1
|
Driscoll N, Antonini MJ, Cannon TM, Maretich P, Olaitan G, Van VDP, Nagao K, Sahasrabudhe A, Paniagua EV, Frey EJ, Kim YJ, Hunt S, Hummel M, Mupparaju S, Jasanoff A, Venton J, Anikeeva P. Multifunctional Neural Probes Enable Bidirectional Electrical, Optical, and Chemical Recording and Stimulation In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408154. [PMID: 39506430 PMCID: PMC12053509 DOI: 10.1002/adma.202408154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Recording and modulation of neuronal activity enables the study of brain function in health and disease. While translational neuroscience relies on electrical recording and modulation techniques, mechanistic studies in rodent models leverage genetic precision of optical methods, such as optogenetics and fluorescent indicator imaging. In addition to electrical signal transduction, neurons produce and receive diverse chemical signals which motivate tools to probe and modulate neurochemistry. Although the past decade has delivered a wealth of technologies for electrophysiology, optogenetics, chemical sensing, and optical recording, combining these modalities within a single platform remains challenging. This work leverages materials selection and convergence fiber drawing to permit neural recording, electrical stimulation, optogenetics, fiber photometry, drug and gene delivery, and voltammetric recording of neurotransmitters within individual fibers. Composed of polymers and non-magnetic carbon-based conductors, these fibers are compatible with magnetic resonance imaging, enabling concurrent stimulation and whole-brain monitoring. Their utility is demonstrated in studies of the mesolimbic reward pathway by interfacing with the ventral tegmental area and nucleus accumbens in mice and characterizing the neurophysiological effects of a stimulant drug. This study highlights the potential of these fibers to probe electrical, optical, and chemical signaling across multiple brain regions in both mechanistic and translational studies.
Collapse
Affiliation(s)
| | | | | | - Pema Maretich
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | | | - Keisuke Nagao
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | | | - Ethan J. Frey
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ye Ji Kim
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Melissa Hummel
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Alan Jasanoff
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jill Venton
- The University of Virginia, Charlottesville, VA 22904
| | | |
Collapse
|
2
|
Wan Y, Wang C, Zhang B, Liu Y, Yang H, Liu F, Xu J, Xu S. Biocompatible Electrical and Optical Interfaces for Implantable Sensors and Devices. SENSORS (BASEL, SWITZERLAND) 2024; 24:3799. [PMID: 38931581 PMCID: PMC11207811 DOI: 10.3390/s24123799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Implantable bioelectronics hold tremendous potential in the field of healthcare, yet the performance of these systems heavily relies on the interfaces between artificial machines and living tissues. In this paper, we discuss the recent developments of tethered interfaces, as well as those of non-tethered interfaces. Among them, systems that study neural activity receive significant attention due to their innovative developments and high relevance in contemporary research, but other functional types of interface systems are also explored to provide a comprehensive overview of the field. We also analyze the key considerations, including perforation site selection, fixing strategies, long-term retention, and wireless communication, highlighting the challenges and opportunities with stable, effective, and biocompatible interfaces. Furthermore, we propose a primitive model of biocompatible electrical and optical interfaces for implantable systems, which simultaneously possesses biocompatibility, stability, and convenience. Finally, we point out the future directions of interfacing strategies.
Collapse
Affiliation(s)
- Yuxin Wan
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Caiyi Wang
- School of Integrated Circuits, Shandong University, Jinan 250100, China (J.X.)
| | - Bingao Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Yixuan Liu
- Key Laboratory for Neuroscience, Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Ministry of Education and National Health Commission, Peking University, Beijing 100191, China (F.L.)
| | - Hailong Yang
- Key Laboratory for Neuroscience, Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Ministry of Education and National Health Commission, Peking University, Beijing 100191, China (F.L.)
| | - Fengyu Liu
- Key Laboratory for Neuroscience, Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Ministry of Education and National Health Commission, Peking University, Beijing 100191, China (F.L.)
| | - Jingjing Xu
- School of Integrated Circuits, Shandong University, Jinan 250100, China (J.X.)
| | - Shengyong Xu
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Driscoll N, Antonini MJ, Cannon TM, Maretich P, Olaitan G, Phi Van VD, Nagao K, Sahasrabudhe A, Vargas E, Hunt S, Hummel M, Mupparaju S, Jasanoff A, Venton J, Anikeeva P. Fiber-based Probes for Electrophysiology, Photometry, Optical and Electrical Stimulation, Drug Delivery, and Fast-Scan Cyclic Voltammetry In Vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.598004. [PMID: 38895451 PMCID: PMC11185794 DOI: 10.1101/2024.06.07.598004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Recording and modulation of neuronal activity enables the study of brain function in health and disease. While translational neuroscience relies on electrical recording and modulation techniques, mechanistic studies in rodent models leverage genetic precision of optical methods, such as optogenetics and imaging of fluorescent indicators. In addition to electrical signal transduction, neurons produce and receive diverse chemical signals which motivate tools to probe and modulate neurochemistry. Although the past decade has delivered a wealth of technologies for electrophysiology, optogenetics, chemical sensing, and optical recording, combining these modalities within a single platform remains challenging. This work leverages materials selection and convergence fiber drawing to permit neural recording, electrical stimulation, optogenetics, fiber photometry, drug and gene delivery, and voltammetric recording of neurotransmitters within individual fibers. Composed of polymers and non-magnetic carbon-based conductors, these fibers are compatible with magnetic resonance imaging, enabling concurrent stimulation and whole-brain monitoring. Their utility is demonstrated in studies of the mesolimbic reward pathway by simultaneously interfacing with the ventral tegmental area and nucleus accumbens in mice and characterizing the neurophysiological effects of a stimulant drug. This study highlights the potential of these fibers to probe electrical, optical, and chemical signaling across multiple brain regions in both mechanistic and translational studies.
Collapse
Affiliation(s)
| | | | | | - Pema Maretich
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | | | - Keisuke Nagao
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | | | | | - Melissa Hummel
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Alan Jasanoff
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jill Venton
- The University of Virginia, Charlottesville, VA 22904
| | | |
Collapse
|
4
|
Sahasrabudhe A, Rupprecht LE, Orguc S, Khudiyev T, Tanaka T, Sands J, Zhu W, Tabet A, Manthey M, Allen H, Loke G, Antonini MJ, Rosenfeld D, Park J, Garwood IC, Yan W, Niroui F, Fink Y, Chandrakasan A, Bohórquez DV, Anikeeva P. Multifunctional microelectronic fibers enable wireless modulation of gut and brain neural circuits. Nat Biotechnol 2024; 42:892-904. [PMID: 37349522 PMCID: PMC11180606 DOI: 10.1038/s41587-023-01833-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/23/2023] [Indexed: 06/24/2023]
Abstract
Progress in understanding brain-viscera interoceptive signaling is hindered by a dearth of implantable devices suitable for probing both brain and peripheral organ neurophysiology during behavior. Here we describe multifunctional neural interfaces that combine the scalability and mechanical versatility of thermally drawn polymer-based fibers with the sophistication of microelectronic chips for organs as diverse as the brain and the gut. Our approach uses meters-long continuous fibers that can integrate light sources, electrodes, thermal sensors and microfluidic channels in a miniature footprint. Paired with custom-fabricated control modules, the fibers wirelessly deliver light for optogenetics and transfer data for physiological recording. We validate this technology by modulating the mesolimbic reward pathway in the mouse brain. We then apply the fibers in the anatomically challenging intestinal lumen and demonstrate wireless control of sensory epithelial cells that guide feeding behaviors. Finally, we show that optogenetic stimulation of vagal afferents from the intestinal lumen is sufficient to evoke a reward phenotype in untethered mice.
Collapse
Affiliation(s)
- Atharva Sahasrabudhe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laura E Rupprecht
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Sirma Orguc
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tural Khudiyev
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tomo Tanaka
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Secure System Platform Research Laboratories, NEC Corporation, Kawasaki, Japan
| | - Joanna Sands
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Weikun Zhu
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anthony Tabet
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marie Manthey
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Harrison Allen
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gabriel Loke
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marc-Joseph Antonini
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard/MIT Health Sciences and Technology Graduate Program, Cambridge, MA, USA
| | - Dekel Rosenfeld
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jimin Park
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Indie C Garwood
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard/MIT Health Sciences and Technology Graduate Program, Cambridge, MA, USA
| | - Wei Yan
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Farnaz Niroui
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yoel Fink
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anantha Chandrakasan
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Diego V Bohórquez
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke University, Durham, NC, USA
- Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
5
|
Kim J, Huang H, Gilbert ET, Arndt KC, English DF, Jia X. T-DOpE probes reveal sensitivity of hippocampal oscillations to cannabinoids in behaving mice. Nat Commun 2024; 15:1686. [PMID: 38402238 PMCID: PMC10894268 DOI: 10.1038/s41467-024-46021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
Understanding the neural basis of behavior requires monitoring and manipulating combinations of physiological elements and their interactions in behaving animals. We developed a thermal tapering process enabling fabrication of low-cost, flexible probes combining ultrafine features: dense electrodes, optical waveguides, and microfluidic channels. Furthermore, we developed a semi-automated backend connection allowing scalable assembly. We demonstrate T-DOpE (Tapered Drug delivery, Optical stimulation, and Electrophysiology) probes achieve in single neuron-scale devices (1) high-fidelity electrophysiological recording (2) focal drug delivery and (3) optical stimulation. The device tip can be miniaturized (as small as 50 µm) to minimize tissue damage while the ~20 times larger backend allows for industrial-scale connectorization. T-DOpE probes implanted in mouse hippocampus revealed canonical neuronal activity at the level of local field potentials (LFP) and neural spiking. Taking advantage of the triple-functionality of these probes, we monitored LFP while manipulating cannabinoid receptors (CB1R; microfluidic agonist delivery) and CA1 neuronal activity (optogenetics). Focal infusion of CB1R agonist downregulated theta and sharp wave-ripple oscillations (SPW-Rs). Furthermore, we found that CB1R activation reduces sharp wave-ripples by impairing the innate SPW-R-generating ability of the CA1 circuit.
Collapse
Affiliation(s)
- Jongwoon Kim
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Hengji Huang
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Earl T Gilbert
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| | - Kaiser C Arndt
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| | | | - Xiaoting Jia
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA.
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA.
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
6
|
Sha B, Du Z. Neural repair and regeneration interfaces: a comprehensive review. Biomed Mater 2024; 19:022002. [PMID: 38232383 DOI: 10.1088/1748-605x/ad1f78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
Neural interfaces play a pivotal role in neuromodulation, as they enable precise intervention into aberrant neural activity and facilitate recovery from neural injuries and resultant functional impairments by modulating local immune responses and neural circuits. This review outlines the development and applications of these interfaces and highlights the advantages of employing neural interfaces for neural stimulation and repair, including accurate targeting of specific neural populations, real-time monitoring and control of neural activity, reduced invasiveness, and personalized treatment strategies. Ongoing research aims to enhance the biocompatibility, stability, and functionality of these interfaces, ultimately augmenting their therapeutic potential for various neurological disorders. The review focuses on electrophysiological and optophysiology neural interfaces, discussing functionalization and power supply approaches. By summarizing the techniques, materials, and methods employed in this field, this review aims to provide a comprehensive understanding of the potential applications and future directions for neural repair and regeneration devices.
