1
|
Hayashi F, Inoue N, Iwatani Y, Yamashita Y, Yamada H, Miyauchi A, Watanabe M. Increased expression of membrane-bound TGF-β1, GITR, and GITR ligand in patients with autoimmune thyroid disease. Immunol Lett 2025:107036. [PMID: 40412445 DOI: 10.1016/j.imlet.2025.107036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/08/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Regulatory T (Treg) cells, which play an important role in maintaining self-tolerance, are present in the thyroid-infiltrating lymphocytes of patients with autoimmune thyroid disease (AITD). We examined the expression of membrane-bound transforming growth factor-β1 (mTGF-β1), which mediates regulatory function and glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR). The protein in turn may inhibit regulatory function on Treg cells and TGF-β1 receptor II (TGF-βRII) and GITR expression. We also evaluated GITR ligand (GITRL) localization in thyroid tissues. mTGF-β1+ cells proportion in Treg cells was higher in the thyroid of patients with AITD than in their peripheral blood. GITR+ cells proportion among Tregs and Teff cells was also higher in the thyroid than in peripheral blood. GITRL expression in thyrocytes was higher in AITD patients than in healthy subjects. The interaction and balance of mTGF-β1, GITR, TGF-βRII, and GITRL especially thyrocyte GITRL expression, could be critical in AITD pathogenesis.
Collapse
Affiliation(s)
- Fumiaki Hayashi
- Department of Clinical Laboratory and Biomedical Sciences, The University of Osaka, Graduate School of Medicine, Yamadaoka 1-7 Suita, Osaka 565-0871, Japan
| | - Naoya Inoue
- Department of Clinical Laboratory and Biomedical Sciences, The University of Osaka, Graduate School of Medicine, Yamadaoka 1-7 Suita, Osaka 565-0871, Japan
| | - Yoshinori Iwatani
- Department of Clinical Laboratory and Biomedical Sciences, The University of Osaka, Graduate School of Medicine, Yamadaoka 1-7 Suita, Osaka 565-0871, Japan
| | - Yuka Yamashita
- Department of Clinical Laboratory and Biomedical Sciences, The University of Osaka, Graduate School of Medicine, Yamadaoka 1-7 Suita, Osaka 565-0871, Japan
| | - Hiroya Yamada
- Department of Clinical Laboratory and Biomedical Sciences, The University of Osaka, Graduate School of Medicine, Yamadaoka 1-7 Suita, Osaka 565-0871, Japan
| | | | - Mikio Watanabe
- Department of Clinical Laboratory and Biomedical Sciences, The University of Osaka, Graduate School of Medicine, Yamadaoka 1-7 Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Kang SJ, Gong JR, Jin SP, Oh JM, Jin H, Lee Y, Moon Y, Kim D, Nam HJ, Choi HS, Hwang S, Huh YJ, Han KY, Moon J, Chung J, Park WY, Park CG, Kim HJ, Kim JE. Deciphering Dysfunctional Regulatory T Cells in Atopic Dermatitis. Allergy 2025; 80:1473-1477. [PMID: 39692151 DOI: 10.1111/all.16439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 12/19/2024]
Affiliation(s)
- Seong-Jun Kang
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Basic Research, PB Immune Therapeutics, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jeong-Ryeol Gong
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Seon-Pil Jin
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
- Medical Research Center, Institute of Human-Environmental Interface Biology, Seoul National University, Seoul, Republic of Korea
| | - Jin-Mi Oh
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Hyunjin Jin
- Transplantation Research Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Yuji Lee
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Yewon Moon
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Dongjun Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Hyo Jeong Nam
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Hyun Seung Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Sanha Hwang
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Yun Jung Huh
- Department of Dermatology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Kyung Yeon Han
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Jihwan Moon
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
- Department of Digital Health, Sungkyunkwan University, Seoul, Republic of Korea
| | | | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
- GENINUS Inc., Seoul, Republic of Korea
| | - Chung-Gyu Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Basic Research, PB Immune Therapeutics, Seoul, Republic of Korea
- Transplantation Research Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Je Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Basic Research, PB Immune Therapeutics, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Interdisciplinary Program in Artificial Intelligence (IPAI), Seoul National University, Seoul, Republic of Korea
| | - Jeong Eun Kim
- Department of Dermatology, Hanyang University College of Medicine, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Daniels MA, Teixeiro E. The NF-κB signaling network in the life of T cells. Front Immunol 2025; 16:1559494. [PMID: 40370445 PMCID: PMC12075310 DOI: 10.3389/fimmu.2025.1559494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
NF-κB is a crucial transcription factor in lymphocyte signaling. It is activated by environmental cues that drive lymphocyte differentiation to combat infections and cancer. As a key player in inflammation, NF-κB also significantly impacts autoimmunity and transplant rejection, making it an important therapeutic target. While the signaling molecules regulating this pathway are well-studied, the effect of changes in NF-κB signaling levels on T lymphocyte differentiation, fate, and function is not fully understood. Advances in computational biology and new NF-κB-inducible animal models are beginning to clarify these questions. In this review, we highlight recent findings related to T cells, focusing on how environmental cues affecting NF-κB signaling levels determine T cell fate and function.
Collapse
Affiliation(s)
- Mark A. Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Roy Blunt NextGen Precision Health Building, University of Missouri, Columbia, MO, United States
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Roy Blunt NextGen Precision Health Building, University of Missouri, Columbia, MO, United States
| |
Collapse
|
4
|
Watts TH, Yeung KKM, Yu T, Lee S, Eshraghisamani R. TNF/TNFR Superfamily Members in Costimulation of T Cell Responses-Revisited. Annu Rev Immunol 2025; 43:113-142. [PMID: 39745933 DOI: 10.1146/annurev-immunol-082423-040557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Prosurvival tumor necrosis factor receptor (TNFR) superfamily (TNFRSF) members on T cells, including 4-1BB, CD27, GITR, and OX40, support T cell accumulation during clonal expansion, contributing to T cell memory. During viral infection, tumor necrosis factor superfamily (TNFSF) members on inflammatory monocyte-derived antigen-presenting cells (APCs) provide a postpriming signal (signal 4) for T cell accumulation, particularly in the tissues. Patients with loss-of-function mutations in TNFR/TNFSF members reveal a critical role for 4-1BB and CD27 in CD8 T cell control of Epstein-Barr virus and other childhood infections and of OX40 in CD4 T cell responses. Here, on the 20th anniversary of a previous Annual Review of Immunology article about TNFRSF signaling in T cells, we discuss the effects of endogenous TNFRSF signals in T cells upon recognition of TNFSF members on APCs; the role of TNFRSF members, including TNFR2, on regulatory T cells; and recent advances in the incorporation of TNFRSF signaling in T cells into immunotherapeutic strategies for cancer.
Collapse
Affiliation(s)
- Tania H Watts
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada;
| | - Karen K M Yeung
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada;
| | - Tianning Yu
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada;
| | - Seungwoo Lee
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada;
| | | |
Collapse
|
5
|
Luo S, Larson JH, Blazar BR, Abdi R, Bromberg JS. Foxp3 +CD8 + regulatory T cells: bona fide Tregs with cytotoxic function. Trends Immunol 2025; 46:324-337. [PMID: 40113537 DOI: 10.1016/j.it.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Various mammalian CD8+ T cell subsets with regulatory properties are either formed through a thymus-dependent mechanism or induced under various experimental protocols and referred to as CD8+ regulatory T cells (Tregs). CD8+ Tregs maintain distinct functions in the presence of CD4+ Tregs. This review focuses on the Foxp3+CD8+ Treg subset, which is typically extremely rare in unmanipulated mice and healthy humans under steady-state conditions. However, they can be induced and expanded for transplantation, autoimmune diseases, cancer, viral infections, and T cell receptor transgenic adoptive cell transfer models. Here, we summarize recent research progress related to this population, including the identification of phenotypic markers, induction determinants, and functional activities. Additionally, we discuss advances in manipulating Foxp3+CD8+ Tregs in autoimmunity and transplantation.
Collapse
Affiliation(s)
- Shunqun Luo
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Jemma H Larson
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN 55455
| | - Bruce R Blazar
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN 55455
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201.
| |
Collapse
|
6
|
Piao W, Lee ZL, Zapas G, Wu L, Jewell CM, Abdi R, Bromberg JS. Regulatory T cell and endothelial cell crosstalk. Nat Rev Immunol 2025:10.1038/s41577-025-01149-2. [PMID: 40169744 DOI: 10.1038/s41577-025-01149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2025] [Indexed: 04/03/2025]
Abstract
Regulatory T (Treg) cells have a central role in the maintenance of immune surveillance and tolerance. They can migrate from lymphoid organs to blood and then into tissues and egress from tissues into draining lymph nodes. Specialized endothelial cells of blood and lymphatic vessels are the key gatekeepers for these processes. Treg cells that transmigrate across single-cell layers of endothelial cells engage in bidirectional crosstalk with these cells and regulate vascular permeability by promoting structural modifications of blood and lymphatic endothelial cells. In turn, blood and lymphatic endothelial cells can modulate Treg cell recirculation and residency. Here, we discuss recent insights into the cellular and molecular mechanisms of the crosstalk between Treg cells and endothelial cells and explore potential therapeutic strategies to target these interactions in autoimmunity, transplantation and cancer.
Collapse
Affiliation(s)
- Wenji Piao
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zachariah L Lee
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gregory Zapas
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Long Wu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher M Jewell
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Scholand KK, Schaefer L, Govindarajan G, Yu Z, Galletti JG, de Paiva CS. Aged regulatory T cells fail to control autoimmune lacrimal gland pathogenic CD4 + T cells. GeroScience 2025:10.1007/s11357-025-01576-y. [PMID: 40053297 DOI: 10.1007/s11357-025-01576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/18/2025] [Indexed: 03/12/2025] Open
Abstract
CD25KO mice are a model of Sjögren disease. CD25KO mice have severe inflammation and infiltrating lymphocytes to the lacrimal glands (LG). Whether the pathogenicity of CD25KO CD4+ T cells can be controlled in vivo by Tregs is unknown. Eight-week-old B6 and CD25KO mice LGs were submitted for RNA bulk sequencing. A total of 3481 genes were differentially expressed in CD25KO LG compared to B6. Tear washing analysis identified CD25KO mice had elevated protein levels of TNF, IFN-γ, and CCL5 and decreased protein levels of IL-12p40 and VEGF-A. Co-adoptive transfer of CD25KO CD4+ T cells with either young or aged B6 Tregs was performed in RAG1KO mice. Recipients of CD25KO CD4+ T cells alone had higher LG inflammation than naive mice. However, in recipients of young B6 Tregs plus CD25KO CD4+ T cells, LGs had significantly reduced inflammation. Recipients of CD25KO CD4+ T cells with aged B6 Tregs had more inflamed LGs than young Tregs, suggesting aged Tregs have less suppressive capacity in vivo. Altogether, CD25KO mice have phenotypic and genetic changes resulting in increased inflammation and severe lymphocytic infiltration in the LGs. However, this autoimmunity can be controlled by the addition of young, but not aged, Tregs, suggesting that aging Tregs have dysfunctional suppression.
Collapse
Affiliation(s)
- Kaitlin K Scholand
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Laura Schaefer
- Department of Molecular Virology and Microbiology, Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Gowthaman Govindarajan
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Zhiyuan Yu
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Jeremias G Galletti
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
- Institute of Experimental Medicine (CONICET), National Academy of Medicine of Buenos Aires, Buenos Aires, Argentina
| | - Cintia S de Paiva
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
- Department of Biosciences, Rice University, Houston, TX, USA.
| |
Collapse
|
8
|
Martini E, Cremonesi M, Felicetta A, Serio S, Puccio S, Pelamatti E, van Beek JJP, Papadopoulou V, Catalano C, Fanuele F, Giuliano D, Basso G, Bonfiglio CA, Panico C, Vacchiano M, Carullo P, Papa L, D'Andrea C, Tuzger N, Marchini S, Magistroni P, Deaglio S, Amoroso A, Lugli E, Condorelli G, Kallikourdis M. Autoimmune-Like Mechanism in Heart Failure Enables Preventive Vaccine Therapy. Circ Res 2025; 136:4-25. [PMID: 39629560 DOI: 10.1161/circresaha.124.324999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/31/2024] [Accepted: 11/20/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Heart failure (HF) is strongly associated with inflammation. In pressure overload (PO)-induced HF, cardiac stress triggers adaptive immunity, ablation or inhibition of which blocks disease progression. We hypothesized that PO-HF might fulfill the often-used criteria of autoimmunity: if so, the associated adaptive immune response would be not only necessary but also sufficient to induce HF; it should also be possible to identify self-antigens driving the autoimmune response. Finally, we hypothesized that such an antigen-specific response can be manipulated to preventively reduce the severity of PO-HF in a tolerizing vaccine. METHODS We used the transfer of lymphocytes or serum from PO-HF mice into healthy recipients to assess whether the adaptive response is sufficient to induce disease. We devised a novel pipeline to identify self-antigens driving the response. We immunized healthy mice with novel antigens to assess whether they induce disease. To determine whether these antigens could be present in human patients, we sought to detect existing responses against these antigens in patients with HF. Finally, we used the antigens in an oral tolerance protocol to preventively protect mice from subsequently induced PO-HF, analyzing the results with next-generation sequencing. RESULTS We found that PO-HF fulfills the criteria of an autoimmune disease, albeit partially, and identified novel cardiac self-antigens, capable of inducing cardiac dysfunction. The novel antigens in a tolerizing vaccine formulation preemptively reduced the severity of disease triggered by subsequent application of PO, via induction of effector regulatory T cells, enabling a potent reduction of PO-driven loss of systolic function, cardiac inflammation, and proinflammatory CD4+ T-cell clonal expansion. CONCLUSIONS We demonstrate that PO-HF is triggered by hemodynamic stress and then sets off an autoimmune-like response against cardiac self-antigens. The antigens can be used to reduce the severity of future-onset disease, via oral tolerization, effectively acting as a protective vaccine.
