1
|
Sun J, Chen Y, Xu Z, Wang W, Li P. Notch signaling in the tumor immune microenvironment of colorectal cancer: mechanisms and therapeutic opportunities. J Transl Med 2025; 23:315. [PMID: 40075484 PMCID: PMC11900264 DOI: 10.1186/s12967-025-06282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related morbidity and mortality worldwide, driven by a complex interplay of genetic, environmental, and immune-related factors. Among the pivotal pathways implicated in CRC tumorigenesis, the Notch signaling pathway is instrumental in governing cell fate decisions, tissue renewal, homeostasis, and immune cell development. As a highly conserved mechanism, Notch signaling not only modulates tumor cell behavior but also shapes the immune landscape within the tumor microenvironment (TME). Aberrant Notch signaling in CRC fosters immune evasion and tumor progression through its effects on the balance and functionality of immune cells, including myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). Elevated Notch pathway activation correlates with advanced clinicopathological features and poorer clinical outcomes, highlighting its relevance as both a prognostic biomarker and a therapeutic target. Therapeutic approaches aimed at inhibiting the Notch pathway, such as γ-secretase inhibitors (GSIs) or monoclonal antibodies (mAbs) in combination with other therapies, have demonstrated promising efficacy in preclinical and clinical settings. This review examines the impact of Notch signaling on CRC immunity, elucidating its regulatory mechanisms within immune cells and its role in promoting tumor progression. Additionally, this review discusses therapeutic strategies targeting Notch signaling, including GSIs, mAbs, and potential combination therapies designed to overcome resistance and improve patient outcomes. By elucidating the multifaceted role of Notch within the CRC TME, this review underscores its potential as a target for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Jiachun Sun
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Yi Chen
- Department of Children's gastroenterology, Anhui Children's Hospital, Hefei, Anhui, 230000, China
| | - Ziyi Xu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Weizheng Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Penghui Li
- Department of Gastrointestinal surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, No. 24 Jinghua Road, Jianxi District, Luoyang, Henan, 471000, China.
| |
Collapse
|
2
|
Chaar DL, Li Z, Shang L, Ratliff SM, Mosley TH, Kardia SLR, Zhao W, Zhou X, Smith JA. Multi-Ancestry Transcriptome-Wide Association Studies of Cognitive Function, White Matter Hyperintensity, and Alzheimer's Disease. Int J Mol Sci 2025; 26:2443. [PMID: 40141087 PMCID: PMC11942532 DOI: 10.3390/ijms26062443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Genetic variants increase the risk of neurocognitive disorders in later life, including vascular dementia (VaD) and Alzheimer's disease (AD), but the precise relationships between genetic risk factors and underlying disease etiologies are not well understood. Transcriptome-wide association studies (TWASs) can be leveraged to better characterize the genes and biological pathways underlying genetic influences on disease. To date, almost all existing TWASs on VaD and AD have been conducted using expression studies from individuals of a single genetic ancestry, primarily European. Using the joint likelihood-based inference framework in Multi-ancEstry TRanscriptOme-wide analysis (METRO), we leveraged gene expression data from European ancestry (EA) and African ancestry (AA) samples to identify genes associated with general cognitive function, white matter hyperintensity (WMH), and AD. Regions were fine-mapped using Fine-mapping Of CaUsal gene Sets (FOCUS). We identified 266, 23, 69, and 2 genes associated with general cognitive function, WMH, AD (using EA GWAS summary statistics), and AD (using AA GWAS), respectively (Bonferroni-corrected alpha = p < 2.9 × 10-6), some of which had been previously identified. Enrichment analysis showed that many of the identified genes were in pathways related to innate immunity, vascular dysfunction, and neuroinflammation. Further, the downregulation of ICA1L was associated with a higher WMH and with AD, indicating its potential contribution to overlapping AD and VaD neuropathology. To our knowledge, our study is the first TWAS on cognitive function and neurocognitive disorders that used expression mapping studies for multiple ancestries. This work may expand the benefits of TWASs beyond a single ancestry group and help to identify gene targets for pharmaceuticals or preventative treatments for dementia.
Collapse
Affiliation(s)
- Dima L. Chaar
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (D.L.C.); (S.M.R.); (S.L.R.K.); (W.Z.)
| | - Zheng Li
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (Z.L.); (X.Z.)
| | - Lulu Shang
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Scott M. Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (D.L.C.); (S.M.R.); (S.L.R.K.); (W.Z.)
| | - Thomas H. Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (D.L.C.); (S.M.R.); (S.L.R.K.); (W.Z.)
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (D.L.C.); (S.M.R.); (S.L.R.K.); (W.Z.)
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (Z.L.); (X.Z.)
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (D.L.C.); (S.M.R.); (S.L.R.K.); (W.Z.)
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| |
Collapse
|
3
|
Miyazaki K, Horie K, Watanabe H, Hidaka R, Hayashi R, Hayatsu N, Fujiwara K, Kuwata R, Uehata T, Ochi Y, Takenaka M, Kawaguchi RK, Ikuta K, Takeuchi O, Ogawa S, Hozumi K, Holländer GA, Kondoh G, Akiyama T, Miyazaki M. A feedback amplifier circuit with Notch and E2A orchestrates T-cell fate and suppresses the innate lymphoid cell lineages during thymic ontogeny. Genes Dev 2025; 39:384-400. [PMID: 39904558 PMCID: PMC11874989 DOI: 10.1101/gad.352111.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025]
Abstract
External signals from the thymic microenvironment and the activities of lineage-specific transcription factors (TFs) instruct T-cell versus innate lymphoid cell (ILC) fates. However, mechanistic insights into how factors such as Notch1-Delta-like-4 (Dll4) signaling and E-protein TFs collaborate to establish T-cell identity remain rudimentary. Using multiple in vivo approaches and single-cell multiome analysis, we identified a feedback amplifier circuit that specifies fetal and adult T-cell fates. In early T progenitors (ETPs) in the fetal thymus, Notch signaling minimally lowered E-protein antagonist Id2 levels, and high Id2 abundance favored the differentiation of ETPs into ILCs. Conversely, in the adult thymus, Notch signaling markedly decreased Id2 abundance in ETPs, substantially elevating E-protein DNA binding and in turn promoting the activation of a T-cell lineage-specific gene expression program linked with V(D)J gene recombination and T-cell receptor signaling. Our findings indicate that, in the fetal versus the adult thymus, a simple feedback amplifier circuit dictated by Notch-mediated signals and Id2 abundance enforces T-cell identity and suppresses ILC development.
Collapse
Affiliation(s)
- Kazuko Miyazaki
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Kenta Horie
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Hitomi Watanabe
- Laboratory of Integrative Biological Sciences, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Reiko Hidaka
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Rinako Hayashi
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Norihito Hayatsu
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Kentaro Fujiwara
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Rei Kuwata
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Takuya Uehata
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yotaro Ochi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Makoto Takenaka
- Laboratory of Integrative Biological Sciences, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | | | - Koichi Ikuta
- Laboratory of Immune Regulation, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Institute for the Advanced Study of Human Biology (WPI ASHBi), Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm 171 77, Sweden
| | - Katsuto Hozumi
- Department of Immunology, Tokai University School of Medicine, Kanagawa 259-1193, Japan
| | - Georg A Holländer
- Department of Pediatrics, Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford OX3 7TY, United Kingdom
- Pediatric Immunology, Department of Biomedicine, University of Basel and University Children's Hospital Basel, Basel 4056, Switzerland
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel 4056, Switzerland
| | - Gen Kondoh
- Laboratory of Integrative Biological Sciences, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Taishin Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Masaki Miyazaki
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan;
| |
Collapse
|
4
|
Ono R, Maeda K, Tanioka T, Isozaki T. Monocyte-derived Langerhans cells express Delta-like 4 induced by peptidoglycan and interleukin-4 mediated suppression. Front Immunol 2025; 16:1532620. [PMID: 40018044 PMCID: PMC11865044 DOI: 10.3389/fimmu.2025.1532620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/30/2025] [Indexed: 03/01/2025] Open
Abstract
T cells contribute to immunotherapy and autoimmune pathogenesis and Langerhans cells (LCs) have a substantial ability to activate T cells. In vitro-generated monocyte-derived LCs (Mo-LCs) are useful models to study LC function in autoimmune diseases and to test future LC-based immunotherapies. Although dendritic cells (DCs) expressing high levels of Delta-like 4 (DLL4+ DCs), which is a member of the Notch ligand family, have greater ability than DLL4- DCs to activate T cells, the induction method of human DLL4+ DCs has yet to be determined. The aim of this study is to establish whether Mo-LCs express DLL4 and establish the induction method of antigen presenting cells, which most potently activate T cells, similar to our previously established induction method of human Mo-LCs. We compared the ratios of DLL4 expression and T cell activation via flow cytometry among monocyte-derived cells, which have a greater ability than the resident cells to activate T cells. Here, we discovered that Mo-LCs expressed DLL4, which most potently activated T cells among monocyte-derived cells, and that Mo-LCs and DLL4 expression were induced by DLL4, granulocyte macrophage colony-stimulating factor, and transforming growth factor-β1. Additionally, peptidoglycan was required for DLL4 expression, whereas interleukin-4 repressed it. These findings provide insights into the roles of DLL4-expressing cells such as DLL4+ Mo-LCs in human diseases, which will assist with the development of more effective therapeutic strategies in the future.
Collapse
Affiliation(s)
- Rei Ono
- Department of Pathogenesis and Translational Medicine, Showa University Graduate School of Pharmacy, Tokyo, Japan
| | - Kohei Maeda
- Department of Pathogenesis and Translational Medicine, Showa University Graduate School of Pharmacy, Tokyo, Japan
| | - Toshihiro Tanioka
- Department of Pathogenesis and Translational Medicine, Showa University Graduate School of Pharmacy, Tokyo, Japan
| | - Takeo Isozaki
- Department of Pathogenesis and Translational Medicine, Showa University Graduate School of Pharmacy, Tokyo, Japan
- Department of Rheumatology, Showa University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Tran VL, Haltalli MLR, Li J, Lin DS, Yamashita M, Naik SH, Rothenberg EV. Ever-evolving insights into the cellular and molecular drivers of lymphoid cell development. Exp Hematol 2024; 140:104667. [PMID: 39454745 PMCID: PMC11624110 DOI: 10.1016/j.exphem.2024.104667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Lymphocytes play a critical role in adaptive immunity and defense mechanisms, but the molecular mechanisms by which hematopoietic stem and progenitor cells differentiate into T and B lymphocytes are not fully established. Pioneer studies identify several transcription factors essential for lymphoid lineage determination. Yet, many questions remain unanswered about how these transcription factors interact with each other and with chromatin at different developmental stages. This interaction regulates a network of genes and proteins, promoting lymphoid lineage differentiation while suppressing other lineages. Throughout this intricate biological process, any genetic or epigenetic interruptions can derail normal differentiation trajectories, potentially leading to various human pathologic conditions. Here, we summarize recent advances in understanding lymphoid cell development, which was the focus of the Winter 2024 International Society for Experimental Hematology webinar.
Collapse
Affiliation(s)
- Vu L Tran
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI.
| | - Myriam L R Haltalli
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Jingjing Li
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Dawn S Lin
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Masayuki Yamashita
- Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Shalin H Naik
- Immunology Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
6
|
Deng Y, Zhou J, Li HB. The physiological and pathological roles of RNA modifications in T cells. Cell Chem Biol 2024; 31:1578-1592. [PMID: 38986618 DOI: 10.1016/j.chembiol.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/20/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
RNA molecules undergo dynamic chemical modifications in response to various external or cellular stimuli. Some of those modifications have been demonstrated to post-transcriptionally modulate the RNA transcription, localization, stability, translation, and degradation, ultimately tuning the fate decisions and function of mammalian cells, particularly T cells. As a crucial part of adaptive immunity, T cells play fundamental roles in defending against infections and tumor cells. Recent findings have illuminated the importance of RNA modifications in modulating T cell survival, proliferation, differentiation, and functional activities. Therefore, understanding the epi-transcriptomic control of T cell biology enables a potential avenue for manipulating T cell immunity. This review aims to elucidate the physiological and pathological roles of internal RNA modifications in T cell development, differentiation, and functionality drawn from current literature, with the goal of inspiring new insights for future investigations and providing novel prospects for T cell-based immunotherapy.
