1
|
Cao X, van Putten JPM, Wösten MMSM. Biological functions of bacterial lysophospholipids. Adv Microb Physiol 2023; 82:129-154. [PMID: 36948653 DOI: 10.1016/bs.ampbs.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lysophospholipids (LPLs) are lipid-derived metabolic intermediates in the cell membrane. The biological functions of LPLs are distinct from their corresponding phospholipids. In eukaryotic cells LPLs are important bioactive signaling molecules that regulate many important biological processes, but in bacteria the function of LPLs is still not fully defined. Bacterial LPLs are usually present in cells in very small amounts, but can strongly increase under certain environmental conditions. In addition to their basic function as precursors in membrane lipid metabolism, the formation of distinct LPLs contributes to the proliferation of bacteria under harsh circumstances or may act as signaling molecules in bacterial pathogenesis. This review provides an overview of the current knowledge of the biological functions of bacterial LPLs including lysoPE, lysoPA, lysoPC, lysoPG, lysoPS and lysoPI in bacterial adaptation, survival, and host-microbe interactions.
Collapse
Affiliation(s)
- Xuefeng Cao
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jos P M van Putten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marc M S M Wösten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Cao X, van de Lest CH, Huang LZ, van Putten JP, Wösten MM. Campylobacter jejuni permeabilizes the host cell membrane by short chain lysophosphatidylethanolamines. Gut Microbes 2022; 14:2091371. [PMID: 35797141 PMCID: PMC9272830 DOI: 10.1080/19490976.2022.2091371] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lysophospholipids (LPLs) are crucial for regulating epithelial integrity and homeostasis in eukaryotes, however the effects of LPLs produced by bacteria on host cells is largely unknown. The membrane of the human bacterial pathogen Campylobacter jejuni is rich in LPLs. Although C. jejuni possesses several virulence factors, it lacks traditional virulence factors like type III secretion systems, present in most enteropathogens. Here, we provide evidence that membrane lipids lysophosphatidylethanolamines (lysoPEs) of C. jejuni are able to lyse erythrocytes and are toxic for HeLa and Caco-2 cells. Lactate dehydrogenase (LDH) release assays and confocal microscopy revealed that lysoPE permeabilizes the cells. LysoPE toxicity was partially rescued by oxidative stress inhibitors, indicating that intracellular reactive oxygen species may contribute to the cell damage. Our results show that especially the short-chain lysoPEs (C:14) which is abundantly present in the C. jejuni membrane may be considered as a novel virulence factor.
Collapse
Affiliation(s)
- Xuefeng Cao
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| | | | - Liane Z.X. Huang
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| | - Jos P.M. van Putten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| | - Marc M.S.M. Wösten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands,CONTACT Marc M.S.M. Wösten Department Biomolecular Health Sciences, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, Netherlands
| |
Collapse
|
3
|
McSorley JC, MacFadyen AC, Kerr L, Tucker NP. Host lysolipid differentially modulates virulence factor expression and antimicrobial susceptibility in Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35796718 DOI: 10.1099/mic.0.001179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lysophosphatidic acid (LPA) occurs naturally in inflammatory exudates and has previously been shown to increase the susceptibility of Pseudomonas aeruginosa to β-lactam antibiotics whilst concomitantly reducing accumulation of the virulence factors pyoverdine and elastase. Here it is demonstrated that LPA can also exert inhibitory effects upon pyocyanin production in P. aeruginosa, as well as influencing susceptibility to a wide range of chemically diverse non β-lactam antimicrobials. Most strikingly, LPA markedly antagonizes the effect of the polycationic antibiotics colistin and tobramycin at a concentration of 250 µg ml-1 whilst conversely enhancing their efficacy at the lower concentration of 8.65 µg ml-1, approximating the maximal physiological concentrations found in inflammatory exudates. Transcriptomic responses of the virulent strain UCBPP-PA14 to LPA were analysed using RNA-sequencing along with BioLog phenoarrays and whole cell assays in attempts to delineate possible mechanisms underlying these effects. The results strongly suggest involvement of LPA-induced carbon catabolite repression together with outer-membrane (OM) stress responses whilst raising questions about the effect of LPA upon other P. aeruginosa virulence factors including type III secretion. This could have clinical relevance as it suggests that endogenous LPA may, at concentrations found in vivo, differentially modulate antibiotic susceptibility of P. aeruginosa whilst simultaneously regulating expression of virulence factors, thereby influencing host-pathogen interactions during infection. The possibility of applying exogenous LPA locally as an enhancer of select antibiotics merits further investigation.
Collapse
Affiliation(s)
- James C McSorley
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Alison C MacFadyen
- Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Leena Kerr
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, UK
| | - Nicholas Peter Tucker
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
4
|
Xu Y, Abdelhamid AG, Sabag-Daigle A, Sovic MG, Ahmer BM, Yousef AE. The Role of Egg Yolk in Modulating the Virulence of Salmonella Enterica Serovar Enteritidis. Front Cell Infect Microbiol 2022; 12:903979. [PMID: 35774398 PMCID: PMC9237210 DOI: 10.3389/fcimb.2022.903979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Contribution of food vehicles to pathogenicity of disease-causing microorganisms is an important but overlooked research field. The current study was initiated to reveal the relationship between virulence of Salmonella enterica serovar Enteritidis and egg yolk as a hosting medium. Mice were orally challenged with Salmonella Enteritidis cultured in egg yolk or tryptic soy broth (TSB). Additionally, mice were challenged with Salmonella Enteritidis cultured in TSB, followed by administration of sterile egg yolk, to discern the difference between pre-growth of the pathogen and its mere presence in egg yolk during infection. The pathogen's Lethal dose 50 (LD50) was the lowest when grown in yolk (2.8×102 CFU), compared to 1.1×103 CFU in TSB, and 4.6×103 CFU in TSB followed by administration of sterile yolk. Additionally, mice that orally received Salmonella Enteritidis grown in egg yolk expressed a high death rate. These findings were supported by transcriptional analysis results. Expression of promoters of virulence-related genes (sopB and sseA) in genetically modified Salmonella Enteritidis reporter strains was significantly higher (p < 0.05) when the bacterium was grown in the yolk, compared to that grown in TSB. Sequencing of RNA (RNA-seq) revealed 204 differentially transcribed genes in Salmonella Enteritidis grown in yolk vs. TSB. Yolk-grown Salmonella Enteritidis exhibited upregulated virulence pathways, including type III secretion systems, epithelial cell invasion, and infection processes; these observations were confirmed by RT-qPCR results. The transcriptomic analysis suggested that upregulation of virulence machinery of Salmonella Enteritidis grown in egg yolk was related to increased iron uptake, biotin utilization, flagellar biosynthesis, and export of virulence proteins encoded on Salmonella pathogenicity island 1, 2, 4, and 5. These biological responses may have acted in concert to increase the virulence of Salmonella infection in mice. In conclusion, growth in egg yolk enhanced Salmonella Enteritidis virulence, indicating the significance of this food vehicle to the risk assessment of salmonellosis.
Collapse
Affiliation(s)
- Yumin Xu
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - Ahmed G. Abdelhamid
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Anice Sabag-Daigle
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Michael G. Sovic
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
| | - Brian M.M. Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Ahmed E. Yousef
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
5
|
Activation of the Type III Secretion System of Enteropathogenic Escherichia coli Leads to Remodeling of Its Membrane Composition and Function. mSystems 2022; 7:e0020222. [PMID: 35477304 PMCID: PMC9238428 DOI: 10.1128/msystems.00202-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell envelope of Gram-negative bacteria is a complex structure, essential for bacterial survival and for resistance to many antibiotics. Channels that cross the bacterial envelope and the host cell membrane form secretion systems that are activated upon attachment to host, enabling bacteria to inject effector molecules into the host cell, required for bacterium-host interaction. The type III secretion system (T3SS) is critical for the virulence of several pathogenic bacteria, including enteropathogenic Escherichia coli (EPEC). EPEC T3SS activation is associated with repression of carbon storage regulator (CsrA), resulting in gene expression remodeling, which is known to affect EPEC central carbon metabolism and contributes to the adaptation to a cell-adherent lifestyle in a poorly understood manner. We reasoned that the changes in the bacterial envelope upon attachment to the host and the activation of a secretion system may involve a modification of the lipid composition of bacterial envelope. Accordingly, we performed a lipidomics analysis on mutant strains that simulate T3SS activation. We saw a shift in glycerophospholipid metabolism toward the formation of lysophospholipids, attributed to corresponding upregulation of the phospholipase gene pldA and the acyltransferase gene ygiH upon T3SS activation in EPEC. We also detected a shift from menaquinones and ubiquinones to undecaprenyl lipids, concomitant with abnormal synthesis of O antigen. The remodeling of lipid metabolism is mediated by CsrA and associated with increased bacterial cell size and zeta potential and a corresponding alteration in EPEC permeability to vancomycin, increasing the sensitivity of T3SS-activated strains and of adherent wild-type EPEC to the antibiotic. IMPORTANCE The characterization of EPEC membrane lipid metabolism upon attachment to the host is an important step toward a better understanding the shift of EPEC, a notable human pathogen, from a planktonic to adherent lifestyle. It may also apply to other pathogenic bacteria that use this secretion system. We predict that upon attachment to host cells, the lipid remodeling upon T3SS activation contributes to bacterial fitness and promotes host colonization, and we show that it is associated with increased cell permeability and higher sensitivity to vancomycin. To the best of our knowledge, this is the first demonstration of a bacterial lipid remodeling due to activation of a secretion system.