Collapse
Affiliation(s)
- Baoning Sha
- Brain Cognition and Brain Disease Institute, CAS Key Laboratory of Brain Connectome and Manipulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, People's Republic of China
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | - Zhanhong Du
- Brain Cognition and Brain Disease Institute, CAS Key Laboratory of Brain Connectome and Manipulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| |
Collapse
|
7
|
Lodge DJ, Elam HB, Boley AM, Donegan JJ. Discrete hippocampal projections are differentially regulated by parvalbumin and somatostatin interneurons. Nat Commun 2023; 14:6653. [PMID: 37863893 PMCID: PMC10589277 DOI: 10.1038/s41467-023-42484-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/12/2023] [Indexed: 10/22/2023] Open
Abstract
People with schizophrenia show hyperactivity in the ventral hippocampus (vHipp) and we have previously demonstrated distinct behavioral roles for vHipp cell populations. Here, we test the hypothesis that parvalbumin (PV) and somatostatin (SST) interneurons differentially innervate and regulate hippocampal pyramidal neurons based on their projection target. First, we use eGRASP to show that PV-positive interneurons form a similar number of synaptic connections with pyramidal cells regardless of their projection target while SST-positive interneurons preferentially target nucleus accumbens (NAc) projections. To determine if these anatomical differences result in functional changes, we used in vivo opto-electrophysiology to show that SST cells also preferentially regulate the activity of NAc-projecting cells. These results suggest vHipp interneurons differentially regulate that vHipp neurons that project to the medial prefrontal cortex (mPFC) and NAc. Characterization of these cell populations may provide potential molecular targets for the treatment schizophrenia and other psychiatric disorders associated with vHipp dysfunction.
Collapse
Affiliation(s)
- Daniel J Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX, USA
| | - Hannah B Elam
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX, USA
| | - Angela M Boley
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX, USA
| | - Jennifer J Donegan
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
- Department of Psychiatry and Behavioral Sciences and Center for Early Life Adversity, Department of Neuroscience, Dell Medical School at the University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
8
|
Xu S, Momin M, Ahmed S, Hossain A, Veeramuthu L, Pandiyan A, Kuo CC, Zhou T. Illuminating the Brain: Advances and Perspectives in Optoelectronics for Neural Activity Monitoring and Modulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303267. [PMID: 37726261 DOI: 10.1002/adma.202303267] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/30/2023] [Indexed: 09/21/2023]
Abstract
Optogenetic modulation of brain neural activity that combines optical and electrical modes in a unitary neural system has recently gained robust momentum. Controlling illumination spatial coverage, designing light-activated modulators, and developing wireless light delivery and data transmission are crucial for maximizing the use of optical neuromodulation. To this end, biocompatible electrodes with enhanced optoelectrical performance, device integration for multiplexed addressing, wireless transmission, and multimodal operation in soft systems have been developed. This review provides an outlook for uniformly illuminating large brain areas while spatiotemporally imaging the neural responses upon optoelectrical stimulation with little artifacts. Representative concepts and important breakthroughs, such as head-mounted illumination, multiple implanted optical fibers, and micro-light-delivery devices, are discussed. Examples of techniques that incorporate electrophysiological monitoring and optoelectrical stimulation are presented. Challenges and perspectives are posed for further research efforts toward high-density optoelectrical neural interface modulation, with the potential for nonpharmacological neurological disease treatments and wireless optoelectrical stimulation.
Collapse
Affiliation(s)
- Shumao Xu
- Department of Engineering Science and Mechanics, Center for Neural Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Marzia Momin
- Department of Engineering Science and Mechanics, Center for Neural Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Salahuddin Ahmed
- Department of Engineering Science and Mechanics, Center for Neural Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Arafat Hossain
- Department of Electrical Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Loganathan Veeramuthu
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, 10608, Republic of China
| | - Archana Pandiyan
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, 10608, Republic of China
| | - Chi-Ching Kuo
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, 10608, Republic of China
| | - Tao Zhou
- Department of Engineering Science and Mechanics, Center for Neural Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| |
Collapse
|
9
|
Kim J, Huang H, Gilbert E, Arndt K, English DF, Jia X. Tapered Drug delivery, Optical stimulation, and Electrophysiology (T-DOpE) probes reveal the importance of cannabinoid signaling in hippocampal CA1 oscillations in behaving mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544251. [PMID: 37333172 PMCID: PMC10274863 DOI: 10.1101/2023.06.08.544251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Understanding the neural basis of behavior requires monitoring and manipulating combinations of physiological elements and their interactions in behaving animals. Here we developed a thermal tapering process (TTP) which enables the fabrication of novel, low-cost, flexible probes that combine ultrafine features of dense electrodes, optical waveguides, and microfluidic channels. Furthermore, we developed a semi-automated backend connection allowing scalable assembly of the probes. We demonstrate that our T-DOpE ( T apered D rug delivery, Op tical stimulation, and E lectrophysiology) probe achieves in a single neuron-scale device (1) high-fidelity electrophysiological recording (2) focal drug delivery and (3) optical stimulation. With a tapered geometry, the device tip can be minimized (as small as 50 μm) to ensure minimal tissue damage while the backend is ~20 times larger allowing for direct integration with industrial-scale connectorization. Acute and chronic implantation of the probes in mouse hippocampus CA1 revealed canonical neuronal activity at the level of local field potentials and spiking. Taking advantage of the triple-functionality of the T-DOpE probe, we monitored local field potentials with simultaneous manipulation of endogenous type 1 cannabinoid receptors (CB1R; via microfluidic agonist delivery) and CA1 pyramidal cell membrane potential (optogenetic activation). Electro-pharmacological experiments revealed that focal infusion of CB1R agonist CP-55,940 in dorsal CA1 downregulated theta and sharp wave-ripple oscillations. Furthermore, using the full electro-pharmacological-optical feature set of the T-DOpE probe we found that CB1R activation reduces sharp wave-ripples (SPW-Rs) by impairing the innate SPW-R-generating ability of the CA1 circuit.
Collapse
|
10
|
Ohmori H, Hirai Y, Matsui R, Watanabe D. High resolution recording of local field currents simultaneously with sound-evoked calcium signals by a photometric patch electrode in the auditory cortex field L of the chick. J Neurosci Methods 2023; 392:109863. [PMID: 37075913 DOI: 10.1016/j.jneumeth.2023.109863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/06/2023] [Accepted: 04/15/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Functioning of the brain is based on both electrical and metabolic activity of neural ensembles. Accordingly, it would be useful to measure intracellular metabolic signaling simultaneously with electrical activity in the brain in vivo. NEW METHOD We innovated a PhotoMetric-patch-Electrode (PME) recording system that has a high temporal resolution incorporating a photomultiplier tube as a light detector. The PME is fabricated from a quartz glass capillary to transmit light as a light guide, and it can detect electrical signals as a patch electrode simultaneously with a fluorescence signal. RESULTS We measured the sound-evoked Local Field Current (LFC) and fluorescence Ca2+ signal from neurons labeled with Ca2+-sensitive dye Oregon Green BAPTA1 in field L, the avian auditory cortex. Sound stimulation evoked multi-unit spike bursts and Ca2+ signals, and enhanced the fluctuation of LFC. After a brief sound stimulation, the cross-correlation between LFC and Ca2+ signal was prolonged. D-AP5 (antagonist for NMDA receptors) suppressed the sound-evoked Ca2+ signal when applied locally by pressure from the tip of PME. COMPARISON WITH EXISTING METHODS In contrast to existing multiphoton imaging or optical fiber recording methods, the PME is a patch electrode pulled simply from a quartz glass capillary and can measure fluorescence signals at the tip simultaneously with electrical signal at any depth of the brain structure. CONCLUSION The PME is devised to record electrical and optical signals simultaneously with high temporal resolution. Moreover, it can inject chemical agents dissolved in the tip-filling medium locally by pressure, allowing manipulation of neural activity pharmacologically.
Collapse
Affiliation(s)
- Harunori Ohmori
- Department of Physiology & Neurobiology, Faculty of Medicine, Kyoto University, Kyoto, Japan.
| | - Yasuharu Hirai
- Department of Physiology & Neurobiology, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Matsui
- Department of Biological Sciences, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Dai Watanabe
- Department of Biological Sciences, Faculty of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Liang YW, Lai ML, Chiu FM, Tseng HY, Lo YC, Li SJ, Chang CW, Chen PC, Chen YY. Experimental Verification for Numerical Simulation of Thalamic Stimulation-Evoked Calcium-Sensitive Fluorescence and Electrophysiology with Self-Assembled Multifunctional Optrode. BIOSENSORS 2023; 13:265. [PMID: 36832031 PMCID: PMC9953878 DOI: 10.3390/bios13020265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Owing to its capacity to eliminate a long-standing methodological limitation, fiber photometry can assist research gaining novel insight into neural systems. Fiber photometry can reveal artifact-free neural activity under deep brain stimulation (DBS). Although evoking neural potential with DBS is an effective method for mediating neural activity and neural function, the relationship between DBS-evoked neural Ca2+ change and DBS-evoked neural electrophysiology remains unknown. Therefore, in this study, a self-assembled optrode was demonstrated as a DBS stimulator and an optical biosensor capable of concurrently recording Ca2+ fluorescence and electrophysiological signals. Before the in vivo experiment, the volume of tissue activated (VTA) was estimated, and the simulated Ca2+ signals were presented using Monte Carlo (MC) simulation to approach the realistic in vivo environment. When VTA and the simulated Ca2+ signals were combined, the distribution of simulated Ca2+ fluorescence signals matched the VTA region. In addition, the in vivo experiment revealed a correlation between the local field potential (LFP) and the Ca2+ fluorescence signal in the evoked region, revealing the relationship between electrophysiology and the performance of neural Ca2+ concentration behavior. Concurrent with the VTA volume, simulated Ca2+ intensity, and the in vivo experiment, these data suggested that the behavior of neural electrophysiology was consistent with the phenomenon of Ca2+ influx to neurons.
Collapse
Affiliation(s)
- Yao-Wen Liang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ming-Liang Lai
- Graduate Institute of Intellectual Property, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Feng-Mao Chiu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Yi Tseng
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan
| | - Yu-Chun Lo
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Po-Chuan Chen
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
12
|
Li H, Wang J, Fang Y. Recent developments in multifunctional neural probes for simultaneous neural recording and modulation. MICROSYSTEMS & NANOENGINEERING 2023; 9:4. [PMID: 36620392 PMCID: PMC9810608 DOI: 10.1038/s41378-022-00444-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 06/17/2023]
Abstract
Neural probes are among the most widely applied tools for studying neural circuit functions and treating neurological disorders. Given the complexity of the nervous system, it is highly desirable to monitor and modulate neural activities simultaneously at the cellular scale. In this review, we provide an overview of recent developments in multifunctional neural probes that allow simultaneous neural activity recording and modulation through different modalities, including chemical, electrical, and optical stimulation. We will focus on the material and structural design of multifunctional neural probes and their interfaces with neural tissues. Finally, future challenges and prospects of multifunctional neural probes will be discussed.
