1
|
Xu L, Huang J, Wang R, Feng J, Wang L, Li N, Jin M, Lin H, Chen X. A novel synthetic oxazolidinone derivative BS-153 attenuated LPS-induced inflammation via inhibiting NF-κB/pkcθ signaling pathway. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110292. [PMID: 40122191 DOI: 10.1016/j.fsi.2025.110292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/15/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025]
Abstract
BS-153, a new derivative of oxazolidinone, was firstly found having potent anti-inflammatory effects both in vitro and in vivo. Our study aimed to study its potential molecular mechanisms. Firstly, BS-153 significantly inhibited the expression levels of inflammatory mediators (iNOS and COX-2) and pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) on LPS-stimulated RAW264.7 cells in a dose-dependent manner. Subsequently, NF-κB nuclear translocation was blocked by 10 nM BS-153 after LPS-activated, and the phosphorylation of IκB, which could bind NF-κB and limit NF-κB nuclear translocation, was notably downregulated. The mechanistic investigation was followed the NF-κB-ikkα-TLR4/PKCθ pathway. The kinase panel screen and WB result revealed that BS-153 inhibited PKCθ phosphorylation on thr538 and ser643/676 site, and the expression of IL-17ɑ, instead of TLR4/myd88. Similarly in vivo anti-inflammatory activity was assessed by LPS-stimulation and tail-amputation in zebrafish and the results indicated that macrophages migration and infiltration were significantly inhibited by BS-153. In addition, RT-PCR results discovered that BS-153 can reduce the level of TNF-α, IL-1b and COX-2. In summary, we established BS-153 and evaluated anti-inflammatory effect for the first time. The mechanism analysis showed that BS-153 possesses anti-inflammatory activities by inhibiting the phosphorylation of PKCθ, and then leading to the inactivation of NF-κB pathway. These findings implied that BS-153 is a potential candidate for the treatment of inflammatory-related diseases.
Collapse
Affiliation(s)
- Liyan Xu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, China
| | - Jing Huang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, China
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, China
| | - Jinhong Feng
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250014, China
| | - Lizheng Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, China
| | - Ning Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, China
| | - Houwen Lin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250103, China
| | - Xiqiang Chen
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250103, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, China
| |
Collapse
|
2
|
Maire K, Chamy L, Ghazali S, Carratala-Lasserre M, Zahm M, Bouisset C, Métais A, Combes-Soia L, de la Fuente-Vizuete L, Trad H, Chaubet A, Savignac M, Gonzalez de Peredo A, Subramaniam A, Joffre O, Lutz PG, Lamsoul I. Fine-tuning levels of filamins a and b as a specific mechanism sustaining Th2 lymphocyte functions. Nat Commun 2024; 15:10574. [PMID: 39639023 PMCID: PMC11621393 DOI: 10.1038/s41467-024-53768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
Augmenting the portfolio of therapeutics for type 2-driven diseases is crucial to address unmet clinical needs and to design personalized treatment schemes. An attractive therapy for such diseases would consist in targeting the recruitment of T helper 2 (Th2) lymphocytes to inflammatory sites. Herein, we show the degradation of filamins (FLN) a and b by the ASB2α E3 ubiquitin ligase as a mechanism sustaining Th2 lymphocyte functions. Low levels of FLNa and FLNb confer an elongated shape to Th2 lymphocytes associated with efficient αVβ3 integrin-dependent cell migration. Genes encoding the αVβ3 integrin and ASB2α belong to the core of Th2-specific genes. Using genetically modified mice, we find that increasing the levels of FLNa and FLNb in Th2 lymphocytes reduces airway inflammation through diminished Th2 lymphocyte recruitment in inflamed lungs. Collectively, our results highlight ASB2α and its substrates FLNa and FLNb to alter Th2 lymphocyte-mediated responses.
Collapse
Affiliation(s)
- Kilian Maire
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Léa Chamy
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Samira Ghazali
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | | | - Margot Zahm
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Clément Bouisset
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Arnaud Métais
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lucie Combes-Soia
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Hussein Trad
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Adeline Chaubet
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Magali Savignac
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Arun Subramaniam
- Sanofi Immunology and Inflammation Research Therapeutic Area, Cambridge, MA, USA
| | - Olivier Joffre
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Pierre G Lutz
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France.
| | - Isabelle Lamsoul
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France.
| |
Collapse
|
3
|
Gu Y, Fang Y, Wu X, Xu T, Hu T, Xu Y, Ma P, Wang Q, Shu Y. The emerging roles of SUMOylation in the tumor microenvironment and therapeutic implications. Exp Hematol Oncol 2023; 12:58. [PMID: 37415251 PMCID: PMC10324244 DOI: 10.1186/s40164-023-00420-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Tumor initiation, progression, and response to therapies depend to a great extent on interactions between malignant cells and the tumor microenvironment (TME), which denotes the cancerous/non-cancerous cells, cytokines, chemokines, and various other factors around tumors. Cancer cells as well as stroma cells can not only obtain adaption to the TME but also sculpt their microenvironment through a series of signaling pathways. The post-translational modification (PTM) of eukaryotic cells by small ubiquitin-related modifier (SUMO) proteins is now recognized as a key flexible pathway. Proteins involved in tumorigenesis guiding several biological processes including chromatin organization, DNA repair, transcription, protein trafficking, and signal conduction rely on SUMOylation. The purpose of this review is to explore the role that SUMOylation plays in the TME formation and reprogramming, emphasize the importance of targeting SUMOylation to intervene in the TME and discuss the potential of SUMOylation inhibitors (SUMOi) in ameliorating tumor prognosis.
Collapse
Affiliation(s)
- Yunru Gu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Yuan Fang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Xi Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Tingting Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Tong Hu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Yangyue Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui Province People’s Republic of China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
5
|
Gao Y, Hu S, Li R, Jin S, Liu F, Liu X, Li Y, Yan Y, Liu W, Gong J, Yang S, Tu P, Shen L, Bai F, Wang Y. Hyperprogression of cutaneous T cell lymphoma after anti-PD-1 treatment. JCI Insight 2023; 8:164793. [PMID: 36649072 PMCID: PMC9977500 DOI: 10.1172/jci.insight.164793] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUNDImmune checkpoint blockade is an emerging treatment for T cell non-Hodgkin's lymphoma (T-NHL), but some patients with T-NHL have experienced hyperprogression with undetermined mechanisms upon anti-PD-1 therapy.METHODSSingle-cell RNA-Seq, whole-genome sequencing, whole-exome sequencing, and functional assays were performed on primary malignant T cells from a patient with advanced cutaneous T cell lymphoma who experienced hyperprogression upon anti-PD-1 treatment.RESULTSThe patient was enrolled in a clinical trial of anti-PD-1 therapy and experienced disease hyperprogression. Single-cell RNA-Seq revealed that PD-1 blockade elicited a remarkable activation and proliferation of the CD4+ malignant T cells, which showed functional PD-1 expression and an exhausted status. Further analyses identified somatic amplification of PRKCQ in the malignant T cells. PRKCQ encodes PKCθ; PKCθ is a key player in the T cell activation/NF-κB pathway. PRKCQ amplification led to high expressions of PKCθ and p-PKCθ (T538) on the malignant T cells, resulting in an oncogenic activation of the T cell receptor (TCR) signaling pathway. PD-1 blockade in this patient released this signaling, derepressed the proliferation of malignant T cells, and resulted in disease hyperprogression.CONCLUSIONOur study provides real-world clinical evidence that PD-1 acts as a tumor suppressor for malignant T cells with oncogenic TCR activation.TRIAL REGISTRATIONClinicalTrials.gov (NCT03809767).FUNDINGThe National Natural Science Foundation of China (81922058), the National Science Fund for Distinguished Young Scholars (T2125002), the National Science and Technology Major Project (2019YFC1315702), the National Youth Top-Notch Talent Support Program (283812), and the Peking University Clinical Medicine plus X Youth Project (PKU2019LCXQ012) supported this work.
Collapse
Affiliation(s)
- Yumei Gao
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Simeng Hu
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China.,Academy for Advanced Interdisciplinary Studies (AAIS), and Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program (PTN), Peking University, Beijing, China
| | - Ruoyan Li
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China.,Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Shanzhao Jin
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China.,BioMap Beijing Intelligence Technology Limited, Block C Information Center Haidian District, Beijing, China
| | - Fengjie Liu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Xiangjun Liu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yingyi Li
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yicen Yan
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Weiping Liu
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research Ministry of Education, and
| | - Jifang Gong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Shuxia Yang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Ping Tu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China.,Center for Translational Cancer Research, Peking University First Hospital, Beijing, China
| | - Yang Wang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| |
Collapse
|
6
|
Kästle M, Merten C, Hartig R, Plaza-Sirvent C, Schmitz I, Bommhardt U, Schraven B, Simeoni L. Type of PaperY192 within the SH2 Domain of Lck Regulates TCR Signaling Downstream of PLC-γ1 and Thymic Selection. Int J Mol Sci 2022; 23:ijms23137271. [PMID: 35806279 PMCID: PMC9267008 DOI: 10.3390/ijms23137271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Signaling via the TCR, which is initiated by the Src-family tyrosine kinase Lck, is crucial for the determination of cell fates in the thymus. Because of its pivotal role, ablation of Lck results in a profound block of T-cell development. Here, we show that, in addition to its well-known function in the initiation of TCR signaling, Lck also acts at a more downstream level. This novel function of Lck is determined by the tyrosine residue (Y192) located in its SH2 domain. Thymocytes from knock-in mice expressing a phosphomimetic Y192E mutant of Lck initiate TCR signaling upon CD3 cross-linking up to the level of PLC-γ1 phosphorylation. However, the activation of downstream pathways including Ca2+ influx and phosphorylation of Erk1/2 are impaired. Accordingly, positive and negative selections are blocked in LckY192E knock-in mice. Collectively, our data indicate that Lck has a novel function downstream of PLCγ-1 in the regulation of thymocyte differentiation and selection.