Collapse
Affiliation(s)
- Yu Deng
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Zhou
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hua-Bing Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Geriatrics, Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Chongqing International Institute for Immunology, Chongqing 401320, China.
| |
Collapse
|
7
|
Zhao Y, Wang G, Wei Z, Li D, Morshedi M. RETRACTED ARTICLE: Wnt, notch signaling and exercise: what are their functions? Hum Cell 2024; 37:1612. [PMID: 38386243 DOI: 10.1007/s13577-024-01036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Affiliation(s)
- Yijie Zhao
- Ministry of Public Sports, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Guangjun Wang
- Ministry of Public Sports, Hebei North University, Zhangjiakou, 075000, Hebei, China.
| | - Zhifeng Wei
- The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Duo Li
- The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | | |
Collapse
|
8
|
Schworer SA, Olbrich CL, Larsen LD, Howard E, Liu L, Koyama K, Spencer LA. Notch 2 signaling contributes to intestinal eosinophil adaptations in steady state and tissue burden following oral allergen challenge. J Leukoc Biol 2024; 116:379-391. [PMID: 38789100 PMCID: PMC11271981 DOI: 10.1093/jleuko/qiae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 05/26/2024] Open
Abstract
Eosinophils not only function as inflammatory effectors in allergic diseases, but also contribute to tissue homeostasis in steady state. Emerging data are revealing tissue eosinophils to be adaptive cells, imprinted by their local tissue microenvironment and exhibiting distinct functional phenotypes that may contribute to their homeostatic vs. inflammatory capacities. However, signaling pathways that regulate eosinophil tissue adaptations remain elusive. Notch signaling is an evolutionarily conserved pathway that mediates differential cell fate programming of both pre- and postmitotic immune cells. This study investigated a role for notch receptor 2 signaling in regulating eosinophil functions and tissue phenotype in both humans and mice. Notch 2 receptors were constitutively expressed and active in human blood eosinophils. Pharmacologic neutralization of notch 2 in ex vivo stimulated human eosinophils altered their activated transcriptome and prevented their cytokine-mediated survival. Genetic ablation of eosinophil-expressed notch 2 in mice diminished steady-state intestine-specific eosinophil adaptations and impaired their tissue retention in a food allergic response. In contrast, notch 2 had no effect on eosinophil phenotype or tissue inflammation within the context of allergic airways inflammation, suggesting that notch 2-dependent regulation of eosinophil phenotype and function is specific to the gut. These data reveal notch 2 signaling as a cell-intrinsic mechanism that contributes to eosinophil survival, function, and intestine-specific adaptations. The notch 2 pathway may represent a viable strategy to reprogram eosinophil functional phenotypes in gastrointestinal eosinophil-associated diseases.
Collapse
Affiliation(s)
- Stephen A Schworer
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, United States
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Marsico Lung Institute, 125 Mason Farm Road, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Courtney L Olbrich
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, United States
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, and Mucosal Inflammation Program, 12700 E. 19th Ave, University of Colorado School of Medicine, Aurora, CO 80045, United States
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, 13123 E. 16th Ave, Children's Hospital Colorado, Aurora, CO 80045, United States
| | - Leigha D Larsen
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, and Mucosal Inflammation Program, 12700 E. 19th Ave, University of Colorado School of Medicine, Aurora, CO 80045, United States
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, 13123 E. 16th Ave, Children's Hospital Colorado, Aurora, CO 80045, United States
| | - Emily Howard
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, United States
| | - Linying Liu
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, United States
| | - Kenya Koyama
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, United States
- Department of Respiratory Medicine and Clinical Immunology, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsugagun, Tochigi 321-0293, Japan
| | - Lisa A Spencer
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, United States
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, and Mucosal Inflammation Program, 12700 E. 19th Ave, University of Colorado School of Medicine, Aurora, CO 80045, United States
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, 13123 E. 16th Ave, Children's Hospital Colorado, Aurora, CO 80045, United States
| |
Collapse
|
9
|
Shu X, Wang J, Zeng H, Shao L. Progression of Notch signaling regulation of B cells under radiation exposure. Front Immunol 2024; 15:1339977. [PMID: 38524139 PMCID: PMC10957566 DOI: 10.3389/fimmu.2024.1339977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/14/2024] [Indexed: 03/26/2024] Open
Abstract
With the continuous development of nuclear technology, the radiation exposure caused by radiation therapy is a serious health hazard. It is of great significance to further develop effective radiation countermeasures. B cells easily succumb to irradiation exposure along with immunosuppressive response. The approach to ameliorate radiation-induced B cell damage is rarely studied, implying that the underlying mechanisms of B cell damage after exposure are eager to be revealed. Recent studies suggest that Notch signaling plays an important role in B cell-mediated immune response. Notch signaling is a critical regulator for B cells to maintain immune function. Although accumulating studies reported that Notch signaling contributes to the functionality of hematopoietic stem cells and T cells, its role in B cells is scarcely appreciated. Presently, we discussed the regulation of Notch signaling on B cells under radiation exposure to provide a scientific basis to prevent radiation-induced B cell damage.
Collapse
Affiliation(s)
- Xin Shu
- Department of Occupational Health and Toxicology, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, School of Public Health, Nanchang University, Nanchang, China
| | - Jie Wang
- Department of Histology and Embryology, School of Basic Medicine Sciences, Nanchang University, Nanchang, China
| | - Huihong Zeng
- Department of Histology and Embryology, School of Basic Medicine Sciences, Nanchang University, Nanchang, China
| | - Lijian Shao
- Department of Occupational Health and Toxicology, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Peng Z, Zhang H, Hu H. The Function of Ubiquitination in T-Cell Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:135-159. [PMID: 39546141 DOI: 10.1007/978-981-97-7288-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Thymus is an important primary lymphoid organ for T cell development. After T-lineage commitment, the early thymic progenitors (ETPs) develop into CD4-CD8- (DN), CD4+CD8+ (DP) and further CD4+ SP or CD8+ SP T cells. Under the help of thymic epithelial cells (TEC), dendritic cell (DC), macrophage, and B cells, ETPs undergo proliferation, T cell receptor (TCR) rearrangement, β-selection, positive selection, and negative selection, and thus leading to the generation of T cells that are diverse repertoire immunocompetent but not self-reactive. Additionally, some self-reactive thymocytes give rise to Treg under the help of TEC and DC. The regulation of T cell development is complicated. As a post-translational modification, ubiquitination regulates signal transduction in diverse biological processes. Ubiquitination functions in T cell development through regulating key signal pathway or maturation and function of related cells. In this review, the regulation of T cell development by ubiquitination is summarized and discussed.
Collapse
Affiliation(s)
- Zhengcan Peng
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbo Hu
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
11
|
Imataki O, Fujita H, Uemura M. Negative Impact of Gemtuzumab Ozogamicin on CD33-Positive Early T-Cell Precursor Acute Lymphoblastic Leukemia: A Case Report. Case Rep Oncol 2024; 17:256-261. [PMID: 38362442 PMCID: PMC10869147 DOI: 10.1159/000536424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) is a rare subtype of T-cell leukemia that phenotypically expresses mature T-cell markers and immature myeloid markers such as CD33. Gemtuzumab ozogamicin (GO) is a novel agent for the CD33 molecular targeting antibody conjugated to the cytotoxic agent calicheamicin. GO is anticipated to be effective against ETP-ALL. In vivo studies promise antileukemic effects in cell lines; however, clinical reports to support this research are lacking. We treated a patient who suffered from CD33-positive ETP-ALL using GO. Case Presentation We treated an 81-year-old man who suffered from ETP-ALL. The patient's leukemia expressed T cell and myeloid markers including cyCD3, CD5, CD7, CD33, and HLA-DR. Initially, the patient was treated using a standard chemotherapy regimen for acute lymphoblastic leukemia comprising cyclophosphamide, daunorubicin, vincristine, l-asparaginase, and prednisolone. The induction chemotherapy produced the expected complete hematological response; however, bone marrow blasts remained. Following consolidation chemotherapy, the patient maintained a full hematological response. Thereafter, we changed the consolidation regimen to nelarabine, which did not reduce bone marrow blasts effectively. After two courses of nelarabine therapy, we finally used GO at an 8 mg/m2 weekly dose after confirming that CD33 expression was still positive in the patient's residual leukemic cells. GO was ineffective in treating the patient's leukemia, and peripheral blasts increased 30 days following treatment. The patient died 81 days after initiating GO therapy. Conclusion This is the first clinical case of GO having a negative impact on ETP-ALL. Because the GO resistance mechanism for ETP-ALL has not been fully elucidated, treatment modification should be considered to achieve optimal clinical efficacy.
Collapse
Affiliation(s)
- Osamu Imataki
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Kagawa University, Takamatsu, Japan
| | - Haruyuki Fujita
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Kagawa University, Takamatsu, Japan
| | - Makiko Uemura
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Kagawa University, Takamatsu, Japan
| |
Collapse
|
12
|
Zhao J, Ding C, Li HB. N 6 - Methyladenosine defines a new checkpoint in γδ T cell development. Bioessays 2023; 45:e2300002. [PMID: 36942692 DOI: 10.1002/bies.202300002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
T cells, which are derived from hematopoietic stem cells (HSCs), are the most important components of adaptive immune system. Based on the expression of αβ and γδ receptors, T cells are mainly divided into αβ and γδ T cells. In the thymus, they share common progenitor cells, while undergoing a series of well-characterized and different developmental processes. N6 -Methyladenosine (m6 A), one of the most abundant modifications in mRNAs, plays critical roles in cell development and maintenance of function. Recently, we have demonstrated that the depletion of m6 A demethylase ALKBH5 in lymphocytes specifically induces an expansion of γδ T cells through the regulation of Jag1/Notch2 signaling, but not αβ T cells, indicating a checkpoint role of ALKBH5 and m6 A modification in the early development of γδ T cells. Based on previous studies, many key pathway molecules, which exert dominant roles in γδ T cell fate determination, have been identified as the targets regulated by m6 A modification. In this review, we mainly summarize the potential regulation between m6 A modification and these key signaling molecules in the γδ T cell lineage commitment, to provide new perspectives in the checkpoint of γδ T cell development.
Collapse
Affiliation(s)
- Jiachen Zhao
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenbo Ding
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua-Bing Li
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Xu X, Zhang W, Xuan L, Yu Y, Zheng W, Tao F, Nemechek J, He C, Ma W, Han X, Xie S, Zhao M, Wang J, Qu Y, Liu Q, Perry JM, Jiang L, Zhao M. PD-1 signalling defines and protects leukaemic stem cells from T cell receptor-induced cell death in T cell acute lymphoblastic leukaemia. Nat Cell Biol 2023; 25:170-182. [PMID: 36624186 DOI: 10.1038/s41556-022-01050-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 11/10/2022] [Indexed: 01/11/2023]
Abstract
T cell acute lymphoblastic leukaemia (T-ALL) is an aggressive malignancy with poor prognosis, but a decisive marker and effective treatment for leukaemia stem cells (LSCs) remain unclear. Here, using lineage tracing, limiting dilution assays and in vivo live imaging approaches, we identify rare inhibitory receptor programmed cell death 1 (PD-1)-expressing cells that reside at the apex of leukaemia hierarchy for initiation and relapse in T-ALL. Ablation of PD-1-expressing cells, deletion of PD-1 in T-ALL cells or blockade of PD-1 or PD-1 ligand 1 significantly eradicated LSCs and suppressed disease progression. Combination therapy using PD-1 blockade and chemotherapy substantially extended the survival of mice engrafted with mouse or human T-ALL cells. Mechanistically, PD-1+ LSCs had high NOTCH1-MYC activity for disease initiation. Furthermore, PD-1 signalling maintained quiescence and protected LSCs against T cell receptor-signal-induced apoptosis. Overall, our data highlight the hierarchy of leukaemia by identifying PD-1+ LSCs and provide a therapeutic approach for the elimination of LSCs through PD-1 blockade in T-ALL.