Collapse
|
6
|
Avelino-Flores F, Soria-Bustos J, Saldaña-Ahuactzi Z, Martínez-Laguna Y, Yañez-Santos JA, Cedillo-Ramírez ML, Girón JA. The Transcription of Flagella of Enteropathogenic Escherichia coli O127:H6 Is Activated in Response to Environmental and Nutritional Signals. Microorganisms 2022; 10:microorganisms10040792. [PMID: 35456842 PMCID: PMC9032864 DOI: 10.3390/microorganisms10040792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
The flagella of enteropathogenic Escherichia coli (EPEC) O127:H6 E2348/69 mediate adherence to host proteins and epithelial cells. What environmental and nutritional signals trigger or down-regulate flagella expression in EPEC are largely unknown. In this study, we analyzed the influence of pH, oxygen tension, cationic and anionic salts (including bile salt), carbon and nitrogen sources, and catecholamines on the expression of the flagellin gene (fliC) of E2348/69. We found that sodium bicarbonate, which has been shown to induce the expression of type III secretion effectors, down-regulated flagella expression, explaining why E2348/69 shows reduced motility and flagellation when growing in Dulbecco’s Minimal Essential Medium (DMEM). Further, growth under a 5% carbon dioxide atmosphere, in DMEM adjusted to pH 8.2, in M9 minimal medium supplemented with 80 mM glucose or sucrose, and in DMEM containing 150 mM sodium chloride, 0.1% sodium deoxycholate, or 30 µM epinephrine significantly enhanced fliC transcription to different levels in comparison to growth in DMEM alone. When EPEC was grown in the presence of HeLa cells or in supernatants of cultured HeLa cells, high levels (4-fold increase) of fliC transcription were detected in comparison to growth in DMEM alone. Our data suggest that nutritional and host signals that EPEC may encounter in the intestinal niche activate fliC expression in order to favor motility and host colonization.
Collapse
Affiliation(s)
- Fabiola Avelino-Flores
- Centro de Investigación en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (F.A.-F.); (Y.M.-L.)
| | - Jorge Soria-Bustos
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca 42160, Mexico;
| | - Zeus Saldaña-Ahuactzi
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA;
| | - Ygnacio Martínez-Laguna
- Centro de Investigación en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (F.A.-F.); (Y.M.-L.)
| | - Jorge A. Yañez-Santos
- Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - María L. Cedillo-Ramírez
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico;
| | - Jorge A. Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico;
- Correspondence:
| |
Collapse
|
7
|
Beata S, Michał T, Mateusz O, Urszula W, Choroszy M, Andrzej T, Piotr D. Norepinephrine affects the interaction of adherent-invasive Escherichia coli with intestinal epithelial cells. Virulence 2021; 12:630-637. [PMID: 33538227 PMCID: PMC7872043 DOI: 10.1080/21505594.2021.1882780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Norepinephrine (NE), the stress hormone, stimulates many bacterial species’ growth and virulence, including Escherichia coli. However, the hormone’s impact on the adherent-invasive E. coli (AIEC) implicated in Crohn’s disease is poorly understood. In the study, we have investigated the effect of NE on the interaction of six AIEC strains isolated from an intestinal biopsy from 6 children with Crohn’s disease with Caco-2 cells. Our study focused on type 1 fimbria and CEACAM6 molecules serving as docking sites for these adhesins. The study results demonstrated that the hormone significantly increased the adherence and invasion of AIEC to Caco-2 cells in vitro. However, the effect was not associated with the impact of NE on the increased proliferation rate of AIEC or the fimA gene expression vital for their interaction with intestinal epithelial cells. Instead, the carcinoembryonic antigen-related cell-adhesion-molecule-6 (CEACAM6) level was increased significantly in NE-treated Caco-2 cells infected with AIEC in contrast to control uninfected NE-treated cells. These results indicated that NE influenced the interaction of AIEC with intestinal epithelium by increasing the level of CEACAM6 in epithelial cells, strengthening their adherence and invasion.
Collapse
Affiliation(s)
| | - Turniak Michał
- Department of Microbiology, Wroclaw Medical University , Wroclaw, Poland
| | - Olbromski Mateusz
- Department of Histology and Embryology, Wroclaw Medical University , Wroclaw, Poland
| | - Walczuk Urszula
- Department of Microbiology, Wroclaw Medical University , Wroclaw, Poland
| | - Marcin Choroszy
- Department of Microbiology, Wroclaw Medical University , Wroclaw, Poland
| | - Tukiendorf Andrzej
- Department of Public Health, Wroclaw Medical University , Wroclaw, Poland
| | - Dzięgiel Piotr
- Department of Histology and Embryology, Wroclaw Medical University , Wroclaw, Poland
| |
Collapse
|
8
|
Varghese A, Ray S, Verma T, Nandi D. Multicellular String-Like Structure Formation by Salmonella Typhimurium Depends on Cellulose Production: Roles of Diguanylate Cyclases, YedQ and YfiN. Front Microbiol 2021; 11:613704. [PMID: 33381103 PMCID: PMC7769011 DOI: 10.3389/fmicb.2020.613704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/24/2020] [Indexed: 11/22/2022] Open
Abstract
Bacteria face diverse stresses in the environment and, sometimes, respond by forming multi-cellular structures, e.g., biofilms. Here, we report a novel macroscopic and multi-cellular structure formed by Salmonella Typhimurium, which resembles small strings. These string-like structures, ∼1 cm long, are induced under some stress conditions: iron deprivation by 2,2-Bipyridyl or low amounts of antibiotics or ethanol in minimal media. However, cells in strings revert back to planktonic growth upon return to nutrient rich media. Compared to planktonic cells, strings are more resistant to antibiotics and oxidative stress. Also, strains lacking csgD or rpoS, which are defective in the classical rdar biofilm formation, form strings. Furthermore, some biofilm inducing conditions do not result in strings and vice-versa, demonstrating that strings are not related to classical CsgD-dependent biofilms. Cells in a string are held together by cellulose and a strain lacking bcsA, which is defective in cellulose production, does not form strings. In addition, reductive stress conditions such as dithiothreitol (DTT) or mutations in the Disulfide bonding system (DSB) also give rise to strings. The amounts of c-di-GMP are increased upon string formation and studies with single and double deletion strains of the diguanylate cyclases, yedQ (STM1987) primarily and yfiN (STM2672) partly, revealed their importance for string formation. This is the first study showcasing the ability of Salmonella to produce high amounts of cellulose in liquid culture, instead of an interface, in a CsgD-independent manner. The relevance and possible applications of strings in the production of bacterial cellulose and bioremediation are discussed.
Collapse
Affiliation(s)
- Alan Varghese
- Undergraduate program, Indian Institute of Science, Bengaluru, India
| | - Semanti Ray
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Taru Verma
- Centre for Biosystems science and engineering, Indian Institute of Science, Bengaluru, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
9
|
Akhade AS, Atif SM, Lakshmi BS, Dikshit N, Hughes KT, Qadri A, Subramanian N. Type 1 interferon-dependent repression of NLRC4 and iPLA2 licenses down-regulation of Salmonella flagellin inside macrophages. Proc Natl Acad Sci U S A 2020; 117:29811-29822. [PMID: 33177235 PMCID: PMC7703570 DOI: 10.1073/pnas.2002747117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Inflammasomes have been implicated in the detection and clearance of a variety of bacterial pathogens, but little is known about whether this innate sensing mechanism has any regulatory effect on the expression of stimulatory ligands by the pathogen. During infection with Salmonella and many other pathogens, flagellin is a major activator of NLRC4 inflammasome-mediated macrophage pyroptosis and pathogen eradication. Salmonella switches to a flagellin-low phenotype as infection progresses to avoid this mechanism of clearance by the host. However, the host cues that Salmonella perceives to undergo this switch remain unclear. Here, we report an unexpected role of the NLRC4 inflammasome in promoting expression of its microbial ligand, flagellin, and identify a role for type 1 IFN signaling in switching of Salmonella to a flagellin-low phenotype. Early in infection, activation of NLRC4 by flagellin initiates pyroptosis and concomitant release of lysophospholipids which in turn enhance expression of flagellin by Salmonella thereby amplifying its ability to elicit cell death. TRIF-dependent production of type 1 IFN, however, later represses NLRC4 and the lysophospholipid biosynthetic enzyme iPLA2, causing a decline in intracellular lysophospholipids that results in down-regulation of flagellin expression by Salmonella These findings reveal a previously unrecognized immune-modulating regulatory cross-talk between endosomal TLR signaling and cytosolic NLR activation with significant implications for the establishment of infection with Salmonella.
Collapse
Affiliation(s)
| | - Shaikh M Atif
- Hybridoma Laboratory, National Institute of Immunology, 110067 New Delhi, India
| | | | - Neha Dikshit
- Hybridoma Laboratory, National Institute of Immunology, 110067 New Delhi, India
| | - Kelly T Hughes
- Department of Biology, University of Utah, Salt Lake City, UT 84112
| | - Ayub Qadri
- Hybridoma Laboratory, National Institute of Immunology, 110067 New Delhi, India;
| | - Naeha Subramanian
- Institute for Systems Biology, Seattle, WA 98109;
- Department of Immunology, University of Washington, Seattle, WA 98109
- Department of Global Health, University of Washington, Seattle, WA 98109
| |
Collapse
|
10
|
Lysophosphatidylcholine Potentiates Antibacterial Activity of Polymyxin B. Antimicrob Agents Chemother 2020; 64:AAC.01337-20. [PMID: 32988824 DOI: 10.1128/aac.01337-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/20/2020] [Indexed: 01/31/2023] Open
Abstract
Polymyxin B, used to treat infections caused by antibiotic-resistant Gram-negative bacteria, produces nephrotoxicity at its current dosage. We show that a combination of nonbactericidal concentration of this drug and lysophosphatidylcholine (LPC) potently inhibits growth of Salmonella and at least two other Gram-negative bacteria in vitro This combination makes bacterial membrane porous and causes degradation of DnaK, the regulator of protein folding. Polymyxin B-LPC combination may be an effective and safer regimen against drug-resistant bacteria.
