IUIS) classification, 485 different IEI have been identified. Even if increased susceptibility to infections is the best-known symptom, IEI are no longer defined by the higher likelihood of infections alone. Immune dysregulation with autoimmune disease and hyperinflammation, lymphoproliferation, and malignancy are common manifestations and could be the only symptoms of IEI that must be recognized. An exclusive focus on infection-centered warning signs would miss around 25% of patients with IEI who initially present with other manifestations. Timely and appropriate diagnosis and treatment are essential to enhance the quality of life (QoL) and, in some cases, survival, as patients are susceptible to life-threatening infections or autoimmunity. In addition, the advantage of early diagnosis in IEI with immune dysregulation (i.e. CTLA4 deficiency, LRBA deficiency, NF-kB1/NF-kB2 deficiency, activated phosphoinositide 3-kinase delta syndrome -APDS-) is the initiation of targeted therapies with precise re-balancing of the dysregulated immune pathways (i.e., biologicals, selective inhibitors) or definitive therapy (i.e., HSCT).
Collapse
Affiliation(s)
- Manuela Cortesi
- Pediatrics Clinic and Institute for Molecular Medicine “A. Nocivelli”, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Rao VK. Beyond FAScinating: advances in diagnosis and management of autoimmune lymphoproliferative syndrome and activated PI3 kinase δ syndrome. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2024; 2024:126-136. [PMID: 39644063 PMCID: PMC11665610 DOI: 10.1182/hematology.2024000537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Refractory autoimmune mutilineage cytopenias can present in childhood associated with chronic nonmalignant lymphoproliferation (splenomegaly, hepatomegaly, and/or lymphadenopathy). Cytopenias due to peripheral destruction and sequestration have been well recognized since the 1950s and are often lumped together as eponymous syndromes, such as Evans syndrome and Canale-Smith syndrome. Though their clinical and genetic diagnostic workup may appear daunting, it can provide the basis for early intervention, genetic counseling, and empirical and targeted therapies. Autoimmune lymphoproliferative syndrome (ALPS), activated phosphatidylinositol 3-kinase delta syndrome (APDS), and many other related genetic disorders are otherwise collectively known as inborn errors of immunity (IEI). They present in early childhood as refractory autoimmune cytopenias due to immune dysregulation leading to lymphadenopathy, splenomegaly, and increased susceptibility to lymphoma. More recently, controlled clinical trials have shown that some of these immune system disorders with hematological manifestations might be more readily amenable to specific targeted treatments, thus preventing end-organ damage and associated comorbidities. Over the last 20 years, both rapamycin and mycophenolate mofetil have been successfully used as steroid-sparing long-term measures in ALPS. Current therapeutic options for APDS/PASLI (phosphoinositide 3-kinase [PI3K]-associated senescent T lymphocytes, lymphadenopathy, and immunodeficiency) include the orally bioavailable PI3Kδ inhibitor, leniolisib, which was licensed by the US Food and Drug Administration (FDA) in 2023 for use in individuals older than 12 years as a targeted treatment. Paradigms learned from patients with rare genetic disorders like ALPS and APDS may help in exploring and streamlining molecular therapy strategies in the wider group of IEIs presenting with refractory cytopenias and lymphoproliferation.
Collapse
|
30
|
Aitken RJ. Paternal age, de novo mutations, and offspring health? New directions for an ageing problem. Hum Reprod 2024; 39:2645-2654. [PMID: 39361588 PMCID: PMC11630042 DOI: 10.1093/humrep/deae230] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/07/2024] [Indexed: 10/05/2024] Open
Abstract
This Directions article examines the mechanisms by which a father's age impacts the health and wellbeing of his children. Such impacts are significant and include adverse birth outcomes, dominant genetic conditions, neuropsychiatric disorders, and a variety of congenital developmental defects. As well as age, a wide variety of environmental and lifestyle factors are also known to impact offspring health via changes mediated by the male germ line. This picture of a dynamic germ line responsive to a wide range of intrinsic and extrinsic factors contrasts with the results of trio studies indicating that the incidence of mutations in the male germ line is low and exhibits a linear, monotonic increase with paternal age (∼two new mutations per year). While the traditional explanation for this pattern of mutation has been the metronomic plod of replication errors, an alternative model pivots around the 'faulty male' hypothesis. According to this concept, the genetic integrity of the male germ line can be dynamically impacted by age and a variety of other factors, and it is the aberrant repair of such damage that drives mutagenesis. Fortunately, DNA proofreading during spermatogenesis is extremely effective and these mutant cells are either repaired or deleted by apoptosis/ferroptosis. There appear to be only two mechanisms by which mutant germ cells can escape this apoptotic fate: (i) if the germ cells acquire a mutation that by enhancing proliferation or suppressing apoptosis, permits their clonal expansion (selfish selection hypothesis) or (ii) if a genetically damaged spermatozoon manages to fertilize an oocyte, which then fixes the damage as a mutation (or epimutation) as a result of defective DNA repair (oocyte collusion hypothesis). Exploration of these proposed mechanisms should not only help us better understand the aetiology of paternal age effects but also inform potential avenues of remediation.
Collapse
Affiliation(s)
- Robert John Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
31
|
Remiker AS, Lopes JPM, Jesudas R, Superdock A, Park N, Pateva I. Case Report: Early-onset or recalcitrant cytopenias as presenting manifestations of activated PI3Kδ syndrome. Front Pediatr 2024; 12:1494945. [PMID: 39664282 PMCID: PMC11632462 DOI: 10.3389/fped.2024.1494945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/25/2024] [Indexed: 12/13/2024] Open
Abstract
Background Patients with recurrent, chronic, or refractory cytopenias represent a challenging subgroup that may harbor an underlying diagnosis, such as an inborn error of immunity (IEI). Patients with IEIs such as activated phosphoinositide 3-kinase delta syndrome (APDS), frequently have hematologic manifestations, but these are not often reported as presenting symptoms. As a result, IEIs may be overlooked in patients presenting with early and/or recalcitrant cytopenias. Here, we describe the diagnostic journey and management of three patients who presented to a pediatric hematologist/oncologist with early-onset or recalcitrant cytopenias and were ultimately diagnosed with APDS. Case presentations Patients presented with early-onset and/or refractory cytopenias, with two of the three developing multilineage cytopenias. Prior to an APDS diagnosis, two patients underwent a total of approximately 20 procedures, including biopsies, invasive endoscopies, and imaging, with one undergoing eight differential diagnoses that were ruled out through additional testing. Recalcitrant cytopenias, a history of infection, and a family history of lymphoproliferation, infection, or autoimmunity raised suspicion of an underlying IEI, leading to genetic testing. Genetic testing identified a pathogenic variant of PIK3CD in each patient, resulting in the diagnosis of APDS. Following these diagnoses, two patients underwent modifications in the management of care with the administration of intravenous immunoglobulin therapy (IVIG), the mTOR inhibitor sirolimus, or surgical procedures. These treatment modifications either improved or resolved the cytopenias. The third patient showed improvement in immune thrombocytopenia with IVIG 1 month prior to receiving a definitive diagnosis. Following diagnosis, follow-up genetic testing of family members led to the identification of additional cases of APDS. Conclusions These cases highlight the importance of early genetic evaluation in patients with early-onset or recalcitrant cytopenias and demonstrate the challenges of differential diagnosis. In addition, these cases demonstrate beneficial changes in management and outcomes that can follow a definitive diagnosis, including the identification of targeted treatment options. Collectively, this case series supports the notion that underlying IEIs should be considered in the workup of early-onset or recalcitrant cytopenias, particularly in patients who present with a combination of hematologic and immunologic manifestations that are refractory to treatment, manifest at an unusually young age, or can be tied to family history.
