1
|
Cui Y, Ma X, Wei J, Chen C, Shakir N, Guirram H, Dai Z, Anderson T, Ferguson D, Qiu S. MET receptor tyrosine kinase promotes the generation of functional synapses in adult cortical circuits. Neural Regen Res 2025; 20:1431-1444. [PMID: 39075910 PMCID: PMC11624886 DOI: 10.4103/nrr.nrr-d-23-01471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/02/2024] [Accepted: 04/20/2024] [Indexed: 07/31/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202505000-00026/figure1/v/2024-07-28T173839Z/r/image-tiff Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration, however, few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse function. We have previously shown that MET receptor tyrosine kinase in the developing cortical circuits promotes dendritic growth and dendritic spine morphogenesis. To investigate whether enhancing MET in adult cortex has synapse regenerating potential, we created a knockin mouse line, in which the human MET gene expression and signaling can be turned on in adult (10-12 months) cortical neurons through doxycycline-containing chow. We found that similar to the developing brain, turning on MET signaling in the adult cortex activates small GTPases and increases spine density in prefrontal projection neurons. These findings are further corroborated by increased synaptic activity and transient generation of immature silent synapses. Prolonged MET signaling resulted in an increased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-D-aspartate (AMPA/NMDA) receptor current ratio, indicative of enhanced synaptic function and connectivity. Our data reveal that enhancing MET signaling could be an interventional approach to promote synaptogenesis and preserve functional connectivity in the adult brain. These findings may have implications for regenerative therapy in aging and neurodegeneration conditions.
Collapse
Affiliation(s)
- Yuehua Cui
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Xiaokuang Ma
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Jing Wei
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Chang Chen
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Neha Shakir
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Hitesch Guirram
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Zhiyu Dai
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Trent Anderson
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Deveroux Ferguson
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Shenfeng Qiu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| |
Collapse
|
2
|
Trigo CM, Rodrigues JS, Camões SP, Solá S, Miranda JP. Mesenchymal stem cell secretome for regenerative medicine: Where do we stand? J Adv Res 2025; 70:103-124. [PMID: 38729561 PMCID: PMC11976416 DOI: 10.1016/j.jare.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/27/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC)-based therapies have yielded beneficial effects in a broad range of preclinical models and clinical trials for human diseases. In the context of MSC transplantation, it is widely recognized that the main mechanism for the regenerative potential of MSCs is not their differentiation, with in vivo data revealing transient and low engraftment rates. Instead, MSCs therapeutic effects are mainly attributed to its secretome, i.e., paracrine factors secreted by these cells, further offering a more attractive and innovative approach due to the effectiveness and safety of a cell-free product. AIM OF REVIEW In this review, we will discuss the potential benefits of MSC-derived secretome in regenerative medicine with particular focus on respiratory, hepatic, and neurological diseases. Both free and vesicular factors of MSC secretome will be detailed. We will also address novel potential strategies capable of improving their healing potential, namely by delivering important regenerative molecules according to specific diseases and tissue needs, as well as non-clinical and clinical studies that allow us to dissect their mechanisms of action. KEY SCIENTIFIC CONCEPTS OF REVIEW MSC-derived secretome includes both soluble and non-soluble factors, organized in extracellular vesicles (EVs). Importantly, besides depending on the cell origin, the characteristics and therapeutic potential of MSC secretome is deeply influenced by external stimuli, highlighting the possibility of optimizing their characteristics through preconditioning approaches. Nevertheless, the clarity around their mechanisms of action remains ambiguous, whereas the need for standardized procedures for the successful translation of those products to the clinics urges.