Collapse
|
11
|
Munsch-Alatossava P, Alatossava T. Potential of N 2 Gas Flushing to Hinder Dairy-Associated Biofilm Formation and Extension. Front Microbiol 2020; 11:1675. [PMID: 32849349 PMCID: PMC7399044 DOI: 10.3389/fmicb.2020.01675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/26/2020] [Indexed: 11/13/2022] Open
Abstract
Worldwide, the dairy sector remains of vital importance for food production despite severe environmental constraints. The production and handling conditions of milk, a rich medium, promote inevitably the entrance of microbial contaminants, with notable impact on the quality and safety of raw milk and dairy products. Moreover, the persistence of high concentrations of microorganisms (especially bacteria and bacterial spores) in biofilms (BFs) present on dairy equipment or environments constitutes an additional major source of milk contamination from pre- to post-processing stages: in dairies, BFs represent a major concern regarding the risks of disease outbreaks and are often associated with significant economic losses. One consumption trend toward "raw or low-processed foods" combined with current trends in food production systems, which tend to have more automation and longer processing runs with simultaneously more stringent microbiological requirements, necessitate the implementation of new and obligatory sustainable strategies to respond to new challenges regarding food safety. Here, in light of studies, performed mainly with raw milk, that considered dominant "planktonic" conditions, we reexamine the changes triggered by cold storage alone or combined with nitrogen gas (N2) flushing on bacterial populations and discuss how the observed benefits of the treatment could also contribute to limiting BF formation in dairies.
Collapse
Affiliation(s)
| | - Tapani Alatossava
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Sharma T, Sharma C, Sankhyan A, Bedi SP, Bhatnagar S, Khanna N, Gautam V, Sethi S, Vrati S, Tiwari A. Serodiagnostic evaluation of recombinant CdtB of S. Typhi as a potential candidate for acute typhoid. Immunol Res 2019; 66:503-512. [PMID: 29931558 DOI: 10.1007/s12026-018-9009-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Typhoid fever caused by human restricted Salmonella typhi presents a considerable health burden on developing South-Asian nations like India. The suboptimal sensitivity and specificity associated with culture-based isolation of etiological agent and the extensively used surface antigen-based serological assays often lead to misdiagnosis and inappropriate antimicrobial treatment. The increasing reports of the emergence of resistant strains and undefined disease burden signify the critical need for an inexpensive, reliable, easy-to-use, and highly sensitive diagnostic test for typhoid fever. Utilizing S. typhi-specific and immunogenic antigens in sero-diagnostic assays could lead to precise diagnosis of acute typhoid and prompt treatment. In this study, we report cloning, expression, and purification of recombinant Cytolethal distending toxin subunit B (CdtB) of S. typhi, which is reported to be highly specific, immunogenic, and expressed only upon S. typhi infection. We further evaluated the purified recombinant CdtB for its diagnostic potential in an IgM-based indirect ELISA format using 33 human samples. Twenty-one serum samples from blood culture confirmed cases (n = 21) of typhoid and 12 samples from healthy controls (n = 12) were tested. The assay showed sensitivity of 100% and specificity of 83.3% respectively with positive and negative predictive values of 91.3 and 100% respectively. Efficient detection of specific IgM antibodies indicates that CdtB could be highly valuable in sero-diagnosis of acute typhoid and rapid screening of clinical samples.
Collapse
Affiliation(s)
- Tarang Sharma
- Centre for Bio-design & Diagnostics, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Chandresh Sharma
- Centre for Bio-design & Diagnostics, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Anurag Sankhyan
- Centre for Bio-design & Diagnostics, Translational Health Science and Technology Institute, Faridabad, Haryana, India.,Central Research Institute, Kasauli, Himachal Pradesh, India
| | - Sanjiv Pal Bedi
- Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shinjini Bhatnagar
- Paediatric Biology Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Navin Khanna
- International Centre for Genetic Engineering & Biotechnology, New Delhi, India
| | - Vikas Gautam
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil Sethi
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sudhanshu Vrati
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Ashutosh Tiwari
- Centre for Bio-design & Diagnostics, Translational Health Science and Technology Institute, Faridabad, Haryana, India. .,Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
13
|
Yeoh BS, Gewirtz AT, Vijay-Kumar M. Adaptive Immunity Induces Tolerance to Flagellin by Attenuating TLR5 and NLRC4-Mediated Innate Immune Responses. Front Cell Infect Microbiol 2019; 9:29. [PMID: 30838179 PMCID: PMC6390806 DOI: 10.3389/fcimb.2019.00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/31/2019] [Indexed: 12/02/2022] Open
Abstract
The host immune system is constantly exposed to diverse microbial ligands, including flagellin (FliC; a ligand for TLR5 and NLRC4) and lipopolysaccharide (LPS; a ligand for TLR4), which could induce immune tolerance to subsequent exposure. Herein, we investigated the extent to which FliC induces self-tolerance in vivo and the role of adaptive immunity in mediating such effect. Mice pre-treated with FliC displayed attenuated serum keratinocyte-derived chemokine (KC), interleukin (IL)-6 and IL-18 responses to secondary challenge of FliC. A negative correlation was observed between high anti-FliC titer and reduced KC, IL-6, and IL-18 responses upon FliC re-challenge in WT mice, but not Rag1KO mice, suggesting that adaptive immunity could tolerize TLR5 and NLRC4. However, administration of LPS during FliC pre-treatment impaired the generation of anti-FliC antibodies and resulted in a partial loss of self-tolerance to FliC re-challenge. These findings may be relevant in the context of bacterial infection, as we observed that anti-FliC response are protective against systemic infection by Salmonella typhimurium. Taken together, our study delineates a distinct co-operative and reciprocal interaction between the innate and adaptive arms of immunity in modulating their responses to a bacterial protein.
Collapse
Affiliation(s)
- Beng San Yeoh
- Graduate Program in Immunology and Infectious Disease, Pennsylvania State University, University Park, PA, United States
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | - Matam Vijay-Kumar
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States.,Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
14
|
Shivcharan S, Yadav J, Qadri A. Host lipid sensing promotes invasion of cells with pathogenic Salmonella. Sci Rep 2018; 8:15501. [PMID: 30341337 PMCID: PMC6195605 DOI: 10.1038/s41598-018-33319-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/24/2018] [Indexed: 01/09/2023] Open
Abstract
Pathogenic Salmonella species initiate infection by invading non-phagocytic intestinal epithelial cells (IEC). This invasion is brought about by a number of Salmonella invasion promoting molecules (Sips) encoded by the Salmonella Pathogenicity Island - 1 (SPI-1). Intracellular delivery of some of these molecules also brings about caspase-1 - mediated pyroptotic cell death that contributes to pathogen clearance. These molecules are secreted and delivered inside cells upon contact of Salmonella with one or more host signals whose identity has not been established. We show that lysophosphatidylcholine (LPC) released following activation of caspase-1 in Salmonella - infected cells and abundant in plasma amplifies production of Sips from this pathogen and promotes its cellular invasion. LPC brings about adenylate cyclase and cAMP receptor protein (CRP) - dependent de novo synthesis of SipC that is accompanied by its translocation to bacterial cell surface and release into the outside milieu. Treatment of Salmonella with LPC produces sustained induction of SPI - 1 transcriptional regulator, hilA. Our findings reveal a novel host lipid sensing - driven regulatory mechanism for Salmonella invasion.
Collapse
Affiliation(s)
- Sonia Shivcharan
- Hybridoma Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitender Yadav
- Hybridoma Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ayub Qadri
- Hybridoma Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
15
|
Marathe SA, Balakrishnan A, Negi VD, Sakorey D, Chandra N, Chakravortty D. Curcumin Reduces the Motility of Salmonella enterica Serovar Typhimurium by Binding to the Flagella, Thereby Leading to Flagellar Fragility and Shedding. J Bacteriol 2016; 198:1798-1811. [PMID: 27091154 PMCID: PMC4907121 DOI: 10.1128/jb.00092-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/11/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED One of the important virulence properties of the pathogen is its ability to travel to a favorable environment, cross the viscous mucus barrier (intestinal barrier for enteric pathogens), and reach the epithelia to initiate pathogenesis with the help of an appendage, like flagella. Nonetheless, flagella can act as an "Achilles heel," revealing the pathogen's presence to the host through the stimulation of innate and adaptive immune responses. We assessed whether curcumin, a dietary polyphenol, could alter the motility of Salmonella, a foodborne pathogen. It reduced the motility of Salmonella enterica serovar Typhimurium by shortening the length of the flagellar filament (from ∼8 μm to ∼5 μm) and decreasing its density (4 or 5 flagella/bacterium instead of 8 or 9 flagella/bacterium). Upon curcumin treatment, the percentage of flagellated bacteria declined from ∼84% to 59%. However, no change was detected in the expression of the flagellin gene and protein. A fluorescence binding assay demonstrated binding of curcumin to the flagellar filament. This might make the filament fragile, breaking it into smaller fragments. Computational analysis predicted the binding of curcumin, its analogues, and its degraded products to a flagellin molecule at an interface between domains D1 and D2. Site-directed mutagenesis and a fluorescence binding assay confirmed the binding of curcumin to flagellin at residues ASN120, ASP123, ASN163, SER164, ASN173, and GLN175. IMPORTANCE This work, to our knowledge the first report of its kind, examines how curcumin targets flagellar density and affects the pathogenesis of bacteria. We found that curcumin does not affect any of the flagellar synthesis genes. Instead, it binds to the flagellum and makes it fragile. It increases the torsional stress on the flagellar filament that then breaks, leaving fewer flagella around the bacteria. Flagella, which are crucial ligands for Toll-like receptor 5, are some of the most important appendages of Salmonella Curcumin is an important component of turmeric, which is a major spice used in Asian cooking. The loss of flagella can, in turn, change the pathogenesis of bacteria, making them more robust and fit in the host.
