1
|
Chatel B, Varlet I, Ogier AC, Pecchi E, Bernard M, Gondin J, Westerblad H, Bendahan D, Gineste C. Cyclosporine A Delays the Terminal Disease Stage in the Tfam KO Mitochondrial Myopathy Mouse Model Without Improving Mitochondrial Energy Production. Muscle Nerve 2025; 71:265-274. [PMID: 39713917 PMCID: PMC11708453 DOI: 10.1002/mus.28315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION AND AIMS Mitochondrial myopathies are rare genetic disorders for which no effective treatment exists. We previously showed that the pharmacological cyclophilin inhibitor cyclosporine A (CsA) extends the lifespan of fast-twitch skeletal muscle-specific mitochondrial transcription factor A knockout (Tfam KO) mice, lacking the ability to transcribe mitochondrial DNA and displaying lethal mitochondrial myopathy. Our present aim was to assess whether the positive effect of CsA was associated with improved in vivo mitochondrial energy production. METHODS Mice were treated with CsA for 4 weeks, beginning at 12 weeks (i.e., before the terminal disease phase). Hindlimb plantar flexor muscles were fatigued by 80 contractions (40 Hz, 1.5 s on, 6 s off) while measuring force and energy metabolism using phosphorus-31 magnetic resonance spectroscopy. RESULTS Force decreased at similar rates in Tfam KO mice with and without the CsA treatment, reaching 50% of the baseline value after ~14 ± 1 contractions, which was faster than in control mice (25 ± 1 contractions). Phosphocreatine (PCr) decreased to ~10% of the control concentration in Tfam KO mice, independent of the treatment, which was larger than the ~20% observed in control mice. The time constant of PCr recovery was higher in untreated Tfam KO than that in control muscle (+100%) and similar in untreated and CsA-treated Tfam KO mice. DISCUSSION The results do not support improved mitochondrial energy production as a mechanism underlying the prolonged lifespan of Tfam KO mitochondrial myopathy mice treated with CsA. Thus, other mechanisms must be involved, such as the previously observed CsA-mediated protection against excessive mitochondrial Ca2+ accumulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Julien Gondin
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, UMR CNRS 5261—INSERM U1315Université Claude Bernard Lyon 1LyonFrance
| | - Håkan Westerblad
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | | | | |
Collapse
|
2
|
Liu Y, Li S, Robertson R, Granet JA, Aubry I, Filippelli RL, Tremblay ML, Chang NC. PTPN1/2 inhibition promotes muscle stem cell differentiation in Duchenne muscular dystrophy. Life Sci Alliance 2025; 8:e202402831. [PMID: 39477543 PMCID: PMC11527974 DOI: 10.26508/lsa.202402831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal disease caused by mutations in the DMD gene that encodes dystrophin. Dystrophin deficiency also impacts muscle stem cells (MuSCs), resulting in impaired asymmetric stem cell division and myogenic commitment. Using MuSCs from DMD patients and the DMD mouse model mdx, we found that PTPN1 phosphatase expression is up-regulated and STAT3 phosphorylation is concomitantly down-regulated in DMD MuSCs. To restore STAT3-mediated myogenic signaling, we examined the effect of K884, a novel PTPN1/2 inhibitor, on DMD MuSCs. Treatment with K884 enhanced STAT3 phosphorylation and promoted myogenic differentiation of DMD patient-derived MuSCs. In MuSCs from mdx mice, K884 treatment increased the number of asymmetric cell divisions, correlating with enhanced myogenic differentiation. Interestingly, the pro-myogenic effect of K884 is specific to human and murine DMD MuSCs and is absent from control MuSCs. Moreover, PTPN1/2 loss-of-function experiments indicate that the pro-myogenic impact of K884 is mediated mainly through PTPN1. We propose that PTPN1/2 inhibition may serve as a therapeutic strategy to restore the myogenic function of MuSCs in DMD.
Collapse
MESH Headings
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Animals
- Cell Differentiation/drug effects
- Humans
- Mice
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors
- Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics
- Mice, Inbred mdx
- STAT3 Transcription Factor/metabolism
- Stem Cells/metabolism
- Stem Cells/cytology
- Muscle Development/genetics
- Muscle Development/drug effects
- Disease Models, Animal
- Phosphorylation
- Signal Transduction/drug effects
- Muscle, Skeletal/metabolism
Collapse
Affiliation(s)
- Yiyang Liu
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Canada
| | - Shulei Li
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Canada
- Goodman Cancer Institute, McGill University, Montréal, Canada
| | - Rebecca Robertson
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Canada
| | - Jules A Granet
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Canada
| | - Isabelle Aubry
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Canada
- Goodman Cancer Institute, McGill University, Montréal, Canada
| | - Romina L Filippelli
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Canada
| | - Michel L Tremblay
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Canada
- Goodman Cancer Institute, McGill University, Montréal, Canada
| | - Natasha C Chang
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Canada
- Goodman Cancer Institute, McGill University, Montréal, Canada
| |
Collapse
|
3
|
Martins SG, Ribeiro V, Melo C, Paulino-Cavaco C, Antonini D, Dayalan Naidu S, Murtinheira F, Fonseca I, Saget B, Pita M, Fernandes DR, Gameiro Dos Santos P, Rodrigues G, Zilhão R, Herrera F, Dinkova-Kostova AT, Carlos AR, Thorsteinsdóttir S. Laminin-α2 chain deficiency in skeletal muscle causes dysregulation of multiple cellular mechanisms. Life Sci Alliance 2024; 7:e202402829. [PMID: 39379105 PMCID: PMC11463332 DOI: 10.26508/lsa.202402829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024] Open
Abstract
LAMA2, coding for the laminin-α2 chain, is a crucial ECM component, particularly abundant in skeletal muscle. Mutations in LAMA2 trigger the often-lethal LAMA2-congenital muscular dystrophy (LAMA2-CMD). Various phenotypes have been linked to LAMA2-CMD; nevertheless, the precise mechanisms that malfunction during disease onset in utero remain unknown. We generated Lama2-deficient C2C12 cells and found that Lama2-deficient myoblasts display proliferation, differentiation, and fusion defects, DNA damage, oxidative stress, and mitochondrial dysfunction. Moreover, fetal myoblasts isolated from the dy W mouse model of LAMA2-CMD display impaired differentiation and fusion in vitro. We also showed that disease onset during fetal development is characterized by a significant down-regulation of gene expression in muscle fibers, causing pronounced effects on cytoskeletal organization, muscle differentiation, and altered DNA repair and oxidative stress responses. Together, our findings provide unique insights into the critical importance of the laminin-α2 chain for muscle differentiation and muscle cell homeostasis.
Collapse
Affiliation(s)
- Susana G Martins
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Vanessa Ribeiro
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Melo
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia Paulino-Cavaco
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Dario Antonini
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Fernanda Murtinheira
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Inês Fonseca
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Bérénice Saget
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Mafalda Pita
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Diogo R Fernandes
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Gameiro Dos Santos
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Gabriela Rodrigues
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Rita Zilhão
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Federico Herrera
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Ana Rita Carlos
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Sólveig Thorsteinsdóttir
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
4
|
Konieczny P. Systemic Treatment of Body-Wide Duchenne Muscular Dystrophy Symptoms. Clin Pharmacol Ther 2024; 116:1472-1484. [PMID: 38965715 DOI: 10.1002/cpt.3363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/09/2024] [Indexed: 07/06/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked disease that leads to premature death due to the loss of dystrophin. Current strategies predominantly focus on the therapeutic treatment of affected skeletal muscle tissue. However, certain results point to the fact that with successful treatment of skeletal muscle, DMD-exposed latent phenotypes in tissues, such as cardiac and smooth muscle, might lead to adverse effects and even death. Likewise, it is now clear that the absence of dystrophin affects the function of the nervous system, and that this phenotype is more pronounced when shorter dystrophins are absent, in addition to the full-length dystrophin that is present predominantly in the muscle. Here, I focus on the systemic aspects of DMD, highlighting the ubiquitous expression of the dystrophin gene in human tissues. Furthermore, I describe therapeutic strategies that have been tested in the clinic and point to unresolved questions regarding the function of distinct dystrophin isoforms, and the possibility of current therapeutic strategies to tackle phenotypes that relate to their absence.
Collapse
Affiliation(s)
- Patryk Konieczny
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
5
|
Gutiérrez-Aguilar M, Klutho PJ, Aguayo-Ortiz R, Song L, Baines CP. Endogenous complement 1q binding protein (C1qbp) regulates mitochondrial permeability transition and post-myocardial infarction remodeling and dysfunction. J Mol Cell Cardiol 2024; 196:1-11. [PMID: 39209214 PMCID: PMC11534557 DOI: 10.1016/j.yjmcc.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The mitochondrial permeability transition (MPT) pore regulates necrotic cell death following diverse cardiac insults. While the componentry of the pore itself remains controversial, Cyclophilin D (CypD) has been well-established as a positive regulator of pore opening. We have previously identified Complement 1q-binding protein (C1qbp) as a novel CypD-interacting molecule and a negative regulator of MPT-dependent cell death in vitro. However, its effects on the MPT pore and sensitivity to cell death in the heart remain untested. We therefore hypothesized that C1qbp would inhibit MPT in cardiac mitochondria and protect cardiac myocytes against cell death in vivo. To investigate the effects of C1qbp in the myocardium we generated gain- and loss-of-function mice. Transgenic C1qbp overexpression resulted in decreased complex protein expression and reduced mitochondrial respiration and ATP production but MPT was unaffected. In contrast, while C1qbp+/- mice did not exhibit any changes in mitochondrial protein expression, respiration, or ATP, the MPT pore was markedly sensitized to Ca2+ in these animals. Neither overexpression nor depletion of C1qbp significantly affected baseline heart morphology or function at 3 months of age. When subjected to myocardial infarction, C1qbp transgenic mice exhibited similar infarct sizes and cardiac remodeling to non-transgenic mice, consistent with the lack of an effect on MPT. In contrast, cardiac scar formation and dysfunction were significantly increased in the C1qbp+/- mice compared to C1qbp+/+ controls. Our results suggest that C1qbp is required for normal regulation of the MPT pore and mitochondrial function, and influences cardiac remodeling following MI, the latter more likely being independent of C1qbp effects on the MPT pore.
Collapse
Affiliation(s)
- Manuel Gutiérrez-Aguilar
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Paula J Klutho
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Rodrigo Aguayo-Ortiz
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Lihui Song
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Christopher P Baines
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
6
|
Dubinin MV, Stepanova AE, Mikheeva IB, Igoshkina AD, Cherepanova AA, Talanov EY, Khoroshavina EI, Belosludtsev KN. Reduction of Mitochondrial Calcium Overload via MKT077-Induced Inhibition of Glucose-Regulated Protein 75 Alleviates Skeletal Muscle Pathology in Dystrophin-Deficient mdx Mice. Int J Mol Sci 2024; 25:9892. [PMID: 39337383 PMCID: PMC11432509 DOI: 10.3390/ijms25189892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Duchenne muscular dystrophy is secondarily accompanied by Ca2+ excess in muscle fibers. Part of the Ca2+ accumulates in the mitochondria, contributing to the development of mitochondrial dysfunction and degeneration of muscles. In this work, we assessed the effect of intraperitoneal administration of rhodacyanine MKT077 (5 mg/kg/day), which is able to suppress glucose-regulated protein 75 (GRP75)-mediated Ca2+ transfer from the sarcoplasmic reticulum (SR) to mitochondria, on the Ca2+ overload of skeletal muscle mitochondria in dystrophin-deficient mdx mice and the concomitant mitochondrial dysfunction contributing to muscle pathology. MKT077 prevented Ca2+ overload of quadriceps mitochondria in mdx mice, reduced the intensity of oxidative stress, and improved mitochondrial ultrastructure, but had no effect on impaired oxidative phosphorylation. MKT077 eliminated quadriceps calcification and reduced the intensity of muscle fiber degeneration, fibrosis level, and normalized grip strength in mdx mice. However, we noted a negative effect of MKT077 on wild-type mice, expressed as a decrease in the efficiency of mitochondrial oxidative phosphorylation, SR stress development, ultrastructural disturbances in the quadriceps, and a reduction in animal endurance in the wire-hanging test. This paper discusses the impact of MKT077 modulation of mitochondrial dysfunction on the development of skeletal muscle pathology in mdx mice.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Calcium/metabolism
- Disease Models, Animal
- Dystrophin/metabolism
- Dystrophin/deficiency
- Dystrophin/genetics
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Mitochondria/metabolism
- Mitochondria/drug effects
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/pathology
- Mitochondria, Muscle/ultrastructure
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Oxidative Phosphorylation/drug effects
- Oxidative Stress/drug effects
- Sarcoplasmic Reticulum/metabolism
- Sarcoplasmic Reticulum/drug effects
Collapse
Affiliation(s)
- Mikhail V Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Anastasia E Stepanova
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Irina B Mikheeva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia
| | - Anastasia D Igoshkina
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Alena A Cherepanova
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Eugeny Yu Talanov
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia
| | - Ekaterina I Khoroshavina
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Konstantin N Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia
| |
Collapse
|
7
|
Chen KY, Zeng YL, Mao ZW, Liu W. Development of a high quantum yield probe for detection of mitochondrial G-quadruplexes in live cells based on fluorescence lifetime imaging microscopy. Bioorg Med Chem 2024; 111:117856. [PMID: 39074413 DOI: 10.1016/j.bmc.2024.117856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Mitochondrial G-quadruplexes are components that are potentially involved in regulating mitochondrial function and play crucial roles in the replication and transcription of mitochondrial genes. Consequently, it is imperative to develop probes that can detect mitochondrial G-quadruplexes to understand their functions and mechanisms. In this study, a triphenylamine fluorescent probe, TPPE, which has excellent cytocompatibility and does not affect the natural state of G-quadruplexes, was designed and demonstrated to localize primarily to the mitochondria. Owing to the unique binding mode between TPPE and G-quadruplexes, TPPE was able to distinguish G-quadruplexes from other substances due to the higher fluorescence lifetime and quantum yield. On the basis of the photon counts determined via fluorescence lifetime imaging microscopy, we analyzed the differences in the numbers of mitochondrial G-quadruplexes in various cell lines. We observed reductions in the number of mitochondrial G-quadruplexes during apoptosis, ferroptosis and glycolysis inhibition. This study shows the great potential of using TPPE to track and analyze mitochondrial G-quadruplexes and presents a novel perspective in the development of probes to detect mitochondrial G-quadruplexes in live cells.