Collapse
Affiliation(s)
- Elisa Martini
- Adaptive Immunity Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy (E.M., M.C., E.P., V.P., C.C., F.F., C.A.B., N.T., M.K.)
| | - Marco Cremonesi
- Adaptive Immunity Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy (E.M., M.C., E.P., V.P., C.C., F.F., C.A.B., N.T., M.K.)
| | - Arianna Felicetta
- Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, Italy (A.F., S.S., C.P., M.V., P.C., L.P., C.D., G.C.)
| | - Simone Serio
- Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, Italy (A.F., S.S., C.P., M.V., P.C., L.P., C.D., G.C.)
- Institute of Genetics and Biomedical Research, Milan Unit, Consiglio Nazionale delle Ricerche, Italy (S.S., S.P.)
| | - Simone Puccio
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy (S.P., J.J.P.v.B., E.L.)
- Institute of Genetics and Biomedical Research, Milan Unit, Consiglio Nazionale delle Ricerche, Italy (S.S., S.P.)
| | - Erica Pelamatti
- Adaptive Immunity Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy (E.M., M.C., E.P., V.P., C.C., F.F., C.A.B., N.T., M.K.)
| | - Jasper J P van Beek
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy (S.P., J.J.P.v.B., E.L.)
| | - Vasiliki Papadopoulou
- Adaptive Immunity Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy (E.M., M.C., E.P., V.P., C.C., F.F., C.A.B., N.T., M.K.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy (V.P., C.C., F.F., C.P., C.D., N.T., G.C., M.K.)
| | - Chiara Catalano
- Adaptive Immunity Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy (E.M., M.C., E.P., V.P., C.C., F.F., C.A.B., N.T., M.K.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy (V.P., C.C., F.F., C.P., C.D., N.T., G.C., M.K.)
| | - Francesca Fanuele
- Adaptive Immunity Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy (E.M., M.C., E.P., V.P., C.C., F.F., C.A.B., N.T., M.K.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy (V.P., C.C., F.F., C.P., C.D., N.T., G.C., M.K.)
| | - Desirée Giuliano
- Humanitas Genomics Facility, IRCCS Humanitas Research Hospital, Rozzano, Italy (D.G., G.B., S.M.)
| | - Gianluca Basso
- Humanitas Genomics Facility, IRCCS Humanitas Research Hospital, Rozzano, Italy (D.G., G.B., S.M.)
| | - Cecilia Assunta Bonfiglio
- Adaptive Immunity Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy (E.M., M.C., E.P., V.P., C.C., F.F., C.A.B., N.T., M.K.)
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Germany (C.A.B.)
| | - Cristina Panico
- Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, Italy (A.F., S.S., C.P., M.V., P.C., L.P., C.D., G.C.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy (V.P., C.C., F.F., C.P., C.D., N.T., G.C., M.K.)
| | - Marco Vacchiano
- Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, Italy (A.F., S.S., C.P., M.V., P.C., L.P., C.D., G.C.)
| | - Pierluigi Carullo
- Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, Italy (A.F., S.S., C.P., M.V., P.C., L.P., C.D., G.C.)
| | - Laura Papa
- Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, Italy (A.F., S.S., C.P., M.V., P.C., L.P., C.D., G.C.)
| | - Carla D'Andrea
- Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, Italy (A.F., S.S., C.P., M.V., P.C., L.P., C.D., G.C.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy (V.P., C.C., F.F., C.P., C.D., N.T., G.C., M.K.)
| | - Naz Tuzger
- Adaptive Immunity Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy (E.M., M.C., E.P., V.P., C.C., F.F., C.A.B., N.T., M.K.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy (V.P., C.C., F.F., C.P., C.D., N.T., G.C., M.K.)
| | - Sergio Marchini
- Humanitas Genomics Facility, IRCCS Humanitas Research Hospital, Rozzano, Italy (D.G., G.B., S.M.)
| | - Paola Magistroni
- Immunogenetics and Transplant Biology Service, Città della Salute e della Scienza Hospital, Turin, Italy (P.M., S.D., A.A.)
| | - Silvia Deaglio
- Immunogenetics and Transplant Biology Service, Città della Salute e della Scienza Hospital, Turin, Italy (P.M., S.D., A.A.)
- Department of Medical Sciences, University of Turin, Italy (S.D., A.A.)
| | - Antonio Amoroso
- Immunogenetics and Transplant Biology Service, Città della Salute e della Scienza Hospital, Turin, Italy (P.M., S.D., A.A.)
- Department of Medical Sciences, University of Turin, Italy (S.D., A.A.)
| | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy (S.P., J.J.P.v.B., E.L.)
| | - Gianluigi Condorelli
- Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, Italy (A.F., S.S., C.P., M.V., P.C., L.P., C.D., G.C.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy (V.P., C.C., F.F., C.P., C.D., N.T., G.C., M.K.)
| | - Marinos Kallikourdis
- Adaptive Immunity Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy (E.M., M.C., E.P., V.P., C.C., F.F., C.A.B., N.T., M.K.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy (V.P., C.C., F.F., C.P., C.D., N.T., G.C., M.K.)
| |
Collapse
|
9
|
Xue Q, Peng W, Zhang S, Wei X, Ye L, Wang Z, Xiang X, Liu Y, Wang H, Zhou Q. Lactylation-driven TNFR2 expression in regulatory T cells promotes the progression of malignant pleural effusion. J Immunother Cancer 2024; 12:e010040. [PMID: 39721754 PMCID: PMC11683941 DOI: 10.1136/jitc-2024-010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/06/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Although tumor necrosis factor receptor 2 (TNFR2) has been recognized as an attractive next-generation candidate target for cancer immunotherapy, the factors that regulate the gene expression and their mechanistic effects on tumor-infiltrating regulatory T cells (Treg cells) remain poorly understood. METHODS Single-cell RNA sequencing analysis was employed to analyze the phenotypic and functional differences between TNFR2+ Treg cells and TNFR2- Treg cells. Malignant pleural effusion (MPE) from humans and mouse was used to investigate the potential mechanisms by which lactate regulates TNFR2 expression. RESULTS Treg cells with high TNFR2 expression exhibited elevated levels of immune checkpoint molecules. Additionally, the high expression of TNFR2 on Treg cells was positively correlated with a poor prognosis in MPE patients. Moreover, we revealed that lactate upregulated TNFR2 expression on Treg cells, thereby enhancing their immunosuppressive function in MPE. Mechanistically, lactate modulated the gene transcription of transcription factor nuclear factor-κB p65 (NF-κB p65) through histone H3K18 lactylation (H3K18la), subsequently upregulating the gene expression of TNFR2 and expediting the progression of MPE. Notably, lactate metabolism blockade combined with immune checkpoint blockade (ICB) therapy effectively enhanced the efficacy of ICB therapy, prolonged the survival time of MPE mice, and improved immunosuppression in the microenvironment of MPE. CONCLUSIONS The study explains the mechanism that regulates TNFR2 expression on Treg cells and its function in MPE progression, providing novel insights into the epigenetic regulation of tumor development and metabolic strategies for MPE treatment by targeting lactate metabolism in Treg cells.
Collapse
Affiliation(s)
- Qianqian Xue
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbei Peng
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Siyu Zhang
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoshan Wei
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Linlin Ye
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Zihao Wang
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Xiang
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Liu
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Haolei Wang
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Ababneh O, Nishizaki D, Kato S, Kurzrock R. Tumor necrosis factor superfamily signaling: life and death in cancer. Cancer Metastasis Rev 2024; 43:1137-1163. [PMID: 39363128 PMCID: PMC11554763 DOI: 10.1007/s10555-024-10206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/13/2024] [Indexed: 10/05/2024]
Abstract
Immune checkpoint inhibitors have shaped the landscape of cancer treatment. However, many patients either do not respond or suffer from later progression. Numerous proteins can control immune system activity, including multiple tumor necrosis factor (TNF) superfamily (TNFSF) and TNF receptor superfamily (TNFRSF) members; these proteins play a complex role in regulating cell survival and death, cellular differentiation, and immune system activity. Notably, TNFSF/TNFRSF molecules may display either pro-tumoral or anti-tumoral activity, or even both, depending on tumor type. Therefore, TNF is a prototype of an enigmatic two-faced mediator in oncogenesis. To date, multiple anti-TNF agents have been approved and/or included in guidelines for treating autoimmune disorders and immune-related toxicities after immune checkpoint blockade for cancer. A confirmed role for the TNFSF/TNFRSF members in treating cancer has proven more elusive. In this review, we highlight the cancer-relevant TNFSF/TNFRSF family members, focusing on the death domain-containing and co-stimulation members and their signaling pathways, as well as their complicated role in the life and death of cancer cells.
Collapse
Affiliation(s)
- Obada Ababneh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Daisuke Nishizaki
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Razelle Kurzrock
- WIN Consortium, Paris, France.
- Department of Medicine, MCW Cancer Center, Milwaukee, WI, USA.
- Department of Oncology, University of Nebraska, Omaha, NE, USA.
| |
Collapse
|
11
|
Yamazaki S. Diverse roles of dendritic cell and regulatory T cell crosstalk in controlling health and disease. Int Immunol 2024; 37:5-14. [PMID: 38953561 DOI: 10.1093/intimm/dxae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024] Open
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells for lymphocytes, including regulatory T (Treg) cells, a subset of CD4+ T cells expressing CD25 and Foxp3, a transcription factor. Treg cells maintain immunological self-tolerance in mice and humans, and suppress autoimmunity and other various immune responses such as tumor immunity, transplant rejection, allergy, responses to microbes, and inflammation. Treg-cell proliferation is controlled by antigen-presenting DCs. On the other hand, Treg cells suppress the function of DCs by restraining DC maturation. Therefore, the interaction between DCs and Treg cells, DC-Treg crosstalk, could contribute to controlling health and disease. We recently found that unique DC-Treg crosstalk plays a role in several conditions. First, Treg cells are expanded in ultraviolet B (UVB)-exposed skin by interacting with DCs, and the UVB-expanded Treg cells have a healing function. Second, manipulating DC-Treg crosstalk can induce effective acquired immune responses against severe acute respiratory syndrome coronavirus 2 antigens without adjuvants. Third, Treg cells with a special feature interact with DCs in the tumor microenvironment of human head and neck cancer, which may contribute to the prognosis. Understanding the underlying mechanisms of DC-Treg crosstalk may provide a novel strategy to control health and disease.
Collapse
Affiliation(s)
- Sayuri Yamazaki
- Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| |
Collapse
|
12
|
Xu Y, Wang X, Li Y, Mao Y, Su Y, Mao Y, Yang Y, Gao W, Fu C, Chen W, Ye X, Liang F, Bai P, Sun Y, Li S, Xu R, Tian R. Multimodal single cell-resolved spatial proteomics reveal pancreatic tumor heterogeneity. Nat Commun 2024; 15:10100. [PMID: 39572534 PMCID: PMC11582669 DOI: 10.1038/s41467-024-54438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
Despite the advances in antibody-guided cell typing and mass spectrometry-based proteomics, their integration is hindered by challenges for processing rare cells in the heterogeneous tissue context. Here, we introduce Spatial and Cell-type Proteomics (SCPro), which combines multiplexed imaging and flow cytometry with ion exchange-based protein aggregation capture technology to characterize spatial proteome heterogeneity with single-cell resolution. The SCPro is employed to explore the pancreatic tumor microenvironment and reveals the spatial alternations of over 5000 proteins by automatically dissecting up to 100 single cells guided by multi-color imaging of centimeter-scale formalin-fixed, paraffin-embedded tissue slide. To enhance cell-type resolution, we characterize the proteome of 14 different cell types by sorting up to 1000 cells from the same tumor, which allows us to deconvolute the spatial distribution of immune cell subtypes and leads to the discovery of subtypes of regulatory T cells. Together, the SCPro provides a multimodal spatial proteomics approach for profiling tissue proteome heterogeneity.
