1
|
Zhao W, Modak A, Ross SR. DHX15 inhibits mouse APOBEC3 deamination. PLoS Pathog 2025; 21:e1013045. [PMID: 40168451 PMCID: PMC11990775 DOI: 10.1371/journal.ppat.1013045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 04/11/2025] [Accepted: 03/14/2025] [Indexed: 04/03/2025] Open
Abstract
APOBEC3 family proteins are critical host factors that counteract and prevent the replication of retroviruses and other viruses through cytidine deamination. Human APOBEC3 proteins inactivate HIV-1 through the introduction of lethal mutations to viral genomes. In contrast, mouse APOBEC3 does not induce DNA hypermutation of murine retroviruses, although it retains functional cytidine deaminase activity. Why mouse APOBEC3 does not effectively deaminate murine retroviruses is still unknown. In this study, we found that the dead box helicase DHX15 interacts with mouse APOBEC3 and inhibits its deamination activity. DHX15 was packaged into murine leukemia virus (MLV) virions independent of its binding with APOBEC3. Moreover, DHX15 knockdown inhibited MLV replication and resulted in more G-to-A mutations in proviral DNA. Finally, DHX15 knockdown induced DNA damage in murine cells, suggesting that it plays a role in preserving genome integrity in cells expressing mouse APOBEC3 protein.
Collapse
Affiliation(s)
- Wenming Zhao
- Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Ayan Modak
- Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Susan R. Ross
- Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
2
|
Guerrero JF, Zimdars LL, Bruce JW, Becker JT, Evans EL, Torabi S, Striker R, Berry SM, Sherer NM. Single-cell delineation of strain-specific HIV-1 Vif activities using dual reporter sensor cells and live cell imaging. J Virol 2025; 99:e0157924. [PMID: 39998123 PMCID: PMC11915839 DOI: 10.1128/jvi.01579-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) genome diversification is a key determinant of viral evolution and the pathogenesis of HIV/AIDS. Antiretroviral therapy is non-curative, and in the context of monitoring the latent reservoir, precision tools are needed to detect and enumerate HIV-1 genomes as well as to assess their heterogeneity, replication potential, and predict responses to therapy. Current sequencing-based methodologies are often unable to confirm intact genomes and most cell-based reporters provide limited information pertaining to viral fitness. In this study, we describe dual reporter sensor cells (DRSCs), an imaging-based reporter system designed to detect HIV-1 infection and measure several independent attributes of the virus in a single-cell high-content assay. We show that the DRSC assay can be used to measure infection, viral gene activation kinetics, and quantify viral circumvention of host antiviral responses. Using the DRSCs, we confirmed markedly different functional heterogeneity for vif alleles derived from diverse HIV-1 strains and subtypes affecting both rates of APOBEC3G degradation and the cell cycle. Furthermore, the assay allowed for the delineation of virus co-receptor preference (X4- vs R5-tropism) and visualization of virion assembly. Overall, our study illustrates proof-of-principle for a multivariate imaging-based cell-based system capable of detecting HIV-1 and studying viral genetic variability with greater data richness relative to prior available modalities. IMPORTANCE Human immunodeficiency virus type 1 (HIV-1) is highly heterogeneous and constantly mutating. These changes drive immune evasion and can cause treatment efforts to fail. Here, we describe the "dual reporter sensor cell" (DRSC) assay; a novel imaging-based approach that allows for the detection of HIV-1 infection coupled with a multivariate definition of several independent phenotypic aspects of viral genome activity in a single integrated assay. We validate the DRSC system by studying lab-adapted and patient isolate-derived versions of the viral Vif accessory protein, confirming marked differences in the capacity of diverse vif alleles to mediate downregulation of antiviral APOBEC3G proteins and dysregulate the cell cycle.
Collapse
Affiliation(s)
- Jorge F. Guerrero
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Laraine L. Zimdars
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James W. Bruce
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jordan T. Becker
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Edward L. Evans
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Soroosh Torabi
- Department of Mechanical Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Rob Striker
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Scott M. Berry
- Department of Mechanical Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Nathan M. Sherer
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Ghone D, Evans EL, Bandini M, Stephenson KG, Sherer NM, Suzuki A. HIV-1 Vif disrupts phosphatase feedback regulation at the kinetochore, leading to a pronounced pseudo-metaphase arrest. eLife 2025; 13:RP101136. [PMID: 40080415 PMCID: PMC11906157 DOI: 10.7554/elife.101136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Abstract
Virion Infectivity Factor (Vif) of the Human Immunodeficiency Virus type 1 (HIV-1) targets and degrades cellular APOBEC3 proteins, key regulators of intrinsic and innate antiretroviral immune responses, thereby facilitating HIV-1 infection. While Vif's role in degrading APOBEC3G is well-studied, Vif is also known to cause cell cycle arrest, but the detailed nature of Vif's effects on the cell cycle has yet to be delineated. In this study, we employed high-temporal resolution single-cell live imaging and super-resolution microscopy to monitor individual cells during Vif-induced cell cycle arrest. Our findings reveal that Vif does not affect the G2/M boundary as previously thought. Instead, Vif triggers a unique and robust pseudo-metaphase arrest, distinct from the mild prometaphase arrest induced by Vpr. During this arrest, chromosomes align properly and form the metaphase plate, but later lose alignment, resulting in polar chromosomes. Notably, Vif, unlike Vpr, significantly reduces the levels of both Protein Phosphatase 1 (PP1) and 2 A (PP2A) at kinetochores, which regulate chromosome-microtubule interactions. These results unveil a novel role for Vif in kinetochore regulation that governs the spatial organization of chromosomes during mitosis.
Collapse
Affiliation(s)
- Dhaval Ghone
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-MadisonMadisonUnited States
- Biophysics Graduate Program, University of Wisconsin-MadisonMadisonUnited States
| | - Edward L Evans
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-MadisonMadisonUnited States
- Cancer Biology Graduate Program, University of Wisconsin-MadisonMadisonUnited States
- Institute for Molecular Virology, University of Wisconsin-MadisonMadisonUnited States
| | - Madison Bandini
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-MadisonMadisonUnited States
- Cancer Biology Graduate Program, University of Wisconsin-MadisonMadisonUnited States
- Institute for Molecular Virology, University of Wisconsin-MadisonMadisonUnited States
| | - Kaelyn G Stephenson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-MadisonMadisonUnited States
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-MadisonMadisonUnited States
- Institute for Molecular Virology, University of Wisconsin-MadisonMadisonUnited States
- Carbone Comprehensive Cancer Center, University of Wisconsin-MadisonMadisonUnited States
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-MadisonMadisonUnited States
- Carbone Comprehensive Cancer Center, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
4
|
González SA, Affranchino JL. The life cycle of feline immunodeficiency virus. Virology 2025; 601:110304. [PMID: 39561619 DOI: 10.1016/j.virol.2024.110304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Feline immunodeficiency virus (FIV) is a retrovirus of worldwide distribution that can cause an acquired immunodeficiency disease in domestic cats. FIV and the primate lentiviruses, human and simian immunodeficiency viruses (HIV and SIV, respectively) share structural and biological features but also exhibit important differences, which reflect both their evolutionary relationship and divergence. Given that FIV is not only an important cat pathogen but also a useful model for certain aspects of HIV-1 infections in humans, the study of FIV biology is highly relevant. In this review we provide an updated description of the molecular mechanisms involved in each stage of the FIV life cycle.
Collapse
Affiliation(s)
- Silvia A González
- Laboratorio de Virología, Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano (UB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - José L Affranchino
- Centro de Virología Humana y Animal (CEVHAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Abierta Interamericana (UAI), Buenos Aires, Argentina
| |
Collapse
|
5
|
Lewitus E, Li Y, Rolland M. HIV-1 Vif global diversity and possible APOBEC-mediated response since 1980. Virus Evol 2024; 11:veae108. [PMID: 39886100 PMCID: PMC11781276 DOI: 10.1093/ve/veae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/04/2024] [Accepted: 12/10/2024] [Indexed: 02/01/2025] Open
Abstract
HIV-1 Vif's principal function is to counter the antiretroviral activities of DNA-editing APOBEC3 cytidine deaminases. Unconstrained APOBEC3 activity introduces premature stop codons in HIV-1 genes and can lead to viral inactivation. To investigate the evolution and diversification of Vif over the HIV-1 pandemic and document evidence of APOBEC3-mediated pressure, we analyzed 4612 publicly available sequences derived from 10 dominant subtypes and circulating recombinant forms (CRFs) using the Hervé platform. We found widespread evidence of diversifying selection that was convergent across subtypes and CRFs, but remarkable stability in consensus sequences over time. Divergence and selection did not favor APOBEC3-interacting sites. We furthermore found that APOBEC3-induced substitutions in env and gag-pol genes increased over time and were positively associated with vif diversity. These results suggest that APOBEC3-driven adaptation in Vif is relatively rare and that permissiveness to human APOBEC3-induced substitution as a mechanism for generating diversity may be advantageous to HIV-1 evolution.
Collapse
Affiliation(s)
- Eric Lewitus
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr, Bethesda, MD 20817, USA
| | - Yifan Li
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr, Bethesda, MD 20817, USA
| | - Morgane Rolland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr, Bethesda, MD 20817, USA
| |
Collapse
|
6
|
Li Z, Luo L, Ju X, Huang S, Lei L, Yu Y, Liu J, Zhang P, Chi T, Ma P, Huang C, Huang X, Ding Q, Zhang Y. Viral N protein hijacks deaminase-containing RNA granules to enhance SARS-CoV-2 mutagenesis. EMBO J 2024; 43:6444-6468. [PMID: 39567830 PMCID: PMC11649915 DOI: 10.1038/s44318-024-00314-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
Host cell-encoded deaminases act as antiviral restriction factors to impair viral replication and production through introducing mutations in the viral genome. We sought to understand whether deaminases are involved in SARS-CoV-2 mutation and replication, and how the viral factors interact with deaminases to trigger these processes. Here, we show that APOBEC and ADAR deaminases act as the driving forces for SARS-CoV-2 mutagenesis, thereby blocking viral infection and production. Mechanistically, SARS-CoV-2 nucleocapsid (N) protein, which is responsible for packaging viral genomic RNA, interacts with host deaminases and co-localizes with them at stress granules to facilitate viral RNA mutagenesis. N proteins from several coronaviruses interact with host deaminases at RNA granules in a manner dependent on its F17 residue, suggesting a conserved role in modulation of viral mutagenesis in other coronaviruses. Furthermore, mutant N protein bearing a F17A substitution cannot localize to deaminase-containing RNA granules and leads to reduced mutagenesis of viral RNA, providing support for its function in enhancing deaminase-dependent viral RNA editing. Our study thus provides further insight into virus-host cell interactions mediating SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Zhean Li
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingling Luo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiaohui Ju
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Shisheng Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Liqun Lei
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanying Yu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Pumin Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Tian Chi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xingxu Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Qiang Ding
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China.
| | - Yu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.
| |
Collapse
|
7
|
Ghone D, Evans EL, Bandini M, Stephenson KG, Sherer NM, Suzuki A. HIV-1 Vif disrupts phosphatase feedback regulation at the kinetochore, leading to a pronounced pseudo-metaphase arrest. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605839. [PMID: 39131328 PMCID: PMC11312601 DOI: 10.1101/2024.07.30.605839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Virion Infectivity Factor (Vif) of the Human Immunodeficiency Virus type 1 (HIV-1) targets and degrades cellular APOBEC3 proteins, key regulators of intrinsic and innate antiretroviral immune responses, thereby facilitating HIV-1 infection. While Vif's role in degrading APOBEC3G is well-studied, Vif is also known to cause cell cycle arrest, but the detailed nature of Vif's effects on the cell cycle has yet to be delineated. In this study, we employed high-temporal single-cell live imaging and super-resolution microscopy to monitor individual cells during Vif-induced cell cycle arrest. Our findings reveal that Vif does not affect the G2/M boundary as previously thought. Instead, Vif triggers a unique and robust pseudo-metaphase arrest, distinct from the mild prometaphase arrest induced by Vpr. During this arrest, chromosomes align properly and form the metaphase plate, but later lose alignment, resulting in polar chromosomes. Notably, Vif, unlike Vpr, significantly reduces the levels of both Protein Phosphatase 1 (PP1) and 2A (PP2A) at kinetochores, which regulate chromosome-microtubule interactions. These results unveil a novel role for Vif in kinetochore regulation that governs the spatial organization of chromosomes during mitosis.