Collapse
Affiliation(s)
- Kai-Yi Chen
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - You-Liang Zeng
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zong-Wan Mao
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Wenting Liu
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
8
|
Gandhi S, Sweeney HL, Hart CC, Han R, Perry CGR. Cardiomyopathy in Duchenne Muscular Dystrophy and the Potential for Mitochondrial Therapeutics to Improve Treatment Response. Cells 2024; 13:1168. [PMID: 39056750 PMCID: PMC11274633 DOI: 10.3390/cells13141168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease caused by mutations to the dystrophin gene, resulting in deficiency of dystrophin protein, loss of myofiber integrity in skeletal and cardiac muscle, and eventual cell death and replacement with fibrotic tissue. Pathologic cardiac manifestations occur in nearly every DMD patient, with the development of cardiomyopathy-the leading cause of death-inevitable by adulthood. As early cardiac abnormalities are difficult to detect, timely diagnosis and appropriate treatment modalities remain a challenge. There is no cure for DMD; treatment is aimed at delaying disease progression and alleviating symptoms. A comprehensive understanding of the pathophysiological mechanisms is crucial to the development of targeted treatments. While established hypotheses of underlying mechanisms include sarcolemmal weakening, upregulation of pro-inflammatory cytokines, and perturbed ion homeostasis, mitochondrial dysfunction is thought to be a potential key contributor. Several experimental compounds targeting the skeletal muscle pathology of DMD are in development, but the effects of such agents on cardiac function remain unclear. The synergistic integration of small molecule- and gene-target-based drugs with metabolic-, immune-, or ion balance-enhancing compounds into a combinatorial therapy offers potential for treating dystrophin deficiency-induced cardiomyopathy, making it crucial to understand the underlying mechanisms driving the disorder.
Collapse
Affiliation(s)
- Shivam Gandhi
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| | - H. Lee Sweeney
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA; (H.L.S.); (C.C.H.)
- Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Cora C. Hart
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA; (H.L.S.); (C.C.H.)
- Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Renzhi Han
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Christopher G. R. Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
9
|
Malik SO, Wierenga A, Gao C, Akaaboune M. Plasticity and structural alterations of mitochondria and sarcoplasmic organelles in muscles of mice deficient in α-dystrobrevin, a component of the dystrophin-glycoprotein complex. Hum Mol Genet 2024; 33:1107-1119. [PMID: 38507070 DOI: 10.1093/hmg/ddae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/03/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
The dystrophin-glycoprotein complex (DGC) plays a crucial role in maintaining the structural integrity of the plasma membrane and the neuromuscular junction. In this study, we investigated the impact of the deficiency of α-dystrobrevin (αdbn), a component of the DGC, on the homeostasis of intracellular organelles, specifically mitochondria and the sarcoplasmic reticulum (SR). In αdbn deficient muscles, we observed a significant increase in the membrane-bound ATP synthase complex levels, a marker for mitochondria in oxidative muscle fiber types compared to wild-type. Furthermore, examination of muscle fibers deficient in αdbn using electron microscopy revealed profound alterations in the organization of mitochondria and the SR within certain myofibrils of muscle fibers. This included the formation of hyper-branched intermyofibrillar mitochondria with extended connections, an extensive network spanning several myofibrils, and a substantial increase in the number/density of subsarcolemmal mitochondria. Concurrently, in some cases, we observed significant structural alterations in mitochondria, such as cristae loss, fragmentation, swelling, and the formation of vacuoles and inclusions within the mitochondrial matrix cristae. Muscles deficient in αdbn also displayed notable alterations in the morphology of the SR, along with the formation of distinct anomalous concentric SR structures known as whorls. These whorls were prevalent in αdbn-deficient mice but were absent in wild-type muscles. These results suggest a crucial role of the DGC αdbn in regulating intracellular organelles, particularly mitochondria and the SR, within muscle cells. The remodeling of the SR and the formation of whorls may represent a novel mechanism of the unfolded protein response (UPR) in muscle cells.
Collapse
Affiliation(s)
- Saad O Malik
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4164 Biological Sciences Building, 1105 N. University Avenue, Ann Arbor, MI 48109, United States
| | - Alissa Wierenga
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4164 Biological Sciences Building, 1105 N. University Avenue, Ann Arbor, MI 48109, United States
| | - Chenlang Gao
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4164 Biological Sciences Building, 1105 N. University Avenue, Ann Arbor, MI 48109, United States
| | - Mohammed Akaaboune
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4164 Biological Sciences Building, 1105 N. University Avenue, Ann Arbor, MI 48109, United States
- Michigan Neuroscience Institute, University of Michigan, 205 Zina Pitcher Pl, Ann Arbor, MI 48109, United States
| |
Collapse
|
10
|
Dourson AJ, Fadaka AO, Warshak AM, Paranjpe A, Weinhaus B, Queme LF, Hofmann MC, Evans HM, Donmez OA, Forney C, Weirauch MT, Kottyan LC, Lucas D, Deepe GS, Jankowski MP. Macrophage memories of early-life injury drive neonatal nociceptive priming. Cell Rep 2024; 43:114129. [PMID: 38640063 PMCID: PMC11197107 DOI: 10.1016/j.celrep.2024.114129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/05/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024] Open
Abstract
The developing peripheral nervous and immune systems are functionally distinct from those of adults. These systems are vulnerable to early-life injury, which influences outcomes related to nociception following subsequent injury later in life (i.e., "neonatal nociceptive priming"). The underpinnings of this phenomenon are unclear, although previous work indicates that macrophages are trained by inflammation and injury. Our findings show that macrophages are both necessary and partially sufficient to drive neonatal nociceptive priming, possibly due to a long-lasting remodeling in chromatin structure. The p75 neurotrophic factor receptor is an important effector in regulating neonatal nociceptive priming through modulation of the inflammatory profile of rodent and human macrophages. This "pain memory" is long lasting in females and can be transferred to a naive host to alter sex-specific pain-related behaviors. This study reveals a mechanism by which acute, neonatal post-surgical pain drives a peripheral immune-related predisposition to persistent pain following a subsequent injury.
Collapse
Affiliation(s)
- Adam J Dourson
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Adewale O Fadaka
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anna M Warshak
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Aditi Paranjpe
- Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Benjamin Weinhaus
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
| | - Luis F Queme
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Megan C Hofmann
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Heather M Evans
- Division of Infectious Diseases, University of Cincinnati, Cincinnati, OH, USA
| | - Omer A Donmez
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carmy Forney
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Daniel Lucas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - George S Deepe
- Division of Infectious Diseases, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA; Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
11
|
Mareedu S, Fefelova N, Galindo CL, Prakash G, Mukai R, Sadoshima J, Xie LH, Babu GJ. Improved mitochondrial function in the hearts of sarcolipin-deficient dystrophin and utrophin double-knockout mice. JCI Insight 2024; 9:e170185. [PMID: 38564291 PMCID: PMC11141945 DOI: 10.1172/jci.insight.170185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease associated with cardiomyopathy. DMD cardiomyopathy is characterized by abnormal intracellular Ca2+ homeostasis and mitochondrial dysfunction. We used dystrophin and utrophin double-knockout (mdx:utrn-/-) mice in a sarcolipin (SLN) heterozygous-knockout (sln+/-) background to examine the effect of SLN reduction on mitochondrial function in the dystrophic myocardium. Germline reduction of SLN expression in mdx:utrn-/- mice improved cardiac sarco/endoplasmic reticulum (SR) Ca2+ cycling, reduced cardiac fibrosis, and improved cardiac function. At the cellular level, reducing SLN expression prevented mitochondrial Ca2+ overload, reduced mitochondrial membrane potential loss, and improved mitochondrial function. Transmission electron microscopy of myocardial tissues and proteomic analysis of mitochondria-associated membranes showed that reducing SLN expression improved mitochondrial structure and SR-mitochondria interactions in dystrophic cardiomyocytes. These findings indicate that SLN upregulation plays a substantial role in the pathogenesis of cardiomyopathy and that reducing SLN expression has clinical implications in the treatment of DMD cardiomyopathy.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Calcium/metabolism
- Cardiomyopathies/metabolism
- Cardiomyopathies/genetics
- Cardiomyopathies/pathology
- Disease Models, Animal
- Dystrophin/genetics
- Dystrophin/metabolism
- Mice, Inbred mdx
- Mice, Knockout
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/ultrastructure
- Mitochondria, Heart/genetics
- Muscle Proteins/metabolism
- Muscle Proteins/genetics
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Proteolipids/metabolism
- Proteolipids/genetics
- Utrophin/genetics
- Utrophin/metabolism
Collapse
Affiliation(s)
- Satvik Mareedu
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Nadezhda Fefelova
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Cristi L. Galindo
- Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Goutham Prakash
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Risa Mukai
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Gopal J. Babu
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
12
|
Elasbali AM, Al-Soud WA, Anwar S, Alhassan HH, Adnan M, Hassan MI. A review on mechanistic insights into structure and function of dystrophin protein in pathophysiology and therapeutic targeting of Duchenne muscular dystrophy. Int J Biol Macromol 2024; 264:130544. [PMID: 38428778 DOI: 10.1016/j.ijbiomac.2024.130544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 03/03/2024]
Abstract
Duchenne Muscular Dystrophy (DMD) is an X-linked recessive genetic disorder characterized by progressive and severe muscle weakening and degeneration. Among the various forms of muscular dystrophy, it stands out as one of the most common and impactful, predominantly affecting boys. The condition arises due to mutations in the dystrophin gene, a key player in maintaining the structure and function of muscle fibers. The manuscript explores the structural features of dystrophin protein and their pivotal roles in DMD. We present an in-depth analysis of promising therapeutic approaches targeting dystrophin and their implications for the therapeutic management of DMD. Several therapies aiming to restore dystrophin protein or address secondary pathology have obtained regulatory approval, and many others are ongoing clinical development. Notably, recent advancements in genetic approaches have demonstrated the potential to restore partially functional dystrophin forms. The review also provides a comprehensive overview of the status of clinical trials for major therapeutic genetic approaches for DMD. In addition, we have summarized the ongoing therapeutic approaches and advanced mechanisms of action for dystrophin restoration and the challenges associated with DMD therapeutics.
Collapse
Affiliation(s)
- Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Saudi Arabia
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Science, College of Applied Sciences-Sakaka, Jouf University, Sakaka, Saudi Arabia; Molekylärbiologi, Klinisk Mikrobiologi och vårdhygien, Region Skåne, Sölvegatan 23B, 221 85 Lund, Sweden
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Hassan H Alhassan
- Department of Clinical Laboratory Science, College of Applied Sciences-Sakaka, Jouf University, Sakaka, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
13
|
Bround MJ, Abay E, Huo J, Havens JR, York AJ, Bers DM, Molkentin JD. MCU-independent Ca 2+ uptake mediates mitochondrial Ca 2+ overload and necrotic cell death in a mouse model of Duchenne muscular dystrophy. Sci Rep 2024; 14:6751. [PMID: 38514795 PMCID: PMC10957967 DOI: 10.1038/s41598-024-57340-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024] Open
Abstract
Mitochondrial Ca2+ overload can mediate mitochondria-dependent cell death, a major contributor to several human diseases. Indeed, Duchenne muscular dystrophy (MD) is driven by dysfunctional Ca2+ influx across the sarcolemma that causes mitochondrial Ca2+ overload, organelle rupture, and muscle necrosis. The mitochondrial Ca2+ uniporter (MCU) complex is the primary characterized mechanism for acute mitochondrial Ca2+ uptake. One strategy for preventing mitochondrial Ca2+ overload is deletion of the Mcu gene, the pore forming subunit of the MCU-complex. Conversely, enhanced MCU-complex Ca2+ uptake is achieved by deleting the inhibitory Mcub gene. Here we show that myofiber-specific Mcu deletion was not protective in a mouse model of Duchenne MD. Specifically, Mcu gene deletion did not reduce muscle histopathology, did not improve muscle function, and did not prevent mitochondrial Ca2+ overload. Moreover, myofiber specific Mcub gene deletion did not augment Duchenne MD muscle pathology. Interestingly, we observed MCU-independent Ca2+ uptake in dystrophic mitochondria that was sufficient to drive mitochondrial permeability transition pore (MPTP) activation and skeletal muscle necrosis, and this same type of activity was observed in heart, liver, and brain mitochondria. These results demonstrate that mitochondria possess an uncharacterized MCU-independent Ca2+ uptake mechanism that is sufficient to drive MPTP-dependent necrosis in MD in vivo.