Collapse
Affiliation(s)
- Allison S. Remiker
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Division of Hematology/Oncology/Blood and Bone Marrow Transplantation, Children's Wisconsin Hospital, Milwaukee, WI, United States
| | - Joao Pedro Matias Lopes
- Division of Pediatric Allergy/Immunology, UH Rainbow Babies & Children's Hospital, Cleveland, OH, United States
| | - Rohith Jesudas
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Alexandra Superdock
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Nami Park
- Medical Affairs, Pharming Healthcare, Inc., Warren, NJ, United States
| | - Irina Pateva
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- Hematologic Malignancies II, US Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
32
|
IJspeert H, Dalm VASH, van Zelm MC, Edwards ESJ. Hyperactivation of the PI3K pathway in inborn errors of immunity: current understanding and therapeutic perspectives. IMMUNOTHERAPY ADVANCES 2024; 4:ltae009. [PMID: 39679264 PMCID: PMC11638974 DOI: 10.1093/immadv/ltae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/06/2024] [Indexed: 12/17/2024] Open
Abstract
The phosphoinositide-3-kinase (PI3K) pathway function is crucial to the normal development, differentiation, and function of immune cells including B, T, and NK cells. Following the description of two cohorts of patients with an inboirn error of immunity (also known as primary immunodeficiency) with gain-of-function variants in the PIK3CD gene a decade ago, the disease entity activated PI3K delta syndrome (APDS) was named. Since then, many more patients with PIK3CD variants have been described, and loss-of-function variants in PIK3R1 and PTEN have also been linked to APDS. Importantly, the availability of small molecules that inhibit the PI3K pathway has enabled targeted treatment of APDS patients. In this review, we define (i) the PI3K pathway and its role in inborn errors of immunity; (ii) the clinical and immunological presentation of APDS1 (PIK3CD GOF), APDS2 (PIK3R1 LOF), and related disorders; (iii) Diagnostic approaches to identify and functionally validate the genetic causes of disease; (iv) therapeutic interventions to target PI3K hyperactivation; and finally (v) current challenges and future perspectives that require attention for the optimal treatment of patients with APDS and APDS-L diseases.
Collapse
Affiliation(s)
- Hanna IJspeert
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Academic Center for Rare Immunological Diseases (RIDC), Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Virgil A S H Dalm
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Academic Center for Rare Immunological Diseases (RIDC), Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Division of Allergy & Clinical Immunology, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Menno C van Zelm
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Alfred Hospital, Melbourne, VIC, Australia
| | - Emily S J Edwards
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
33
|
Tomlinson PR, Knox R, Perisic O, Su HC, Brierley GV, Williams RL, Semple RK. Paradoxical dominant negative activity of an immunodeficiency-associated activating PIK3R1 variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.02.565250. [PMID: 38077044 PMCID: PMC10705566 DOI: 10.1101/2023.11.02.565250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
PIK3R1 encodes three regulatory subunits of class IA phosphoinositide 3-kinase (PI3K), each associating with any of three catalytic subunits, namely p110α, p110β or p110δ. Constitutional PIK3R1 mutations cause diseases with a genotype-phenotype relationship not yet fully explained: heterozygous loss-of-function mutations cause SHORT syndrome, featuring insulin resistance and short stature attributed to reduced p110α function, while heterozygous activating mutations cause immunodeficiency, attributed to p110δ activation and known as APDS2. Surprisingly, APDS2 patients do not show features of p110α hyperactivation, but do commonly have SHORT syndrome-like features, suggesting p110α hypofunction. We sought to investigate this. In dermal fibroblasts from an APDS2 patient, we found no increased PI3K signalling, with p110δ expression markedly reduced. In preadipocytes, the APDS2 variant was potently dominant negative, associating with Irs1 and Irs2 but failing to heterodimerise with p110α. This attenuation of p110α signalling by a p110δ-activating PIK3R1 variant potentially explains co-incidence of gain-of-function and loss-of-function PIK3R1 phenotypes.
Collapse
Affiliation(s)
- Patsy R. Tomlinson
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Rachel Knox
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
- The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Olga Perisic
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Helen C. Su
- Laboratory of Clinical Immunology & Microbiology, Intramural Research Program, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Gemma V. Brierley
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
- Department of Comparative Biomedical Science, The Royal Veterinary College, London NW1 0TU, UK
| | | | - Robert K. Semple
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
- The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
34
|
Golec DP, Gazzinelli-Guimaraes P, Chauss D, Nagashima H, Yu K, Hill T, Nivelo L, Cannons JL, Perry J, Joshi I, Pereira N, Oliveira FMS, Cruz AC, Druey KM, Lack JB, Nutman TB, Villarino AV, O'Shea JJ, Afzali B, Schwartzberg PL. A PI3Kδ-Foxo1-FasL signaling amplification loop rewires CD4 + T helper cell signaling, differentiation and epigenetic remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620691. [PMID: 39803425 PMCID: PMC11722529 DOI: 10.1101/2024.10.28.620691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
While inputs regulating CD4+ T helper cell (Th) differentiation are well-defined, the integration of downstream signaling with transcriptional and epigenetic programs that define Th-lineage identity remain unresolved. PI3K signaling is a critical regulator of T cell function; activating mutations affecting PI3Kδ result in an immunodeficiency with multiple T cell defects. Using mice expressing activated-PI3Kδ, we found aberrant expression of proinflammatory Th1-signature genes under Th2-inducing conditions, both in vivo and in vitro. This dysregulation was driven by a robust PI3Kδ-IL-2-Foxo1 signaling loop, fueling Foxo1-inactivation, loss of Th2-lineage restriction, altered chromatin accessibility and global impairment of CTCF-DNA interactions. Surprisingly, ablation of Fasl, a Foxo1-repressed gene, restored normal Th2 differentiation, TCR signaling and CTCF expression. BioID revealed Fas interactions with TCR-signaling components, which were supported by Fas-mediated potentiation of TCR signaling. Our results highlight Fas-FasL signaling as a critical intermediate in phenotypes driven by activated-PI3Kδ, thereby linking two key pathways of immune dysregulation.