Collapse
Affiliation(s)
- Catarina M Trigo
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana S Rodrigues
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sérgio P Camões
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana P Miranda
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
3
|
El Damaty A, Elsässer M, Pfeifer U, Kotzaeridou U, Gille C, Spratte J, Zivanovic O, Sohn C, Krieg SM, Bächli H, Unterberg A. The first experience with 16 open microsurgical fetal surgeries for myelomeningocele in Germany. Eur J Paediatr Neurol 2025; 55:79-86. [PMID: 40154034 DOI: 10.1016/j.ejpn.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/11/2025] [Accepted: 03/16/2025] [Indexed: 04/01/2025]
Abstract
INTRODUCTION Fetal surgery for spina bifida aperta has achieved great advancement in last decade offering three possible methods for surgical repair. Open fetal microsurgical repair still remains the gold standard considering long-term results available. Since 2016, we established a program offering this modality of treatment in Germany. PATIENTS AND METHODS All patients who underwent interdisciplinary prenatal evaluation following a standardized protocol between June 2016-June 2024. Sacral lesions were excluded. The surgical technique and protocol used were similar to that described in Management Of Myelomeningocele Study (MOMS). RESULTS Sixteen patients underwent surgery for spina bifida aperta without fetal nor maternal deaths. Microsurgical fetal repair was performed between 24th and 25th week of gestation age (GA) (Mean: 24 + 5 weeks GA). Lesion levels were mainly lumbosacral (n = 15) and one thoracolumbar (n = 1). Repair was successful in all 16 cases and with reversible hindbrain herniation at time of birth in 13/16 patients (81.3 %). Average time of delivery was 33 + 5 weeks GA, with 8 preterm deliveries occurring before 37 weeks GA; average birth weight was 2193 g. Maternal complications included 2 patients with uterine scar thinning. Hydrocephalus management was needed in 5/16 patiens (31.25 %) via ventriculo-peritoneal shunting. CONCLUSION Open fetal repair of spina bifida aperta in selected fetuses is safe and offers the unborn child a better quality of life but does not cure the disease and is not without risks or complications. Collaboration within the pediatric community is recommended to compile data in a common registry to develop standardized treatment and follow-up protocols.
Collapse
Affiliation(s)
- Ahmed El Damaty
- Department of Neurosurgery, Heidelberg University, Heidelberg, Germany.
| | - Michael Elsässer
- Department of Obstetrics and Gynecology, Heidelberg University, Heidelberg, Germany
| | - Ulrich Pfeifer
- Department of Pediatrics, Heidelberg University, Heidelberg, Germany
| | | | - Christian Gille
- Department of Pediatrics, Heidelberg University, Heidelberg, Germany
| | - Julia Spratte
- Department of Obstetrics and Gynecology, Heidelberg University, Heidelberg, Germany
| | - Oliver Zivanovic
- Department of Obstetrics and Gynecology, Heidelberg University, Heidelberg, Germany
| | - Christoph Sohn
- Department of Obstetrics and Gynecology, Heidelberg University, Heidelberg, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Heidelberg University, Heidelberg, Germany
| | - Heidrun Bächli
- Department of Neurosurgery, Cologne University, Cologne, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
4
|
Xue C, Yu H, Pei X, Yao X, Ding J, Wang X, Chen Y, Guan Y. Efficacy of human umbilical cord mesenchymal stem cell in the treatment of neuromyelitis optica spectrum disorders: an animal study. Stem Cell Res Ther 2025; 16:51. [PMID: 39920784 PMCID: PMC11806600 DOI: 10.1186/s13287-025-04187-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/24/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Human umbilical cord mesenchymal stem cells (hUC-MSCs) have great potential for treating autoimmune diseases for their immunomodulatory and tissue-regenerative abilities; however, their therapeutic role in neuromyelitis optica spectrum disorder (NMOSD) remains uncertain. METHODS 106 hUC-MSCs prepared in 200 μl PBS were intravenously administered to a systemic NMOSD model on day 10 and day 14 after immunization. Then, disease progression, immune responses, and blood-brain barrier integrity were evaluated. Additionally, we tested the effects of hUC-MSCs on astrocyte viability and apoptosis using an aquaporin 4 (AQP4) IgG and complement-induced cytotoxicity model in vitro. RESULTS hUC-MSCs alleviated NMOSD progression in vivo with improved motor function, reduced inflammatory infiltration, myelin loss, and preservation of astrocytes and neurons. hUC-MSC treatment did not affect autoimmune reactions in the spleen, however, decreased cytokine release in the spinal cord and mitigated blood-brain barrier disruption. Furthermore, in vitro studies revealed that co-culture with hUC-MSCs significantly restored astrocyte viability and reduced apoptosis in AQP4 IgG and complement-mediated damage. CONCLUSION Our results revealed that hUC-MSCs displayed therapeutic efficacy in NMOSD and showed potential in attenuating blood-brain barrier disruption, as well as AQP4 IgG and complement-induced astrocyte apoptosis.
Collapse
Affiliation(s)
- Chunran Xue
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Haojun Yu
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Xuzhong Pei
- School of Medicine, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Xiaoying Yao
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Jie Ding
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Xiying Wang
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Yi Chen
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Yangtai Guan
- Department of Neurology, Punan Branch of Renji Hospital, Shanghai Jiaotong University School of Medicine (Punan Hospital in Pudong New District, Shanghai), Shanghai, 200125, People's Republic of China.