Collapse
Affiliation(s)
- Xi Xu
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenwen Zhang
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanhui Yu
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Wen Zheng
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Fang Tao
- Children's Mercy Kansas City, Kansas City, MO, USA
| | | | - Chong He
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weiwei Ma
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xue Han
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Siyu Xie
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Minyi Zhao
- Department of Hematology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jian Wang
- Department of Pediatric Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuhua Qu
- Department of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - John M Perry
- Children's Mercy Kansas City, Kansas City, MO, USA.,University of Kansas Medical Center, Kansas City, KS, USA.,University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Linjia Jiang
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Meng Zhao
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
14
|
Wilkens AB, Fulton EC, Pont MJ, Cole GO, Leung I, Stull SM, Hart MR, Bernstein ID, Furlan SN, Riddell SR. NOTCH1 signaling during CD4+ T-cell activation alters transcription factor networks and enhances antigen responsiveness. Blood 2022; 140:2261-2275. [PMID: 35605191 PMCID: PMC9837446 DOI: 10.1182/blood.2021015144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/09/2022] [Indexed: 01/21/2023] Open
Abstract
Adoptive transfer of T cells expressing chimeric antigen receptors (CAR-T) effectively treats refractory hematologic malignancies in a subset of patients but can be limited by poor T-cell expansion and persistence in vivo. Less differentiated T-cell states correlate with the capacity of CAR-T to proliferate and mediate antitumor responses, and interventions that limit tumor-specific T-cell differentiation during ex vivo manufacturing enhance efficacy. NOTCH signaling is involved in fate decisions across diverse cell lineages and in memory CD8+ T cells was reported to upregulate the transcription factor FOXM1, attenuate differentiation, and enhance proliferation and antitumor efficacy in vivo. Here, we used a cell-free culture system to provide an agonistic NOTCH1 signal during naïve CD4+ T-cell activation and CAR-T production and studied the effects on differentiation, transcription factor expression, cytokine production, and responses to tumor. NOTCH1 agonism efficiently induced a stem cell memory phenotype in CAR-T derived from naïve but not memory CD4+ T cells and upregulated expression of AhR and c-MAF, driving heightened production of interleukin-22, interleukin-10, and granzyme B. NOTCH1-agonized CD4+ CAR-T demonstrated enhanced antigen responsiveness and proliferated to strikingly higher frequencies in mice bearing human lymphoma xenografts. NOTCH1-agonized CD4+ CAR-T also provided superior help to cotransferred CD8+ CAR-T, driving improved expansion and curative antitumor responses in vivo at low CAR-T doses. Our data expand the mechanisms by which NOTCH can shape CD4+ T-cell behavior and demonstrate that activating NOTCH1 signaling during genetic modification ex vivo is a potential strategy for enhancing the function of T cells engineered with tumor-targeting receptors.
Collapse
Affiliation(s)
- Alec B. Wilkens
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Molecular and Cellular Biology, University of Washington, Seattle, WA
| | - Elena C. Fulton
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Margot J. Pont
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Gabriel O. Cole
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Isabel Leung
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Sylvia M. Stull
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Matthew R. Hart
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Irwin D. Bernstein
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Scott N. Furlan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Stanley R. Riddell
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Molecular and Cellular Biology, University of Washington, Seattle, WA
| |
Collapse
|
15
|
Yu G, Chen Y, Hu Y, Zhou Y, Ding X, Zhou X. Roles of transducin-like enhancer of split (TLE) family proteins in tumorigenesis and immune regulation. Front Cell Dev Biol 2022; 10:1010639. [PMID: 36438567 PMCID: PMC9692235 DOI: 10.3389/fcell.2022.1010639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/31/2022] [Indexed: 08/16/2023] Open
Abstract
Mammalian transducin-like enhancer of split family proteins (TLEs) are homologous to Drosophila Groucho (Gro) and are essential transcriptional repressors. Seven TLE family members, TLE1-7, have been identified to date. These proteins do not bind DNA directly; instead, they bind a set of transcription factors and thereby inhibit target gene expression. Loss of TLEs in mice usually leads to defective early development; however, TLE functions in developmentally mature cells are unclear. Recent studies have revealed that TLEs are dysregulated in certain human cancer types and may function as oncogenes or tumor suppressors in different contexts. TLE levels also affect the efficacy of cancer treatments and the development of drug resistance. In addition, TLEs play critical roles in the development and function of immune cells, including macrophages and lymphocytes. In this review, we provide updates on the expression, function, and mechanism of TLEs; discuss the roles played by TLEs in tumorigenesis and the inflammatory response; and elaborate on several TLE-associated signaling pathways, including the Notch, Wnt, and MAPK pathways. Finally, we discuss potential strategies for targeting TLEs in cancer therapy.
Collapse
Affiliation(s)
- Guiping Yu
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, China
| | - Yiqi Chen
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| | - Yuwen Hu
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| | - Yan Zhou
- Department of Periodontology, The Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, China
| | - Xiaoling Ding
- Department of Gastroenterology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaorong Zhou
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| |
Collapse
|
16
|
Ding C, Xu H, Yu Z, Roulis M, Qu R, Zhou J, Oh J, Crawford J, Gao Y, Jackson R, Sefik E, Li S, Wei Z, Skadow M, Yin Z, Ouyang X, Wang L, Zou Q, Su B, Hu W, Flavell RA, Li HB. RNA m 6A demethylase ALKBH5 regulates the development of γδ T cells. Proc Natl Acad Sci U S A 2022; 119:e2203318119. [PMID: 35939687 PMCID: PMC9388086 DOI: 10.1073/pnas.2203318119] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
γδ T cells are an abundant T cell population at the mucosa and are important in providing immune surveillance as well as maintaining tissue homeostasis. However, despite γδ T cells' origin in the thymus, detailed mechanisms regulating γδ T cell development remain poorly understood. N6-methyladenosine (m6A) represents one of the most common posttranscriptional modifications of messenger RNA (mRNA) in mammalian cells, but whether it plays a role in γδ T cell biology is still unclear. Here, we show that depletion of the m6A demethylase ALKBH5 in lymphocytes specifically induces an expansion of γδ T cells, which confers enhanced protection against gastrointestinal Salmonella typhimurium infection. Mechanistically, loss of ALKBH5 favors the development of γδ T cell precursors by increasing the abundance of m6A RNA modification in thymocytes, which further reduces the expression of several target genes including Notch signaling components Jagged1 and Notch2. As a result, impairment of Jagged1/Notch2 signaling contributes to enhanced proliferation and differentiation of γδ T cell precursors, leading to an expanded mature γδ T cell repertoire. Taken together, our results indicate a checkpoint role of ALKBH5 and m6A modification in the regulation of γδ T cell early development.
Collapse
Affiliation(s)
- Chenbo Ding
- aDepartment of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- bShanghai Jiao Tong University School of Medicine–Yale University Institute for Immune Metabolism, Shanghai 200025, China
| | - Hao Xu
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Zhibin Yu
- aDepartment of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- bShanghai Jiao Tong University School of Medicine–Yale University Institute for Immune Metabolism, Shanghai 200025, China
| | - Manolis Roulis
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Rihao Qu
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
- dProgram of Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520
- eDepartment of Pathology, Yale University School of Medicine, New Haven, CT 06510
| | - Jing Zhou
- aDepartment of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- bShanghai Jiao Tong University School of Medicine–Yale University Institute for Immune Metabolism, Shanghai 200025, China
| | - Joonseok Oh
- fDepartment of Chemistry, Yale University, New Haven, CT 06520
- gChemical Biology Institute, Yale University, West Haven, CT 06516
| | - Jason Crawford
- fDepartment of Chemistry, Yale University, New Haven, CT 06520
- gChemical Biology Institute, Yale University, West Haven, CT 06516
- hDepartment of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520
| | - Yimeng Gao
- iSection of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
- jYale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520
- kYale RNA Center, Yale University School of Medicine, New Haven, CT 06520
| | - Ruaidhrí Jackson
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Esen Sefik
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Simiao Li
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Zheng Wei
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Mathias Skadow
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Zhinan Yin
- lZhuhai Precision Medical Center, Zhuhai People’s Hospital, Jinan University, Zhuhai 519000, Guangdong, China
- mBiomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xinshou Ouyang
- nSection of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Lei Wang
- aDepartment of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiang Zou
- aDepartment of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bing Su
- aDepartment of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- bShanghai Jiao Tong University School of Medicine–Yale University Institute for Immune Metabolism, Shanghai 200025, China
| | - Weiguo Hu
- aDepartment of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- 2To whom correspondence may be addressed. , , or
| | - Richard A. Flavell
- cDepartment of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
- oHHMI, Yale University School of Medicine, New Haven, CT 06520
- 2To whom correspondence may be addressed. , , or
| | - Hua-Bing Li
- aDepartment of Geriatrics, Center for Immune-Related Diseases, Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- bShanghai Jiao Tong University School of Medicine–Yale University Institute for Immune Metabolism, Shanghai 200025, China
- 2To whom correspondence may be addressed. , , or
| |
Collapse
|
17
|
Zhou W, Gao F, Romero-Wolf M, Jo S, Rothenberg EV. Single-cell deletion analyses show control of pro-T cell developmental speed and pathways by Tcf7, Spi1, Gata3, Bcl11a, Erg, and Bcl11b. Sci Immunol 2022; 7:eabm1920. [PMID: 35594339 PMCID: PMC9273332 DOI: 10.1126/sciimmunol.abm1920] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
As early T cell precursors transition from multipotentiality to T lineage commitment, they change expression of multiple transcription factors. It is unclear whether individual transcription factors directly control choices between T cell identity and some alternative fate or whether these factors mostly affect proliferation or survival during the normal commitment process. Here, we unraveled the impacts of deleting individual transcription factors at two stages in early T cell development, using synchronized in vitro differentiation systems, single-cell RNA-seq with batch indexing, and controlled gene-disruption strategies. First, using a customized method for single-cell CRISPR disruption, we defined how the early-acting transcription factors Bcl11a, Erg, Spi1 (PU.1), Gata3, and Tcf7 (TCF1) function before commitment. The results revealed a kinetic tug of war within individual cells between T cell factors Tcf7 and Gata3 and progenitor factors Spi1 and Bcl11a, with an unexpected guidance role for Erg. Second, we tested how activation of transcription factor Bcl11b during commitment altered ongoing cellular programs. In knockout cells where Bcl11b expression was prevented, the cells did not undergo developmental arrest, instead following an alternative path as T lineage commitment was blocked. A stepwise, time-dependent regulatory cascade began with immediate-early transcription factor activation and E protein inhibition, finally leading Bcl11b knockout cells toward exit from the T cell pathway. Last, gene regulatory networks of transcription factor cross-regulation were extracted from the single-cell transcriptome results, characterizing the specification network operating before T lineage commitment and revealing its links to both the Bcl11b knockout alternative network and the network consolidating T cell identity during commitment.
Collapse
Affiliation(s)
- Wen Zhou
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125 USA
- Program in Biochemistry and Molecular Biophysics, California Institute of Technology
- Current address: BillionToOne, Menlo Park, CA
| | - Fan Gao
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125 USA
- Caltech Bioinformatics Resource Center, Beckman Institute of Caltech
| | - Maile Romero-Wolf
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125 USA
- Current address: Center for Stem Cell Biology and Regenerative Medicine, University of Southern California
| | - Suin Jo
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125 USA
- Current address: Washington University of St. Louis
| | - Ellen V. Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125 USA
| |
Collapse
|
18
|
Abstract
Two vasculitides, giant cell arteritis (GCA) and Takayasu arteritis (TAK), are recognized as autoimmune and autoinflammatory diseases that manifest exclusively within the aorta and its large branches. In both entities, the age of the affected host is a critical risk factor. TAK manifests during the 2nd-4th decade of life, occurring while the immune system is at its height of performance. GCA is a disease of older individuals, with infrequent cases during the 6th decade and peak incidence during the 8th decade of life. In both vasculitides, macrophages and T cells infiltrate into the adventitia and media of affected vessels, induce granulomatous inflammation, cause vessel wall destruction, and reprogram vascular cells to drive adventitial and neointimal expansion. In GCA, abnormal immunity originates in an aged immune system and evolves within the aged vascular microenvironment. One hallmark of the aging immune system is the preferential loss of CD8+ T cell function. Accordingly, in GCA but not in TAK, CD8+ effector T cells play a negligible role and anti-inflammatory CD8+ T regulatory cells are selectively impaired. Here, we review current evidence of how the process of immunosenescence impacts the risk for GCA and how fundamental differences in the age of the immune system translate into differences in the granulomatous immunopathology of TAK versus GCA.