Collapse
Affiliation(s)
- Dhaval Ghone
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- These authors contributed equally
| | - Edward L. Evans
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Cancer Biology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- These authors contributed equally
- Present address: Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Madison Bandini
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Cancer Biology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Kaelyn G. Stephenson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nathan M. Sherer
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Lead contact
| |
Collapse
|
8
|
Campagna R, Nonne C, Antonelli G, Turriziani O. Archived HIV-1 Drug Resistance Mutations: Role of Proviral HIV-1 DNA Genotype for the Management of Virological Responder People Living with HIV. Viruses 2024; 16:1697. [PMID: 39599811 PMCID: PMC11599110 DOI: 10.3390/v16111697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Despite its effectiveness in controlling plasma viremia, antiretroviral therapy (ART) cannot target proviral DNA, which remains an obstacle to HIV-1 eradication. When treatment is interrupted, the reservoirs can act as a source of viral rebound, highlighting the value of proviral DNA as an additional source of information on an individual's overall resistance burden. In cases where the viral load is too low for successful HIV-1 RNA genotyping, HIV-1 DNA can help identify resistance mutations in treated individuals. The absence of treatment history, the need to adjust ART despite undetectable viremia, or the presence of LLV further support the use of genotypic resistance tests (GRTs) on HIV-1 DNA. Conventionally, GRTs have been achieved through Sanger sequencing, but the advances in NGS are leading to an increase in its use, allowing the detection of minority variants present in less than 20% of the viral population. The clinical significance of these mutations remains under debate, with interpretations varying based on context. Additionally, proviral DNA is subject to APOBEC3-induced hypermutation, which can lead to defective, nonviable viral genomes, a factor that must be considered when performing GRTs on HIV-1 DNA.
Collapse
Affiliation(s)
- Roberta Campagna
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (C.N.); (G.A.); (O.T.)
| | | | | | | |
Collapse
|
9
|
Chang T, Alvarez J, Chappidi S, Crockett S, Sorouri M, Orchard RC, Hancks DC. Metabolic reprogramming tips vaccinia virus infection outcomes by stabilizing interferon-γ induced IRF1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617691. [PMID: 39416205 PMCID: PMC11482883 DOI: 10.1101/2024.10.10.617691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Interferon (IFN) induced activities are critical, early determinants of immune responses and infection outcomes. A key facet of IFN responses is the upregulation of hundreds of mRNAs termed interferon-stimulated genes (ISGs) that activate intrinsic and cell-mediated defenses. While primary interferon signaling is well-delineated, other layers of regulation are less explored but implied by aberrant ISG expression signatures in many diseases in the absence of infection. Consistently, our examination of tonic ISG levels across uninfected human tissues and individuals revealed three ISG subclasses. As tissue identity and many comorbidities with increased virus susceptibility are characterized by differences in metabolism, we characterized ISG responses in cells grown in media known to favor either aerobic glycolysis (glucose) or oxidative phosphorylation (galactose supplementation). While these conditions over time had a varying impact on the expression of ISG RNAs, the differences were typically greater between treatments than between glucose/galactose. Interestingly, extended interferon-priming led to divergent expression of two ISG proteins: upregulation of IRF1 in IFN-γ/glucose and increased IFITM3 in galactose by IFN-α and IFN-γ. In agreement with a hardwired response, glucose/galactose regulation of interferon-γ induced IRF1 is conserved in unrelated mouse and cat cell types. In galactose conditions, proteasome inhibition restored interferon-γ induced IRF1 levels to that of glucose/interferon-γ. Glucose/interferon-γ decreased replication of the model poxvirus vaccinia at low MOI and high MOIs. Vaccinia replication was restored by IRF1 KO. In contrast, but consistent with differential regulation of IRF1 protein by glucose/galactose, WT and IRF1 KO cells in galactose media supported similar levels of vaccinia replication regardless of IFN-γ priming. Also associated with glucose/galactose is a seemingly second block at a very late stage in viral replication which results in reductions in herpes- and poxvirus titers but not viral protein expression. Collectively, these data illustrate a novel layer of regulation for the key ISG protein, IRF1, mediated by glucose/galactose and imply unappreciated subprograms embedded in the interferon response. In principle, such cellular circuitry could rapidly adapt immune responses by sensing changing metabolite levels consumed during viral replication and cell proliferation.
Collapse
|
10
|
Chang T, Alvarez J, Chappidi S, Crockett S, Sorouri M, Orchard RC, Hancks DC. Metabolic reprogramming tips vaccinia virus infection outcomes by stabilizing interferon-γ induced IRF1. PLoS Pathog 2024; 20:e1012673. [PMID: 39475961 PMCID: PMC11554218 DOI: 10.1371/journal.ppat.1012673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/11/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Interferon (IFN) induced activities are critical, early determinants of immune responses and infection outcomes. A key facet of IFN responses is the upregulation of hundreds of mRNAs termed interferon-stimulated genes (ISGs) that activate intrinsic and cell-mediated defenses. While primary interferon signaling is well-delineated, other layers of regulation are less explored but implied by aberrant ISG expression signatures in many diseases in the absence of infection. Consistently, our examination of tonic ISG levels across uninfected human tissues and individuals revealed three ISG subclasses. As tissue identity and many comorbidities with increased virus susceptibility are characterized by differences in metabolism, we characterized ISG responses in cells grown in media known to favor either aerobic glycolysis (glucose) or oxidative phosphorylation (galactose supplementation). While these conditions over time had a varying impact on the expression of ISG RNAs, the differences were typically greater between treatments than between glucose/galactose. Interestingly, extended interferon-priming led to divergent expression of two ISG proteins: upregulation of IRF1 in IFN-γ/glucose and increased IFITM3 in galactose by IFN-α and IFN-γ. In agreement with a hardwired response, glucose/galactose regulation of interferon-γ induced IRF1 is conserved in unrelated mouse and cat cell types. In galactose conditions, proteasome inhibition restored interferon-γ induced IRF1 levels to that of glucose/interferon-γ. Glucose/interferon-γ decreased replication of the model poxvirus vaccinia at low MOI and high MOIs. Vaccinia replication was restored by IRF1 KO. In contrast, but consistent with differential regulation of IRF1 protein by glucose/galactose, WT and IRF1 KO cells in galactose media supported similar levels of vaccinia replication regardless of IFN-γ priming. Also associated with glucose/galactose is a seemingly second block at a very late stage in viral replication which results in reductions in herpes- and poxvirus titers but not viral protein expression. Collectively, these data illustrate a novel layer of regulation for the key ISG protein, IRF1, mediated by glucose/galactose and imply unappreciated subprograms embedded in the interferon response. In principle, such cellular circuitry could rapidly adapt immune responses by sensing changing metabolite levels consumed during viral replication and cell proliferation.
Collapse
Affiliation(s)
- Tyron Chang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Genetics, Development, and Disease Ph.D. program, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jessica Alvarez
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Molecular Microbiology Ph.D. program, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Sruthi Chappidi
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Stacey Crockett
- Molecular Microbiology Ph.D. program, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Mahsa Sorouri
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Robert C. Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Dustin C. Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
11
|
Hu Y, Delviks-Frankenberry KA, Wu C, Arizaga F, Pathak VK, Xiong Y. Structural insights into PPP2R5A degradation by HIV-1 Vif. Nat Struct Mol Biol 2024; 31:1492-1501. [PMID: 38789685 DOI: 10.1038/s41594-024-01314-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/11/2024] [Indexed: 05/26/2024]
Abstract
HIV-1 Vif recruits host cullin-RING-E3 ubiquitin ligase and CBFβ to degrade the cellular APOBEC3 antiviral proteins through diverse interactions. Recent evidence has shown that Vif also degrades the regulatory subunits PPP2R5(A-E) of cellular protein phosphatase 2A to induce G2/M cell cycle arrest. As PPP2R5 proteins bear no functional or structural resemblance to A3s, it is unclear how Vif can recognize different sets of proteins. Here we report the cryogenic-electron microscopy structure of PPP2R5A in complex with HIV-1 Vif-CBFβ-elongin B-elongin C at 3.58 Å resolution. The structure shows PPP2R5A binds across the Vif molecule, with biochemical and cellular studies confirming a distinct Vif-PPP2R5A interface that partially overlaps with those for A3s. Vif also blocks a canonical PPP2R5A substrate-binding site, indicating that it suppresses the phosphatase activities through both degradation-dependent and degradation-independent mechanisms. Our work identifies critical Vif motifs regulating the recognition of diverse A3 and PPP2R5A substrates, whereby disruption of these host-virus protein interactions could serve as potential targets for HIV-1 therapeutics.
Collapse
Affiliation(s)
- Yingxia Hu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Krista A Delviks-Frankenberry
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Chunxiang Wu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Fidel Arizaga
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
12
|
Kumagai K, Kamba K, Suzuki T, Sekikawa Y, Yuki C, Hamada M, Nagata K, Takaori-Kondo A, Wan L, Katahira M, Nagata T, Sakamoto T. Selection and characterization of aptamers targeting the Vif-CBFβ-ELOB-ELOC-CUL5 complex. J Biochem 2024; 176:205-215. [PMID: 38740386 DOI: 10.1093/jb/mvae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/18/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024] Open
Abstract
The viral infectivity factor (Vif) of human immunodeficiency virus 1 forms a complex with host proteins, designated as Vif-CBFβ-ELOB-ELOC-CUL5 (VβBCC), initiating the ubiquitination and subsequent proteasomal degradation of the human antiviral protein APOBEC3G (A3G), thereby negating its antiviral function. Whilst recent cryo-electron microscopy (cryo-EM) studies have implicated RNA molecules in the Vif-A3G interaction that leads to A3G ubiquitination, our findings indicated that the VβBCC complex can also directly impede A3G-mediated DNA deamination, bypassing the proteasomal degradation pathway. Employing the Systematic Evolution of Ligands by EXponential enrichment (SELEX) method, we have identified RNA aptamers with high affinity for the VβBCC complex. These aptamers not only bind to the VβBCC complex but also reinstate A3G's DNA deamination activity by inhibiting the complex's function. Moreover, we delineated the sequences and secondary structures of these aptamers, providing insights into the mechanistic aspects of A3G inhibition by the VβBCC complex. Analysis using selected aptamers will enhance our understanding of the inhibition of A3G by the VβBCC complex, offering potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Kazuyuki Kumagai
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Keisuke Kamba
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takuya Suzuki
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Yuto Sekikawa
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Chisato Yuki
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku,Tokyo 169-8555, Japan
| | - Michiaki Hamada
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku,Tokyo 169-8555, Japan
| | - Kayoko Nagata
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Li Wan
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Taiichi Sakamoto
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| |
Collapse
|
13
|
Niu X, Zhao Y, Zhang T, Sun Y, Wei Z, Fu K, Li J, Tang M, Wan W, Gao X, Chen H, Qi R, Song B. Comprehensive succinylome analyses reveal that hyperthermia upregulates lysine succinylation of annexin A2 by downregulating sirtuin7 in human keratinocytes. J Transl Int Med 2024; 12:424-436. [PMID: 39360157 PMCID: PMC11444469 DOI: 10.2478/jtim-2022-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023] Open
Abstract
Background and Objectives Local hyperthermia at 44°C can clear multiple human papillomavirus (HPV)-infected skin lesions (warts) by targeting a single lesion, which is considered as a success of inducing antiviral immunity in the human body. However, approximately 30% of the patients had a lower response to this intervention. To identify novel molecular targets for anti-HPV immunity induction to improve local hyperthermia efficacy, we conducted a lysine succinylome assay in HaCaT cells (subjected to 44°C and 37°C water baths for 30 min). Methods The succinylome analysis was conducted on HaCaT subjected to 44°C and 37°C water bath for 30 min using antibody affinity enrichment together with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results were validated by western blot (WB), immunoprecipitation (IP), and co-immunoprecipitation (Co-IP). Then, bioinformatic analysis including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, motif characterization, secondary structure, and protein-protein interaction (PPI) was performed. Results A total of 119 proteins with 197 succinylated sites were upregulated in 44°C-treated HaCaT cells. GO annotation demonstrated that differential proteins were involved in the immune system process and viral transcription. Succinylation was significantly upregulated in annexin A2. We found that hyperthermia upregulated the succinylated level of global proteins in HaCaT cells by downregulating the desuccinylase sirtuin7 (SIRT7), which can interact with annexin A2. Conclusions Taken together, these data indicated that succinylation of annexin A2 may serve as a new drug target, which could be intervened in combination with local hyperthermia for better treatment of cutaneous warts.