| |
Collapse
|
5
|
Sheikhi K, Ghaderi S, Firouzi H, Rahimibarghani S, Shabani E, Afkhami H, Yarahmadi A. Recent advances in mesenchymal stem cell therapy for multiple sclerosis: clinical applications and challenges. Front Cell Dev Biol 2025; 13:1517369. [PMID: 39963155 PMCID: PMC11830822 DOI: 10.3389/fcell.2025.1517369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Multiple sclerosis (MS), a chronic autoimmune disorder of the central nervous system (CNS), is characterized by inflammation, demyelination, and neurodegeneration, leading to diverse clinical manifestations such as fatigue, sensory impairment, and cognitive dysfunction. Current pharmacological treatments primarily target immune modulation but fail to arrest disease progression or entirely reverse CNS damage. Mesenchymal stem cell (MSC) therapy offers a promising alternative, leveraging its immunomodulatory, neuroprotective, and regenerative capabilities. This review provides an in-depth analysis of MSC mechanisms of action, including immune system regulation, promotion of remyelination, and neuroregeneration. It examines preclinical studies and clinical trials evaluating the efficacy, safety, and limitations of MSC therapy in various MS phenotypes. Special attention is given to challenges such as delivery routes, dosing regimens, and integrating MSCs with conventional therapies. By highlighting advancements and ongoing challenges, this review underscores the potential of MSCs to revolutionize MS treatment, paving the way for personalized and combinatory therapeutic approaches.
Collapse
Affiliation(s)
- Kamran Sheikhi
- Kurdistan University of Medical Sciences, Kurdistan, Iran
| | | | - Hassan Firouzi
- Department of Medical Laboratory, Faculty of Medicine, Sari Branch, Islamic Azad University, Sari, Iran
| | - Sarvenaz Rahimibarghani
- Department of Physical Medicine and Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Shabani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| |
Collapse
|
6
|
Al Mamun A, Quan Z, Geng P, Wang S, Shao C, Xiao J. Targeting Remyelination in Spinal Cord Injury: Insights and Emerging Therapeutic Strategies. CNS Neurosci Ther 2024; 30:1-15. [PMID: 39723448 DOI: 10.1111/cns.70193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/27/2024] [Accepted: 12/07/2024] [Indexed: 12/28/2024] Open
Abstract
INTRODUCTION Spinal cord injury (SCI) is a severe neurological disease characterized by significant motor, sensory, and autonomic dysfunctions. SCI is a major global disability cause, often resulting in long-term neurological impairments due to the impeded regeneration and remyelination of axons. A SCI interferes with communication between the brain and the spinal cord networks that control neurological functions. Recent advancements in understanding the molecular and cellular mechanisms of remyelination have opened novel therapeutic interventions. METHOD This review systematically sourced articles related to spinal chord injury, remyelination, regeneration and pathophysiology from major medical databases, including Scopus, PubMed, and Web of Science. RESULTS This review discusses the efficacy of targeted therapy in enhancing myelin repair after SCI by identifying key molecules and signaling pathways. This explores the effectiveness of specific pharmacological agents and biological factors in promoting oligodendrocyte precursor cell proliferation, differentiation, and myelin sheath formation using in vitro and in vivo models. Targeted therapies have shown promising results in improving remyelination, providing hope for functional recovery in SCI patients. CONCLUSIONS This review demonstrates challenges and future perspectives in translating findings into clinical practice, emphasizing safety profiles, delivery method optimization, and combinatory therapy potential. This review also supports the possibility of targeted remyelination therapies as a promising strategy for SCI treatment, paving the way for future clinical applications.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhou Quan
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
7
|
Hijal N, Fouani M, Awada B. Unveiling the fate and potential neuroprotective role of neural stem/progenitor cells in multiple sclerosis. Front Neurol 2024; 15:1438404. [PMID: 39634777 PMCID: PMC11614735 DOI: 10.3389/fneur.2024.1438404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Chronic pathological conditions often induce persistent systemic inflammation, contributing to neuroinflammatory diseases like Multiple Sclerosis (MS). MS is known for its autoimmune-mediated damage to myelin, axonal injury, and neuronal loss which drive disability accumulation and disease progression, often manifesting as cognitive impairments. Understanding the involvement of neural stem cells (NSCs) and neural progenitor cells (NPCs) in the remediation of MS through adult neurogenesis (ANG) and gliogenesis-the generation of new neurons and glial cells, respectively is of great importance. Hence, these phenomena, respectively, termed ANG and gliogenesis, involve significant structural and functional changes in neural networks. Thus, the proper integration of these newly generated cells into existing circuits is not only key to understanding the CNS's development but also its remodeling in adulthood and recovery from diseases such as MS. Understanding how MS influences the fate of NSCs/NPCs and their possible neuroprotective role, provides insights into potential therapeutic interventions to alleviate the impact of MS on cognitive function and disease progression. This review explores MS, its pathogenesis, clinical manifestations, and its association with ANG and gliogenesis. It highlights the impact of altered NSCs and NPCs' fate during MS and delves into the potential benefits of its modifications. It also evaluates treatment regimens that influence the fate of NSCS/NPCs to counteract the pathology subsequently.