Collapse
Affiliation(s)
- Hongbian Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Jinfen Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Ying Fang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031 China
| |
Collapse
|
13
|
Ramandi D, Michelson NJ, Raymond LA, Murphy TH. Chronic multiscale resolution of mouse brain networks using combined mesoscale cortical imaging and subcortical fiber photometry. NEUROPHOTONICS 2023; 10:015001. [PMID: 36694618 PMCID: PMC9867602 DOI: 10.1117/1.nph.10.1.015001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
SIGNIFICANCE Genetically encoded optical probes to image calcium levels in neurons in vivo are used widely as a real-time measure of neuronal activity in the brain. Mesoscale calcium imaging through a cranial window provides a method of studying the interaction of circuit activity between cortical areas but lacks access to subcortical regions. AIM We have developed an optical and surgical preparation that preserves wide-field imaging of the cortical surface while also permitting access to specific subcortical networks. APPROACH This was achieved using an optical fiber implanted in the striatum, along with a bilateral widefield cranial window, enabling simultaneous mesoscale cortical imaging and subcortical fiber photometry recording of calcium signals in a transgenic animal expressing GCaMP. Subcortical signals were collected from the dorsal regions of the striatum. We combined this approach with multiple sensory-motor tasks, including specific auditory and visual stimulation, and video monitoring of animal movements and pupillometry during head-fixed behaviors. RESULTS We found high correlations between cortical and striatal activity in response to sensory stimulation or movement. Furthermore, spontaneous activity recordings revealed that specific motifs of cortical activity are correlated with presynaptic activity recorded in the striatum, enabling us to select for corticostriatal activity motifs. CONCLUSION We believe that this method can be utilized to reveal not only global patterns but also cell-specific connectivity that provides insight into corticobasal ganglia circuit organization.
Collapse
Affiliation(s)
- Daniel Ramandi
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, Vancouver, British Columbia, Canada
| | - Nicholas J. Michelson
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, Vancouver, British Columbia, Canada
| | - Lynn A. Raymond
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, Vancouver, British Columbia, Canada
| | - Timothy H. Murphy
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Kucharczyk MW, Di Domenico F, Bannister K. Distinct brainstem to spinal cord noradrenergic pathways inversely regulate spinal neuronal activity. Brain 2022; 145:2293-2300. [PMID: 35245374 PMCID: PMC9337805 DOI: 10.1093/brain/awac085] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/31/2022] [Accepted: 02/18/2022] [Indexed: 11/14/2022] Open
Abstract
Brainstem to spinal cord noradrenergic pathways include a locus coeruleus origin projection and diffuse noxious inhibitory controls. While both pathways are traditionally viewed as exerting an inhibitory effect on spinal neuronal activity, the locus coeruleus was previously shown to have a facilitatory influence on thermal nocioception according to the subpopulation of coerulean neurons activated. Coupled with knowledge of its functional modular organisation and the fact that diffuse noxious inhibitory controls are not expressed in varied animal models of chronicity, we hypothesized a regulatory role for the locus coeruleus on non-coerulean, discrete noradrenergic cell group(s). We implemented locus coeruleus targeting strategies by microinjecting canine adenovirus encoding for channelrhodopsin-2 under a noradrenaline-specific promoter in the spinal cord (retrogradely labelling a coeruleospinal module) or the locus coeruleus itself (labelling the entire coerulean module). Coeruleospinal module optoactivation abolished diffuse noxious inhibitory controls (two-way ANOVA, P < 0.0001), which were still expressed following locus coeruleus neuronal ablation. We propose that the cerulean system interacts with, but does not directly govern, diffuse noxious inhibitory controls. This mechanism may underlie the role of the locus coeruleus as a 'chronic pain generator'. Pinpointing the functionality of discrete top-down pathways is crucial for understanding sensorimotor modulation in health and disease.
Collapse
Affiliation(s)
- Mateusz W Kucharczyk
- Central Modulation of Pain, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Francesca Di Domenico
- Central Modulation of Pain, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Kirsty Bannister
- Central Modulation of Pain, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| |
Collapse
|
15
|
Russell LE, Dalgleish HWP, Nutbrown R, Gauld OM, Herrmann D, Fişek M, Packer AM, Häusser M. All-optical interrogation of neural circuits in behaving mice. Nat Protoc 2022; 17:1579-1620. [PMID: 35478249 PMCID: PMC7616378 DOI: 10.1038/s41596-022-00691-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 02/09/2022] [Indexed: 12/22/2022]
Abstract
Recent advances combining two-photon calcium imaging and two-photon optogenetics with computer-generated holography now allow us to read and write the activity of large populations of neurons in vivo at cellular resolution and with high temporal resolution. Such 'all-optical' techniques enable experimenters to probe the effects of functionally defined neurons on neural circuit function and behavioral output with new levels of precision. This greatly increases flexibility, resolution, targeting specificity and throughput compared with alternative approaches based on electrophysiology and/or one-photon optogenetics and can interrogate larger and more densely labeled populations of neurons than current voltage imaging-based implementations. This protocol describes the experimental workflow for all-optical interrogation experiments in awake, behaving head-fixed mice. We describe modular procedures for the setup and calibration of an all-optical system (~3 h), the preparation of an indicator and opsin-expressing and task-performing animal (~3-6 weeks), the characterization of functional and photostimulation responses (~2 h per field of view) and the design and implementation of an all-optical experiment (achievable within the timescale of a normal behavioral experiment; ~3-5 h per field of view). We discuss optimizations for efficiently selecting and targeting neuronal ensembles for photostimulation sequences, as well as generating photostimulation response maps from the imaging data that can be used to examine the impact of photostimulation on the local circuit. We demonstrate the utility of this strategy in three brain areas by using different experimental setups. This approach can in principle be adapted to any brain area to probe functional connectivity in neural circuits and investigate the relationship between neural circuit activity and behavior.
Collapse
Affiliation(s)
- Lloyd E Russell
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Henry W P Dalgleish
- Wolfson Institute for Biomedical Research, University College London, London, UK
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Rebecca Nutbrown
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Oliver M Gauld
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Dustin Herrmann
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Mehmet Fişek
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Adam M Packer
- Wolfson Institute for Biomedical Research, University College London, London, UK.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, London, UK.
| |
Collapse
|
16
|
Spagnolo B, Balena A, Peixoto RT, Pisanello M, Sileo L, Bianco M, Rizzo A, Pisano F, Qualtieri A, Lofrumento DD, De Nuccio F, Assad JA, Sabatini BL, De Vittorio M, Pisanello F. Tapered fibertrodes for optoelectrical neural interfacing in small brain volumes with reduced artefacts. NATURE MATERIALS 2022; 21:826-835. [PMID: 35668147 PMCID: PMC7612923 DOI: 10.1038/s41563-022-01272-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 04/27/2022] [Indexed: 06/02/2023]
Abstract
Deciphering the neural patterns underlying brain functions is essential to understanding how neurons are organized into networks. This deciphering has been greatly facilitated by optogenetics and its combination with optoelectronic devices to control neural activity with millisecond temporal resolution and cell type specificity. However, targeting small brain volumes causes photoelectric artefacts, in particular when light emission and recording sites are close to each other. We take advantage of the photonic properties of tapered fibres to develop integrated 'fibertrodes' able to optically activate small brain volumes with abated photoelectric noise. Electrodes are positioned very close to light emitting points by non-planar microfabrication, with angled light emission allowing the simultaneous optogenetic manipulation and electrical read-out of one to three neurons, with no photoelectric artefacts, in vivo. The unconventional implementation of two-photon polymerization on the curved taper edge enables the fabrication of recoding sites all around the implant, making fibertrodes a promising complement to planar microimplants.
Collapse
Affiliation(s)
| | | | - Rui T Peixoto
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Marco Bianco
- Istituto Italiano di Tecnologia, CBN, Lecce, Italy
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Lecce, Italy
| | - Alessandro Rizzo
- Istituto Italiano di Tecnologia, CBN, Lecce, Italy
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Lecce, Italy
| | | | | | - Dario Domenico Lofrumento
- DiSTeBA - Department of Biological and Environmental Sciences and Technologies, Università del Salento, Lecce, Italy
| | - Francesco De Nuccio
- DiSTeBA - Department of Biological and Environmental Sciences and Technologies, Università del Salento, Lecce, Italy
| | - John A Assad
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Istituto Italiano di Tecnologia, Genova, Italy
| | - Bernardo L Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, CBN, Lecce, Italy.
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Lecce, Italy.
| | | |
Collapse
|
17
|
Hee Lee J, Lee S, Kim D, Jae Lee K. Implantable Micro-Light-Emitting Diode (µLED)-based optogenetic interfaces toward human applications. Adv Drug Deliv Rev 2022; 187:114399. [PMID: 35716898 DOI: 10.1016/j.addr.2022.114399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/29/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022]
Abstract
Optogenetics has received wide attention in biomedical fields because of itsadvantages in temporal precision and spatial resolution. Beyond contributions to important advances in fundamental research, optogenetics is inspiring a shift towards new methods of improving human well-being and treating diseases. Soft, flexible and biocompatible systems using µLEDs as a light source have been introduced to realize brain-compatible optogenetic implants, but there are still many technical challenges to overcome before their human applications. In this review, we address progress in the development of implantable µLED probes and recent achievements in (i) device engineering design, (ii) driving power, (iii) multifunctionality and (iv) closed-loop systems. (v) Expanded optogenetic applications based on remarkable advances in µLED implants will also be discussed.
Collapse
Affiliation(s)
- Jae Hee Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sinjeong Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Daesoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
18
|
Abstract
To understand how brain functions arise from interconnected neural networks, it is necessary to develop tools that can allow simultaneous manipulation and recording of neural activities. Multimodal neural probes, especially those that combine optogenetics with electrophysiology, provide a powerful tool for the dissection of neural circuit functions and understanding of brain diseases. In this review, we provide an overview of recent developments in multimodal neural probes. We will focus on materials and integration strategies of multimodal neural probes to achieve combined optogenetic stimulation and electrical recordings with high spatiotemporal precision and low invasiveness. In addition, we will also discuss future opportunities of multimodal neural interfaces in basic and translational neuroscience.