Collapse
Affiliation(s)
- Michael J Bround
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 240 Albert Sabin Way, MLC 7020, Cincinnati, OH, 45229-3039, USA
| | - Eaman Abay
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 240 Albert Sabin Way, MLC 7020, Cincinnati, OH, 45229-3039, USA
| | - Jiuzhou Huo
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 240 Albert Sabin Way, MLC 7020, Cincinnati, OH, 45229-3039, USA
| | - Julian R Havens
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 240 Albert Sabin Way, MLC 7020, Cincinnati, OH, 45229-3039, USA
| | - Allen J York
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 240 Albert Sabin Way, MLC 7020, Cincinnati, OH, 45229-3039, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, CA, 95616, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 240 Albert Sabin Way, MLC 7020, Cincinnati, OH, 45229-3039, USA.
| |
Collapse
|
14
|
Le Moal E, Liu Y, Collerette-Tremblay J, Dumontier S, Fabre P, Molina T, Dort J, Orfi Z, Denault N, Boutin J, Michaud J, Giguère H, Desroches A, Trân K, Ellezam B, Vézina F, Bedard S, Raynaud C, Balg F, Sarret P, Boudreault PL, Scott MS, Denault JB, Marsault E, Feige JN, Auger-Messier M, Dumont NA, Bentzinger CF. Apelin stimulation of the vascular skeletal muscle stem cell niche enhances endogenous repair in dystrophic mice. Sci Transl Med 2024; 16:eabn8529. [PMID: 38507466 DOI: 10.1126/scitranslmed.abn8529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
Impaired skeletal muscle stem cell (MuSC) function has long been suspected to contribute to the pathogenesis of muscular dystrophy (MD). Here, we showed that defects in the endothelial cell (EC) compartment of the vascular stem cell niche in mouse models of Duchenne MD, laminin α2-related MD, and collagen VI-related myopathy were associated with inefficient mobilization of MuSCs after tissue damage. Using chemoinformatic analysis, we identified the 13-amino acid form of the peptide hormone apelin (AP-13) as a candidate for systemic stimulation of skeletal muscle ECs. Systemic administration of AP-13 using osmotic pumps generated a pro-proliferative EC-rich niche that supported MuSC function through angiocrine factors and markedly improved tissue regeneration and muscle strength in all three dystrophic mouse models. Moreover, EC-specific knockout of the apelin receptor led to regenerative defects that phenocopied key pathological features of MD, including vascular defects, fibrosis, muscle fiber necrosis, impaired MuSC function, and reduced force generation. Together, these studies provide in vivo proof of concept that enhancing endogenous skeletal muscle repair by targeting the vascular niche is a viable therapeutic avenue for MD and characterized AP-13 as a candidate for further study for the systemic treatment of MuSC dysfunction.
Collapse
Affiliation(s)
- Emmeran Le Moal
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Yuguo Liu
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jasmin Collerette-Tremblay
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Simon Dumontier
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Paul Fabre
- CHU Sainte-Justine Research Center, Department of Pharmacology and Physiology, School of Rehabilitation, Faculty of Medicine Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Thomas Molina
- CHU Sainte-Justine Research Center, Department of Pharmacology and Physiology, School of Rehabilitation, Faculty of Medicine Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Junio Dort
- CHU Sainte-Justine Research Center, Department of Pharmacology and Physiology, School of Rehabilitation, Faculty of Medicine Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Zakaria Orfi
- CHU Sainte-Justine Research Center, Department of Pharmacology and Physiology, School of Rehabilitation, Faculty of Medicine Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Nicolas Denault
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Joël Boutin
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Joris Michaud
- Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
| | - Hugo Giguère
- Département de Médecine-Service de Cardiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Alexandre Desroches
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Kien Trân
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Benjamin Ellezam
- CHU Sainte-Justine Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - François Vézina
- Department of Surgery, Division of Orthopedics, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Sonia Bedard
- Department of Surgery, Division of Orthopedics, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Catherine Raynaud
- Department of Surgery, Division of Orthopedics, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Frederic Balg
- Department of Surgery, Division of Orthopedics, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Philippe Sarret
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Pierre-Luc Boudreault
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Michelle S Scott
- Département de Biochimie et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-Bernard Denault
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Eric Marsault
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jerome N Feige
- Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Mannix Auger-Messier
- Département de Médecine-Service de Cardiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Nicolas A Dumont
- CHU Sainte-Justine Research Center, Department of Pharmacology and Physiology, School of Rehabilitation, Faculty of Medicine Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - C Florian Bentzinger
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
15
|
Saad FA, Saad JF, Siciliano G, Merlini L, Angelini C. Duchenne Muscular Dystrophy Gene Therapy. Curr Gene Ther 2024; 24:17-28. [PMID: 36411557 DOI: 10.2174/1566523223666221118160932] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022]
Abstract
Duchenne and Becker muscular dystrophies are allelic X-linked recessive neuromuscular diseases affecting both skeletal and cardiac muscles. Therefore, owing to their single X chromosome, the affected boys receive pathogenic gene mutations from their unknowing carrier mothers. Current pharmacological drugs are palliative that address the symptoms of the disease rather than the genetic cause imbedded in the Dystrophin gene DNA sequence. Therefore, alternative therapies like gene drugs that could address the genetic cause of the disease at its root are crucial, which include gene transfer/implantation, exon skipping, and gene editing. Presently, it is possible through genetic reprogramming to engineer AAV vectors to deliver certain therapeutic cargos specifically to muscle or other organs regardless of their serotype. Similarly, it is possible to direct the biogenesis of exosomes to carry gene editing constituents or certain therapeutic cargos to specific tissue or cell type like brain and muscle. While autologous exosomes are immunologically inert, it is possible to camouflage AAV capsids, and lipid nanoparticles to evade the immune system recognition. In this review, we highlight current opportunities for Duchenne muscular dystrophy gene therapy, which has been known thus far as an incurable genetic disease. This article is a part of Gene Therapy of Rare Genetic Diseases thematic issue.
Collapse
Affiliation(s)
- Fawzy A Saad
- Department of Biology, Padua University School of Medicine, Via Trieste 75, Padova 35121, Italy
- Department of Gene Therapy, Saad Pharmaceuticals, Tornimäe 7-26, Tallinn, 10145, Estonia
| | - Jasen F Saad
- Department of Gene Therapy, Saad Pharmaceuticals, Tornimäe 7-26, Tallinn, 10145, Estonia
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Pisa University School of Medicine, Pisa, Italy
| | - Luciano Merlini
- Department of Biomedical and Neuromotor Sciences, Bologna University School of Medicine, 40126 Bologna, Italy
| | - Corrado Angelini
- Department Neurosciences, Padova University School of Medicine, Padova, Italy
| |
Collapse
|
16
|
Mázala DA, Chen D, Chin ER. SERCA1 Overexpression in Skeletal Muscle Attenuates Muscle Atrophy and Improves Motor Function in a Mouse Model of ALS. J Neuromuscul Dis 2024; 11:315-326. [PMID: 38217607 PMCID: PMC10977371 DOI: 10.3233/jnd-230123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 01/15/2024]
Abstract
Background Amyotrophic lateral sclerosis (ALS) is characterized by progressive loss of muscle mass and muscle function. Previous work from our lab demonstrated that skeletal muscles from a mouse model of ALS show elevated intracellular calcium (Ca2+) levels and heightened endoplasmic reticulum (ER) stress. Objective To investigate whether overexpression of sarcoplasmic reticulum (SR) Ca2+ ATPase 1 (SERCA1) in skeletal muscle would improve intracellular Ca2+ handling, attenuate ER stress, and improve motor function ALS transgenic mice. Methods B6SJL-Tg (SOD1*G93A)1Gur/J (ALS-Tg) mice were bred with skeletal muscle α-actinin SERCA1 overexpressing mice to generate wild type (WT), SERCA1 overexpression (WT/+SERCA1), ALS-Tg, and SERCA1 overexpressing ALS-Tg (ALS-Tg/+SERCA1) mice. Motor function (grip test) was assessed weekly and skeletal muscles were harvested at 16 weeks of age to evaluate muscle mass, SR-Ca2+ ATPase activity, levels of SERCA1 and ER stress proteins - protein disulfide isomerase (PDI), Grp78/BiP, and C/EBP homologous protein (CHOP). Single muscle fibers were also isolated from the flexor digitorum brevis muscle to assess changes in resting and peak Fura-2 ratios. Results ALS-Tg/+SERCA1 mice showed improved motor function, delayed onset of disease, and improved muscle mass compared to ALS-Tg. Further, ALS-Tg/+SERCA1 mice returned levels of SERCA1 protein and SR-Ca2+ ATPase activity back to levels in WT mice. Unexpectedly, SERCA-1 overexpression increased levels of the ER stress maker Grp78/BiP in both WT and ALS-Tg mice, while not altering protein levels of PDI or CHOP. Lastly, single muscle fibers from ALS-Tg/+SERCA1 had similar resting but lower peak Fura-2 levels (at 30 Hz and 100 Hz) compared to ALS-Tg mice. Conclusions These data indicate that SERCA1 overexpression attenuates the progressive loss of muscle mass and maintains motor function in ALS-Tg mice while not lowering resting Ca2+ levels or ER stress.
Collapse
Affiliation(s)
- Davi A.G. Mázala
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
- Department of Kinesiology, College of Health Professions, Towson University, Towson, MD, USA
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC, USA
| | - Dapeng Chen
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
- Zeteo Tech, Inc., Sykesville, MD, USA
| | - Eva R. Chin
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
- Solve FSHD, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Dourson AJ, Fadaka AO, Warshak AM, Paranjpe A, Weinhaus B, Queme LF, Hofmann MC, Evans HM, Donmez OA, Forney C, Weirauch MT, Kottyan LT, Lucas D, Deepe GS, Jankowski MP. Macrophage epigenetic memories of early life injury drive neonatal nociceptive priming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528015. [PMID: 36824978 PMCID: PMC9948986 DOI: 10.1101/2023.02.13.528015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The developing peripheral nervous and immune systems are functionally distinct from adults. These systems are vulnerable to early life injury, which influences outcomes related to nociception following subsequent injury later in life (neonatal nociceptive priming). The underpinnings of this phenomenon are largely unknown, although previous work indicates that macrophages are epigenetically trained by inflammation and injury. We found that macrophages are both necessary and partially sufficient to drive neonatal nociceptive priming possibly due to a long-lasting epigenetic remodeling. The p75 neurotrophic factor receptor (NTR) was an important effector in regulating neonatal nociceptive priming through modulation of the inflammatory profile of rodent and human macrophages. This pain memory was long lasting in females and could be transferred to a naive host to alter sex-specific pain-related behaviors. This study reveals a novel mechanism by which acute, neonatal post-surgical pain drives a peripheral immune-related predisposition to persistent pain following a subsequent injury.