Collapse
Affiliation(s)
- Matthias Kästle
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
| | - Camilla Merten
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
| | - Roland Hartig
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
| | - Carlos Plaza-Sirvent
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
- Department of Molecular Immunology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Ingo Schmitz
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
- Department of Molecular Immunology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Ursula Bommhardt
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Correspondence: (B.S.); (L.S.)
| | - Luca Simeoni
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Correspondence: (B.S.); (L.S.)
| |
Collapse
|
7
|
Cammann C, Israel N, Slevogt H, Seifert U. Recycling and Reshaping-E3 Ligases and DUBs in the Initiation of T Cell Receptor-Mediated Signaling and Response. Int J Mol Sci 2022; 23:ijms23073424. [PMID: 35408787 PMCID: PMC8998186 DOI: 10.3390/ijms23073424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
T cell activation plays a central role in supporting and shaping the immune response. The induction of a functional adaptive immune response requires the control of signaling processes downstream of the T cell receptor (TCR). In this regard, protein phosphorylation and dephosphorylation have been extensively studied. In the past decades, further checkpoints of activation have been identified. These are E3 ligases catalyzing the transfer of ubiquitin or ubiquitin-like proteins to protein substrates, as well as specific peptidases to counteract this reaction, such as deubiquitinating enzymes (DUBs). These posttranslational modifications can critically influence protein interactions by targeting proteins for degradation by proteasomes or mediating the complex formation required for active TCR signaling. Thus, the basic aspects of T cell development and differentiation are controlled by defining, e.g., the threshold of activation in positive and negative selection in the thymus. Furthermore, an emerging role of ubiquitination in peripheral T cell tolerance has been described. Changes in the function and abundance of certain E3 ligases or DUBs involved in T cell homeostasis are associated with the development of autoimmune diseases. This review summarizes the current knowledge of E3 enzymes and their target proteins regulating T cell signaling processes and discusses new approaches for therapeutic intervention.
Collapse
Affiliation(s)
- Clemens Cammann
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, 17475 Greifswald, Germany;
- Correspondence: (C.C.); (U.S.); Tel.: +49-3834-86-5568 (C.C.); +49-3834-86-5587 (U.S.)
| | - Nicole Israel
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Hortense Slevogt
- Host Septomics Group, Centre for Innovation Competence (ZIK) Septomics, University Hospital Jena, 07745 Jena, Germany;
- Department of Pulmonary Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Ulrike Seifert
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, 17475 Greifswald, Germany;
- Correspondence: (C.C.); (U.S.); Tel.: +49-3834-86-5568 (C.C.); +49-3834-86-5587 (U.S.)
| |
Collapse
|
8
|
Ben-Shmuel A, Sabag B, Puthenveetil A, Biber G, Levy M, Jubany T, Awwad F, Roy RK, Joseph N, Matalon O, Kivelevitz J, Barda-Saad M. Inhibition of SHP-1 activity by PKC-θ regulates NK cell activation threshold and cytotoxicity. eLife 2022; 11:73282. [PMID: 35258455 PMCID: PMC8903836 DOI: 10.7554/elife.73282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/23/2022] [Indexed: 12/26/2022] Open
Abstract
Natural killer (NK) cells play a crucial role in immunity, killing virally infected and cancerous cells. The balance of signals initiated upon engagement of activating and inhibitory NK receptors with cognate ligands determines killing or tolerance. Nevertheless, the molecular mechanisms regulating rapid NK cell discrimination between healthy and malignant cells in a heterogeneous tissue environment are incompletely understood. The SHP-1 tyrosine phosphatase is the central negative NK cell regulator that dephosphorylates key activating signaling proteins. Though the mechanism by which SHP-1 mediates NK cell inhibition has been partially elucidated, the pathways by which SHP-1 is itself regulated remain unclear. Here, we show that phosphorylation of SHP-1 in NK cells on the S591 residue by PKC-θ promotes the inhibited SHP-1 ‘folded’ state. Silencing PKC-θ maintains SHP-1 in the active conformation, reduces NK cell activation and cytotoxicity, and promotes tumor progression in vivo. This study reveals a molecular pathway that sustains the NK cell activation threshold through suppression of SHP-1 activity.
Collapse
Affiliation(s)
- Aviad Ben-Shmuel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Batel Sabag
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Abhishek Puthenveetil
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Guy Biber
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Moria Levy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Tammir Jubany
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Fatima Awwad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Roshan Kumar Roy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Noah Joseph
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Jessica Kivelevitz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
9
|
Li YY, Cen H, Gong BN, Mai S, Wang QL, Mou S, Li Y. TCR-Induced Tyrosine Phosphorylation at Tyr270 of SUMO Protease SENP1 by Lck Modulates SENP1 Enzyme Activity and Specificity. Front Cell Dev Biol 2022; 9:789348. [PMID: 35186948 PMCID: PMC8847397 DOI: 10.3389/fcell.2021.789348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Small ubiquitin-like modifier (SUMO) modification plays an important regulatory role in T cell receptor (TCR) signaling transduction. SUMO-specific proteases (SENPs) have dual-enzyme activities; they can both process SUMO precursors as endopeptidases and participate in SUMO deconjugation as isopeptidases. It remains unclear how the SUMO system, especially SENP1, is regulated by TCR signaling. Here, we show that Lck phosphorylates tyrosine 270 (Y270) of SENP1 upon TCR stimulation, indicating that SENP1 is a substrate of Lck. In vitro endopeptidase activity analysis showed that mutating SENP1 Y270 to either phenylalanine (F) to mimic the phosphorylation-defective state or to glutamate (E) to mimic the negative charge of tyrosine phosphorylation in the enzyme microenvironment did not change its endopeptidase activity towards pre-SUMO1. However, SENP1 Y270E but not Y270F mutation exhibited decreased endopeptidase activity towards pre-SUMO3. Through in vivo isopeptidase activity analysis by rescue expression of SENP1 and its Y270 mutants in a SENP1 CRISPR knockout T cell line, we found that SENP1 Y270F downregulated its isopeptidase activity towards both SUMO1 and SUMO2/3 conjugation by reducing SENP1 binding with sumoylated targets. While overexpression of SENP1 inhibited TCR-induced IL-2 production, overexpression of SENP1 Y270F enhanced it instead. In summary, TCR-induced Y270 phosphorylation of SENP1 may promote its isopeptidase activity and specifically decrease its endopeptidase activity against pre-SUMO3, which finely tunes activation of T cells.
Collapse
Affiliation(s)
- Yun-Yi Li
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haohua Cen
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bei-Ni Gong
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Siqi Mai
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi-Long Wang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sisi Mou
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yingqiu Li
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
SUMOylation of PDPK1 Is required to maintain glycolysis-dependent CD4 T-cell homeostasis. Cell Death Dis 2022; 13:181. [PMID: 35210408 PMCID: PMC8873481 DOI: 10.1038/s41419-022-04622-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 11/08/2022]
Abstract
AbstractThe immune system is finely tuned to fight against infections, eradicate neoplasms, and prevent autoimmunity. Protein posttranslational modification (PTM) constitutes a molecular layer of regulation to guarantee the proper intensity of immune response. Herein, we report that UBC9-mediated protein SUMOylation plays an essential role in peripheral CD4 T-cell proliferation, but without a perceptible impact on T-cell polarization. Both conventional T-cell (Tcon) and regulatory T-cell (Treg) maintenance are differentially affected, which was likely caused by a shared deficit in cell glycolytic metabolism. Mechanistically, PDPK1 (3-phosphoinositide-dependent protein-kinase 1) was identified as a novel SUMOylation substrate, which occurred predominantly at lysine 299 (K299) located within the protein-kinase domain. Loss of PDPK1 SUMOylation impeded its autophosphorylation at serine 241 (S241), thereby leading to hypoactivation of downstream mTORC1 signaling coupled with incompetence of cell proliferation. Altogether, our results revealed a novel regulatory mechanism in peripheral CD4 T-cell homeostatic proliferation, which involves SUMOylation regulation of PDPK1–mTORC1 signaling-mediated glycolytic process.
Collapse
|
11
|
Liu Z, Liu C, Wang X, Li W, Zhou J, Dong P, Xiao MZX, Wang C, Zhang Y, Fu J, Zhu F, Liang Q. RSK1 SUMOylation is required for KSHV lytic replication. PLoS Pathog 2021; 17:e1010123. [PMID: 34871326 PMCID: PMC8675914 DOI: 10.1371/journal.ppat.1010123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/16/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023] Open
Abstract
RSK1, a downstream kinase of the MAPK pathway, has been shown to regulate multiple cellular processes and is essential for lytic replication of a variety of viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV). Besides phosphorylation, it is not known whether other post-translational modifications play an important role in regulating RSK1 function. We demonstrate that RSK1 undergoes robust SUMOylation during KSHV lytic replication at lysine residues K110, K335, and K421. SUMO modification does not alter RSK1 activation and kinase activity upon KSHV ORF45 co-expression, but affects RSK1 downstream substrate phosphorylation. Compared to wild-type RSK1, the overall phosphorylation level of RxRxxS*/T* motif is significantly declined in RSK1K110/335/421R expressing cells. Specifically, SUMOylation deficient RSK1 cannot efficiently phosphorylate eIF4B. Sequence analysis showed that eIF4B has one SUMO-interacting motif (SIM) between the amino acid position 166 and 170 (166IRVDV170), which mediates the association between eIF4B and RSK1 through SUMO-SIM interaction. These results indicate that SUMOylation regulates the phosphorylation of RSK1 downstream substrates, which is required for efficient KSHV lytic replication.
Collapse
Affiliation(s)
- Zhenshan Liu
- Research Center of Translational Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengrong Liu
- Research Center of Translational Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Wang
- Research Center of Translational Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenwei Li
- Department of Biological Science, Florida State University, Tallahassee, Flordia, United States of America
| | - Jingfan Zhou
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peixian Dong
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maggie Z. X. Xiao
- Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Chunxia Wang
- Department of Critical Care Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yucai Zhang
- Department of Critical Care Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Joyce Fu
- Department of Statistics, University of California, Riverside, Riverside, California, United States of America
| | - Fanxiu Zhu
- Department of Biological Science, Florida State University, Tallahassee, Flordia, United States of America
- * E-mail: (FZ); (QL)
| | - Qiming Liang
- Research Center of Translational Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (FZ); (QL)
| |
Collapse
|
12
|
Mei L, Qv M, Bao H, He Q, Xu Y, Zhang Q, Shi W, Ren Q, Yan Z, Xu C, Tang C, Hussain M, Zeng LH, Wu X. SUMOylation activates large tumour suppressor 1 to maintain the tissue homeostasis during Hippo signalling. Oncogene 2021; 40:5357-5366. [PMID: 34267330 DOI: 10.1038/s41388-021-01937-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Large tumour suppressor (LATS) 1/2, the core kinases of Hippo signalling, are critical for maintaining tissue homeostasis. Here, we investigate the role of SUMOylation in the regulation of LATS activation. High cell density induces the expression of components of the SUMOylation machinery and enhances the SUMOylation and activation of Lats1 but not Lats2, whereas genetic deletion of the SUMOylation E2 ligase, Ubc9, abolishes this Lats1 activation. Moreover, SUMOylation occurs at the K830 (mouse K829) residue to activate LATS1 and depends on the PIAS1/2 E3 ligase. Whereas the K830 deSUMOylation mutation of LATS1 found in the human metastatic prostate cancers eliminates the kinase activity by attenuating the formation of the phospho-MOB1/phospho-LATS1 complex. As a result, the LATS1(K830R) transgene phenocopies Yap transgene to cause the oversized livers in mice, whereas Lats1(K829R) knock-in phenocopies the deletion of Lats1 in causing the reproductive and endocrine defects and ovary tumours in mice. Thus, SUMOylation-mediated LATS1 activation is an integral component of Hippo signalling in the regulation of tissues homeostasis.