Collapse
Affiliation(s)
- Dominic P Golec
- Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Pedro Gazzinelli-Guimaraes
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Science, George Washington University, Washington, DC, USA
| | - Daniel Chauss
- Immunoregulation Section, NIDDK, NIH, Bethesda, MD, USA
| | | | - Kang Yu
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA
| | - Tom Hill
- NIAID Collaborative Bioinformatics Resource (NCBR), NIAID, NIH, Bethesda, MD, USA
| | - Luis Nivelo
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Jillian Perry
- Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Ilin Joshi
- Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Nicolas Pereira
- Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Fabrício Marcus Silva Oliveira
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Science, George Washington University, Washington, DC, USA
| | - Anthony C Cruz
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA
| | - Kirk M Druey
- Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Justin B Lack
- NIAID Collaborative Bioinformatics Resource (NCBR), NIAID, NIH, Bethesda, MD, USA
| | - Thomas B Nutman
- Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Alejandro V Villarino
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - John J O'Shea
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA
| | - Behdad Afzali
- Immunoregulation Section, NIDDK, NIH, Bethesda, MD, USA
| | | |
Collapse
|
35
|
Fekrvand S, Abolhassani H, Esfahani ZH, Fard NNG, Amiri M, Salehi H, Almasi-Hashiani A, Saeedi-Boroujeni A, Fathi N, Mohtashami M, Razavi A, Heidari A, Azizi G, Khanmohammadi S, Ahangarzadeh M, Saleki K, Hassanpour G, Rezaei N, Yazdani R. Cancer Trends in Inborn Errors of Immunity: A Systematic Review and Meta-Analysis. J Clin Immunol 2024; 45:34. [PMID: 39466473 DOI: 10.1007/s10875-024-01810-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Patients with inborn errors of immunity (IEI) are susceptible to developing cancer due to defects in the immune system. The prevalence of cancer is higher in IEI patients compared to the immunocompetent population and cancers are considered as an important and common cause of death in IEI patients. OBJECTIVES To systematically review demographic, genetic and cancer-related data of IEI patients with a history of malignancy. Moreover, we performed a meta-analysis aiming to determine the frequency of cancer in patients with different types of IEI. METHODS We conducted electronic searches on Embase, Web of Science, PubMed, and Scopus (until September 2023) introducing terms related to IEI and cancer. Studies with human subjects with confirmed IEI who had developed at least one malignancy during their lifetime were included. RESULTS A total number of 4607 IEI patients with a cancer history were included in the present study. Common variable immunodeficiency (CVID) had the highest number of reported cases (1284 cases), mainly due to a higher relative proportion of patients with predominantly antibody deficiencies (PAD) and their increased life expectancy contributing to the higher detection and reporting of cancers among these patients. The most common malignancy was hematologic/blood cancers (3026 cases, mainly diffuse large B cell lymphoma). A total number of 1173 cases (55.6%) succumbed to cancer, with the highest rate of bone marrow failure (64.9%). Among the patients with monogenic defects in IEI-associated genes, the majority of cases had ATM deficiency (926 cases), but the highest cancer frequency rate belonged to NBS1 deficiency (50.5%). 1928 cases out of total 4607 eligible cases had detailed data to allow further statistical analysis that revealed BRCA2 deficiency had the earliest cancer development (~ 38 months), lowest cure frequency, and highest fatality rate (85%), while ATM deficiency had the lowest cure frequency and highest fatality rate (72%) among total cases reviewed with exclusion of Fanconi anemia. CONCLUSION The overall reported cancer frequency in the cases reviewed with and without exclusion of Fanconi anemia was 11.1% (95% confidence interval: 9.8-12.5%) and 12.0% (95% confidence interval: 10.6-13.5%), respectively. Our study revealed that the incidence of cancer is significantly dependent on the molecular and pathway defects in IEI patients, and individualized early screening and appropriate treatment, might improve the prognosis of these patients.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Stockholm, Huddinge, Sweden
| | - Zahra Hamidi Esfahani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Najmeh Nameh Goshay Fard
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahboube Amiri
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Helia Salehi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Ali Saeedi-Boroujeni
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Nazanin Fathi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Mohtashami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Azadehsadat Razavi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Arash Heidari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Azizi
- Noncommunicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Milad Ahangarzadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of E-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of MedicalSciences (SBMU), Tehran, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Gholamreza Hassanpour
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
36
|
Karagianni F, Piperi C, Valero-Diaz S, Amato C, Vaque JP, Casar B, Papadavid E. Combination of JAKi and HDACi Exerts Antiangiogenic Potential in Cutaneous T-Cell Lymphoma. Cancers (Basel) 2024; 16:3176. [PMID: 39335148 PMCID: PMC11430229 DOI: 10.3390/cancers16183176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Angiogenesis plays a pivotal role in the growth and metastasis of tumors, including the development and progression of cutaneous lymphomas. The chick embryo CAM model has been utilized in various studies to assess the growth rate, angiogenic potential, and metastatic capability of different tumor types and malignant cell lines. However, the precise mechanisms of angiogenesis in CTCL and the influence of Ruxolitinib or Resminostat on angiogenesis in hematological malignancies and solid tumors are not well understood. Recent in vitro and in vivo data have demonstrated the synergistic inhibition of tumorigenesis and metastasis in experimental models of CTCL when using the combination of Resminostat (HDACi) with Ruxolitinib (JAKi). The present work aims to elucidate the effects of this combination on the tumor microenvironment's vascular components. We investigated the effects of Ruxolitinib (JAKi) in combination with Resminostat (HDACi) treatment in transendothelial migration of CTCL cells (106 MyLa and SeAx) by using a transwell-based transendothelial migration assay and tumor angiogenesis in vivo. We used the CTCL chick embryo CAM model with xenografted tumors derived from implanted MyLa and SeAx cells and administered topically 15 μM ruxolitinib and 5 μM Resminostat every two days during a 5-day period. JAKi and HDACi inhibited CTCL cell transendothelial migration by 75% and 82% (p < 0.05) in both CTCL engrafted cells (MyLa and SeAx, respectively) compared to the untreated group. Moreover, the combination of ruxolitinib with resminostat blocked angiogenesis by significantly reducing the number of blood vessel formation by 49% and 34% in both MyLa and SeAx, respectively (p < 0.05), indicating that the proposed combination exerted significant anti-angiogenic effects in the CAM CTCL model. Overall, these data provide valuable insights into potential therapeutic strategies targeting angiogenesis in CTCL, paving the way for more effective treatment approaches in the future.
Collapse
Affiliation(s)
- Fani Karagianni
- National Center of Rare Diseases-Cutaneous Lymphoma, Second Department of Dermatology and Venereal Diseases, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (F.K.); (C.P.)
| | - Christina Piperi
- National Center of Rare Diseases-Cutaneous Lymphoma, Second Department of Dermatology and Venereal Diseases, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (F.K.); (C.P.)
- Department of Biological Chemistry, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Sara Valero-Diaz
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain; (S.V.-D.); (C.A.)
| | - Camilla Amato
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain; (S.V.-D.); (C.A.)