Collapse
Affiliation(s)
- Huihui Tian
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Ke Xu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Zou
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Fang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Jiang S, Wu X, Rommelfanger NJ, Ou Z, Hong G. Shedding light on neurons: optical approaches for neuromodulation. Natl Sci Rev 2022; 9:nwac007. [PMID: 36196122 PMCID: PMC9522429 DOI: 10.1093/nsr/nwac007] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/17/2021] [Accepted: 12/29/2021] [Indexed: 11/14/2022] Open
Abstract
Today's optical neuromodulation techniques are rapidly evolving, benefiting from advances in photonics, genetics and materials science. In this review, we provide an up-to-date overview of the latest optical approaches for neuromodulation. We begin with the physical principles and constraints underlying the interaction between light and neural tissue. We then present advances in optical neurotechnologies in seven modules: conventional optical fibers, multifunctional fibers, optical waveguides, light-emitting diodes, upconversion nanoparticles, optical neuromodulation based on the secondary effects of light, and unconventional light sources facilitated by ultrasound and magnetic fields. We conclude our review with an outlook on new methods and mechanisms that afford optical neuromodulation with minimal invasiveness and footprint.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Xiang Wu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Nicholas J Rommelfanger
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
| | - Zihao Ou
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
20
|
Lubejko ST, Graham RD, Livrizzi G, Schaefer R, Banghart MR, Creed MC. The role of endogenous opioid neuropeptides in neurostimulation-driven analgesia. Front Syst Neurosci 2022; 16:1044686. [PMID: 36591324 PMCID: PMC9794630 DOI: 10.3389/fnsys.2022.1044686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Due to the prevalence of chronic pain worldwide, there is an urgent need to improve pain management strategies. While opioid drugs have long been used to treat chronic pain, their use is severely limited by adverse effects and abuse liability. Neurostimulation techniques have emerged as a promising option for chronic pain that is refractory to other treatments. While different neurostimulation strategies have been applied to many neural structures implicated in pain processing, there is variability in efficacy between patients, underscoring the need to optimize neurostimulation techniques for use in pain management. This optimization requires a deeper understanding of the mechanisms underlying neurostimulation-induced pain relief. Here, we discuss the most commonly used neurostimulation techniques for treating chronic pain. We present evidence that neurostimulation-induced analgesia is in part driven by the release of endogenous opioids and that this endogenous opioid release is a common endpoint between different methods of neurostimulation. Finally, we introduce technological and clinical innovations that are being explored to optimize neurostimulation techniques for the treatment of pain, including multidisciplinary efforts between neuroscience research and clinical treatment that may refine the efficacy of neurostimulation based on its underlying mechanisms.
Collapse
Affiliation(s)
- Susan T. Lubejko
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert D. Graham
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Giulia Livrizzi
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert Schaefer
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Matthew R. Banghart
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Matthew R. Banghart,
| | - Meaghan C. Creed
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
- Meaghan C. Creed,
| |
Collapse
|
21
|
Chou N, Shin H, Kim K, Chae U, Jang M, Jeong U, Hwang K, Yi B, Lee SE, Woo J, Cho Y, Lee C, Baker BJ, Oh S, Nam M, Choi N, Cho I. A Multimodal Multi-Shank Fluorescence Neural Probe for Cell-Type-Specific Electrophysiology in Multiple Regions across a Neural Circuit. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103564. [PMID: 34796701 PMCID: PMC8805556 DOI: 10.1002/advs.202103564] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/25/2021] [Indexed: 05/27/2023]
Abstract
Cell-type-specific, activity-dependent electrophysiology can allow in-depth analysis of functional connectivity inside complex neural circuits composed of various cell types. To date, optics-based fluorescence recording devices enable monitoring cell-type-specific activities. However, the monitoring is typically limited to a single brain region, and the temporal resolution is significantly low. Herein, a multimodal multi-shank fluorescence neural probe that allows cell-type-specific electrophysiology from multiple deep-brain regions at a high spatiotemporal resolution is presented. A photodiode and an electrode-array pair are monolithically integrated on each tip of a minimal-form-factor silicon device. Both fluorescence and electrical signals are successfully measured simultaneously in GCaMP6f expressing mice, and the cell type from sorted neural spikes is identified. The probe's capability of combined electro-optical recordings for cell-type-specific electrophysiology at multiple brain regions within a neural circuit is demonstrated. The new experimental paradigm to enable the precise investigation of functional connectivity inside and across complex neural circuits composed of various cell types is expected.
Collapse
Affiliation(s)
- Namsun Chou
- Center for BioMicrosystems, Brain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Hyogeun Shin
- Center for BioMicrosystems, Brain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Kanghwan Kim
- Center for BioMicrosystems, Brain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Uikyu Chae
- Center for BioMicrosystems, Brain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
- School of Electrical EngineeringKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Minsu Jang
- Center for BioMicrosystems, Brain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Ui‐Jin Jeong
- Center for BioMicrosystems, Brain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
- School of Electrical EngineeringKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
| | - Kyeong‐Seob Hwang
- Center for BioMicrosystems, Brain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
- School of Mechanical EngineeringYonsei University50 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| | - Bumjun Yi
- Center for Functional ConnectomicsBrain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Seung Eun Lee
- Virus Facility, Research Animal Resource CenterBrain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Jiwan Woo
- Center for Neuroscience, Brain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Yakdol Cho
- Center for Neuroscience, Brain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Changhyuk Lee
- Center for BioMicrosystems, Brain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Bradley J. Baker
- Center for Functional ConnectomicsBrain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Soo‐Jin Oh
- Center for Neuroscience, Brain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Min‐Ho Nam
- Center for Neuroscience, Brain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Nakwon Choi
- Center for BioMicrosystems, Brain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Republic of Korea
- Division of Bio‐Medical Science and Technology, KIST SchoolKorea University of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Il‐Joo Cho
- Center for BioMicrosystems, Brain Science InstituteKorea Institute of Science and Technology5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
- School of Electrical and Electronics EngineeringYonsei University50 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
- Yonsei‐KIST Convergence Research InstituteYonsei University50 Yonsei‐ro, Seodaemun‐guSeoul03722Republic of Korea
| |
Collapse
|
22
|
Bilodeau G, Gagnon-Turcotte G, Gagnon LL, Keramidis I, Timofeev I, De Koninck Y, Ethier C, Gosselin B. A Wireless Electro-Optic Platform for Multimodal Electrophysiology and Optogenetics in Freely Moving Rodents. Front Neurosci 2021; 15:718478. [PMID: 34504415 PMCID: PMC8422428 DOI: 10.3389/fnins.2021.718478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022] Open
Abstract
This paper presents the design and the utilization of a wireless electro-optic platform to perform simultaneous multimodal electrophysiological recordings and optogenetic stimulation in freely moving rodents. The developed system can capture neural action potentials (AP), local field potentials (LFP) and electromyography (EMG) signals with up to 32 channels in parallel while providing four optical stimulation channels. The platform is using commercial off-the-shelf components (COTS) and a low-power digital field-programmable gate array (FPGA), to perform digital signal processing to digitally separate in real time the AP, LFP and EMG while performing signal detection and compression for mitigating wireless bandwidth and power consumption limitations. The different signal modalities collected on the 32 channels are time-multiplexed into a single data stream to decrease power consumption and optimize resource utilization. The data reduction strategy is based on signal processing and real-time data compression. Digital filtering, signal detection, and wavelet data compression are used inside the platform to separate the different electrophysiological signal modalities, namely the local field potentials (1–500 Hz), EMG (30–500 Hz), and the action potentials (300–5,000 Hz) and perform data reduction before transmitting the data. The platform achieves a measured data reduction ratio of 7.77 (for a firing rate of 50 AP/second) and weights 4.7 g with a 100-mAh battery, an on/off switch and a protective plastic enclosure. To validate the performance of the platform, we measured distinct electrophysiology signals and performed optogenetics stimulation in vivo in freely moving rondents. We recorded AP and LFP signals with the platform using a 16-microelectrode array implanted in the primary motor cortex of a Long Evans rat, both in anesthetized and freely moving conditions. EMG responses to optogenetic Channelrhodopsin-2 induced activation of motor cortex via optical fiber were also recorded in freely moving rodents.
Collapse
Affiliation(s)
- Guillaume Bilodeau
- Smart Biomedical Microsystems Laboratory, Department of Electrical Engineering, Université Laval, Québec, QC, Canada
| | - Gabriel Gagnon-Turcotte
- Smart Biomedical Microsystems Laboratory, Department of Electrical Engineering, Université Laval, Québec, QC, Canada
| | - Léonard L Gagnon
- Smart Biomedical Microsystems Laboratory, Department of Electrical Engineering, Université Laval, Québec, QC, Canada
| | - Iason Keramidis
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - Igor Timofeev
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - Yves De Koninck
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - Christian Ethier
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - Benoit Gosselin
- Smart Biomedical Microsystems Laboratory, Department of Electrical Engineering, Université Laval, Québec, QC, Canada.,Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| |
Collapse
|
23
|
Shen J, Xu Y, Xiao Z, Liu Y, Liu H, Wang F, Yao W, Yan Z, Zhang M, Wu Z, Liu Y, Pun SH, Lei TC, Vai MI, Mak PU, Chen C, Zhang B. Influence of the Surface Material and Illumination upon the Performance of a Microelectrode/Electrolyte Interface in Optogenetics. MICROMACHINES 2021; 12:1061. [PMID: 34577704 PMCID: PMC8471589 DOI: 10.3390/mi12091061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022]
Abstract
Integrated optrodes for optogenetics have been becoming a significant tool in neuroscience through the combination of offering accurate stimulation to target cells and recording biological signals simultaneously. This makes it not just be widely used in neuroscience researches, but also have a great potential to be employed in future treatments in clinical neurological diseases. To optimize the integrated optrodes, this paper aimed to investigate the influence of surface material and illumination upon the performance of the microelectrode/electrolyte interface and build a corresponding evaluation system. In this work, an integrated planar optrode with a blue LED and microelectrodes was designed and fabricated. The charge transfer mechanism on the interface was theoretically modeled and experimentally verified. An evaluation system for assessing microelectrodes was also built up. Using this system, the proposed model of various biocompatible surface materials on microelectrodes was further investigated under different illumination conditions. The influence of illumination on the microelectrode/electrolyte interface was the cause of optical artifacts, which interfere the biological signal recording. It was found that surface materials had a great effect on the charge transfer capacity, electrical stability and recoverability, photostability, and especially optical artifacts. The metal with better charge transfer capacity and electrical stability is highly possible to have a better performance on the optical artifacts, regardless of its electrical recoverability and photostability under the illumination conditions of optogenetics. Among the five metals used in our investigation, iridium served as the best surface material for the proposed integrated optrodes. Thus, optimizing the surface material for optrodes could reduce optical interference, enhance the quality of the neural signal recording for optogenetics, and thus help to advance the research in neuroscience.
Collapse
Grants
- 62061160368 & 0022/2020/AFJ This research was funded by the joint funding of the Nature Science Foundation of China (NSFC) & the Macao Science and Technology Development Fund (FDCT) of China
- 2019B010132003, 2019B010132001 Science & Technology Plan of Guangdong Province, China
- 2016YFB0400105, 2017YFB0403001 the National Key Research and Development Program
- 20167612042080001 the Zhuhai Key Technology Laboratory of Wide Bandgap Semiconductor Power Electronics, Sun Yat-sen University, China
- 088/2016/A2, 0144/2019/A3, 0022/2020/AFJ, SKL-AMSV (FDCT-funded), SKL-AMSV-ADDITIONAL FUND, SKL-AMSV(UM)-2020-2022 the Science and Technology Development Fund, Macau SAR
- MYRG2018-00146-AMSV, MYRG2019-00056-AMSV the University of Macau
- 2020YFB1313502 the National Key R&D Program of China
Collapse
Affiliation(s)
- Junyu Shen
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Yanyan Xu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Zhengwen Xiao
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Yuebo Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Honghui Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Fengge Wang
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Wanqing Yao
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Zhaokun Yan
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Minjie Zhang
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Zhisheng Wu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Sio Hang Pun
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China; (S.H.P.); (M.I.V.); (C.C.)
| | - Tim C. Lei
- Department of Electrical Engineering, University of Colorado Denver, Denver, CO 80204, USA;
| | - Mang I Vai
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China; (S.H.P.); (M.I.V.); (C.C.)