Collapse
Affiliation(s)
- Liu Mei
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Meiyu Qv
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hangyang Bao
- Department of Physiology, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiangqiang He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yana Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qin Zhang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Shi
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Biology and Genetics, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Qianlei Ren
- Department of Pharmacology, Zhejiang University City College, Hangzhou, China
| | - Ziyi Yan
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengyun Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Tang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Musaddique Hussain
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling-Hui Zeng
- Department of Pharmacology, Zhejiang University City College, Hangzhou, China.
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
13
|
Yang F, Lin J, Chen W. Post-translational modifications in T cells in systemic erythematosus lupus. Rheumatology (Oxford) 2021; 60:2502-2516. [PMID: 33512488 DOI: 10.1093/rheumatology/keab095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 02/07/2023] Open
Abstract
Systemic erythematosus lupus (SLE) is a classic autoimmune disease characterized by multiple autoantibodies and immune-mediated tissue damage. The aetiology of this disease is still unclear. A new drug, belimumab, which acts against the B-lymphocyte stimulator (BLyS), can effectively improve the condition of SLE patients, but it cannot resolve all SLE symptoms. The discovery of novel, precise therapeutic targets is urgently needed. It is well known that abnormal T-cell function is one of the most crucial factors contributing to the pathogenesis of SLE. Protein post-translational modifications (PTMs), including phosphorylation, glycosylation, acetylation, methylation, ubiquitination and SUMOylation have been emphasized for their roles in activating protein activity, maintaining structural stability, regulating protein-protein interactions and mediating signalling pathways, in addition to other biological functions. Summarizing the latest data in this area, this review focuses on the potential roles of diverse PTMs in regulating T-cell function and signalling pathways in SLE pathogenesis, with the goal of identifying new targets for SLE therapy.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Jin Lin
- Division of Rheumatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weiqian Chen
- Division of Rheumatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
K. ST, Joshi G, Arya P, Mahajan V, Chaturvedi A, Mishra RK. SUMO and SUMOylation Pathway at the Forefront of Host Immune Response. Front Cell Dev Biol 2021; 9:681057. [PMID: 34336833 PMCID: PMC8316833 DOI: 10.3389/fcell.2021.681057] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/11/2021] [Indexed: 01/14/2023] Open
Abstract
Pathogens pose a continuous challenge for the survival of the host species. In response to the pathogens, the host immune system mounts orchestrated defense responses initiating various mechanisms both at the cellular and molecular levels, including multiple post-translational modifications (PTMs) leading to the initiation of signaling pathways. The network of such pathways results in the recruitment of various innate immune components and cells at the site of infection and activation of the adaptive immune cells, which work in synergy to combat the pathogens. Ubiquitination is one of the most commonly used PTMs. Host cells utilize ubiquitination for both temporal and spatial regulation of immune response pathways. Over the last decade, ubiquitin family proteins, particularly small ubiquitin-related modifiers (SUMO), have been widely implicated in host immune response. SUMOs are ubiquitin-like (Ubl) proteins transiently conjugated to a wide variety of proteins through SUMOylation. SUMOs primarily exert their effect on target proteins by covalently modifying them. However, SUMO also engages in a non-covalent interaction with the SUMO-interacting motif (SIM) in target proteins. Unlike ubiquitination, SUMOylation alters localization, interactions, functions, or stability of target proteins. This review provides an overview of the interplay of SUMOylation and immune signaling and development pathways in general. Additionally, we discuss in detail the regulation exerted by covalent SUMO modifications of target proteins, and SIM mediated non-covalent interactions with several effector proteins. In addition, we provide a comprehensive review of the literature on the importance of the SUMO pathway in the development and maintenance of a robust immune system network of the host. We also summarize how pathogens modulate the host SUMO cycle to sustain infectability. Studies dealing mainly with SUMO pathway proteins in the immune system are still in infancy. We anticipate that the field will see a thorough and more directed analysis of the SUMO pathway in regulating different cells and pathways of the immune system. Our current understanding of the importance of the SUMO pathway in the immune system necessitates an urgent need to synthesize specific inhibitors, bioactive regulatory molecules, as novel therapeutic targets.
Collapse
Affiliation(s)
- Sajeev T. K.
- Nups and SUMO Biology Group, Department of Biological Sciences, IISER Bhopal, Bhopal, India
| | - Garima Joshi
- Nups and SUMO Biology Group, Department of Biological Sciences, IISER Bhopal, Bhopal, India
| | - Pooja Arya
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Vibhuti Mahajan
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Akanksha Chaturvedi
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Ram Kumar Mishra
- Nups and SUMO Biology Group, Department of Biological Sciences, IISER Bhopal, Bhopal, India
| |
Collapse
|
15
|
Bandaru S, Ala C, Zhou AX, Akyürek LM. Filamin A Regulates Cardiovascular Remodeling. Int J Mol Sci 2021; 22:ijms22126555. [PMID: 34207234 PMCID: PMC8235345 DOI: 10.3390/ijms22126555] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 01/25/2023] Open
Abstract
Filamin A (FLNA) is a large actin-binding cytoskeletal protein that is important for cell motility by stabilizing actin networks and integrating them with cell membranes. Interestingly, a C-terminal fragment of FLNA can be cleaved off by calpain to stimulate adaptive angiogenesis by transporting multiple transcription factors into the nucleus. Recently, increasing evidence suggests that FLNA participates in the pathogenesis of cardiovascular and respiratory diseases, in which the interaction of FLNA with transcription factors and/or cell signaling molecules dictate the function of vascular cells. Localized FLNA mutations associate with cardiovascular malformations in humans. A lack of FLNA in experimental animal models disrupts cell migration during embryogenesis and causes anomalies, including heart and vessels, similar to human malformations. More recently, it was shown that FLNA mediates the progression of myocardial infarction and atherosclerosis. Thus, these latest findings identify FLNA as an important novel mediator of cardiovascular development and remodeling, and thus a potential target for therapy. In this update, we summarized the literature on filamin biology with regard to cardiovascular cell function.
Collapse
Affiliation(s)
- Sashidar Bandaru
- Division of Clinical Pathology, Sahlgrenska Academy Hospital, 413 45 Gothenburg, Sweden;
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (C.A.); (A.-X.Z.)
| | - Chandu Ala
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (C.A.); (A.-X.Z.)
| | - Alex-Xianghua Zhou
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (C.A.); (A.-X.Z.)
| | - Levent M. Akyürek
- Division of Clinical Pathology, Sahlgrenska Academy Hospital, 413 45 Gothenburg, Sweden;
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (C.A.); (A.-X.Z.)
- Correspondence:
| |
Collapse
|
16
|
He Y, Yang Z, Zhao CS, Xiao Z, Gong Y, Li YY, Chen Y, Du Y, Feng D, Altman A, Li Y. T-cell receptor (TCR) signaling promotes the assembly of RanBP2/RanGAP1-SUMO1/Ubc9 nuclear pore subcomplex via PKC-θ-mediated phosphorylation of RanGAP1. eLife 2021; 10:67123. [PMID: 34110283 PMCID: PMC8225385 DOI: 10.7554/elife.67123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/03/2021] [Indexed: 01/15/2023] Open
Abstract
The nuclear pore complex (NPC) is the sole and selective gateway for nuclear transport, and its dysfunction has been associated with many diseases. The metazoan NPC subcomplex RanBP2, which consists of RanBP2 (Nup358), RanGAP1-SUMO1, and Ubc9, regulates the assembly and function of the NPC. The roles of immune signaling in regulation of NPC remain poorly understood. Here, we show that in human and murine T cells, following T-cell receptor (TCR) stimulation, protein kinase C-θ (PKC-θ) directly phosphorylates RanGAP1 to facilitate RanBP2 subcomplex assembly and nuclear import and, thus, the nuclear translocation of AP-1 transcription factor. Mechanistically, TCR stimulation induces the translocation of activated PKC-θ to the NPC, where it interacts with and phosphorylates RanGAP1 on Ser504 and Ser506. RanGAP1 phosphorylation increases its binding affinity for Ubc9, thereby promoting sumoylation of RanGAP1 and, finally, assembly of the RanBP2 subcomplex. Our findings reveal an unexpected role of PKC-θ as a direct regulator of nuclear import and uncover a phosphorylation-dependent sumoylation of RanGAP1, delineating a novel link between TCR signaling and assembly of the RanBP2 NPC subcomplex.
Collapse
Affiliation(s)
- Yujiao He
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhiguo Yang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chen-Si Zhao
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhihui Xiao
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu Gong
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yun-Yi Li
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yiqi Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yunting Du
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dianying Feng
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Amnon Altman
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, United States
| | - Yingqiu Li
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Karhausen J, Ulloa L, Yang W. SUMOylation Connects Cell Stress Responses and Inflammatory Control: Lessons From the Gut as a Model Organ. Front Immunol 2021; 12:646633. [PMID: 33679811 PMCID: PMC7933481 DOI: 10.3389/fimmu.2021.646633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Conjugation with the small ubiquitin-like modifier (SUMO) constitutes a key post-translational modification regulating the stability, activity, and subcellular localization of its target proteins. However, the vast numbers of identified SUMO substrates obscure a clear view on the function of SUMOylation in health and disease. This article presents a comprehensive review on the physiological relevance of SUMOylation by discussing how global SUMOylation levels—rather than specific protein SUMOylation—shapes the immune response. In particular, we highlight the growing body of work on SUMOylation in intestinal pathologies, because of the unique metabolic, infectious, and inflammatory challenges of this organ. Recent studies show that global SUMOylation can help restrain detrimental inflammation while maintaining immune defenses and tissue integrity. These results warrant further efforts to develop new therapeutic tools and strategies to control SUMOylation in infectious and inflammatory disorders.
Collapse
Affiliation(s)
- Jörn Karhausen
- Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, NC, United States.,Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Luis Ulloa
- Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, NC, United States
| | - Wei Yang
- Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
18
|
Nicolle A, Zhang Y, Belguise K. The Emerging Function of PKCtheta in Cancer. Biomolecules 2021; 11:biom11020221. [PMID: 33562506 PMCID: PMC7915540 DOI: 10.3390/biom11020221] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 12/30/2022] Open
Abstract
Protein Kinase C theta (PKCθ) is a serine/threonine kinase that belongs to the novel PKC subfamily. In normal tissue, its expression is restricted to skeletal muscle cells, platelets and T lymphocytes in which PKCθ controls several essential cellular processes such as survival, proliferation and differentiation. Particularly, PKCθ has been extensively studied for its role in the immune system where its translocation to the immunological synapse plays a critical role in T cell activation. Beyond its physiological role in immune responses, increasing evidence implicates PKCθ in the pathology of various diseases, especially autoimmune disorders and cancers. In this review, we discuss the implication of PKCθ in various types of cancers and the PKCθ-mediated signaling events controlling cancer initiation and progression. In these types of cancers, the high PKCθ expression leads to aberrant cell proliferation, migration and invasion resulting in malignant phenotype. The recent development and application of PKCθ inhibitors in the context of autoimmune diseases could benefit the emergence of treatment for cancers in which PKCθ has been implicated.