Collapse
Affiliation(s)
- Yanfen Xu
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Xi Wang
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
- Department of Oncology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Yuan Li
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Yiheng Mao
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Yiran Su
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Yize Mao
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Yun Yang
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Weina Gao
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Changying Fu
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Wendong Chen
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Xueting Ye
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Fuchao Liang
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Panzhu Bai
- Department of System Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ying Sun
- Department of System Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Shengping Li
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Ruilian Xu
- Department of Oncology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Ruijun Tian
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
13
|
Inés SM, Celia MO, Lasarte JJ, Teresa L. Optimizing protocols for human regulatory T isolation, expansion, and characterization. Methods Cell Biol 2024; 191:59-77. [PMID: 39824564 DOI: 10.1016/bs.mcb.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Affiliation(s)
- Sánchez-Moreno Inés
- Program in Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Martín-Otal Celia
- Program in Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Juan José Lasarte
- Program in Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Lozano Teresa
- Program in Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
| |
Collapse
|
14
|
King HAD, Lewin SR. Immune checkpoint inhibitors in infectious disease. Immunol Rev 2024; 328:350-371. [PMID: 39248154 PMCID: PMC11659942 DOI: 10.1111/imr.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Following success in cancer immunotherapy, immune checkpoint blockade is emerging as an exciting potential treatment for some infectious diseases, specifically two chronic viral infections, HIV and hepatitis B. Here, we will discuss the function of immune checkpoints, their role in infectious disease pathology, and the ability of immune checkpoint blockade to reinvigorate the immune response. We focus on blockade of programmed cell death 1 (PD-1) to induce durable immune-mediated control of HIV, given that anti-PD-1 can restore function to exhausted HIV-specific T cells and also reverse HIV latency, a long-lived form of viral infection. We highlight several key studies and future directions of research in relation to anti-PD-1 and HIV persistence from our group, including the impact of immune checkpoint blockade on the establishment (AIDS, 2018, 32, 1491), maintenance (PLoS Pathog, 2016, 12, e1005761; J Infect Dis, 2017, 215, 911; Cell Rep Med, 2022, 3, 100766) and reversal of HIV latency (Nat Commun, 2019, 10, 814; J Immunol, 2020, 204, 1242), enhancement of HIV-specific T cell function (J Immunol, 2022, 208, 54; iScience, 2023, 26, 108165), and investigating the effects of anti-PD-1 and anti-CTLA-4 in vivo in people with HIV on ART with cancer (Sci Transl Med, 2022, 14, eabl3836; AIDS, 2021, 35, 1631; Clin Infect Dis, 2021, 73, e1973). Our future work will focus on the impact of anti-PD-1 in vivo in people with HIV on ART without cancer and potential combinations of anti-PD-1 with other interventions, including therapeutic vaccines or antibodies and less toxic immune checkpoint blockers.
Collapse
Affiliation(s)
- Hannah A. D. King
- Department of Infectious DiseasesThe University of Melbourne at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Sharon R. Lewin
- Department of Infectious DiseasesThe University of Melbourne at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Victorian Infectious Diseases ServiceRoyal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Department of Infectious DiseasesAlfred Hospital and Monash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
15
|
Zhang H, Felthaus O, Eigenberger A, Klein S, Prantl L. Treg Cell Therapeutic Strategies for Breast Cancer: Holistic to Local Aspects. Cells 2024; 13:1526. [PMID: 39329710 PMCID: PMC11429654 DOI: 10.3390/cells13181526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Regulatory T cells (Tregs) play a key role in maintaining immune homeostasis and preventing autoimmunity through their immunosuppressive function. There have been numerous reports confirming that high levels of Tregs in the tumor microenvironment (TME) are associated with a poor prognosis, highlighting their role in promoting an immunosuppressive environment. In breast cancer (BC), Tregs interact with cancer cells, ultimately leading to the suppression of immune surveillance and promoting tumor progression. This review discusses the dual role of Tregs in breast cancer, and explores the controversies and therapeutic potential associated with targeting these cells. Researchers are investigating various strategies to deplete or inhibit Tregs, such as immune checkpoint inhibitors, cytokine antagonists, and metabolic inhibition. However, the heterogeneity of Tregs and the variable precision of treatments pose significant challenges. Understanding the functional diversity of Tregs and the latest advances in targeted therapies is critical for the development of effective therapies. This review highlights the latest approaches to Tregs for BC treatment that both attenuate Treg-mediated immunosuppression in tumors and maintain immune tolerance, and advocates precise combination therapy strategies to optimize breast cancer outcomes.
Collapse
Affiliation(s)
- Hanwen Zhang
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany (L.P.)
| | | | | | | | | |
Collapse
|
16
|
Truffin D, Marchand F, Chatelais M, Chêne G, Saias L, Herbst F, Lipner J, King AJ. Impact of Methylated Cyclodextrin KLEPTOSE ® CRYSMEB on Inflammatory Responses in Human In Vitro Models. Int J Mol Sci 2024; 25:9748. [PMID: 39273695 PMCID: PMC11396153 DOI: 10.3390/ijms25179748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
KLEPTOSE® CRYSMEB methylated cyclodextrin derivative displays less methylated group substitution than randomly methylated cyclodextrin. It has demonstrated an impact on atherosclerosis and neurological diseases, linked in part to cholesterol complexation and immune response, however, its impact on inflammatory cascade pathways is not clear. Thus, the impact of KLEPTOSE® CRYSMEB on various pharmacological targets was assessed using human umbilical vein endothelial cells under physiological and inflammatory conditions, followed by screening against twelve human primary cell-based systems designed to model complex human tissue and disease biology of the vasculature, skin, lung, and inflammatory tissues using the BioMAP® Diversity PLUS® panel. Finally, its anti-inflammatory mechanism was investigated on peripheral blood mononuclear cells to evaluate anti-inflammatory or pro-resolving properties. The results showed that KLEPTOSE® CRYSMEB can modulate the immune system in vitro and potentially manage vascular issues by stimulating the expression of molecules involved in the crosstalk between immune cells and other cell types. It showed anti-inflammatory effects that were driven by the inhibition of pro-inflammatory cytokine secretion and could have different impacts on different tissue types. Moreover, this cyclodextrin showed no clear impact on pro-resolving lipid mediators. Additionally, it appeared that the mechanism of action of KLEPTOSE® CRYSMEB seems to not be shared by other well-known anti-inflammatory molecules. Finally, KLEPTOSE® CRYSMEB may have an anti-inflammatory impact, which could be due to its effect on receptors such as TLR or direct complexation with LPS or PGE2, and conversely, this methylated cyclodextrin could stimulate a pro-inflammatory response involving lipid mediators and on proteins involved in communication with immune cells, probably via interaction with membrane cholesterol.
Collapse
Affiliation(s)
- Damien Truffin
- Roquette Frères, Rue de la Haute Loge, 62136 Lestrem, France
| | - Flora Marchand
- ProfileHIT, 7 Rue du Buisson, 44680 Sainte-Pazanne, France
| | | | - Gérald Chêne
- Ambiotis, 3 Can Biotech 3 r Satellites, 31400 Toulouse, France
| | - Laure Saias
- Ambiotis, 3 Can Biotech 3 r Satellites, 31400 Toulouse, France
| | - Frauke Herbst
- Eurofins Discovery, 6 Research Park Drive, St. Charles, MO 63304, USA
| | - Justin Lipner
- Eurofins Discovery, 6 Research Park Drive, St. Charles, MO 63304, USA
| | - Alastair J King
- Eurofins Discovery, 6 Research Park Drive, St. Charles, MO 63304, USA
| |
Collapse
|
17
|
Honing DY, Luiten RM, Matos TR. Regulatory T Cell Dysfunction in Autoimmune Diseases. Int J Mol Sci 2024; 25:7171. [PMID: 39000278 PMCID: PMC11241405 DOI: 10.3390/ijms25137171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Regulatory T cells (Tregs), a suppressive subpopulation of T cells, are potent mediators of peripheral tolerance, responsible for immune homeostasis. Many autoimmune diseases exhibit disruptions in Treg function or quantity, resulting in an imbalance between protective and pathogenic immune cells. Selective expansion or manipulation of Tregs is a promising therapeutic approach for autoimmune diseases. However, the extensive diversity of Treg subpopulations and the multiple approaches used for Treg identification leads to high complexity, making it difficult to develop a successful treatment capable of modulating Tregs. In this review, we describe the suppressive mechanisms, subpopulations, classification, and identification methodology for Tregs, and their role in the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Dionne Y Honing
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, The Netherlands
| | - Rosalie M Luiten
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, The Netherlands
| | - Tiago R Matos
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Sanofi, 1105 BP Amsterdam, The Netherlands
| |
Collapse
|
18
|
Pavillon N, Lim EL, Tanaka A, Hori S, Sakaguchi S, Smith NI. Non-invasive detection of regulatory T cells with Raman spectroscopy. Sci Rep 2024; 14:14025. [PMID: 38890425 PMCID: PMC11189440 DOI: 10.1038/s41598-024-64536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Regulatory T cells (Tregs) are a type of lymphocyte that is key to maintaining immunological self-tolerance, with great potential for therapeutic applications. A long-standing challenge in the study of Tregs is that the only way they can be unambiguously identified is by using invasive intracellular markers. Practically, the purification of live Tregs is often compromised by other cell types since only surrogate surface markers can be used. We present here a non-invasive method based on Raman spectroscopy that can detect live unaltered Tregs by coupling optical detection with machine learning implemented with regularized logistic regression. We demonstrate the validity of this approach first on murine cells expressing a surface Foxp3 reporter, and then on peripheral blood human T cells. By including methods to account for sample purity, we could generate reliable models that can identify Tregs with an accuracy higher than 80%, which is already comparable with typical sorting purities achievable with standard methods that use proxy surface markers. We could also demonstrate that it is possible to reliably detect Tregs in fully independent donors that are not part of the model training, a key milestone for practical applications.
Collapse
Affiliation(s)
- N Pavillon
- Biophotonics Laboratory, Immunology Frontier Research Center (IFReC), Osaka University, Yamadaoka 3-1, Suita, Osaka, 565-0871, Japan.
| | - E L Lim
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Yamadaoka 3-1, Suita, Osaka, 565-0871, Japan
| | - A Tanaka
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Yamadaoka 3-1, Suita, Osaka, 565-0871, Japan
- Department of Frontier Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - S Hori
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Hongo 7-3-1, Tokyo, 113-0033, Japan
| | - S Sakaguchi
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Yamadaoka 3-1, Suita, Osaka, 565-0871, Japan
- Laboratory of Experimental Immunology, Institute for Life and Medical Sciences, Kyoto University, Sakyo-ku, Shogoin Kawahara-cho 53, Kyoto, 606-8507, Japan
| | - N I Smith
- Biophotonics Laboratory, Immunology Frontier Research Center (IFReC), Osaka University, Yamadaoka 3-1, Suita, Osaka, 565-0871, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Yamadaoka 2-8, Suita, Osaka, 565-0871, Japan.
- Open and Transdisciplinary Research Institute (OTRI), Osaka University, Yamadaoka 3-1, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
19
|
Pan Y, Cheng J, Zhu Y, Zhang J, Fan W, Chen X. Immunological nanomaterials to combat cancer metastasis. Chem Soc Rev 2024; 53:6399-6444. [PMID: 38745455 DOI: 10.1039/d2cs00968d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Metastasis causes greater than 90% of cancer-associated deaths, presenting huge challenges for detection and efficient treatment of cancer due to its high heterogeneity and widespread dissemination to various organs. Therefore, it is imperative to combat cancer metastasis, which is the key to achieving complete cancer eradication. Immunotherapy as a systemic approach has shown promising potential to combat metastasis. However, current clinical immunotherapies are not effective for all patients or all types of cancer metastases owing to insufficient immune responses. In recent years, immunological nanomaterials with intrinsic immunogenicity or immunomodulatory agents with efficient loading have been shown to enhance immune responses to eliminate metastasis. In this review, we would like to summarize various types of immunological nanomaterials against metastasis. Moreover, this review will summarize a series of immunological nanomaterial-mediated immunotherapy strategies to combat metastasis, including immunogenic cell death, regulation of chemokines and cytokines, improving the immunosuppressive tumour microenvironment, activation of the STING pathway, enhancing cytotoxic natural killer cell activity, enhancing antigen presentation of dendritic cells, and enhancing chimeric antigen receptor T cell therapy. Furthermore, the synergistic anti-metastasis strategies based on the combinational use of immunotherapy and other therapeutic modalities will also be introduced. In addition, the nanomaterial-mediated imaging techniques (e.g., optical imaging, magnetic resonance imaging, computed tomography, photoacoustic imaging, surface-enhanced Raman scattering, radionuclide imaging, etc.) for detecting metastasis and monitoring anti-metastasis efficacy are also summarized. Finally, the current challenges and future prospects of immunological nanomaterial-based anti-metastasis are also elucidated with the intention to accelerate its clinical translation.