Collapse
Affiliation(s)
- Xueli Niu
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- Key Laboratory of Immunodermatology, National Health Commission of the People’s Republic of China, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Yiping Zhao
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- Key Laboratory of Immunodermatology, National Health Commission of the People’s Republic of China, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Tao Zhang
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of Stem Cell and Regenerative Medicine, China Medical University, Shenyang110122, Liaoning Province, China
| | - Yuzhe Sun
- Department of Dermatology, Dermatological Hospital of Southern Medical University, Guangzhou510091, Guangdong Province, China
| | - Zhendong Wei
- Department of Dermatology, The 2nd Affiliated Hospital of Dalian Medical University, Dalian116027, Liaoning Province, China
| | - Kangle Fu
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- Key Laboratory of Immunodermatology, National Health Commission of the People’s Republic of China, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Jingyi Li
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, CardiffUK
| | - Mingsui Tang
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, CardiffUK
| | - Wenyu Wan
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- Key Laboratory of Immunodermatology, National Health Commission of the People’s Republic of China, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Xinghua Gao
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- Key Laboratory of Immunodermatology, National Health Commission of the People’s Republic of China, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Hongduo Chen
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- Key Laboratory of Immunodermatology, National Health Commission of the People’s Republic of China, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Ruiqun Qi
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- Key Laboratory of Immunodermatology, National Health Commission of the People’s Republic of China, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Bing Song
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, CardiffUK
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, Guangdong Province, China
| |
Collapse
|
14
|
Byun H, Singh GB, Xu WK, Das P, Reyes A, Battenhouse A, Wylie DC, Santiago ML, Lozano MM, Dudley JP. Apobec-mediated retroviral hypermutation in vivo is dependent on mouse strain. PLoS Pathog 2024; 20:e1012505. [PMID: 39208378 PMCID: PMC11389910 DOI: 10.1371/journal.ppat.1012505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 09/11/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Replication of the complex retrovirus mouse mammary tumor virus (MMTV) is antagonized by murine Apobec3 (mA3), a member of the Apobec family of cytidine deaminases. We have shown that MMTV-encoded Rem protein inhibits proviral mutagenesis by the Apobec enzyme, activation-induced cytidine deaminase (AID) during viral replication in BALB/c mice. To further study the role of Rem in vivo, we have infected C57BL/6 (B6) mice with a superantigen-independent lymphomagenic strain of MMTV (TBLV-WT) or a mutant strain that is defective in Rem and its cleavage product Rem-CT (TBLV-SD). Compared to BALB/c, B6 mice were more susceptible to TBLV infection and tumorigenesis. Furthermore, unlike MMTV, TBLV induced T-cell tumors in B6 μMT mice, which lack membrane-bound IgM and conventional B-2 cells. At limiting viral doses, loss of Rem expression in TBLV-SD-infected B6 mice accelerated tumorigenesis compared to TBLV-WT in either wild-type B6 or AID-knockout mice. Unlike BALB/c results, high-throughput sequencing indicated that proviral G-to-A or C-to-T mutations were unchanged regardless of Rem expression in B6 tumors. However, knockout of both AID and mA3 reduced G-to-A mutations. Ex vivo stimulation showed higher levels of mA3 relative to AID in B6 compared to BALB/c splenocytes, and effects of agonists differed in the two strains. RNA-Seq revealed increased transcripts related to growth factor and cytokine signaling in TBLV-SD-induced tumors relative to TBLV-WT-induced tumors, consistent with another Rem function. Thus, Rem-mediated effects on tumorigenesis in B6 mice are independent of Apobec-mediated proviral hypermutation.
Collapse
Affiliation(s)
- Hyewon Byun
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Gurvani B Singh
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Wendy Kaichun Xu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Poulami Das
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Alejandro Reyes
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Anna Battenhouse
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, Texas, United States of America
| | - Dennis C Wylie
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, Texas, United States of America
| | - Mario L Santiago
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Mary M Lozano
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jaquelin P Dudley
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
- LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
15
|
Anes E, Azevedo-Pereira JM, Pires D. Role of Type I Interferons during Mycobacterium tuberculosis and HIV Infections. Biomolecules 2024; 14:848. [PMID: 39062562 PMCID: PMC11275242 DOI: 10.3390/biom14070848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Tuberculosis and AIDS remain two of the most relevant human infectious diseases. The pathogens that cause them, Mycobacterium tuberculosis (Mtb) and HIV, individually elicit an immune response that treads the line between beneficial and detrimental to the host. Co-infection further complexifies this response since the different cytokines acting on one infection might facilitate the dissemination of the other. In these responses, the role of type I interferons is often associated with antiviral mechanisms, while for bacteria such as Mtb, their importance and clinical relevance as a suitable target for manipulation are more controversial. In this article, we review the recent knowledge on how these interferons play distinct roles and sometimes have opposite consequences depending on the stage of the pathogenesis. We highlight the dichotomy between the acute and chronic infections displayed by both infections and how type I interferons contribute to an initial control of each infection individually, while their chronic induction, particularly during HIV infection, might facilitate Mtb primo-infection and progression to disease. We expect that further findings and their systematization will allow the definition of windows of opportunity for interferon manipulation according to the stage of infection, contributing to pathogen clearance and control of immunopathology.
Collapse
Affiliation(s)
- Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.M.A.-P.); (D.P.)
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.M.A.-P.); (D.P.)
| | - David Pires
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.M.A.-P.); (D.P.)
- Center for Interdisciplinary Research in Health, Católica Medical School, Universidade Católica Portuguesa, Estrada Octávio Pato, 2635-631 Rio de Mouro, Portugal
| |
Collapse
|
16
|
Obregon-Perko V, Mannino A, Ladner JT, Hodara V, Ebrahimi D, Parodi L, Callery J, Palacios G, Giavedoni LD. Adaptation of SIVmac to baboon primary cells results in complete absence of in vivo baboon infectivity. Front Cell Infect Microbiol 2024; 14:1408245. [PMID: 39006742 PMCID: PMC11239360 DOI: 10.3389/fcimb.2024.1408245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/04/2024] [Indexed: 07/16/2024] Open
Abstract
While simian immunodeficiency virus (SIV) infection is non-pathogenic in naturally infected African nonhuman primate hosts, experimental or accidental infection in rhesus macaques often leads to AIDS. Baboons, widely distributed throughout Africa, do not naturally harbor SIV, and experimental infection of baboons with SIVmac results in transient low-level viral replication. Elucidation of mechanisms of natural immunity in baboons could uncover new targets of antiviral intervention. We tested the hypothesis that an SIVmac adapted to replicate in baboon primary cells will gain the capacity to establish chronic infections in vivo. Here, we generated SIVmac variants in baboon cells through serial passage in PBMC from different donors (SIVbn-PBMC s1), in PBMC from the same donors (SIVbn-PBMC s2), or in isolated CD4 cells from the same donors used for series 2 (SIVbn-CD4). While SIVbn-PBMC s1 and SIVbn-CD4 demonstrated increased replication capacity, SIVbn-PBMC s2 did not. Pharmacological blockade of CCR5 revealed SIVbn-PBMC s1 could more efficiently use available CCR5 than SIVmac, a trait we hypothesize arose to circumvent receptor occupation by chemokines. Sequencing analysis showed that all three viruses accumulated different types of mutations, and that more non-synonymous mutations became fixed in SIVbn-PBMC s1 than SIVbn-PBMC s2 and SIVbn-CD4, supporting the notion of stronger fitness pressure in PBMC from different genetic backgrounds. Testing the individual contribution of several newly fixed SIV mutations suggested that is the additive effect of these mutations in SIVbn-PBMC s1 that contributed to its enhanced fitness, as recombinant single mutant viruses showed no difference in replication capacity over the parental SIVmac239 strain. The replicative capacity of SIVbn-PBMC passage 4 (P4) s1 was tested in vivo by infecting baboons intravenously with SIVbn-PBMC P4 s1 or SIVmac251. While animals infected with SIVmac251 showed the known pattern of transient low-level viremia, animals infected with SIVbn-PBMC P4 s1 had undetectable viremia or viral DNA in lymphoid tissue. These studies suggest that adaptation of SIV to grow in baboon primary cells results in mutations that confer increased replicative capacity in the artificial environment of cell culture but make the virus unable to avoid the restrictive factors generated by a complex multicellular organism.
Collapse
Affiliation(s)
| | - Amanda Mannino
- Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Jason T. Ladner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Vida Hodara
- Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Diako Ebrahimi
- Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Laura Parodi
- Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Jessica Callery
- Department of Biology, Trinity University, San Antonio, TX, United States
| | - Gustavo Palacios
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Luis D. Giavedoni
- Department of Biology, Trinity University, San Antonio, TX, United States
| |
Collapse
|
17
|
Arribas L, Menéndez-Arias L, Betancor G. May I Help You with Your Coat? HIV-1 Capsid Uncoating and Reverse Transcription. Int J Mol Sci 2024; 25:7167. [PMID: 39000271 PMCID: PMC11241228 DOI: 10.3390/ijms25137167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) capsid is a protein core formed by multiple copies of the viral capsid (CA) protein. Inside the capsid, HIV-1 harbours all the viral components required for replication, including the genomic RNA and viral enzymes reverse transcriptase (RT) and integrase (IN). Upon infection, the RT transforms the genomic RNA into a double-stranded DNA molecule that is subsequently integrated into the host chromosome by IN. For this to happen, the viral capsid must open and release the viral DNA, in a process known as uncoating. Capsid plays a key role during the initial stages of HIV-1 replication; therefore, its stability is intimately related to infection efficiency, and untimely uncoating results in reverse transcription defects. How and where uncoating takes place and its relationship with reverse transcription is not fully understood, but the recent development of novel biochemical and cellular approaches has provided unprecedented detail on these processes. In this review, we present the latest findings on the intricate link between capsid stability, reverse transcription and uncoating, the different models proposed over the years for capsid uncoating, and the role played by other cellular factors on these processes.
Collapse
Affiliation(s)
- Laura Arribas
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain;
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), 28049 Madrid, Spain;
| | - Gilberto Betancor
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain;
| |
Collapse
|
18
|
Roesmann F, Müller L, Klaassen K, Heß S, Widera M. Interferon-Regulated Expression of Cellular Splicing Factors Modulates Multiple Levels of HIV-1 Gene Expression and Replication. Viruses 2024; 16:938. [PMID: 38932230 PMCID: PMC11209495 DOI: 10.3390/v16060938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Type I interferons (IFN-Is) are pivotal in innate immunity against human immunodeficiency virus I (HIV-1) by eliciting the expression of IFN-stimulated genes (ISGs), which encompass potent host restriction factors. While ISGs restrict the viral replication within the host cell by targeting various stages of the viral life cycle, the lesser-known IFN-repressed genes (IRepGs), including RNA-binding proteins (RBPs), affect the viral replication by altering the expression of the host dependency factors that are essential for efficient HIV-1 gene expression. Both the host restriction and dependency factors determine the viral replication efficiency; however, the understanding of the IRepGs implicated in HIV-1 infection remains greatly limited at present. This review provides a comprehensive overview of the current understanding regarding the impact of the RNA-binding protein families, specifically the two families of splicing-associated proteins SRSF and hnRNP, on HIV-1 gene expression and viral replication. Since the recent findings show specifically that SRSF1 and hnRNP A0 are regulated by IFN-I in various cell lines and primary cells, including intestinal lamina propria mononuclear cells (LPMCs) and peripheral blood mononuclear cells (PBMCs), we particularly discuss their role in the context of the innate immunity affecting HIV-1 replication.