Collapse
Affiliation(s)
- Nora Hijal
- Department of Nursing, American University of Beirut Medical Center, Beirut, Lebanon
| | - Malak Fouani
- Department of Neurology, Duke University Medical Center, Durham, NC, United States
| | - Bassel Awada
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
8
|
Zhang Y, Fan M, Zhang Y. Revolutionizing bone defect healing: the power of mesenchymal stem cells as seeds. Front Bioeng Biotechnol 2024; 12:1421674. [PMID: 39497791 PMCID: PMC11532096 DOI: 10.3389/fbioe.2024.1421674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024] Open
Abstract
Bone defects can arise from trauma or pathological factors, resulting in compromised bone integrity and the loss or absence of bone tissue. As we are all aware, repairing bone defects is a core problem in bone tissue engineering. While minor bone defects can self-repair if the periosteum remains intact and normal osteogenesis occurs, significant defects or conditions such as congenital osteogenesis imperfecta present substantial challenges to self-healing. As research on mesenchymal stem cell (MSC) advances, new fields of application have emerged; however, their application in orthopedics remains one of the most established and clinically valuable directions. This review aims to provide a comprehensive overview of the research progress regarding MSCs in the treatment of diverse bone defects. MSCs, as multipotent stem cells, offer significant advantages due to their immunomodulatory properties and ability to undergo osteogenic differentiation. The review will encompass the characteristics of MSCs within the osteogenic microenvironment and summarize the research progress of MSCs in different types of bone defects, ranging from their fundamental characteristics and animal studies to clinical applications.
Collapse
Affiliation(s)
- Yueyao Zhang
- Trauma Emergency Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Mengke Fan
- Trauma Emergency Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Yingze Zhang
- Trauma Emergency Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
| |
Collapse
|
9
|
Takano T, Takano C, Funakoshi H, Bando Y. Impact of Neuron-Derived HGF on c-Met and KAI-1 in CNS Glial Cells: Implications for Multiple Sclerosis Pathology. Int J Mol Sci 2024; 25:11261. [PMID: 39457044 PMCID: PMC11509024 DOI: 10.3390/ijms252011261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Demyelination and axonal degeneration are fundamental pathological characteristics of multiple sclerosis (MS), an inflammatory disease of the central nervous system (CNS). Although the molecular mechanisms driving these processes are not fully understood, hepatocyte growth factor (HGF) has emerged as a potential regulator of neuroinflammation and tissue protection in MS. Elevated HGF levels have been reported in MS patients receiving immunomodulatory therapy, indicating its relevance in disease modulation. This study investigated HGF's neuroprotective effects using transgenic mice that overexpressed HGF. The experimental autoimmune encephalomyelitis (EAE) model, which mimics MS pathology, was employed to assess demyelination and axonal damage in the CNS. HGF transgenic mice showed delayed EAE progression, with reduced CNS inflammation, decreased demyelination, and limited axonal degeneration. Scanning electron microscopy confirmed the preservation of myelin and axonal integrity in these mice. In addition, we explored HGF's effects using a cuprizone-induced demyelination model, which operates independently of the immune system. HGF transgenic mice exhibited significant protection against demyelination in this model as well. We also investigated the expression of key HGF receptors, particularly c-Met and KAI-1. While c-Met, which is associated with increased inflammation, was upregulated in EAE, its expression was significantly reduced in HGF transgenic mice, correlating with decreased neuroinflammation. Conversely, KAI-1, which has been linked to axonal protection and stability, showed enhanced expression in HGF transgenic mice, suggesting a protective mechanism against axonal degeneration. These findings underscore HGF's potential in preserving CNS structure and function, suggesting it may be a promising therapeutic target for MS, offering new hope for mitigating disease progression and enhancing neuroprotection.