- Department of Medical Biotechnology and Molecular Medicine, Università degli Studi di Milano, 20122 Milan, Italy;
| | - Jose Pedro Vaque
- Department of Medical Biotechnology and Molecular Medicine, Università degli Studi di Milano, 20122 Milan, Italy;
- Molecular Biology Department, Universidad de Cantabria-Instituto de Investigación Marqués de Valdecilla, IDIVAL, 39011 Santander, Spain
| | - Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain; (S.V.-D.); (C.A.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Evangelia Papadavid
- National Center of Rare Diseases-Cutaneous Lymphoma, Second Department of Dermatology and Venereal Diseases, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (F.K.); (C.P.)
| |
Collapse
|
37
|
Nguyen AA, Platt CD. Flow Cytometry-based Immune Phenotyping of T and B Lymphocytes in the Evaluation of Immunodeficiency and Immune Dysregulation. Clin Lab Med 2024; 44:479-493. [PMID: 39089753 DOI: 10.1016/j.cll.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
There are approximately 500 congenital disorders that impair immune cell development and/or function. Patients with these disorders may present with a wide range of symptoms, including increased susceptibility to infection, autoimmunity, autoinflammation, lymphoproliferation, and/or atopy. Flow cytometry-based immune phenotyping of T and B lymphocytes plays an essential role in the evaluation of patients with these presentations. In this review, we describe the clinical utility of flow cytometry as part of a comprehensive evaluation of immune function and how this testing may be used as a diagnostic tool to identify underlying aberrant immune pathways, monitor disease activity, and assess infection risk.
Collapse
Affiliation(s)
- Alan A Nguyen
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Fegan Building 6th Floor, Boston, MA 02115, USA
| | - Craig D Platt
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, 1 Blackfan Circle, Karp Building 10th Floor, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Bildik HN, Esenboga S, Halaclı SO, Karaatmaca B, Aytekin ES, Nabiyeva N, Akarsu A, Ocak M, Erman B, Tan C, Arikoglu T, Yaz I, Cicek B, Tezcan I, Cagdas D. A single center experience on PI3K/AKT/MTOR signaling defects: Towards pathogenicity assessment for four novel defects. Pediatr Allergy Immunol 2024; 35:e14245. [PMID: 39312287 DOI: 10.1111/pai.14245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Phosphoinositide 3 kinases (PI3K) are lipid kinases expressed in lymphocytes/myeloid cells. PI3K/AKT/mTOR signaling defects present with recurrent infections, autoimmunity, lymphoproliferation, and agammaglobulinemia. OBJECTIVE To characterize the PI3K/AKT/mTOR pathway defects and perform pathway analyses to assess novel variant pathogenicity. METHODS We included 12 patients (heterozygous PIK3CD (n = 9) and PIK3R1 (n = 1) (activated PI3K delta syndrome (APDS) with gain-of-function mutations) and homozygous PIK3R1 variant (n = 2)), performed clinical/laboratory/genetic evaluation, and flow cytometric PI3K/AKT/mTOR pathway analyses. RESULTS Median age at onset of complaints was 17.5 months (3 months to 12 years) and at diagnosis was 15.7 years (2.5-37) in APDS. Median diagnostic delay was 12.9 years (1.6-27). Recurrent respiratory tract infections (90%), lymphoproliferation (70%), autoimmune/inflammatory findings (60%), and allergy (40%) were common in APDS. Recurrent viral infections were present in 4/10 and malignancy (non-Hodgkin lymphoma and testicular yolk sac tumor) was present in 2/10 in APDS. Low CD4+ T cells(5/8) with increased CD4+ effector memory (8/8) and CD4+ TEMRA cells (6/8) were present in the given number of APDS patients. We diagnosed tubulointerstitial nephritis, Langerhans cell histiocytosis, and late-onset congenital adrenal hyperplasia in APDS. Allergic findings, lymphoproliferation/malignancy, and high IgM were present in the APDS but not in PIK3R1 deficiency. Low IgM/IgG/CD19+ B cell counts were characteristic in patients with PIK3R1 homozygous loss-of function mutations. CONCLUSION Differential diagnosis with combined immunodeficiency and diseases of immune dysregulation make molecular genetic analysis crucial for diagnosing mTOR pathway defects. It is easy to differentiate APDS and homozygous PIK3R1 defects with specific laboratory features. Additionally, mTOR pathway functional analysis is a definitive diagnostic and pathogenicity assessment tool for novel APDS mutations.
Collapse
Affiliation(s)
- Hacer Neslihan Bildik
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Saliha Esenboga
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Sevil Oskay Halaclı
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Betül Karaatmaca
- Pediatric Allergy and Immunology, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Elif Soyak Aytekin
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Nadira Nabiyeva
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ayşegul Akarsu
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Melike Ocak
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Baran Erman
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Cagman Tan
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Tugba Arikoglu
- Department of Pediatrics, Division of Allergy and Immunology, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Ismail Yaz
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Begum Cicek
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ilhan Tezcan
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Deniz Cagdas
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
39
|
Erman B, Aba U, Ipsir C, Pehlivan D, Aytekin C, Cildir G, Cicek B, Bozkurt C, Tekeoglu S, Kaya M, Aydogmus C, Cipe F, Sucak G, Eltan SB, Ozen A, Barıs S, Karakoc-Aydiner E, Kıykım A, Karaatmaca B, Kose H, Uygun DFK, Celmeli F, Arikoglu T, Ozcan D, Keskin O, Arık E, Aytekin ES, Cesur M, Kucukosmanoglu E, Kılıc M, Yuksek M, Bıcakcı Z, Esenboga S, Ayvaz DÇ, Sefer AP, Guner SN, Keles S, Reisli I, Musabak U, Demirbas ND, Haskologlu S, Kilic SS, Metin A, Dogu F, Ikinciogulları A, Tezcan I. Genetic Evaluation of the Patients with Clinically Diagnosed Inborn Errors of Immunity by Whole Exome Sequencing: Results from a Specialized Research Center for Immunodeficiency in Türkiye. J Clin Immunol 2024; 44:157. [PMID: 38954121 PMCID: PMC11219406 DOI: 10.1007/s10875-024-01759-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
Molecular diagnosis of inborn errors of immunity (IEI) plays a critical role in determining patients' long-term prognosis, treatment options, and genetic counseling. Over the past decade, the broader utilization of next-generation sequencing (NGS) techniques in both research and clinical settings has facilitated the evaluation of a significant proportion of patients for gene variants associated with IEI. In addition to its role in diagnosing known gene defects, the application of high-throughput techniques such as targeted, exome, and genome sequencing has led to the identification of novel disease-causing genes. However, the results obtained from these different methods can vary depending on disease phenotypes or patient characteristics. In this study, we conducted whole-exome sequencing (WES) in a sizable cohort of IEI patients, consisting of 303 individuals from 21 different clinical immunology centers in Türkiye. Our analysis resulted in likely genetic diagnoses for 41.1% of the patients (122 out of 297), revealing 52 novel variants and uncovering potential new IEI genes in six patients. The significance of understanding outcomes across various IEI cohorts cannot be overstated, and we believe that our findings will make a valuable contribution to the existing literature and foster collaborative research between clinicians and basic science researchers.
Collapse
Affiliation(s)
- Baran Erman
- Institute of Child Health, Hacettepe University, Ankara, Turkey.