Collapse
Affiliation(s)
- Fabian Roesmann
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Katleen Klaassen
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Stefanie Heß
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| |
Collapse
|
19
|
Martin J, Chen X, Jia X, Shao Q, Liu B. The Disassociation of A3G-Related HIV-1 cDNA G-to-A Hypermutation to Viral Infectivity. Viruses 2024; 16:728. [PMID: 38793610 PMCID: PMC11126051 DOI: 10.3390/v16050728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
APOBEC3G (A3G) restricts HIV-1 replication primarily by reducing viral cDNA and inducing G-to-A hypermutations in viral cDNA. HIV-1 encodes virion infectivity factor (Vif) to counteract A3G primarily by excluding A3G viral encapsidation. Even though the Vif-induced exclusion is robust, studies suggest that A3G is still detectable in the virion. The impact of encapsidated A3G in the HIV-1 replication is unclear. Using a highly sensitive next-generation sequencing (NGS)-based G-to-A hypermutation detecting assay, we found that wild-type HIV-1 produced from A3G-expressing T-cells induced higher G-to-A hypermutation frequency in viral cDNA than HIV-1 from non-A3G-expressing T-cells. Interestingly, although the virus produced from A3G-expressing T-cells induced higher hypermutation frequency, there was no significant difference in viral infectivity, revealing a disassociation of cDNA G-to-A hypermutation to viral infectivity. We also measured G-to-A hypermutation in the viral RNA genome. Surprisingly, our data showed that hypermutation frequency in the viral RNA genome was significantly lower than in the integrated DNA, suggesting a mechanism exists to preferentially select intact genomic RNA for viral packing. This study revealed a new insight into the mechanism of HIV-1 counteracting A3G antiviral function and might lay a foundation for new antiviral strategies.
Collapse
Affiliation(s)
- Joanie Martin
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (J.M.); (X.C.); (X.J.); (Q.S.)
- School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA
| | - Xin Chen
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (J.M.); (X.C.); (X.J.); (Q.S.)
| | - Xiangxu Jia
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (J.M.); (X.C.); (X.J.); (Q.S.)
| | - Qiujia Shao
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (J.M.); (X.C.); (X.J.); (Q.S.)
| | - Bindong Liu
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (J.M.); (X.C.); (X.J.); (Q.S.)
| |
Collapse
|
20
|
Kishimoto N, Misumi S. From Glycolysis to Viral Defense: The Multifaceted Impact of Glycolytic Enzymes on Human Immunodeficiency Virus Type 1 Replication. Biol Pharm Bull 2024; 47:905-911. [PMID: 38692867 DOI: 10.1248/bpb.b23-00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Viruses require host cells to replicate and proliferate, which indicates that viruses hijack the cellular machinery. Human immunodeficiency virus type 1 (HIV-1) primarily infects CD4-positive T cells, and efficiently uses cellular proteins to replicate. Cells already have proteins that inhibit the replication of the foreign HIV-1, but their function is suppressed by viral proteins. Intriguingly, HIV-1 infection also changes the cellular metabolism to aerobic glycolysis. This phenomenon has been interpreted as a cellular response to maintain homeostasis during viral infection, yet HIV-1 efficiently replicates even in this environment. In this review, we discuss the regulatory role of glycolytic enzymes in viral replication and the impact of aerobic glycolysis on viral infection by introducing various host proteins involved in viral replication. Furthermore, we would like to propose a "glyceraldehyde-3-phosphate dehydrogenase-induced shock (G-shock) and kill strategy" that maximizes the antiviral effect of the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) to eliminate latently HIV-1-infected cells.
Collapse
Affiliation(s)
- Naoki Kishimoto
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University
| | - Shogo Misumi
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University
| |
Collapse
|
21
|
Roelle S, Kamath ND, Matreyek KA. Mammalian Genomic Manipulation with Orthogonal Bxb1 DNA Recombinase Sites for the Functional Characterization of Protein Variants. ACS Synth Biol 2023; 12:3352-3365. [PMID: 37922210 PMCID: PMC10661055 DOI: 10.1021/acssynbio.3c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/22/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2023]
Abstract
The Bxb1 bacteriophage serine DNA recombinase is an efficient tool for engineering recombinant DNA into the genomes of cultured cells. Generally, a single engineered "landing pad" site is introduced into the cell genome, permitting the integration of transgenic circuits or libraries of transgene variants. While sufficient for many studies, the extent of genetic manipulation possible with a single recombinase site is limiting and insufficient for more complex cell-based assays. Here, we harnessed two orthogonal Bxb1 recombinase sites to enable alternative avenues for using mammalian synthetic biology to characterize transgenic protein variants. By designing plasmids flanked by a second pair of auxiliary recombination sites, we demonstrate that we can avoid the genomic integration of undesirable bacterial DNA elements using the same starting cells engineered for whole-plasmid integration. We also created "double landing pad" cells simultaneously harboring two orthogonal Bxb1 recombinase sites at separate genomic loci, allowing complex cell-based genetic assays. Integration of a genetically encoded calcium indicator allowed for the real-time monitoring of intracellular calcium signaling dynamics, including kinetic perturbations that occur upon overexpression of the wild-type or variant version of the calcium signaling relay protein STIM1. A panel of missense mutants of the HIV-1 accessory protein Vif was paired with various paralogs within the human Apobec3 innate immune protein family to identify combinations capable or incapable of interacting within cells. These cells allow transgenic protein variant libraries to be readily paired with assay-specific protein partners or biosensors, enabling new functional readouts for large-scale genetic assays for protein function.
Collapse
Affiliation(s)
- Sarah
M. Roelle
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| | - Nisha D. Kamath
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| | - Kenneth A. Matreyek
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| |
Collapse
|
22
|
Byun H, Singh GB, Xu WK, Das P, Reyes A, Battenhouse A, Wylie DC, Lozano MM, Dudley JP. Apobec-Mediated Retroviral Hypermutation In Vivo is Dependent on Mouse Strain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565355. [PMID: 37961113 PMCID: PMC10635078 DOI: 10.1101/2023.11.02.565355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Replication of the complex retrovirus mouse mammary tumor virus (MMTV) is antagonized by murine Apobec3 (mA3), a member of the Apobec family of cytidine deaminases. We have shown that MMTV-encoded Rem protein inhibits proviral mutagenesis by the Apobec enzyme, activation-induced cytidine deaminase (AID) during viral replication in BALB/c mice. To further study the role of Rem in vivo , we have infected C57BL/6 (B6) mice with a superantigen-independent lymphomagenic strain of MMTV (TBLV-WT) or a mutant strain (TBLV-SD) that is defective in Rem and its cleavage product Rem-CT. Unlike MMTV, TBLV induced T-cell tumors in µMT mice, indicating that mature B cells, which express the highest AID levels, are not required for TBLV replication. Compared to BALB/c, B6 mice were more susceptible to TBLV infection and tumorigenesis. The lack of Rem expression accelerated B6 tumorigenesis at limiting doses compared to TBLV-WT in either wild-type B6 or AID-deficient mice. However, unlike proviruses from BALB/c mice, high-throughput sequencing indicated that proviral G-to-A or C-to-T changes did not significantly differ in the presence and absence of Rem expression. Ex vivo stimulation showed higher levels of mA3 relative to AID in B6 compared to BALB/c splenocytes, but effects of agonists differed in the two strains. RNA-Seq revealed increased transcripts related to growth factor and cytokine signaling in TBLV-SD-induced tumors relative to those from TBLV-WT, consistent with a third Rem function. Thus, Rem-mediated effects on tumorigenesis in B6 mice are independent of Apobec-mediated proviral hypermutation.
Collapse
|
23
|
Oswald J, Constantine M, Adegbuyi A, Omorogbe E, Dellomo AJ, Ehrlich ES. E3 Ubiquitin Ligases in Gammaherpesviruses and HIV: A Review of Virus Adaptation and Exploitation. Viruses 2023; 15:1935. [PMID: 37766341 PMCID: PMC10535929 DOI: 10.3390/v15091935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
For productive infection and replication to occur, viruses must control cellular machinery and counteract restriction factors and antiviral proteins. Viruses can accomplish this, in part, via the regulation of cellular gene expression and post-transcriptional and post-translational control. Many viruses co-opt and counteract cellular processes via modulation of the host post-translational modification machinery and encoding or hijacking kinases, SUMO ligases, deubiquitinases, and ubiquitin ligases, in addition to other modifiers. In this review, we focus on three oncoviruses, Epstein-Barr virus (EBV), Kaposi's sarcoma herpesvirus (KSHV), and human immunodeficiency virus (HIV) and their interactions with the ubiquitin-proteasome system via viral-encoded or cellular E3 ubiquitin ligase activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Elana S. Ehrlich
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA
| |
Collapse
|
24
|
Delviks-Frankenberry KA, Ojha CR, Hermann KJ, Hu WS, Torbett BE, Pathak VK. Potent dual block to HIV-1 infection using lentiviral vectors expressing fusion inhibitor peptide mC46- and Vif-resistant APOBEC3G. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:794-809. [PMID: 37662965 PMCID: PMC10470399 DOI: 10.1016/j.omtn.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023]
Abstract
Gene therapy strategies that effectively inhibit HIV-1 replication are needed to reduce the requirement for lifelong antiviral therapy and potentially achieve a functional cure. We previously designed self-activating lentiviral vectors that efficiently delivered and expressed a Vif-resistant mutant of APOBEC3G (A3G-D128K) to T cells, which potently inhibited HIV-1 replication and spread with no detectable virus. Here, we developed vectors that express A3G-D128K, membrane-associated fusion inhibitor peptide mC46, and O6-methylguanine-DNA-methyltransferase (MGMT) selectable marker for in vivo selection of transduced CD34+ hematopoietic stem and progenitor cells. MGMT-selected T cell lines MT4, CEM, and PM1 expressing A3G-D128K (with or without mC46) potently inhibited NL4-3 infection up to 45 days post infection with no detectable viral replication. Expression of mC46 was sufficient to block infection >80% in a single-cycle assay. Importantly, expression of mC46 provided a selective advantage to the A3G-D128K-modified T cells in the presence of replication competent virus. This combinational approach to first block HIV-1 entry with mC46, and then block any breakthrough infection with A3G-D128K, could provide an effective gene therapy treatment and a potential functional cure for HIV-1 infection.
Collapse
Affiliation(s)
- Krista A. Delviks-Frankenberry
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Chet R. Ojha
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Kip J. Hermann
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Bruce E. Torbett
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
25
|
Ito F, Alvarez-Cabrera AL, Kim K, Zhou ZH, Chen XS. Structural basis of HIV-1 Vif-mediated E3 ligase targeting of host APOBEC3H. Nat Commun 2023; 14:5241. [PMID: 37640699 PMCID: PMC10462622 DOI: 10.1038/s41467-023-40955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Human APOBEC3 (A3) cytidine deaminases are antiviral factors that are particularly potent against retroviruses. As a countermeasure, HIV-1 uses a viral infectivity factor (Vif) to target specific human A3s for proteasomal degradation. Vif recruits cellular transcription cofactor CBF-β and Cullin-5 (CUL5) RING E3 ubiquitin ligase to bind different A3s distinctively, but how this is accomplished remains unclear in the absence of the atomic structure of the complex. Here, we present the cryo-EM structures of HIV-1 Vif in complex with human A3H, CBF-β and components of CUL5 ubiquitin ligase (CUL5, ELOB, and ELOC). Vif nucleates the entire complex by directly binding four human proteins, A3H, CBF-β, CUL5, and ELOC. The structures reveal a large interface area between A3H and Vif, primarily mediated by an α-helical side of A3H and a five-stranded β-sheet of Vif. This A3H-Vif interface unveils the basis for sensitivity-modulating polymorphism of both proteins, including a previously reported gain-of-function mutation in Vif isolated from HIV/AIDS patients. Our structural and functional results provide insights into the remarkable interplay between HIV and humans and would inform development efforts for anti-HIV therapeutics.
Collapse
Affiliation(s)
- Fumiaki Ito
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA90095, USA
| | - Ana L Alvarez-Cabrera
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA90095, USA
| | - Kyumin Kim
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA90095, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
- Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA90089, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA90089, USA.
- Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA90089, USA.
| |
Collapse
|
26
|
Cabrera-Rodríguez R, Pérez-Yanes S, Lorenzo-Sánchez I, Trujillo-González R, Estévez-Herrera J, García-Luis J, Valenzuela-Fernández A. HIV Infection: Shaping the Complex, Dynamic, and Interconnected Network of the Cytoskeleton. Int J Mol Sci 2023; 24:13104. [PMID: 37685911 PMCID: PMC10487602 DOI: 10.3390/ijms241713104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
HIV-1 has evolved a plethora of strategies to overcome the cytoskeletal barrier (i.e., actin and intermediate filaments (AFs and IFs) and microtubules (MTs)) to achieve the viral cycle. HIV-1 modifies cytoskeletal organization and dynamics by acting on associated adaptors and molecular motors to productively fuse, enter, and infect cells and then traffic to the cell surface, where virions assemble and are released to spread infection. The HIV-1 envelope (Env) initiates the cycle by binding to and signaling through its main cell surface receptors (CD4/CCR5/CXCR4) to shape the cytoskeleton for fusion pore formation, which permits viral core entry. Then, the HIV-1 capsid is transported to the nucleus associated with cytoskeleton tracks under the control of specific adaptors/molecular motors, as well as HIV-1 accessory proteins. Furthermore, HIV-1 drives the late stages of the viral cycle by regulating cytoskeleton dynamics to assure viral Pr55Gag expression and transport to the cell surface, where it assembles and buds to mature infectious virions. In this review, we therefore analyze how HIV-1 generates a cell-permissive state to infection by regulating the cytoskeleton and associated factors. Likewise, we discuss the relevance of this knowledge to understand HIV-1 infection and pathogenesis in patients and to develop therapeutic strategies to battle HIV-1.
Collapse
Affiliation(s)
- Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Iria Lorenzo-Sánchez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
- Analysis Department, Faculty of Mathematics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Jonay García-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| |
Collapse
|
27
|
Kouno T, Shibata S, Shigematsu M, Hyun J, Kim TG, Matsuo H, Wolf M. Structural insights into RNA bridging between HIV-1 Vif and antiviral factor APOBEC3G. Nat Commun 2023; 14:4037. [PMID: 37419875 PMCID: PMC10328928 DOI: 10.1038/s41467-023-39796-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023] Open
Abstract
Great effort has been devoted to discovering the basis of A3G-Vif interaction, the key event of HIV's counteraction mechanism to evade antiviral innate immune response. Here we show reconstitution of the A3G-Vif complex and subsequent A3G ubiquitination in vitro and report the cryo-EM structure of the A3G-Vif complex at 2.8 Å resolution using solubility-enhanced variants of A3G and Vif. We present an atomic model of the A3G-Vif interface, which assembles via known amino acid determinants. This assembly is not achieved by protein-protein interaction alone, but also involves RNA. The cryo-EM structure and in vitro ubiquitination assays identify an adenine/guanine base preference for the interaction and a unique Vif-ribose contact. This establishes the biological significance of an RNA ligand. Further assessment of interactions between A3G, Vif, and RNA ligands show that the A3G-Vif assembly and subsequent ubiquitination can be controlled by amino acid mutations at the interface or by polynucleotide modification, suggesting that a specific chemical moiety would be a promising pharmacophore to inhibit the A3G-Vif interaction.
Collapse
Affiliation(s)
- Takahide Kouno
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Satoshi Shibata
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago-shi, Tottori, 683-8503, Japan
| | - Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Jaekyung Hyun
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
- School of Pharmacy, Sungkyunkwan University, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Tae Gyun Kim
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
- Department of Efficacy Evaluation, Innovation Center for Vaccine Industry, Gyeongbuk Institute for Bio Industry, Gyeongsanbuk-do, 36618, Republic of Korea
| | - Hiroshi Matsuo
- Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Matthias Wolf
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, 115, Taipei, Taiwan.
| |
Collapse
|
28
|
Kayesh MEH, Kohara M, Tsukiyama-Kohara K. Toll-like Receptor Response to Human Immunodeficiency Virus Type 1 or Co-Infection with Hepatitis B or C Virus: An Overview. Int J Mol Sci 2023; 24:ijms24119624. [PMID: 37298575 DOI: 10.3390/ijms24119624] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Toll-like receptors (TLRs) are evolutionarily conserved pattern recognition receptors that play important roles in the early detection of pathogen-associated molecular patterns and shaping innate and adaptive immune responses, which may influence the consequences of infection. Similarly to other viral infections, human immunodeficiency virus type 1 (HIV-1) also modulates the host TLR response; therefore, a proper understanding of the response induced by human HIV-1 or co-infection with hepatitis B virus (HBV) or hepatitis C virus (HCV), due to the common mode of transmission of these viruses, is essential for understanding HIV-1 pathogenesis during mono- or co-infection with HBV or HCV, as well as for HIV-1 cure strategies. In this review, we discuss the host TLR response during HIV-1 infection and the innate immune evasion mechanisms adopted by HIV-1 for infection establishment. We also examine changes in the host TLR response during HIV-1 co-infection with HBV or HCV; however, this type of study is extremely scarce. Moreover, we discuss studies investigating TLR agonists as latency-reverting agents and immune stimulators towards new strategies for curing HIV. This understanding will help develop a new strategy for curing HIV-1 mono-infection or co-infection with HBV or HCV.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
29
|
Bao Q, Zhou J. Various strategies for developing APOBEC3G protectors to circumvent human immunodeficiency virus type 1. Eur J Med Chem 2023; 250:115188. [PMID: 36773550 DOI: 10.1016/j.ejmech.2023.115188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/18/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
Host restriction factor APOBEC3G (A3G) efficiently restricts Vif-deficient HIV-1 by being packaged with progeny virions and causing the G to A mutation during HIV-1 viral DNA synthesis as the progeny virus infects new cells. HIV-1 expresses Vif protein to resist the activity of A3G by mediating A3G degradation. This process requires the self-association of Vif in concert with A3G proteins, protein chaperones, and factors of the ubiquitination machinery, which are potential targets to discover novel anti-HIV drugs. This review will describe compounds that have been reported so far to inhibit viral replication of HIV-1 by protecting A3G from Vif-mediated degradation.
Collapse
Affiliation(s)
- Qiqi Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China.
| |
Collapse
|
30
|
Hu Y, Gudnadóttir RB, Knecht KM, Arizaga F, Jónsson SR, Xiong Y. Structural basis for recruitment of host CypA and E3 ubiquitin ligase by maedi-visna virus Vif. SCIENCE ADVANCES 2023; 9:eadd3422. [PMID: 36638173 PMCID: PMC9839330 DOI: 10.1126/sciadv.add3422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Lentiviral Vif molecules target the host antiviral APOBEC3 proteins for destruction in cellular ubiquitin-proteasome pathways. Different lentiviral Vifs have evolved to use the same canonical E3 ubiquitin ligase complexes, along with distinct noncanonical host cofactors for their activities. Unlike primate lentiviral Vif, which recruits CBFβ as the noncanonical cofactor, nonprimate lentiviral Vif proteins have developed different cofactor recruitment mechanisms. Maedi-visna virus (MVV) sequesters CypA as the noncanonical cofactor for the Vif-mediated ubiquitination of ovine APOBEC3s. Here, we report the cryo-electron microscopy structure of MVV Vif in complex with CypA and E3 ligase components. The structure, along with our biochemical and functional analysis, reveals both conserved and unique structural elements of MVV Vif and its common and distinct interaction modes with various cognate cellular proteins, providing a further understanding of the evolutionary relationship between lentiviral Vifs and the molecular mechanisms by which they capture different host cofactors for immune evasion activities.
Collapse
Affiliation(s)
- Yingxia Hu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Ragna B. Gudnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur, Reykjavik 112, Iceland
| | - Kirsten M. Knecht
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Fidel Arizaga
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Stefán R. Jónsson
- Institute for Experimental Pathology, University of Iceland, Keldur, Reykjavik 112, Iceland
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
31
|
Ajoge HO, Renner TM, Bélanger K, Greig M, Dankar S, Kohio HP, Coleman MD, Ndashimye E, Arts EJ, Langlois MA, Barr SD. Antiretroviral APOBEC3 cytidine deaminases alter HIV-1 provirus integration site profiles. Nat Commun 2023; 14:16. [PMID: 36627271 PMCID: PMC9832166 DOI: 10.1038/s41467-022-35379-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/30/2022] [Indexed: 01/12/2023] Open
Abstract
APOBEC3 (A3) proteins are host-encoded deoxycytidine deaminases that provide an innate immune barrier to retroviral infection, notably against HIV-1. Low levels of deamination are believed to contribute to the genetic evolution of HIV-1, while intense catalytic activity of these proteins can induce catastrophic hypermutation in proviral DNA leading to near-total HIV-1 restriction. So far, little is known about how A3 cytosine deaminases might impact HIV-1 proviral DNA integration sites in human chromosomal DNA. Using a deep sequencing approach, we analyze the influence of catalytic active and inactive APOBEC3F and APOBEC3G on HIV-1 integration site selections. Here we show that DNA editing is detected at the extremities of the long terminal repeat regions of the virus. Both catalytic active and non-catalytic A3 mutants decrease insertions into gene coding sequences and increase integration sites into SINE elements, oncogenes and transcription-silencing non-B DNA features. Our data implicates A3 as a host factor influencing HIV-1 integration site selection and also promotes what appears to be a more latent expression profile.
Collapse
Affiliation(s)
- Hannah O Ajoge
- Western University, Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, London, ON, Canada
| | - Tyler M Renner
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kasandra Bélanger
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Matthew Greig
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Samar Dankar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hinissan P Kohio
- Western University, Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, London, ON, Canada
| | - Macon D Coleman
- Western University, Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, London, ON, Canada
| | - Emmanuel Ndashimye
- Western University, Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, London, ON, Canada
| | - Eric J Arts
- Western University, Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, London, ON, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada. .,Ottawa Center for Infection, Immunity and Inflammation (CI3), Ottawa, ON, Canada.
| | - Stephen D Barr
- Western University, Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, London, ON, Canada.
| |
Collapse
|
32
|
Ito F, Alvarez-Cabrera AL, Liu S, Yang H, Shiriaeva A, Zhou ZH, Chen XS. Structural basis for HIV-1 antagonism of host APOBEC3G via Cullin E3 ligase. SCIENCE ADVANCES 2023; 9:eade3168. [PMID: 36598981 PMCID: PMC9812381 DOI: 10.1126/sciadv.ade3168] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Human APOBEC3G (A3G) is a virus restriction factor that inhibits HIV-1 replication and triggers lethal hypermutation on viral reverse transcripts. HIV-1 viral infectivity factor (Vif) breaches this host A3G immunity by hijacking a cellular E3 ubiquitin ligase complex to target A3G for ubiquitination and degradation. The molecular mechanism of A3G targeting by Vif-E3 ligase is unknown, limiting the antiviral efforts targeting this host-pathogen interaction crucial for HIV-1 infection. Here, we report the cryo-electron microscopy structures of A3G bound to HIV-1 Vif in complex with T cell transcription cofactor CBF-β and multiple components of the Cullin-5 RING E3 ubiquitin ligase. The structures reveal unexpected RNA-mediated interactions of Vif with A3G primarily through A3G's noncatalytic domain, while A3G's catalytic domain is poised for ubiquitin transfer. These structures elucidate the molecular mechanism by which HIV-1 Vif hijacks the host ubiquitin ligase to specifically target A3G to establish infection and offer structural information for the rational development of antiretroviral therapeutics.
Collapse
Affiliation(s)
- Fumiaki Ito
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Ana L. Alvarez-Cabrera
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Shiheng Liu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Hanjing Yang
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Anna Shiriaeva
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
| | - Z. Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Xiaojiang S. Chen
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Genetic, Molecular, and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
33
|
Clinical significance of human endogenous retrovirus K (HERV-K) in multiple myeloma progression. Int J Hematol 2022; 117:563-577. [PMID: 36522589 DOI: 10.1007/s12185-022-03513-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Human endogenous retroviruses (HERVs) are retrotransposons that infect human germline cells and occupy 5-8% of the human genome. Their expression, though inhibited by mutation, deletion, and epigenetic mechanisms under normal conditions, is associated with diseases including cancer. This study aimed to clarify the association between HERVs and multiple myeloma (MM) progression. We found that HERV-K envelope (env) and long-term repeat (LTR) expression was statistically significantly higher within plasma cells in MM than in monoclonal gammopathy of undetermined significance or controls. HERV-K env knockdown increased proliferation in the MM.1S cell line and decreased the expression of the tumor suppressor genes TP53 and CDKN1A. TP53 and CDKN1A were highly expressed in MM, and their expression was correlated with HERV-K expression. HERV-K knockdown reduced apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3F, 3G, and 3H expression by 10-20% in MM.1S cells. The anti-retroviral agents nevirapine and nelfinavir suppressed proliferation and increased HERV-K expression in MM cell lines. Our results suggest that HERV-K is involved in MM progression, but its role is likely to go beyond promoting cell proliferation. Clarifying the role of HERV-K in MM will lead to the discovery of novel treatment strategies and supply new insights into MM pathogenesis.