Collapse
|
19
|
Fregona V, Bayet M, Gerby B. Oncogene-Induced Reprogramming in Acute Lymphoblastic Leukemia: Towards Targeted Therapy of Leukemia-Initiating Cells. Cancers (Basel) 2021; 13:cancers13215511. [PMID: 34771671 PMCID: PMC8582707 DOI: 10.3390/cancers13215511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/28/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Acute lymphoblastic leukemia is a heterogeneous disease characterized by a diversity of genetic alterations, following a sophisticated and controversial organization. In this review, we present and discuss the concepts exploring the cellular, molecular and functional heterogeneity of leukemic cells. We also review the emerging evidence indicating that cell plasticity and oncogene-induced reprogramming should be considered at the biological and clinical levels as critical mechanisms for identifying and targeting leukemia-initiating cells. Abstract Our understanding of the hierarchical structure of acute leukemia has yet to be fully translated into therapeutic approaches. Indeed, chemotherapy still has to take into account the possibility that leukemia-initiating cells may have a distinct chemosensitivity profile compared to the bulk of the tumor, and therefore are spared by the current treatment, causing the relapse of the disease. Therefore, the identification of the cell-of-origin of leukemia remains a longstanding question and an exciting challenge in cancer research of the last few decades. With a particular focus on acute lymphoblastic leukemia, we present in this review the previous and current concepts exploring the phenotypic, genetic and functional heterogeneity in patients. We also discuss the benefits of using engineered mouse models to explore the early steps of leukemia development and to identify the biological mechanisms driving the emergence of leukemia-initiating cells. Finally, we describe the major prospects for the discovery of new therapeutic strategies that specifically target their aberrant stem cell-like functions.
Collapse
|
20
|
The vasculature niches required for hematopoiesis. J Mol Med (Berl) 2021; 100:53-61. [PMID: 34709407 DOI: 10.1007/s00109-021-02155-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/04/2021] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
Endothelial cells play a critical role in supporting postnatal hematopoiesis in the bone marrow. Unique endothelial cells, together with various perivascular cells, form different types of vascular structures, constructing a vast microvascular delivery and trafficking network for blood cells, oxygen, and nutrition. These blood vessels build distinct hematopoietic stem and progenitor cell niches, which offer not only sites of residence for blood cells but also indispensable signals directing HSPC homing, self-renewal, and multilineage differentiation. Deep insight into the structure and function of the BM vasculature niche and its participation in hematopoiesis is necessary to develop advanced strategies for the reconstitution of hematopoiesis.
Collapse
|
21
|
Xi M, Guo S, Bayin C, Peng L, Chuffart F, Bourova-Flin E, Rousseaux S, Khochbin S, Mi JQ, Wang J. Chidamide inhibits the NOTCH1-MYC signaling axis in T-cell acute lymphoblastic leukemia. Front Med 2021; 16:442-458. [PMID: 34669156 DOI: 10.1007/s11684-021-0877-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is one of the most dangerous hematological malignancies, with high tumor heterogeneity and poor prognosis. More than 60% of T-ALL patients carry NOTCH1 gene mutations, leading to abnormal expression of downstream target genes and aberrant activation of various signaling pathways. We found that chidamide, an HDAC inhibitor, exerts an antitumor effect on T-ALL cell lines and primary cells including an anti-NOTCH1 activity. In particular, chidamide inhibits the NOTCH1-MYC signaling axis by down-regulating the level of the intracellular form of NOTCH1 (NICD1) as well as MYC, partly through their ubiquitination and degradation by the proteasome pathway. We also report here the preliminary results of our clinical trial supporting that a treatment by chidamide reduces minimal residual disease (MRD) in patients and is well tolerated. Our results highlight the effectiveness and safety of chidamide in the treatment of T-ALL patients, including those with NOTCH1 mutations and open the way to a new therapeutic strategy for these patients.
Collapse
Affiliation(s)
- Mengping Xi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, 200025, China
| | - Shanshan Guo
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, 200025, China
| | - Caicike Bayin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, 200025, China
| | - Lijun Peng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, 200025, China
| | - Florent Chuffart
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, 200025, China.,CNRS UMR 5309/INSERM U1209/Université Grenoble Alpes/Institute for Advanced Biosciences, 38706, La Tronche, France
| | - Ekaterina Bourova-Flin
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, 200025, China.,CNRS UMR 5309/INSERM U1209/Université Grenoble Alpes/Institute for Advanced Biosciences, 38706, La Tronche, France
| | - Sophie Rousseaux
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, 200025, China. .,CNRS UMR 5309/INSERM U1209/Université Grenoble Alpes/Institute for Advanced Biosciences, 38706, La Tronche, France.
| | - Saadi Khochbin
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, 200025, China. .,CNRS UMR 5309/INSERM U1209/Université Grenoble Alpes/Institute for Advanced Biosciences, 38706, La Tronche, France.
| | - Jian-Qing Mi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, 200025, China.
| | - Jin Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, 200025, China.
| |
Collapse
|
22
|
Man N, Mas G, Karl DL, Sun J, Liu F, Yang Q, Torres-Martin M, Itonaga H, Martinez C, Chen S, Xu Y, Duffort S, Hamard PJ, Chen C, Zucconi BE, Cimmino L, Yang FC, Xu M, Cole PA, Figueroa ME, Nimer SD. p300 suppresses the transition of myelodysplastic syndromes to acute myeloid leukemia. JCI Insight 2021; 6:138478. [PMID: 34622806 PMCID: PMC8525640 DOI: 10.1172/jci.insight.138478] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/27/2021] [Indexed: 12/17/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are hematopoietic stem and progenitor cell (HSPC) malignancies characterized by ineffective hematopoiesis and an increased risk of leukemia transformation. Epigenetic regulators are recurrently mutated in MDS, directly implicating epigenetic dysregulation in MDS pathogenesis. Here, we identified a tumor suppressor role of the acetyltransferase p300 in clinically relevant MDS models driven by mutations in the epigenetic regulators TET2, ASXL1, and SRSF2. The loss of p300 enhanced the proliferation and self-renewal capacity of Tet2-deficient HSPCs, resulting in an increased HSPC pool and leukemogenicity in primary and transplantation mouse models. Mechanistically, the loss of p300 in Tet2-deficient HSPCs altered enhancer accessibility and the expression of genes associated with differentiation, proliferation, and leukemia development. Particularly, p300 loss led to an increased expression of Myb, and the depletion of Myb attenuated the proliferation of HSPCs and improved the survival of leukemia-bearing mice. Additionally, we show that chemical inhibition of p300 acetyltransferase activity phenocopied Ep300 deletion in Tet2-deficient HSPCs, whereas activation of p300 activity with a small molecule impaired the self-renewal and leukemogenicity of Tet2-deficient cells. This suggests a potential therapeutic application of p300 activators in the treatment of MDS with TET2 inactivating mutations.
Collapse
Affiliation(s)
- Na Man
- Sylvester Comprehensive Cancer Center
| | | | | | - Jun Sun
- Sylvester Comprehensive Cancer Center.,Department of Medicine, and
| | - Fan Liu
- Sylvester Comprehensive Cancer Center.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Qin Yang
- Sylvester Comprehensive Cancer Center
| | | | | | | | - Shi Chen
- Sylvester Comprehensive Cancer Center
| | - Ye Xu
- Sylvester Comprehensive Cancer Center.,Department of Medicine, and
| | | | | | | | - Beth E Zucconi
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham & Women's Hospital, Boston, Massachusetts, USA
| | - Luisa Cimmino
- Sylvester Comprehensive Cancer Center.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Feng-Chun Yang
- Sylvester Comprehensive Cancer Center.,Department of Medicine, and
| | - Mingjiang Xu
- Sylvester Comprehensive Cancer Center.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Philip A Cole
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham & Women's Hospital, Boston, Massachusetts, USA
| | - Maria E Figueroa
- Sylvester Comprehensive Cancer Center.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center.,Department of Medicine, and.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
23
|
Evans EJ, DeGregori J. Cells with Cancer-associated Mutations Overtake Our Tissues as We Age. AGING AND CANCER 2021; 2:82-97. [PMID: 34888527 PMCID: PMC8651076 DOI: 10.1002/aac2.12037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND To shed light on the earliest events in oncogenesis, there is growing interest in understanding the mutational landscapes of normal tissues across ages. In the last decade, next-generation sequencing of human tissues has revealed a surprising abundance of cells with what would be considered oncogenic mutations. AIMS We performed meta-analysis on previously published sequencing data on normal tissues to categorize mutations based on their presence in cancer and showcase the quantity of cells with cancer-associated mutations in cancer-free individuals. METHODS AND RESULTS We analyzed sequencing data from these studies of normal tissues to determine the prevalence of cells with mutations in three different categories across multiple age groups: 1) mutations in genes designated as drivers, 2) mutations that are in the Cancer Gene Census (CGC), and 3) mutations in the CGC that are considered pathogenic. As we age, the percentage of cells in all three levels increase significantly, reaching over 50% of cells having oncogenic mutations for multiple tissues in the older age groups. The clear enrichment for these mutations, particularly at older ages, likely indicates strong selection for the resulting phenotypes. Combined with an estimation of the number of cells in tissues, we calculate that most older, cancer-free individuals possess at least a 100 billion cells that harbor at least one oncogenic mutation, presumably emanating from a fitness advantage conferred by these mutations that promotes clonal expansion. CONCLUSIONS These studies of normal tissues have highlighted the specific drivers of clonal expansion and how frequently they appear in us. Their high prevalence throughout cancer-free individuals necessitates reconsideration of the oncogenicity of these mutations, which could shape methods of detection, prevention and treatment of cancer, as well as of the potential impact of these mutations on tissue function and our health.
Collapse
Affiliation(s)
- Edward J. Evans
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
24
|
Assumpção ALFV, Fu G, Singh DK, Lu Z, Kuehnl AM, Welch R, Ong IM, Wen R, Pan X. A lineage-specific requirement for YY1 Polycomb Group protein function in early T cell development. Development 2021; 148:dev.197319. [PMID: 33766932 DOI: 10.1242/dev.197319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/12/2021] [Indexed: 01/22/2023]
Abstract
Yin Yang 1 (YY1) is a ubiquitous transcription factor and mammalian Polycomb Group protein (PcG) with important functions for regulating lymphocyte development and stem cell self-renewal. YY1 mediates stable PcG-dependent transcriptional repression via recruitment of PcG proteins that result in histone modifications. Many questions remain unanswered regarding how cell- and tissue-specificity is achieved by PcG proteins. Here, we demonstrate that a conditional knockout of Yy1 in the hematopoietic system results in an early T cell developmental blockage at the double negative (DN) 1 stage with reduced Notch1 signaling. There is a lineage-specific requirement for YY1 PcG function. YY1 PcG domain is required for T and B cell development but not necessary for myeloid cells. YY1 functions in early T cell development are multicomponent and involve both PcG-dependent and -independent regulations. Although YY1 promotes early T cell survival through its PcG function, its function to promote the DN1-to-DN2 transition and Notch1 expression and signaling is independent of its PcG function. Our results reveal how a ubiquitously expressed PcG protein mediates lineage-specific and context-specific functions to control early T cell development.
Collapse
Affiliation(s)
- Anna L F V Assumpção
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 57306, USA.,Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53705, USA
| | - Guoping Fu
- Versiti, Blood Research Institute, 8701 Watertown Plank Road, Milwaukee, WI 53223, USA
| | - Deependra K Singh
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 57306, USA.,Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53705, USA
| | - Zhanping Lu
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 57306, USA.,Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53705, USA
| | - Ashley M Kuehnl
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 57306, USA.,Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53705, USA
| | - Rene Welch
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 750 Highland Ave, Madison, WI 53705, USA.,Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, 610 Walnut St, Madison, WI 53726, USA
| | - Irene M Ong
- Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53705, USA.,Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 750 Highland Ave, Madison, WI 53705, USA.,Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, 610 Walnut St, Madison, WI 53726, USA
| | - Renren Wen
- Versiti, Blood Research Institute, 8701 Watertown Plank Road, Milwaukee, WI 53223, USA
| | - Xuan Pan
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 57306, USA.,Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53705, USA
| |
Collapse
|
25
|
Rothenberg EV. Logic and lineage impacts on functional transcription factor deployment for T-cell fate commitment. Biophys J 2021; 120:4162-4181. [PMID: 33838137 PMCID: PMC8516641 DOI: 10.1016/j.bpj.2021.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 11/19/2022] Open
Abstract
Transcription factors are the major agents that read the regulatory sequence information in the genome to initiate changes in expression of specific genes, both in development and in physiological activation responses. Their actions depend on site-specific DNA binding and are largely guided by their individual DNA target sequence specificities. However, their action is far more conditional in a real developmental context than would be expected for simple reading of local genomic DNA sequence, which is common to all cells in the organism. They are constrained by slow-changing chromatin states and by interactions with other transcription factors, which affect their occupancy patterns of potential sites across the genome. These mechanisms lead to emergent discontinuities in function even for transcription factors with minimally changing expression. This is well revealed by diverse lineages of blood cells developing throughout life from hematopoietic stem cells, which use overlapping combinations of transcription factors to drive strongly divergent gene regulation programs. Here, using development of T lymphocytes from hematopoietic multipotent progenitor cells as a focus, recent evidence is reviewed on how binding specificity and dynamics, transcription factor cooperativity, and chromatin state changes impact the effective regulatory functions of key transcription factors including PU.1, Runx1, Notch-RBPJ, and Bcl11b.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California.