Collapse
|
19
|
Abstract
Sentrin/small ubiquitin-like modifier (SUMO) is protein modification pathway that regulates multiple biological processes, including cell division, DNA replication/repair, signal transduction, and cellular metabolism. In this review, we will focus on recent advances in the mechanisms of disease pathogenesis, such as cancer, diabetes, seizure, and heart failure, which have been linked to the SUMO pathway. SUMO is conjugated to lysine residues in target proteins through an isopeptide linkage catalyzed by SUMO-specific activating (E1), conjugating (E2), and ligating (E3) enzymes. In steady state, the quantity of SUMO-modified substrates is usually a small fraction of unmodified substrates due to the deconjugation activity of the family Sentrin/SUMO-specific proteases (SENPs). In contrast to the complexity of the ubiquitination/deubiquitination machinery, the biochemistry of SUMOylation and de-SUMOylation is relatively modest. Specificity of the SUMO pathway is achieved through redox regulation, acetylation, phosphorylation, or other posttranslational protein modification of the SUMOylation and de-SUMOylation enzymes. There are three major SUMOs. SUMO-1 usually modifies a substrate as a monomer; however, SUMO-2/3 can form poly-SUMO chains. The monomeric SUMO-1 or poly-SUMO chains can interact with other proteins through SUMO-interactive motif (SIM). Thus SUMO modification provides a platform to enhance protein-protein interaction. The consequence of SUMOylation includes changes in cellular localization, protein activity, or protein stability. Furthermore, SUMO may join force with ubiquitin to degrade proteins through SUMO-targeted ubiquitin ligases (STUbL). After 20 yr of research, SUMO has been shown to play critical roles in most, if not all, biological pathways. Thus the SUMO enzymes could be targets for drug development to treat human diseases.
Collapse
Affiliation(s)
- Hui-Ming Chang
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Edward T H Yeh
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
20
|
Jing F, Huang W, Ma Q, Xu SJ, Wu CJ, Guan YX, Chen B. AEB-071 Ameliorates Muscle Weakness by Altering Helper T Lymphocytes in an Experimental Autoimmune Myasthenia Gravis Rat Model. Med Sci Monit 2020; 26:e924393. [PMID: 32920588 PMCID: PMC7510173 DOI: 10.12659/msm.924393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background Myasthenia gravis (MG) is an autoimmune neurological disorder of neuromuscular junctions. In this study we established experimental autoimmune myasthenia gravis (EAMG) rat models to investigate the effects of AEB-071 (AEB), which is a specific inhibitor of protein kinase C that prevents T lymphocyte activation. Material/Methods We utilized animals divided into 4 groups: (1) control rats, (2) EAMG, (3) AEB-071+EAMG, and (4) AZP+EAMG. Drug treatment was continued for 10 days. Ten weeks after immunization we measured body weights, assessed mortality rates, and used Lennon scores to evaluate EAMG grades. We also assessed the proportions of Treg, Th1, Th2, Th17, and lymphocytes using flow cytometry. Results In the absence of drug treatment, we found a significant decline in body weights in the EAMG group in comparison to control rats, and EAMG group rats also had higher Lennon scores (P<0.05). Interestingly, we found that AEB-071 restored the body weight of EAMG rats and the decreased mortality rate compared to AZP treatment. Although a decrease in the number of Treg cells was observed, the proportion of Th lymphocytes was significantly increased in the EAMG group, and AEB-071 treatment decreased the proportion of Th lymphocytes. Conclusions We concluded that AEB-071 treatment imparts beneficial effects in EAMG rat models by reducing mortality rate and restoring Th lymphocyte balance, and thus may be an attractive candidate for use in MG treatment.
Collapse
Affiliation(s)
- Feng Jing
- Department of Neurology, The 8th Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| | - Wei Huang
- Department of Neurology, The 8th Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| | - Qian Ma
- Department of Neurology, The 8th Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| | - Sheng-Jie Xu
- Department of Neurology, The 8th Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| | - Chang-Jin Wu
- Jiamusi University, Jiamusi, Heilongjiang, China (mainland)
| | - Yu-Xiu Guan
- Jiamusi University, Jiamusi, Heilongjiang, China (mainland)
| | - Bing Chen
- Department of Neurology, The 8th Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| |
Collapse
|
21
|
Wang XD, Zhao CS, Wang QL, Zeng Q, Feng XZ, Li L, Chen ZL, Gong Y, Han J, Li Y. The p38-interacting protein p38IP suppresses TCR and LPS signaling by targeting TAK1. EMBO Rep 2020; 21:e48035. [PMID: 32410369 DOI: 10.15252/embr.201948035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/02/2020] [Accepted: 04/16/2020] [Indexed: 01/01/2023] Open
Abstract
Negative regulation of immunoreceptor signaling is required for preventing hyperimmune activation and maintaining immune homeostasis. The roles of p38IP in immunoreceptor signaling remain unclear. Here, we show that p38IP suppresses T-cell receptor (TCR)/LPS-activated NF-κB and p38 by targeting TAK1 kinase and that p38IP protein levels are downregulated in human PBMCs from rheumatoid arthritis (RA) patients, inversely correlating with the enhanced activity of NF-κB and p38. Mechanistically, p38IP interacts with TAK1 to disassemble the TAK1-TAB (TAK1-binding protein) complex. p38IP overexpression decreases TCR-induced binding of K63-linked polyubiquitin (polyUb) chains to TAK1 but increases that to TAB2, and p38IP knockdown shows the opposite effects, indicating unanchored K63-linked polyUb chain transfer from TAB2 to TAK1. p38IP dynamically interacts with TAK1 upon stimulation, because of the polyUb chain transfer and the higher binding affinity of TAK1 and p38IP for polyUb-bound TAB2 and TAK1, respectively. Moreover, p38IP scaffolds the deubiquitinase USP4 to deubiquitinate TAK1 once TAK1 is activated. These findings reveal a novel role and the mechanisms of p38IP in controlling TCR/LPS signaling and suggest that p38IP might participate in RA pathogenesis.
Collapse
Affiliation(s)
- Xu-Dong Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chen-Si Zhao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi-Long Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi Zeng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xing-Zhi Feng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lianbo Li
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Zhi-Long Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu Gong
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yingqiu Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Yang S, Svensson MND, Harder NHO, Hsieh WC, Santelli E, Kiosses WB, Moresco JJ, Yates JR, King CC, Liu L, Stanford SM, Bottini N. PTPN22 phosphorylation acts as a molecular rheostat for the inhibition of TCR signaling. Sci Signal 2020; 13:13/623/eaaw8130. [PMID: 32184287 DOI: 10.1126/scisignal.aaw8130] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hematopoietic-specific protein tyrosine phosphatase nonreceptor type 22 (PTPN22) is encoded by a major autoimmunity risk gene. PTPN22 inhibits T cell activation by dephosphorylating substrates involved in proximal T cell receptor (TCR) signaling. Here, we found by mass spectrometry that PTPN22 was phosphorylated at Ser751 by PKCα in Jurkat and primary human T cells activated with phorbol ester/ionomycin or antibodies against CD3/CD28. The phosphorylation of PTPN22 at Ser751 prolonged its half-life by inhibiting K48-linked ubiquitination and impairing recruitment of the phosphatase to the plasma membrane, which is necessary to inhibit proximal TCR signaling. Additionally, the phosphorylation of PTPN22 at Ser751 enhanced the interaction of PTPN22 with the carboxyl-terminal Src kinase (CSK), an interaction that is impaired by the PTPN22 R620W variant associated with autoimmune disease. The phosphorylation of Ser751 did not affect the recruitment of PTPN22 R620W to the plasma membrane but protected this mutant from degradation. Together, out data indicate that phosphorylation at Ser751 mediates a reciprocal regulation of PTPN22 stability versus translocation to TCR signaling complexes by CSK-dependent and CSK-independent mechanisms.
Collapse
Affiliation(s)
- Shen Yang
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mattias N D Svensson
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nathaniel H O Harder
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.,Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Wan-Chen Hsieh
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eugenio Santelli
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - William B Kiosses
- Core Microscopy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - James J Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Charles C King
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lin Liu
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, 92037, USA.,Veterans Affairs San Diego Healthcare System, San Diego, CA 90026, USA
| | - Stephanie M Stanford
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.,Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Nunzio Bottini
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA. .,Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| |
Collapse
|
23
|
Xiong Y, Yi Y, Wang Y, Yang N, Rudd CE, Liu H. Ubc9 Interacts with and SUMOylates the TCR Adaptor SLP-76 for NFAT Transcription in T Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:3023-3036. [PMID: 31666306 DOI: 10.4049/jimmunol.1900556] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/30/2019] [Indexed: 12/25/2022]
Abstract
Although the immune adaptor SH2 domain containing leukocyte phosphoprotein of 76 kDa (SLP-76) integrates and propagates the TCR signaling, the regulation of SLP-76 during the TCR signaling is incompletely studied. In this article, we report that SLP-76 interacts with the small ubiquitin-like modifier (SUMO) E2 conjugase Ubc9 and is a substrate for Ubc9-mediated SUMOylation in human and mouse T cells. TCR stimulation promotes SLP-76-Ubc9 binding, accompanied by an increase in SLP-76 SUMOylation. Ubc9 binds to the extreme C terminus of SLP-76 spanning residues 516-533 and SUMOylates SLP-76 at two conserved residues K266 and K284. In addition, SLP-76 and Ubc9 synergizes to augment the TCR-mediated IL-2 transcription by NFAT in a manner dependent of SUMOylation of SLP-76. Moreover, although not affecting the TCR proximal signaling events, the Ubc9-mediated SUMOylation of SLP-76 is required for TCR-induced assembly of Ubc9-NFAT complex for IL-2 transcription. Together, these results suggest that Ubc9 modulates the function of SLP-76 in T cell activation both by direct interaction and by SUMOylation of SLP-76 and that the Ubc9-SLP-76 module acts as a novel regulatory complex in the control of T cell activation.