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey.
| | - Umran Aba
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Canberk Ipsir
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Damla Pehlivan
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Caner Aytekin
- Pediatric Immunology, SBU Ankara Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Gökhan Cildir
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia
| | - Begum Cicek
- Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Ceren Bozkurt
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Sidem Tekeoglu
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Melisa Kaya
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Cigdem Aydogmus
- Department of Pediatric Allergy and Clinical Immunology, University of Health Sciences, Istanbul Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Funda Cipe
- Department of Pediatric Allergy and Clinical Immunology, Altinbas University School of Medicine, Istanbul, Turkey
| | - Gulsan Sucak
- Medical Park Bahçeşehir Hospital, Clinic of Hematology and Transplantation, İstanbul, Turkey
| | - Sevgi Bilgic Eltan
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ahmet Ozen
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Safa Barıs
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ayca Kıykım
- Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Betul Karaatmaca
- Department of Pediatric Allergy and Immunology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Hulya Kose
- Department of Pediatric Immunology, Diyarbakir Children Hospital, Diyarbakır, Turkey
| | - Dilara Fatma Kocacık Uygun
- Division of Allergy Immunology, Department of Pediatrics, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Fatih Celmeli
- Republic of Turkey Ministry of Health Antalya Training and Research Hospital Pediatric Immunology and Allergy Diseases, Antalya, Turkey
| | - Tugba Arikoglu
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Dilek Ozcan
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Balcali Hospital, Cukurova University, Adana, Turkey
| | - Ozlem Keskin
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Elif Arık
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Elif Soyak Aytekin
- Department of Pediatric Allergy and Immunology, Etlik City Hospital, Ankara, Turkey
| | - Mahmut Cesur
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ercan Kucukosmanoglu
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Mehmet Kılıc
- Division of Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, University of Firat, Elazığ, Turkey
| | - Mutlu Yuksek
- Department of Pediatric Immunology and Allergy, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Zafer Bıcakcı
- Department of Pediatric Hematology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Saliha Esenboga
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Deniz Çagdaş Ayvaz
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University School of Medicine, Ankara, Turkey
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Asena Pınar Sefer
- Department of Pediatric Allergy and Immunology, Şanlıurfa Training and Research Hospital, Şanlıurfa, Turkey
| | - Sukrü Nail Guner
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Sevgi Keles
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Ismail Reisli
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Ugur Musabak
- Department of Immunology and Allergy, Baskent University School of Medicine, Ankara, Turkey
| | - Nazlı Deveci Demirbas
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Sule Haskologlu
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Sara Sebnem Kilic
- Division of Pediatric Immunology-Rheumatology, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
- Translational Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ayse Metin
- Department of Pediatric Allergy and Immunology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Figen Dogu
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Aydan Ikinciogulları
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Ilhan Tezcan
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
40
|
Rao VK, Kulm E, Grossman J, Buchbinder D, Chong H, Bradt J, Webster S, Šedivá A, Dalm VA, Uzel G. Long-term treatment with selective PI3Kδ inhibitor leniolisib in adults with activated PI3Kδ syndrome. Blood Adv 2024; 8:3092-3108. [PMID: 38593221 PMCID: PMC11222951 DOI: 10.1182/bloodadvances.2023011000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
ABSTRACT Activated phosphoinositide 3-kinase delta (PI3Kδ) syndrome (APDS) is an inborn error of immunity that manifests as immune deficiency and dysregulation; symptoms include frequent infections and lymphoproliferation. In our dose-finding and phase 3 placebo-controlled trials, treatment with the selective PI3Kδ inhibitor leniolisib reduced lymphoproliferation and normalized lymphocyte subsets. Here, we present 6 years of follow-up from the 6 adult patients in the original dose-finding trial receiving leniolisib. We used data from the ongoing open-label extension study, which was supplemented at later time points by investigators, including health-related quality of life (HRQoL) assessed through a clinician-reported questionnaire. We observed improvements in HRQoL: 5 of 6 patients experienced an increase in physical capabilities and socialization, and a decrease in prescribed medications. Immune subsets improved in all patients: mean transitional B-cell levels decreased from 38.17% to 2.47% and the CD4:CD8 T-cell ratio normalized to 1.11. Manifestations seen before and within the first year of leniolisib exposure, such as infections and gastrointestinal conditions, attenuated after year 2, with few new conditions emerging out to year 6. Thrombocytopenia or lymphopenia remained present in half of patients at year 6. Of 83 adverse events through year 5, 90.36% were grade 1; none were grade 4/5 nor deemed leniolisib related. Collectively, we saw an enhancement in HRQoL as well as durable changes in lymphocyte subsets and clinical manifestations, further supporting the use of leniolisib as a long-term therapeutic option for the treatment of APDS. This trial was registered at www.ClinicalTrials.gov as #NCT02859727.
Collapse
Affiliation(s)
- V. Koneti Rao
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Elaine Kulm
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Bethesda, MD
| | | | - David Buchbinder
- Division of Hematology, Children’s Hospital of Orange County, Orange, CA
| | - Hey Chong
- Division of Allergy and Immunology, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | | | - Sharon Webster
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Anna Šedivá
- Department of Immunology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Virgil A. Dalm
- Division of Allergy and Clinical Immunology and Department of Immunology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Gulbu Uzel
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
41
|
Xin H, Lv Y, Wei X, Song W, Li Z, Liu Y, Gai Z. Establishment of a non-integrated iPSC (SDQLCHi068-A) line derived from a patient with autosomal dominant immunodeficiency-14A carrying a heterozygous mutation (c.3061G>A) in PIK3CD gene. Stem Cell Res 2024; 77:103385. [PMID: 38507881 DOI: 10.1016/j.scr.2024.103385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024] Open
Abstract
Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit delta (PIK3CD) gene (OMIM#602839) encodes the p110δ catalytic subunit, mainly expressed in immune cells, and is associated with autosomal dominant immunodeficiency-14A with lymphoproliferation (IMD14A, #615513). We generated a human iPS cell line from a 50-month-old boy with IMD14A carrying a heterozygous mutation (c.3061G>A, p.E1021K) in PIK3CD gene. This cell line retains the original mutation site and shows differentiation potential towards three germ layers in vitro, which can be used as a disease model for research.