Collapse
Affiliation(s)
- Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Junjie Cheng
- Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yang Zhu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China.
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
| |
Collapse
|
20
|
Xin S, Su J, Li R, Cao Q, Wang H, Wei Z, Wang C, Zhang C, Zhang J, Zhang Z, Li G, Qin W. Prognostic and therapeutic model based on disulfidptosis-related genes for patients with clear cell renal cell carcinoma. Heliyon 2024; 10:e32258. [PMID: 38882384 PMCID: PMC11180324 DOI: 10.1016/j.heliyon.2024.e32258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Disulfidptosis, a newly discovered mode of cell death caused by excessive accumulation of intracellular disulfide compounds, is closely associated with tumor development. This study focused on the relationship between disulfidptosis and clear cell renal cell carcinoma (ccRCC). Firstly, the characterizations of disulfidptosis-related genes (DRGs) in ccRCC were showed, which included number variation (CNV), single nucleotide variation (SNV), DNA methylation, mRNA expression and gene mutation. Then, the ccRCC samples were classified into three clusters through unsupervised clustering based on DRGs. Survival and pathway enrichment differences were evaluated among the three clusters. Subsequently, the differentially expressed genes (DEGs) among the three clusters were screened by univariate Cox, LASSO, and multivariate Cox analysis, and five key DEGs were obtained. Based on the five key DEGs, the ccRCC samples were reclassified into two geneclusters and the survival differences and immune cell infiltration between two geneclusters was investigated. In next step, ccRCC samples were divided into two groups according to PCA scores of five key DEGs, namely high PCA score group (HPSG) and low PCA score group (LPSG). On this basis, differences in survival prognosis, immune cell infiltration and correlation with immune checkpoint, as well as differences in sensitivity to targeted drugs were compared between HPSG and LPSG. The expression levels of four immune checkpoints were higher in HPSG than in LPSG, whereas the LPSG was more sensitive to targeted drug therapy than the HPSG. Finally, validation experiments on HDAC4 indicated that HDAC4 could increase the proliferation and colony formation ability of ccRCC cells.
Collapse
Affiliation(s)
- Shiyong Xin
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471000, China
| | - Junjie Su
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471000, China
| | - Ruixin Li
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471000, China
| | - Qiong Cao
- Department of Pathology, The Third Affiliated Hospital of Henan University of Science and Technology, 471003, China
| | - Haojie Wang
- Department of Central Laboratory, Zhengzhou University, Luoyang Central Hospital, Luoyang, 471003, China
| | - Zhihao Wei
- Department of Pathology, The Yiluo Hospital of Luoyang, The Teaching Hospital of Henan University of Science and Technology, Luoyang, 471023, China
| | - Chengliang Wang
- Department of Urology, Shangcheng County People's Hospital, Xinyang, 464000, China
| | - Chengdong Zhang
- Department of Urology, Xinxiang City First People's Hospital, Xinxiang, 453000, China
| | - Jianguo Zhang
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471000, China
| | - Zheng Zhang
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471000, China
| | - Guanyu Li
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471000, China
| | - Wang Qin
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471000, China
| |
Collapse
|
21
|
Nitz K, Herrmann J, Lerman A, Lutgens E. Costimulatory and Coinhibitory Immune Checkpoints in Atherosclerosis: Therapeutic Targets in Atherosclerosis? JACC Basic Transl Sci 2024; 9:827-843. [PMID: 39070270 PMCID: PMC11282889 DOI: 10.1016/j.jacbts.2023.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 07/30/2024]
Abstract
The benefits of current state-of-the-art treatments to combat atherosclerotic cardiovascular disease (ASCVD) have stagnated. Treatments are mostly based on controlling cardiovascular risk factors, especially hyperlipidemia. Although the most recent advances with PCSK-9 inhibitors support the hyperlipidemia aspect of ASCVD, several lines of experimental evidence have outlined that atherosclerosis is also driven by inflammation. In the past years, phase 1, 2, and 3 clinical trials targeting inflammation to combat ASCVD have revealed that patients do tolerate such immune therapies, show decreases in inflammatory markers, and/or have reductions in cardiovascular endpoints. However, the search for the optimal anti-inflammatory or immune-modulating strategy and the stratification of patients who would benefit from such treatments and appropriate treatment regimens to combat ASCVD is only just beginning. In this review, we focus on immune checkpoint-based therapeutics (costimulation and coinhibition), many of which are already approved by the U.S. Food and Drug Administration for the treatment of cancer or autoimmune diseases, and discuss their use as a novel immunotherapeutic strategy to treat ASCVD.
Collapse
Affiliation(s)
- Katrin Nitz
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Esther Lutgens
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
22
|
Thomas MF, Slowikowski K, Manakongtreecheep K, Sen P, Samanta N, Tantivit J, Nasrallah M, Zubiri L, Smith NP, Tirard A, Ramesh S, Arnold BY, Nieman LT, Chen JH, Eisenhaure T, Pelka K, Song Y, Xu KH, Jorgji V, Pinto CJ, Sharova T, Glasser R, Chan P, Sullivan RJ, Khalili H, Juric D, Boland GM, Dougan M, Hacohen N, Li B, Reynolds KL, Villani AC. Single-cell transcriptomic analyses reveal distinct immune cell contributions to epithelial barrier dysfunction in checkpoint inhibitor colitis. Nat Med 2024; 30:1349-1362. [PMID: 38724705 PMCID: PMC11673812 DOI: 10.1038/s41591-024-02895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/01/2024] [Indexed: 05/23/2024]
Abstract
Immune checkpoint inhibitor (ICI) therapy has revolutionized oncology, but treatments are limited by immune-related adverse events, including checkpoint inhibitor colitis (irColitis). Little is understood about the pathogenic mechanisms driving irColitis, which does not readily occur in model organisms, such as mice. To define molecular drivers of irColitis, we used single-cell multi-omics to profile approximately 300,000 cells from the colon mucosa and blood of 13 patients with cancer who developed irColitis (nine on anti-PD-1 or anti-CTLA-4 monotherapy and four on dual ICI therapy; most patients had skin or lung cancer), eight controls on ICI therapy and eight healthy controls. Patients with irColitis showed expanded mucosal Tregs, ITGAEHi CD8 tissue-resident memory T cells expressing CXCL13 and Th17 gene programs and recirculating ITGB2Hi CD8 T cells. Cytotoxic GNLYHi CD4 T cells, recirculating ITGB2Hi CD8 T cells and endothelial cells expressing hypoxia gene programs were further expanded in colitis associated with anti-PD-1/CTLA-4 therapy compared to anti-PD-1 therapy. Luminal epithelial cells in patients with irColitis expressed PCSK9, PD-L1 and interferon-induced signatures associated with apoptosis, increased cell turnover and malabsorption. Together, these data suggest roles for circulating T cells and epithelial-immune crosstalk critical to PD-1/CTLA-4-dependent tolerance and barrier function and identify potential therapeutic targets for irColitis.
Collapse
Affiliation(s)
- Molly Fisher Thomas
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Division of Gastroenterology, Department of Medicine, Oregon Health and Sciences University, Portland, OR, USA.
- Department of Cell, Developmental, and Cancer Biology, Oregon Health and Sciences University, Portland, OR, USA.
| | - Kamil Slowikowski
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Kasidet Manakongtreecheep
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Pritha Sen
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Transplant, Oncology, and Immunocompromised Host Group, Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nandini Samanta
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Jessica Tantivit
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Mazen Nasrallah
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Department of Medicine, North Shore Physicians Group, Mass General Brigham Healthcare Center, Lynn, MA, USA
| | - Leyre Zubiri
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Neal P Smith
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Alice Tirard
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Swetha Ramesh
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Benjamin Y Arnold
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Linda T Nieman
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jonathan H Chen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Thomas Eisenhaure
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Karin Pelka
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Yuhui Song
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Katherine H Xu
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Vjola Jorgji
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Tatyana Sharova
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Rachel Glasser
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - PuiYee Chan
- Harvard Medical School, Boston, MA, USA
- Clinical Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Ryan J Sullivan
- Harvard Medical School, Boston, MA, USA
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hamed Khalili
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Dejan Juric
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Genevieve M Boland
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Dougan
- Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nir Hacohen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bo Li
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Kerry L Reynolds
- Harvard Medical School, Boston, MA, USA
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Alexandra-Chloé Villani
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Choi SC, Park YP, Roach T, Jimenez D, Fisher A, Zadeh M, Ma L, Sobel ES, Ge Y, Mohamadzadeh M, Morel L. Lupus susceptibility gene Pbx1 controls the development, stability, and function of regulatory T cells via Rtkn2 expression. SCIENCE ADVANCES 2024; 10:eadi4310. [PMID: 38536923 PMCID: PMC10971436 DOI: 10.1126/sciadv.adi4310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 02/22/2024] [Indexed: 04/05/2024]
Abstract
The maintenance of regulatory T (Treg) cells critically prevents autoimmunity. Pre-B cell leukemia transcription factor 1 (Pbx1) variants are associated with lupus susceptibility, particularly through the expression of a dominant negative isoform Pbx1-d in CD4+ T cells. Pbx1-d overexpression impaired Treg cell homeostasis and promoted inflammatory CD4+ T cells. Here, we showed a high expression of Pbx1 in human and murine Treg cells, which is decreased in lupus patients and mice. Pbx1 deficiency or Pbx1-d overexpression reduced the number, stability, and suppressive activity of Treg cells, which increased murine responses to immunization and autoimmune induction. Mechanistically, Pbx1 deficiency altered the expression of genes implicated in cell cycle and apoptosis in Treg cells. Intriguingly, Rtkn2, a Rho-GTPase previously associated with Treg homeostasis, was directly transactivated by Pbx1. Our results suggest that the maintenance of Treg cell homeostasis and stability by Pbx1 through cell cycle progression prevent the expansion of inflammatory T cells that otherwise exacerbates lupus progression in the hosts.
Collapse
Affiliation(s)
- Seung-Chul Choi
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| | - Yuk Pheel Park
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| | - Tracoyia Roach
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| | - Damian Jimenez
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| | - Amanda Fisher
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| | - Mojgan Zadeh
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| | - Longhuan Ma
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| | - Eric S. Sobel
- Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Yong Ge
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| | - Mansour Mohamadzadeh
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| | - Laurence Morel
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| |
Collapse
|
24
|
Narita T, Murakami Y, Ishii T, Muroi M, Yamashita N. Glucocorticoid-induced TNF receptor family-related protein functions as a costimulatory molecule for murine eosinophils. J Leukoc Biol 2024; 115:771-779. [PMID: 38159043 DOI: 10.1093/jleuko/qiad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 12/04/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024] Open
Abstract
Eosinophils are typical effector cells associated with type 2 immune responses and play key roles in the pathogenesis of allergic diseases. These cells are activated by various stimuli, such as cytokines, chemokines, and growth factors, but the regulatory mechanisms of eosinophil effector functions remain unclear. Glucocorticoid-induced tumor necrosis factor receptor family-related protein (GITR), a transmembrane protein belonging to the tumor necrosis factor (TNF) receptor superfamily, is a well-known regulatory molecule for T cell activation. Here, we show that GITR is also constitutively expressed on eosinophils and functions as a costimulatory molecule for these cells. Although degranulation was unaffected by GITR engagement of murine bone marrow-derived eosinophils, secretion of inflammatory cytokines such as interleukin (IL)-4, IL-6, and IL-13 from IL-33-activated bone marrow-derived eosinophils was augmented by anti-mouse GITR agonistic antibody (DTA-1). In conclusion, our results provide a new regulatory pathway of cytokine secretion from eosinophils in which GITR functions as a costimulatory molecule.