Collapse
Affiliation(s)
- Yiwei Xiong
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province 215123, China
| | - Yulan Yi
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province 215123, China
| | - Yan Wang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province 215123, China
| | - Naiqi Yang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province 215123, China
| | - Christopher E Rudd
- Division of Immunology-Oncology Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada; and.,Département de Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Hebin Liu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province 215123, China;
| |
Collapse
|
24
|
Zhang YW, Xu XY, Zhang J, Yao X, Lu C, Chen CX, Yu CH, Sun J. Missense mutation in PRKCQ is associated with Crohn's disease. J Dig Dis 2019; 20:243-247. [PMID: 30828974 DOI: 10.1111/1751-2980.12717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/21/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Recent genome-wide association studies have demonstrated that rs2236379 in PRKCQ is a novel significant locus for Crohn's disease (CD). However, the association has not been replicated in any populations. We therefore aimed to investigate the prevalence of the PRKCQ rs2236379 variant in the Chinese Han population and evaluate whether the genetic variant of PRKCQ confers susceptibility to CD and is associated with its clinical characteristics. METHODS A total of 283 patients with CD and 381 healthy controls were enrolled. Genomic DNA was extracted from their whole blood samples and polymerase chain reaction-restriction fragment length polymorphism was used for genotyping. The association between PRKCQ polymorphisms and susceptibility to CD, and between genotypes and clinical phenotypes was analyzed. RESULTS A higher frequency of the T allele was discovered in CD patients than in healthy controls (P = 0.027). A significant difference in the distribution of the TT and CT/CC genotypes was observed between CD patients and controls (P = 0.024). The TT genotype showed a significant association with susceptibility to CD (odds ratio 1.647, 95% confidence interval: 1.088-2.574, P = 0.019). Patients with CD with the rs2236379 TT mutant risk genotype were most likely to exhibit perianal disease (P = 0.044). CONCLUSIONS Our research revealed an association between the PRKCQ rs2236379 (C>T) and CD. The TT homozygous mutation increased the risk of developing CD and may contribute to perianal disease.
Collapse
Affiliation(s)
- Yu Wei Zhang
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiao Ying Xu
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jie Zhang
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xin Yao
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Chao Lu
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Chun Xiao Chen
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Chao Hui Yu
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jing Sun
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Xie J, Han X, Zhao C, Canonigo-Balancio AJ, Yates JR, Li Y, Lillemeier BF, Altman A. Phosphotyrosine-dependent interaction between the kinases PKCθ and Zap70 promotes proximal TCR signaling. Sci Signal 2019; 12:12/577/eaar3349. [PMID: 30992398 DOI: 10.1126/scisignal.aar3349] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein kinase C-θ (PKCθ) is an important component of proximal T cell receptor (TCR) signaling. We previously identified the amino-terminal C2 domain of PKCθ as a phosphotyrosine (pTyr)-binding domain. Using a mutant form of PKCθ that cannot bind pTyr (PKCθHR2A), we showed that pTyr binding by PKCθ was required for TCR-induced T cell activation, proliferation, and TH2 cell differentiation but not for T cell development. Using tandem mass spectrometry and coimmunoprecipitation, we identified the kinase ζ-associated protein kinase of 70 kDa (Zap70) as a binding partner of the PKCθ pTyr-binding pocket. Tyr126 of Zap70 directly bound to PKCθ, and the interdomain B residues Tyr315 and Tyr319 were indirectly required for binding to PKCθ, reflecting their role in promoting the open conformation of Zap70. PKCθHR2A-expressing CD4+ T cells displayed defects not only in known PKCθ-dependent signaling events, such as nuclear factor κB (NF-κB) activation and TH2 cell differentiation, but also in full activation of Zap70 itself and in the activating phosphorylation of linker of activation of T cells (LAT) and phospholipase C-γ1 (PLCγ1), signaling proteins that are traditionally considered to be activated independently of PKC. These findings demonstrate that PKCθ plays an important role in a positive feedback regulatory loop that modulates TCR-proximal signaling and, moreover, provide a mechanistic explanation for earlier reports that documented an important role for PKCθ in T cell Ca2+ signaling. This PKCθ-Zap70 interaction could potentially serve as a promising and highly selective immunosuppressive drug target in autoimmunity and organ transplantation.
Collapse
Affiliation(s)
- Jiji Xie
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Xuemei Han
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chensi Zhao
- State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | | | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yingqiu Li
- State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Björn F Lillemeier
- Nomis Center for Immunobiology and Microbial Pathogenesis & Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.
| |
Collapse
|
26
|
Marrocco V, Bogomolovas J, Ehler E, Dos Remedios CG, Yu J, Gao C, Lange S. PKC and PKN in heart disease. J Mol Cell Cardiol 2019; 128:212-226. [PMID: 30742812 PMCID: PMC6408329 DOI: 10.1016/j.yjmcc.2019.01.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/22/2022]
Abstract
The protein kinase C (PKC) and closely related protein kinase N (PKN) families of serine/threonine protein kinases play crucial cellular roles. Both kinases belong to the AGC subfamily of protein kinases that also include the cAMP dependent protein kinase (PKA), protein kinase B (PKB/AKT), protein kinase G (PKG) and the ribosomal protein S6 kinase (S6K). Involvement of PKC family members in heart disease has been well documented over the years, as their activity and levels are mis-regulated in several pathological heart conditions, such as ischemia, diabetic cardiomyopathy, as well as hypertrophic or dilated cardiomyopathy. This review focuses on the regulation of PKCs and PKNs in different pathological heart conditions and on the influences that PKC/PKN activation has on several physiological processes. In addition, we discuss mechanisms by which PKCs and the closely related PKNs are activated and turned-off in hearts, how they regulate cardiac specific downstream targets and pathways, and how their inhibition by small molecules is explored as new therapeutic target to treat cardiomyopathies and heart failure.
Collapse
Affiliation(s)
- Valeria Marrocco
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA
| | - Julius Bogomolovas
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA; Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, School of Cardiovascular Medicine and Sciences, British Heart Foundation Research Excellence Centre, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | | | - Jiayu Yu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Gao
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, USA.
| | - Stephan Lange
- Division of Cardiology, School of Medicine, University of California-San Diego, La Jolla, USA; University of Gothenburg, Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg, Sweden.
| |
Collapse
|
27
|
Wang QL, Liang JQ, Gong BN, Xie JJ, Yi YT, Lan X, Li Y. T Cell Receptor (TCR)-Induced PLC-γ1 Sumoylation via PIASxβ and PIAS3 SUMO E3 Ligases Regulates the Microcluster Assembly and Physiological Function of PLC-γ1. Front Immunol 2019; 10:314. [PMID: 30873169 PMCID: PMC6403162 DOI: 10.3389/fimmu.2019.00314] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/06/2019] [Indexed: 11/16/2022] Open
Abstract
The SUMO modification system plays an important role in T cell activation, yet how sumoylation regulates TCR-proximal signaling remains largely unknown. We show here that Phospholipase C-γ1 (PLC-γ1) is conjugated by SUMO1 at K54 and K987 upon TCR stimulation and that K54 sumoylation is pivotal for PLC-γ1-mediated T cell activation. We further demonstrate that TCR-induced K54 sumoylation of PLC-γ1 significantly promotes the formation of PLC-γ1 microclusters and the association of PLC-γ1 with the adaptor proteins SLP76 and Gads, but only slightly affects the phosphorylation of PLC-γ1 on Y783, which determines the enzyme catalytic activity. Moreover, upon TCR stimulation, the SUMO E3 ligases PIASxβ and PIAS3 both interact with PLC-γ1 and cooperate to sumoylate PLC-γ1, facilitating the assembly of PLC-γ1 microclusters. Together, our findings reveal a critical role of PLC-γ1 K54 sumoylation in PLC-γ1 microcluster assembly that controls PLC-γ1-mediated T cell activation, suggesting that sumoylation may have an important role in the microcluster assembly of TCR-proximal signaling proteins.
Collapse
Affiliation(s)
- Qi-Long Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Qi Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bei-Ni Gong
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ji-Ji Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu-Ting Yi
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xin Lan
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yingqiu Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Varland S, Vandekerckhove J, Drazic A. Actin Post-translational Modifications: The Cinderella of Cytoskeletal Control. Trends Biochem Sci 2019; 44:502-516. [PMID: 30611609 DOI: 10.1016/j.tibs.2018.11.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 11/30/2022]
Abstract
Actin is one of the most abundant proteins in eukaryotic cells and the main component of the microfilament system. It plays essential roles in numerous cellular activities, including muscle contraction, maintenance of cell integrity, and motility, as well as transcriptional regulation. Besides interacting with various actin-binding proteins (ABPs), proper actin function is regulated by post-translational modifications (PTMs), such as acetylation, arginylation, oxidation, and others. Here, we explain how actin PTMs can contribute to filament formation and stability, and may have additional actin regulatory functions, which potentially contribute to disease development.
Collapse
Affiliation(s)
- Sylvia Varland
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5020 Bergen, Norway; Department of Biological Sciences, University of Bergen, Thormøhlensgate 53 A, N-5020 Bergen, Norway; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Joël Vandekerckhove
- Department of Biochemistry, UGent Center for Medical Biotechnology, Ghent University, Albert Baertsoenkaai 3, 9000 Gent, Belgium
| | - Adrian Drazic
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5020 Bergen, Norway.
| |
Collapse
|
29
|
Signal Transduction Via Co-stimulatory and Co-inhibitory Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:85-133. [PMID: 31758532 DOI: 10.1007/978-981-32-9717-3_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
T-cell receptor (TCR)-mediated antigen-specific stimulation is essential for initiating T-cell activation. However, signaling through the TCR alone is not sufficient for inducing an effective response. In addition to TCR-mediated signaling, signaling through antigen-independent co-stimulatory or co-inhibitory receptors is critically important not only for the full activation and functional differentiation of T cells but also for the termination and suppression of T-cell responses. Many studies have investigated the signaling pathways underlying the function of each molecular component. Co-stimulatory and co-inhibitory receptors have no kinase activity, but their cytoplasmic region contains unique functional motifs and potential phosphorylation sites. Engagement of co-stimulatory receptors leads to recruitment of specific binding partners, such as adaptor molecules, kinases, and phosphatases, via recognition of a specific motif. Consequently, each co-stimulatory receptor transduces a unique pattern of signaling pathways. This review focuses on our current understanding of the intracellular signaling pathways provided by co-stimulatory and co-inhibitory molecules, including B7:CD28 family members, immunoglobulin, and members of the tumor necrosis factor receptor superfamily.