Collapse
Affiliation(s)
- Takuma Takano
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Neurosurgery, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Chie Takano
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Neurosurgery, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Hiroshi Funakoshi
- Department of Advanced Medical Science, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Yoshio Bando
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-08543, Japan
| |
Collapse
|
10
|
Ghanbari A, Rad F, Shahraki MH, Hosseini E, Barmak MJ, Zibara K. Human mesenchymal stem cells-derived microvesicles increase oligodendrogenesis and neurogenesis of cultured adult neural stem cells. Neurosci Lett 2024; 841:137951. [PMID: 39191299 DOI: 10.1016/j.neulet.2024.137951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Mesenchymal stem cells (MSCs) are involved in tissue repair and anti-inflammatory activities and have shown promising therapeutic efficiency in different animal models of neurodegenerative disorders. Microvesicles (MVs), implicated in cellular communication, are secreted from MSCs and play a key role in determining the fate of cell differentiation. Our study examines the effect of human umbilical cord MSC-derived MVs (hUC-MSC MVs) on the proliferation and differentiation potential of adult neural stem cells (NSCs). Results showed that 0.2 μg MSC derived MVs significantly increased the viability of NSCs and their proliferation, as demonstrated by an increase in the number of neurospheres and their derived cells, compared to controls. In addition, all hUC-MSC MVs concentrations (0.1, 0.2 and 0.4 µg) induced the differentiation of NSCs toward precursors (Olig2 + ) and mature oligodendrocytes (MBP+). This increase in mature oligodendrocytes was inversely proportional to the dose of MVs. Moreover, hUC-MSC MVs induced the differentiation of NSCs into neurons (β-tubulin + ), in a dose-dependent manner, but had no effect on astrocytes (GFAP+). Furthermore, treatment of NSCs with hUC-MSC MVs (0.1 and 0.2 μg) significantly increased the expression levels of the proliferation marker Ki67 gene, compared to controls. Finally, hUC-MSC MVs (0.1 μg) significantly increased the expression level of Sox10 transcripts; but not Pax6 gene, demonstrating an increased NSC ability to differentiate into oligodendrocytes. In conclusion, our study showed that hUC-MSC MVs increased NSC proliferation in vitro and induced NSC differentiation into oligodendrocytes and neurons, but not astrocytes.
Collapse
Affiliation(s)
- Amir Ghanbari
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Fariba Rad
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | | | - Ebrahim Hosseini
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mehrzad Jafari Barmak
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
11
|
Kråkenes T, Sandvik CE, Ytterdal M, Gavasso S, Evjenth EC, Bø L, Kvistad CE. The Therapeutic Potential of Exosomes from Mesenchymal Stem Cells in Multiple Sclerosis. Int J Mol Sci 2024; 25:10292. [PMID: 39408622 PMCID: PMC11477223 DOI: 10.3390/ijms251910292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Although treatment for multiple sclerosis (MS) has undergone a revolution in the last decades, at least two important barriers remain: alleviation of innate inflammation driving disease progression and promotion of remyelination and neural regeneration. Mesenchymal stem cells (MSCs) possess immunomodulatory properties and promote remyelination in murine MS models. The main therapeutic mechanism has, however, been attributed to their potent paracrine capacity, and not to in vivo tissue implantation. Studies have demonstrated that exosomes released as part of the cells' secretome effectively encapsulate the beneficial properties of MSCs. These membrane-enclosed nanoparticles contain a variety of proteins and nucleic acids and serve as mediators of intercellular communication. In vitro studies have demonstrated that exosomes from MSCs modulate activated microglia from an inflammatory to an anti-inflammatory phenotype and thereby dampen the innate inflammation. Rodent studies have also demonstrated potent immunomodulation and remyelination with improved outcomes following exosome administration. Thus, exosomes from MSCs may represent a potential cell-free treatment modality to prevent disease progression and promote remyelination in MS. In this narrative review, we summarize the current knowledge of exosomes from MSCs as a potential treatment for MS and discuss the remaining issues before successful translation into clinical trials.
Collapse
Affiliation(s)
- Torbjørn Kråkenes
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway (L.B.); (C.E.K.)
| | - Casper Eugen Sandvik
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, 5021 Bergen, Norway
| | - Marie Ytterdal
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway (L.B.); (C.E.K.)
| | - Sonia Gavasso
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway (L.B.); (C.E.K.)
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, 5021 Bergen, Norway
| | - Elisabeth Claire Evjenth
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway (L.B.); (C.E.K.)
| | - Lars Bø
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway (L.B.); (C.E.K.)
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, 5021 Bergen, Norway
| | - Christopher Elnan Kvistad
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway (L.B.); (C.E.K.)