Collapse
|
34
|
Drillien R, Pradeau-Aubreton K, Batisse J, Mezher J, Schenckbecher E, Marguin J, Ennifar E, Ruff M. Efficient production of protein complexes in mammalian cells using a poxvirus vector. PLoS One 2022; 17:e0279038. [PMID: 36520869 PMCID: PMC9754296 DOI: 10.1371/journal.pone.0279038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
The production of full length, biologically active proteins in mammalian cells is critical for a wide variety of purposes ranging from structural studies to preparation of subunit vaccines. Prior research has shown that Modified vaccinia virus Ankara encoding the bacteriophage T7 RNA polymerase (MVA-T7) is particularly suitable for high level expression of proteins upon infection of mammalian cells. The expression system is safe for users and 10-50 mg of full length, biologically active proteins may be obtained in their native state, from a few litres of infected cell cultures. Here we report further improvements which allow an increase in the ease and speed of recombinant virus isolation, the scale-up of protein production and the simultaneous synthesis of several polypeptides belonging to a protein complex using a single virus vector. Isolation of MVA-T7 viruses encoding foreign proteins was simplified by combining positive selection for virus recombinants and negative selection against parental virus, a process which eliminated the need for tedious plaque purification. Scale-up of protein production was achieved by infecting a BHK 21 suspension cell line and inducing protein expression with previously infected cells instead of virus, thus saving time and effort in handling virus stocks. Protein complexes were produced from infected cells by concatenating the Tobacco Etch Virus (TEV) N1A protease sequence with each of the genes of the complex into a single ORF, each gene being separated from the other by twin TEV protease cleavage sites. We report the application of these methods to the production of a complex formed on the one hand between the HIV-1 integrase and its cell partner LEDGF and on the other between the HIV-1 VIF protein and its cell partners APOBEC3G, CBFβ, Elo B and Elo C. The strategies developed in this study should be valuable for the overexpression and subsequent purification of numerous protein complexes.
Collapse
Affiliation(s)
- Robert Drillien
- Department of Integrative Structural Biology, IGBMC, University of Strasbourg, CNRS UMR 7104, INSERM U964, Illkirch, France
- * E-mail: (RD); (MR)
| | - Karine Pradeau-Aubreton
- Department of Integrative Structural Biology, IGBMC, University of Strasbourg, CNRS UMR 7104, INSERM U964, Illkirch, France
| | - Julien Batisse
- Department of Integrative Structural Biology, IGBMC, University of Strasbourg, CNRS UMR 7104, INSERM U964, Illkirch, France
| | - Joëlle Mezher
- Structure et Dynamique des Machines Biomoléculaires, Institut de Biologie Moléculaire et Cellulaire, UPR 9002 CNRS/Université de Strasbourg, Strasbourg, France
| | - Emma Schenckbecher
- Structure et Dynamique des Machines Biomoléculaires, Institut de Biologie Moléculaire et Cellulaire, UPR 9002 CNRS/Université de Strasbourg, Strasbourg, France
| | - Justine Marguin
- Structure et Dynamique des Machines Biomoléculaires, Institut de Biologie Moléculaire et Cellulaire, UPR 9002 CNRS/Université de Strasbourg, Strasbourg, France
| | - Eric Ennifar
- Structure et Dynamique des Machines Biomoléculaires, Institut de Biologie Moléculaire et Cellulaire, UPR 9002 CNRS/Université de Strasbourg, Strasbourg, France
| | - Marc Ruff
- Department of Integrative Structural Biology, IGBMC, University of Strasbourg, CNRS UMR 7104, INSERM U964, Illkirch, France
- * E-mail: (RD); (MR)
| |
Collapse
|
35
|
Peng T, Liu B, Lin S, Cao C, Wu P, Zhi W, Wei Y, Chu T, Gui L, Ding W. APOBEC3G expression correlates with unfavorable prognosis and immune infiltration in kidney renal clear cell carcinoma. Heliyon 2022; 8:e12191. [PMID: 36568653 PMCID: PMC9768312 DOI: 10.1016/j.heliyon.2022.e12191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/17/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Background Kidney renal clear cell carcinoma (KIRC) is the most common pathological subtype of renal cell cancer. APOBEC3 activity has been identified in a variety of human cancers. Although its involvement in cancer has been studied widely, its influence on the tumor immune microenvironment remains poorly understood. Therefore, this study aimed to focus on the effect of APOBEC3 on tumor immune microenvironment of KIRC. Methods In this study, we comprehensively analyzed the expression and prognostic significance of the APOBEC3 family in pan-cancer using multiple databases. The functions of key APOBEC3 family members were further investigated in KIRC, with APOBEC3G determined to be a candidate biomarker for unfavorable prognosis. We subsequently explored the correlation of APOBEC3G with the tumor immune environment in KIRC by analyzing the Cancer Genome Atlas (TCGA) dataset, then validated the prognostic significance and PD-L1 correlation of APOBEC3G by using tissue microarrays which included 233 primary tumor samples from patients with renal clear cell carcinoma. Results The APOBEC3 family was overexpressed in KIRC and high APOBEC3 expression predicted poor prognosis. In addition, APOBEC3G was positively correlated with the expression of immunoinhibitors such as TIGIT, LAG3, CD96, PD-1, and CTLA4. In addition, APOBEC3G had a positive correlation with immunosuppressive cells, including regulatory T cell and myeloid-derived suppressor cell. Finally, based on 233 clinical samples, we validated that high expression of APOBEC3G contributed to a poor prognosis for KIRC patients and the positive relationship between APOBEC3G and PD-L1 expression. High APOBEC3G expression was also found to be more common in patients with sarcomatoid histology (P = 0.0026). Conclusions Our study showed that APOBEC3G was a prognostic biomarker correlated with the immune response in KIRC. In addition, APOBE3G had a positive correlation with PD-L1 expression and sarcomatoid histology, perhaps suggesting the potential impact of APOBEC3G on immunotherapy.
Collapse
Affiliation(s)
- Ting Peng
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Binghan Liu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shitong Lin
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Canhui Cao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
| | - Ping Wu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenhua Zhi
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ye Wei
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tian Chu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lingli Gui
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Corresponding author.
| | - Wencheng Ding
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Corresponding author.
| |
Collapse
|
36
|
Nagornykh AM, Tyumentseva MA, Tyumentsev AI, Akimkin VG. Anatomical and physiological aspects of the HIV infection pathogenesis in animal models. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2022. [DOI: 10.36233/0372-9311-307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding the entire pathogenesis of HIV infection, from penetration at the gates of infection to the induction of severe immunodeficiency, is an essential tool for the development of new treatment methods. Less than 40 years of research into the mechanisms of HIV infection that lead to the development of acquired immunodeficiency syndrome have accumulated a huge amount of information, but HIV's own unique variability identifies new whitespaces.
Despite the constant improvement of the protocols of antiretroviral therapy and the success of its use, it has not yet been possible to stop the spread of HIV infection. The development of new protocols and the testing of new groups of antiretroviral drugs is possible, first of all, due to the improvement of animal models of the HIV infection pathogenesis. Their relevance, undoubtedly increases, but still depends on specific research tasks, since none of the in vivo models can comprehensively simulate the mechanism of the infection pathology in humans which leads to multi-organ damage.
The aim of the review was to provide up-to-date information on known animal models of HIV infection, focusing on the method of their infection and anatomical, physiological and pathological features.
Collapse
|
37
|
Sugrue E, Wickenhagen A, Mollentze N, Aziz MA, Sreenu VB, Truxa S, Tong L, da Silva Filipe A, Robertson DL, Hughes J, Rihn SJ, Wilson SJ. The apparent interferon resistance of transmitted HIV-1 is possibly a consequence of enhanced replicative fitness. PLoS Pathog 2022; 18:e1010973. [PMID: 36399512 PMCID: PMC9718408 DOI: 10.1371/journal.ppat.1010973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 12/02/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022] Open
Abstract
HIV-1 transmission via sexual exposure is an inefficient process. When transmission does occur, newly infected individuals are colonized by the descendants of either a single virion or a very small number of establishing virions. These transmitted founder (TF) viruses are more interferon (IFN)-resistant than chronic control (CC) viruses present 6 months after transmission. To identify the specific molecular defences that make CC viruses more susceptible to the IFN-induced 'antiviral state', we established a single pair of fluorescent TF and CC viruses and used arrayed interferon-stimulated gene (ISG) expression screening to identify candidate antiviral effectors. However, we observed a relatively uniform ISG resistance of transmitted HIV-1, and this directed us to investigate possible underlying mechanisms. Simple simulations, where we varied a single parameter, illustrated that reduced growth rate could possibly underly apparent interferon sensitivity. To examine this possibility, we closely monitored in vitro propagation of a model TF/CC pair (closely matched in replicative fitness) over a targeted range of IFN concentrations. Fitting standard four-parameter logistic growth models, in which experimental variables were regressed against growth rate and carrying capacity, to our in vitro growth curves, further highlighted that small differences in replicative growth rates could recapitulate our in vitro observations. We reasoned that if growth rate underlies apparent interferon resistance, transmitted HIV-1 would be similarly resistant to any growth rate inhibitor. Accordingly, we show that two transmitted founder HIV-1 viruses are relatively resistant to antiretroviral drugs, while their matched chronic control viruses were more sensitive. We propose that, when present, the apparent IFN resistance of transmitted HIV-1 could possibly be explained by enhanced replicative fitness, as opposed to specific resistance to individual IFN-induced defences. However, further work is required to establish how generalisable this mechanism of relative IFN resistance might be.
Collapse
Affiliation(s)
- Elena Sugrue
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Arthur Wickenhagen
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Nardus Mollentze
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Muhamad Afiq Aziz
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Vattipally B. Sreenu
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Sven Truxa
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
- Division of Systems Immunology and Single Cell Biology, German Cancer Research Center, Heidelberg, Germany
| | - Lily Tong
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Ana da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - David L. Robertson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Suzannah J. Rihn
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Sam J. Wilson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
38
|
The KT Jeang Retrovirology prize 2022: Florence Margottin-Goguet. Retrovirology 2022; 19:20. [PMID: 36068604 PMCID: PMC9446835 DOI: 10.1186/s12977-022-00606-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
39
|
Barzak FM, Ryan TM, Mohammadzadeh N, Harjes S, Kvach MV, Kurup HM, Krause KL, Chelico L, Filichev VV, Harjes E, Jameson GB. Small-Angle X-ray Scattering (SAXS) Measurements of APOBEC3G Provide Structural Basis for Binding of Single-Stranded DNA and Processivity. Viruses 2022; 14:1974. [PMID: 36146779 PMCID: PMC9505750 DOI: 10.3390/v14091974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/05/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
APOBEC3 enzymes are polynucleotide deaminases, converting cytosine to uracil on single-stranded DNA (ssDNA) and RNA as part of the innate immune response against viruses and retrotransposons. APOBEC3G is a two-domain protein that restricts HIV. Although X-ray single-crystal structures of individual catalytic domains of APOBEC3G with ssDNA as well as full-length APOBEC3G have been solved recently, there is little structural information available about ssDNA interaction with the full-length APOBEC3G or any other two-domain APOBEC3. Here, we investigated the solution-state structures of full-length APOBEC3G with and without a 40-mer modified ssDNA by small-angle X-ray scattering (SAXS), using size-exclusion chromatography (SEC) immediately prior to irradiation to effect partial separation of multi-component mixtures. To prevent cytosine deamination, the target 2'-deoxycytidine embedded in 40-mer ssDNA was replaced by 2'-deoxyzebularine, which is known to inhibit APOBEC3A, APOBEC3B and APOBEC3G when incorporated into short ssDNA oligomers. Full-length APOBEC3G without ssDNA comprised multiple multimeric species, of which tetramer was the most scattering species. The structure of the tetramer was elucidated. Dimeric interfaces significantly occlude the DNA-binding interface, whereas the tetrameric interface does not. This explains why dimers completely disappeared, and monomeric protein species became dominant, when ssDNA was added. Data analysis of the monomeric species revealed a full-length APOBEC3G-ssDNA complex that gives insight into the observed "jumping" behavior revealed in studies of enzyme processivity. This solution-state SAXS study provides the first structural model of ssDNA binding both domains of APOBEC3G and provides data to guide further structural and enzymatic work on APOBEC3-ssDNA complexes.