Collapse
|
18
|
Lea TA, Panizza PM, Arthur PG, Bakker AJ, Pinniger GJ. Hypochlorous acid exposure impairs skeletal muscle function and Ca 2+ signalling: implications for Duchenne muscular dystrophy pathology. J Physiol 2023; 601:5257-5275. [PMID: 37864413 DOI: 10.1113/jp285263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked disease characterised by severe muscle wasting. The mechanisms underlying the DMD pathology likely involve the interaction between inflammation, oxidative stress and impaired Ca2+ signalling. Hypochlorous acid (HOCl) is a highly reactive oxidant produced endogenously via myeloperoxidase; an enzyme secreted by neutrophils that is significantly elevated in dystrophic muscle. Oxidation of Ca2+ -handling proteins by HOCl may impair Ca2+ signalling. This study aimed to determine the effects of HOCl on skeletal muscle function and its potential contribution to the dystrophic pathology. Extensor digitorum longus (EDL), soleus and interosseous muscles were surgically isolated from anaesthetised C57 (wild-type) and mdx (dystrophic) mice for measurement of ex vivo force production and intracellular Ca2+ concentration. In whole EDL muscle, HOCl (200 μM) significantly decreased maximal force and increased resting muscle tension which was only partially reversible by dithiothreitol. The effects of HOCl (200 μM) on maximal force in slow-twitch soleus were lower than found in the fast-twitch EDL muscle. In single interosseous myofibres, HOCl (10 μM) significantly increased resting intracellular Ca2+ concentration and decreased Ca2+ transient amplitude. These effects of HOCl were reduced by the application of tetracaine, Gd3+ or streptomycin, implicating involvement of ryanodine receptors and transient receptor potential channels. These results demonstrate the potent effects of HOCl on skeletal muscle function potentially mediated by HOCl-induced oxidation to Ca2+ signalling proteins. Hence, HOCl may provide a link between chronic inflammation, oxidative stress and impaired Ca2+ handling that is characteristic of DMD and presents a potential therapeutic target for DMD. KEY POINTS: Duchenne muscular dystrophy is a fatal genetic disease with pathological mechanisms which involve the complex interaction of chronic inflammation, increased reactive oxygen species production and increased cytosolic Ca2+ concentrations. Hypochlorous acid can be endogenously produced by neutrophils via the enzyme myeloperoxidase. Both neutrophil and myeloperoxidase activity are increased in dystrophic mice. This study found that hypochlorous acid decreased muscle force production and increased cytosolic Ca2+ concentrations in isolated muscles from wild-type and dystrophic mice at relatively low concentrations of hypochlorous acid. These results indicate that hypochlorous acid may be key in the Duchenne muscular dystrophy disease pathology and may provide a unifying link between the chronic inflammation, increased reactive oxygen species production and increased cytosolic Ca2+ concentrations observed in Duchenne muscular dystrophy. Hypochlorous acid production may be a potential target for therapeutic treatments of Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Thomas A Lea
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Peter M Panizza
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Peter G Arthur
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Anthony J Bakker
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Gavin J Pinniger
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
19
|
Rawls A, Diviak BK, Smith CI, Severson GW, Acosta SA, Wilson-Rawls J. Pharmacotherapeutic Approaches to Treatment of Muscular Dystrophies. Biomolecules 2023; 13:1536. [PMID: 37892218 PMCID: PMC10605463 DOI: 10.3390/biom13101536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Muscular dystrophies are a heterogeneous group of genetic muscle-wasting disorders that are subdivided based on the region of the body impacted by muscle weakness as well as the functional activity of the underlying genetic mutations. A common feature of the pathophysiology of muscular dystrophies is chronic inflammation associated with the replacement of muscle mass with fibrotic scarring. With the progression of these disorders, many patients suffer cardiomyopathies with fibrosis of the cardiac tissue. Anti-inflammatory glucocorticoids represent the standard of care for Duchenne muscular dystrophy, the most common muscular dystrophy worldwide; however, long-term exposure to glucocorticoids results in highly adverse side effects, limiting their use. Thus, it is important to develop new pharmacotherapeutic approaches to limit inflammation and fibrosis to reduce muscle damage and promote repair. Here, we examine the pathophysiology, genetic background, and emerging therapeutic strategies for muscular dystrophies.
Collapse
Affiliation(s)
- Alan Rawls
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
| | - Bridget K. Diviak
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Tempe, AZ 85287 4501, USA
| | - Cameron I. Smith
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Tempe, AZ 85287 4501, USA
| | - Grant W. Severson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Tempe, AZ 85287 4501, USA
| | - Sofia A. Acosta
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Tempe, AZ 85287 4501, USA
| | - Jeanne Wilson-Rawls
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
| |
Collapse
|
20
|
Bround MJ, Havens JR, York AJ, Sargent MA, Karch J, Molkentin JD. ANT-dependent MPTP underlies necrotic myofiber death in muscular dystrophy. SCIENCE ADVANCES 2023; 9:eadi2767. [PMID: 37624892 PMCID: PMC10456852 DOI: 10.1126/sciadv.adi2767] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023]
Abstract
Mitochondrial permeability transition pore (MPTP) formation contributes to ischemia-reperfusion injury in the heart and several degenerative diseases, including muscular dystrophy (MD). MD is a family of genetic disorders characterized by progressive muscle necrosis and premature death. It has been proposed that the MPTP has two molecular components, the adenine nucleotide translocase (ANT) family of proteins and an unknown component that requires the chaperone cyclophilin D (CypD) to activate. This model was examined in vivo by deleting the gene encoding ANT1 (Slc25a4) or CypD (Ppif) in a δ-sarcoglycan (Sgcd) gene-deleted mouse model of MD, revealing that dystrophic mice lacking Slc25a4 were partially protected from cell death and MD pathology. Dystrophic mice lacking both Slc25a4 and Ppif together were almost completely protected from necrotic cell death and MD disease. This study provides direct evidence that ANT1 and CypD are required MPTP components governing in vivo cell death, suggesting a previously unrecognized therapeutic approach in MD and other necrotic diseases.
Collapse
Affiliation(s)
- Michael J. Bround
- Department of Pediatrics, Cincinnati Children's Hospital and the University of Cincinnati, Cincinnati, OH, USA
| | - Julian R. Havens
- Department of Pediatrics, Cincinnati Children's Hospital and the University of Cincinnati, Cincinnati, OH, USA
| | - Allen J. York
- Department of Pediatrics, Cincinnati Children's Hospital and the University of Cincinnati, Cincinnati, OH, USA
| | - Michelle A. Sargent
- Department of Pediatrics, Cincinnati Children's Hospital and the University of Cincinnati, Cincinnati, OH, USA
| | - Jason Karch
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Jeffery D. Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital and the University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
21
|
Coluccino G, Muraca VP, Corazza A, Lippe G. Cyclophilin D in Mitochondrial Dysfunction: A Key Player in Neurodegeneration? Biomolecules 2023; 13:1265. [PMID: 37627330 PMCID: PMC10452829 DOI: 10.3390/biom13081265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial dysfunction plays a pivotal role in numerous complex diseases. Understanding the molecular mechanisms by which the "powerhouse of the cell" turns into the "factory of death" is an exciting yet challenging task that can unveil new therapeutic targets. The mitochondrial matrix protein CyPD is a peptidylprolyl cis-trans isomerase involved in the regulation of the permeability transition pore (mPTP). The mPTP is a multi-conductance channel in the inner mitochondrial membrane whose dysregulated opening can ultimately lead to cell death and whose involvement in pathology has been extensively documented over the past few decades. Moreover, several mPTP-independent CyPD interactions have been identified, indicating that CyPD could be involved in the fine regulation of several biochemical pathways. To further enrich the picture, CyPD undergoes several post-translational modifications that regulate both its activity and interaction with its clients. Here, we will dissect what is currently known about CyPD and critically review the most recent literature about its involvement in neurodegenerative disorders, focusing on Alzheimer's Disease and Parkinson's Disease, supporting the notion that CyPD could serve as a promising therapeutic target for the treatment of such conditions. Notably, significant efforts have been made to develop CyPD-specific inhibitors, which hold promise for the treatment of such complex disorders.
Collapse
Affiliation(s)
- Gabriele Coluccino
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy; (V.P.M.); (A.C.)
| | | | | | - Giovanna Lippe
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy; (V.P.M.); (A.C.)
| |
Collapse
|
22
|
Merlini L, Sabatelli P, Gualandi F, Redivo E, Di Martino A, Faldini C. New Clinical and Immunofluoresence Data of Collagen VI-Related Myopathy: A Single Center Cohort of 69 Patients. Int J Mol Sci 2023; 24:12474. [PMID: 37569848 PMCID: PMC10420187 DOI: 10.3390/ijms241512474] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Pathogenetic mechanism recognition and proof-of-concept clinical trials were performed in our patients affected by collagen VI-related myopathies. This study, which included 69 patients, aimed to identify innovative clinical data to better design future trials. Among the patients, 33 had Bethlem myopathy (BM), 24 had Ullrich congenital muscular dystrophy (UCMD), 7 had an intermediate phenotype (INTM), and five had myosclerosis myopathy (MM). We obtained data on muscle strength, the degree of contracture, immunofluorescence, and genetics. In our BM group, only one third had a knee extension strength greater than 50% of the predicted value, while only one in ten showed similar retention of elbow flexion. These findings should be considered when recruiting BM patients for future trials. All the MM patients had axial and limb contractures that limited both the flexion and extension ranges of motion, and a limitation in mouth opening. The immunofluorescence analysis of collagen VI in 55 biopsies from 37 patients confirmed the correlation between collagen VI defects and the severity of the clinical phenotype. However, biopsies from the same patient or from patients with the same mutation taken at different times showed a progressive increase in protein expression with age. The new finding of the time-dependent modulation of collagen VI expression should be considered in genetic correction trials.
Collapse
Affiliation(s)
- Luciano Merlini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Patrizia Sabatelli
- Unit of Bologna, CNR-Institute of Molecular Genetics “Luigi Cavalli Sforza”, 40136 Bologna, Italy;
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Francesca Gualandi
- Department of Medical Sciences, Unit of Medical Genetics, Università degli Studi di Ferrara, 44100 Ferrara, Italy;
| | - Edoardo Redivo
- Department of Statistical Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Alberto Di Martino
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy;
- I Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Cesare Faldini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy;
- I Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
23
|
Bernardi P, Gerle C, Halestrap AP, Jonas EA, Karch J, Mnatsakanyan N, Pavlov E, Sheu SS, Soukas AA. Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions. Cell Death Differ 2023; 30:1869-1885. [PMID: 37460667 PMCID: PMC10406888 DOI: 10.1038/s41418-023-01187-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Abstract
The mitochondrial permeability transition (mPT) describes a Ca2+-dependent and cyclophilin D (CypD)-facilitated increase of inner mitochondrial membrane permeability that allows diffusion of molecules up to 1.5 kDa in size. It is mediated by a non-selective channel, the mitochondrial permeability transition pore (mPTP). Sustained mPTP opening causes mitochondrial swelling, which ruptures the outer mitochondrial membrane leading to subsequent apoptotic and necrotic cell death, and is implicated in a range of pathologies. However, transient mPTP opening at various sub-conductance states may contribute several physiological roles such as alterations in mitochondrial bioenergetics and rapid Ca2+ efflux. Since its discovery decades ago, intensive efforts have been made to identify the exact pore-forming structure of the mPT. Both the adenine nucleotide translocase (ANT) and, more recently, the mitochondrial F1FO (F)-ATP synthase dimers, monomers or c-subunit ring alone have been implicated. Here we share the insights of several key investigators with different perspectives who have pioneered mPT research. We critically assess proposed models for the molecular identity of the mPTP and the mechanisms underlying its opposing roles in the life and death of cells. We provide in-depth insights into current controversies, seeking to achieve a degree of consensus that will stimulate future innovative research into the nature and role of the mPTP.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Christoph Gerle
- Laboratory of Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Japan
| | - Andrew P Halestrap
- School of Biochemistry and Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Elizabeth A Jonas
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Jason Karch
- Department of Integrative Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Nelli Mnatsakanyan
- Department of Cellular and Molecular Physiology, College of Medicine, Penn State University, State College, PA, USA
| | - Evgeny Pavlov
- Department of Molecular Pathobiology, New York University, New York, NY, USA
| | - Shey-Shing Sheu
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Alexander A Soukas
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Yamauchi N, Tamai K, Kimura I, Naito A, Tokuda N, Ashida Y, Motohashi N, Aoki Y, Yamada T. High-intensity interval training in the form of isometric contraction improves fatigue resistance in dystrophin-deficient muscle. J Physiol 2023; 601:2917-2933. [PMID: 37184335 DOI: 10.1113/jp284532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023] Open
Abstract
Duchenne muscular dystrophy is a genetic muscle-wasting disorder characterized by progressive muscle weakness and easy fatigability. Here we examined whether high-intensity interval training (HIIT) in the form of isometric contraction improves fatigue resistance in skeletal muscle from dystrophin-deficient mdx52 mice. Isometric HIIT was performed on plantar flexor muscles in vivo with supramaximal electrical stimulation every other day for 4 weeks (a total of 15 sessions). In the non-trained contralateral gastrocnemius muscle from mdx52 mice, the decreased fatigue resistance was associated with a reduction in the amount of peroxisome proliferator-activated receptor γ coactivator 1-α, citrate synthase activity, mitochondrial respiratory complex II, LC3B-II/I ratio, and mitophagy-related gene expression (i.e. Pink1, parkin, Bnip3 and Bcl2l13) as well as an increase in the phosphorylation levels of Src Tyr416 and Akt Ser473, the amount of p62, and the percentage of Evans Blue dye-positive area. Isometric HIIT restored all these alterations and markedly improved fatigue resistance in mdx52 muscles. Moreover, an acute bout of HIIT increased the phosphorylation levels of AMP-activated protein kinase (AMPK) Thr172, acetyl CoA carboxylase Ser79, unc-51-like autophagy activating kinase 1 (Ulk1) Ser555, and dynamin-related protein 1 (Drp1) Ser616 in mdx52 muscles. Thus, our data show that HIIT with isometric contractions significantly mitigates histological signs of pathology and improves fatigue resistance in dystrophin-deficient muscles. These beneficial effects can be explained by the restoration of mitochondrial function via AMPK-dependent induction of the mitophagy programme and de novo mitochondrial biogenesis. KEY POINTS: Skeletal muscle fatigue is often associated with Duchenne muscular dystrophy (DMD) and leads to an inability to perform daily tasks, profoundly decreasing quality of life. We examined the effect of high-intensity interval training (HIIT) in the form of isometric contraction on fatigue resistance in skeletal muscle from the mdx52 mouse model of DMD. Isometric HIIT counteracted the reduced fatigue resistance as well as dystrophic changes in skeletal muscle of mdx52 mice. This beneficial effect could be explained by the restoration of mitochondrial function via AMP-activated protein kinase-dependent mitochondrial biogenesis and the induction of the mitophagy programme in the dystrophic muscles.