| |
Collapse
|
12
|
Lu R, Zheng K, Zhou Y, Wang W, Zhang Y, Chen Y, Mo M, Li X, Dong Y, Xie J, Zhang H, Yang Q, Wang G, Zhao Y, Wu Y. 3D spheroid culture synchronizes heterogeneous MSCs into an immunomodulatory phenotype with enhanced anti-inflammatory effects. iScience 2024; 27:110811. [PMID: 39286508 PMCID: PMC11404176 DOI: 10.1016/j.isci.2024.110811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/16/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are heterogeneous in morphology and transcriptome, resulting in varying therapeutic outcomes. In this study, we found that 3D spheroid culture of heterogeneous MSCs, which have undergone conventional 2D monolayer culture for 5-6 passages, synchronized the cells into a uniform cell population with dramatically reduced cell size, and considerably increased levels of immunosuppressive genes and growth factors. Single-cell RNA sequencing (scRNA-seq) analysis of the cells revealed that 3D MSCs consisted of 2 major cell subpopulations and both expressed high levels of immunosuppressive factors, compared to 6 subpopulations in 2D MSCs. In addition, 3D MSCs showed a greater suppressive effect on T cells. Moreover, intravenous infusion of a large dose of 3D MSCs prior to imiquimod (IMQ) treatment significantly improved psoriatic lesion. Thus, our results indicate that 3D spheroid culture reprograms heterogeneous MSCs into a uniform immunosuppressive phenotype and promises a novel therapeutic potential for inflammatory diseases.
Collapse
Affiliation(s)
- Ruiqing Lu
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ke Zheng
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yongjie Zhou
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Weibu Wang
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yanan Zhang
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yu Chen
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Miaohua Mo
- Department of Biotechnology, Guangdong Medical University, Dongguan 523808, China
| | - Xiaosong Li
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yankai Dong
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jundong Xie
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guojian Qingke Biopharmaceutical Co. Ltd, Beijing 100176, China
| | - Haiji Zhang
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qingyang Yang
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Guoliang Wang
- Guojian Qingke Biopharmaceutical Co. Ltd, Beijing 100176, China
| | - Yi Zhao
- Department of Dermatology, Beijing Tsinghua Changgeng Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
- Photomedicine Laboratory, Institute of Precision Medicine, Tsinghua University, Beijing 102218, China
| | - Yaojiong Wu
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
13
|
Rabin A, Bello E, Kumar S, Zeki DA, Afshari K, Deshpande M, Francis N, Khalighinejad F, Umeton R, Radu I, Qutab F, Kwong D, Kurban M, Hemond C, Richmond JM, Ionete C. Targeted proteomics of cerebrospinal fluid in treatment naïve multiple sclerosis patients identifies immune biomarkers of clinical phenotypes. Sci Rep 2024; 14:21793. [PMID: 39294186 PMCID: PMC11411093 DOI: 10.1038/s41598-024-67769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/12/2024] [Indexed: 09/20/2024] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease with heterogeneous clinical presentations and variable long-term disability accumulation. There are currently no standard criteria to accurately predict disease outcomes. In this study we investigated the cross-sectional relationship between disease phenotype and immune-modulating cytokines and chemokines in cerebrospinal fluid (CSF). We analyzed CSF from 20 DMT-naïve MS patients using Olink Proteomics' Target 96 Inflammation panel and correlated the resulting analytes with respect to (1) disease subtype, (2) patient age and sex, (3) extent of clinical disability, and (4) MRI segmental brain volumes. We found that intrathecal IL-4 correlated with higher Expanded Disability Status Scale (EDSS) scores and longer 25-foot walk times, and CD8A correlated with decreased thalamic volumes and longer 9-hole peg test times. Male sex was associated with higher FGF-19 expression, and Tumefactive MS with elevated CCL4. Several inflammatory markers were correlated with older age at the time of LP. Finally, higher intrathecal IL-33 correlated with increased MS lesion burden and multi-compartment brain atrophy. This study confirms immune heterogeneity underlying CSF profiles in MS, but also identifies several inflammatory protein biomarkers that may be of use for predicting clinical outcomes in future algorithms.
Collapse
Affiliation(s)
- Alexandra Rabin
- Department of Neurology, UMass Chan Medical School, Worcester, MA, USA
| | - Elisa Bello
- Department of Neurology, UMass Chan Medical School, Worcester, MA, USA
| | - Saurabh Kumar
- Department of Neurology, UMass Chan Medical School, Worcester, MA, USA
| | - Dalia Abou Zeki
- Department of Neurology, UMass Chan Medical School, Worcester, MA, USA
| | - Khashayar Afshari
- Department of Dermatology, UMass Chan Medical School, Worcester, MA, USA
| | - Mugdha Deshpande
- Department of Neurology, UMass Chan Medical School, Worcester, MA, USA
| | - Nimmy Francis
- Department of Neurology, UMass Chan Medical School, Worcester, MA, USA
| | | | - Raffaella Umeton
- Department of Neurology, UMass Chan Medical School, Worcester, MA, USA
| | - Irina Radu
- Department of Neurology, UMass Chan Medical School, Worcester, MA, USA
| | - Fatima Qutab
- Department of Neurology, UMass Chan Medical School, Worcester, MA, USA
| | - Danny Kwong
- Department of Neurology, UMass Chan Medical School, Worcester, MA, USA
| | - Mariana Kurban
- Department of Neurology, UMass Chan Medical School, Worcester, MA, USA
| | | | - Jillian M Richmond
- Department of Neurology, UMass Chan Medical School, Worcester, MA, USA.