Collapse
Affiliation(s)
- Sandhya Amol Marathe
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Arjun Balakrishnan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Vidya Devi Negi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Deepika Sakorey
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
16
|
Experimental infection of chickens by a flagellated motile strain of Salmonella enterica serovar Gallinarum biovar Gallinarum. Vet J 2016; 214:40-6. [PMID: 27387725 DOI: 10.1016/j.tvjl.2016.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022]
Abstract
Salmonella enterica subsp. enterica serovar Gallinarum biovar Gallinarum (SG) causes fowl typhoid (FT), a septicaemic disease which can result in high mortality in poultry flocks. The absence of flagella in SG is thought to favour systemic invasion, since bacterial recognition via Toll-like receptor (TLR)-5 does not take place during the early stages of FT. In the present study, chicks susceptible to FT were inoculated with a wild type SG (SG) or its flagellated motile derivative (SG Fla(+)). In experiment 1, mortality and clinical signs were assessed, whereas in experiment 2, gross pathology, histopathology, systemic invasion and immune responses were evaluated. SG Fla(+) infection resulted in later development of clinical signs, lower mortality, lower bacterial numbers in the liver and spleen, and less severe pathological changes compared to SG. The CD8(+) T lymphocyte population was higher in the livers of chicks infected with SG at 4 days post-inoculation (dpi). Chicks infected with SG had increased expression of interleukin (IL)-6 mRNA in the caecal tonsil at 1 dpi and increased expression of IL-18 mRNA in the spleen at 4 dpi. In contrast, the CD4(+) T lymphocyte population was higher at 6 dpi in the livers of birds infected with SG Fla(+). Therefore, flagella appeared to modulate the chicken immune response towards a CD4(+) T profile, resulting in more efficient bacterial clearance from systemic sites and milder infection.
Collapse
|
17
|
Sharma C, Sankhyan A, Sharma T, Khan N, Chaudhuri S, Kumar N, Bhatnagar S, Khanna N, Tiwari A. A repertoire of high-affinity monoclonal antibodies specific to S. typhi: as potential candidate for improved typhoid diagnostic. Immunol Res 2016; 62:325-40. [PMID: 26023048 DOI: 10.1007/s12026-015-8663-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Typhoid fever is a significant global health problem with highest burden on the developing world. The severity of typhoid is often underestimated, and currently available serological diagnostic assays are inadequate due to lack in requisite sensitivity and specificity. This underlines an absolute need to develop a reliable and accurate diagnostics that would benefit long-term disease control and treatment and to understand the real disease burden. Here, we have utilized flagellin protein of S. typhi that is surface accessible, abundantly expressed, and highly immunogenic, for developing immunodiagnostic tests. Flagellin monomers are composed of conserved amino-terminal and carboxy-terminal, and serovar-specific middle region. We have generated a panel of murine monoclonal antibodies (mAbs) against the middle region of flagellin, purified from large culture of S. typhi to ensure its native conformation. These mAbs showed unique specificity and very high affinity toward S. typhi flagellin without showing any cross-reactivity with other serovars. Genetic analysis of mAbs also revealed high frequency of somatic mutation due to antigenic selection process across variable region to achieve high binding affinity. These antibodies also displayed stable binding in stringent reaction conditions for antigen-antibody interactions, like DMSO, urea, KSCN, guanidinium HCl, and extremes of pH. One of the mAbs potentially reversed the TLR5-mediated immune response, in vitro by inhibiting TLR5-flagellin interaction. In our study, binding of these mAbs to flagellin, with high affinity, present on bacterial surface, as well as in soluble form, validates their potential use in developing improved diagnostics with significantly higher sensitivity and specificity.
Collapse
Affiliation(s)
- Chandresh Sharma
- Centre for Bio-design and Diagnostics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Flores‐Langarica A, Bobat S, Marshall JL, Yam‐Puc JC, Cook CN, Serre K, Kingsley RA, Flores‐Romo L, Uematsu S, Akira S, Henderson IR, Toellner KM, Cunningham AF. Soluble flagellin coimmunization attenuates Th1 priming to Salmonella and clearance by modulating dendritic cell activation and cytokine production. Eur J Immunol 2015; 45:2299-311. [PMID: 26036767 PMCID: PMC4973836 DOI: 10.1002/eji.201545564] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/01/2015] [Accepted: 05/29/2015] [Indexed: 12/25/2022]
Abstract
Soluble flagellin (sFliC) from Salmonella Typhimurium (STm) can induce a Th2 response to itself and coadministered antigens through ligation of TLR5. These properties suggest that sFliC could potentially modulate responses to Th1 antigens like live STm if both antigens are given concurrently. After coimmunization of mice with sFliC and STm there was a reduction in Th1 T cells (T-bet(+) IFN-γ(+) CD4 T cells) compared to STm alone and there was impaired clearance of STm. In contrast, there was no significant defect in the early extrafollicular B-cell response to STm. These effects are dependent upon TLR5 and flagellin expression by STm. The mechanism for these effects is not related to IL-4 induced to sFliC but rather to the effects of sFliC coimmunization on DCs. After coimmunization with STm and sFliC, splenic DCs had a lower expression of costimulatory molecules and profoundly altered kinetics of IL-12 and TNFα expression. Ex vivo experiments using in vivo conditioned DCs confirmed the effects of sFliC were due to altered DC function during a critical window in the coordinated interplay between DCs and naïve T cells. This has marked implications for understanding how limits in Th1 priming can be achieved during infection-induced, Th1-mediated inflammation.
Collapse
Affiliation(s)
- Adriana Flores‐Langarica
- Division of Immunity and InfectionInstitute of Biomedical ResearchUniversity of BirminghamBirminghamUK
| | - Saeeda Bobat
- Division of Immunity and InfectionInstitute of Biomedical ResearchUniversity of BirminghamBirminghamUK
| | - Jennifer L. Marshall
- Division of Immunity and InfectionInstitute of Biomedical ResearchUniversity of BirminghamBirminghamUK
| | | | - Charlotte N. Cook
- Division of Immunity and InfectionInstitute of Biomedical ResearchUniversity of BirminghamBirminghamUK
| | - Karine Serre
- Instituto de Medicina MolecularFaculdade de Medicina, Universidade de LisboaLisbonPortugal
| | | | | | - Satoshi Uematsu
- International Research and Development Centre for Mucosal VaccineInstitute for Medical ScienceThe University of TokyoTokyoJapan
| | - Shizuo Akira
- Laboratory of Host DefenseWorld Premier International Immunology Frontier Research CenterOsaka UniversitySuita OsakaJapan
- Department of Host DefenseResearch Institute for Microbial DiseasesOsaka UniversitySuita OsakaJapan
| | - Ian R. Henderson
- Division of Immunity and InfectionInstitute of Biomedical ResearchUniversity of BirminghamBirminghamUK
| | - Kai M. Toellner
- Division of Immunity and InfectionInstitute of Biomedical ResearchUniversity of BirminghamBirminghamUK
| | - Adam F. Cunningham
- Division of Immunity and InfectionInstitute of Biomedical ResearchUniversity of BirminghamBirminghamUK
| |
Collapse
|
19
|
Samsel A, Seneff S. Glyphosate, pathways to modern diseases III: Manganese, neurological diseases, and associated pathologies. Surg Neurol Int 2015; 6:45. [PMID: 25883837 PMCID: PMC4392553 DOI: 10.4103/2152-7806.153876] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/21/2015] [Indexed: 12/20/2022] Open
Abstract
Manganese (Mn) is an often overlooked but important nutrient, required in small amounts for multiple essential functions in the body. A recent study on cows fed genetically modified Roundup(®)-Ready feed revealed a severe depletion of serum Mn. Glyphosate, the active ingredient in Roundup(®), has also been shown to severely deplete Mn levels in plants. Here, we investigate the impact of Mn on physiology, and its association with gut dysbiosis as well as neuropathologies such as autism, Alzheimer's disease (AD), depression, anxiety syndrome, Parkinson's disease (PD), and prion diseases. Glutamate overexpression in the brain in association with autism, AD, and other neurological diseases can be explained by Mn deficiency. Mn superoxide dismutase protects mitochondria from oxidative damage, and mitochondrial dysfunction is a key feature of autism and Alzheimer's. Chondroitin sulfate synthesis depends on Mn, and its deficiency leads to osteoporosis and osteomalacia. Lactobacillus, depleted in autism, depend critically on Mn for antioxidant protection. Lactobacillus probiotics can treat anxiety, which is a comorbidity of autism and chronic fatigue syndrome. Reduced gut Lactobacillus leads to overgrowth of the pathogen, Salmonella, which is resistant to glyphosate toxicity, and Mn plays a role here as well. Sperm motility depends on Mn, and this may partially explain increased rates of infertility and birth defects. We further reason that, under conditions of adequate Mn in the diet, glyphosate, through its disruption of bile acid homeostasis, ironically promotes toxic accumulation of Mn in the brainstem, leading to conditions such as PD and prion diseases.