Collapse
|
30
|
Chen ZL, Gong BN, Wang QL, Xiao ZH, Deng C, Wang WQ, Li Y. Characterisation of amphioxus protein kinase C-δ/θ reveals a unique proto-V3 domain suggesting an evolutionary mechanism for PKC-θ unique V3. FISH & SHELLFISH IMMUNOLOGY 2019; 84:1100-1107. [PMID: 30408601 DOI: 10.1016/j.fsi.2018.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 06/08/2023]
Abstract
A primitive adaptive immune system has recently been suggested to be present in a basal chordate amphioxus (Branchiostoma belcheri, Bb), making it an ideal model for studying the origin of adaptive immune. The novel protein kinase C isoform PKC-θ, but not its closest isoform PKC-δ, plays a critical role for mammalian T-cell activation via translocation to immunological synapse (IS) mediated by a unique PKC-θ V3 domain containing one PxxP motif. To understand the evolution of this unique PKC-θ V3 domain and the primitive adaptive immune system in amphioxus, we comparatively studied the orthologs of PKC-δ and -θ from amphioxus and other species. Phylogenetic analysis showed BbPKC-δ/θ to be the common ancestor of vertebrate PKC-δ and PKC-θ, with a V3 domain containing two PxxP motifs. One motif is conserved in both zebrafish and mammalian PKC-θ but is absent in PKC-δ V3 domain of these species, and has already emerged in drosophila PKC-δ. The other non-conserved motif emerged in BbPKC-δ/θ, and only retained in Danio rerio PKC-δ (DrPKC-δ) but lost in mammalian PKC-δ and -θ. Comparative analyses of the sequence and function of BbPKC-δ/θ, DrPKC-δ, DrPKC-θ and Homo sapiens PKC-θ (HsPKC-θ) in IS translocation and T-cell receptor (TCR)-induced NF-κB activation revealed that retention of the conserved PxxP motif and loss of the non-conserved PxxP motif in mammalian PKC-θ and loss of both PxxP motifs in mammalian PKC-δ accomplish the unique function of PKC-θ in T cells. Together, this study suggests an evolutionary mechanism for PKC-θ unique V3 and reveals BbPKC-δ/θ is the common ancestor of PKC-δ and -θ with a functional proto-V3 domain, supplying new evidence for the existence of primitive adaptive immune system in amphioxus.
Collapse
Affiliation(s)
- Zhi-Long Chen
- State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Bei-Ni Gong
- State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Qi-Long Wang
- State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Zhi-Hui Xiao
- State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Chong Deng
- State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Wen-Qian Wang
- State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yingqiu Li
- State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
31
|
Yu X, Lao Y, Teng XL, Li S, Zhou Y, Wang F, Guo X, Deng S, Chang Y, Wu X, Liu Z, Chen L, Lu LM, Cheng J, Li B, Su B, Jiang J, Li HB, Huang C, Yi J, Zou Q. SENP3 maintains the stability and function of regulatory T cells via BACH2 deSUMOylation. Nat Commun 2018; 9:3157. [PMID: 30089837 PMCID: PMC6082899 DOI: 10.1038/s41467-018-05676-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/17/2018] [Indexed: 12/14/2022] Open
Abstract
Regulatory T (Treg) cells are essential for maintaining immune homeostasis and tolerance, but the mechanisms regulating the stability and function of Treg cells have not been fully elucidated. Here we show SUMO-specific protease 3 (SENP3) is a pivotal regulator of Treg cells that functions by controlling the SUMOylation and nuclear localization of BACH2. Treg cell-specific deletion of Senp3 results in T cell activation, autoimmune symptoms and enhanced antitumor T cell responses. SENP3-mediated BACH2 deSUMOylation prevents the nuclear export of BACH2, thereby repressing the genes associated with CD4+ T effector cell differentiation and stabilizing Treg cell-specific gene signatures. Notably, SENP3 accumulation triggered by reactive oxygen species (ROS) is involved in Treg cell-mediated tumor immunosuppression. Our results not only establish the role of SENP3 in the maintenance of Treg cell stability and function via BACH2 deSUMOylation but also clarify the function of SENP3 in the regulation of ROS-induced immune tolerance.
Collapse
Affiliation(s)
- Xiaoyan Yu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yimin Lao
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Xiao-Lu Teng
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Song Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yan Zhou
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Feixiang Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Xinwei Guo
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Siyu Deng
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yuzhou Chang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Xuefeng Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Zhiduo Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Lei Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Li-Ming Lu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Jinke Cheng
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Bin Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Jin Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hua-Bing Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Chuanxin Huang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Jing Yi
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Qiang Zou
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
32
|
Finetti F, Baldari CT. The immunological synapse as a pharmacological target. Pharmacol Res 2018; 134:118-133. [PMID: 29898412 DOI: 10.1016/j.phrs.2018.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/25/2018] [Accepted: 06/07/2018] [Indexed: 12/29/2022]
Abstract
The development of T cell mediated immunity relies on the assembly of a highly specialized interface between T cell and antigen presenting cell (APC), known as the immunological synapse (IS). IS assembly is triggered when the T cell receptor (TCR) binds to specific peptide antigen presented in association to the major histocompatibility complex (MHC) by the APC, and is followed by the spatiotemporal dynamic redistribution of TCR, integrins, co-stimulatory receptors and signaling molecules, allowing for the fine-tuning and integration of the signals that lead to T cell activation. The knowledge acquired to date about the mechanisms of IS assembly underscores this structure as a robust pharmacological target. The activity of molecules involved in IS assembly and function can be targeted by specific compounds to modulate the immune response in a number of disorders, including cancers and autoimmune diseases, or in transplanted patients. Here, we will review the state-of-the art of the current therapies which exploit the IS to modulate the immune response.
Collapse
Affiliation(s)
- Francesca Finetti
- Department of Life Sciences, University of Siena, via A. Moro 2, Siena, 53100, Italy.
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, via A. Moro 2, Siena, 53100, Italy
| |
Collapse
|
33
|
|
34
|
Savinko T, Guenther C, Uotila LM, Llort Asens M, Yao S, Tojkander S, Fagerholm SC. Filamin A Is Required for Optimal T Cell Integrin-Mediated Force Transmission, Flow Adhesion, and T Cell Trafficking. THE JOURNAL OF IMMUNOLOGY 2018; 200:3109-3116. [PMID: 29581355 DOI: 10.4049/jimmunol.1700913] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 03/04/2018] [Indexed: 12/12/2022]
Abstract
T cells traffic from the bloodstream into tissues to perform their functions in the immune system and are therefore subjected to a range of different mechanical forces. Integrins are essential for T cell trafficking into the tissues, as they mediate firm adhesion between the T cell and the endothelium under shear flow conditions. In addition, integrins are important for the formation of the contact between the T cell and the APC required for T cell activation. The actin-binding protein filamin A (FlnA) provides an important link between the integrin and the actin cytoskeleton. FlnA has been reported to function as an integrin inhibitor by competing with talin. However, its role in regulating integrin-dependent immune functions in vivo is currently poorly understood. In this study, we have investigated the role of FlnA in T cells, using T cell-specific FlnA knockout mice. We report that FlnA is required for the formation of strong integrin-ligand bonds under shear flow and for the generation of integrin-mediated T cell traction forces on ligand-coated hydrogels. Consequently, absence of FlnA leads to a reduction in T cell adhesion to integrin ligands under conditions of shear flow, as well as reduced T cell trafficking into lymph nodes and sites of skin inflammation. In addition, FlnA is not needed for T cell activation in vivo, which occurs in shear-free conditions in lymphoid organs. Our results therefore reveal a role of FlnA in integrin force transmission and T cell trafficking in vivo.
Collapse
Affiliation(s)
- Terhi Savinko
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland.,Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland; and
| | - Carla Guenther
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland.,Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland; and
| | - Liisa M Uotila
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland.,Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland; and
| | - Marc Llort Asens
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland.,Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland; and
| | - Sean Yao
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00790 Helsinki, Finland
| | - Sari Tojkander
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00790 Helsinki, Finland
| | - Susanna C Fagerholm
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; .,Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland; and
| |
Collapse
|
35
|
Abstract
Nitric oxide (NO) is a key messenger in the pathogenesis of inflammation, linking innate and adaptive immunity. By targeting signaling molecules, NO from inducible NO synthase (iNOS) and endothelial (e)NOS affects T helper cell differentiation and the effector functions of T lymphocytes, and is a potential target for therapeutic manipulation. In this review we discuss the regulatory actions exerted by NO on T cell functions, focusing on S-nitrosylation as an important post-translational modification by which NO acts as a signaling molecule during T cell-mediated immunity. We also present recent findings showing novel mechanisms through which NO regulates the activation of human T cells, and consider their potential in strategies to treat tumoral, allergic, and autoimmune diseases.
Collapse
|
36
|
The conserved ancient role of chordate PIAS as a multilevel repressor of the NF-κB pathway. Sci Rep 2017; 7:17063. [PMID: 29213053 PMCID: PMC5719053 DOI: 10.1038/s41598-017-16624-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 11/15/2017] [Indexed: 12/21/2022] Open
Abstract
In vertebrates, PIAS genes encode versatile cellular regulators, with functions extremely complex and redundant. Here we try to understand their functions from an evolutionary perspective. we evaluate the sequences, expression and molecular functions of amphioxus PIAS genes and compare them with their vertebrate counterparts. Phylogenetic analysis suggests a single PIAS gene in ancestral chordates, which has been duplicated into four families (PIAS1-4) in vertebrates by 2R-WGD but remained single in a basal chordate (amphioxus). Amphioxus PIAS encodes two variants with and without a Serine/Threonine-rich tail, which are retained in human PIAS1-3 but lost in PIAS4. We show that amphioxus PIAS binds C-terminus of NF-κB Rel and blocks the DNA binding activity. In humans, such function is retained in PIAS1, altered in PIAS4, and lost in PIAS2-3. Instead, PIAS3 has evolved new ability to inhibit Rel by binding RHD and promoting SUMOylation. We show that amphioxus PIAS also inhibits NF-κB by binding with upstream signalling adaptor TICAM-like and MyD88. Finally, we verify that human PIAS1, 3 and 4, but not 2, were capable of these newly-discovered functions. Our study offers insight into the sub- and neo-functionalization of PIAS genes and suggests a conserved ancient role for chordate PIAS in NF-κB signalling.