Collapse
Affiliation(s)
- Tomoya Narita
- Department of Pharmacotherapeutics, Faculty of Pharmacy, Musashino University, Shinmachi 1-1-20, Nishitokyo-shi, Tokyo 202-8585, Japan
- Research Institute of Pharmaceutical Sciences, Musashino University, Shinmachi 1-1-20, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Yusuke Murakami
- Department of Pharmacotherapeutics, Faculty of Pharmacy, Musashino University, Shinmachi 1-1-20, Nishitokyo-shi, Tokyo 202-8585, Japan
- Research Institute of Pharmaceutical Sciences, Musashino University, Shinmachi 1-1-20, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Takashi Ishii
- Research Institute of Pharmaceutical Sciences, Musashino University, Shinmachi 1-1-20, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Masashi Muroi
- Research Institute of Pharmaceutical Sciences, Musashino University, Shinmachi 1-1-20, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Naomi Yamashita
- Department of Pharmacotherapeutics, Faculty of Pharmacy, Musashino University, Shinmachi 1-1-20, Nishitokyo-shi, Tokyo 202-8585, Japan
- Research Institute of Pharmaceutical Sciences, Musashino University, Shinmachi 1-1-20, Nishitokyo-shi, Tokyo 202-8585, Japan
| |
Collapse
|
25
|
Bi Y, Kong R, Peng Y, Cai D, Zhang Y, Yang F, Li X, Deng W, Liu F, He B, Cao C, Deng C, Tang X, Fan L, Yu H, Zhou Z. Multiply restimulated human cord blood-derived Tregs maintain stabilized phenotype and suppressive function and predict their therapeutic effects on autoimmune diabetes. Diabetol Metab Syndr 2024; 16:71. [PMID: 38515175 PMCID: PMC10956208 DOI: 10.1186/s13098-024-01277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/24/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Regulatory T cells (Tregs) are involved in the maintenance of immune homeostasis and immune regulation. Clinical trials on the adoptive transfer of Tregs have been ongoing for > 10 years. However, many unresolved issues remain in the production of readymade Treg products and selection of patients. Hence, this study aimed to develop a method to expand off-the-shelf Tregs derived from umbilical cord blood (UCB-Tregs) in vitro without changing their phenotype and inhibitory function. In addition, the study intended to design an approach to precisely select patients who are more likely to benefit from the adoptive Treg transfer therapy. METHODS UCB-Tregs were isolated and cultured in a medium containing human recombinant IL-2 and rapamycin and then multiply restimulated with human T-activator CD3/CD28 dynabeads. The phenotype and suppressive capacity of Tregs were assessed on days 18 and 42. The relationship between the suppressive function of UCB-Tregs in vitro and clinical indicators was analyzed, and the ability of the in vitro suppressive capacity to predict the in vivo therapeutic effects was evaluated. RESULTS UCB-Tregs expanded 123-fold and 5,981-fold at 18 and 42 days, respectively. The suppressive function of UCB-Tregs on the proliferation of immune cells at 42 days was not significantly different compared with that of UCB-Tregs obtained at 18 days. The suppression rate of UCB-Tregs to PBMCs was negatively correlated with the course of diabetes. Moreover, the high-suppression group exhibited a better treatment response than the low-suppression group during the 12-month follow-up period. CONCLUSIONS Multiply restimulated UCB-Tregs expanded at a large scale without any alterations in their classical phenotypic features and inhibitory functions. The suppressive function of Tregs in vitro was negatively correlated with the disease duration. The present study revealed the possibility of predicting the in vivo therapeutic effects via the in vitro inhibition assay. Thus, these findings provided a method to obtain off-the-shelf Treg products and facilitated the selection of patients who are likely to respond to the treatment, thereby moving toward the goal of precision treatment.
Collapse
Affiliation(s)
- Yuanjie Bi
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ran Kong
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yani Peng
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Donghua Cai
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yu Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fan Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wen Deng
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fang Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Binbin He
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chuqing Cao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chao Deng
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaohan Tang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Fan
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haibo Yu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
26
|
Jiang B, Ye X, Wang W, He J, Zhang S, Zhang S, Bao L, Xu X. Comprehensive assessment of regulatory T-cells-related scoring system for predicting the prognosis, immune microenvironment and therapeutic response in hepatocellular carcinoma. Aging (Albany NY) 2024; 16:5288-5310. [PMID: 38461439 PMCID: PMC11006487 DOI: 10.18632/aging.205649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/23/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION Regulatory T cells (Tregs) play important roles in tumor immunosuppression and immune escape. The aim of the present study was to construct a novel Tregs-associated biomarker for the prediction of tumour immune microenvironment (TIME), clinical outcomes, and individualised treatment in hepatocellular carcinoma (HCC). METHODS Single-cell sequencing data were obtained from the three independent cohorts. Cox and LASSO regression were utilised to develop the Tregs Related Scoring System (TRSSys). GSE140520, ICGC-LIRI and CHCC cohorts were used for the validation of TRSSys. Kaplan-Meier, ROC, and Cox regression were utilised for the evaluation of TRSSys. The ESTIMATE, TIMER 2.0, and ssGSEA algorithm were utilised to determine the value of TRSSys in predicting the TIME. GSVA, GO, KEGG, and TMB analyses were used for mechanistic exploration. Finally, the value of TRSSys in predicting drug sensitivity was evaluated based on the oncoPredict algorithm. RESULTS Comprehensive validation showed that TRSSys had good prognostic predictive efficacy and applicability. Additionally, ssGSEA, TIMER and ESTIMATE algorithm suggested that TRSSys could help to distinguish different TIME subtypes and determine the beneficiary population of immunotherapy. Finally, the oncoPredict algorithm suggests that TRSSys provides a basis for individualised treatment. CONCLUSIONS TRSSys constructed in the current study is a novel HCC prognostic prediction biomarker with good predictive efficacy and stability. Additionally, risk stratification based on TRSSys can help to identify the TIME landscape subtypes and provide a basis for individualized treatment options.
Collapse
Affiliation(s)
- Bitao Jiang
- Department of Hematology and Oncology, Beilun District People’s Hospital, Ningbo, China
| | - Xiaojuan Ye
- Radiotherapy Department, The Second People’s Hospital of Wuhu, Wuhu, China
| | - Wenjuan Wang
- Department of Hematology and Oncology, Beilun District People’s Hospital, Ningbo, China
| | - Jiajia He
- Department of Hematology and Oncology, Ningbo Yinzhou No. 2 Hospital, Ningbo, China
| | - Shuyan Zhang
- Pharmacy Department, Beilun District People’s Hospital, Ningbo, China
| | - Song Zhang
- Department of Hematology and Oncology, Beilun District People’s Hospital, Ningbo, China
| | - Lingling Bao
- Department of Hematology and Oncology, Beilun District People’s Hospital, Ningbo, China
| | - Xin Xu
- Department of Hematology and Oncology, Beilun District People’s Hospital, Ningbo, China
| |
Collapse
|
27
|
Kleuskens MTA, Haasnoot ML, Garssen J, Bredenoord AJ, van Esch BCAM, Redegeld FA. Transcriptomic profiling of the acute mucosal response to local food injections in adults with eosinophilic esophagitis. J Allergy Clin Immunol 2024; 153:780-792. [PMID: 37972740 DOI: 10.1016/j.jaci.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/12/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Exposure of the esophageal mucosa to food allergens can cause acute mucosal responses in patients with eosinophilic esophagitis (EoE), but the underlying local immune mechanisms driving these acute responses are not well understood. OBJECTIVE We sought to gain insight into the early transcriptomic changes that occur during an acute mucosal response to food allergens in EoE. METHODS Bulk RNA sequencing was performed on esophageal biopsy specimens from adult patients with EoE (n = 5) collected before and 20 minutes after intramucosal injection of various food extracts in the esophagus. Baseline biopsy specimens from control subjects without EoE (n = 5) were also included. RESULTS At baseline, the transcriptome of the patients with EoE showed increased expression of genes related to an EoE signature. After local food injection, we identified 40 genes with a potential role in the early immune response to food allergens (most notably CEBPB, IL1B, TNFSF18, PHLDA2, and SLC15A3). These 40 genes were enriched in processes related to immune activation, such as the acute-phase response, cellular responses to external stimuli, and cell population proliferation. TNFSF18 (also called GITRL), a member of the TNF superfamily that is best studied for its costimulatory effect on T cells, was the most dysregulated early EoE gene, showing a 12-fold increase compared with baseline and an 18-fold increase compared with a negative visual response. Further experiments showed that the esophageal epithelium may be an important source of TNFSF18 in EoE, which was rapidly induced by costimulating esophageal epithelial cells with the EoE-relevant cytokines IL-13 and TNF-α. CONCLUSIONS Our data provide unprecedented insight into the transcriptomic changes that mediate the acute mucosal immune response to food allergens in EoE and suggest that TNFSF18 may be an important effector molecule in this response.
Collapse
Affiliation(s)
- Mirelle T A Kleuskens
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Maria L Haasnoot
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands; Danone Nutricia Research, Utrecht, The Netherlands
| | - Albert J Bredenoord
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Betty C A M van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands; Danone Nutricia Research, Utrecht, The Netherlands.
| | - Frank A Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
28
|
Wang CW, Biswas PK, Islam A, Chen MK, Chueh PJ. The Use of Immune Regulation in Treating Head and Neck Squamous Cell Carcinoma (HNSCC). Cells 2024; 13:413. [PMID: 38474377 PMCID: PMC10930979 DOI: 10.3390/cells13050413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Immunotherapy has emerged as a promising new treatment modality for head and neck cancer, offering the potential for targeted and effective cancer management. Squamous cell carcinomas pose significant challenges due to their aggressive nature and limited treatment options. Conventional therapies such as surgery, radiation, and chemotherapy often have limited success rates and can have significant side effects. Immunotherapy harnesses the power of the immune system to recognize and eliminate cancer cells, and thus represents a novel approach with the potential to improve patient outcomes. In the management of head and neck squamous cell carcinoma (HNSCC), important contributions are made by immunotherapies, including adaptive cell therapy (ACT) and immune checkpoint inhibitor therapy. In this review, we are focusing on the latter. Immune checkpoint inhibitors target proteins such as programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) to enhance the immune response against cancer cells. The CTLA-4 inhibitors, such as ipilimumab and tremelimumab, have been approved for early-stage clinical trials and have shown promising outcomes in terms of tumor regression and durable responses in patients with advanced HNSCC. Thus, immune checkpoint inhibitor therapy holds promise in overcoming the limitations of conventional therapies. However, further research is needed to optimize treatment regimens, identify predictive biomarkers, and overcome potential resistance mechanisms. With ongoing advancements in immunotherapy, the future holds great potential for transforming the landscape of oral tumor treatment and providing new hope for patients.
Collapse
Affiliation(s)
- Che-Wei Wang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (C.-W.W.); (A.I.)
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua 50006, Taiwan;
| | - Pulak Kumar Biswas
- Institute of Molecular Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Atikul Islam
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (C.-W.W.); (A.I.)
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua 50006, Taiwan;
| | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (C.-W.W.); (A.I.)
| |
Collapse
|
29
|
Liu J, Zhang B, Zhang G, Shang D. Reprogramming of regulatory T cells in inflammatory tumor microenvironment: can it become immunotherapy turning point? Front Immunol 2024; 15:1345838. [PMID: 38449875 PMCID: PMC10915070 DOI: 10.3389/fimmu.2024.1345838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Overcoming the immunosuppressive tumor microenvironment and identifying widely used immunosuppressants with minimal side effects are two major challenges currently hampering cancer immunotherapy. Regulatory T cells (Tregs) are present in almost all cancer tissues and play an important role in preserving autoimmune tolerance and tissue homeostasis. The tumor inflammatory microenvironment causes the reprogramming of Tregs, resulting in the conversion of Tregs to immunosuppressive phenotypes. This process ultimately facilitates tumor immune escape or tumor progression. However, current systemic Treg depletion therapies may lead to severe autoimmune toxicity. Therefore, it is crucial to understand the mechanism of Treg reprogramming and develop immunotherapies that selectively target Tregs within tumors. This article provides a comprehensive review of the potential mechanisms involved in Treg cell reprogramming and explores the application of Treg cell immunotherapy. The interference with reprogramming pathways has shown promise in reducing the number of tumor-associated Tregs or impairing their function during immunotherapy, thereby improving anti-tumor immune responses. Furthermore, a deeper understanding of the mechanisms that drive Treg cell reprogramming could reveal new molecular targets for future treatments.
Collapse
Affiliation(s)
- Jinming Liu
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guolin Zhang
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
30
|
Rakké YS, Buschow SI, IJzermans JNM, Sprengers D. Engaging stimulatory immune checkpoint interactions in the tumour immune microenvironment of primary liver cancers - how to push the gas after having released the brake. Front Immunol 2024; 15:1357333. [PMID: 38440738 PMCID: PMC10910082 DOI: 10.3389/fimmu.2024.1357333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) are the first and second most common primary liver cancer (PLC). For decades, systemic therapies consisting of tyrosine kinase inhibitors (TKIs) or chemotherapy have formed the cornerstone of treating advanced-stage HCC and CCA, respectively. More recently, immunotherapy using immune checkpoint inhibition (ICI) has shown anti-tumour reactivity in some patients. The combination regimen of anti-PD-L1 and anti-VEGF antibodies has been approved as new first-line treatment of advanced-stage HCC. Furthermore, gemcibatine plus cisplatin (GEMCIS) with an anti-PD-L1 antibody is awaiting global approval for the treatment of advanced-stage CCA. As effective anti-tumour reactivity using ICI is achieved in a minor subset of both HCC and CCA patients only, alternative immune strategies to sensitise the tumour microenvironment of PLC are waited for. Here we discuss immune checkpoint stimulation (ICS) as additional tool to enhance anti-tumour reactivity. Up-to-date information on the clinical application of ICS in onco-immunology is provided. This review provides a rationale of the application of next-generation ICS either alone or in combination regimen to potentially enhance anti-tumour reactivity in PLC patients.