Collapse
Affiliation(s)
- Anthony Samsel
- Research Scientist and Consultant, Deerfield, NH 03037, USA
| | - Stephanie Seneff
- Spoken Language Systems Group, Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge MA 02139, USA
| |
Collapse
|
20
|
Subramanian N, Torabi-Parizi P, Gottschalk RA, Germain RN, Dutta B. Network representations of immune system complexity. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 7:13-38. [PMID: 25625853 PMCID: PMC4339634 DOI: 10.1002/wsbm.1288] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 12/25/2022]
Abstract
The mammalian immune system is a dynamic multiscale system composed of a hierarchically organized set of molecular, cellular, and organismal networks that act in concert to promote effective host defense. These networks range from those involving gene regulatory and protein–protein interactions underlying intracellular signaling pathways and single‐cell responses to increasingly complex networks of in vivo cellular interaction, positioning, and migration that determine the overall immune response of an organism. Immunity is thus not the product of simple signaling events but rather nonlinear behaviors arising from dynamic, feedback‐regulated interactions among many components. One of the major goals of systems immunology is to quantitatively measure these complex multiscale spatial and temporal interactions, permitting development of computational models that can be used to predict responses to perturbation. Recent technological advances permit collection of comprehensive datasets at multiple molecular and cellular levels, while advances in network biology support representation of the relationships of components at each level as physical or functional interaction networks. The latter facilitate effective visualization of patterns and recognition of emergent properties arising from the many interactions of genes, molecules, and cells of the immune system. We illustrate the power of integrating ‘omics’ and network modeling approaches for unbiased reconstruction of signaling and transcriptional networks with a focus on applications involving the innate immune system. We further discuss future possibilities for reconstruction of increasingly complex cellular‐ and organism‐level networks and development of sophisticated computational tools for prediction of emergent immune behavior arising from the concerted action of these networks. WIREs Syst Biol Med 2015, 7:13–38. doi: 10.1002/wsbm.1288 This article is categorized under:
Analytical and Computational Methods > Computational Methods Laboratory Methods and Technologies > Macromolecular Interactions, Methods
Collapse
Affiliation(s)
- Naeha Subramanian
- Institute for Systems Biology, Seattle, WA, USA; Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
21
|
Native flagellin does not protect mice against an experimental Proteus mirabilis ascending urinary tract infection and neutralizes the protective effect of MrpA fimbrial protein. Antonie van Leeuwenhoek 2014; 105:1139-48. [PMID: 24771125 DOI: 10.1007/s10482-014-0175-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/11/2014] [Indexed: 12/15/2022]
Abstract
Proteus mirabilis expresses several virulence factors including MR/P fimbriae and flagella. Bacterial flagellin has frequently shown interesting adjuvant and protective properties in vaccine formulations. However, native P. mirabilis flagellin has not been analyzed so far. Native P. mirabilis flagellin was evaluated as a protective antigen and as an adjuvant in co-immunizations with MrpA (structural subunit of MR/P fimbriae) using an ascending UTI model in the mouse. Four groups of mice were intranasally treated with either MrpA, native flagellin, both proteins and PBS. Urine and blood samples were collected before and after immunization for specific antibodies determination. Cytokine production was assessed in immunized mice splenocytes cultures. Mice were challenged with P. mirabilis, and bacteria quantified in kidneys and bladders. MrpA immunization induced serum and urine specific anti-MrpA antibodies while MrpA coadministered with native flagellin did not. None of the animals developed significant anti-flagellin antibodies. Only MrpA-immunized mice showed a significant decrease of P. mirabilis in bladders and kidneys. Instead, infection levels in MrpA-flagellin or flagellin-treated mice showed no significant differences with the control group. IL-10 was significantly induced in splenocytes of mice that received native flagellin or MrpA-flagellin. Native P. mirabilis flagellin did not protect mice against an ascending UTI. Moreover, it showed an immunomodulatory effect, neutralizing the protective role of MrpA. P. mirabilis flagellin exhibits particular immunological properties compared to other bacterial flagellins.
Collapse
|
22
|
The role of the bacterial flagellum in adhesion and virulence. BIOLOGY 2013; 2:1242-67. [PMID: 24833223 PMCID: PMC4009794 DOI: 10.3390/biology2041242] [Citation(s) in RCA: 358] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 12/11/2022]
Abstract
The bacterial flagellum is a complex apparatus assembled of more than 20 different proteins. The flagellar basal body traverses the cell wall, whereas the curved hook connects the basal body to the whip-like flagellar filament that protrudes several µm from the bacterial cell. The flagellum has traditionally been regarded only as a motility organelle, but more recently it has become evident that flagella have a number of other biological functions. The major subunit, flagellin or FliC, of the flagellum plays a well-documented role in innate immunity and as a dominant antigen of the adaptive immune response. Importantly, flagella have also been reported to function as adhesins. Whole flagella have been indicated as significant in bacterial adhesion to and invasion into host cells. In various pathogens, e.g., Escherichia coli, Pseudomonas aeruginosa and Clostridium difficile, flagellin and/or the distally located flagellar cap protein have been reported to function as adhesins. Recently, FliC of Shiga-toxigenic E. coli was shown to be involved in cellular invasion via lipid rafts. Here, we examine the latest or most important findings regarding flagellar adhesive and invasive properties, especially focusing on the flagellum as a potential virulence factor.
Collapse
|
23
|
Sharma N, Akhade AS, Qadri A. Sphingosine-1-phosphate suppresses TLR-induced CXCL8 secretion from human T cells. J Leukoc Biol 2013; 93:521-8. [PMID: 23345392 DOI: 10.1189/jlb.0712328] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
T cells produce a number of cytokines and chemokines upon stimulation with TLR agonists in the presence or absence of TCR signals. Here, we show that secretion of neutrophil chemoattractant CXCL8 from human T cell line Jurkat in response to stimulation with TLR agonists is reduced when cell stimulation is carried out in presence of serum. Serum does not, however, inhibit TCR-activated secretion of CXCL8 nor does it down-regulate TLR-costimulated IL-2 secretion from activated T cells. The molecule that can mimic the ability to bring about suppression in CXCL8 from TLR-activated T cells is serum-borne bioactive lipid, S1P. Serum and S1P-mediated inhibition require intracellular calcium. S1P also suppresses CXCL8 secretion from peripheral blood-derived human T cells activated ex vivo with various TLR ligands. Our findings reveal a previously unrecognized role for S1P in regulating TLR-induced CXCL8 secretion from human T cells.
Collapse
|
24
|
Gong YN, Shao F. Sensing bacterial infections by NAIP receptors in NLRC4 inflammasome activation. Protein Cell 2012; 3:98-105. [PMID: 22426978 DOI: 10.1007/s13238-012-2028-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 12/16/2022] Open
Abstract
The inflammasome is an emerging new pathway in innate immune defense against microbial infection or endogenous danger signals. The inflammasome stimulates activation of inflammatory caspases, mainly caspase-1. Caspase-1 activation is responsible for processing and secretion of IL-1β and IL-18 as well as for inducing macrophage pyroptotic death. Assembly of the large cytoplasmic inflammasome complex is thought to be mediated by members of NOD-like receptor (NLR) family. While functions of most of the NLR proteins remain to be defined, several NLR proteins including NLRC4 have been shown to assemble distinct inflammasome complexes. These inflammasome pathways, particularly the NLRC4 inflammasome, play a critical role in sensing and restricting diverse types of bacterial infections. Here we review recent advances in defining the exact bacterial ligands and the ligand-binding receptors involved in NLRC4 inflammasome activation. Implications of the discovery of the NAIP family of inflammasome receptors for bacterial flagellin and type III secretion apparatus on future inflammasome and bacterial infection studies are also discussed.
Collapse
Affiliation(s)
- Yi-Nan Gong
- National Institute of Biological Sciences, Beijing, 102206, China
| | | |
Collapse
|
25
|
Duan Q, Zhou M, Zhu L, Zhu G. Flagella and bacterial pathogenicity. J Basic Microbiol 2012; 53:1-8. [PMID: 22359233 DOI: 10.1002/jobm.201100335] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 10/22/2011] [Indexed: 01/19/2023]
Abstract
As locomotive organelles, flagella allow bacteria to move toward favorable environments. A flagellum consists of three parts: the basal structure (rotary motor), the hook (universal joint), and the filament (helical propeller). For ages, flagella have been generally regarded as important virulence factors, mainly because of their motility property. However, flagella are getting recognized to play multiple roles with more functions besides motility and chemotaxis. Recent evidence has pinpointed that the bacterial flagella participate in many additional processes including adhesion, biofilm formation, virulence factor secretion, and modulation of the immune system of eukaryotic cells. This mini-review summarizes data from recent studies that elucidated how flagella, as a virulence factor, contribute to bacterial pathogenicity.
Collapse
Affiliation(s)
- Qiangde Duan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | | | | | | |
Collapse
|
26
|
Carvalho FA, Aitken JD, Vijay-Kumar M, Gewirtz AT. Toll-like receptor-gut microbiota interactions: perturb at your own risk! Annu Rev Physiol 2011; 74:177-98. [PMID: 22035346 DOI: 10.1146/annurev-physiol-020911-153330] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The well-being of the intestine and its host requires that this organ execute its complex function amid colonization by a large and diverse microbial community referred to as the gut microbiota. A myriad of interacting mechanisms of mucosal immunity permit the gut to corral the microbiota in such a way as to maximize the benefits and to minimize the danger of living in close proximity to this large microbial biomass. Toll-like receptors and Nod-like receptors, collectively referred to as pattern recognition receptors (PRRs), recognize a variety of microbial components and, hence, play a central role in governing the interface between host and microbiota. This review examines mechanisms by which PRR-microbiota interactions are regulated so as to allow activation of host defense when necessary while preventing excessive inflammation, which can have a myriad of negative consequences for the host. Analysis of published studies performed in human subjects and a variety of murine disease models reveals the central theme that PRRs play a key role in maintaining a healthful stable relationship between the intestine and its microbiota. In contrast, although select genetic ablations of PRR signaling may protect against some chronic diseases, the overriding theme of studies performed to date is that perturbations of PRR-microbiota interactions are more likely to promote disease states associated with inflammation.
Collapse
Affiliation(s)
- Frederic A Carvalho
- Pharmacologie Fondamentale et Clinique de la Douleur, Clermont Université, Université d'Auvergne, F-63000 Clermont-Ferrand, France
| | | | | | | |
Collapse
|
27
|
Bobat S, Flores-Langarica A, Hitchcock J, Marshall JL, Kingsley RA, Goodall M, Gil-Cruz C, Serre K, Leyton DL, Letran SE, Gaspal F, Chester R, Chamberlain JL, Dougan G, López-Macías C, Henderson IR, Alexander J, MacLennan ICM, Cunningham AF. Soluble flagellin, FliC, induces an Ag-specific Th2 response, yet promotes T-bet-regulated Th1 clearance of Salmonella typhimurium infection. Eur J Immunol 2011; 41:1606-18. [PMID: 21469112 DOI: 10.1002/eji.201041089] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 01/28/2011] [Accepted: 03/17/2011] [Indexed: 11/06/2022]
Abstract
Clearance of disseminated Salmonella infection requires bacterial-specific Th1 cells and IFN-γ production, and Th1-promoting vaccines are likely to help control these infections. Consequently, vaccine design has focused on developing Th1-polarizing adjuvants or Ag that naturally induce Th1 responses. In this study, we show that, in mice, immunization with soluble, recombinant FliC protein flagellin (sFliC) induces Th2 responses as evidenced by Ag-specific GATA-3, IL-4 mRNA, and protein induction in CD62L(lo) CD4(+) T cells without associated IFN-γ production. Despite these Th2 features, sFliC immunization can enhance the development of protective Th1 immunity during subsequent Salmonella infection in an Ab-independent, T-cell-dependent manner. Salmonella infection in sFliC-immunized mice resulted in augmented Th1 responses, with greater bacterial clearance and increased numbers of IFN-γ-producing CD4(+) T cells, despite the early induction of Th2 features to sFliC. The augmented Th1 immunity after sFliC immunization was regulated by T-bet although T-bet is dispensable for primary responses to sFliC. These findings show that there can be flexibility in T-cell responses to some subunit vaccines. These vaccines may induce Th2-type immunity during primary immunization yet promote Th1-dependent responses during later infection. This suggests that designing Th1-inducing subunit vaccines may not always be necessary since this can occur naturally during subsequent infection.