Collapse
Affiliation(s)
- Nao Yamauchi
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Katsuyuki Tamai
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Iori Kimura
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Azuma Naito
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Nao Tokuda
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Yuki Ashida
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
- The Japan Society for the Promotion of Science (JSPS), Tokyo, Japan
| | - Norio Motohashi
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
25
|
Oliveira-Santos A, Dagda M, Wittmann J, Smalley R, Burkin DJ. Vemurafenib improves muscle histopathology in a mouse model of LAMA2-related congenital muscular dystrophy. Dis Model Mech 2023; 16:dmm049916. [PMID: 37021539 PMCID: PMC10184677 DOI: 10.1242/dmm.049916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
Laminin-α2-related congenital muscular dystrophy (LAMA2-CMD) is a neuromuscular disease affecting around 1-9 in 1,000,000 children. LAMA2-CMD is caused by mutations in the LAMA2 gene resulting in the loss of laminin-211/221 heterotrimers in skeletal muscle. LAMA2-CMD patients exhibit severe hypotonia and progressive muscle weakness. Currently, there is no effective treatment for LAMA2-CMD and patients die prematurely. The loss of laminin-α2 results in muscle degeneration, defective muscle repair and dysregulation of multiple signaling pathways. Signaling pathways that regulate muscle metabolism, survival and fibrosis have been shown to be dysregulated in LAMA2-CMD. As vemurafenib is a US Food and Drug Administration (FDA)-approved serine/threonine kinase inhibitor, we investigated whether vemurafenib could restore some of the serine/threonine kinase-related signaling pathways and prevent disease progression in the dyW-/- mouse model of LAMA2-CMD. Our results show that vemurafenib reduced muscle fibrosis, increased myofiber size and reduced the percentage of fibers with centrally located nuclei in dyW-/- mouse hindlimbs. These studies show that treatment with vemurafenib restored the TGF-β/SMAD3 and mTORC1/p70S6K signaling pathways in skeletal muscle. Together, our results indicate that vemurafenib partially improves histopathology but does not improve muscle function in a mouse model of LAMA2-CMD.
Collapse
Affiliation(s)
- Ariany Oliveira-Santos
- Department of Pharmacology, University of Nevada Reno, School of Medicine, Center for Molecular Medicine, Reno, NV 89557, USA
| | - Marisela Dagda
- Department of Pharmacology, University of Nevada Reno, School of Medicine, Center for Molecular Medicine, Reno, NV 89557, USA
| | - Jennifer Wittmann
- Department of Pharmacology, University of Nevada Reno, School of Medicine, Center for Molecular Medicine, Reno, NV 89557, USA
| | - Robert Smalley
- Department of Pharmacology, University of Nevada Reno, School of Medicine, Center for Molecular Medicine, Reno, NV 89557, USA
| | - Dean J. Burkin
- Department of Pharmacology, University of Nevada Reno, School of Medicine, Center for Molecular Medicine, Reno, NV 89557, USA
| |
Collapse
|
26
|
Flores-Romero H, Dadsena S, García-Sáez AJ. Mitochondrial pores at the crossroad between cell death and inflammatory signaling. Mol Cell 2023; 83:843-856. [PMID: 36931255 DOI: 10.1016/j.molcel.2023.02.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/18/2023]
Abstract
Mitochondria are cellular organelles with a major role in many cellular processes, including not only energy production, metabolism, and calcium homeostasis but also regulated cell death and innate immunity. Their proteobacterial origin makes them a rich source of potent immune agonists, normally hidden within the mitochondrial membrane barriers. Alteration of mitochondrial permeability through mitochondrial pores thus provides efficient mechanisms not only to communicate mitochondrial stress to the cell but also as a key event in the integration of cellular responses. In this regard, eukaryotic cells have developed diverse signaling networks that sense and respond to the release of mitochondrial components into the cytosol and play a key role in controlling cell death and inflammatory pathways. Modulating pore formation at mitochondria through direct or indirect mechanisms may thus open new opportunities for therapy. In this review, we discuss the current understanding of the structure and molecular mechanisms of mitochondrial pores and how they function at the interface between cell death and inflammatory signaling to regulate cellular outcomes.
Collapse
Affiliation(s)
- Hector Flores-Romero
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Shashank Dadsena
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Ana J García-Sáez
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne, Germany.
| |
Collapse
|
27
|
Kumar S, Choudhary N, Faruq M, Kumar A, Saran RK, Indercanti PK, Singh V, Sait H, Jaitley S, Valis M, Kuca K, Polipalli SK, Kumar M, Singh T, Suravajhala P, Sharma R, Kapoor S. Anastrozole-mediated modulation of mitochondrial activity by inhibition of mitochondrial permeability transition pore opening: an initial perspective. J Biomol Struct Dyn 2023; 41:14063-14079. [PMID: 36815262 DOI: 10.1080/07391102.2023.2176927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023]
Abstract
The mitochondrial permeability transition pore (mtPTP) plays a vital role in altering the structure and function of mitochondria. Cyclophilin D (CypD) is a mitochondrial protein that regulates mtPTP function and a known drug target for therapeutic studies involving mitochondria. While the effect of aromatase inhibition on the mtPTP has been studied previously, the effect of anastrozole on the mtPTP has not been completely elucidated. The role of anastrozole in modulating the mtPTP was evaluated by docking, molecular dynamics and network-guided studies using human CypD data. The peripheral blood mononuclear cells (PBMCs) of patients with mitochondrial disorders and healthy controls were treated with anastrozole and evaluated for mitochondrial permeability transition pore (mtPTP) function and apoptosis using a flow cytometer. Spectrophotometry was employed for estimating total ATP levels. The anastrozole-CypD complex is more stable than cyclosporin A (CsA)-CypD. Anastrozole performed better than cyclosporine in inhibiting mtPTP. Additional effects included inducing mitochondrial membrane depolarization and a reduction in mitochondrial swelling and superoxide generation, intrinsic caspase-3 activity and cellular apoptosis, along with an increase in ATP levels. Anastrozole may serve as a potential therapeutic agent for mitochondrial disorders and ameliorate the clinical phenotype by regulating the activity of mtPTP. However, further studies are required to substantiate our preliminary findings.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Somesh Kumar
- Pediatrics Genetics & Research Laboratory, Department of Pediatrics, Maulana Azad Medical College & Associated LN Hospital, Delhi, India
| | - Neha Choudhary
- Centre for Computational Biology and Bioinformatics, Central University of Himachal Pradesh, Dharamsala, India
| | - Mohammed Faruq
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Arun Kumar
- Department of Emergency Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
- Department of Zoology, Kirori Mal College, University of Delhi, Delhi, India
| | - Ravindra K Saran
- Department of Pathology, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, Delhi, India
| | | | - Vikram Singh
- Centre for Computational Biology and Bioinformatics, Central University of Himachal Pradesh, Dharamsala, India
| | - Haseena Sait
- Pediatrics Genetics & Research Laboratory, Department of Pediatrics, Maulana Azad Medical College & Associated LN Hospital, Delhi, India
| | - Sunita Jaitley
- Department of Biomedical Sciences, Acharya Narendra Dev College, University of Delhi, Delhi, India
| | - Martin Valis
- Department of Neurology of the Medical Faculty of Charles University and University Hospital in Hradec Králové, Hradec Králové, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Sunil K Polipalli
- Pediatrics Genetics & Research Laboratory, Department of Pediatrics, Maulana Azad Medical College & Associated LN Hospital, Delhi, India
| | - Manoj Kumar
- Department of Emergency Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
- Department of Microbiology, World College of Medical Science and Research, Jhajjar, Haryana, India
| | - Tejveer Singh
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | | | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Seema Kapoor
- Pediatrics Genetics & Research Laboratory, Department of Pediatrics, Maulana Azad Medical College & Associated LN Hospital, Delhi, India
| |
Collapse
|
28
|
Ion Channels of the Sarcolemma and Intracellular Organelles in Duchenne Muscular Dystrophy: A Role in the Dysregulation of Ion Homeostasis and a Possible Target for Therapy. Int J Mol Sci 2023; 24:ijms24032229. [PMID: 36768550 PMCID: PMC9917149 DOI: 10.3390/ijms24032229] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by the absence of the dystrophin protein and a properly functioning dystrophin-associated protein complex (DAPC) in muscle cells. DAPC components act as molecular scaffolds coordinating the assembly of various signaling molecules including ion channels. DMD shows a significant change in the functioning of the ion channels of the sarcolemma and intracellular organelles and, above all, the sarcoplasmic reticulum and mitochondria regulating ion homeostasis, which is necessary for the correct excitation and relaxation of muscles. This review is devoted to the analysis of current data on changes in the structure, functioning, and regulation of the activity of ion channels in striated muscles in DMD and their contribution to the disruption of muscle function and the development of pathology. We note the prospects of therapy based on targeting the channels of the sarcolemma and organelles for the correction and alleviation of pathology, and the problems that arise in the interpretation of data obtained on model dystrophin-deficient objects.
Collapse
|
29
|
Bencze M. Mechanisms of Myofibre Death in Muscular Dystrophies: The Emergence of the Regulated Forms of Necrosis in Myology. Int J Mol Sci 2022; 24:ijms24010362. [PMID: 36613804 PMCID: PMC9820579 DOI: 10.3390/ijms24010362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022] Open
Abstract
Myofibre necrosis is a central pathogenic process in muscular dystrophies (MD). As post-lesional regeneration cannot fully compensate for chronic myofibre loss, interstitial tissue accumulates and impairs muscle function. Muscle regeneration has been extensively studied over the last decades, however, the pathway(s) controlling muscle necrosis remains largely unknown. The recent discovery of several regulated cell death (RCD) pathways with necrotic morphology challenged the dogma of necrosis as an uncontrolled process, opening interesting perspectives for many degenerative disorders. In this review, we focus on how cell death affects myofibres in MDs, integrating the latest research in the cell death field, with specific emphasis on Duchenne muscular dystrophy, the best-known and most common hereditary MD. The role of regulated forms of necrosis in myology is still in its infancy but there is increasing evidence that necroptosis, a genetically programmed form of necrosis, is involved in muscle degenerating disorders. The existence of apoptosis in myofibre demise will be questioned, while other forms of non-apoptotic RCDs may also have a role in myonecrosis, illustrating the complexity and possibly the heterogeneity of the cell death pathways in muscle degenerating conditions.
Collapse
Affiliation(s)
- Maximilien Bencze
- “Biology of the Neuromuscular System” Team, Institut Mondor de Recherche Biomédicale (IMRB), University Paris-Est Créteil, INSERM, U955 IMRB, 94010 Créteil, France;
- École Nationale Vétérinaire d’Alfort, IMRB, 94700 Maisons-Alfort, France
| |
Collapse
|
30
|
Dubuisson N, Versele R, Planchon C, Selvais CM, Noel L, Abou-Samra M, Davis-López de Carrizosa MA. Histological Methods to Assess Skeletal Muscle Degeneration and Regeneration in Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:16080. [PMID: 36555721 PMCID: PMC9786356 DOI: 10.3390/ijms232416080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive disease caused by the loss of function of the protein dystrophin. This protein contributes to the stabilisation of striated cells during contraction, as it anchors the cytoskeleton with components of the extracellular matrix through the dystrophin-associated protein complex (DAPC). Moreover, absence of the functional protein affects the expression and function of proteins within the DAPC, leading to molecular events responsible for myofibre damage, muscle weakening, disability and, eventually, premature death. Presently, there is no cure for DMD, but different treatments help manage some of the symptoms. Advances in genetic and exon-skipping therapies are the most promising intervention, the safety and efficiency of which are tested in animal models. In addition to in vivo functional tests, ex vivo molecular evaluation aids assess to what extent the therapy has contributed to the regenerative process. In this regard, the later advances in microscopy and image acquisition systems and the current expansion of antibodies for immunohistological evaluation together with the development of different spectrum fluorescent dyes have made histology a crucial tool. Nevertheless, the complexity of the molecular events that take place in dystrophic muscles, together with the rise of a multitude of markers for each of the phases of the process, makes the histological assessment a challenging task. Therefore, here, we summarise and explain the rationale behind different histological techniques used in the literature to assess degeneration and regeneration in the field of dystrophinopathies, focusing especially on those related to DMD.