Collapse
Affiliation(s)
- Yannick S. Rakké
- Department of Surgery, Erasmus MC-Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Sonja I. Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC-Cancer Institute-University Medical Center, Rotterdam, Netherlands
| | - Jan N. M. IJzermans
- Department of Surgery, Erasmus MC-Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-Cancer Institute-University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
31
|
Chen L, Zhu LF, Zhang LY, Chu YH, Dong MH, Pang XW, Yang S, Zhou LQ, Shang K, Xiao J, Wang W, Qin C, Tian DS. Causal association between the peripheral immunity and the risk and disease severity of multiple sclerosis. Front Immunol 2024; 15:1325938. [PMID: 38390334 PMCID: PMC10881847 DOI: 10.3389/fimmu.2024.1325938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Background Growing evidence links immunological responses to Multiple sclerosis (MS), but specific immune factors are still unclear. Methods Mendelian randomization (MR) was performed to investigate the association between peripheral hematological traits, MS risk, and its severity. Then, further subgroup analysis of immune counts and circulating cytokines and growth factors were performed. Results MR revealed higher white blood cell count (OR [95%CI] = 1.26 [1.10,1.44], P = 1.12E-03, P adjust = 3.35E-03) and lymphocyte count (OR [95%CI] = 1.31 [1.15,1.50], P = 5.37E-05, P adjust = 3.22E-04) increased the risk of MS. In further analysis, higher T cell absolute count (OR [95%CI] = 2.04 [1.36,3.08], P = 6.37E-04, P adjust = 2.19E-02) and CD4+ T cell absolute count (OR [95%CI] = 2.11 [1.37,3.24], P = 6.37E-04, P adjust = 2.19E-02), could increase MS risk. While increasing CD25++CD4+ T cell absolute count (OR [95%CI] = 0.75 [0.66,0.86], P = 2.12E-05, P adjust = 1.72E-03), CD25++CD4+ T cell in T cell (OR [95%CI] = 0.79[0.70,0.89], P = 8.54E-05, P adjust = 5.29E-03), CD25++CD4+ T cell in CD4+ T cell (OR [95%CI] = 0.80[0.72,0.89], P = 1.85E-05, P adjust = 1.72E-03), and CD25++CD8+ T cell in T cell (OR [95%CI] = 0.68[0.57,0.81], P = 2.22E-05, P adjust = 1.72E-03), were proved to be causally defensive for MS. For the disease severity, the suggestive association between some traits related to CD4+ T cell, Tregs and MS severity were demonstrated. Moreover, elevated levels of IL-2Ra had a detrimental effect on the risk of MS (OR [95%CI] = 1.22 [1.12,1.32], P = 3.20E-06, P adjust = 1.34E-04). Conclusions This study demonstrated a genetically predicted causal relationship between elevated peripheral immune cell counts and MS. Subgroup analysis revealed a specific contribution of peripheral immune cells, holding potential for further investigations into the underlying mechanisms of MS and its severity.
Collapse
Affiliation(s)
- Lian Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Fang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Lu-Yang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Ming-Hao Dong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Wei Pang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Shang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Singh R, Srivastava P, Manna PP. Evaluation of regulatory T-cells in cancer immunotherapy: therapeutic relevance of immune checkpoint inhibition. Med Oncol 2024; 41:59. [PMID: 38238513 DOI: 10.1007/s12032-023-02289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
The evolution of the complex immune system is equipped to defend against perilous intruders and concurrently negatively regulate the deleterious effect of immune-mediated inflammation caused by self and nonself antigens. Regulatory T-cells (Tregs) are specialized cells that minimize immune-mediated inflammation, but in malignancies, this feature has been exploited toward cancer progression by keeping the antitumor immune response in check. The modulation of Treg cell infiltration and their induction in the TME (tumor microenvironment) alongside associated inhibitory molecules, both soluble or membranes tethered in the TME, have proven clinically beneficial in boosting the tumoricidal activity of the immune system. Moreover, Treg-associated immune checkpoints pose a greater obstruction in cancer immunotherapy. Inhibiting or blocking active immune checkpoint signaling in combination with other therapies has proven clinically beneficial. This review summarizes the ontogeny of Treg cells and their migration, stability, and function in the TME. We also elucidate the Treg-associated checkpoint moieties that impede effective antitumor activity and harness these molecules for effective and targeted immunotherapy against cancer nuisance.
Collapse
Affiliation(s)
- Ranjeet Singh
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Prateek Srivastava
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Partha Pratim Manna
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
33
|
Santosh Nirmala S, Kayani K, Gliwiński M, Hu Y, Iwaszkiewicz-Grześ D, Piotrowska-Mieczkowska M, Sakowska J, Tomaszewicz M, Marín Morales JM, Lakshmi K, Marek-Trzonkowska NM, Trzonkowski P, Oo YH, Fuchs A. Beyond FOXP3: a 20-year journey unravelling human regulatory T-cell heterogeneity. Front Immunol 2024; 14:1321228. [PMID: 38283365 PMCID: PMC10811018 DOI: 10.3389/fimmu.2023.1321228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024] Open
Abstract
The initial idea of a distinct group of T-cells responsible for suppressing immune responses was first postulated half a century ago. However, it is only in the last three decades that we have identified what we now term regulatory T-cells (Tregs), and subsequently elucidated and crystallized our understanding of them. Human Tregs have emerged as essential to immune tolerance and the prevention of autoimmune diseases and are typically contemporaneously characterized by their CD3+CD4+CD25high CD127lowFOXP3+ phenotype. It is important to note that FOXP3+ Tregs exhibit substantial diversity in their origin, phenotypic characteristics, and function. Identifying reliable markers is crucial to the accurate identification, quantification, and assessment of Tregs in health and disease, as well as the enrichment and expansion of viable cells for adoptive cell therapy. In our comprehensive review, we address the contributions of various markers identified in the last two decades since the master transcriptional factor FOXP3 was identified in establishing and enriching purity, lineage stability, tissue homing and suppressive proficiency in CD4+ Tregs. Additionally, our review delves into recent breakthroughs in innovative Treg-based therapies, underscoring the significance of distinct markers in their therapeutic utilization. Understanding Treg subsets holds the key to effectively harnessing human Tregs for immunotherapeutic approaches.
Collapse
Affiliation(s)
| | - Kayani Kayani
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Department of Academic Surgery, Queen Elizabeth Hospital, University of Birmingham, Birmingham, United Kingdom
- Department of Renal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Mateusz Gliwiński
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Yueyuan Hu
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| | | | | | - Justyna Sakowska
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Martyna Tomaszewicz
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Kavitha Lakshmi
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| | | | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Ye Htun Oo
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Transplant and Hepatobiliary Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Birmingham Advanced Cellular Therapy Facility, University of Birmingham, Birmingham, United Kingdom
- Centre for Rare Diseases, European Reference Network - Rare Liver Centre, Birmingham, United Kingdom
| | - Anke Fuchs
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| |
Collapse
|
34
|
Song D, Ding Y. A new target of radiotherapy combined with immunotherapy: regulatory T cells. Front Immunol 2024; 14:1330099. [PMID: 38259489 PMCID: PMC10800811 DOI: 10.3389/fimmu.2023.1330099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Radiotherapy is one important treatment for malignant tumours. It is widely believed today that radiotherapy has not only been used as a local tumour treatment method, but also can induce systemic anti-tumour responses by influencing the tumour microenvironment, but its efficacy is limited by the tumour immunosuppression microenvironment. With the advancement of technology, immunotherapy has entered a golden age of rapid development, gradually occupying a place in clinical tumour treatment. Regulatory T cells (Tregs) widely distributing in the tumour microenvironment play an important role in mediating tumour development. This article analyzes immunotherapy, the interaction between Tregs, tumours and radiotherapy. It briefly introduces immunotherapies targeting Tregs, aiming to provide new strategies for radiotherapy combined with Immunotherapy.
Collapse
Affiliation(s)
| | - Yun Ding
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
35
|
Sharma P, Otto M. Multifunctional nanocomposites modulating the tumor microenvironment for enhanced cancer immunotherapy. Bioact Mater 2024; 31:440-462. [PMID: 37701452 PMCID: PMC10494322 DOI: 10.1016/j.bioactmat.2023.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/09/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
Cancer immunotherapy has gained momentum for treating malignant tumors over the past decade. Checkpoint blockade and chimeric antigen receptor cell therapy (CAR-T) have shown considerable potency against liquid and solid cancers. However, the tumor microenvironment (TME) is highly immunosuppressive and hampers the effect of currently available cancer immunotherapies on overall treatment outcomes. Advancements in the design and engineering of nanomaterials have opened new avenues to modulate the TME. Progress in the current nanocomposite technology can overcome immunosuppression and trigger robust immunotherapeutic responses by integrating synergistic functions of different molecules. We will review recent advancements in nanomedical applications and discuss specifically designed nanocomposites modulating the TME for cancer immunotherapy. In addition, we provide information on the current landscape of clinical-stage nanocomposites for cancer immunotherapy.
Collapse
Affiliation(s)
- Prashant Sharma
- Department of Child Health, University of Arizona College of Medicine-Phoenix, ABC1 Building, 425 N 5th Street, Phoenix, AZ, 85004, USA
| | - Mario Otto
- Department of Child Health, University of Arizona College of Medicine-Phoenix, ABC1 Building, 425 N 5th Street, Phoenix, AZ, 85004, USA
- Center for Cancer and Blood Disorders (CCBD), Phoenix Children's, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA
| |
Collapse
|
36
|
Demidova A, Douguet L, Fert I, Wei Y, Charneau P, Majlessi L. Comparison of preclinical efficacy of immunotherapies against HPV-induced cancers. Expert Rev Vaccines 2024; 23:674-687. [PMID: 38978164 DOI: 10.1080/14760584.2024.2374287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION Persistent infections with the human papilloma viruses, HPV16 and HPV18, are associated with multiple cancers. Although prophylactic vaccines that induce HPV-neutralizing antibodies are effective against primary infections, they have no effect on HPV-mediated malignancies against which there is no approved immuno-therapy. Active research is ongoing in the immunotherapy of these cancers. AREAS COVERED In this review, we compared the preclinical efficacy of vaccine platforms used to treat HPV-induced tumors in the standard model of mice grafted with TC-1 cells, which express the HPV16 E6 and E7 oncoproteins. We searched for the key words, 'HPV,' 'vaccine,' 'therapy,' 'E7,' 'tumor,' 'T cells', and 'mice' for the period from 2005 to 2023 in PubMed and found 330 publications. Among them, we selected the most relevant to extract preclinical antitumor results to enable cross-sectional comparison of their efficacy. EXPERT OPINION SECTION We compared these studies for HPV antigen design, immunization regimen, immunogenicity, and antitumor effect, considering their drawbacks and advantages. Among all strategies used in murine models, certain adjuvanted proteins and viral vectors showed the strongest antitumor effects, with the use of lentiviral vectors being the only approach to result in complete tumor eradication in 100% of experimental individuals while providing the longest-lasting memory.
Collapse
Affiliation(s)
- Anastasia Demidova
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, Paris, France
| | - Laëtitia Douguet
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, Paris, France
| | - Ingrid Fert
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, Paris, France
| | - Yu Wei
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, Paris, France
| | - Pierre Charneau
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, Paris, France
| | | |
Collapse
|
37
|
Racine JJ, Misherghi A, Dwyer JR, Maser R, Forte E, Bedard O, Sattler S, Pugliese A, Landry L, Elso C, Nakayama M, Mannering S, Rosenthal N, Serreze DV. HLA-DQ8 Supports Development of Insulitis Mediated by Insulin-Reactive Human TCR-Transgenic T Cells in Nonobese Diabetic Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1792-1805. [PMID: 37877672 PMCID: PMC10939972 DOI: 10.4049/jimmunol.2300303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023]
Abstract
In an effort to improve HLA-"humanized" mouse models for type 1 diabetes (T1D) therapy development, we previously generated directly in the NOD strain CRISPR/Cas9-mediated deletions of various combinations of murine MHC genes. These new models improved upon previously available platforms by retaining β2-microglobulin functionality in FcRn and nonclassical MHC class I formation. As proof of concept, we generated H2-Db/H2-Kd double knockout NOD mice expressing human HLA-A*0201 or HLA-B*3906 class I variants that both supported autoreactive diabetogenic CD8+ T cell responses. In this follow-up work, we now describe the creation of 10 new NOD-based mouse models expressing various combinations of HLA genes with and without chimeric transgenic human TCRs reactive to proinsulin/insulin. The new TCR-transgenic models develop differing levels of insulitis mediated by HLA-DQ8-restricted insulin-reactive T cells. Additionally, these transgenic T cells can transfer insulitis to newly developed NSG mice lacking classical murine MHC molecules, but expressing HLA-DQ8. These new models can be used to test potential therapeutics for a possible capacity to reduce islet infiltration or change the phenotype of T cells expressing type 1 diabetes patient-derived β cell autoantigen-specific TCRs.