Collapse
Affiliation(s)
- Fareeda M. Barzak
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Timothy M. Ryan
- SAXS/WAXS, Australian Synchrotron/ANSTO, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Nazanin Mohammadzadeh
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Stefan Harjes
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Maksim V. Kvach
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Harikrishnan M. Kurup
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Kurt L. Krause
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- Maurice Wilkins Centre, University of Auckland, Auckland 1142, New Zealand
| | - Linda Chelico
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Vyacheslav V. Filichev
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre, University of Auckland, Auckland 1142, New Zealand
| | - Elena Harjes
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre, University of Auckland, Auckland 1142, New Zealand
| | - Geoffrey B. Jameson
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
40
|
Rai M, Rawat K, Muhammadi MK, Gaur R. Edelfosine reactivates latent HIV-1 reservoirs in myeloid cells through activation of NF-κB and AP1 pathway. Virology 2022; 574:57-64. [DOI: 10.1016/j.virol.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
|
41
|
Sharp B, Rallabandi R, Devaux P. Advances in RNA Viral Vector Technology to Reprogram Somatic Cells: The Paramyxovirus Wave. Mol Diagn Ther 2022; 26:353-367. [PMID: 35763161 DOI: 10.1007/s40291-022-00599-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Abstract
Ethical issues are a significant barrier to the use of embryonic stem cells in patients due to their origin: human embryos. To further the development of stem cells in a patient application, alternative sources of cells were sought. A process referred to as reprogramming was established to create induced pluripotent stem cells from somatic cells, resolving the ethical issues, and vectors were developed to deliver the reprogramming factors to generate induced pluripotent stem cells. Early viral vectors used integrating retroviruses and lentiviruses as delivery vehicles for the transcription factors required to initiate reprogramming. However, because of the inherent risk associated with vectors that integrate into the host genome, non-integrating approaches were explored. The development of non-integrating viral vectors offers a safer alternative, and these modern vectors are reliable, efficient, and easy to use to achieve induced pluripotent stem cells suitable for direct patient application in the growing field of individualized medicine. This review summarizes all the RNA viral vectors in the field of reprogramming with a special focus on the emerging delivery vectors based on non-integrating Paramyxoviruses, Sendai and measles viruses. We discuss their design and evolution towards being safe and efficient reprogramming vectors in generating induced pluripotent stem cells from somatic cells.
Collapse
Affiliation(s)
- Brenna Sharp
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ramya Rallabandi
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN, USA.,Regenerative Sciences Program, Mayo Clinic, Rochester, MN, USA
| | - Patricia Devaux
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA. .,Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN, USA. .,Regenerative Sciences Program, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
42
|
Nouda R, Kawagishi T, Kanai Y, Shimojima M, Saijo M, Matsuura Y, Kobayashi T. The nonstructural p17 protein of a fusogenic bat-borne reovirus regulates viral replication in virus species- and host-specific manners. PLoS Pathog 2022; 18:e1010553. [PMID: 35653397 PMCID: PMC9162341 DOI: 10.1371/journal.ppat.1010553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
Nelson Bay orthoreovirus (NBV), a member of the family Reoviridae, genus Orthoreovirus, is a bat-borne virus that causes respiratory diseases in humans. NBV encodes two unique nonstructural proteins, fusion-associated small transmembrane (FAST) protein and p17 protein, in the S1 gene segment. FAST induces cell–cell fusion between infected cells and neighboring cells and the fusogenic activity is required for efficient viral replication. However, the function of p17 in the virus cycle is not fully understood. Here, various p17 mutant viruses including p17-deficient viruses were generated by a reverse genetics system for NBV. The results demonstrated that p17 is not essential for viral replication and does not play an important role in viral pathogenesis. On the other hand, NBV p17 regulated viral replication in a bat cell line but not in other human and animal cell lines. Nuclear localization of p17 is associated with the regulation of NBV replication in bat cells. We also found that p17 dramatically enhances the cell–cell fusion activity of NBV FAST protein for efficient replication in bat cells. Furthermore, we found that a protein homologue of NBV p17 from another bat-borne orthoreovirus, but not those of avian orthoreovirus or baboon orthoreovirus, also supported efficient viral replication in bat cells using a p17-deficient virus-based complementation approach. These results provide critical insights into the functioning of the unique replication machinery of bat-borne viruses in their natural hosts. Bat-borne viruses including the severe acute respiratory syndrome coronavirus and Nipah virus generally cause highly pathogenic diseases in humans but not in their bat reservoirs. Nelson Bay orthoreovirus (NBV), a bat-borne virus associated with acute respiratory tract infections in humans, possesses two unique nonstructural proteins, FAST and p17. FAST enhances viral replication through its cell–cell fusion activity, while the function of p17 in the viral life cycle is poorly understood. In this study, we show that p17 is non-essential for viral replication in several human and animal cell lines and does not play a critical role in pathogenesis in vivo. However, p17 localizes to the nucleus and regulates viral replication specifically in cells derived from bats by enhancing the cell–cell fusion activity of FAST in a host-specific manner. Furthermore, the expression of NBV p17 or an NBV p17 homologue from another bat-borne orthoreovirus enhanced the replication of an NBV mutant deficient in p17 in bat cells, suggesting that the function of p17 is virus species-specific. These findings will contribute to our understanding of how the replication of viruses is regulated in their natural reservoirs.
Collapse
Affiliation(s)
- Ryotaro Nouda
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Takahiro Kawagishi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yuta Kanai
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masayuki Shimojima
- Special Pathogens Laboratory, Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Masayuki Saijo
- Special Pathogens Laboratory, Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
43
|
Myint W, Schiffer CA, Matsuo H. HIV-1 VIF and human APOBEC3G interaction directly observed through molecular specific labeling using a new dual promotor vector. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 339:107230. [PMID: 35550909 PMCID: PMC9149140 DOI: 10.1016/j.jmr.2022.107230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/06/2022] [Accepted: 04/21/2022] [Indexed: 06/03/2023]
Abstract
Over the last few decades, protein NMR isotope labeling methods using E. coli based expression have revolutionized the information accessible from biomolecular NMR experiments. Selective labeling of a protein of interest in a multi-protein complex can significantly reduce the number of cross-peaks and allow for study of large protein complexes. However, limitations still remain since some proteins are not stable independently and cannot be separately labeled in either NMR active isotope enriched or unenriched media and reconstituted into a multimeric complex. To overcome this limitation, the LEGO NMR method was previously developed using protein expression plasmids containing T7 or araBAD promoters to separately express proteins in the same E. coli after changing between labeled and unlabeled media. Building on this, we developed a method to label the Human Immunodeficiency Virus type 1 viral infectivity factor (HIV-1 Vif), a monomerically unstable protein, in complex with CBFβ, it's host binding partner. We designed a dual promoter plasmid containing both T7 and araBAD promoters to independently control the expression of HIV-1 Vif in NMR active isotope enriched media and CBFβ in unenriched media. Using this method, we assigned the backbone resonance and directly observed the binding of HIV-1 Vif with APOBEC3G, a host restriction factor to HIV-1.
Collapse
Affiliation(s)
- Wazo Myint
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Hiroshi Matsuo
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| |
Collapse
|
44
|
Robinson CA, Lyddon TD, Gil HM, Evans DT, Kuzmichev YV, Richard J, Finzi A, Welbourn S, Rasmussen L, Nebane NM, Gupta VV, Ananthan S, Cai Z, Wonderlich ER, Augelli-Szafran CE, Bostwick R, Ptak RG, Schader SM, Johnson MC. Novel Compound Inhibitors of HIV-1 NL4-3 Vpu. Viruses 2022; 14:v14040817. [PMID: 35458546 PMCID: PMC9024541 DOI: 10.3390/v14040817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 12/14/2022] Open
Abstract
HIV-1 Vpu targets the host cell proteins CD4 and BST-2/Tetherin for degradation, ultimately resulting in enhanced virus spread and host immune evasion. The discovery and characterization of small molecules that antagonize Vpu would further elucidate the contribution of Vpu to pathogenesis and lay the foundation for the study of a new class of novel HIV-1 therapeutics. To identify novel compounds that block Vpu activity, we have developed a cell-based ‘gain of function’ assay that produces a positive signal in response to Vpu inhibition. To develop this assay, we took advantage of the viral glycoprotein, GaLV Env. In the presence of Vpu, GaLV Env is not incorporated into viral particles, resulting in non-infectious virions. Vpu inhibition restores infectious particle production. Using this assay, a high throughput screen of >650,000 compounds was performed to identify inhibitors that block the biological activity of Vpu. From this screen, we identified several positive hits but focused on two compounds from one structural family, SRI-41897 and SRI-42371. We developed independent counter-screens for off target interactions of the compounds and found no off target interactions. Additionally, these compounds block Vpu-mediated modulation of CD4, BST-2/Tetherin and antibody dependent cell-mediated toxicity (ADCC). Unfortunately, both SRI-41897 and SRI-42371 were shown to be specific to the N-terminal region of NL4-3 Vpu and did not function against other, more clinically relevant, strains of Vpu; however, this assay may be slightly modified to include more significant Vpu strains in the future.
Collapse
Affiliation(s)
- Carolyn A. Robinson
- Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine and the Christopher S. Bond Life Sciences Center, Columbia, MO 65211, USA; (C.A.R.); (T.D.L.); (S.W.)
| | - Terri D. Lyddon
- Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine and the Christopher S. Bond Life Sciences Center, Columbia, MO 65211, USA; (C.A.R.); (T.D.L.); (S.W.)
| | - Hwi Min Gil
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (H.M.G.); (D.T.E.)
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (H.M.G.); (D.T.E.)
| | - Yury V. Kuzmichev
- Infectious Disease Research, Drug Development Division, Southern Research, Frederick, MD 21701, USA; (Y.V.K.); (Z.C.); (E.R.W.); (R.G.P.); (S.M.S.)
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montréal, QC HX2 0A9, Canada; (J.R.); (A.F.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC HX2 0A9, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC HX2 0A9, Canada; (J.R.); (A.F.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC HX2 0A9, Canada
| | - Sarah Welbourn
- Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine and the Christopher S. Bond Life Sciences Center, Columbia, MO 65211, USA; (C.A.R.); (T.D.L.); (S.W.)
| | - Lynn Rasmussen
- High-Throughput Screening Center, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA; (L.R.); (N.M.N.); (R.B.)
| | - N. Miranda Nebane
- High-Throughput Screening Center, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA; (L.R.); (N.M.N.); (R.B.)
| | - Vandana V. Gupta
- Department of Chemistry, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA; (V.V.G.); (S.A.); (C.E.A.-S.)
| | - Sam Ananthan
- Department of Chemistry, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA; (V.V.G.); (S.A.); (C.E.A.-S.)
| | - Zhaohui Cai
- Infectious Disease Research, Drug Development Division, Southern Research, Frederick, MD 21701, USA; (Y.V.K.); (Z.C.); (E.R.W.); (R.G.P.); (S.M.S.)
| | - Elizabeth R. Wonderlich
- Infectious Disease Research, Drug Development Division, Southern Research, Frederick, MD 21701, USA; (Y.V.K.); (Z.C.); (E.R.W.); (R.G.P.); (S.M.S.)
| | - Corinne E. Augelli-Szafran
- Department of Chemistry, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA; (V.V.G.); (S.A.); (C.E.A.-S.)
| | - Robert Bostwick
- High-Throughput Screening Center, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA; (L.R.); (N.M.N.); (R.B.)
| | - Roger G. Ptak
- Infectious Disease Research, Drug Development Division, Southern Research, Frederick, MD 21701, USA; (Y.V.K.); (Z.C.); (E.R.W.); (R.G.P.); (S.M.S.)
| | - Susan M. Schader
- Infectious Disease Research, Drug Development Division, Southern Research, Frederick, MD 21701, USA; (Y.V.K.); (Z.C.); (E.R.W.); (R.G.P.); (S.M.S.)
| | - Marc C. Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine and the Christopher S. Bond Life Sciences Center, Columbia, MO 65211, USA; (C.A.R.); (T.D.L.); (S.W.)