Collapse
Affiliation(s)
- Nicolas Dubuisson
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
- Neuromuscular Reference Center, Cliniques Universitaires Saint-Luc (CUSL), Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Romain Versele
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Chloé Planchon
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Camille M. Selvais
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Laurence Noel
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Michel Abou-Samra
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - María A. Davis-López de Carrizosa
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
31
|
Fujikura Y, Yamanouchi K, Sugihara H, Hatakeyama M, Abe T, Ato S, Oishi K. Ketogenic diet containing medium-chain triglyceride ameliorates transcriptome disruption in skeletal muscles of rat models of duchenne muscular dystrophy. Biochem Biophys Rep 2022; 32:101378. [PMID: 36386439 PMCID: PMC9661647 DOI: 10.1016/j.bbrep.2022.101378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a myopathy characterized by progressive muscle weakness caused by a mutation in the dystrophin gene on the X chromosome. We recently showed that a medium-chain triglyceride-containing ketogenic diet (MCTKD) improves skeletal muscle myopathy in a CRISPR/Cas9 gene-edited rat model of DMD. We examined the effects of the MCTKD on transcription profiles in skeletal muscles of the model rats to assess the underlying mechanism of the MCTKD-induced improvement in DMD. DMD rats were fed MCTKD or normal diet (ND) from weaning to 9 months, and wild-type rats were fed with the ND, then tibialis anterior muscles were sampled for mRNA-seq analysis. Pearson correlation heatmaps revealed a one-node transition in the expression profile between DMD and wild-type rats. A total of 10,440, 11,555 and 11,348 genes were expressed in the skeletal muscles of wild-type and ND-fed DMD rats the MCTKD-fed DMD rats, respectively. The MCTKD reduced the number of DMD-specific mRNAs from 1624 to 1350 and increased the number of mRNAs in common with wild-type rats from 9931 to 9998. Among 2660 genes were differentially expressed in response to MCTKD intake, the mRNA expression of 1411 and 1249 of them was respectively increased and decreased. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses suggested that the MCTKD significantly suppressed the mRNA expression of genes associated with extracellular matrix organization and inflammation. This suggestion was consistent with our previous findings that the MCTKD significantly suppressed fibrosis and inflammation in DMD rats. In contrast, the MCTKD significantly increased the mRNA expression of genes associated with oxidative phosphorylation and ATP production pathways, suggesting altered energy metabolism. The decreased and increased mRNA expression of Sln and Atp2a1 respectively suggested that Sarco/endoplasmic reticulum Ca2+-ATPase activation is involved in the MCTKD-induced improvement of skeletal muscle myopathy in DMD rats. This is the first report to examine transcription profiles in the skeletal muscle of CRISPR/Cas9 gene-edited DMD model rats and the effect of MCTKD feeding on it. We evaluated the effects of an MCTKD on the global transcriptome of DMD rats. DMD rats are suitable models of human DMD for assessing transcriptome changes. MCTKD suppressed fibrosis and inflammatory pathways at the transcriptional level. MCTKD upregulated oxidative phosphorylation and ATP production pathways. MCTKD might activate SERCA at the transcriptional level.
Collapse
Affiliation(s)
- Yuri Fujikura
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
- Corresponding author. Laboratory of Veterinary Physiology, Graduate School of Agricultural & Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Hidetoshi Sugihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | - Tomoki Abe
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | - Satoru Ato
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Katsutaka Oishi
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Chiba, Noda, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Kashiwa, Japan
- School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Corresponding author. Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| |
Collapse
|
32
|
Senneff S, Lowery MM. Computational Model of the Effect of Mitochondrial Dysfunction on Excitation–Contraction Coupling in Skeletal Muscle. Bull Math Biol 2022; 84:123. [PMID: 36114931 PMCID: PMC9482608 DOI: 10.1007/s11538-022-01079-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
It has become well established that mitochondria not only regulate myoplasmic calcium in skeletal muscle, but also use that calcium to stimulate oxidative phosphorylation (OXPHOS). While experimental approaches have allowed for imaging of mitochondrial calcium and membrane potentials in isolated fibers, capturing the role of mitochondria and the impact of mitochondrial impairments on excitation–contraction coupling (ECC) remains difficult to explore in intact muscle. Computational models have been widely used to examine the structure and function of skeletal muscle contraction; however, models of ECC to date lack communication between the myoplasm and mitochondria for regulating calcium and ATP during sustained contractions. To address this, a mathematical model of mitochondrial calcium handling and OXPHOS was integrated into a physiological model of ECC incorporating action potential propagation, calcium handling between the sarcoplasmic reticulum (SR) and the myoplasm, and crossbridge cycling. The model was used to examine the protective role of mitochondria during repeated stimulation and the impact of mitochondrial dysfunction on ECC resulting from progressive OXPHOS inhibition. Pathological myoplasmic calcium accumulation occurred through distinct mechanisms in the model in the case of either electron transport chain, F1F0 ATP synthase, or adenine nucleotide transporter impairments. To investigate the effect of each impairment on force, a model of calcium-stimulated apoptosis was utilized to capture dysfunction-induced reductions in muscle mass, driving whole muscle force loss. The model presented in this study can be used to examine the role of mitochondria in the regulation of calcium, ATP, and force generation during voluntary contraction.
Collapse
Affiliation(s)
- Sageanne Senneff
- School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Madeleine M. Lowery
- School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
33
|
Chen TH, Koh KY, Lin KMC, Chou CK. Mitochondrial Dysfunction as an Underlying Cause of Skeletal Muscle Disorders. Int J Mol Sci 2022; 23:12926. [PMID: 36361713 PMCID: PMC9653750 DOI: 10.3390/ijms232112926] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 09/19/2023] Open
Abstract
Mitochondria are an important energy source in skeletal muscle. A main function of mitochondria is the generation of ATP for energy through oxidative phosphorylation (OXPHOS). Mitochondrial defects or abnormalities can lead to muscle disease or multisystem disease. Mitochondrial dysfunction can be caused by defective mitochondrial OXPHOS, mtDNA mutations, Ca2+ imbalances, mitochondrial-related proteins, mitochondrial chaperone proteins, and ultrastructural defects. In addition, an imbalance between mitochondrial fusion and fission, lysosomal dysfunction due to insufficient biosynthesis, and/or defects in mitophagy can result in mitochondrial damage. In this review, we explore the association between impaired mitochondrial function and skeletal muscle disorders. Furthermore, we emphasize the need for more research to determine the specific clinical benefits of mitochondrial therapy in the treatment of skeletal muscle disorders.
Collapse
Affiliation(s)
- Tsung-Hsien Chen
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| | - Kok-Yean Koh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| | - Kurt Ming-Chao Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chu-Kuang Chou
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
- Obesity Center, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| |
Collapse
|
34
|
The role of the dystrophin glycoprotein complex in muscle cell mechanotransduction. Commun Biol 2022; 5:1022. [PMID: 36168044 PMCID: PMC9515174 DOI: 10.1038/s42003-022-03980-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Dystrophin is the central protein of the dystrophin-glycoprotein complex (DGC) in skeletal and heart muscle cells. Dystrophin connects the actin cytoskeleton to the extracellular matrix (ECM). Severing the link between the ECM and the intracellular cytoskeleton has a devastating impact on the homeostasis of skeletal muscle cells, leading to a range of muscular dystrophies. In addition, the loss of a functional DGC leads to progressive dilated cardiomyopathy and premature death. Dystrophin functions as a molecular spring and the DGC plays a critical role in maintaining the integrity of the sarcolemma. Additionally, evidence is accumulating, linking the DGC to mechanosignalling, albeit this role is still less understood. This review article aims at providing an up-to-date perspective on the DGC and its role in mechanotransduction. We first discuss the intricate relationship between muscle cell mechanics and function, before examining the recent research for a role of the dystrophin glycoprotein complex in mechanotransduction and maintaining the biomechanical integrity of muscle cells. Finally, we review the current literature to map out how DGC signalling intersects with mechanical signalling pathways to highlight potential future points of intervention, especially with a focus on cardiomyopathies. A review of the function of the Dystrophic Glycoprotein Complex (DGC) in mechanosignaling provides an overview of the various components of DGC and potential mechanopathogenic mechanisms, particularly as they relate to muscular dystrophy.
Collapse
|
35
|
Dubinin MV, Sharapov VA, Ilzorkina AI, Efimov SV, Klochkov VV, Gudkov SV, Belosludtsev KN. Comparison of structural properties of cyclosporin A and its analogue alisporivir and their effects on mitochondrial bioenergetics and membrane behavior. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183972. [PMID: 35643328 DOI: 10.1016/j.bbamem.2022.183972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022]
Abstract
The paper considers the effect of the MPT pore inhibitor cyclosporin A (CsA) and its non-immunosuppressive analogue alisporivir (Ali) on the functioning of rat skeletal muscle mitochondria. We have shown that both agents at a standard in vitro concentration of 1 μM increase the calcium capacity of organelles and have no effect on the parameters of oxidative phosphorylation. However, an increase in their concentration to 5 μM leads to the suppression of oxygen consumption by mitochondria, which is more pronounced in the case of Ali. This effect is accompanied by a decrease in the membrane potential of organelles and, apparently, is based on the inhibition of electron transport along the mitochondrial respiratory chain due to limited mobility of coenzyme Q. We have noted that both agents do not affect the production of hydrogen peroxide by isolated mitochondria. NMR spectroscopy and molecular dynamics simulation did not reveal significant differences in the structure and backbone flexibility of CsA and Ali. Both agents decrease the overall fluidity of the membrane of DPPC liposomes, inducing an increase in laurdan generalized polarization parameter. A similar effect was also found in the case of mitochondrial membranes. We suggested that these effects of CsA and Ali, associated with their lipophilic nature and the ability to accumulate in the lipid phase of membranes, may cause a decrease in the efficiency of electron transport in the respiratory chain of mitochondria and suppression of the bioenergetics of these organelles.
Collapse
Affiliation(s)
- Mikhail V Dubinin
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El 424001, Russia.
| | | | - Anna I Ilzorkina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow, Region, 142290, Russia; Pushchino State Institute of Natural Science, Prospekt nauki 3, Pushchino, Moscow Region 142290, Russia
| | - Sergey V Efimov
- Institute of Physics, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia
| | - Vladimir V Klochkov
- Institute of Physics, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia
| | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova 38, Moscow 119991, Russia
| | - Konstantin N Belosludtsev
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El 424001, Russia; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow, Region, 142290, Russia
| |
Collapse
|
36
|
Bellissimo CA, Garibotti MC, Perry CGR. Mitochondrial Stress Responses in Duchenne muscular dystrophy: Metabolic Dysfunction or Adaptive Reprogramming? Am J Physiol Cell Physiol 2022; 323:C718-C730. [PMID: 35816642 DOI: 10.1152/ajpcell.00249.2022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial stress may be a secondary contributor to muscle weakness in inherited muscular dystrophies. Duchenne muscular dystrophy has received the majority of attention whereby most discoveries suggest mitochondrial ATP synthesis may be reduced. However, not all studies support this finding. Furthermore, some studies have reported increased mitochondrial reactive oxygen species and propensity for permeability transition pore formation as an inducer of apoptosis, although divergent findings have also been described. A closer examination of the literature suggests the degree and direction of mitochondrial stress responses may depend on the progression of the disease, the muscle type examined, the mouse model employed with regards to pre-clinical research, the precise metabolic pathways in consideration, and in some cases the in vitro technique used to assess a given mitochondrial bioenergetic function. One intent of this review is to provide careful considerations for future experimental designs to resolve the heterogeneous nature of mitochondrial stress during the progression of Duchenne muscular dystrophy. Such considerations have implications for other muscular dystrophies as well which are addressed briefly herein. A renewed perspective of the term 'mitochondrial dysfunction' is presented whereby stress responses might be re-explored in future investigations as direct contributors to myopathy vs an adaptive 'reprogramming' intended to maintain homeostasis in the face of disease stressors themselves. In so doing, the prospective development of mitochondrial enhancement therapies can be driven by advances in perspectives as much as experimental approaches when resolving the precise relationships between mitochondrial remodelling and muscle weakness in Duchenne and, indeed, other muscular dystrophies.
Collapse
Affiliation(s)
- Catherine A Bellissimo
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Madison C Garibotti
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Christopher G R Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| |
Collapse
|
37
|
Reza RN, Serra ND, Detwiler AC, Hanna-Rose W, Crook M. Noncanonical necrosis in 2 different cell types in a Caenorhabditis elegans NAD+ salvage pathway mutant. G3 (BETHESDA, MD.) 2022; 12:jkac033. [PMID: 35143646 PMCID: PMC8982427 DOI: 10.1093/g3journal/jkac033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 01/27/2022] [Indexed: 11/17/2022]
Abstract
Necrosis was once described as a chaotic unregulated response to cellular insult. We now know that necrosis is controlled by multiple pathways in response to many different cellular conditions. In our pnc-1 NAD+ salvage deficient Caenorhabditis elegans model excess nicotinamide induces excitotoxic death in uterine-vulval uv1 cells and OLQ mechanosensory neurons. We sought to characterize necrosis in our pnc-1 model in the context of well-characterized necrosis, apoptosis, and autophagy pathways in C. elegans. We confirmed that calpain and aspartic proteases were required for uv1 necrosis, but changes in intracellular calcium levels and autophagy were not, suggesting that uv1 necrosis occurs by a pathway that diverges from mec-4d-induced touch cell necrosis downstream of effector aspartic proteases. OLQ necrosis does not require changes in intracellular calcium, the function of calpain or aspartic proteases, or autophagy. Instead, OLQ survival requires the function of calreticulin and calnexin, pro-apoptotic ced-4 (Apaf1), and genes involved in both autophagy and axon guidance. In addition, the partially OLQ-dependent gentle nose touch response decreased significantly in pnc-1 animals on poor quality food, further suggesting that uv1 and OLQ necrosis differ downstream of their common trigger. Together these results show that, although phenotypically very similar, uv1, OLQ, and touch cell necrosis are very different at the molecular level.