Collapse
Affiliation(s)
- Saeeda Bobat
- MRC Centre for Immune Regulation, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Host derived inflammatory phospholipids regulate rahU (PA0122) gene, protein, and biofilm formation in Pseudomonas aeruginosa. Cell Immunol 2011; 270:95-102. [PMID: 21679933 DOI: 10.1016/j.cellimm.2011.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/12/2011] [Accepted: 04/27/2011] [Indexed: 01/12/2023]
Abstract
This study describes the role of "inflammatory" oxidized (Ox) phospholipids in regulation of rahU (PA0122) expression and biofilm formation in Pseudomonas aeruginosa (383) wild type (rahU(+)) and rahU mutant (rahU(-)) strains. Functional analysis of RahU protein from P. aeruginosa in presence of Ox-phospholipids show: (a) LysoPC modulates RahU gene/and protein expression in rahU(+) cells; (b) rahU promoter activity is increased by lysoPC and inhibited by PAPC, Ox-PAPC and arachidonic acid; the latter inhibitory effect can be reversed by lysoPC, which was enzymatically derived from PAPC; (c) biofilm formation increased in rahU(-) cells as compared to rahU(+); and (d) inhibition of rahU promoter activity by PAPC and AA (but not lysoPC) showed significantly augmented biofilm formation in rahU(+) but not in rahU(-) cells. This study shows that host derived Ox-phospholipids affect P. aeruginosa-rahU gene and protein expression, which in turn modulates biofilm formation. The accompanying paper describes the role of RahU protein in eukaryotic-host cells.
Collapse
|
29
|
Abstract
Neutrophils are short-lived cells that rapidly undergo apoptosis. However, their survival can be regulated by signals from the environment. Flagellin, the primary component of the bacterial flagella, is known to induce neutrophil activation. In this study we examined the ability of flagellin to modulate neutrophil apoptosis. Neutrophils cultured for 12 and 24 h in the presence of flagellin from Salmonella typhimurium at concentrations found in pathological situations underwent a marked prevention of apoptosis. In contrast, Helicobacter pylori flagellin did not affect neutrophil survival, suggesting that Salmonella flagellin exerts the antiapoptotic effect by interacting with TLR5. The delaying in apoptosis mediated by Salmonella flagellin was coupled to higher expression levels of the antiapoptotic protein Mcl-1 and lower levels of activated caspase-3. Analysis of the signaling pathways indicated that Salmonella flagellin induced the activation of the p38 and ERK1/2 MAPK pathways as well as the PI3K/Akt pathway. Furthermore, it also stimulated IkappaBalpha degradation and the phosphorylation of the p65 subunit, suggesting that Salmonella flagellin also triggers NF-kappaB activation. Moreover, the pharmacological inhibition of ERK1/2 pathway and NF-kappaB activation partially prevented the antiapoptotic effects exerted by flagellin. Finally, the apoptotic delaying effect exerted by flagellin was also evidenced when neutrophils were cultured with whole heat-killed S. typhimurium. Both a wild-type and an aflagellate mutant S. typhimurium strain promoted neutrophil survival; however, when cultured in low bacteria/neutrophil ratios, the flagellate bacteria showed a higher capacity to inhibit neutrophil apoptosis, although both strains showed a similar ability to induce neutrophil activation. Taken together, our results indicate that flagellin delays neutrophil apoptosis by a mechanism partially dependent on the activation of ERK1/2 MAPK and NF-kappaB. The ability of flagellin to delay neutrophil apoptosis could contribute to perpetuate the inflammation during infections with flagellated bacteria.
Collapse
|
30
|
Pore formation triggered by Legionella spp. is an Nlrc4 inflammasome-dependent host cell response that precedes pyroptosis. Infect Immun 2010; 78:1403-13. [PMID: 20048047 DOI: 10.1128/iai.00905-09] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Legionella pneumophila, the etiological agent of Legionnaires disease, is known to trigger pore formation in bone marrow-derived macrophages (BMMs) by mechanisms dependent on the type IVB secretion system known as Dot/Icm. Here, we used several mutants of L. pneumophila in combination with knockout mice to assess the host and bacterial factors involved in pore formation in BMMs. We found that regardless of Dot/Icm activity, pore formation does not occur in BMMs deficient in caspase-1 and Nlrc4/Ipaf. Pore formation was temporally associated with interleukin-1beta secretion and preceded host cell lysis and pyroptosis. Pore-forming ability was dependent on bacterial Dot/Icm but independent of several effector proteins, multiplication, and de novo protein synthesis. Flagellin, which is known to trigger the Nlrc4 inflammasome, was required for pore formation as flaA mutant bacteria failed to induce cell permeabilization. Accordingly, transfection of purified flagellin was sufficient to trigger pore formation independent of infection. By using 11 different Legionella species, we found robust pore formation in response to L. micdadei, L. bozemanii, L. gratiana, L. jordanis, and L. rubrilucens, and this trait correlated with flagellin expression by these species. Together, the results suggest that pore formation is neither L. pneumophila specific nor the result of membrane damage induced by Dot/Icm activity; instead, it is a highly coordinated host cell response dependent on host Nlrc4 and caspase-1 and on bacterial flagellin and type IV secretion system.
Collapse
|
31
|
Bauer S, Müller T, Hamm S. Pattern recognition by Toll-like receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 653:15-34. [PMID: 19799109 DOI: 10.1007/978-1-4419-0901-5_2] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mammalian immune system senses pathogens through pattern recognition receptors and responds with activation. The Toll-like receptors (TLRs) that are expressed on antigen presenting cells such as macrophages and dendritic cells play a critical role in this process. Their signaling activates these cells and leads to an innate immune response with subsequent initiation of an adaptive immune response. Each TLR recognizes specific structures and induces common inflammatory cytokines. However, some TLRs have specific functions, such as induction of Type I interferons. The TLR dependent cytokine response is reflected in the induction of common and specific signaling pathways leading to adequate immune responses for different pathogens. Some TLRs are also activated by endogenous structures that are released during infection, but these structures may promote or sustain autoimmune diseases under certain circumstances. In addition, TLRs directly shape adaptive immune responses of T and B cells and play an important role in homeostasis of gut epithelium and lung repair after injury.
Collapse
Affiliation(s)
- Stefan Bauer
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, München, Germany
| | | | | |
Collapse
|
32
|
Lamprokostopoulou A, Monteiro C, Rhen M, Römling U. Cyclic di-GMP signalling controls virulence properties of Salmonella enterica serovar Typhimurium at the mucosal lining. Environ Microbiol 2009; 12:40-53. [PMID: 19691499 DOI: 10.1111/j.1462-2920.2009.02032.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cyclic di-GMP (c-di-GMP), a novel secondary signalling molecule present in most bacteria, controls transition between motility and sessility. In Salmonella enterica serovar Typhimurium (S. typhimurium) high c-di-GMP concentrations favour the expression of a biofilm state through expression of the master regulator CsgD. In this work, we investigate the effect of c-di-GMP signalling on virulence phenotypes of S. typhimurium. After saturation of the cell with c-di-GMP by overexpression of a di-guanylate cyclase, we studied invasion and induction of a pro-inflammatory cytokine in epithelial cells, basic phenotypes that are major determinants of S. typhimurium virulence. Elevated c-di-GMP had a profound effect on invasion into and IL-8 production by the gastrointestinal epithelial cell line HT-29. Invasion was mainly inhibited through CsgD and the extracellular matrix component cellulose, while inhibition of the pro-inflammatory response occurred through CsgD, which inhibited the secretion of monomeric flagellin. Our results suggest that transition between biofilm formation and virulence in S. typhimurium at the epithelial cell lining is mediated by c-di-GMP signalling through CsgD and cellulose expression.
Collapse
Affiliation(s)
- Agaristi Lamprokostopoulou
- Department of Microbiology, Tumor and Cell Biology, FE number 280, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | | | | |
Collapse
|
33
|
Abstract
The mucosal immune system is charged with defending the host's vast interfaces with the outside world from the enormous and diverse group of microbes that colonizes these surfaces. A key means by which the mucosal immune system protects the host from such diverse microbes is using germ-line-encoded receptors that target structurally conserved motifs that mediate important bacterial functions. This review focuses on one embodiment of this notion, namely, the mucosal innate immune targeting of flagellin, the primary structural component of flagella, which afford bacteria the ability of directed locomotion. Specifically, we discuss the mechanisms by which flagellin is recognized by the innate immune system, their role in host defense, chronic inflammatory disease, and potential approaches to pharmacologically manipulate these pathways to benefit the host. Discussion will focus on the intestinal tract but will also incorporate key findings in other mucosal surfaces.