| |
Collapse
|
26
|
Flippe L, Gaignerie A, Sérazin C, Baron O, Saulquin X, Themeli M, Guillonneau C, David L. Rapid and Reproducible Differentiation of Hematopoietic and T Cell Progenitors From Pluripotent Stem Cells. Front Cell Dev Biol 2020; 8:577464. [PMID: 33195214 PMCID: PMC7606846 DOI: 10.3389/fcell.2020.577464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/18/2020] [Indexed: 11/25/2022] Open
Abstract
Cell therapy using T cells has revolutionized medical care in recent years but limitations are associated with the difficulty of genome editing of the cells, the production of a sufficient number of cells and standardization of the product. Human pluripotent stem cells (hPSCs) can self-renew and differentiate into T cells to provide a standardized homogenous product of defined origin in indefinite quantity, therefore they are of great potential to alleviate limitations of therapeutic T cell production. The differentiation of hPSCs takes place in two steps: first the induction of hematopoietic stem/progenitor cells (HSPCs), then the induction of lymphopoiesis by Notch signaling. However, the differentiation of T cells from hPSCs can be difficult and lack reproducibility. One parameter that needs to be better assessed is the potential of DLL1 vs. DLL4 ligands of the Notch pathway to induce T cells. In addition, culture of hPSCs is labor-intensive and not compatible with GMP production, especially when they are cultured on feeder cells. Thus, the definition of a robust GMP-compatible differentiation protocol from hPSCs cultured in feeder-free conditions would increase the accessibility to off-the-shelf hematopoietic and T cell progenitors derived from hPSCs. In this article, we describe an efficient, rapid and reproducible protocol for the generation of hematopoietic and T cell progenitors in two steps: (1) generation of HSPCs from embryoid bodies (EB) in serum free medium and GMP-compatible feeder-free systems, (2) directed differentiation of hPSC-derived HSPCs into T-cell progenitors in the presence of bone marrow stromal cells expressing Notch-ligands OP9-DLL1 vs. OP9-DLL4.
Collapse
Affiliation(s)
- Léa Flippe
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Anne Gaignerie
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, FED 4203, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | - Céline Sérazin
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Olivier Baron
- Department of Pediatric Cardiac Surgery, University Hospital of Nantes, Nantes, France
| | | | - Maria Themeli
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
| | - Carole Guillonneau
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Laurent David
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.,Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, FED 4203, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| |
Collapse
|
27
|
Swann JB, Nusser A, Morimoto R, Nagakubo D, Boehm T. Retracing the evolutionary emergence of thymopoiesis. SCIENCE ADVANCES 2020; 6:6/48/eabd9585. [PMID: 33246964 PMCID: PMC7695478 DOI: 10.1126/sciadv.abd9585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/08/2020] [Indexed: 05/09/2023]
Abstract
The onset of lymphocyte development in the vertebrate primordial thymus, about 500 million years ago, represents one of the foundational events of the emerging adaptive immune system. Here, we retrace the evolutionary trajectory of thymopoiesis, from early vertebrates to mammals, guided by members of the Foxn1/4 transcription factor gene family, which direct the differentiation of the thymic microenvironment. Molecular engineering in transgenic mice recapitulated a gene duplication event, exon replacements, and altered expression patterns. These changes predictably modified the lymphopoietic characteristics of the thymus, identifying molecular features contributing to conversion of a primordial bipotent lymphoid organ to a tissue specializing in T cell development. The phylogenetic reconstruction associates increasing efficiency of T cell generation with diminishing B cell-generating capacity of the thymus during jawed vertebrate evolution.
Collapse
Affiliation(s)
- Jeremy B Swann
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Anja Nusser
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Ryo Morimoto
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Daisuke Nagakubo
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany.
| |
Collapse
|
28
|
Li R, Guo C, Lin X, Chan TF, Lai KP, Chen J. Integrative omics analyses uncover the mechanism underlying the immunotoxicity of perfluorooctanesulfonate in human lymphocytes. CHEMOSPHERE 2020; 256:127062. [PMID: 32434090 DOI: 10.1016/j.chemosphere.2020.127062] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Perfluorooctanesulfonate (PFOS) is a man-made chemical widely used in industrial products. Due to its high persistence, PFOS has been detected in most animal species including the human population, wild animals, and aquatic organisms. Both cross-sectional studies and laboratory animal studies have shown hepatotoxicity, renal toxicity, and reproductive toxicity caused by PFOS exposure. Recently, a limited number of PFOS studies have raised concerns about its potential immune system effects. However, the molecular mechanism underlying the immunotoxicity of PFOS remains unknown. In this study, we used primary human lymphocytes as a model, together with integrative omics analyses, including the transcriptome and lipidome, and bioinformatics analysis, to resolve the immune toxicity effects of PFOS. Our results demonstrated that PFOS could alter the production of interleukins in human lymphocytes. Additionally, PFOS exposure could dysregulate clusters of genes and lipids that play important roles in immune functions, such as lymphocyte differentiation, inflammatory response, and immune response. The findings of this study offer novel insight into the molecular mechanisms underlying the immunotoxicity of PFOS, and open the potential of using the identified PFOS-responsive genes and lipids as biomarkers for risk assessment.
Collapse
Affiliation(s)
- Rong Li
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541004, PR China
| | - Chao Guo
- Department of Pharmacy, Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi, PR China
| | - Xiao Lin
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ting Fung Chan
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Keng Po Lai
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541004, PR China; Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China.
| | - Jian Chen
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541004, PR China.
| |
Collapse
|
29
|
Long J, Yang C, Zheng Y, Loughran P, Guang F, Li Y, Liao H, Scott MJ, Tang D, Billiar TR, Deng M. Notch signaling protects CD4 T cells from STING-mediated apoptosis during acute systemic inflammation. SCIENCE ADVANCES 2020; 6:6/39/eabc5447. [PMID: 32967837 PMCID: PMC7531880 DOI: 10.1126/sciadv.abc5447] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/11/2020] [Indexed: 05/05/2023]
Abstract
Dysregulation of T cell apoptosis contributes to the pathogenesis of acute systemic inflammation-induced immunosuppression, as seen in sepsis and trauma. However, the regulatory mechanisms of T cell apoptosis are unclear. Activation of stimulator of interferon genes (STING) has been shown to induce T cell apoptosis. Notch was previously identified as the top negative regulator of STING in macrophages through a kinase inhibitor library screening. However, how Notch signaling regulates STING activation in T cells is unknown. Here, using a γ-secretase inhibitor to block Notch signaling, we found that Notch protected CD4 T cells from STING-mediated apoptosis during endotoxemia. Mechanistically, Notch intracellular domain (NICD) interacted with STING at the cyclic dinucleotide (CDN) binding domain and competed with CDN to inhibit STING activation. In conclusion, our data reveal a previously unidentified role of Notch in negative regulation of STING-mediated apoptosis in CD4 T cells.
Collapse
Affiliation(s)
- Junke Long
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Department of Surgery current visiting research scholar, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chenxuan Yang
- Tsinghua University School of Medicine, Beijing, China
- Department of Surgery former visiting research scholar; 10/24/2016 to 7/27/2018, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yawen Zheng
- Department of Surgery current visiting research scholar, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Patricia Loughran
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fu Guang
- Department of Surgery current visiting research scholar, University of Pittsburgh, Pittsburgh, PA, USA
- Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
- Department of Surgery former visiting research scholar; 9/1/2018 to 1/31/2020, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hong Liao
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Melanie J Scott
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Meihong Deng
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
30
|
Wei H, Yin X, Tang H, Gao Y, Liu B, Wu Q, Tian Q, Hao Y, Bi H, Guo D. Hypomethylation of Notch1 DNA is associated with the occurrence of uveitis. Clin Exp Immunol 2020; 201:317-327. [PMID: 32479651 DOI: 10.1111/cei.13471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/24/2020] [Accepted: 05/20/2020] [Indexed: 11/28/2022] Open
Abstract
Uveitis is a serious intra-ocular inflammatory disease that can lead to visual impairment even blindness worldwide. Notch signaling can regulate the differentiation of naive CD4+ T cells, influencing the development of uveitis. DNA methylation is closely related to the autoimmune diseases. In this study, we measured the Notch1 DNA methylation level, determined the Notch1 and related DNA methylases mRNA expression and evaluated the ratio of T helper type 17 regulatory T cell (Th17/Treg ) in peripheral blood mononuclear cells (PBMCs) from uveitis patients and normal control subjects; we also tested the levels of relevant inflammatory cytokines in serum from the participants. Results indicated that compared with those in normal control individuals, the expression of ten-eleven translocation 2 (TET2) and Notch1 mRNA is elevated in uveitis patients, whereas the methylation level in Notch1 DNA promotor region [-842 ~ -646 base pairs (bp)] is down-regulated, and is unrelated to anatomical location. Moreover, the Th17/Treg ratio is up-regulated in PBMCs from uveitis patients, accompanied by the elevated levels of proinflammatory cytokines [e.g. interleukin (IL)-2, IL-6, IL-17 and interferon (IFN)-γ] in serum from uveitis patients. These findings suggest that the over-expression of TET2 DNA demethylase may lead to hypomethylation of Notch1, activate the Notch1 signaling, induce naive CD4+ T cells to differentiate theTh17 subset and thus disturb the balance of the Th17/Treg ratio in uveitis patients. Overall, hypomethylation of Notch1 DNA is closely associated with the occurrence of uveitis. Our study preliminarily reveals the underlying mechanism for the occurrence of uveitis related to the hypomethylation of Notch1 DNA, providing a novel therapeutic strategy against uveitis in clinical practice.
Collapse
Affiliation(s)
- H Wei
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - X Yin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - H Tang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Y Gao
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities, Shandong, Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - B Liu
- Department of Blood Transfusion, Linyi People's Hospital, Linyi, China
| | - Q Wu
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Q Tian
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Y Hao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - H Bi
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities, Shandong, Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - D Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities, Shandong, Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
31
|
Sun S, Yuan L, An Z, Shi D, Xin J, Jiang J, Ren K, Chen J, Guo B, Zhou X, Zhou Q, Jin X, Ruan S, Cheng T, Xia N, Li J. DLL4 restores damaged liver by enhancing hBMSC differentiation into cholangiocytes. Stem Cell Res 2020; 47:101900. [PMID: 32622343 DOI: 10.1016/j.scr.2020.101900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/30/2020] [Accepted: 06/24/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND & AIMS Biliary injury is one of the main pathological mechanisms of fulminant hepatic failure (FHF). Delta-like ligand 4 (DLL4)-mediated Notch activation contributes to reversing biliary injury; however, the specific role of DLL4 in biliary restoration is still unclear. This study aimed to determine whether human bone marrow mesenchymal stem cells (hBMSCs) can differentiate into biliary epithelial cells (cholangiocytes) in vitro and in vivo and to clarify the role of DLL4 in restoring damaged liver by enhancing cholangiocyte differentiation. METHODS hBMSCs were transplanted into immunodeficient mice (FRGS) with FHF induced by the hamster-anti-mouse CD95 antibody JO2. The appearance of human cholangiocytes was evaluated in the generated hBMSC-FRGS mice by q-PCR expression, flow cytometry and immunohistochemistry. The potency of DLL4 in inducing cholangiocyte differentiation from hBMSCs was assessed by observing the cell morphology and measuring the expression of cholangiocyte-specific genes and proteins. RESULTS Human KRT19- and KRT7-double-positive cholangiocyte-like cells appeared in hBMSC-FRGS mice at 12 weeks after transplantation. After these cells were separated and collected by fluorescent-activated cell sorting (FACS), there were high levels of expression of eight typical human cholangiocyte-specific genes and proteins (e.g., KRT19 and KRT7). Furthermore, hBMSC-derived cholangiocytes induced by DLL4 had a better shape with higher nucleus/cytoplasm ratios and showed a specific increase in the expression of cholangiocyte-specific genes and proteins (e.g., KRT19, KRT7, SOX9 and CFTR). CONCLUSIONS Cholangiocytes can be efficiently differentiated from hBMSCs in vivo and in vitro. DLL4 restores damaged liver by enhancing cholangiocyte differentiation from hBMSCs and has the potential to be used in future clinical therapeutic applications.