Collapse
Affiliation(s)
- Hongmei Xin
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, Shandong 250022, China; Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong 250022, China
| | - Yuqiang Lv
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, Shandong 250022, China; Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong 250022, China
| | - Xuxia Wei
- Department of Gastroenterology, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, Shandong 250022, China
| | - Wei Song
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Zilong Li
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, Shandong 250022, China; Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong 250022, China.
| | - Yi Liu
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, Shandong 250022, China; Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong 250022, China
| | - Zhongtao Gai
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, Shandong 250022, China; Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong 250022, China
| |
Collapse
|
42
|
Gao Y, Lu Y, Liang X, Zhao M, Yu X, Fu H, Yang W. CD4 + T-Cell Senescence in Neurodegenerative Disease: Pathogenesis and Potential Therapeutic Targets. Cells 2024; 13:749. [PMID: 38727285 PMCID: PMC11083511 DOI: 10.3390/cells13090749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
With the increasing proportion of the aging population, neurodegenerative diseases have become one of the major health issues in society. Neurodegenerative diseases (NDs), including multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are characterized by progressive neurodegeneration associated with aging, leading to a gradual decline in cognitive, emotional, and motor functions in patients. The process of aging is a normal physiological process in human life and is accompanied by the aging of the immune system, which is known as immunosenescence. T-cells are an important part of the immune system, and their senescence is the main feature of immunosenescence. The appearance of senescent T-cells has been shown to potentially lead to chronic inflammation and tissue damage, with some studies indicating a direct link between T-cell senescence, inflammation, and neuronal damage. The role of these subsets with different functions in NDs is still under debate. A growing body of evidence suggests that in people with a ND, there is a prevalence of CD4+ T-cell subsets exhibiting characteristics that are linked to senescence. This underscores the significance of CD4+ T-cells in NDs. In this review, we summarize the classification and function of CD4+ T-cell subpopulations, the characteristics of CD4+ T-cell senescence, the potential roles of these cells in animal models and human studies of NDs, and therapeutic strategies targeting CD4+ T-cell senescence.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.G.); (Y.L.); (X.L.); (M.Z.); (X.Y.); (H.F.)
| |
Collapse
|
43
|
Li Q, Wang W, Wu Q, Zhou Q, Ying W, Hui X, Sun B, Hou J, Qian F, Wang X, Sun J. Phenotypic and Immunological Characterization of Patients with Activated PI3Kδ Syndrome 1 Presenting with Autoimmunity. J Clin Immunol 2024; 44:102. [PMID: 38634985 PMCID: PMC11026262 DOI: 10.1007/s10875-024-01705-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE Autoimmunity is a significant feature of APDS1 patients. We aimed to explore the pathogenic immune phenotype and possible mechanisms of autoimmunity in APDS1 patients. METHODS The clinical records and laboratory data of 42 APDS1 patients were reviewed. Immunophenotypes were evaluated by multiparametric flow cytometry. Autoantibodies were detected via antigen microarray analysis. RESULTS A total of 42 children with PIK3CD gene mutations were enrolled. Immunological tests revealed increased proportions of effector memory cells (86%) and central memory cells (59%) among CD4+ T cells; increased proportions of effector memory cells (83%) and terminally differentiated effector memory T cells (38%) among CD8+ T cells. Fewer CD3+ T cells and B cells and higher IgG levels were reported in patients with autoimmunity. The proportion of Tregs was decreased, and the proportions of Th9, Tfh, and Tfr cells were increased in APDS1 patients. Among APDS1 patients, higher proportion of Th2 and Tfr cells were found in those with autoimmunity. The proportions of CD11c+ B and CD21lo B cells in patients with autoimmunity were significantly increased. Antigen microarray analysis revealed a wide range of IgG/IgM autoantibodies in patients with APDS1. In patients with autoimmunity, the proportion of Tfr might be positively correlated with autoantibodies. CONCLUSIONS The pathogenic immune phenotype of APDS1 patients included (1) deceased CD3+ T-cell and B-cell counts and increased IgG levels in patients with autoimmunity, (2) an imbalanced T helper cell subset, (3) increased proportions of autoreactive B cells, and (4) distinct autoantibody reactivities in patients with autoimmunity.
Collapse
Affiliation(s)
- Qifan Li
- Department of Clinical Immunology, National Children Medical Center, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Wenjie Wang
- Department of Clinical Immunology, National Children Medical Center, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Qi Wu
- Department of Clinical Immunology, National Children Medical Center, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Qinhua Zhou
- Department of Clinical Immunology, National Children Medical Center, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Wenjing Ying
- Department of Clinical Immunology, National Children Medical Center, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Xiaoying Hui
- Department of Clinical Immunology, National Children Medical Center, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Bijun Sun
- Department of Clinical Immunology, National Children Medical Center, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Jia Hou
- Department of Clinical Immunology, National Children Medical Center, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Feng Qian
- Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiaochuan Wang
- Department of Clinical Immunology, National Children Medical Center, Children's Hospital of Fudan University, Shanghai, 201102, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 200032, China.
| | - Jinqiao Sun
- Department of Clinical Immunology, National Children Medical Center, Children's Hospital of Fudan University, Shanghai, 201102, China.
| |
Collapse
|
44
|
Yang H, He S, Liang L, Pan J. Efficacy of Nemiralisib in Chronic Obstructive Pulmonary Disease: A Systematic Review. Clin Ther 2024; 46:360-367. [PMID: 38503629 DOI: 10.1016/j.clinthera.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE Chronic obstructive pulmonary disease (COPD) is a major public health concern. Exacerbation of COPD leads to poor health and frequent episodes of increased systemic and airway inflammation. Immunomodulatory drugs have garnered extensive attention because they may reduce the rate of COPD exacerbation. This review aimed to evaluate the efficacy and safety of nemiralisib in COPD patients. METHODS Medical databases, including the Cochrane Library, EMBASE, and PubMed, were queried from inception to June 2023 to identify randomized controlled trials (RCTs) on the efficacy of nemiralisib in COPD patients. This systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The Cochrane Collaboration tool was used to assess the risk of bias of the included RCTs. Two authors independently conducted literature screening and data extraction. Key information from the included studies was extracted, tabulated, and compared using a data extraction table. Moreover, the key characteristics, quality, potential bias, and endpoint outcomes of the included studies were summarized. A meta-analysis was conducted when the study outcomes were sufficiently comparable, and the required data were available for extraction. FINDINGS Initially, 48 references were identified, leading to the inclusion of four trials. No significant difference was found between the nemiralisib and placebo groups in St George's Respiratory Questionnaire score, modified Medical Research Council Dyspnea Scale score, COPD Assessment Test score, time to next on-treatment exacerbation, proportion of patients achieving exacerbation recovery, time to exacerbation recovery, and rescue medication use. Contrastingly, the results demonstrated that nemiralisib may lower oral corticosteroid use during acute exacerbation of COPD. Meanwhile, the efficacy of nemiralisib on the exacerbation rate, as well as several parameters associated with lung function, including forced expiratory volume in 1 second, specific airway conductance, specific imaging airway wall thickness, distal specific imaging airway volume measured at functional residual capacity, specific imaging airway resistance, low attenuation score, and internal airflow lobar distribution in the lower pulmonary region, were conflicting. Attributed to the limited number of included RCTs and insufficient extracted data, it was not feasible to conduct a comprehensive meta-analysis. IMPLICATIONS Because of insufficient data, this systematic review could not make any definitive statement regarding the efficacy of nemiralisib in COPD patients. In terms of safety, nemiralisib was generally well tolerated. Further trials are required to explore the efficacy of this drug.