Collapse
|
34
|
Vijay-Kumar M, Gewirtz AT. Role of flagellin in Crohn's disease: emblematic of the progress and enigmas in understanding inflammatory bowel disease. Inflamm Bowel Dis 2009; 15:789-95. [PMID: 19107795 DOI: 10.1002/ibd.20734] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Elevated immune responses to the enteric microbiota have long been associated with inflammatory bowel disease (IBD), especially Crohn's disease. In recent years there has been considerable progress in identifying a number of the specific bacterial and host molecules whose interactions mediate these responses. However, deciphering the role of these interactions in the pathophysiology of IBD remains a difficult challenge, in part due to the very complex nature of the epithelial cell / microbial / immune cell interactions that play a central role in maintaining the gut's well-being. This article reviews such progress and discusses these challenges in the context of focusing on 1 particular protein, bacterial flagellin.
Collapse
Affiliation(s)
- Matam Vijay-Kumar
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
35
|
McCarron M, Reen DJ. Activated human neonatal CD8+ T cells are subject to immunomodulation by direct TLR2 or TLR5 stimulation. THE JOURNAL OF IMMUNOLOGY 2009; 182:55-62. [PMID: 19109135 DOI: 10.4049/jimmunol.182.1.55] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In conditions of optimal priming, the neonate possesses competency to mount quantitatively adult-like responses. Vaccine formulations containing sufficiently potent adjuvants may overcome the neonate's natural tendency for immunosuppression and provoke a similarly robust immune response. TLR expression on T cells represents the possibility of directly enhancing T cell immunity. We examined the ex vivo responsiveness of highly purified human cord blood-derived CD8(+) T cells to direct TLR ligation by a repertoire of TLR agonists. In concert with TCR stimulation, only Pam(3)Cys (palmitoyl-3-Cys-Ser-(Lys)(4)) and flagellin monomers significantly enhanced proliferation, CD25(+) expression, IL-2, IFN-gamma, TNF-alpha, and intracellular granzyme B expression. TLR2 and TLR5 mRNA was detected in the CD8(+) T cells. Blocking studies confirmed that the increase in IFN-gamma production was by the direct triggering of surface TLR2 or TLR5. The simultaneous exposure of CD8(+) T cells to both TLR agonists had an additive effect on IFN-gamma production. These data suggest that a combination of the two TLR ligands would be a potent T cell adjuvant. This may represent a new approach to TLR agonist-based adjuvant design for future human neonatal vaccination strategies requiring a CD8(+) component.
Collapse
Affiliation(s)
- Mark McCarron
- Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland.
| | | |
Collapse
|
36
|
Abstract
Over the last decade, significant advances have been made in the methodology for studying immune responses in vivo. It is now possible to follow almost every aspect of pathogen-specific immunity using in vivo models that incorporate physiological infectious doses and natural routes of infection. This new ability to study immunity in a relevant physiological context will greatly expand our understanding of the dynamic interplay between host and pathogen. Visualizing the resolution of primary infection and the development of long-term immunological memory should also aid the development of new vaccines and therapeutics for infectious diseases. In this review, we will describe the application of in vivo visualization technology to Salmonella infection, describe our current understanding of Salmonella-specific immunity, and discuss some unanswered questions that remain in this model.
Collapse
Affiliation(s)
- James J. Moon
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN, 55455
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, 55455
| | - Stephen J. McSorley
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, 55455
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, 55455
- Center for Infectious Diseases & Microbiology Translational Research, University of Minnesota Medical School, Minneapolis, MN, 55455
| |
Collapse
|
37
|
|
38
|
Burkholderia pseudomallei infection of T cells leads to T-cell costimulation partially provided by flagellin. Infect Immun 2008; 76:2541-50. [PMID: 18347031 DOI: 10.1128/iai.01310-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis. While adaptive immunity has been shown to be important for host resistance to B. pseudomallei, the direct interaction of the bacteria with adaptive immune cells such as T and B cells is not well known. To address this question, we infected Jurkat T cells, as well as human primary CD4(+) and CD8(+) T cells, with live B. pseudomallei. We found that live bacterial infection could costimulate T cells to produce interleukin-2 (IL-2) and gamma interferon (IFN-gamma) in the presence of anti-CD3 cross-linking antibodies. Bacterial supernatant could also costimulate T cells, and this was due to the presence of flagellin in the supernatant. However, T cells infected with bacterial mutants lacking flagellin showed strong impairment in IL-2 but only a slight impairment in IFN-gamma production. When cross-linking of CD3 is replaced by IL-2, live bacterial infection was still able to costimulate human primary T cells to produce IFN-gamma and flagellin is only a minor ligand contributing to this costimulation. Thus, live B. pseudomallei could potentially costimulate T cells not only in an antigen-specific manner but also in a nonspecific manner through bystander activation via IL-2.
Collapse
|
39
|
Ha H, Lee JH, Kim HN, Kwak HB, Kim HM, Lee SE, Rhee JH, Kim HH, Lee ZH. Stimulation by TLR5 Modulates Osteoclast Differentiation through STAT1/IFN-β. THE JOURNAL OF IMMUNOLOGY 2008; 180:1382-9. [DOI: 10.4049/jimmunol.180.3.1382] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
40
|
Toll like receptor-5: protecting the gut from enteric microbes. Semin Immunopathol 2007; 30:11-21. [PMID: 18066550 DOI: 10.1007/s00281-007-0100-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 11/05/2007] [Indexed: 01/01/2023]
Abstract
The intestine is normally colonized by a large and diverse commensal microbiota and is occasionally exposed to a variety of potential pathogens. In recent years, there has been substantial progress made in identifying molecular mechanisms that normally serve to protect the intestine from such enteric bacteria and which may go awry in chronic idiopathic inflammatory diseases of the gut. One specific molecular interaction that appears to play a key role in governing bacterial-intestinal interactions is that of the bacterial protein flagellin with toll-like receptor 5. This article reviews studies performed in vitro, in mice, and in humans that indicate an important role for the flagellin-TLR5 interaction in regulating both the innate and adaptive immune responses in the intestine.
Collapse
|
41
|
Hautefort I, Thompson A, Eriksson-Ygberg S, Parker ML, Lucchini S, Danino V, Bongaerts RJM, Ahmad N, Rhen M, Hinton JCD. During infection of epithelial cells Salmonella enterica serovar Typhimurium undergoes a time-dependent transcriptional adaptation that results in simultaneous expression of three type 3 secretion systems. Cell Microbiol 2007; 10:958-84. [PMID: 18031307 PMCID: PMC2343689 DOI: 10.1111/j.1462-5822.2007.01099.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The biogenesis of the Salmonella-containing vacuole within mammalian cells has been intensively studied over recent years. However, the ability of Salmonella to sense and adapt to the intracellular environment of different types of host cells has received much less attention. To address this issue, we report the transcriptome of Salmonella enterica serovar Typhimurium SL1344 within epithelial cells and show comparisons with Salmonella gene expression inside macrophages. We report that S. Typhimurium expresses a characteristic intracellular transcriptomic signature in response to the environments it encounters within different cell types. The signature involves the upregulation of the mgtBC, pstACS and iro genes for magnesium, phosphate and iron uptake, and Salmonella pathogenicity island 2 (SPI2). Surprisingly, in addition to SPI2, the invasion-associated SPI1 pathogenicity island and the genes involved in flagellar biosynthesis were expressed inside epithelial cells at later stages of the infection, while they were constantly downregulated in macrophage-like cells. To our knowledge, this is the first report of the simultaneous transcription of all three Type Three Secretion Systems (T3SS) within an intracellular Salmonella population. We discovered that S. Typhimurium strain SL1344 was strongly cytotoxic to epithelial cells after 6 h of infection and hypothesize that the time-dependent changes in Salmonella gene expression within epithelial cells reflects the bacterial response to host cells that have been injured by the infection process.
Collapse
Affiliation(s)
- I Hautefort
- Molecular Microbiology Group, Institute of Food Research, Norwich NR4 7UA, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW The epithelium makes numerous important contributions to intestinal function. It acts as a physical barrier to prevent pathogenic infection, but allows nutrient uptake and the bidirectional passage of ions and water to lubricate the intestinal lumen while restricting fluid loss. The epithelium mediates communication between the immune system and the commensal flora, and plays a major role in antigen sampling and development of tolerance. After mucosal injury, the epithelium must reestablish its barrier and transport functions for homeostasis to be restored. Here, we will discuss recent advances in our understanding of the roles of the epithelium in intestinal homeostasis. RECENT FINDINGS Mechanisms responsible for epithelial communication with enteric flora and pathogens include the regulation and function of Toll-like receptors and nucleotide-binding oligomerization domain-2, and maintenance and repair of epithelial barrier properties, including the role of growth factors and bacterial peptides in epithelial repair. SUMMARY Recent advances in our understanding of mechanisms by which the gut epithelium modulates, and is modified by, enteric flora and the mucosal immune system illuminate the importance of the epithelium in gut physiology. The work discussed may also identify novel targets that can potentially be modulated therapeutically, either with existing medications or newer agents in development.
Collapse
Affiliation(s)
- Declan F McCole
- School of Medicine, University of California at San Diego, San Diego, California 92093-0063, USA
| | | |
Collapse
|
43
|
Srikanth CV, Cherayil BJ. Intestinal innate immunity and the pathogenesis of Salmonella enteritis. Immunol Res 2007; 37:61-78. [PMID: 17496347 PMCID: PMC3199302 DOI: 10.1007/bf02686090] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/30/2022]
Abstract
Acute gastroenteritis caused by Salmonella typhimurium infection is a clinical problem with significant public health impact. The availability of several experimental models of this condition has allowed detailed investigation of the cellular and molecular interactions involved in its pathogenesis. Such studies have shed light on the roles played by bacterial virulence factors and host innate immune mechanisms in the development of intestinal inflammation.