Collapse
Affiliation(s)
- Suwan Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Lunzhi Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhanglu An
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China; Graduate School, Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Dongyan Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Jiaojiao Xin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Jing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Keke Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Jiaxian Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Beibei Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Xingping Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Qian Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Xiaojun Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China; Graduate School, Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Sihan Ruan
- Taizhou Central Hospital, Taizhou University Hospital, 999 Donghai Rd., Taizhou 318000, China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China; Taizhou Central Hospital, Taizhou University Hospital, 999 Donghai Rd., Taizhou 318000, China.
| |
Collapse
|
32
|
Liu D, Kousa AI, O'Neill KE, Rouse P, Popis M, Farley AM, Tomlinson SR, Ulyanchenko S, Guillemot F, Seymour PA, Jørgensen MC, Serup P, Koch U, Radtke F, Blackburn CC. Canonical Notch signaling controls the early thymic epithelial progenitor cell state and emergence of the medullary epithelial lineage in fetal thymus development. Development 2020; 147:dev.178582. [PMID: 32467237 PMCID: PMC7328009 DOI: 10.1242/dev.178582] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/04/2020] [Indexed: 12/27/2022]
Abstract
Thymus function depends on the epithelial compartment of the thymic stroma. Cortical thymic epithelial cells (cTECs) regulate T cell lineage commitment and positive selection, while medullary (m) TECs impose central tolerance on the T cell repertoire. During thymus organogenesis, these functionally distinct sub-lineages are thought to arise from a common thymic epithelial progenitor cell (TEPC). However, the mechanisms controlling cTEC and mTEC production from the common TEPC are not understood. Here, we show that emergence of the earliest mTEC lineage-restricted progenitors requires active NOTCH signaling in progenitor TEC and that, once specified, further mTEC development is NOTCH independent. In addition, we demonstrate that persistent NOTCH activity favors maintenance of undifferentiated TEPCs at the expense of cTEC differentiation. Finally, we uncover a cross-regulatory relationship between NOTCH and FOXN1, a master regulator of TEC differentiation. These data establish NOTCH as a potent regulator of TEPC and mTEC fate during fetal thymus development, and are thus of high relevance to strategies aimed at generating/regenerating functional thymic tissue in vitro and in vivo. Summary: Notch signaling regulates the initial emergence of medullary thymic epithelial sublineage, implicating Notch in the maintenance of primitive thymic epithelial progenitors and uncovering its cross-interaction with Foxn1.
Collapse
Affiliation(s)
- Dong Liu
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 5, Little France Drive, Edinburgh EH16 4UU, UK
| | - Anastasia I Kousa
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 5, Little France Drive, Edinburgh EH16 4UU, UK
| | - Kathy E O'Neill
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 5, Little France Drive, Edinburgh EH16 4UU, UK
| | - Paul Rouse
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 5, Little France Drive, Edinburgh EH16 4UU, UK
| | - Martyna Popis
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 5, Little France Drive, Edinburgh EH16 4UU, UK
| | - Alison M Farley
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 5, Little France Drive, Edinburgh EH16 4UU, UK
| | - Simon R Tomlinson
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 5, Little France Drive, Edinburgh EH16 4UU, UK
| | - Svetlana Ulyanchenko
- Biotech Research and Innovation Centre (BRIC), Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | | | - Philip A Seymour
- NNF Center for Stem Cell Biology, University of Copenhagen, Nørre Alle 14, DK-2200 Copenhagen N, Denmark
| | - Mette C Jørgensen
- NNF Center for Stem Cell Biology, University of Copenhagen, Nørre Alle 14, DK-2200 Copenhagen N, Denmark
| | - Palle Serup
- NNF Center for Stem Cell Biology, University of Copenhagen, Nørre Alle 14, DK-2200 Copenhagen N, Denmark
| | - Ute Koch
- Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - C Clare Blackburn
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 5, Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
33
|
Tsukamoto T. Hematopoietic Stem/Progenitor Cells and the Pathogenesis of HIV/AIDS. Front Cell Infect Microbiol 2020; 10:60. [PMID: 32154191 PMCID: PMC7047323 DOI: 10.3389/fcimb.2020.00060] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
The interaction between human immunodeficiency virus (HIV) and hematopoietic stem/progenitor cells (HSPCs) has been of great interest. However, it remains unclear whether HSPCs can act as viral reservoirs. Many studies have reported the presence of latently infected HSPCs in the bone marrow of HIV-infected patients, whereas many other investigators have reported negative results. Hence, further evidence is required to elucidate this controversy. The other arm of HSPC investigations of HIV infection involves dynamics analysis in the early and late stages of infection to understand the impact on the pathogenesis of acquired immunodeficiency syndrome. Several recent studies have suggested reduced amounts and/or functional impairment of multipotent, myeloid, and lymphoid progenitors in HIV infection that may contribute to hematological manifestations, including anemia, pancytopenia, and T-cell depletion. In addition, ongoing and future studies on the senescence of HSPCs are expected to further the understanding of HIV pathogenesis. This mini review summarizes reports describing the basic aspects of hematopoiesis in response to HIV infection and offers insights into the association of HIV infection/exposure of the host HSPCs and hematopoietic potential.
Collapse
Affiliation(s)
- Tetsuo Tsukamoto
- Department of Immunology, Faculty of Medicine, Kindai University, Osaka, Japan
| |
Collapse
|
34
|
Yamaguchi K, Yisireyili M, Goto S, Kato K, Cheng XW, Nakayama T, Matsushita T, Niwa T, Murohara T, Takeshita K. Indoxyl Sulfate-induced Vascular Calcification is mediated through Altered Notch Signaling Pathway in Vascular Smooth Muscle Cells. Int J Med Sci 2020; 17:2703-2717. [PMID: 33162798 PMCID: PMC7645353 DOI: 10.7150/ijms.43184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/31/2020] [Indexed: 01/06/2023] Open
Abstract
Introduction: The aim of this study was to determine the role of Notch in indoxyl sulfate (IS)-induced vascular calcification (VC). Materials and methods: VC and expression of Notch-related and osteogenic molecules were examined in Dahl salt-sensitive (DS), DS hypertensive (DH), and DH IS-treated rats (DH+IS). The effects of IS on expression of Notch receptors, apoptotic activity, and calcification were examined in cultured aortic smooth muscle cells (SMCs). Results: Medial calcification was noted only in aortas and coronary arteries of DH+IS rats. Notch1, Notch3, and Hes-1 were expressed in aortic SMCs of all rats, but only weakly in the central areas of the media and around the calcified lesions in DH+IS rats. RT-PCR and western blotting of DH+IS rat aortas showed downregulation of Notch ligands, Notch1 and Notch3, downstream transcriptional factors, and SM22, and conversely, overexpression of osteogenic markers. Expression of Notch1 and Notch3 in aortic SMCs was highest in incubation under 500 μM IS for 24hrs, and then decreased time- and dose-dependently. Coupled with this decrease, IS increased caspase 3/7 activity and TUNEL-positive aortic SMCs. In addition, pharmacological Notch signal inhibition with DAPT induced apoptosis in aortic SMCs. ZVAD, a caspase inhibitor abrogated IS-induced and DAPT-induced in vitro vascular calcification. Knockdown of Notch1 and Notch3 cooperatively increased expression of osteogenic transcriptional factors and decreased expression of SM22. Conclusion: Our results suggested that IS-induced VC is mediated through suppression of Notch activity in aortic SMCs, induction of osteogenic differentiation and apoptosis.
Collapse
Affiliation(s)
- Kazutoshi Yamaguchi
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Maimaiti Yisireyili
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sumie Goto
- Biomedical Research Laboratories, Kureha Co., Tokyo, Japan
| | - Katsuhiro Kato
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xian Wu Cheng
- Department of Cardiology/Hypertension and Heart Center, Yanbian University Hospital, Yanji, Jilin, China.,Department of Community Health and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Nakayama
- Department of Blood Transfusion, Aichi Medical University Hospital, Nagakute, Japan
| | - Tadashi Matsushita
- Department of Clinical Laboratory, Nagoya University Hospital, Nagoya, Japan.,Department of Blood Transfusion, Nagoya University Hospital, Nagoya, Japan
| | | | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kyosuke Takeshita
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Clinical Laboratory, Nagoya University Hospital, Nagoya, Japan.,Department of Clinical Laboratory, Saitama Medical Centre, Saitama Medical University, Kawagoe, Japan
| |
Collapse
|
35
|
Dongdong Z, Jin Y, Yang T, Yang Q, Wu B, Chen Y, Luo Z, Liang L, Liu Y, Xu A, Tong X, Can C, Ding L, Tu H, Tan Y, Jiang H, Liu X, Shen H, Liu L, Pan Y, Wei Y, Zhou F. Antiproliferative and Immunoregulatory Effects of Azelaic Acid Against Acute Myeloid Leukemia via the Activation of Notch Signaling Pathway. Front Pharmacol 2019; 10:1396. [PMID: 31849658 PMCID: PMC6901913 DOI: 10.3389/fphar.2019.01396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/01/2019] [Indexed: 01/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is a common type of hematological malignancy that can progress rapidly. AML has a poor prognosis and a high incidence of relapse due to therapeutic resistance. Azelaic acid (AZA), a small molecular compound is known to exhibit antitumor effect on various tumor cells. This study aimed to evaluate the antiproliferative and immunoregulatory effects of AZA against AMLviathe activation of the notch signaling pathway. We found that AZA can inhibit the proliferation of AML cells. In addition, laser confocal microscopy showed AZA-treated AML cells began to swelling and undergo cytoplasmic vacuolization. Importantly, AZA promoted the proliferation of NK and T cells and increased the secretion of TNF-αand IFN-γ. AZA also increased the expression levels of CD107a and TRAIL in NK cells, and CD25 and CD69 in T cells to influence their activation and cytotoxic ability. AZA-treated NK cells can kill AML cells more efficiently at the single-cell level as observed under the microfluidic chips. Further mechanistic analysis using protein mass spectrometry analysis and Notch signaling reporter assay demonstrated that Notch1and Notch2 were up-regulated and the Notch signaling pathway was activated. Moreover, combining AZA with the Notch inhibitor, RO4929097, decreased the expression of Notch1and Notch2, and downstream HES1 and HEY1, which rendered AML cells insensitive to AZA-induced apoptosis and alleviated AZA-mediated cytotoxicity in AML. In vivo, AZA relieved the leukemic spleen infiltration and extended the survival. The percentage of CD3-CD56+NK cells and CD4+CD8+T cells as well as the secretion of cytotoxic cytokines was increased after the treatment of AZA. The overall findings reveal that AZA is a potential Notch agonist against AML in activating the Notch signaling pathway.
Collapse
Affiliation(s)
- Zhang Dongdong
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yanxia Jin
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Tian Yang
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Qian Yang
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Balu Wu
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yanling Chen
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Ziyi Luo
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Li Liang
- Key Laboratory of Artificial Micro- and Naso-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Yunjiao Liu
- State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Anjie Xu
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xiqin Tong
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Can Can
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Lu Ding
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Honglei Tu
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yuxin Tan
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Hongqiang Jiang
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xiaoyan Liu
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Hui Shen
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Li Liu
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
36
|
Zhang T, Zhang M, Xu T, Chen S, Xu A. Transcriptome analysis of larval immune defence in the lamprey Lethenteron japonicum. FISH & SHELLFISH IMMUNOLOGY 2019; 94:327-335. [PMID: 31491528 DOI: 10.1016/j.fsi.2019.08.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/18/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
The lamprey is a primitive jawless vertebrate that occupies a critical phylogenetic position, and its larval stage represents the major portion of its life cycle [1]. Lamprey larvae have been proven to be an important model organism for studying numerous biological problems, such as the immune system, due to their unique biological features [2]. In addition, early-stage larvae have never been obtained from the wild [3]; therefore, it is necessary to establish artificial breeding of lampreys in the laboratory. However, during early development, the larvae exhibit susceptibility to saprolegniasis, and the immune responses of lamprey larvae to this infection remain poorly understood. Here, we established a model of fungal infection in lamprey larvae and then used RNA sequencing to investigate the transcript profiles of lamprey larvae and their immune responses to Saprolegnia ferax. Among the profiled molecules, genes involved in pathogen recognition, inflammation, phagocytosis, lysosomal degradation, soluble humoral effectors, and lymphocyte development were significantly upregulated. The results were validated by analysis of several genes by quantitative real-time PCR and whole-mount in situ hybridization. Finally, we performed a Western blot for VLRs in infected and uninfected lampreys. This work not only provides an animal model for studying fungal infection but also suggests a molecular basis for developing defensive strategies to manage Saprolegnia ferax infection.