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China;
| | - Peng Un Mak
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China;
| | - Changhao Chen
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China; (S.H.P.); (M.I.V.); (C.C.)
| | - Baijun Zhang
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
24
|
Miranda C, Howell MR, Lusk JF, Marschall E, Eshima J, Anderson T, Smith BS. Automated microscope-independent fluorescence-guided micropipette. BIOMEDICAL OPTICS EXPRESS 2021; 12:4689-4699. [PMID: 34513218 PMCID: PMC8407805 DOI: 10.1364/boe.431372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Glass micropipette electrodes are commonly used to provide high resolution recordings of neurons. Although it is the gold standard for single cell recordings, it is highly dependent on the skill of the electrophysiologist. Here, we demonstrate a method of guiding micropipette electrodes to neurons by collecting fluorescence at the aperture, using an intra-electrode tapered optical fiber. The use of a tapered fiber for excitation and collection of fluorescence at the micropipette tip couples the feedback mechanism directly to the distance between the target and electrode. In this study, intra-electrode tapered optical fibers provide a targeted robotic approach to labeled neurons that is independent of microscopy.
Collapse
Affiliation(s)
- Christopher Miranda
- Arizona State University, School of Biological and Health Systems Engineering, Tempe, AZ 85210, USA
| | - Madeleine R. Howell
- Arizona State University, School of Biological and Health Systems Engineering, Tempe, AZ 85210, USA
| | - Joel F. Lusk
- Arizona State University, School of Biological and Health Systems Engineering, Tempe, AZ 85210, USA
| | - Ethan Marschall
- Arizona State University, School of Biological and Health Systems Engineering, Tempe, AZ 85210, USA
| | - Jarrett Eshima
- Arizona State University, School of Biological and Health Systems Engineering, Tempe, AZ 85210, USA
| | - Trent Anderson
- University of Arizona, College of Medicine – Phoenix, Phoenix, AZ 85004, USA
| | - Barbara S. Smith
- Arizona State University, School of Biological and Health Systems Engineering, Tempe, AZ 85210, USA
| |
Collapse
|
25
|
Lian J, He B, Wang W, Guo Y, Xu Y, Wei X, Yang Z. Biocompatible diameter-oscillating fiber with microlens endface. OPTICS EXPRESS 2021; 29:12024-12032. [PMID: 33984971 DOI: 10.1364/oe.421996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Optical fibers have been widely applied to life science, such as laser delivering, fluorescence collection, biosensing, bioimaging, etc. To resolve the challenges of advanced multiphoton biophotonic applications utilizing ultrashort laser pulses, here we report a flexible diameter-oscillating fiber (DOF) with microlens endface fabricated by using Polydimethylsiloxane (PDMS) elastomers. The diameter of the DOF is designed to longitudinally vary for providing accurate dispersion management, which is important for near-infrared multiphoton biophotonics that usually involves ultrashort laser pulses. The variation range and period of the DOF's diameter can be flexibly adjusted by controlling the parameters during the fabrication, such that dispersion curves with different oscillation landscapes can be obtained. The dispersion oscillating around the zero-dispersion baseline gives rise to a minimized net dispersion as the ultrashort laser pulse passes through the DOF - reducing the temporal broadening effect and resulting in transform-limited pulsewidth. In addition, the endface of the DOF is fabricated with a microlens, which is especially useful for laser scanning/focusing and fluorescence excitation. It is anticipated that this new biocompatible DOF is of great interest for biophotonic applications, particularly multiphoton microscopy deep inside biological tissues.
Collapse
|
26
|
Ramezani Z, Seo KJ, Fang H. Hybrid Electrical and Optical Neural Interfaces. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2021; 31:044002. [PMID: 34177136 PMCID: PMC8232899 DOI: 10.1088/1361-6439/abeb30] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Neural interfaces bridge the nervous system and the outside world by recording and stimulating neurons. Combining electrical and optical modalities in a single, hybrid neural interface system could lead to complementary and powerful new ways to explore the brain. It has gained robust and exciting momentum recently in neuroscience and neural engineering research. Here, we review developments in the past several years aiming to achieve such hybrid electrical and optical microsystem platforms. Specifically, we cover three major categories of technological advances: transparent neuroelectrodes, optical neural fibers with electrodes, and neural probes/grids integrating electrodes and microscale light-emitting diodes. We discuss examples of these probes tailored to combine electrophysiological recording with optical imaging or optical neural stimulation of the brain and possible directions of future innovation.
Collapse
Affiliation(s)
| | | | - Hui Fang
- Department of Electrical and Computer Engineering
- Department of Mechanical and Industrial Engineering
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
27
|
Multimode Optical Fibers for Optical Neural Interfaces. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33398843 DOI: 10.1007/978-981-15-8763-4_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Although multiphoton microscopy enables optical control and monitoring of neural activity with single cells resolution over a depth of several hundreds of micrometers, the scattering nature of the brain tissue requires implantable optical neural interfaces to access subcortical structures. If micro light-emitting devices (μLEDs) and solid-state waveguides represent important technological advancements for the field, multimodal optical fibers (MMFs) are still the most diffused tool in neuroscience labs to interface with deep regions of the brain. At a first glance, MMFs can be seen as very limited systems. However, new studies and discoveries in optics, photonics, and technological solutions for their application to neuroscience research have enabled applications of MMF where competing technologies fail. In this framework, the chapter starts with a description of optical neural interfaces based on MMF, with specific reference on recent works analyzing the performances of this approach to deliver and collect light from scattering tissue. The discussion then focuses on how peculiar features of MMFs can be exploited to obtain unconventional applications, including brain imaging through a single multimode fiber, multifunctional neural interfaces, and depth-resolved light delivery and functional fluorescence collection.
Collapse
|
28
|
Malvaut S, Constantinescu VS, Dehez H, Doric S, Saghatelyan A. Deciphering Brain Function by Miniaturized Fluorescence Microscopy in Freely Behaving Animals. Front Neurosci 2020; 14:819. [PMID: 32848576 PMCID: PMC7432153 DOI: 10.3389/fnins.2020.00819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/14/2020] [Indexed: 11/19/2022] Open
Abstract
Animal behavior is regulated by environmental stimuli and is shaped by the activity of neural networks, underscoring the importance of assessing the morpho-functional properties of different populations of cells in freely behaving animals. In recent years, a number of optical tools have been developed to monitor and modulate neuronal and glial activity at the protein, cellular, or network level and have opened up new avenues for studying brain function in freely behaving animals. Tools such as genetically encoded sensors and actuators are now commonly used for studying brain activity and function through their expression in different neuronal ensembles. In parallel, microscopy has also made major progress over the last decades. The advent of miniature microscopes (mini-microscopes also called mini-endoscopes) has become a method of choice for studying brain activity at the cellular and network levels in different brain regions of freely behaving mice. This technique also allows for longitudinal investigations while animals carrying the microscope on their head are performing behavioral tasks. In this review, we will discuss mini-endoscopic imaging and the advantages that these devices offer to research. We will also discuss current limitations of and potential future improvements in mini-endoscopic imaging.
Collapse
Affiliation(s)
- Sarah Malvaut
- CERVO Brain Research Center, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Universite Laval, Quebec City, QC, Canada
| | - Vlad-Stefan Constantinescu
- CERVO Brain Research Center, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Universite Laval, Quebec City, QC, Canada
| | | | - Sead Doric
- Doric Lenses Inc., Quebec City, QC, Canada
| | - Armen Saghatelyan
- CERVO Brain Research Center, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Universite Laval, Quebec City, QC, Canada
| |
Collapse
|
29
|
Hondrich TJJ, Lenyk B, Shokoohimehr P, Kireev D, Maybeck V, Mayer D, Offenhäusser A. MEA Recordings and Cell-Substrate Investigations with Plasmonic and Transparent, Tunable Holey Gold. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46451-46461. [PMID: 31752486 DOI: 10.1021/acsami.9b14948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microelectrode arrays are widely used in different fields such as neurobiology or biomedicine to read out electrical signals from cells or biomolecules. One way to improve microelectrode applications is the development of novel electrode materials with enhanced or additional functionality. In this study, we fabricated macroelectrodes and microelectrode arrays containing gold penetrated by nanohole arrays as a conductive layer. We used this holey gold to optically excite surface plasmon polaritons, which lead to a strong increase in transparency, an effect that is further enhanced by the plasmon's interaction with cell culture medium. By varying the nanohole diameter in finite-difference time domain simulations, we demonstrate that the transmission can be increased to above 70% with its peak at a wavelength depending on the holey gold's lattice constant. Further, we demonstrate that the novel transparent microelectrode arrays are as suitable for recording cellular electrical activity as standard devices. Moreover, we prove using spectral measurements and finite-difference time domain simulations that plasmonically induced transmission peaks of holey gold red-shift upon sensing medium or cells in close vicinity (<30 nm) to the substrate. Thus, we establish plasmonic and transparent holey gold as a tunable material suitable for cellular electrical recordings and biosensing applications.