- Department of Dermatology, UMass Chan Medical School, Worcester, MA, USA.
| | - Carolina Ionete
- Department of Neurology, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
14
|
Dadfar S, Yazdanpanah E, Pazoki A, Nemati MH, Eslami M, Haghmorad D, Oksenych V. The Role of Mesenchymal Stem Cells in Modulating Adaptive Immune Responses in Multiple Sclerosis. Cells 2024; 13:1556. [PMID: 39329740 PMCID: PMC11430382 DOI: 10.3390/cells13181556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system, leading to significant disability through neurodegeneration. Despite advances in the understanding of MS pathophysiology, effective treatments remain limited. Mesenchymal stem cells (MSCs) have gained attention as a potential therapeutic option due to their immunomodulatory and regenerative properties. This review examines MS pathogenesis, emphasizing the role of immune cells, particularly T cells, in disease progression, and explores MSCs' therapeutic potential. Although preclinical studies in animal models show MSC efficacy, challenges such as donor variability, culture conditions, migratory capacity, and immunological compatibility hinder widespread clinical adoption. Strategies like genetic modification, optimized delivery methods, and advanced manufacturing are critical to overcoming these obstacles. Further research is needed to validate MSCs' clinical application in MS therapy.
Collapse
Affiliation(s)
- Sepehr Dadfar
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Esmaeil Yazdanpanah
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Alireza Pazoki
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Mohammad Hossein Nemati
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
15
|
Sak M, Chariker JH, Park JW, Rouchka EC. Gene expression and alternative splicing analysis in a large-scale Multiple Sclerosis study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.16.24312099. [PMID: 39185521 PMCID: PMC11343266 DOI: 10.1101/2024.08.16.24312099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Background Multiple Sclerosis (MS) is an autoimmune neurodegenerative disease affecting approximately 3 million people globally. Despite rigorous research on MS, aspects of its development and progression remain unclear. Understanding molecular mechanisms underlying MS is crucial to providing insights into disease pathways, identifying potential biomarkers for early diagnosis, and revealing novel therapeutic targets for improved patient outcomes. Methods We utilized publicly available RNA-seq data (GSE138614) from post-mortem white matter tissues of five donors without any neurological disorder and ten MS patient donors. This data was interrogated for differential gene expression, alternative splicing and single nucleotide variants as well as for functional enrichments in the resulting datasets. Results A comparison of non-MS white matter (WM) to MS samples yielded differentially expressed genes involved in adaptive immune response, cell communication, and developmental processes. Genes with expression changes positively correlated with tissue inflammation were enriched in the immune system and receptor interaction pathways. Negatively correlated genes were enriched in neurogenesis, nervous system development, and metabolic pathways. Alternatively spliced transcripts between WM and MS lesions included genes that play roles in neurogenesis, myelination, and oligodendrocyte differentiation, such as brain enriched myelin associated protein (BCAS1), discs large MAGUK scaffold protein 1 (DLG1), KH domain containing RNA binding (QKI), and myelin basic protein (MBP). Our approach to comparing normal appearing WM (NAWM) and active lesion (AL) from one donor and NAWM and chronic active (CA) tissues from two donors, showed that different IgH and IgK gene subfamilies were differentially expressed. We also identified pathways involved in white matter injury repair and remyelination in these tissues. Differentially spliced genes between these lesions were involved in axon and dendrite structure stability. We also identified exon skipping events and spontaneous single nucleotide polymorphisms in membrane associated ring-CH-type finger 1 (MARCHF1), UDP glycosyltransferase 8 (UGT8), and other genes important in autoimmunity and neurodegeneration. Conclusion Overall, we identified unique genes, pathways, and novel splicing events affecting disease progression that can be further investigated as potential novel drug targets for MS treatment.