Collapse
Affiliation(s)
- Taotao Zhang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Mimi Zhang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ting Xu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China; School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
37
|
Gao J, Van Meter M, Hernandez Lopez S, Chen G, Huang Y, Ren S, Zhao Q, Rojas J, Gurer C, Thurston G, Kuhnert F. Therapeutic targeting of Notch signaling and immune checkpoint blockade in a spontaneous, genetically heterogeneous mouse model of T-cell acute lymphoblastic leukemia. Dis Model Mech 2019; 12:dmm.040931. [PMID: 31399482 PMCID: PMC6765191 DOI: 10.1242/dmm.040931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/29/2019] [Indexed: 01/05/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic cancer derived from the malignant transformation of T-cell progenitors. Outcomes remain poor for T-ALL patients who have either primary resistance to standard-of-care chemotherapy or disease relapse. Notably, there are currently no targeted therapies available in T-ALL. This lack of next-generation therapies highlights the need for relevant preclinical disease modeling to identify and validate new targets and treatment approaches. Here, we adapted a spontaneously arising, genetically heterogeneous, thymic transplantation-based murine model of T-ALL, recapitulating key histopathological and genetic features of the human disease, to the preclinical testing of targeted and immune-directed therapies. Genetic engineering of the murine Notch1 locus aligned the spectrum of Notch1 mutations in the mouse model to that of human T-ALL and confirmed aberrant, recombination-activating gene (RAG)-mediated 5′ Notch1 recombination events as the preferred pathway in murine T-ALL development. Testing of Notch1-targeting therapeutic antibodies demonstrated T-ALL sensitivity to different classes of Notch1 blockers based on Notch1 mutational status. In contrast, genetic ablation of Notch3 did not impact T-ALL development. The T-ALL model was further applied to the testing of immunotherapeutic agents in fully immunocompetent, syngeneic mice. In line with recent clinical experience in T-cell malignancies, programmed cell death 1 (PD-1) blockade alone lacked anti-tumor activity against murine T-ALL tumors. Overall, the unique features of the spontaneous T-ALL model coupled with genetic manipulations and the application to therapeutic testing in immunocompetent backgrounds will be of great utility for the preclinical evaluation of novel therapies against T-ALL. Summary: Adapting a spontaneous, genetically heterogenous T-ALL model to preclinical testing demonstrated that response to therapeutic anti-Notch1 antibodies was determined by Notch1 mutational status and that PD-1 immune checkpoint blockade alone lacked anti-tumor activity.
Collapse
Affiliation(s)
- Jie Gao
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY 10591, USA
| | | | | | - Guoying Chen
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY 10591, USA
| | - Ying Huang
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY 10591, USA
| | - Shumei Ren
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY 10591, USA
| | - Qi Zhao
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY 10591, USA
| | - Jose Rojas
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY 10591, USA
| | - Cagan Gurer
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY 10591, USA
| | - Gavin Thurston
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY 10591, USA
| | - Frank Kuhnert
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY 10591, USA
| |
Collapse
|
38
|
Zebrafish and Medaka: Two Teleost Models of T-Cell and Thymic Development. Int J Mol Sci 2019; 20:ijms20174179. [PMID: 31454991 PMCID: PMC6747487 DOI: 10.3390/ijms20174179] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 01/26/2023] Open
Abstract
Over the past two decades, studies have demonstrated that several features of T-cell and thymic development are conserved from teleosts to mammals. In particular, works using zebrafish (Danio rerio) and medaka (Oryzias latipes) have shed light on the cellular and molecular mechanisms underlying these biological processes. In particular, the ease of noninvasive in vivo imaging of these species enables direct visualization of all events associated with these processes, which are, in mice, technically very demanding. In this review, we focus on defining the similarities and differences between zebrafish and medaka in T-cell development and thymus organogenesis; and highlight their advantages as two complementary model systems for T-cell immunobiology and modeling of human diseases.
Collapse
|
39
|
Huang MT, Chiu CJ, Chiang BL. Multi-Faceted Notch in Allergic Airway Inflammation. Int J Mol Sci 2019; 20:3508. [PMID: 31319491 PMCID: PMC6678794 DOI: 10.3390/ijms20143508] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022] Open
Abstract
Notch is an evolutionarily conserved signaling family which iteratively exerts pleiotropic functions in cell fate decisions and various physiological processes, not only during embryonic development but also throughout adult life. In the context of the respiratory system, Notch has been shown to regulate ciliated versus secretory lineage differentiation of epithelial progenitor cells and coordinate morphogenesis of the developing lung. Reminiscent of its role in development, the Notch signaling pathway also plays a role in repair of lung injuries by regulation of stem cell activity, cell differentiation, cell proliferation and apoptosis. In addition to functions in embryonic development, cell and tissue renewal and various physiological processes, including glucose and lipid metabolism, Notch signaling has been demonstrated to regulate differentiation of literally almost all T-cell subsets, and impact on elicitation of inflammatory response and its outcome. We have investigated the role of Notch in allergic airway inflammation in both acute and chronic settings. In this mini-review, we will summarize our own work and recent advances on the role of Notch signaling in allergic airway inflammation, and discuss potential applications of the Notch signaling family in therapy for allergic airway diseases.
Collapse
Affiliation(s)
- Miao-Tzu Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei 10048, Taiwan.
- Department of Pediatrics, National Taiwan University Hospital, Taipei 10048, Taiwan.
- Graduate Institute of Clinical Medicine, School of Medicine, National Taiwan University, Taipei 10048, Taiwan.
| | - Chiao-Juno Chiu
- Graduate Institute of Clinical Medicine, School of Medicine, National Taiwan University, Taipei 10048, Taiwan
| | - Bor-Luen Chiang
- Department of Medical Research, National Taiwan University Hospital, Taipei 10048, Taiwan.
- Department of Pediatrics, National Taiwan University Hospital, Taipei 10048, Taiwan.
- Graduate Institute of Clinical Medicine, School of Medicine, National Taiwan University, Taipei 10048, Taiwan.
| |
Collapse
|
40
|
Rothenberg EV, Hosokawa H, Ungerbäck J. Mechanisms of Action of Hematopoietic Transcription Factor PU.1 in Initiation of T-Cell Development. Front Immunol 2019; 10:228. [PMID: 30842770 PMCID: PMC6391351 DOI: 10.3389/fimmu.2019.00228] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
PU.1 is an ETS-family transcription factor that plays a broad range of roles in hematopoiesis. A direct regulator of myeloid, dendritic-cell, and B cell functional programs, and a well-known antagonist of terminal erythroid cell differentiation, it is also expressed in the earliest stages of T-cell development of each cohort of intrathymic pro-T cells. Its expression in this context appears to give T-cell precursors initial, transient access to myeloid and dendritic cell developmental competence and therefore to represent a source of antagonism or delay of T-cell lineage commitment. However, it has remained uncertain until recently why T-cell development is also intensely dependent upon PU.1. Here, we review recent work that sheds light on the molecular biology of PU.1 action across the genome in pro-T cells and identifies the genes that depend on PU.1 for their correct regulation. This work indicates modes of chromatin engagement, pioneering, and cofactor recruitment (“coregulator theft”) by PU.1 as well as gene network interactions that not only affect specific target genes but also have system-wide regulatory consequences, amplifying the impact of PU.1 beyond its own direct binding targets. The genes directly regulated by PU.1 also suggest a far-reaching transformation of cell biology and signaling potential between the early stages of T-cell development when PU.1 is expressed and when it is silenced. These cell-biological functions can be important to distinguish fetal from adult T-cell development and have the potential to illuminate aspects of thymic function that have so far remained the most mysterious.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Hiroyuki Hosokawa
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Jonas Ungerbäck
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
41
|
Yasui Y, Hitoshi Y, Kaneko S. In Vitro Differentiation of T Cell: From Human iPS Cells in Feeder-Free Condition. Methods Mol Biol 2019; 2048:77-80. [PMID: 31396931 DOI: 10.1007/978-1-4939-9728-2_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In order to differentiate T cells in vitro, co-culture systems with Notch ligand-expressing feeder cells have been in use for a long time. Here we describe a feeder-free culture condition for differentiating T cells from hematopoietic cells that are cultured on Fc-DLL4-coated plate with T-lineage cytokines. This condition is capable of efficiently differentiating hematopoietic progenitor cells (HPCs) to immature T cells expressing both CD4 and CD8. To mature those cells into functional T cells, further stimulation and culture is necessary.
Collapse
Affiliation(s)
- Yutaka Yasui
- Thyas Co. Ltd., Kyoto, Japan
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | | | - Shin Kaneko
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.
| |
Collapse
|
42
|
Alsufyani F, Mattoo H, Zhou D, Cariappa A, Van Buren D, Hock H, Avruch J, Pillai S. The Mst1 Kinase Is Required for Follicular B Cell Homing and B-1 B Cell Development. Front Immunol 2018; 9:2393. [PMID: 30386341 PMCID: PMC6199389 DOI: 10.3389/fimmu.2018.02393] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/27/2018] [Indexed: 11/22/2022] Open
Abstract
The Mst1 and 2 cytosolic serine/threonine protein kinases are the mammalian orthologs of the Drosophila Hippo protein. Mst1 has been shown previously to participate in T-cell and B-cell trafficking and the migration of lymphocytes into secondary lymphoid organs in a cell intrinsic manner. We show here that the absence of Mst1 alone only modestly impacts B cell homing to lymph nodes. The absence of both Mst1 and 2 in hematopoietic cells results in relatively normal B cell development in the bone marrow and does not impact migration of immature B cells to the spleen. However, follicular B cells lacking both Mst1 and Mst2 mature in the splenic white pulp but are unable to recirculate to lymph nodes or to the bone marrow. These cells also cannot traffic efficiently to the splenic red pulp. The inability of late transitional and follicular B cells lacking Mst 1 and 2 to migrate to the red pulp explains their failure to differentiate into marginal zone B cell precursors and marginal zone B cells. Mst1 and Mst2 are therefore required for follicular B cells to acquire the ability to recirculate and also to migrate to the splenic red pulp in order to generate marginal zone B cells. In addition B-1 a B cell development is defective in the absence of Mst1.
Collapse
Affiliation(s)
- Faisal Alsufyani
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Hamid Mattoo
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Dawang Zhou
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Annaiah Cariappa
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Denille Van Buren
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Hanno Hock
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Joseph Avruch
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
43
|
Hildebrand D, Uhle F, Sahin D, Krauser U, Weigand MA, Heeg K. The Interplay of Notch Signaling and STAT3 in TLR-Activated Human Primary Monocytes. Front Cell Infect Microbiol 2018; 8:241. [PMID: 30042932 PMCID: PMC6048282 DOI: 10.3389/fcimb.2018.00241] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/21/2018] [Indexed: 11/23/2022] Open
Abstract
The highly conserved Notch signaling pathway essentially participates in immunity through regulation of developmental processes and immune cell activity. In the adaptive immune system, the impact of the Notch cascade in T and B differentiation is well studied. In contrast, the function, and regulation of Notch signaling in the myeloid lineage during infection is poorly understood. Here we show that TLR signaling, triggered through LPS stimulation or in vitro infection with various Gram-negative and -positive bacteria, stimulates Notch receptor ligand Delta-like 1 (DLL1) expression and Notch signaling in human blood-derived monocytes. TLR activation induces DLL1 indirectly, through stimulated cytokine expression and autocrine cytokine receptor-mediated signal transducer and activator of transcription 3 (STAT3). Furthermore, we reveal a positive feedback loop between Notch signaling and Janus kinase (JAK)/STAT3 pathway during in vitro infection that involves Notch-boosted IL-6. Inhibition of Notch signaling by γ-secretase inhibitor DAPT impairs TLR4-stimulated accumulation of NF-κB subunits p65 in the nucleus and subsequently reduces LPS- and infection-mediated IL-6 production. The reduced IL-6 release correlates with a diminished STAT3 phosphorylation and reduced expression of STAT3-dependent target gene programmed death-ligand 1 (PD-L1). Corroborating recombinant soluble DLL1 and Notch activator oxaliplatin stimulate STAT3 phosphorylation and expression of immune-suppressive PD-L1. Therefore we propose a bidirectional interaction between Notch signaling and STAT3 that stabilizes activation of the transcription factor and supports STAT3-dependent remodeling of myeloid cells toward an immuno-suppressive phenotype. In summary, the study provides new insights into the complex network of Notch regulation in myeloid cells during in vitro infection. Moreover, it points to a participation of Notch in stabilizing TLR-mediated STAT3 activation and STAT3-mediated modulation of myeloid functional phenotype through induction of immune-suppressive PD-L1.