Collapse
Affiliation(s)
- Rifath N Reza
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nicholas D Serra
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ariana C Detwiler
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | - Wendy Hanna-Rose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Matt Crook
- Department of Life Sciences, Texas A&M University-San Antonio, San Antonio, TX 78224, USA
| |
Collapse
|
38
|
Stefano MED, Ferretti V, Mozzetta C. Synaptic alterations as a neurodevelopmental trait of Duchenne muscular dystrophy. Neurobiol Dis 2022; 168:105718. [PMID: 35390481 DOI: 10.1016/j.nbd.2022.105718] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/14/2023] Open
Abstract
Dystrophinopaties, e.g., Duchenne muscular dystrophy (DMD), Becker muscular dystrophy and X-linked dilated cardiomyopathy are inherited neuromuscular diseases, characterized by progressive muscular degeneration, which however associate with a significant impact on general system physiology. The more severe is the pathology and its diversified manifestations, the heavier are its effects on organs, systems, and tissues other than muscles (skeletal, cardiac and smooth muscles). All dystrophinopaties are characterized by mutations in a single gene located on the X chromosome encoding dystrophin (Dp427) and its shorter isoforms, but DMD is the most devasting: muscular degenerations manifests within the first 4 years of life, progressively affecting motility and other muscular functions, and leads to a fatal outcome between the 20s and 40s. To date, after years of studies on both DMD patients and animal models of the disease, it has been clearly demonstrated that a significant percentage of DMD patients are also afflicted by cognitive, neurological, and autonomic disorders, of varying degree of severity. The anatomical correlates underlying neural functional damages are established during embryonic development and the early stages of postnatal life, when brain circuits, sensory and motor connections are still maturing. The impact of the absence of Dp427 on the development, differentiation, and consolidation of specific cerebral circuits (hippocampus, cerebellum, prefrontal cortex, amygdala) is significant, and amplified by the frequent lack of one or more of its lower molecular mass isoforms. The most relevant aspect, which characterizes DMD-associated neurological disorders, is based on morpho-functional alterations of selective synaptic connections within the affected brain areas. This pathological feature correlates neurological conditions of DMD to other severe neurological disorders, such as schizophrenia, epilepsy and autistic spectrum disorders, among others. This review discusses the organization and the role of the dystrophin-dystroglycan complex in muscles and neurons, focusing on the neurological aspect of DMD and on the most relevant morphological and functional synaptic alterations, in both central and autonomic nervous systems, described in the pathology and its animal models.
Collapse
Affiliation(s)
- Maria Egle De Stefano
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy; Center for Research in Neurobiology Daniel Bovet, Sapienza University of Rome, 00185 Rome, Italy.
| | - Valentina Ferretti
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy; Center for Research in Neurobiology Daniel Bovet, Sapienza University of Rome, 00185 Rome, Italy
| | - Chiara Mozzetta
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy c/o Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
39
|
Preserved Left Ventricular Function despite Myocardial Fibrosis and Myopathy in the Dystrophin-Deficient D2.B10-Dmdmdx/J Mouse. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5362115. [PMID: 35340200 PMCID: PMC8942668 DOI: 10.1155/2022/5362115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 11/18/2022]
Abstract
Duchenne muscular dystrophy involves an absence of dystrophin, a cytoskeletal protein which supports cell structural integrity and scaffolding for signalling molecules in myocytes. Affected individuals experience progressive muscle degeneration that leads to irreversible loss of ambulation and respiratory diaphragm function. Although clinical management has greatly advanced, heart failure due to myocardial cell loss and fibrosis remains the major cause of death. We examined cardiac morphology and function in D2.B10-Dmdmdx/J (D2-mdx) mice, a relatively new mouse model of muscular dystrophy, which we compared to their wild-type background DBA/2J mice (DBA/2). We also tested whether drug treatment with a specific blocker of mitochondrial permeability transition pore opening (Debio-025), or ACE inhibition (Perindopril), had any effect on dystrophy-related cardiomyopathy. D2-mdx mice were treated for six weeks with Vehicle control, Debio-025 (20 mg/kg/day), Perindopril (2 mg/kg/day), or a combination (n = 8/group). At 18 weeks, compared to DBA/2, D2-mdx hearts displayed greater ventricular collagen, lower cell density, greater cell diameter, and greater protein expression levels of IL-6, TLR4, BAX/Bcl2, caspase-3, PGC-1α, and notably monoamine oxidases A and B. Remarkably, these adaptations in D2-mdx mice were associated with preserved resting left ventricular function similar to DBA/2 mice. Compared to vehicle, although Perindopril partly attenuated the increase in heart weight and collagen at 18 weeks, the drug treatments had no marked impact on dystrophic cardiomyopathy.
Collapse
|
40
|
Mitochondrial Ca 2+ Homeostasis: Emerging Roles and Clinical Significance in Cardiac Remodeling. Int J Mol Sci 2022; 23:ijms23063025. [PMID: 35328444 PMCID: PMC8954803 DOI: 10.3390/ijms23063025] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 01/27/2023] Open
Abstract
Mitochondria are the sites of oxidative metabolism in eukaryotes where the metabolites of sugars, fats, and amino acids are oxidized to harvest energy. Notably, mitochondria store Ca2+ and work in synergy with organelles such as the endoplasmic reticulum and extracellular matrix to control the dynamic balance of Ca2+ concentration in cells. Mitochondria are the vital organelles in heart tissue. Mitochondrial Ca2+ homeostasis is particularly important for maintaining the physiological and pathological mechanisms of the heart. Mitochondrial Ca2+ homeostasis plays a key role in the regulation of cardiac energy metabolism, mechanisms of death, oxygen free radical production, and autophagy. The imbalance of mitochondrial Ca2+ balance is closely associated with cardiac remodeling. The mitochondrial Ca2+ uniporter (mtCU) protein complex is responsible for the uptake and release of mitochondrial Ca2+ and regulation of Ca2+ homeostasis in mitochondria and consequently, in cells. This review summarizes the mechanisms of mitochondrial Ca2+ homeostasis in physiological and pathological cardiac remodeling and the regulatory effects of the mitochondrial calcium regulatory complex on cardiac energy metabolism, cell death, and autophagy, and also provides the theoretical basis for mitochondrial Ca2+ as a novel target for the treatment of cardiovascular diseases.
Collapse
|
41
|
Manini A, Abati E, Nuredini A, Corti S, Comi GP. Adeno-Associated Virus (AAV)-Mediated Gene Therapy for Duchenne Muscular Dystrophy: The Issue of Transgene Persistence. Front Neurol 2022; 12:814174. [PMID: 35095747 PMCID: PMC8797140 DOI: 10.3389/fneur.2021.814174] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive, infancy-onset neuromuscular disorder characterized by progressive muscle weakness and atrophy, leading to delay of motor milestones, loss of autonomous ambulation, respiratory failure, cardiomyopathy, and premature death. DMD originates from mutations in the DMD gene that result in a complete absence of dystrophin. Dystrophin is a cytoskeletal protein which belongs to the dystrophin-associated protein complex, involved in cellular signaling and myofiber membrane stabilization. To date, the few available therapeutic options are aimed at lessening disease progression, but persistent loss of muscle tissue and function and premature death are unavoidable. In this scenario, one of the most promising therapeutic strategies for DMD is represented by adeno-associated virus (AAV)-mediated gene therapy. DMD gene therapy relies on the administration of exogenous micro-dystrophin, a miniature version of the dystrophin gene lacking unnecessary domains and encoding a truncated, but functional, dystrophin protein. Limited transgene persistence represents one of the most significant issues that jeopardize the translatability of DMD gene replacement strategies from the bench to the bedside. Here, we critically review preclinical and clinical studies of AAV-mediated gene therapy in DMD, focusing on long-term transgene persistence in transduced tissues, which can deeply affect effectiveness and sustainability of gene replacement in DMD. We also discuss the role played by the overactivation of the immune host system in limiting long-term expression of genetic material. In this perspective, further studies aimed at better elucidating the need for immune suppression in AAV-treated subjects are warranted in order to allow for life-long therapy in DMD patients.
Collapse
Affiliation(s)
- Arianna Manini
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Elena Abati
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Andi Nuredini
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Neurology Unit, Neuroscience Section, Dino Ferrari Center, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Pietro Comi
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Neurology Unit, Neuroscience Section, Dino Ferrari Center, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
42
|
Matsuzaka Y, Hirai Y, Hashido K, Okada T. Therapeutic Application of Extracellular Vesicles-Capsulated Adeno-Associated Virus Vector via nSMase2/Smpd3, Satellite, and Immune Cells in Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:1551. [PMID: 35163475 PMCID: PMC8836108 DOI: 10.3390/ijms23031551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by loss-of-function mutations in the dystrophin gene on chromosome Xp21. Disruption of the dystrophin-glycoprotein complex (DGC) on the cell membrane causes cytosolic Ca2+ influx, resulting in protease activation, mitochondrial dysfunction, and progressive myofiber degeneration, leading to muscle wasting and fragility. In addition to the function of dystrophin in the structural integrity of myofibers, a novel function of asymmetric cell division in muscular stem cells (satellite cells) has been reported. Therefore, it has been suggested that myofiber instability may not be the only cause of dystrophic degeneration, but rather that the phenotype might be caused by multiple factors, including stem cell and myofiber functions. Furthermore, it has been focused functional regulation of satellite cells by intracellular communication of extracellular vesicles (EVs) in DMD pathology. Recently, a novel molecular mechanism of DMD pathogenesis-circulating RNA molecules-has been revealed through the study of target pathways modulated by the Neutral sphingomyelinase2/Neutral sphingomyelinase3 (nSMase2/Smpd3) protein. In addition, adeno-associated virus (AAV) has been clinically applied for DMD therapy owing to the safety and long-term expression of transduction genes. Furthermore, the EV-capsulated AAV vector (EV-AAV) has been shown to be a useful tool for the intervention of DMD, because of the high efficacy of the transgene and avoidance of neutralizing antibodies. Thus, we review application of AAV and EV-AAV vectors for DMD as novel therapeutic strategy.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan;
| | - Yukihiko Hirai
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| | - Kazuo Hashido
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan;
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| |
Collapse
|
43
|
Chambers PJ, Juracic ES, Fajardo VA, Tupling AR. The role of SERCA and sarcolipin in adaptive muscle remodeling. Am J Physiol Cell Physiol 2022; 322:C382-C394. [PMID: 35044855 DOI: 10.1152/ajpcell.00198.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sarcolipin (SLN) is a small integral membrane protein that regulates the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pump. When bound to SERCA, SLN reduces the apparent Ca2+ affinity of SERCA and uncouples SERCA Ca2+ transport from its ATP consumption. As such, SLN plays a direct role in altering skeletal muscle relaxation and energy expenditure. Interestingly, the expression of SLN is dynamic during times of muscle adaptation, where large increases in SLN content are found in response to development, atrophy, overload and disease. Several groups have suggested that increases in SLN, especially in dystrophic muscle, are deleterious to muscle function and exacerbate already abhorrent intracellular Ca2+ levels. However, there is also significant evidence to show that increased SLN content is a beneficial adaptive mechanism which protects the SERCA pump and activates Ca2+ signaling and adaptive remodeling during times of cell stress. In this review, we first discuss the role for SLN in healthy muscle during both development and overload, where SLN has been shown to activate Ca2+ signaling to promote mitochondrial biogenesis, fibre type shifts and muscle hypertrophy. Then, with respect to muscle disease, we summarize the discrepancies in the literature as to whether SLN upregulation is adaptive or maladaptive in nature. This review is the first to offer the concept of SLN hormesis in muscle disease, wherein both too much and too little SLN are detrimental to muscle health. Finally, the underlying mechanisms which activate SLN upregulation are discussed, specifically acknowledging a potential positive feedback loop between SLN and Ca2+ signaling molecules.
Collapse
Affiliation(s)
- Paige J Chambers
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Emma S Juracic
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Val A Fajardo
- Department Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - A Russell Tupling
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
44
|
Mendoza AM, Karch J. Simultaneous Acquisition of Mitochondrial Calcium Retention Capacity and Swelling to Measure Permeability Transition Sensitivity. Methods Mol Biol 2022; 2497:129-140. [PMID: 35771440 PMCID: PMC10263276 DOI: 10.1007/978-1-0716-2309-1_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The loss of mitochondrial cristae integrity and mitochondrial swelling are hallmarks of multiple forms of necrotic cell death. One of the most well-studied and relevant inducers of mitochondrial swelling is matrix calcium (Ca2+). Respiring mitochondria will intake available Ca2+ into their matrix until a threshold is reached which triggers the opening of the mitochondrial permeability transition pore (MPTP). Upon opening of the pore, mitochondrial membrane potential dissipates and the mitochondria begin to swell, rendering them dysfunctional. The total amount of Ca2+ taken up by a mitochondrion prior to the engagement of the MPTP is referred to as mitochondrial Ca2+ retention capacity (CRC). The CRC/swelling assay is a useful tool for observing the dose-dependent event of mitochondrial dysfunction in real-time. In this technique, isolated mitochondria are treated with specific boluses of Ca2+ until they reach CRC and undergo swelling. A fluorometer is utilized to detect an increase in transmitted light passing through the sample as the mitochondria lose cristae density, and simultaneously measures calcium uptake by way of a Ca2+-specific membrane impermeable fluorescent dye. Here we provide a detailed protocol describing the mitochondrial CRC/swelling assay and we discuss how varying amounts of mitochondria and Ca2+ added to the system affect the dose-dependency of the assay. We also report how to validate the assay by using MPTP and calcium uptake inhibitors and troubleshooting common mistakes that occur with this approach.