Collapse
|
37
|
van Ham M, Teich R, Philipsen L, Niemz J, Amsberg N, Wissing J, Nimtz M, Gröbe L, Kliche S, Thiel N, Klawonn F, Hubo M, Jonuleit H, Reichardt P, Müller AJ, Huehn J, Jänsch L. TCR signalling network organization at the immunological synapses of murine regulatory T cells. Eur J Immunol 2017; 47:2043-2058. [DOI: 10.1002/eji.201747041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/28/2017] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Marco van Ham
- Cellular Proteomics; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - René Teich
- Experimental Immunology; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Lars Philipsen
- Institute of Molecular and Clinical Immunology; Otto-von-Guericke University; Magdeburg Germany
| | - Jana Niemz
- Experimental Immunology; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Nicole Amsberg
- Cellular Proteomics; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Josef Wissing
- Cellular Proteomics; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Manfred Nimtz
- Cellular Proteomics; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Lothar Gröbe
- Experimental Immunology; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Stefanie Kliche
- Institute of Molecular and Clinical Immunology; Otto-von-Guericke University; Magdeburg Germany
| | - Nadine Thiel
- Experimental Immunology; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Frank Klawonn
- Cellular Proteomics; Helmholtz Centre for Infection Research; Braunschweig Germany
- Department of Computer Science; Ostfalia University of Applied Sciences; Wolfenbuettel Germany
| | - Mario Hubo
- Department of Dermatology; Johannes Gutenberg-University Mainz; Mainz Germany
| | - Helmut Jonuleit
- Department of Dermatology; Johannes Gutenberg-University Mainz; Mainz Germany
| | - Peter Reichardt
- Institute of Molecular and Clinical Immunology; Otto-von-Guericke University; Magdeburg Germany
| | - Andreas J. Müller
- Institute of Molecular and Clinical Immunology; Otto-von-Guericke University; Magdeburg Germany
- Intravital Microscopy of Infection and Immunity; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Jochen Huehn
- Experimental Immunology; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Lothar Jänsch
- Cellular Proteomics; Helmholtz Centre for Infection Research; Braunschweig Germany
| |
Collapse
|
38
|
Alharshawi K, Marinelarena A, Kumar P, El-Sayed O, Bhattacharya P, Sun Z, Epstein AL, Maker AV, Prabhakar BS. PKC-ѳ is dispensable for OX40L-induced TCR-independent Treg proliferation but contributes by enabling IL-2 production from effector T-cells. Sci Rep 2017; 7:6594. [PMID: 28747670 PMCID: PMC5529425 DOI: 10.1038/s41598-017-05254-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/25/2017] [Indexed: 01/07/2023] Open
Abstract
We have previously shown that OX40L/OX40 interaction is critical for TCR-independent selective proliferation of Foxp3+ Tregs, but not Foxp3- effector T-cells (Teff), when CD4+ T-cells are co-cultured with GM-CSF derived bone marrow dendritic cells (G-BMDCs). Events downstream of OX40L/OX40 interaction in Tregs responsible for this novel mechanism are not understood. Earlier, OX40L/OX40 interaction has been shown to stimulate CD4+ T-cells through the formation of a signalosome involving TRAF2/PKC-Ѳ leading to NF-kB activation. In this study, using CD4+ T-cells from WT and OX40-/- mice we first established that OX40 mediated activation of NF-kB was critical for this Treg proliferation. Although CD4+ T-cells from PKC-Ѳ-/- mice were also defective in G-BMDC induced Treg proliferation ex vivo, this defect could be readily corrected by adding exogenous IL-2 to the co-cultures. Furthermore, by treating WT, OX40-/-, and PKC-Ѳ-/- mice with soluble OX40L we established that OX40L/OX40 interaction was required and sufficient to induce Treg proliferation in vivo independent of PKC-Ѳ status. Although PKC-Ѳ is dispensable for TCR-independent Treg proliferation per se, it is essential for optimum IL-2 production by Teff cells. Finally, our findings suggest that OX40L binding to OX40 likely results in recruitment of TRAF1 for downstream signalling.
Collapse
Affiliation(s)
- Khaled Alharshawi
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Alejandra Marinelarena
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Prabhakaran Kumar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Osama El-Sayed
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Palash Bhattacharya
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Zuoming Sun
- Department of Immunology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Alan L Epstein
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Ajay V Maker
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA.,Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
39
|
Raft-dependent endocytic movement and intracellular cluster formation during T cell activation triggered by concanavalin A. J Biosci Bioeng 2017; 124:685-693. [PMID: 28711300 DOI: 10.1016/j.jbiosc.2017.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 01/10/2023]
Abstract
Certain food ingredients can stimulate the human immune system. A lectin, concanavalin A (ConA), from Canavalia ensiformis (jack bean) is one of the most well-known food-derived immunostimulants and mediates activation of cell-mediated immunity through T cell proliferation. Generally, T cell activation is known to be triggered by the interaction between T cells and antigen-presenting cells (APCs) via a juxtacrine (contact-dependent) signaling pathway. The mechanism has been well characterized and is referred to as formation of the immunological synapse (IS). We were interested in the mechanism behind the T cell activation by food-derived ConA which might be different from that of T cell activation by APCs. The purpose of this study was to characterize T cell activation by ConA with regard to (i) movement of raft domain, (ii) endocytic vesicular transport, (iii) the cytoskeleton (actin and microtubules), and (iv) cholesterol composition. We found that raft-dependent endocytic movement was important for T cell activation by ConA and this movement was dependent on actin, microtubules, and cholesterol. The T cell signaling mechanism triggered by ConA can be defined as endocrine signaling which is distinct from the activation process triggered by interaction between T cells and APCs by juxtacrine signaling. Therefore, we hypothesized that T cell activation by ConA includes both two-dimensional superficial raft movement on the membrane surface along actin filaments and three-dimensional endocytic movement toward the inside of the cell along microtubules. These findings are important for developing new methods for immune stimulation and cancer therapy based on the function of ConA.
Collapse
|
40
|
Molecular mechanisms underlying the evolution of the slp76 signalosome. Sci Rep 2017; 7:1509. [PMID: 28473706 PMCID: PMC5431462 DOI: 10.1038/s41598-017-01660-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/29/2017] [Indexed: 02/07/2023] Open
Abstract
The well-defined mammalian slp76-signalosome is crucial for T-cell immune response, yet whether slp76-signalosome exists in invertebrates and how it evolved remain unknown. Here we investigated slp76-signalosome from an evolutionary perspective in amphioxus Branchiostoma belcheri (bb). We proved slp76-signalosome components bbslp76, bbGADS and bbItk are present in amphioxus and bbslp76 interacts with bbGADS and bbItk, but differences exist between the interaction manners within slp76-signalosome components of amphioxus and human (h). Specifically, bbslp76 has a unique WW-domain that blocked its association with hItk and decreased TCR-induced tyrosine-phosphorylation and NFAT-activation. Deletion of WW-domain shifted the constitutive association between bbslp76 and hPLCγ1 to a TCR-enhanced association. Among slp76-signalosome, the interaction between slp76 and PLCγ1 is the most conserved and the binding between Itk and slp76 evolved from constitutive to stimulation-regulated. Sequence alignment and 3D structural analysis of slp76-signalosome molecules from keystone species indicated slp76 evolved into a more unfolded and flexible adaptor due to lack of WW-domain and several low-complexity-regions (LCRs) while GADS turned into a larger protein by a LCR gain, thus preparing more space for nucleating the coevolving slp76-signalosome. Altogether, through deletion of WW-domain and manipulation of LCRs, slp76-signalosome evolves from a rigid and stimulation-insensitive to a more flexible and stimulation-responding complex.
Collapse
|
41
|
Rocca DL, Wilkinson KA, Henley JM. SUMOylation of FOXP1 regulates transcriptional repression via CtBP1 to drive dendritic morphogenesis. Sci Rep 2017; 7:877. [PMID: 28408745 PMCID: PMC5429823 DOI: 10.1038/s41598-017-00707-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/08/2017] [Indexed: 12/13/2022] Open
Abstract
Forkhead Box P (FOXP) transcriptional repressors play a major role in brain development and their dysfunction leads to human cognitive disorders. However, little is known about how the activity of these proteins is regulated. Here, we show that FOXP1 SUMOylation at lysine 670 is required for recruiting the co-repressor CtBP1 and transcriptional repression. FOXP1 SUMOylation is tightly controlled by neuronal activity, in which synapse to nucleus signalling, mediated via NMDAR and L-type calcium channels, results in rapid FOXP1 deSUMOylation. Knockdown of FOXP1 in cultured cortical neurons stunts dendritic outgrowth and this phenotype cannot be rescued by replacement with a non-SUMOylatable FOXP1-K670R mutant, indicating that SUMOylation of FOXP1 is essential for regulation of proper neuronal morphogenesis. These results suggest that activity-dependent SUMOylation of FOXP1 may be an important mediator of early cortical development and neuronal network formation in the brain.
Collapse
Affiliation(s)
- Daniel L Rocca
- School of Biochemistry, Centre for Synaptic Plasticity, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
42
|
eNOS S-nitrosylates β-actin on Cys374 and regulates PKC-θ at the immune synapse by impairing actin binding to profilin-1. PLoS Biol 2017; 15:e2000653. [PMID: 28394935 PMCID: PMC5386235 DOI: 10.1371/journal.pbio.2000653] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 03/09/2017] [Indexed: 12/24/2022] Open
Abstract
The actin cytoskeleton coordinates the organization of signaling microclusters at the immune synapse (IS); however, the mechanisms involved remain poorly understood. We show here that nitric oxide (NO) generated by endothelial nitric oxide synthase (eNOS) controls the coalescence of protein kinase C-θ (PKC-θ) at the central supramolecular activation cluster (c-SMAC) of the IS. eNOS translocated with the Golgi to the IS and partially colocalized with F-actin around the c-SMAC. This resulted in reduced actin polymerization and centripetal retrograde flow of β-actin and PKC-θ from the lamellipodium-like distal (d)-SMAC, promoting PKC-θ activation. Furthermore, eNOS-derived NO S-nitrosylated β-actin on Cys374 and impaired actin binding to profilin-1 (PFN1), as confirmed with the transnitrosylating agent S-nitroso-L-cysteine (Cys-NO). The importance of NO and the formation of PFN1-actin complexes on the regulation of PKC-θ was corroborated by overexpression of PFN1- and actin-binding defective mutants of β-actin (C374S) and PFN1 (H119E), respectively, which reduced the coalescence of PKC-θ at the c-SMAC. These findings unveil a novel NO-dependent mechanism by which the actin cytoskeleton controls the organization and activation of signaling microclusters at the IS. T cells are an essential arm of the immunity against the invasion of pathogenic agents in organisms. These specialized cells recognize foreign antigens displayed on the surface of antigen-presenting cells (APC) by means of the T cell receptor (TCR). Early signaling takes place in these cells through the specific clustering of TCRs, which trigger the recruitment of signaling molecules to the immune synapse (IS), a plasma membrane–associated intercellular domain important for T cell activation. In this location, several signaling molecules that include the protein kinase C-θ (PKC-θ) form microclusters that are translocated centripetally towards the center of the IS, following the retrograde movement of actin. In this study, we show that nitric oxide (NO) formed by endothelial nitric oxide synthase (eNOS) regulates the translocation of PKC-θ to the IS, increasing its activation. eNOS can effectively modify β-actin by S-nitrosylation on Cys374, reducing its ability to bind profilin-1 (PFN1)—a protein required for actin polymerization—polymerize and flow from the periphery to the central region of the IS. We propose that eNOS-derived NO controls actin polymerization via S-nitrosylation of actin as one of the major driving forces for the transport of PKC-θ towards the central area of the IS, which is essential for T cell activation.