Collapse
Affiliation(s)
- Hongkuan Yang
- Respiratory Intensive Care Unit, Gaozhou People's Hospital, Maoming, Guangdong Province, China
| | - Shuifeng He
- The first section of the Department of Pulmonary and Critical Care Medicine, Gaozhou People's Hospital, Maoming, Guangdong Province, China
| | - Linbao Liang
- Respiratory Intensive Care Unit, Gaozhou People's Hospital, Maoming, Guangdong Province, China
| | - Junjie Pan
- Department of Pulmonary and Critical Care Medicine, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
45
|
Alkooheji I, Secord E, Buggs-Saxton C, Lulgjuraj T, Savaşan S. Sustained improvement in IPEX-like syndrome course following failed umbilical cord blood transplantation. Pediatr Hematol Oncol 2024; 41:246-249. [PMID: 37898908 DOI: 10.1080/08880018.2023.2273876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023]
Affiliation(s)
- Ishaq Alkooheji
- Children's Hospital of Michigan, Hematology/Oncology Flow Cytometry Laboratory, Central Michigan University, Detroit, Michigan, USA
| | - Elizabeth Secord
- Wayne Pediatrics, Allergy & Immunology, Wayne State University, Detroit, Michigan, USA
| | | | - Tony Lulgjuraj
- Children's Hospital of Michigan, Gastroenterology, Central Michigan University, Detroit, Michigan, USA
| | - Süreyya Savaşan
- Children's Hospital of Michigan, Hematology/Oncology Flow Cytometry Laboratory, Central Michigan University, Detroit, Michigan, USA
- Children's Hospital of Michigan, Hematology/Oncology, Bone Marrow Transplant Program, Karmanos Cancer Institute, Detroit, Michigan, USA
- Central Michigna University College of Medicine, Mt Pleasant, Michigan, USA
| |
Collapse
|
46
|
Romberg N, Le Coz C. Common variable immunodeficiency, cross currents, and prevailing winds. Immunol Rev 2024; 322:233-243. [PMID: 38014621 DOI: 10.1111/imr.13291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Common variable immunodeficiency (CVID) is a heterogenous disease category created to distinguish late-onset antibody deficiencies from early-onset diseases like agammaglobulinemia or more expansively dysfunctional combined immunodeficiencies. Opinions vary on which affected patients should receive a CVID diagnosis which confuses clinicians and erects reproducibility barriers for researchers. Most experts agree that CVID's most indeliable feature is defective germinal center (GC) production of isotype-switched, affinity-maturated antibodies. Here, we review the biological factors contributing to CVID-associated GC dysfunction including genetic, epigenetic, tolerogenic, microbiome, and regulatory abnormalities. We also discuss the consequences of these biological phenomena to the development of non-infectious disease complications. Finally, we opine on topics and lines of investigation we think hold promise for expanding our mechanistic understanding of this protean condition and for improving the lives of affected patients.
Collapse
Affiliation(s)
- Neil Romberg
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carole Le Coz
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, CNRS, Inserm, Toulouse, France
| |
Collapse
|
47
|
Lucas CL. Human genetic errors of immunity illuminate an adaptive arsenal model of rapid defenses. Trends Immunol 2024; 45:113-126. [PMID: 38302340 DOI: 10.1016/j.it.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024]
Abstract
New discoveries in the field of human monogenic immune diseases highlight critical genes and pathways governing immune responses. Here, I describe how the ~500 currently defined human inborn errors of immunity help shape what I propose is an 'adaptive arsenal model of rapid defenses', emphasizing the set of immunological defenses poised for rapid responses in the natural environment. This arsenal blurs the lines between innate and adaptive immunity and is established through molecular relays between cell types, often traversing from sensors (pathogen detection) to intermediates to executioners (pathogen clearance) via soluble factors. Predictions and missing information based on the adaptive arsenal model are discussed, as are emergent and outstanding questions fundamental to advances in the field.
Collapse
Affiliation(s)
- Carrie L Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
48
|
Bednarska K, Chowdhury R, Tobin JWD, Swain F, Keane C, Boyle S, Khanna R, Gandhi MK. Epstein-Barr virus-associated lymphomas decoded. Br J Haematol 2024; 204:415-433. [PMID: 38155519 DOI: 10.1111/bjh.19255] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023]
Abstract
Epstein-Barr virus (EBV)-associated lymphomas cover a range of histological B- and T-cell non-Hodgkin and Hodgkin lymphoma subtypes. The role of EBV on B-cell malignant pathogenesis and its impact on the tumour microenvironment are intriguing but incompletely understood. Both the International Consensus Classification (ICC) and 5th Edition of the World Health Organization (WHO-HAEM5) proposals give prominence to the distinct clinical, prognostic, genetic and tumour microenvironmental features of EBV in lymphoproliferative disorders. There have been major advances in our biological understanding, in how to harness features of EBV and its host immune response for targeted therapy, and in using EBV as a method to monitor disease response. In this article, we showcase the latest developments and how they may be integrated to stimulate new and innovative approaches for further lines of investigation and therapy.
Collapse
Affiliation(s)
- Karolina Bednarska
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Rakin Chowdhury
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Joshua W D Tobin
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Fiona Swain
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Colm Keane
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Stephen Boyle
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rajiv Khanna
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Maher K Gandhi
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
49
|
Park AY, Leney-Greene M, Lynberg M, Gabrielski JQ, Xu X, Schwarz B, Zheng L, Balasubramaniyam A, Ham H, Chao B, Zhang Y, Matthews HF, Cui J, Yao Y, Kubo S, Chanchu JM, Morawski AR, Cook SA, Jiang P, Ravell JC, Cheng YH, George A, Faruqi A, Pagalilauan AM, Bergerson JRE, Ganesan S, Chauvin SD, Aluri J, Edwards-Hicks J, Bohrnsen E, Tippett C, Omar H, Xu L, Butcher GW, Pascall J, Karakoc-Aydiner E, Kiykim A, Maecker H, Tezcan İ, Esenboga S, Heredia RJ, Akata D, Tekin S, Kara A, Kuloglu Z, Unal E, Kendirli T, Dogu F, Karabiber E, Atkinson TP, Cochet C, Filhol O, Bosio CM, Davis MM, Lifton RP, Pearce EL, Daumke O, Aytekin C, Şahin GE, Aksu AÜ, Uzel G, Koneti Rao V, Sari S, Dalgıç B, Boztug K, Cagdas D, Haskologlu S, Ikinciogullari A, Schwefel D, Vilarinho S, Baris S, Ozen A, Su HC, Lenardo MJ. GIMAP5 deficiency reveals a mammalian ceramide-driven longevity assurance pathway. Nat Immunol 2024; 25:282-293. [PMID: 38172257 PMCID: PMC11151279 DOI: 10.1038/s41590-023-01691-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/26/2023] [Indexed: 01/05/2024]
Abstract
Preserving cells in a functional, non-senescent state is a major goal for extending human healthspans. Model organisms reveal that longevity and senescence are genetically controlled, but how genes control longevity in different mammalian tissues is unknown. Here, we report a new human genetic disease that causes cell senescence, liver and immune dysfunction, and early mortality that results from deficiency of GIMAP5, an evolutionarily conserved GTPase selectively expressed in lymphocytes and endothelial cells. We show that GIMAP5 restricts the pathological accumulation of long-chain ceramides (CERs), thereby regulating longevity. GIMAP5 controls CER abundance by interacting with protein kinase CK2 (CK2), attenuating its ability to activate CER synthases. Inhibition of CK2 and CER synthase rescues GIMAP5-deficient T cells by preventing CER overaccumulation and cell deterioration. Thus, GIMAP5 controls longevity assurance pathways crucial for immune function and healthspan in mammals.