Collapse
Affiliation(s)
- Timm J J Hondrich
- Institute of Complex Systems, Bioelectronics (ICS-8) , Forschungszentrum Jülich , 52428 Jülich , Germany
- RWTH Aachen University , Aachen 52062 , Germany
| | - Bohdan Lenyk
- Institute of Complex Systems, Bioelectronics (ICS-8) , Forschungszentrum Jülich , 52428 Jülich , Germany
- Department of Physics , University of Konstanz , 78464 Konstanz , Germany
| | - Pegah Shokoohimehr
- Institute of Complex Systems, Bioelectronics (ICS-8) , Forschungszentrum Jülich , 52428 Jülich , Germany
- RWTH Aachen University , Aachen 52062 , Germany
| | - Dmitry Kireev
- Institute of Complex Systems, Bioelectronics (ICS-8) , Forschungszentrum Jülich , 52428 Jülich , Germany
- Department of Electrical and Computer Engineering , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Vanessa Maybeck
- Institute of Complex Systems, Bioelectronics (ICS-8) , Forschungszentrum Jülich , 52428 Jülich , Germany
| | - Dirk Mayer
- Institute of Complex Systems, Bioelectronics (ICS-8) , Forschungszentrum Jülich , 52428 Jülich , Germany
| | - Andreas Offenhäusser
- Institute of Complex Systems, Bioelectronics (ICS-8) , Forschungszentrum Jülich , 52428 Jülich , Germany
| |
Collapse
|
30
|
Wang LC, Wang MH, Ge CF, Ji BW, Guo ZJ, Wang XL, Yang B, Li CY, Liu JQ. The use of a double-layer platinum black-conducting polymer coating for improvement of neural recording and mitigation of photoelectric artifact. Biosens Bioelectron 2019; 145:111661. [DOI: 10.1016/j.bios.2019.111661] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/14/2019] [Accepted: 08/27/2019] [Indexed: 12/28/2022]
|
31
|
Jia Y, Mirbozorgi SA, Lee B, Khan W, Madi F, Inan OT, Weber A, Li W, Ghovanloo M. A mm-Sized Free-Floating Wirelessly Powered Implantable Optical Stimulation Device. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:608-618. [PMID: 31135371 PMCID: PMC6707363 DOI: 10.1109/tbcas.2019.2918761] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This paper presents a mm-sized, free-floating, wirelessly powered, implantable optical stimulation (FF-WIOS) device for untethered optogenetic neuromodulation. A resonator-based three-coil inductive link creates a homogeneous magnetic field that continuously delivers sufficient power (>2.7 mW) at an optimal carrier frequency of 60 MHz to the FF-WIOS in the near field without surpassing the specific absorption rate limit, regardless of the position of the FF-WIOS in a large brain area. Forward data telemetry carries stimulation parameters by on-off-keying the power carrier at a data rate of 50 kb/s to selectively activate a 4 × 4 μLED array. Load-shift-keying back telemetry controls the wireless power transmission by reporting the FF-WIOS received power level in a closed-loop power control mechanism. LEDs typically require high instantaneous power to emit sufficient light for optical stimulation. Thus, a switched-capacitor-based stimulation architecture is used as an energy storage buffer with one off-chip capacitor to receive charge directly from the inductive link and deliver it to the selected μLED at the onset of stimulation. The FF-WIOS system-on-a-chip prototype, fabricated in a 0.35-μm standard CMOS process, charges a 10-μF capacitor up to 5 V with 37% efficiency and passes instantaneous current spikes up to 10 mA in the selected μLED, creating a bright exponentially decaying flash with minimal wasted power. An in vivo experiment was conducted to verify the efficacy of the FF-WIOS by observing light-evoked local field potentials and immunostained tissue response from the primary visual cortex (V1) of two anesthetized rats.
Collapse
|
32
|
Abstract
Neural recording electrode technologies have contributed considerably to neuroscience by enabling the extracellular detection of low-frequency local field potential oscillations and high-frequency action potentials of single units. Nevertheless, several long-standing limitations exist, including low multiplexity, deleterious chronic immune responses and long-term recording instability. Driven by initiatives encouraging the generation of novel neurotechnologies and the maturation of technologies to fabricate high-density electronics, novel electrode technologies are emerging. Here, we provide an overview of recently developed neural recording electrode technologies with high spatial integration, long-term stability and multiple functionalities. We describe how these emergent neurotechnologies can approach the ultimate goal of illuminating chronic brain activity with minimal disruption of the neural environment, thereby providing unprecedented opportunities for neuroscience research in the future.
Collapse
Affiliation(s)
- Guosong Hong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Charles M Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Center for Brain Science, Harvard University, Cambridge, MA, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
33
|
Hunt DL, Lai C, Smith RD, Lee AK, Harris TD, Barbic M. Multimodal in vivo brain electrophysiology with integrated glass microelectrodes. Nat Biomed Eng 2019; 3:741-753. [PMID: 30936430 DOI: 10.1038/s41551-019-0373-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 02/21/2019] [Indexed: 12/31/2022]
Abstract
Electrophysiology is the most used approach for the collection of functional data in basic and translational neuroscience, but it is typically limited to either intracellular or extracellular recordings. The integration of multiple physiological modalities for the routine acquisition of multimodal data with microelectrodes could be useful for biomedical applications, yet this has been challenging owing to incompatibilities of fabrication methods. Here, we present a suite of glass pipettes with integrated microelectrodes for the simultaneous acquisition of multimodal intracellular and extracellular information in vivo, electrochemistry assessments, and optogenetic perturbations of neural activity. We used the integrated devices to acquire multimodal signals from the CA1 region of the hippocampus in mice and rats, and show that these data can serve as ground-truth validation for the performance of spike-sorting algorithms. The microdevices are applicable for basic and translational neurobiology, and for the development of next-generation brain-machine interfaces.
Collapse
Affiliation(s)
- David L Hunt
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA.
| | - Chongxi Lai
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - Richard D Smith
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - Albert K Lee
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - Timothy D Harris
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - Mladen Barbic
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA.
| |
Collapse
|
34
|
Park S, Loke G, Fink Y, Anikeeva P. Flexible fiber-based optoelectronics for neural interfaces. Chem Soc Rev 2019; 48:1826-1852. [PMID: 30815657 DOI: 10.1039/c8cs00710a] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neurological and psychiatric conditions pose an increasing socioeconomic burden on our aging society. Our ability to understand and treat these conditions relies on the development of reliable tools to study the dynamics of the underlying neural circuits. Despite significant progress in approaches and devices to sense and modulate neural activity, further refinement is required on the spatiotemporal resolution, cell-type selectivity, and long-term stability of neural interfaces. Guided by the principles of neural transduction and by the materials properties of the neural tissue, recent advances in neural interrogation approaches rely on flexible and multifunctional devices. Among these approaches, multimaterial fibers have emerged as integrated tools for sensing and delivering of multiple signals to and from the neural tissue. Fiber-based neural probes are produced by thermal drawing process, which is the manufacturing approach used in optical fiber fabrication. This technology allows straightforward incorporation of multiple functional components into microstructured fibers at the level of their macroscale models, preforms, with a wide range of geometries. Here we will introduce the multimaterial fiber technology, its applications in engineering fields, and its adoption for the design of multifunctional and flexible neural interfaces. We will discuss examples of fiber-based neural probes tailored to the electrophysiological recording, optical neuromodulation, and delivery of drugs and genes into the rodent brain and spinal cord, as well as their emerging use for studies of nerve growth and repair.
Collapse
Affiliation(s)
- Seongjun Park
- School of Engineering, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
35
|
Kim C, Jeong J, Kim SJ. Recent Progress on Non-Conventional Microfabricated Probes for the Chronic Recording of Cortical Neural Activity. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1069. [PMID: 30832357 PMCID: PMC6427797 DOI: 10.3390/s19051069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 02/06/2023]
Abstract
Microfabrication technology for cortical interfaces has advanced rapidly over the past few decades for electrophysiological studies and neuroprosthetic devices offering the precise recording and stimulation of neural activity in the cortex. While various cortical microelectrode arrays have been extensively and successfully demonstrated in animal and clinical studies, there remains room for further improvement of the probe structure, materials, and fabrication technology, particularly for high-fidelity recording in chronic implantation. A variety of non-conventional probes featuring unique characteristics in their designs, materials and fabrication methods have been proposed to address the limitations of the conventional standard shank-type ("Utah-" or "Michigan-" type) devices. Such non-conventional probes include multi-sided arrays to avoid shielding and increase recording volumes, mesh- or thread-like arrays for minimized glial scarring and immune response, tube-type or cylindrical probes for three-dimensional (3D) recording and multi-modality, folded arrays for high conformability and 3D recording, self-softening or self-deployable probes for minimized tissue damage and extensions of the recording sites beyond gliosis, nanostructured probes to reduce the immune response, and cone-shaped electrodes for promoting tissue ingrowth and long-term recording stability. Herein, the recent progress with reference to the many different types of non-conventional arrays is reviewed while highlighting the challenges to be addressed and the microfabrication techniques necessary to implement such features.
Collapse
Affiliation(s)
- Chaebin Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea.
| | - Joonsoo Jeong
- Department of Biomedical Engineering, School of Medicine, Pusan National University, Yangsan 50612, Korea.
| | - Sung June Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea.
- Institute on Aging, College of Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
36
|
Choi JR, Kim SM, Ryu RH, Kim SP, Sohn JW. Implantable Neural Probes for Brain-Machine Interfaces - Current Developments and Future Prospects. Exp Neurobiol 2018; 27:453-471. [PMID: 30636899 PMCID: PMC6318554 DOI: 10.5607/en.2018.27.6.453] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
A Brain-Machine interface (BMI) allows for direct communication between the brain and machines. Neural probes for recording neural signals are among the essential components of a BMI system. In this report, we review research regarding implantable neural probes and their applications to BMIs. We first discuss conventional neural probes such as the tetrode, Utah array, Michigan probe, and electroencephalography (ECoG), following which we cover advancements in next-generation neural probes. These next-generation probes are associated with improvements in electrical properties, mechanical durability, biocompatibility, and offer a high degree of freedom in practical settings. Specifically, we focus on three key topics: (1) novel implantable neural probes that decrease the level of invasiveness without sacrificing performance, (2) multi-modal neural probes that measure both electrical and optical signals, (3) and neural probes developed using advanced materials. Because safety and precision are critical for practical applications of BMI systems, future studies should aim to enhance these properties when developing next-generation neural probes.
Collapse
Affiliation(s)
- Jong-Ryul Choi
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea
| | - Seong-Min Kim
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung 25601, Korea.,Biomedical Research Institute, Catholic Kwandong University International St. Mary's Hospital, Incheon 21711, Korea
| | - Rae-Hyung Ryu
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea
| | - Sung-Phil Kim
- Department of Human Factors Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jeong-Woo Sohn
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung 25601, Korea.,Biomedical Research Institute, Catholic Kwandong University International St. Mary's Hospital, Incheon 21711, Korea
| |
Collapse
|
37
|
Doppenberg A, Meunier M, Boutopoulos C. A needle-like optofluidic probe enables targeted intracellular delivery by confining light-nanoparticle interaction on single cell. NANOSCALE 2018; 10:21871-21878. [PMID: 30457139 DOI: 10.1039/c8nr03895c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Intracellular delivery of molecular cargo is the basis for a plethora of therapeutic applications, including gene therapy and cancer treatment. A very efficient method to perform intracellular delivery is the photo-activation of nanomaterials that have been previously directed to the cell vicinity and bear releasable molecular cargo. However, potential in vivo applications of this method are limited by our ability to deliver nanomaterials and light in tissue. Here, we demonstrate intracelullar delivery using a needle-like optofluidic probe capable of penetrating soft tissue. Firstly, we used the optofluidic probe to confine an intracellular delivery mixture, composed of 100 nm gold nanoparticles (AuNP) and membrane-impermeable calcein, in the vicinity of cancer cells. Secondly, we delivered nanosecond (ns) laser pulses (wavelength: 532 nm; duration: 5 ns) using the same probe and without introducing a AuNP cells incubation step. The AuNP photo-activation caused localized and reversible disruption of the cell membrane, enabling calcein delivery into the cytoplasm. We measured 67% intracellular delivery efficacy and showed that the optofluidic probe can be used to treat cells with single-cell precision. Finally, we demonstrated targeted delivery in tissue (mouse retinal explant) ex vivo. We expect that this method can enable nanomaterial-assisted intracellular delivery applications in soft tissue (e.g. brain, retina) of small animals.