Collapse
Affiliation(s)
- Arielys M Mendoza
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jason Karch
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA.
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
45
|
Guo X, Chen H, Liu Y, Yang D, Li Q, Du H, Liu M, Tang Y, Sun H. An organic molecular compound for in situ identification of mitochondrial G-quadruplexes in live cells. J Mater Chem B 2021; 10:430-437. [PMID: 34940779 DOI: 10.1039/d1tb02296b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Emerging studies have shown that mitochondrial G-quadruplex plays a critical role in regulating mitochondrial gene replication and transcription, which makes it a promising target for the diagnosis and treatment of cancer or other major diseases. Molecular compounds that can highly target the mitochondrial G-quadruplexes in live cells are essential for further revealing the function and mechanism of these G-quadruplexes. Here, we have developed an organic molecular compound that can highly target the mitochondria of living cells by virtue of the membrane potential mechanism. Then it shows high selectivity to the G-quadruplex structure in the mitochondria, and its fluorescence overlaps well with that of the BG4 antibody. Moreover, the compound has extremely low cytotoxicity and does not interfere with the natural state of G-quadruplex structure. With these good properties, this compound will have great potential in mitochondrial G-quadruplex tracking research or targeted drug screening.
Collapse
Affiliation(s)
- Xiaomeng Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Basic Medical Science, Shenyang Medical college, Shenyang, 110034, P. R. China
| | - Hongbo Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yan Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Dawei Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qian Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Hongyan Du
- Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, P. R. China
| | - Meirong Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Yalin Tang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongxia Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
46
|
Carrer A, Laquatra C, Tommasin L, Carraro M. Modulation and Pharmacology of the Mitochondrial Permeability Transition: A Journey from F-ATP Synthase to ANT. Molecules 2021; 26:molecules26216463. [PMID: 34770872 PMCID: PMC8587538 DOI: 10.3390/molecules26216463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/22/2022] Open
Abstract
The permeability transition (PT) is an increased permeation of the inner mitochondrial membrane due to the opening of the PT pore (PTP), a Ca2+-activated high conductance channel involved in Ca2+ homeostasis and cell death. Alterations of the PTP have been associated with many pathological conditions and its targeting represents an incessant challenge in the field. Although the modulation of the PTP has been extensively explored, the lack of a clear picture of its molecular nature increases the degree of complexity for any target-based approach. Recent advances suggest the existence of at least two mitochondrial permeability pathways mediated by the F-ATP synthase and the ANT, although the exact molecular mechanism leading to channel formation remains elusive for both. A full comprehension of this to-pore conversion will help to assist in drug design and to develop pharmacological treatments for a fine-tuned PT regulation. Here, we will focus on regulatory mechanisms that impinge on the PTP and discuss the relevant literature of PTP targeting compounds with particular attention to F-ATP synthase and ANT.
Collapse
|
47
|
Dubinin MV, Starinets VS, Talanov EY, Mikheeva IB, Belosludtseva NV, Serov DA, Tenkov KS, Belosludtseva EV, Belosludtsev KN. Effect of the Non-Immunosuppressive MPT Pore Inhibitor Alisporivir on the Functioning of Heart Mitochondria in Dystrophin-Deficient mdx Mice. Biomedicines 2021; 9:1232. [PMID: 34572419 PMCID: PMC8466941 DOI: 10.3390/biomedicines9091232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 01/05/2023] Open
Abstract
Supporting mitochondrial function is one of the therapeutic strategies that improve the functioning of skeletal muscle in Duchenne muscular dystrophy (DMD). In this work, we studied the effect of a non-immunosuppressive inhibitor of mitochondrial permeability transition pore (MPTP) alisporivir (5 mg/kg/day), reducing the intensity of the necrotic process and inflammation in skeletal muscles on the cardiac phenotype of dystrophin-deficient mdx mice. We found that the heart mitochondria of mdx mice show an increase in the intensity of oxidative phosphorylation and an increase in the resistance of organelles to the MPT pore opening. Alisporivir had no significant effect on the hyperfunctionalization of the heart mitochondria of mdx mice, and the state of the heart mitochondria of wild-type animals did not affect the dynamics of organelles but significantly suppressed mitochondrial biogenesis and reduced the amount of mtDNA in the heart muscle. Moreover, alisporivir suppressed mitochondrial biogenesis in the heart of wild-type mice. Alisporivir treatment resulted in a decrease in heart weight in mdx mice, which was associated with a significant modification of the transmission of excitation in the heart. The latter was also noted in the case of WT mice treated with alisporivir. The paper discusses the prospects for using alisporivir to correct the function of heart mitochondria in DMD.
Collapse
Affiliation(s)
- Mikhail V. Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (V.S.S.); (K.S.T.); (E.V.B.); (K.N.B.)
| | - Vlada S. Starinets
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (V.S.S.); (K.S.T.); (E.V.B.); (K.N.B.)
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (E.Y.T.); (I.B.M.); (N.V.B.)
| | - Eugeny Yu. Talanov
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (E.Y.T.); (I.B.M.); (N.V.B.)
| | - Irina B. Mikheeva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (E.Y.T.); (I.B.M.); (N.V.B.)
| | - Natalia V. Belosludtseva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (E.Y.T.); (I.B.M.); (N.V.B.)
| | - Dmitriy A. Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia;
| | - Kirill S. Tenkov
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (V.S.S.); (K.S.T.); (E.V.B.); (K.N.B.)
| | - Evgeniya V. Belosludtseva
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (V.S.S.); (K.S.T.); (E.V.B.); (K.N.B.)
| | - Konstantin N. Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (V.S.S.); (K.S.T.); (E.V.B.); (K.N.B.)
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (E.Y.T.); (I.B.M.); (N.V.B.)
| |
Collapse
|
48
|
Dubinin MV, Starinets VS, Talanov EY, Mikheeva IB, Belosludtseva NV, Belosludtsev KN. Alisporivir Improves Mitochondrial Function in Skeletal Muscle of mdx Mice but Suppresses Mitochondrial Dynamics and Biogenesis. Int J Mol Sci 2021; 22:9780. [PMID: 34575944 PMCID: PMC8464657 DOI: 10.3390/ijms22189780] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
Mitigation of calcium-dependent destruction of skeletal muscle mitochondria is considered as a promising adjunctive therapy in Duchenne muscular dystrophy (DMD). In this work, we study the effect of intraperitoneal administration of a non-immunosuppressive inhibitor of calcium-dependent mitochondrial permeability transition (MPT) pore alisporivir on the state of skeletal muscles and the functioning of mitochondria in dystrophin-deficient mdx mice. We show that treatment with alisporivir reduces inflammation and improves muscle function in mdx mice. These effects of alisporivir were associated with an improvement in the ultrastructure of mitochondria, normalization of respiration and oxidative phosphorylation, and a decrease in lipid peroxidation, due to suppression of MPT pore opening and an improvement in calcium homeostasis. The action of alisporivir was associated with suppression of the activity of cyclophilin D and a decrease in its expression in skeletal muscles. This was observed in both mdx mice and wild-type animals. At the same time, alisporivir suppressed mitochondrial biogenesis, assessed by the expression of Ppargc1a, and altered the dynamics of organelles, inhibiting both DRP1-mediated fission and MFN2-associated fusion of mitochondria. The article discusses the effects of alisporivir administration and cyclophilin D inhibition on mitochondrial reprogramming and networking in DMD and the consequences of this therapy on skeletal muscle health.
Collapse
Affiliation(s)
- Mikhail V. Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, 424001 Yoshkar-Ola, Russia; (V.S.S.); (K.N.B.)
| | - Vlada S. Starinets
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, 424001 Yoshkar-Ola, Russia; (V.S.S.); (K.N.B.)
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.Y.T.); (I.B.M.); (N.V.B.)
| | - Eugeny Yu. Talanov
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.Y.T.); (I.B.M.); (N.V.B.)
| | - Irina B. Mikheeva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.Y.T.); (I.B.M.); (N.V.B.)
| | - Natalia V. Belosludtseva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.Y.T.); (I.B.M.); (N.V.B.)
| | - Konstantin N. Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, 424001 Yoshkar-Ola, Russia; (V.S.S.); (K.N.B.)
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.Y.T.); (I.B.M.); (N.V.B.)
| |
Collapse
|
49
|
Giovarelli M, Zecchini S, Catarinella G, Moscheni C, Sartori P, Barbieri C, Roux-Biejat P, Napoli A, Vantaggiato C, Cervia D, Perrotta C, Clementi E, Latella L, De Palma C. Givinostat as metabolic enhancer reverting mitochondrial biogenesis deficit in Duchenne Muscular Dystrophy. Pharmacol Res 2021; 170:105751. [PMID: 34197911 DOI: 10.1016/j.phrs.2021.105751] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/11/2021] [Accepted: 06/27/2021] [Indexed: 12/13/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) is a rare disorder characterized by progressive muscle wasting, weakness, and premature death. Remarkable progress has been made in genetic approaches, restoring dystrophin, or its function. However, the targeting of secondary pathological mechanisms, such as increasing muscle blood flow or stopping fibrosis, remains important to improve the therapeutic benefits, that depend on tackling both the genetic disease and the downstream consequences. Mitochondrial dysfunctions are one of the earliest deficits in DMD, arise from multiple cellular stressors and result in less than 50% of ATP content in dystrophic muscles. Here we establish that there are two temporally distinct phases of mitochondrial damage with depletion of mitochondrial mass at early stages and an accumulation of dysfunctional mitochondria at later stages, leading to a different oxidative fibers pattern, in young and adult mdx mice. We also observe a progressive mitochondrial biogenesis impairment associated with increased deacetylation of peroxisome proliferator-activated receptor-gamma coactivator 1 α (PGC-1α) promoter. Such histone deacetylation is inhibited by givinostat that positively modifies the epigenetic profile of PGC-1α promoter, sustaining mitochondrial biogenesis and oxidative fiber type switch. We, therefore, demonstrate that givinostat exerts relevant effects at mitochondrial level, acting as a metabolic remodeling agent capable of efficiently promoting mitochondrial biogenesis in dystrophic muscle.
Collapse
MESH Headings
- Acetylation
- Animals
- Carbamates/pharmacology
- Disease Models, Animal
- Energy Metabolism/drug effects
- Epigenesis, Genetic
- Histone Deacetylase Inhibitors/pharmacology
- Mice, Inbred mdx
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/pathology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Organelle Biogenesis
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Promoter Regions, Genetic
- Mice
Collapse
Affiliation(s)
- Matteo Giovarelli
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Giorgia Catarinella
- IRCCS, Fondazione Santa Lucia, Rome 00142, Italy; DAHFMO, Unit of Histology and Medical Embryology, Sapienza, University of Rome, Rome, Italy
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Patrizia Sartori
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, via Mangiagalli 31, 20133 Milan, Italy
| | - Cecilia Barbieri
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Paulina Roux-Biejat
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Alessandra Napoli
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Chiara Vantaggiato
- Scientific Institute, IRCCS Eugenio Medea, Laboratory of Molecular Biology, via Don Luigi Monza 20, 23842 Bosisio Parini, Italy
| | - Davide Cervia
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy; Scientific Institute, IRCCS Eugenio Medea, Laboratory of Molecular Biology, via Don Luigi Monza 20, 23842 Bosisio Parini, Italy
| | - Lucia Latella
- IRCCS, Fondazione Santa Lucia, Rome 00142, Italy; Institute of Translational Pharmacology, National Research Council of Italy, Via Fosso del Cavaliere 100, Rome 00133, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano, via L. Vanvitelli 32, 20129 Milan, Italy.
| |
Collapse
|
50
|
Martins SG, Zilhão R, Thorsteinsdóttir S, Carlos AR. Linking Oxidative Stress and DNA Damage to Changes in the Expression of Extracellular Matrix Components. Front Genet 2021; 12:673002. [PMID: 34394183 PMCID: PMC8358603 DOI: 10.3389/fgene.2021.673002] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Cells are subjected to endogenous [e.g., reactive oxygen species (ROS), replication stress] and exogenous insults (e.g., UV light, ionizing radiation, and certain chemicals), which can affect the synthesis and/or stability of different macromolecules required for cell and tissue function. Oxidative stress, caused by excess ROS, and DNA damage, triggered in response to different sources, are countered and resolved by specific mechanisms, allowing the normal physiological equilibrium of cells and tissues to be restored. One process that is affected by oxidative stress and DNA damage is extracellular matrix (ECM) remodeling, which is a continuous and highly controlled mechanism that allows tissues to readjust in reaction to different challenges. The crosstalk between oxidative stress/DNA damage and ECM remodeling is not unidirectional. Quite on the contrary, mutations in ECM genes have a strong impact on tissue homeostasis and are characterized by increased oxidative stress and potentially also accumulation of DNA damage. In this review, we will discuss how oxidative stress and DNA damage affect the expression and deposition of ECM molecules and conversely how mutations in genes encoding ECM components trigger accumulation of oxidative stress and DNA damage. Both situations hamper the reestablishment of cell and tissue homeostasis, with negative impacts on tissue and organ function, which can be a driver for severe pathological conditions.
Collapse
Affiliation(s)
- Susana G Martins
- Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Rita Zilhão
- Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Sólveig Thorsteinsdóttir
- Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Rita Carlos
- Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|