Collapse
Affiliation(s)
- Ann Y Park
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael Leney-Greene
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Matthew Lynberg
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Justin Q Gabrielski
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xijin Xu
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Schwarz
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Lixin Zheng
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Arasu Balasubramaniyam
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Structural Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Hyoungjun Ham
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brittany Chao
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yu Zhang
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Helen F Matthews
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jing Cui
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yikun Yao
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Satoshi Kubo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jean Michel Chanchu
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Aaron R Morawski
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah A Cook
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ping Jiang
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juan C Ravell
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Internal Medicine, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Yan H Cheng
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alex George
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Aiman Faruqi
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alison M Pagalilauan
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sundar Ganesan
- Biological Imaging Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Samuel D Chauvin
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jahnavi Aluri
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joy Edwards-Hicks
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Eric Bohrnsen
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Caroline Tippett
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Habib Omar
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Leilei Xu
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Geoffrey W Butcher
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - John Pascall
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine Pendik, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Marmara University, Pendik, Istanbul, Turkey
| | - Ayca Kiykim
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine Pendik, Istanbul, Turkey
| | - Holden Maecker
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - İlhan Tezcan
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Saliha Esenboga
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Raul Jimenez Heredia
- St Anna Children's Cancer Research Institute, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Deniz Akata
- Department of Radiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Saban Tekin
- Department of Basic Medical Sciences, Hamidiye Faculty of Medicine, Division of Medical Biology, University of Health Sciences, İstanbul, Turkey
| | - Altan Kara
- TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Gebze, Turkey
| | - Zarife Kuloglu
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Ankara University School of Medicine, Ankara, Türkiye
| | - Emel Unal
- Department of Pediatric Oncology, Ankara University Medical School, Ankara, Turkey
| | - Tanıl Kendirli
- Department of Pediatric Intensive Care Unit, Ankara University Medical School, Ankara, Turkey
| | - Figen Dogu
- Department of Pediatric Immunology and Allergy, Ankara University Medical School, Ankara, Turkey
| | - Esra Karabiber
- Department of Chest Diseases, Faculty of Medicine, Division of Adult Allergy-Immunology, Marmara University, Istanbul, Turkey
| | - T Prescott Atkinson
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Claude Cochet
- University Grenoble Alpes, INSERM, CEA, UMR Biosanté, Grenoble, France
| | - Odile Filhol
- University Grenoble Alpes, INSERM, CEA, UMR Biosanté, Grenoble, France
| | - Catherine M Bosio
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, Stanford University, Palo Alto, CA, USA
| | - Richard P Lifton
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Erika L Pearce
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Johns Hopkins University, Baltimore, MD, USA
| | - Oliver Daumke
- Department of Structural Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Caner Aytekin
- Department of Pediatric Immunology, Dr Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Gülseren Evirgen Şahin
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, University of Health Sciences, Dr Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Aysel Ünlüsoy Aksu
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, University of Health Sciences, Dr Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - V Koneti Rao
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sinan Sari
- Department of Pediatric Gastroenterology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Buket Dalgıç
- Department of Pediatric Gastroenterology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Kaan Boztug
- St Anna Children's Cancer Research Institute, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- St Anna Children's Hospital, Vienna, Austria
| | - Deniz Cagdas
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Sule Haskologlu
- Department of Pediatric Immunology and Allergy, Ankara University Medical School, Ankara, Turkey
| | - Aydan Ikinciogullari
- Department of Pediatric Immunology and Allergy, Ankara University Medical School, Ankara, Turkey
| | - David Schwefel
- Department of Structural Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Silvia Vilarinho
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Safa Baris
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine Pendik, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Marmara University, Pendik, Istanbul, Turkey
| | - Ahmet Ozen
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine Pendik, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Marmara University, Pendik, Istanbul, Turkey
| | - Helen C Su
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
50
|
Zhao P, Huang J, Fu H, Xu J, Li T, Zhang X, Meng Q, Zhang L, Tan L, Zhang W, Chen H, Lu X, Ding Y, He X. Activated phosphoinositide 3-kinase δ syndrome caused by PIK3CD mutations: expanding the phenotype. Pediatr Rheumatol Online J 2024; 22:24. [PMID: 38287413 PMCID: PMC10823743 DOI: 10.1186/s12969-024-00955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Germline heterozygous gain-of-function (GOF) mutations in the PIK3CD gene lead to a rare primary immunodeficiency disease known as activated phosphoinositide 3-kinase (PI3K) δ syndrome type 1(APDS1). Affected patients present a spectrum of clinical manifestations, particularly recurrent respiratory infections and lymphoproliferation, increased levels of serum immunoglobulin (Ig) M, Epstein-Barr virus (EBV) and cytomegalovirus (CMV) viremia. Due to highly heterogeneous phenotypes of APDS1, it is very likely that suspected cases may be misdiagnosed. METHODS Herein we reported three patients with different clinical presentations but harboring pathogenic variants in PIK3CD gene detected by trio whole-exome sequencing (trio-WES) and confirmed by subsequent Sanger sequencing. RESULTS Two heterozygous mutations (c.3061G > A, p.E1021K and c.1574 A > G, p.E525G) in PIK3CD (NM_005026.3) were identified by whole exome sequencing (WES) in the three patients. One of two patients with the mutation (c.3061G > A) presented with abdominal pain and diarrhea as the first symptoms, which was due to intussusception caused by multiple polyps of colon. The patient with mutation (c.1574 A > G) had an anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV)-like clinical manifestations, including multisystemic inflammation, acute nephritic syndrome, and positive perinuclear ANCA (p-ANCA), thus the diagnosis of ANCA-AAV was considered. CONCLUSIONS Our study expands the spectrums of clinical phenotype and genotype of APDS, and demonstrates that WES has a high molecular diagnostic yield for patients with immunodeficiency related symptoms, such as respiratory infections, multiple ecchymosis, ANCA-associated vasculitis, multiple ileocecal polyps, hepatosplenomegaly, and lymphoid hyperplasia. TRIAL REGISTRATION Retrospectively registered.
Collapse
Affiliation(s)
- Peiwei Zhao
- Precision Medical Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Juan Huang
- Department of Pathology, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Huicong Fu
- Department of Respiratory Medicine, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Jiali Xu
- Department of Respiratory Medicine, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Tianhong Li
- Precision Medical Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Xiankai Zhang
- Precision Medical Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Qingjie Meng
- Department of Clinical Laboratory, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Lei Zhang
- Precision Medical Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Li Tan
- Precision Medical Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Wen Zhang
- Department of Pathology, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Hebin Chen
- Department of Respiratory Medicine, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Xiaoxia Lu
- Department of Respiratory Medicine, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China.
| | - Yan Ding
- Department of Rheumatology and Immunology, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China.
| | - Xuelian He
- Precision Medical Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China.
| |
Collapse
|