Collapse
Affiliation(s)
| | - Adel Misherghi
- The Jackson Laboratory, Bar Harbor, ME
- College of the Atlantic, Bar Harbor, ME
| | | | | | | | | | - Susanne Sattler
- Imperial College London, London, United Kingdom
- Medical University Graz, Graz, Austria
| | - Alberto Pugliese
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL
| | - Laurie Landry
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Colleen Elso
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Stuart Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Nadia Rosenthal
- The Jackson Laboratory, Bar Harbor, ME
- Imperial College London, London, United Kingdom
| | | |
Collapse
|
38
|
Habel A, Weili X, Hadj Ahmed M, Stayoussef M, Bouaziz H, Ayadi M, Mezlini A, Larbi A, Yaacoubi-Loueslati B. Immune checkpoints as potential theragnostic biomarkers for epithelial ovarian cancer. Int J Biol Markers 2023; 38:203-213. [PMID: 37518940 DOI: 10.1177/03936155231186163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is the leading cause of death associated with gynecologic tumors. EOC is asymptomatic in early stages, so most patients are not diagnosed until late stages, highlighting the need to develop new diagnostic biomarkers. Mediators of the tumoral microenvironment may influence EOC progression and resistance to treatment. AIM To analyze immune checkpoints to evaluate them as theranostic biomarkers for EOC. PATIENTS AND METHODS Serum levels of 16 immune checkpoints were determined in EOC patients and healthy controls using the MILLIPLEX MAP® Human Immuno-Oncology Checkpoint Protein Magnetic Bead Panel. RESULTS Seven receptors: BTLA, CD40, CD80/B7-1, GITRL, LAG-3, TIM-3, TLR-2 are differentially expressed between EOC and healthy controls. Serum levels of immune checkpoints in EOC patients are positively significantly correlated with levels of their ligands, with a higher significant correlation between CD80 and CTLA4 than between CD28 and CD80. Four receptors, CD40, HVEM, PD-1, and PD-L1, are positively associated with the development of resistance to Taxol-platinum-based chemotherapy. All of them have an acceptable area under the curve (>0.7). CONCLUSION This study has yielded a first panel of seven immune checkpoints (BTLA, CD40, CD80/B7-1, GITRL, LAG-3, TIM-3, TLR-2) associated with a higher risk of EOC and a second panel of four immune checkpoints (CD40, HVEM, PD-1, PD-L1) that may help physicians to identify EOC patients who are at high risk of developing resistance to EOC chemotherapy.
Collapse
Affiliation(s)
- Azza Habel
- Laboratory of Mycology, Pathologies, and Biomarkers (LR16ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Xu Weili
- Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Mariem Hadj Ahmed
- Laboratory of Mycology, Pathologies, and Biomarkers (LR16ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Mouna Stayoussef
- Laboratory of Mycology, Pathologies, and Biomarkers (LR16ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | | | - Mouna Ayadi
- Salah Azaiez Oncology Institute, Tunis, Tunisia
| | | | - Anis Larbi
- Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- Beckman Coulter Life Sciences, Villepinte, France
| | - Basma Yaacoubi-Loueslati
- Laboratory of Mycology, Pathologies, and Biomarkers (LR16ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
39
|
Borgeaud M, Sandoval J, Obeid M, Banna G, Michielin O, Addeo A, Friedlaender A. Novel targets for immune-checkpoint inhibition in cancer. Cancer Treat Rev 2023; 120:102614. [PMID: 37603905 DOI: 10.1016/j.ctrv.2023.102614] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023]
Abstract
Immune-checkpoint inhibitors have revolutionized cancer therapy, yet many patients either do not derive any benefit from treatment or develop a resistance to checkpoint inhibitors. Intrinsic resistance can result from neoantigen depletion, defective antigen presentation, PD-L1 downregulation, immune-checkpoint ligand upregulation, immunosuppression, and tumor cell phenotypic changes. On the other hand, extrinsic resistance involves acquired upregulation of inhibitory immune-checkpoints, leading to T-cell exhaustion. Current data suggest that PD-1, CTLA-4, and LAG-3 upregulation limits the efficacy of single-agent immune-checkpoint inhibitors. Ongoing clinical trials are investigating novel immune-checkpoint targets to avoid or overcome resistance. This review provides an in-depth analysis of the evolving landscape of potentially targetable immune-checkpoints in cancer. We highlight their biology, emphasizing the current understanding of resistance mechanisms and focusing on promising strategies that are under investigation. We also summarize current results and ongoing clinical trials in this crucial field that could once again revolutionize outcomes for cancer patients.
Collapse
Affiliation(s)
| | | | - Michel Obeid
- Centre Hospitalier Universitaire Vaudois, Switzerland
| | - Giuseppe Banna
- Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | | | | | - Alex Friedlaender
- Geneva University Hospitals, Switzerland; Clinique Générale Beaulieu, Geneva, Switzerland.
| |
Collapse
|
40
|
Riaz F, Huang Z, Pan F. Targeting post-translational modifications of Foxp3: a new paradigm for regulatory T cell-specific therapy. Front Immunol 2023; 14:1280741. [PMID: 37936703 PMCID: PMC10626496 DOI: 10.3389/fimmu.2023.1280741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
A healthy immune system is pivotal for the hosts to resist external pathogens and maintain homeostasis; however, the immunosuppressive tumor microenvironment (TME) damages the anti-tumor immunity and promotes tumor progression, invasion, and metastasis. Recently, many studies have found that Foxp3+ regulatory T (Treg) cells are the major immunosuppressive cells that facilitate the formation of TME by promoting the development of various tumor-associated cells and suppressing the activity of effector immune cells. Considering the role of Tregs in tumor progression, it is pivotal to identify new therapeutic drugs to target and deplete Tregs in tumors. Although several studies have developed strategies for targeted deletion of Treg to reduce the TME and support the accumulation of effector T cells in tumors, Treg-targeted therapy systematically affects the Treg population and may lead to the progression of autoimmune diseases. It has been understood that, nevertheless, in disease conditions, Foxp3 undergoes several definite post-translational modifications (PTMs), including acetylation, glycosylation, phosphorylation, ubiquitylation, and methylation. These PTMs not only elevate or mitigate the transcriptional activity of Foxp3 but also affect the stability and immunosuppressive function of Tregs. Various studies have shown that pharmacological targeting of enzymes involved in PTMs can significantly influence the PTMs of Foxp3; thus, it may influence the progression of cancers and/or autoimmune diseases. Overall, this review will help researchers to understand the advances in the immune-suppressive mechanisms of Tregs, the post-translational regulations of Foxp3, and the potential therapeutic targets and strategies to target the Tregs in TME to improve anti-tumor immunity.
Collapse
Affiliation(s)
| | | | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
41
|
Yang L, Zhuang L, Ye Z, Li L, Guan J, Gong W. Immunotherapy and biomarkers in patients with lung cancer with tuberculosis: Recent advances and future Directions. iScience 2023; 26:107881. [PMID: 37841590 PMCID: PMC10570004 DOI: 10.1016/j.isci.2023.107881] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Lung cancer (LC) and tuberculosis (TB) are two major global public health problems, and the incidence of LC-TB is currently on the rise. Therefore effective clinical interventions are crucial for LC-TB. The aim of this review is to provide up-to-date information on the immunological profile and therapeutic biomarkers in patients with LC-TB. We discuss the immune mechanisms involved, including the immune checkpoints that play an important role in the treatment of patients with LC-TB. In addition, we explore the susceptibility of patients with LC to TB and summarise the latest research on LC-TB. Finally, we discuss future prospects in this field, including the identification of potential targets for immune intervention. In conclusion, this review provides important insights into the complex relationship between LC and TB and highlights new advances in the detection and treatment of both diseases.
Collapse
Affiliation(s)
- Ling Yang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of PLA General Hospital, Beijing 100091, China
- Hebei North University, Zhangjiakou, Hebei 075000, China
- Senior Department of Oncology, Fifth Medical Center of PLA General Hospital, Beijing 100071, China
| | - Li Zhuang
- Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Zhaoyang Ye
- Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Linsheng Li
- Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Jingzhi Guan
- Senior Department of Oncology, Fifth Medical Center of PLA General Hospital, Beijing 100071, China
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of PLA General Hospital, Beijing 100091, China
| |
Collapse
|
42
|
Gao X, Tang Y, Kong L, Fan Y, Wang C, Wang R. Treg cell: Critical role of regulatory T-cells in depression. Pharmacol Res 2023; 195:106893. [PMID: 37611836 DOI: 10.1016/j.phrs.2023.106893] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Depression is a highly prevalent disorder of the central nervous system. The neuropsychiatric symptoms of clinical depression are persistent and include fatigue, anorexia, weight loss, altered sleep patterns, hyperalgesia, melancholia, anxiety, and impaired social behaviours. Mounting evidences suggest that neuroinflammation triggers dysregulated cellular immunity and increases susceptibility to psychiatric diseases. Neuroimmune responses have transformed the clinical approach to depression because of their roles in its pathophysiology and their therapeutic potential. In particular, activated regulatory T (Treg) cells play an increasingly evident role in the inflammatory immune response. In this review, we summarized the available data and discussed in depth the fundamental roles of Tregs in the pathogenesis of depression, as well as the clinical therapeutic potential of Tregs. We aimed to provide recent information regarding the potential of Tregs as immune-modulating biologics for the treatment and prevention of long-term neuropsychiatric symptoms of depression.
Collapse
Affiliation(s)
- Xiao Gao
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Yuru Tang
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, 26600 Qingdao, Shandong Province, China
| | - Lingli Kong
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Yong Fan
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Chunxia Wang
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China.
| | - Rui Wang
- Department of Pain Management, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), 26600 Qingdao, Shandong Province, China.
| |
Collapse
|
43
|
Inoue M, Tsuji Y, Ueno R, Miyamoto D, Tanaka K, Moriyasu Y, Shibata S, Okuda M, Ando D, Abe Y, Kamada H, Tsunoda SI. Bivalent structure of a TNFR2-selective and agonistic TNF-α mutein Fc-fusion protein enhances the expansion activity of regulatory T cells. Sci Rep 2023; 13:13762. [PMID: 37612373 PMCID: PMC10447426 DOI: 10.1038/s41598-023-40925-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 08/18/2023] [Indexed: 08/25/2023] Open
Abstract
Recently, TNF receptor type 2 (TNFR2) signaling was found to be involved in the proliferation and activation of regulatory T cells (Tregs), a subpopulation of lymphocytes that suppress immune responses. Tregs mediate peripheral immune tolerance, and the disruption of their functions causes autoimmune diseases or allergy. Therefore, cell expanders or regulators of Tregs that control immunosuppressive activity can be used to treat these diseases. We focused on TNFR2, which is preferentially expressed on Tregs, and created tumor necrosis factor-α (TNF-α) muteins that selectively activate TNFR2 signaling in mice and humans, termed R2agoTNF and R2-7, respectively. In this study, we attempted to optimize the structure of muteins to enhance their TNFR2 agonistic activity and stability in vivo by IgG-Fc fusion following single-chain homo-trimerization. The fusion protein, scR2agoTNF-Fc, enhanced the expansion of CD4+CD25+ Tregs and CD4+Foxp3+ Tregs and contributed to their immunosuppressive activity ex vivo and in vivo in mice. The prophylactic administration of scR2agoTNF-Fc suppressed inflammation in contact hypersensitivity and arthritis mouse models. Furthermore, scR2-7-Fc preferentially expanded Tregs in human peripheral blood mononuclear cells via TNFR2. These TNFR2 agonist-Fc fusion proteins, which have bivalent structures, are novel Treg expanders.
Collapse
Affiliation(s)
- Masaki Inoue
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
- Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Yuta Tsuji
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Reira Ueno
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Daisuke Miyamoto
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Keisuke Tanaka
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Yuka Moriyasu
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Saya Shibata
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Mei Okuda
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Daisuke Ando
- Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Yasuhiro Abe
- Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Haruhiko Kamada
- Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Shin-Ichi Tsunoda
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan.
- Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.
| |
Collapse
|
44
|
Mezi S, Pomati G, Fiscon G, Amirhassankhani S, Zizzari IG, Napoletano C, Rughetti A, Rossi E, Schinzari G, Tortora G, Lanzetta G, D’Amati G, Nuti M, Santini D, Botticelli A. A network approach to define the predictive role of immune profile on tumor response and toxicity of anti PD-1 single agent immunotherapy in patients with solid tumors. Front Immunol 2023; 14:1199089. [PMID: 37483633 PMCID: PMC10361061 DOI: 10.3389/fimmu.2023.1199089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
Background The immune profile of each patient could be considered as a portrait of the fitness of his/her own immune system. The predictive role of the immune profile in immune-related toxicities (irAEs) development and tumour response to treatment was investigated. Methods A prospective, multicenter study evaluating, through a multiplex assay, the soluble immune profile at the baseline of 53 patients with advanced cancer, treated with immunotherapy as single agent was performed. Four connectivity heat maps and networks were obtained by calculating the Spearman correlation coefficients for each group: responder patients who developed cumulative toxicity (R-T), responders who did not develop cumulative toxicity (R-NT), non-responders who developed cumulative toxicity (NR-T), non-responders who did not develop cumulative toxicity (NR-NT). Results A statistically significant up-regulation of IL-17A, sCTLA4, sCD80, I-CAM-1, sP-Selectin and sEselectin in NR-T was detected. A clear loss of connectivity of most of the soluble immune checkpoints and cytokines characterized the immune profile of patients with toxicity, while an inversion of the correlation for ICAM-1 and sP-selectin was observed in NR-T. Four connectivity networks were built for each group. The highest number of connections characterized the NR-T. Conclusions A connectivity network of immune dysregulation was defined for each subgroup of patients, regardless of tumor type. In patients with the worst prognosis (NR-T) the peculiar connectivity model could facilitate their early and timely identification, as well as the design of a personalized treatment approach to improve outcomes or prevent irAEs.
Collapse
Affiliation(s)
- Silvia Mezi
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Giulia Pomati
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia Fiscon
- Department of Computer, Control, and Management Engineering “Antonio Ruberti”, “Sapienza” University of Rome, Rome, Italy
| | - Sasan Amirhassankhani
- Department of Urology, S. Orsola-Malpighi Hospital University of Bologna, Bologna, Italy
| | - Ilaria Grazia Zizzari
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome “Sapienza”, Rome, Italy
| | - Chiara Napoletano
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome “Sapienza”, Rome, Italy
| | - Aurelia Rughetti
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome “Sapienza”, Rome, Italy
| | - Ernesto Rossi
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Giovanni Schinzari
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Medical Oncology, Universitá Cattolica del Sacro Cuore, Rome, Italy
| | - Giampaolo Tortora
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Medical Oncology, Universitá Cattolica del Sacro Cuore, Rome, Italy
| | - Gaetano Lanzetta
- Clinical Oncology Unit, Istituto Neurotraumatologico Italiano (I.N.I.) Grottaferrata, via di S.Anna snc, Grottaferrata, Italy
| | - Giulia D’Amati
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Marianna Nuti
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome “Sapienza”, Rome, Italy
| | - Daniele Santini
- Department of Medico-Surgical Sciences and Biotechnology, Polo Pontino, Sapienza University of Rome, Rome, Italy
| | - Andrea Botticelli
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
45
|
Steele H, Cheng J, Willicut A, Dell G, Breckenridge J, Culberson E, Ghastine A, Tardif V, Herro R. TNF superfamily control of tissue remodeling and fibrosis. Front Immunol 2023; 14:1219907. [PMID: 37465675 PMCID: PMC10351606 DOI: 10.3389/fimmu.2023.1219907] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
Fibrosis is the result of extracellular matrix protein deposition and remains a leading cause of death in USA. Despite major advances in recent years, there remains an unmet need to develop therapeutic options that can effectively degrade or reverse fibrosis. The tumor necrosis super family (TNFSF) members, previously studied for their roles in inflammation and cell death, now represent attractive therapeutic targets for fibrotic diseases. In this review, we will summarize select TNFSF and their involvement in fibrosis of the lungs, the heart, the skin, the gastrointestinal tract, the kidney, and the liver. We will emphasize their direct activity on epithelial cells, fibroblasts, and smooth muscle cells. We will further report on major clinical trials targeting these ligands. Whether in isolation or in combination with other anti-TNFSF member or treatment, targeting this superfamily remains key to improve efficacy and selectivity of currently available therapies for fibrosis.
Collapse
Affiliation(s)
- Hope Steele
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- University of Cincinnati, Cincinnati, OH, United States
| | - Jason Cheng
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Ashley Willicut
- University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Garrison Dell
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- University of Cincinnati, Cincinnati, OH, United States
| | - Joey Breckenridge
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- University of Cincinnati, Cincinnati, OH, United States
| | - Erica Culberson
- University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Andrew Ghastine
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Virginie Tardif
- Normandy University, UniRouen, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1096 (EnVI Laboratory), Rouen, France
| | - Rana Herro
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
46
|
Li X, Chen K, Wang Z, Li J, Wang X, Xie C, Tong J, Shen Y. The mTOR signalling in corneal diseases: A recent update. Biochem Pharmacol 2023; 213:115620. [PMID: 37217140 DOI: 10.1016/j.bcp.2023.115620] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Corneal diseases affect 4.2 million people worldwide and are a leading cause of vision impairment and blindness. Current treatments for corneal diseases, such as antibiotics, steroids, and surgical interventions, have numerous disadvantages and challenges. Thus, there is an urgent need for more effective therapies. Although the pathogenesis of corneal diseases is not fully understood, it is known that injury caused by various stresses and postinjury healing, such as epithelial renewal, inflammation, stromal fibrosis, and neovascularization, are highly involved. Mammalian target of rapamycin (mTOR) is a key regulator of cell growth, metabolism, and the immune response. Recent studies have revealed that activation of mTOR signalling extensively contributes to the pathogenesis of various corneal diseases, and inhibition of mTOR with rapamycin achieves promising outcomes, supporting the potential of mTOR as a therapeutic target. In this review, we detail the function of mTOR in corneal diseases and how these characteristics contribute to disease treatment using mTOR-targeted drugs.
Collapse
Affiliation(s)
- Xiang Li
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Kuangqi Chen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zixi Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiayuan Li
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiawei Wang
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Chen Xie
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China.
| | - Jianping Tong
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China.
| | - Ye Shen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
47
|
Davar D, Zappasodi R. Targeting GITR in cancer immunotherapy - there is no perfect knowledge. Oncotarget 2023; 14:614-621. [PMID: 37335294 PMCID: PMC10278658 DOI: 10.18632/oncotarget.28461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
Glucocorticoid-induced TNFR-related protein (GITR) belongs to the TNFR superfamily (TNFRSF) and stimulates both the acquired and innate immunity. GITR is broadly expressed on immune cells, particularly regulatory T cells (Tregs) and natural killer (NK) cells. Given its potential to promote T effector function and impede Treg immune suppression, GITR is an attractive target for cancer immunotherapy. Preclinically, GITR agonists have demonstrated potent anti-tumor efficacy singly and in combination with a variety of agents, including PD-1 blockade. Multiple GITR agonists have been advanced into the clinic, although the experience with these agents has been disappointing. Recent mechanistic insights into the roles of antibody structure, valency, and Fc functionality in mediating anti-tumor efficacy may explain some of the apparent inconsistency or discordance between preclinical data and observed clinical efficacy.
Collapse
Affiliation(s)
- Diwakar Davar
- Hillman Cancer Center, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA
- University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Roberta Zappasodi
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, NY 10065, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, NY 10065, USA
| |
Collapse
|
48
|
Fayyad-Kazan M, Rouas R, Merimi M, Najar M, Badran B, Lewalle P, Fayyad-Kazan H. Human CD4 +CD25 +CD127 lowFOXP3 + regulatory T lymphocytes and CD4 +CD25 -FOXP3 - conventional T lymphocytes: a differential transcriptome profile. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 42:919-929. [PMID: 37246921 DOI: 10.1080/15257770.2023.2216226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Abstract
CD4+CD25+ FOXP3+ regulatory T cells (Tregs) represent a subpopulation of CD4+ T cells central for the suppression of physiological and pathological immune reactions. Although distinct cell surface antigens are expressed in regulatory T cells, those components are also present on the surface of activated CD4+CD25- FOXP3-T cells, thus making the discrimination between Tregs and conventional CD4+ T difficult and isolation of Tregs complex. Yet, the molecular components driving Tregs' function are still not fully characterized. Aiming at unraveling molecular components specifically marking Tregs, and upon using quantitative real-time PCR (qRT-PCR) followed by bioinformatics analysis, we identified, in this study, differential transcriptional profiles, in peripheral blood CD4 + CD25 + CD127low FOXP3+ Tregs versus CD4 + CD25-FOXP3- conventional T cells, for set of genes with distinct immunological roles. In conclusion, this study identifies some novel genes that appeared to be differentially transcribed in CD4+ Tregs versus conventional T cells. The identified genes could serve as novel molecular targets relevant to Tregs' function and isolation.
Collapse
Affiliation(s)
- Mohammad Fayyad-Kazan
- College of Arts and Sciences, Department of Natural and Applied Sciences, The American University of Iraq-Baghdad (AUIB), Baghdad, Iraq
| | - Redouane Rouas
- Laboratory of Experimental Hematology, Hematology Department, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Makram Merimi
- Laboratory of Experimental Hematology, Hematology Department, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
- Genetics and Immune-Cell therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Mehdi Najar
- Laboratory of Experimental Hematology, Hematology Department, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Hematology Department, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| |
Collapse
|
49
|
Wang W, Ye CH, Deng ZF, Wang JL, Zhang L, Bao L, Xu BH, Zhu H, Guo Y, Wen Z. CD4 +CD25 + regulatory T cells decreased future liver remnant after associating liver partition and portal vein ligation for staged hepatectomy. World J Gastrointest Surg 2023; 15:917-930. [PMID: 37342857 PMCID: PMC10277939 DOI: 10.4240/wjgs.v15.i5.917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/22/2022] [Accepted: 04/04/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) is an innovative surgical approach for the treatment of massive hepatocellular carcinoma (HCC), the key to successful planned stage 2 ALPPS is future liver remnant (FLR) volume growth, but the exact mechanism has not been elucidated. The correlation between regulatory T cells (Tregs) and postoperative FLR regeneration has not been reported. AIM To investigate the effect of CD4+CD25+ Tregs on FLR regeneration after ALPPS. METHODS Clinical data and specimens were collected from 37 patients who developed massive HCC treated with ALPPS. Flow cytometry was performed to detect changes in the proportion of CD4+CD25+ Tregs to CD4+ T cells in peripheral blood before and after ALPPS. To analyze the relationship between peripheral blood CD4+CD25+ Treg proportion and clinicopathological information and liver volume. RESULTS The postoperative CD4+CD25+ Treg proportion in stage 1 ALPPS was negatively correlated with the amount of proliferation volume, proliferation rate, and kinetic growth rate (KGR) of the FLR after stage 1 ALPPS. Patients with low Treg proportion had significantly higher KGR than those with high Treg proportion (P = 0.006); patients with high Treg proportion had more severe postoperative pathological liver fibrosis than those with low Treg proportion (P = 0.043). The area under the receiver operating characteristic curve between the percentage of Tregs and proliferation volume, proliferation rate, and KGR were all greater than 0.70. CONCLUSION CD4+CD25+ Tregs in the peripheral blood of patients with massive HCC at stage 1 ALPPS were negatively correlated with indicators of FLR regeneration after stage 1 ALPPS and may influence the degree of fibrosis in patients' livers. Treg percentage was highly accurate in predicting the FLR regeneration after stage 1 ALPPS.
Collapse
Affiliation(s)
- Wei Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Chun-Hui Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhen-Feng Deng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Ji-Long Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Ling Zhang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Li Bao
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300000, China
| | - Bang-Hao Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hai Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Ya Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhang Wen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
50
|
Huang QQ, Hang Y, Doyle R, Mao Q, Fang D, Pope RM. Mechanisms regulating the loss of Tregs in HUPO mice that develop spontaneous inflammatory arthritis. iScience 2023; 26:106734. [PMID: 37216119 PMCID: PMC10193230 DOI: 10.1016/j.isci.2023.106734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/07/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
T regulatory cells (Tregs) are a potential therapeutic target in many autoimmune diseases including rheumatoid arthritis (RA). The mechanisms responsible for the maintenance of Tregs in chronic inflammatory conditions such as RA are poorly understood. We employed our mouse model of RA in which, the following deletion of Flice-like inhibitory protein in CD11c+ cells, CD11c-FLIP-KO (HUPO) mice develop spontaneous, progressive, erosive arthritis, with reduced Tregs, and the adoptive transfer of Tregs ameliorates the arthritis. HUPO thymic Treg development was normal, but peripheral of Treg Foxp3 was diminished mediated by reduction of dendritic cells and interleukin-2 (IL-2). During chronic inflammatory arthritis Tregs fail to maintain Foxp3, leading to non-apoptotic cell death and conversion to CD4+CD25+Foxp3- cells. Treatment with IL-2 increased Tregs and ameliorated the arthritis. In summary, reduced dendritic cells and IL-2 in the milieu of chronic inflammation, contribute to Treg instability, promoting HUPO arthritis progression, and suggesting a therapeutic approach in RA.
Collapse
Affiliation(s)
- Qi-Quan Huang
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60091, USA
| | - Yiwei Hang
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60091, USA
| | - Renee Doyle
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60091, USA
| | - Qinwen Mao
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Deyu Fang
- Departments of Pathology and Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60091, USA
| | - Richard M. Pope
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60091, USA
| |
Collapse
|