- Correspondence:
| |
Collapse
|
45
|
Reuschl AK, Mesner D, Shivkumar M, Whelan MVX, Pallett LJ, Guerra-Assunção JA, Madansein R, Dullabh KJ, Sigal A, Thornhill JP, Herrera C, Fidler S, Noursadeghi M, Maini MK, Jolly C. HIV-1 Vpr drives a tissue residency-like phenotype during selective infection of resting memory T cells. Cell Rep 2022; 39:110650. [PMID: 35417711 PMCID: PMC9350556 DOI: 10.1016/j.celrep.2022.110650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/23/2022] [Accepted: 03/17/2022] [Indexed: 12/03/2022] Open
Abstract
HIV-1 replicates in CD4+ T cells, leading to AIDS. Determining how HIV-1 shapes its niche to create a permissive environment is central to informing efforts to limit pathogenesis, disturb reservoirs, and achieve a cure. A key roadblock in understanding HIV-T cell interactions is the requirement to activate T cells in vitro to make them permissive to infection. This dramatically alters T cell biology and virus-host interactions. Here we show that HIV-1 cell-to-cell spread permits efficient, productive infection of resting memory T cells without prior activation. Strikingly, we find that HIV-1 infection primes resting T cells to gain characteristics of tissue-resident memory T cells (TRM), including upregulating key surface markers and the transcription factor Blimp-1 and inducing a transcriptional program overlapping the core TRM transcriptional signature. This reprogramming is driven by Vpr and requires Vpr packaging into virions and manipulation of STAT5. Thus, HIV-1 reprograms resting T cells, with implications for viral replication and persistence.
Collapse
Affiliation(s)
- Ann-Kathrin Reuschl
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK.
| | - Dejan Mesner
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Maitreyi Shivkumar
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Matthew V X Whelan
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Laura J Pallett
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | | | - Rajhmun Madansein
- Department of Cardiothoracic Surgery, University of KwaZulu-Natal, Durban 4091, South Africa; Centre for the AIDS Programme of Research in South Africa, Durban 4091, South Africa
| | - Kaylesh J Dullabh
- Department of Cardiothoracic Surgery, University of KwaZulu-Natal, Durban 4091, South Africa
| | - Alex Sigal
- Africa Health Research Institute, Durban 4001, South Africa; School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4091, South Africa; Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - John P Thornhill
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford OX1 3XY, UK; Department of Infectious Disease, Faculty of Medicine, Imperial College, London W2 1NY, UK
| | - Carolina Herrera
- Department of Infectious Disease, Faculty of Medicine, Imperial College, London W2 1NY, UK
| | - Sarah Fidler
- Department of Infectious Disease, Faculty of Medicine, Imperial College, London W2 1NY, UK; Imperial College NIHR Biomedical Research Centre, London W2 1NY, UK
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Mala K Maini
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK.
| |
Collapse
|
46
|
A functional map of HIV-host interactions in primary human T cells. Nat Commun 2022; 13:1752. [PMID: 35365639 PMCID: PMC8976027 DOI: 10.1038/s41467-022-29346-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/08/2022] [Indexed: 02/07/2023] Open
Abstract
Human Immunodeficiency Virus (HIV) relies on host molecular machinery for replication. Systematic attempts to genetically or biochemically define these host factors have yielded hundreds of candidates, but few have been functionally validated in primary cells. Here, we target 426 genes previously implicated in the HIV lifecycle through protein interaction studies for CRISPR-Cas9-mediated knock-out in primary human CD4+ T cells in order to systematically assess their functional roles in HIV replication. We achieve efficient knockout (>50% of alleles) in 364 of the targeted genes and identify 86 candidate host factors that alter HIV infection. 47 of these factors validate by multiplex gene editing in independent donors, including 23 factors with restrictive activity. Both gene editing efficiencies and HIV-1 phenotypes are highly concordant among independent donors. Importantly, over half of these factors have not been previously described to play a functional role in HIV replication, providing numerous novel avenues for understanding HIV biology. These data further suggest that host-pathogen protein-protein interaction datasets offer an enriched source of candidates for functional host factor discovery and provide an improved understanding of the mechanics of HIV replication in primary T cells.
Collapse
|
47
|
Liu Y, Lan W, Wang C, Cao C. Two different kinds of interaction modes of deaminase APOBEC3A with single-stranded DNA in solution detected by nuclear magnetic resonance. Protein Sci 2022; 31:443-453. [PMID: 34792260 PMCID: PMC8819843 DOI: 10.1002/pro.4242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023]
Abstract
APOBEC3A (A3A) deaminates deoxycytidine in target motif TC in a single-stranded DNA (we termed it as TC DNA), which mortally mutates viral pathogens and immunoglobulins, and leads to the diversification and lethality of cancers. The crystal structure of A3A-DNA revealed a unique U-shaped recognition mode of target base dC0 . However, when TC DNA was titrated into 15 N-labeled A3A solution, we observed two sets of 1 H-15 N cross-peaks of A3A in HSQC spectra, and two sets of 1 H-1 H cross-peaks of DNA in two-dimensional 13 C,15 N-filtered TOCSY spectra, indicating two different kinds of conformers of either A3A or TC DNA existing in solution. Here, mainly by NMR, we demonstrated that one DNA conformer interacted with one A3A conformer, forming a specific complex A3AS -DNAS in a way almost similar to that observed in the reported crystal A3A-DNA structure, where dC0 inserted into zinc ion binding center. While the other DNA conformer bound with another A3A conformer, but dC0 did not extend into the zinc-binding pocket, forming a nonspecific A3ANS -DNANS complex. The NMR solution structure implied three sites Asn61 , His182 and Arg189 were necessary to DNA recognition. These observations indicate a distinctive way from that reported in X-ray crystal structure, suggesting an unexpected mode of deaminase APOBEC3A to identify target motif TC in DNA in solution.
Collapse
Affiliation(s)
- Yaping Liu
- State Key Laboratory of Bioorganic and Natural Product ChemistryCenter for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina,University of Chinese Academy of ScienceBeijingChina
| | - Wenxian Lan
- State Key Laboratory of Bioorganic and Natural Product ChemistryCenter for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
| | - Chunxi Wang
- State Key Laboratory of Bioorganic and Natural Product ChemistryCenter for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
| | - Chunyang Cao
- State Key Laboratory of Bioorganic and Natural Product ChemistryCenter for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina,University of Chinese Academy of ScienceBeijingChina
| |
Collapse
|
48
|
Martins LJ, Szaniawski MA, Williams ESCP, Coiras M, Hanley TM, Planelles V. HIV-1 Accessory Proteins Impart a Modest Interferon Response and Upregulate Cell Cycle-Related Genes in Macrophages. Pathogens 2022; 11:163. [PMID: 35215107 PMCID: PMC8878269 DOI: 10.3390/pathogens11020163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/18/2021] [Accepted: 01/23/2022] [Indexed: 12/10/2022] Open
Abstract
HIV-1 infection of myeloid cells is associated with the induction of an IFN response. How HIV-1 manipulates and subverts the IFN response is of key interest for the design of therapeutics to improve immune function and mitigate immune dysregulation in people living with HIV. HIV-1 accessory genes function to improve viral fitness by altering host pathways in ways that enable transmission to occur without interference from the immune response. We previously described changes in transcriptomes from HIV-1 infected and from IFN-stimulated macrophages and noted that transcription of IFN-regulated genes and genes related to cell cycle processes were upregulated during HIV-1 infection. In the present study, we sought to define the roles of individual viral accessory genes in upregulation of IFN-regulated and cell cycle-related genes using RNA sequencing. We observed that Vif induces a set of genes involved in mitotic processes and that these genes are potently downregulated upon stimulation with type-I and -II IFNs. Vpr also upregulated cell cycle-related genes and was largely responsible for inducing an attenuated IFN response. We note that the induced IFN response most closely resembled a type-III IFN response. Vpu and Nef-regulated smaller sets of genes whose transcriptomic signatures upon infection related to cytokine and chemokine processes. This work provides more insight regarding processes that are manipulated by HIV-1 accessory proteins at the transcriptional level.
Collapse
Affiliation(s)
- Laura J. Martins
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; (L.J.M.); (E.S.C.P.W.)
| | - Matthew A. Szaniawski
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA;
| | - Elizabeth S. C. P. Williams
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; (L.J.M.); (E.S.C.P.W.)
| | - Mayte Coiras
- AIDS Immunopathology Unit, National Center of Microbiology (CNM) Instituto de Salud Carlos III (ISDIII), 28222 Madrid, Spain;
| | - Timothy M. Hanley
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; (L.J.M.); (E.S.C.P.W.)
- Division of Hematopathology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Vicente Planelles
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; (L.J.M.); (E.S.C.P.W.)
| |
Collapse
|
49
|
Kim J, Vasan S, Kim JH, Ake JA. Current approaches to HIV vaccine development: a narrative review. J Int AIDS Soc 2021; 24 Suppl 7:e25793. [PMID: 34806296 PMCID: PMC8606871 DOI: 10.1002/jia2.25793] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The development of an effective vaccine to protect against HIV is a longstanding global health need complicated by challenges inherent to HIV biology and to the execution of vaccine efficacy testing in the context of evolving biomedical prevention interventions. This review describes lessons learnt from previous efficacy trials, highlights unanswered questions, and surveys new approaches in vaccine development addressing these gaps. METHODS We conducted a targeted peer-reviewed literature search of articles and conference abstracts from 1989 through 2021 for HIV vaccine studies and clinical trials. The US National Library of Medicine's Clinical Trials database was accessed to further identify clinical trials involving HIV vaccines. The content of the review was also informed by the authors' own experience and engagement with collaborators in HIV vaccine research. DISCUSSION The HIV vaccine field has successfully developed multiple vaccine platforms through advanced clinical studies; however, the modest efficacy signal of the RV144 Thai trial remains the only demonstration of HIV vaccine protection in humans. Current vaccine strategies include prime-boost strategies to improve elicitation of immune correlates derived from RV144, combination mosaic antigens, novel viral vectors, antigens designed to elicit broadly neutralizing antibody, new nucleic acid platforms and potent adjuvants to enhance immunogenicity across multiple classes of emerging vaccine candidates. CONCLUSIONS HIV vaccine developers have applied lessons learnt from previous successes and failures to innovative vaccine design approaches. These strategies have yielded novel mosaic antigen constructs now in efficacy testing, produced a diverse pipeline of early-stage immunogens and novel adjuvants, and advanced the field towards a globally effective HIV vaccine.
Collapse
Affiliation(s)
- Jiae Kim
- US Military HIV Research ProgramWalter Reed Army Institute of ResearchSilver SpringMarylandUSA
- Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMarylandUSA
| | - Sandhya Vasan
- US Military HIV Research ProgramWalter Reed Army Institute of ResearchSilver SpringMarylandUSA
- Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMarylandUSA
| | | | - Julie A. Ake
- US Military HIV Research ProgramWalter Reed Army Institute of ResearchSilver SpringMarylandUSA
| |
Collapse
|
50
|
Regulation of Viral Restriction by Post-Translational Modifications. Viruses 2021; 13:v13112197. [PMID: 34835003 PMCID: PMC8618861 DOI: 10.3390/v13112197] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022] Open
Abstract
Intrinsic immunity is orchestrated by a wide range of host cellular proteins called restriction factors. They have the capacity to interfere with viral replication, and most of them are tightly regulated by interferons (IFNs). In addition, their regulation through post-translational modifications (PTMs) constitutes a major mechanism to shape their action positively or negatively. Following viral infection, restriction factor modification can be decisive. Palmitoylation of IFITM3, SUMOylation of MxA, SAMHD1 and TRIM5α or glycosylation of BST2 are some of those PTMs required for their antiviral activity. Nonetheless, for their benefit and by manipulating the PTMs machinery, viruses have evolved sophisticated mechanisms to counteract restriction factors. Indeed, many viral proteins evade restriction activity by inducing their ubiquitination and subsequent degradation. Studies on PTMs and their substrates are essential for the understanding of the antiviral defense mechanisms and provide a global vision of all possible regulations of the immune response at a given time and under specific infection conditions. Our aim was to provide an overview of current knowledge regarding the role of PTMs on restriction factors with an emphasis on their impact on viral replication.
Collapse
|