Collapse
Affiliation(s)
- Chittur V. Srikanth
- Mucosal Immunology Laboratory, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129
| | - Bobby J. Cherayil
- Mucosal Immunology Laboratory, Division of Pediatric Gastroenterology and Nutrition, Room 3400, Massachusetts General Hospital East, Building 114, 16 Street, Charlestown, MA 02129.
| |
Collapse
|
44
|
Bauer S, Hangel D, Yu P. Immunobiology of toll-like receptors in allergic disease. Immunobiology 2007; 212:521-33. [PMID: 17544836 DOI: 10.1016/j.imbio.2007.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 03/01/2007] [Indexed: 01/01/2023]
Abstract
Allergic diseases prevalence rates have increased dramatically over the last 50 years in developed countries and one explanation might be that modern practices in public health lead to a decreased exposure towards pathogens resulting in a misguided immune response. Recently, it has become evident that immune responses against pathogens are initiated by Toll-like receptors (TLRs) that recognize a variety of structures derived from viruses, bacteria, fungi or protozoa. In this review we will discuss TLR ligands, TLR signaling in regard to Th1 and Th2 immune responses, their involvement in the development and their therapeutic potential in treatment of allergic disease.
Collapse
Affiliation(s)
- Stefan Bauer
- Institut für Immunologie, Philipps-Universität Marburg, BMFZ, Hans-Meerweinstr. 2, 35043 Marburg, Germany.
| | | | | |
Collapse
|
45
|
He P, Shan L, Sheen J. Elicitation and suppression of microbe-associated molecular pattern-triggered immunity in plant-microbe interactions. Cell Microbiol 2007; 9:1385-96. [PMID: 17451411 DOI: 10.1111/j.1462-5822.2007.00944.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Recent studies have uncovered fascinating molecular mechanisms underlying plant-microbe interactions that coevolved dynamically. As in animals, the primary plant innate immunity is immediately triggered by the detection of common pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs). Different MAMPs are often perceived by distinct cell-surface pattern-recognition receptors (PRRs) and activate convergent intracellular signalling pathways in plant cells for broad-spectrum immunity. Successful pathogens, however, have evolved multiple virulence factors to suppress MAMP-triggered immunity. Specifically, diverse pathogenic bacteria have employed the type III secretion system to deliver a repertoire of virulence effector proteins to interfere with host immunity and promote pathogenesis. Plants challenged by pathogens have evolved the secondary plant innate immunity. In particular, some plants possess the specific intracellular disease resistance (R) proteins to effectively counteract virulence effectors of pathogens for effector-triggered immunity. This potent but cultivar-specific effector-triggered immunity occurs rapidly with localized programmed cell death/hypersensitive response to limit pathogen proliferation and disease development. Remarkably, bacteria have further acquired virulence effectors to block effector-triggered immunity. This review covers the latest findings in the dynamics of MAMP-triggered immunity and its interception by virulence factors of pathogenic bacteria.
Collapse
Affiliation(s)
- Ping He
- Department of Molecular Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
46
|
Zhang H, Bialkowska A, Rusovici R, Chanchevalap S, Shim H, Katz JP, Yang VW, Chris Yun C. Lysophosphatidic acid facilitates proliferation of colon cancer cells via induction of Krüppel-like factor 5. J Biol Chem 2007; 282:15541-9. [PMID: 17430902 PMCID: PMC2000347 DOI: 10.1074/jbc.m700702200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Among the multiple cellular effects mediated by lysophosphatidic acid (LPA), the effect on cell proliferation has extensively been investigated. A recent study showed that LPA-mediated proliferation of colon cancer cells requires activation of beta-catenin. However, the majority of colon cancer cells have deregulation of the Wnt/beta-catenin pathway. This prompted us to hypothesize the presence of additional pathway(s) activated by LPA resulting in an increase in the proliferation of colon cancer cells. Krüppel-like factor 5 (KLF5) is a transcriptional factor highly expressed in the crypt compartment of the intestinal epithelium. In this work, we investigated a role of KLF5 in LPA-mediated proliferation. We show that LPA stimulated the expression levels of KLF5 mRNA and protein in colon cancer cells and this stimulation was mediated by LPA(2) and LPA(3). Silencing of KLF5 expression by small interfering RNA significantly attenuated LPA-mediated proliferation of SW480 and HCT116 cells. LPA-mediated KLF5 induction was partially blocked by inhibition of the mitogen-activated protein kinase kinase and protein kinase C-delta. Moreover, we observed that LPA regulates KLF5 expression via eukaryotic elongation factor 2 kinase (eEF2k). Inhibition of calmodulin or silencing of eEF2k blocked the stimulation in KLF5 expression. Knockdown of eEF2k specifically inhibited KLF5 induction by LPA but not by fetal bovine serum or phorbol 12-myristate 13-acetate. These results identify KLF5 as a target of LPA-mediated signaling and suggest a role of KLF5 in promoting proliferation of intestinal epithelia in response to LPA.
Collapse
Affiliation(s)
- Huanchun Zhang
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Agnieszka Bialkowska
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Raluca Rusovici
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Sengthong Chanchevalap
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Hyunsuk Shim
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Jonathan P. Katz
- Division of Gastroenterology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Vincent W. Yang
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia 30322
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - C. Chris Yun
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia 30322
- To whom correspondence should be addressed: Whitehead Bldg., Rm. 201, 615 Michael St., Atlanta, GA 30322. Tel.: 404-712-2865; Fax: 404-727-5767; E-mail:
| |
Collapse
|
47
|
Simon R, Samuel CE. Activation of NF-kappaB-dependent gene expression by Salmonella flagellins FliC and FljB. Biochem Biophys Res Commun 2007; 355:280-5. [PMID: 17292856 PMCID: PMC1861835 DOI: 10.1016/j.bbrc.2007.01.148] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 01/25/2007] [Indexed: 12/13/2022]
Abstract
Bacterial flagellin is recognized by Toll-like receptor (TLR5) and activates NF-kappaB which leads to the induction of proinflammatory gene expression. Salmonella expresses two flagellin proteins, FliC and FljB. We purified FliC and FljB and examined the ability of the Salmonella flagellins to activate the NF-kappaB transcription factor in human embryonic kidney cells. We found that FliC and FljB as purified proteins possessed a comparable specific activity for activation of NF-kappaB-dependent gene expression in HEK293 cells. We also determined the ability of UV-inactivated bacteria, both wild-type and fliC and fljB mutant strains, to activate NF-kappaB. Wild-type fliC(+)/fljB(+)Salmonella and the fliC(+)/fljB(-) mutant strain were robust activators, whereas the fliC(-)/fljB(+) and flhC(-) mutant strains were very poor activators. The NF-kappaB activation capacity of bacterial strains correlated with their flagellin expression level. Finally, Salmonella cell wall-associated polymeric flagellin displayed greatly reduced ability to activate NF-kappaB compared to purified monomeric flagellin.
Collapse
Affiliation(s)
| | - Charles E. Samuel
- Corresponding Author: C.E. Samuel, Telephone: 805-893-3097, FAX: 805-893-5780, E-mail:
| |
Collapse
|
48
|
Abstract
Salmonella species cause substantial morbidity, mortality and burden of disease globally. Infections with Salmonella species cause multiple clinical syndromes. Central to the pathophysiology of all human salmonelloses is the induction of a strong host innate immune/inflammatory response. Whether this ultimately reflects an adaptive advantage to the host or pathogen is not clear. However, it is evident that both the host and pathogen have evolved mechanisms of triggering host responses that are detrimental to the other. In this review, we explore some of the host and pathogenic mechanisms mobilized in the two predominant clinical syndromes associated with infection with Salmonella enterica species: enterocolitis and typhoid.
Collapse
Affiliation(s)
- Bryan Coburn
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
49
|
Sanders CJ, Yu Y, Moore DA, Williams IR, Gewirtz AT. Humoral immune response to flagellin requires T cells and activation of innate immunity. THE JOURNAL OF IMMUNOLOGY 2006; 177:2810-8. [PMID: 16920916 DOI: 10.4049/jimmunol.177.5.2810] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bacterial flagellin, the primary structural component of flagella, is a dominant target of humoral immunity upon infection by enteric pathogens and in Crohn's disease. To better understand how such responses may be regulated, we sought to define, in mice, basic mechanisms that regulate generation of flagellin-specific Igs. We observed that, in response to i.p. injection with flagellin, generation of flagellin-specific Ig required activation of innate immunity in that these responses were ablated in MyD88-deficient mice and that flagellin from Helicobacter pylori, which is known not to activate TLR5, also did not elicit Abs. Mice lacking alphabeta T cells (TCRbeta(null)) were completely deficient in their ability to make flagellin Abs in various contexts indicating that, in contrast to common belief, generation of flagellin-specific Ig is absolutely T cell dependent. In contrast to Ab responses to whole flagella (H serotyping), responses to flagellin monomers displayed only moderate serospecificity. Whereas neither oral nor rectal administration of flagellin elicited a strong serum Ab response, induction of colitis with dextran sodium sulfate resulted in a MyD88-dependent serum Ab response to endogenous flagellin, suggesting that, in an inflammatory milieu, TLR signaling promotes acquisition of Abs to intestinal flagellin. Thus, acquisition of a humoral immune response to flagellin requires activation of innate immunity, is T cell dependent, and can originate from flagellin in the intestinal tract in inflammatory conditions in the intestine.
Collapse
|
50
|
Goldberg JB. Bacteria respond to host cell lysophospholipids. Future Microbiol 2006. [DOI: 10.2217/17460913.1.3.267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evaluation of: Subramanian N, Qadri A.: Lysophospholipid sensing triggers secretion of flagellin from pathogenic Salmonella. Nat. Immunol. 7(6), 583–589 (2006). The ability of host cells to detect pathogen-specific molecules has now become readily appreciated. Toll-like receptors can detect conserved structures on pathogens and once recognized can trigger an innate immune response. In this report, Subramanian and Qadri present evidence that the host does not simply respond to the presence of bacteria or bacterial factors, but can also trick pathogens into revealing themselves by inducing the secretion of one of these pathogen-associated molecules.
Collapse
Affiliation(s)
- Joanna B Goldberg
- University of Virginia, Department of Microbiology, Charlottesville, VA 22908-0734, USA
| |
Collapse
|