Collapse
|
43
|
Zhang J, Chen Z, Zhou Z, Yang P, Wang CY. Sumoylation Modulates the Susceptibility to Type 1 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:299-322. [DOI: 10.1007/978-3-319-50044-7_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Cui Y, Yu H, Zheng X, Peng R, Wang Q, Zhou Y, Wang R, Wang J, Qu B, Shen N, Guo Q, Liu X, Wang C. SENP7 Potentiates cGAS Activation by Relieving SUMO-Mediated Inhibition of Cytosolic DNA Sensing. PLoS Pathog 2017; 13:e1006156. [PMID: 28095500 PMCID: PMC5271409 DOI: 10.1371/journal.ppat.1006156] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/27/2017] [Accepted: 12/28/2016] [Indexed: 12/13/2022] Open
Abstract
Cyclic GMP-AMP (cGAMP) synthase (cGAS, a.k.a. MB21D1), a cytosolic DNA sensor, catalyzes formation of the second messenger 2’3’-cGAMP that activates the stimulator of interferon genes (STING) signaling. How the cGAS activity is modulated remains largely unknown. Here, we demonstrate that sentrin/SUMO-specific protease 7 (SENP7) interacted with and potentiated cGAS activation. The small ubiquitin-like modifier (SUMO) was conjugated onto the lysine residues 335, 372 and 382 of cGAS, which suppressed its DNA-binding, oligomerization and nucleotidyl-transferase activities. SENP7 reversed this inhibition via catalyzing the cGAS de-SUMOylation. Consistently, silencing of SENP7 markedly impaired the IRF3-responsive gene expression induced by cGAS-STING axis. SENP7-knockdown mice were more susceptible to herpes simplex virus 1 (HSV-1) infection. SENP7 was significantly up-regulated in patients with SLE. Our study highlights the temporal modulation of the cGAS activity via dynamic SUMOylation, uncovering a novel mechanism for fine-tuning the STING signaling in innate immunity. The Cyclic GMP-AMP (cGAMP) synthase (cGAS, a.k.a. MB21D1) is critical for monitoring the pathogen-derived DNA upon microbial infection. Its activity should be dynamically modulated in case the inadvertent recognition of the aberrant self nucleic acids in cytosol leads to severe autoimmune diseases. Protein posttranslational modifications dynamically shape the strength and duration of the immune signaling pathways. It is intriguing to explore whether SUMOylation could modulate the cGAS-initiated signaling. In this study, we characterized sentrin/SUMO-specific protease 7 (SENP7) to specifically potentiate the cGAS activation. Upon microbial DNA challenge, the small ubiquitin-like modifier (SUMO) was conjugated onto cGAS, which suppressed its DNA-binding, oligomerization and nucleotidyl-transferase activities. SENP7 reversed this inhibition via catalyzing the de-SUMOylation of cGAS. Our study sheds new light on the dynamic function of the SUMOylation in cytosolic DNAs-triggered innate immunity response.
Collapse
Affiliation(s)
- Ye Cui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Huansha Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xin Zheng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rui Peng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rui Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiehua Wang
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Qu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Shen
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Guo
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xing Liu
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (XL); (CW)
| | - Chen Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Natural Medicines and school of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing, China
- * E-mail: (XL); (CW)
| |
Collapse
|
45
|
Sumoylation as an Integral Mechanism in Bacterial Infection and Disease Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:389-408. [DOI: 10.1007/978-3-319-50044-7_22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
SUMOylation of large tumor suppressor 1 at Lys751 attenuates its kinase activity and tumor-suppressor functions. Cancer Lett 2016; 386:1-11. [PMID: 27847303 DOI: 10.1016/j.canlet.2016.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/05/2016] [Accepted: 11/07/2016] [Indexed: 12/16/2022]
Abstract
Large tumor suppressor (Lats) plays a critical role in maintaining cellular homeostasis and is the core to mediate Hippo growth-inhibitory signaling pathway. SUMOylation is a reversible and dynamic process that regulates a variety of cell functions. Here, we show that SUMOylation of Lats1 affects its kinase activity specifically towards Hippo signaling. Small ubiquitin-like modifier (SUMO) 1 interacts with and directly SUMOylates Lats1, whereas loss of SUMOylation pathway function disrupts Lats1 SUMOylation. Among potential SUMOylation sites on hLats1, K751 and K830 are conversed and essential for maintaining the transcriptional output of Hippo signaling, whereas K751 mutation more significantly abolishes SUMO1-induced Lats1 SUMOylation than K830 mutation. Though Lats1 SUMOylation at K751 affects neither its subcellular distribution nor its interactions with YAP and TAZ, it significantly destabilizes the phosphorylated Lats1 (Thr1079 but not Ser909), resulting in the attenuation of Lats1 kinase activity and inhibition of Hippo signaling. Moreover, HepG2 hepatocellular carcinoma cells express significantly more SUMOylated Lats1 than LO2 normal human hepatic cells, and in HepG2 cells or HepG2 cells xenografts, Lats1 SUMOylation at K751 consistently attenuates Lats1 kinase activity and subsequently suppresses Hippo signaling, resulting in not only the promotion of cell proliferation and colony formation but also the suppression of cell apoptosis. Together, we demonstrate that Lats1 SUMOylation at K751 suppresses its kinase activity and subsequently attenuates its tumor-suppressor functions. Thus, this study provides additional insight into how Hippo signaling is regulated and highlights the potentially critical role of Lats1 SUMOylation in tumor development.
Collapse
|
47
|
Yadav SK, Magre I, Singh A, Khuperkar D, Joseph J. Regulation of aPKC activity by Nup358 dependent SUMO modification. Sci Rep 2016; 6:34100. [PMID: 27682244 PMCID: PMC5040961 DOI: 10.1038/srep34100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 09/07/2016] [Indexed: 11/09/2022] Open
Abstract
Atypical PKC (aPKC) family members are involved in regulation of diverse cellular processes, including cell polarization. aPKCs are known to be activated by phosphorylation of specific threonine residues in the activation loop and turn motif. They can also be stimulated by interaction with Cdc42~GTP-Par6 complex. Here we report that PKCζ, a member of the aPKC family, is activated by SUMOylation. We show that aPKC is endogenously modified by SUMO1 and the nucleoporin Nup358 acts as its SUMO E3 ligase. Results from in vitro SUMOylation and kinase assays showed that the modification enhances the kinase activity of PKCζ by ~10-fold. By monitoring the phosphorylation of Lethal giant larvae (Lgl), a downstream target of aPKC, we confirmed these findings in vivo. Consistent with the function of Nup358 as a SUMO E3 ligase for aPKC, depletion of Nup358 attenuated the extent of SUMOylation and the activity of aPKC. Moreover, overexpression of the C-terminal fragment of Nup358 that possesses the E3 ligase activity enhanced SUMOylation of endogenous aPKC and its kinase activity. Collectively, our studies reveal a role for Nup358-dependent SUMOylation in the regulation of aPKC activity and provide a framework for understanding the role of Nup358 in cell polarity.
Collapse
Affiliation(s)
- Santosh Kumar Yadav
- National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Indrasen Magre
- National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Aditi Singh
- National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Deepak Khuperkar
- National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Jomon Joseph
- National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind, Pune 411007, India
| |
Collapse
|
48
|
Onnis A, Finetti F, Baldari CT. Vesicular Trafficking to the Immune Synapse: How to Assemble Receptor-Tailored Pathways from a Basic Building Set. Front Immunol 2016; 7:50. [PMID: 26913036 PMCID: PMC4753310 DOI: 10.3389/fimmu.2016.00050] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/01/2016] [Indexed: 12/20/2022] Open
Abstract
The signals that orchestrate T-cell activation are coordinated within a highly organized interface with the antigen-presenting cell (APC), known as the immune synapse (IS). IS assembly depends on T-cell antigen receptor engagement by a specific peptide antigen-major histocompatibility complex ligand. This primary event leads to polarized trafficking of receptors and signaling mediators associated with recycling endosomes to the cellular interface, which contributes to IS assembly as well as signal termination and favors information transfer from T cells to APCs. Here, we will review recent advances on the vesicular pathways implicated in IS assembly and maintenance, focusing on the spatiotemporal regulation of the traffic of specific receptors by Rab GTPases. Based on accumulating evidence that the IS is a functional homolog of the primary cilium, which coordinates several central signaling pathways in ciliated cells, we will also discuss the similarities in the mechanisms regulating vesicular trafficking to these specialized membrane domains.
Collapse
Affiliation(s)
- Anna Onnis
- Department of Life Sciences, University of Siena , Siena , Italy
| | | | - Cosima T Baldari
- Department of Life Sciences, University of Siena , Siena , Italy
| |
Collapse
|
49
|
Brzostek J, Gascoigne NRJ, Rybakin V. Cell Type-Specific Regulation of Immunological Synapse Dynamics by B7 Ligand Recognition. Front Immunol 2016; 7:24. [PMID: 26870040 PMCID: PMC4740375 DOI: 10.3389/fimmu.2016.00024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/18/2016] [Indexed: 01/07/2023] Open
Abstract
B7 proteins CD80 (B7-1) and CD86 (B7-2) are expressed on most antigen-presenting cells and provide critical co-stimulatory or inhibitory input to T cells via their T-cell-expressed receptors: CD28 and CTLA-4. CD28 is expressed on effector T cells and regulatory T cells (Tregs), and CD28-dependent signals are required for optimum activation of effector T cell functions. CD28 ligation on effector T cells leads to formation of distinct molecular patterns and induction of cytoskeletal rearrangements at the immunological synapse (IS). CD28 plays a critical role in recruitment of protein kinase C (PKC)-θ to the effector T cell IS. CTLA-4 is constitutively expressed on the surface of Tregs, but it is expressed on effector T cells only after activation. As CTLA-4 binds to B7 proteins with significantly higher affinity than CD28, B7 ligand recognition by cells expressing both receptors leads to displacement of CD28 and PKC-θ from the IS. In Tregs, B7 ligand recognition leads to recruitment of CTLA-4 and PKC-η to the IS. CTLA-4 plays a role in regulation of T effector and Treg IS stability and cell motility. Due to their important roles in regulating T-cell-mediated responses, B7 receptors are emerging as important drug targets in oncology. In this review, we present an integrated summary of current knowledge about the role of B7 family receptor–ligand interactions in the regulation of spatial and temporal IS dynamics in effector and Tregs.
Collapse
Affiliation(s)
- Joanna Brzostek
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore , Singapore , Singapore
| | - Nicholas R J Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore , Singapore , Singapore
| | - Vasily Rybakin
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore, Singapore, Singapore; Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
50
|
Wang X, Chen Z, Wang Q, Li Y. Assessment of TCR-induced Sumoylation of PKC-θ. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.1979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|