Collapse
Affiliation(s)
- Dagmar Hildebrand
- Centre for Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Delal Sahin
- Centre for Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Ute Krauser
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Klaus Heeg
- Centre for Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
44
|
Notch Signaling is Required for Dendritic Cell Maturation and T Cell Expansion in Paracoccidioidomycosis. Mycopathologia 2018; 183:739-749. [PMID: 29911286 DOI: 10.1007/s11046-018-0276-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/29/2018] [Indexed: 10/14/2022]
Abstract
The Notch signaling pathway participates in several cellular functional aspects. This signaling has an important role in targeting both DC maturation and DC-mediated T cell responses. Thus, it is essential to investigate the influence of this signaling pathway in the role played by DCs in the pathogenesis of experimental paracoccidioidomycosis. This disease is a granulomatous and systemic mycosis that mainly affects lung tissue and can spread to any other organ and system. In this study, we demonstrated that bone marrow-derived DCs infected with yeasts from Paracoccidioides brasiliensis strain 18 performed efficiently their maturation after the activation of Notch signaling, with an increase in CD80, CD86, CCR7, and CD40 expression and the release of cytokines such as IL-6 and TNF-α. We observed that the inhibition of the γ-secretase DAPT impaired the proliferation of T cells induced by DC stimulation. In conclusion, our data suggest that Notch signaling contributes effectively to the maturation of DCs and the DC-mediated activation of the T cell response in P. brasiliensis infections.
Collapse
|
45
|
Li Y, Qu T, Tian L, Han T, Jin Y, Wang Y. Human placenta mesenchymal stem cells suppress airway inflammation in asthmatic rats by modulating Notch signaling. Mol Med Rep 2018; 17:5336-5343. [PMID: 29363718 DOI: 10.3892/mmr.2018.8462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 11/02/2017] [Indexed: 11/05/2022] Open
Abstract
Neurogenic locus notch homolog protein (Notch) signaling mediates intracellular communication and may regulate cell fate decisions, including cell proliferation, differentiation, and apoptosis. Mesenchymal stem cells (MSCs) possess immunomodulatory properties and the potential for use in stem cell replacement treatments. The aim of the present study was to evaluate the therapeutic effects of human placenta‑deviated MSCs (hPMSCs) in asthma and to investigate the mechanisms of Notch signaling mediated by transplanted MSCs. A Sprague‑Dawley rat ovalbumin (OVA)‑sensitized acute asthma model was established and challenged. MSCs derived from human placenta (hPMSCs) were transplanted into the asthmatic rats. Transplantation resulted in reduced Notch‑1, Notch‑2 and jagged‑1, and increased Notch‑3, Notch‑4 and delta‑like ligand (delta)‑4 expression in lung, blood, and lymph samples. Notch‑1, Notch‑2, and jagged‑1 expression in OVA‑treated rats was significantly decreased compared with controls and hPMSC‑treated rats; however, Notch‑3, Notch‑4 and delta‑4 expression was significantly increased. Serum interferon‑γ significantly increased after hPMSCs transplantation, whereas interleukin‑4 and immunoglobulin E decreased. In OVA‑treated rats, Notch‑1, Notch‑2 and jagged‑1 levels were increased in the lymph compared with the blood, although Notch‑4 and delta‑4 levels were decreased. Peribronchial infiltration of cells and goblet cell hyperplasia were markedly decreased in the OVA + hPMSCs group compared with those in the OVA‑treated and control groups. Alterations in Notch signaling pathway expression were accompanied by decreased inflammatory cell infiltration, goblet cell hyperplasia and mucus production in lung tissues. The results of the present study are consistent with hPMSC suppression of asthma symptoms and inflammation by regulating the Notch signaling pathway in the rat asthma model.
Collapse
Affiliation(s)
- Yuanyuan Li
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Tiantian Qu
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Lijun Tian
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Tingting Han
- Department of Respiratory, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Yongjun Jin
- Department of Endocrine Metabolism, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Yuesi Wang
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
46
|
Bigas A, Porcheri C. Notch and Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:235-263. [DOI: 10.1007/978-3-319-89512-3_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Fan F, Zhuang J, Zhou P, Liu X, Luo Y. MicroRNA-34a promotes mitochondrial dysfunction-induced apoptosis in human lens epithelial cells by targeting Notch2. Oncotarget 2017; 8:110209-110220. [PMID: 29299142 PMCID: PMC5746377 DOI: 10.18632/oncotarget.22597] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/18/2017] [Indexed: 02/06/2023] Open
Abstract
Purpose Human lens epithelial cell (HLEC) apoptosis is a common pathogenic mechanism in age-related cataracts (ARC). While the function of microRNAs (miRNAs) in the eye is beginning to be explored using miRNA expression array, the role of miR-34a in regulating HLEC apoptosis remains unknown and requires further investigation. Methods Quantitative reverse-transcript polymerase chain reaction (RT-PCR) was used to determine the expression level of miR-34a in cataractous and control samples. MiR-34a mimics and small interfering RNAs were transfected into SRA01/04. Cell apoptosis and oxidative stress were assessed by flow cytometry. The Dual-Luciferase Reporter Assay System was used to confirm whether miR-34a bound to the 3'-UTR of the target gene and blocked its activity. The potential roles of the identified target genes in apoptosis and mitochondria dysfunction were also evaluated. Results The expression of miR-34a increased in lens epithelial samples of ARC compared with the transparent group (cataract 2.41±0.81 vs. control 1.20±0.44, P=0.005). In cultured SRA01/04, miR-34a increased reactive oxygen species production and induced apoptosis (early apoptosis: 45.55%±5.96% vs. 15.85%±4.93%, P<0.01; late apoptosis: 6.10%±2.67% vs. 0.95%±0.42%, P<0.01). Overexpression of miR-34a promoted mitochondria-mediated apoptosis through activation of caspase-9, disruption of the mitochondrial membrane potential, blocking of mitochondrial energy metabolism and enhancement of cytochrome C release. Furthermore, Notch1 and Notch2 were confirmed as putative targets of miR-34a, but only Notch2 was verified as the effector that triggered mitochondria-mediated apoptosis. Conclusion MicroRNA-34a is increased in the cataractous lens and triggers mitochondria-mediated apoptosis and oxidative stress by suppressing Notch2.
Collapse
Affiliation(s)
- Fan Fan
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,Myopia Key Laboratory of The Health Ministry and Visual Impairment and Reconstruction Key Laboratory of Shanghai, Shanghai, China
| | - Jianhui Zhuang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peng Zhou
- Parkway Health Hongqiao Medical Center, Shanghai, China
| | - Xin Liu
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,Myopia Key Laboratory of The Health Ministry and Visual Impairment and Reconstruction Key Laboratory of Shanghai, Shanghai, China
| | - Yi Luo
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,Myopia Key Laboratory of The Health Ministry and Visual Impairment and Reconstruction Key Laboratory of Shanghai, Shanghai, China
| |
Collapse
|
48
|
Lu YF, Cahan P, Ross S, Sahalie J, Sousa PM, Hadland BK, Cai W, Serrao E, Engelman AN, Bernstein ID, Daley GQ. Engineered Murine HSCs Reconstitute Multi-lineage Hematopoiesis and Adaptive Immunity. Cell Rep 2017; 17:3178-3192. [PMID: 28009288 DOI: 10.1016/j.celrep.2016.11.077] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 10/03/2016] [Accepted: 11/24/2016] [Indexed: 12/21/2022] Open
Abstract
Hematopoietic stem cell (HSC) transplantation is curative for malignant and genetic blood disorders, but is limited by donor availability and immune-mismatch. Deriving HSCs from patient-matched embryonic/induced-pluripotent stem cells (ESCs/iPSCs) could address these limitations. Prior efforts in murine models exploited ectopic HoxB4 expression to drive self-renewal and enable multi-lineage reconstitution, yet fell short in delivering robust lymphoid engraftment. Here, by titrating exposure of HoxB4-ESC-HSC to Notch ligands, we report derivation of engineered HSCs that self-renew, repopulate multi-lineage hematopoiesis in primary and secondary engrafted mice, and endow adaptive immunity in immune-deficient recipients. Single-cell analysis shows that following engraftment in the bone marrow niche, these engineered HSCs further specify to a hybrid cell type, in which distinct gene regulatory networks of hematopoietic stem/progenitors and differentiated hematopoietic lineages are co-expressed. Our work demonstrates engineering of fully functional HSCs via modulation of genetic programs that govern self-renewal and lineage priming.
Collapse
Affiliation(s)
- Yi-Fen Lu
- Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Howard Hughes Medical Institute, Children's Hospital Boston, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Patrick Cahan
- Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Howard Hughes Medical Institute, Children's Hospital Boston, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Biomedical Engineering, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Samantha Ross
- Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Howard Hughes Medical Institute, Children's Hospital Boston, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Julie Sahalie
- Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Howard Hughes Medical Institute, Children's Hospital Boston, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Patricia M Sousa
- Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Howard Hughes Medical Institute, Children's Hospital Boston, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Brandon K Hadland
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA
| | - Wenqing Cai
- Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Howard Hughes Medical Institute, Children's Hospital Boston, Boston, MA 02115, USA
| | - Erik Serrao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Irwin D Bernstein
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA
| | - George Q Daley
- Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Howard Hughes Medical Institute, Children's Hospital Boston, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
49
|
Yoon J, Jo Y, Kim MH, Kim K, Lee S, Kang SJ, Park Y. Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning. Sci Rep 2017; 7:6654. [PMID: 28751719 PMCID: PMC5532204 DOI: 10.1038/s41598-017-06311-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/05/2017] [Indexed: 01/31/2023] Open
Abstract
Identification of lymphocyte cell types are crucial for understanding their pathophysiological roles in human diseases. Current methods for discriminating lymphocyte cell types primarily rely on labelling techniques with magnetic beads or fluorescence agents, which take time and have costs for sample preparation and may also have a potential risk of altering cellular functions. Here, we present the identification of non-activated lymphocyte cell types at the single-cell level using refractive index (RI) tomography and machine learning. From the measurements of three-dimensional RI maps of individual lymphocytes, the morphological and biochemical properties of the cells are quantitatively retrieved. To construct cell type classification models, various statistical classification algorithms are compared, and the k-NN (k = 4) algorithm was selected. The algorithm combines multiple quantitative characteristics of the lymphocyte to construct the cell type classifiers. After optimizing the feature sets via cross-validation, the trained classifiers enable identification of three lymphocyte cell types (B, CD4+ T, and CD8+ T cells) with high sensitivity and specificity. The present method, which combines RI tomography and machine learning for the first time to our knowledge, could be a versatile tool for investigating the pathophysiological roles of lymphocytes in various diseases including cancers, autoimmune diseases, and virus infections.
Collapse
Affiliation(s)
- Jonghee Yoon
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KAIST Institute Health Science and Technology, Daejeon, 34141, Republic of Korea
- Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - YoungJu Jo
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KAIST Institute Health Science and Technology, Daejeon, 34141, Republic of Korea
| | - Min-Hyeok Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Kyoohyun Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KAIST Institute Health Science and Technology, Daejeon, 34141, Republic of Korea
| | - SangYun Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KAIST Institute Health Science and Technology, Daejeon, 34141, Republic of Korea
| | - Suk-Jo Kang
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- KAIST Institute Health Science and Technology, Daejeon, 34141, Republic of Korea.
- Tomocube, Inc., Daejeon, 34051, Republic of Korea.
| |
Collapse
|
50
|
Oliveira ML, Akkapeddi P, Alcobia I, Almeida AR, Cardoso BA, Fragoso R, Serafim TL, Barata JT. From the outside, from within: Biological and therapeutic relevance of signal transduction in T-cell acute lymphoblastic leukemia. Cell Signal 2017. [PMID: 28645565 DOI: 10.1016/j.cellsig.2017.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer that arises from clonal expansion of transformed T-cell precursors. In this review we summarize the current knowledge on the external stimuli and cell-intrinsic lesions that drive aberrant activation of pivotal, pro-tumoral intracellular signaling pathways in T-cell precursors, driving transformation, leukemia expansion, spread or resistance to therapy. In addition to their pathophysiological relevance, receptors and kinases involved in signal transduction are often attractive candidates for targeted drug development. As such, we discuss also the potential of T-ALL signaling players as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Mariana L Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Padma Akkapeddi
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Isabel Alcobia
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Afonso R Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Bruno A Cardoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Rita Fragoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Teresa L Serafim
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - João T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal.
| |
Collapse
|