Collapse
Affiliation(s)
- Andrew Doppenberg
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
38
|
Jia Y, Khan W, Lee B, Fan B, Madi F, Weber A, Li W, Ghovanloo M. Wireless opto-electro neural interface for experiments with small freely behaving animals. J Neural Eng 2018; 15:046032. [PMID: 29799437 PMCID: PMC6091646 DOI: 10.1088/1741-2552/aac810] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE We have developed a wireless opto-electro interface (WOENI) device, which combines electrocorticogram (ECoG) recording and optical stimulation for bi-directional neuromodulation on small, freely behaving animals, such as rodents. APPROACH The device is comprised of two components, a detachable headstage and an implantable polyimide-based substrate. The headstage establishes a bluetooth low energy (BLE) bi-directional data communication with an external custom-designed USB dongle for receiving user commands and optogenetic stimulation patterns, and sending digitalized ECoG data. MAIN RESULTS The functionality and stability of the device were evaluated in vivo on freely behaving rats. When the animal received optical stimulation on the primary visual cortex (V1) and visual stimulation via eyes, spontaneous changes in ECoG signals were recorded from both left and right V1 during four consecutive experiments with 7 d intervals over a time span of 21 d following device implantation. Immunostained tissue analyses showed results consistent with ECoG analyses, validating the efficacy of optical stimulation to upregulate the activity of cortical neurons expressing ChR2. SIGNIFICANCE The proposed WOENI device is potentially a versatile tool in the studies that involve long-term optogenetic neuromodulation.
Collapse
Affiliation(s)
- Yaoyao Jia
- GT-Bionics Lab, School of Electrical and Computer Engineering, Georgia Tech, Atlanta, GA, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Goncalves SB, Ribeiro JF, Silva AF, Costa RM, Correia JH. Design and manufacturing challenges of optogenetic neural interfaces: a review. J Neural Eng 2018; 14:041001. [PMID: 28452331 DOI: 10.1088/1741-2552/aa7004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Optogenetics is a relatively new technology to achieve cell-type specific neuromodulation with millisecond-scale temporal precision. Optogenetic tools are being developed to address neuroscience challenges, and to improve the knowledge about brain networks, with the ultimate aim of catalyzing new treatments for brain disorders and diseases. To reach this ambitious goal the implementation of mature and reliable engineered tools is required. The success of optogenetics relies on optical tools that can deliver light into the neural tissue. Objective/Approach: Here, the design and manufacturing approaches available to the scientific community are reviewed, and current challenges to accomplish appropriate scalable, multimodal and wireless optical devices are discussed. SIGNIFICANCE Overall, this review aims at presenting a helpful guidance to the engineering and design of optical microsystems for optogenetic applications.
Collapse
Affiliation(s)
- S B Goncalves
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimaraes, Portugal
| | | | | | | | | |
Collapse
|
40
|
Ono M, Muramoto S, Ma L, Kato N. Optogenetics Identification of a Neuronal Type with a Glass Optrode in Awake Mice. J Vis Exp 2018. [PMID: 30010633 DOI: 10.3791/57781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It is a major concern in neuroscience how different types of neurons work in neural circuits. Recent advances in optogenetics have enabled the identification of the neuronal type in in vivo electrophysiological experiments in broad brain regions. In optogenetics experiments, it is critical to deliver the light to the recording site. However, it is often hard to deliver the stimulation light to the deep brain regions from the brain's surface. Especially, it is difficult for the stimulation light to reach the deep brain regions when the optical transparency of the brain surface is low, as is often the case with recordings from awake animals. Here, we describe a method to record spike responses to the light from an awake mouse using a custom-made glass optrode. In this method, the light is delivered through the recording glass electrode so that it is possible to reliably stimulate the recorded neuron with light in the deep brain regions. This custom-made optrode system consists of accessible and inexpensive materials and is easy to assemble.
Collapse
Affiliation(s)
- Munenori Ono
- Department of Physiology, Kanazawa Medical University;
| | | | - Lanlan Ma
- Department of Physiology, Kanazawa Medical University
| | - Nobuo Kato
- Department of Physiology, Kanazawa Medical University
| |
Collapse
|
41
|
Khiarak MN, Martianova E, Bories C, Martel S, Proulx CD, De Koninck Y, Gosselin B. A Wireless Fiber Photometry System Based on a High-Precision CMOS Biosensor With Embedded Continuous-Time Modulation. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:495-509. [PMID: 29877814 DOI: 10.1109/tbcas.2018.2817200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Fluorescence biophotometry measurements require wide dynamic range (DR) and high-sensitivity laboratory apparatus. Indeed, it is often very challenging to accurately resolve the small fluorescence variations in presence of noise and high-background tissue autofluorescence. There is a great need for smaller detectors combining high linearity, high sensitivity, and high-energy efficiency. This paper presents a new biophotometry sensor merging two individual building blocks, namely a low-noise sensing front-end and a order continuous-time modulator (CTSDM), into a single module for enabling high-sensitivity and high energy-efficiency photo-sensing. In particular, a differential CMOS photodetector associated with a differential capacitive transimpedance amplifier-based sensing front-end is merged with an incremental order 1-bit CTSDM to achieve a large DR, low hardware complexity, and high-energy efficiency. The sensor leverages a hardware sharing strategy to simplify the implementation and reduce power consumption. The proposed CMOS biosensor is integrated within a miniature wireless head mountable prototype for enabling biophotometry with a single implantable fiber in the brain of live mice. The proposed biophotometry sensor is implemented in a 0.18- CMOS technology, consuming from a 1.8- supply voltage, while achieving a peak dynamic range of over a 50- input bandwidth, a sensitivity of 24 mV/nW, and a minimum detectable current of 2.46- at a 20- sampling rate.
Collapse
|
42
|
Canales A, Park S, Kilias A, Anikeeva P. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering. Acc Chem Res 2018; 51:829-838. [PMID: 29561583 DOI: 10.1021/acs.accounts.7b00558] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multifunctional devices for modulation and probing of neuronal activity during free behavior facilitate studies of functions and pathologies of the nervous system. Probes composed of stiff materials, such as metals and semiconductors, exhibit elastic and chemical mismatch with the neural tissue, which is hypothesized to contribute to sustained tissue damage and gliosis. Dense glial scars have been found to encapsulate implanted devices, corrode their surfaces, and often yield poor recording quality in long-term experiments. Motivated by the hypothesis that reducing the mechanical stiffness of implanted probes may improve their long-term reliability, a variety of probes based on soft materials have been developed. In addition to enabling electrical neural recording, these probes have been engineered to take advantage of genetic tools for optical neuromodulation. With the emergence of optogenetics, it became possible to optically excite or inhibit genetically identifiable cell types via expression of light-sensitive opsins. Optogenetics experiments often demand implantable multifunctional devices to optically stimulate, deliver viral vectors and drugs, and simultaneously record electrophysiological signals from the specified cells within the nervous system. Recent advances in microcontact printing and microfabrication techniques have equipped flexible probes with microscale light-emitting diodes (μLEDs), waveguides, and microfluidic channels. Complementary to these approaches, fiber drawing has emerged as a scalable route to integration of multiple functional features within miniature and flexible neural probes. The thermal drawing process relies on the fabrication of macroscale models containing the materials of interest, which are then drawn into microstructured fibers with predefined cross-sectional geometries. We have recently applied this approach to produce fibers integrating conductive electrodes for extracellular recording of single- and multineuron potentials, low-loss optical waveguides for optogenetic neuromodulation, and microfluidic channels for drug and viral vector delivery. These devices allowed dynamic investigation of the time course of opsin expression across multiple brain regions and enabled pairing of optical stimulation with local pharmacological intervention in behaving animals. Neural probes designed to interface with the spinal cord, a viscoelastic tissue undergoing repeated strain during normal movement, rely on the integration of soft and flexible materials to avoid injury and device failure. Employing soft substrates, such as parylene C and poly-(dimethylsiloxane), for electrode and μLED arrays permitted stimulation and recording of neural activity on the surface of the spinal cord. Similarly, thermally drawn flexible and stretchable optoelectronic fibers that resemble the fibrous structure of the spinal cord were implanted without any significant inflammatory reaction in the vicinity of the probes. These fibers enabled simultaneous recording and optogenetic stimulation of neural activity in the spinal cord. In this Account, we review the applications of multifunctional fibers and other integrated devices for optoelectronic probing of neural circuits and discuss engineering directions that may facilitate future studies of nerve repair and accelerate the development of bioelectronic medical devices.
Collapse
Affiliation(s)
- Andres Canales
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Seongjun Park
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Antje Kilias
- Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
- Biomicrotechnology, Institute for Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Polina Anikeeva
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
43
|
Simone K, Füzesi T, Rosenegger D, Bains J, Murari K. Open-source, cost-effective system for low-light in vivo fiber photometry. NEUROPHOTONICS 2018; 5:025006. [PMID: 29687037 PMCID: PMC5895965 DOI: 10.1117/1.nph.5.2.025006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 03/21/2018] [Indexed: 06/01/2023]
Abstract
Fiber photometry uses genetically encoded optical reporters to link specific cellular activity in stereotaxically targeted brain structures to specific behaviors. There are still a number of barriers that have hindered the widespread adoption of this approach. This includes cost, but also the high-levels of light required to excite the fluorophore, limiting commercial systems to the investigation of short-term transients in neuronal activity to avoid damage of tissue by light. Here, we present a cost-effective optoelectronic system for in vivo fiber photometry that achieves high-sensitivity to changes in fluorescence intensity, enabling detection of optical transients of a popular calcium reporter with excitation powers as low as 100 nW. By realizing a coherent detection scheme and by using a photomultiplier tube as a detector, the system demonstrates reliable study of in vivo neuronal activity, positioning it for future use in the experiments inquiring into learning and memory processes. The system was applied to study stress-evoked calcium transients in corticotropin-releasing hormone neurons in the mouse hypothalamus.
Collapse
Affiliation(s)
- Kathryn Simone
- University of Calgary, Biomedical Engineering Graduate Program, Calgary, Canada
| | - Tamás Füzesi
- University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
- University of Calgary, Department of Physiology and Pharmacology, Calgary, Canada
| | - David Rosenegger
- University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
- University of Calgary, Department of Physiology and Pharmacology, Calgary, Canada
| | - Jaideep Bains
- University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
- University of Calgary, Department of Physiology and Pharmacology, Calgary, Canada
| | - Kartikeya Murari
- University of Calgary, Biomedical Engineering Graduate Program, Calgary, Canada
- University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
- University of Calgary, Department of Electrical and Computer Engineering, Calgary, Canada
| |
Collapse
|
44
|
Libbrecht S, Hoffman L, Welkenhuysen M, Van den Haute C, Baekelandt V, Braeken D, Haesler S. Proximal and distal modulation of neural activity by spatially confined optogenetic activation with an integrated high-density optoelectrode. J Neurophysiol 2018; 120:149-161. [PMID: 29589813 DOI: 10.1152/jn.00888.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Optogenetic manipulations are widely used for investigating the contribution of genetically identified cell types to behavior. Simultaneous electrophysiological recordings are less common, although they are critical for characterizing the specific impact of optogenetic manipulations on neural circuits in vivo. This is at least in part because combining photostimulation with large-scale electrophysiological recordings remains technically challenging, which also poses a limitation for performing extracellular identification experiments. Currently available interfaces that guide light of the appropriate wavelength into the brain combined with an electrophysiological modality suffer from various drawbacks such as a bulky size, low spatial resolution, heat dissipation, or photovoltaic artifacts. To address these challenges, we have designed and fabricated an integrated ultrathin neural interface with 12 optical outputs and 24 electrodes. We used the device to measure the effect of localized stimulation in the anterior olfactory cortex, a paleocortical structure involved in olfactory processing. Our experiments in adult mice demonstrate that because of its small dimensions, our novel tool causes far less tissue damage than commercially available devices. Moreover, optical stimulation and recording can be performed simultaneously, with no measurable electrical artifact during optical stimulation. Importantly, optical stimulation can be confined to small volumes with approximately single-cortical layer thickness. Finally, we find that even highly localized optical stimulation causes inhibition at more distant sites. NEW & NOTEWORTHY In this study, we establish a novel tool for simultaneous extracellular recording and optogenetic photostimulation. Because the device is built using established microchip technology, it can be fabricated with high reproducibility and reliability. We further show that even very localized stimulation affects neural firing far beyond the stimulation site. This demonstrates the difficulty in predicting circuit-level effects of optogenetic manipulations and highlights the importance of closely monitoring neural activity in optogenetic experiments.
Collapse
Affiliation(s)
- Sarah Libbrecht
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven , Belgium
| | - Luis Hoffman
- Life Science Technologies and Imaging Department, Imec, Leuven , Belgium.,Neuroelectronics Research Flanders, Leuven , Belgium
| | | | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven , Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven , Belgium
| | - Dries Braeken
- Life Science Technologies and Imaging Department, Imec, Leuven , Belgium
| | - Sebastian Haesler
- Research Group Neurophysiology, Department of Neurosciences, KU Leuven, Leuven , Belgium.,VIB, Leuven , Belgium.,Neuroelectronics Research Flanders, Leuven , Belgium
| |
Collapse
|
45
|
Budai D, Vizvári AD, Bali ZK, Márki B, Nagy LV, Kónya Z, Madarász D, Henn-Mike N, Varga C, Hernádi I. A novel carbon tipped single micro-optrode for combined optogenetics and electrophysiology. PLoS One 2018; 13:e0193836. [PMID: 29513711 PMCID: PMC5841794 DOI: 10.1371/journal.pone.0193836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 02/20/2018] [Indexed: 12/30/2022] Open
Abstract
Optical microelectrodes (optrodes) are used in neuroscience to transmit light into the brain of a genetically modified animal to evoke and record electrical activity from light-sensitive neurons. Our novel micro-optrode solution integrates a light-transmitting 125 micrometer optical fiber and a 9 micrometer carbon monofilament to form an electrical lead element, which is contained in a borosilicate glass sheathing coaxial arrangement ending with a micrometer-sized carbon tip. This novel unit design is stiff and slender enough to be used for targeting deep brain areas, and may cause less tissue damage compared with previous models. The center-positioned carbon fiber is less prone to light-induced artifacts than side-lit metal microelectrodes previously presented. The carbon tip is capable of not only recording electrical signals of neuronal origin but can also provide valuable surface area for electron transfer, which is essential in electrochemical (voltammetry, amperometry) or microbiosensor applications. We present details of design and manufacture as well as operational examples of the newly developed single micro-optrode, which includes assessments of 1) carbon tip length-impedance relationship, 2) light transmission capabilities, 3) photoelectric artifacts in carbon fibers, 4) responses to dopamine using fast-scan cyclic voltammetry in vivo, and 5) optogenetic stimulation and spike or local field potential recording from the rat brain transfected with channelrhodopsin-2. With this work, we demonstrate that our novel carbon tipped single micro-optrode may open up new avenues for use in optogenetic stimulation when needing to be combined with extracellular recording, electrochemical, or microbiosensor measurements performed on a millisecond basis.
Collapse
Affiliation(s)
- Dénes Budai
- Kation Scientific LLC, Minneapolis, Minnesota, United States of America
| | - Attila D. Vizvári
- Kation Scientific LLC, Minneapolis, Minnesota, United States of America
| | - Zsolt K. Bali
- Szentágothai Research Center and Center for Neuroscience, University of Pécs, Hungary
- Department of Experimental Neurobiology, University of Pécs, Hungary
| | - Balázs Márki
- Kation Scientific LLC, Minneapolis, Minnesota, United States of America
| | - Lili V. Nagy
- Szentágothai Research Center and Center for Neuroscience, University of Pécs, Hungary
- Department of Experimental Neurobiology, University of Pécs, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Hungary
| | - Dániel Madarász
- Department of Applied and Environmental Chemistry, University of Szeged, Hungary
| | - Nóra Henn-Mike
- Szentágothai Research Center and Center for Neuroscience, University of Pécs, Hungary
- NAP-B Entorhinal Microcircuits Research Group, Department of Physiology, University of Pécs, Hungary
| | - Csaba Varga
- Szentágothai Research Center and Center for Neuroscience, University of Pécs, Hungary
- NAP-B Entorhinal Microcircuits Research Group, Department of Physiology, University of Pécs, Hungary
| | - István Hernádi
- Szentágothai Research Center and Center for Neuroscience, University of Pécs, Hungary
- Department of Experimental Neurobiology, University of Pécs, Hungary
| |
Collapse
|
46
|
Abstract
For many years, the complexity and multifactorial nature of brain-immune interactions limited our ability to dissect their underlying mechanisms. An especially challenging question was how the brain controls immunity, since the repertoire of techniques to control the brain's activity was extremely limited. New tools, such as optogenetics and chemogenetics (e.g., DREADDs), developed over the last decade, opened new frontiers in neuroscience with major implications for neuroimmunology. These tools enable mapping the causal effects of activating/attenuating defined neurons in the brain, on the immune system. Here, we present a detailed experimental protocol for the analysis of brain-immune interactions, based on chemogenetic or optogenetic manipulation of defined neuronal populations in the brain, and the subsequent analysis of immune cells. Such detailed and systematic dissection of brain-immune interactions has the potential to revolutionize our understanding of how mental and neurological states affect health and disease.
Collapse
Affiliation(s)
- Ben Korin
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Asya Rolls
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
47
|
Affiliation(s)
- Sonja M. Weiz
- Institute for Integrative Nanosciences (IIN); IFW Dresden; Helmholtzstraße 20 01069 Dresden Germany
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences (IIN); IFW Dresden; Helmholtzstraße 20 01069 Dresden Germany
| | - Oliver G. Schmidt
- Institute for Integrative Nanosciences (IIN); IFW Dresden; Helmholtzstraße 20 01069 Dresden Germany
- Material Systems for Nanoelectronics; Chemnitz University of Technology; Reichenhainer Straße 70 09107 Chemnitz Germany
| |
Collapse
|
48
|
Heiney SA, Ohmae S, Kim OA, Medina JF. Single-Unit Extracellular Recording from the Cerebellum During Eyeblink Conditioning in Head-Fixed Mice. ACTA ACUST UNITED AC 2017; 134:39-71. [PMID: 31156292 DOI: 10.1007/978-1-4939-7549-5_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
This chapter presents a method for performing in vivo single-unit extracellular recordings and optogenetics during an associative, cerebellum-dependent learning task in head-fixed mice. The method uses a cylindrical treadmill system that reduces stress in the mice by allowing them to walk freely, yet it provides enough stability to maintain single-unit isolation of neurons for tens of minutes to hours. Using this system, we have investigated sensorimotor coding in the cerebellum while mice perform learned skilled movements.
Collapse
|
49
|
Zhao H. Recent Progress of Development of Optogenetic Implantable Neural Probes. Int J Mol Sci 2017; 18:ijms18081751. [PMID: 28800085 PMCID: PMC5578141 DOI: 10.3390/ijms18081751] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/06/2017] [Accepted: 08/08/2017] [Indexed: 11/16/2022] Open
Abstract
As a cell type-specific neuromodulation method, optogenetic technique holds remarkable potential for the realisation of advanced neuroprostheses. By genetically expressing light-sensitive proteins such as channelrhodopsin-2 (ChR2) in cell membranes, targeted neurons could be controlled by light. This new neuromodulation technique could then be applied into extensive brain networks and be utilised to provide effective therapies for neurological disorders. However, the development of novel optogenetic implants is still a key challenge in the field. The major requirements include small device dimensions, suitable spatial resolution, high safety, and strong controllability. In this paper, I present a concise review of the significant progress that has been made towards achieving a miniaturised, multifunctional, intelligent optogenetic implant. I identify the key limitations of current technologies and discuss the possible opportunities for future development.
Collapse
Affiliation(s)
- Hubin Zhao
- Biomedical Optics Research Laboratory, University College London, London WC1E 6BT, UK.
| |
Collapse
|
50
|
Zhao Z, Luan L, Wei X, Zhu H, Li X, Lin S, Siegel JJ, Chitwood RA, Xie C. Nanoelectronic Coating Enabled Versatile Multifunctional Neural Probes. NANO LETTERS 2017; 17:4588-4595. [PMID: 28682082 PMCID: PMC5869028 DOI: 10.1021/acs.nanolett.7b00956] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Brain function can be best studied by simultaneous measurements and modulation of the multifaceted signaling at the cellular scale. Extensive efforts have been made to develop multifunctional neural probes, typically involving highly specialized fabrication processes. Here, we report a novel multifunctional neural probe platform realized by applying ultrathin nanoelectronic coating (NEC) on the surfaces of conventional microscale devices such as optical fibers and micropipettes. We fabricated the NECs by planar photolithography techniques using a substrate-less and multilayer design, which host arrays of individually addressed electrodes with an overall thickness below 1 μm. Guided by an analytic model and taking advantage of the surface tension, we precisely aligned and coated the NEC devices on the surfaces of these conventional microprobes and enabled electrical recording capabilities on par with the state-of-the-art neural electrodes. We further demonstrated optogenetic stimulation and controlled drug infusion with simultaneous, spatially resolved neural recording in a rodent model. This study provides a low-cost, versatile approach to construct multifunctional neural probes that can be applied to both fundamental and translational neuroscience.
Collapse
Affiliation(s)
- Zhengtuo Zhao
- Department of Biomedical Engineering, the University of Texas at Austin
| | - Lan Luan
- Department of Physics, the University of Texas at Austin
| | - Xiaoling Wei
- Department of Biomedical Engineering, the University of Texas at Austin
| | - Hanlin Zhu
- Department of Biomedical Engineering, the University of Texas at Austin
| | - Xue Li
- Department of Biomedical Engineering, the University of Texas at Austin
| | - Shengqing Lin
- Department of Biomedical Engineering, the University of Texas at Austin
| | - Jennifer J. Siegel
- Center for Learning and Memory, Institute for Neuroscience, the University of Texas at Austin
| | - Raymond A. Chitwood
- Center for Learning and Memory, Institute for Neuroscience, the University of Texas at Austin
| | - Chong Xie
- Department of Biomedical Engineering, the University of Texas at Austin
- Correspondence to:
| |
Collapse
|