Collapse
Affiliation(s)
- Müge Sak
- Kentucky IDeA Network of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, Kentucky 40202, United States of America
- Department of Neuroscience Training, University of Louisville, Louisville, Kentucky 40202, United States of America
| | - Julia H. Chariker
- Kentucky IDeA Network of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, Kentucky 40202, United States of America
- Department of Neuroscience Training, University of Louisville, Louisville, Kentucky 40202, United States of America
| | - Juw Won Park
- Kentucky IDeA Network of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, Kentucky 40202, United States of America
- Department of Medicine, University of Louisville, Louisville, Kentucky 40202, United States of America
- Brown Cancer Center Bioinformatics Core, University of Louisville, Louisville, Kentucky 40202, United States of America
- Center for Integrative Environmental Health Sciences Biostatistics and Informatics Facility Core, University of Louisville, Louisville, Kentucky 40202, United States of America
| | - Eric C. Rouchka
- Kentucky IDeA Network of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, Kentucky 40202, United States of America
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky 40202, United States of America
| |
Collapse
|
16
|
Hu D, Lai J, Chen Q, Bai L. New advances of NG2-expressing cell subset in marrow mesenchymal stem cells as novel therapeutic tools for liver fibrosis/cirrhosis. Stem Cell Res Ther 2024; 15:199. [PMID: 38971781 PMCID: PMC11227708 DOI: 10.1186/s13287-024-03817-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Bone marrow-derived mesenchymal stem cell (BMMSC)-based therapy has become a major focus for treating liver fibrosis/cirrhosis. However, although these cell therapies promote the treatment of this disease, the heterogeneity of BMMSCs, which causes insufficient efficacy during clinical trials, has not been addressed. In this study, we describe a novel Percoll-Plate-Wait procedure (PPWP) for the isolation of an active cell subset from BMMSC cultures that was characterized by the expression of neuroglial antigen 2 (NG2/BMMSCs). METHODS By using the key method of PPWP and other classical biological techniques we compared NG2/BMMSCs with parental BMMSCs in biological and functional characteristics within a well-defined diethylnitrosamine (DEN)-induced liver fibrosis/cirrhosis injury male C57BL/6 mouse model also in a culture system. Of note, the pathological alterations in the model is quite similar to humans'. RESULTS The NG2/BMMSCs revealed more advantages compared to parentalBMMSCs. They exhibited greater proliferation potential than parental BMMSCs, as indicated by Ki-67 immunofluorescence (IF) staining. Moreover, higher expression of SSEA-3 (a marker specific for embryonic stem cells) was detected in NG2/BMMSCs than in parental BMMSCs, which suggested that the "stemness" of NG2/BMMSCs was greater than that of parental BMMSCs. In vivo studies revealed that an injection of NG2/BMMSCs into mice with ongoing DEN-induced liver fibrotic/cirrhotic injury enhanced repair and functional recovery to a greater extent than in mice treated with parental BMMSCs. These effects were associated with the ability of NG2/BMMSCs to differentiate into bile duct cells (BDCs). In particular, we discovered for the first time that NG2/BMMSCs exhibit unique characteristics that differ from those of parental BMMSCs in terms of producing liver sinusoidal endothelial cells (LSECs) to reconstruct injured blood vessels and sinusoidal structures in the diseased livers, which are important for initiating hepatocyte regeneration. This unique potential may also suggest that NG2/BMMSCs could be an novel off-liver progenitor of LSECs. Ex vivo studies revealed that the NG2/BMMSCs exhibited a similar trend to that of their in vivo in terms of functional differentiation responding to the DEN-diseased injured liver cues. Additionally, the obvious core role of NG2/BMMSCs in supporting the functions of BMMSCs in bile duct repair and BDC-mediated hepatocyte regeneration might also be a novel finding. CONCLUSIONS Overall, the PPWP-isolated NG2/BMMSCs could be a novel effective cell subset with increased purity to serve as a new therapeutic tool for enhancing treatment efficacy of BMMSCs and special seed cell source (BDCs, LSECs) also for bioliver engineering.
Collapse
Affiliation(s)
- Deyu Hu
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, No. 30 Gaotanyan, ShapingBa Distract, Chongqing, 400038, P.R. China
- Bioengineering College, Chongqing University, No. 175 Gaotan, ShapingBa Distract, Chongqing, 400044, China
| | - Jiejuan Lai
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, No. 30 Gaotanyan, ShapingBa Distract, Chongqing, 400038, P.R. China
| | - Quanyu Chen
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, No. 30 Gaotanyan, ShapingBa Distract, Chongqing, 400038, P.R. China
| | - Lianhua Bai
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, No. 30 Gaotanyan, ShapingBa Distract, Chongqing, 400038, P.R. China.
- Bioengineering College, Chongqing University, No. 175 Gaotan, ShapingBa Distract, Chongqing, 400044, China.
| |
Collapse
|
17
|
Vaheb S, Afshin S, Ghoshouni H, Ghaffary EM, Farzan M, Shaygannejad V, Thapa S, Zabeti A, Mirmosayyeb O. Neurological efficacy and safety of mesenchymal stem cells (MSCs) therapy in people with multiple sclerosis (pwMS): An updated systematic review and meta-analysis. Mult Scler Relat Disord 2024; 87:105681. [PMID: 38838423 DOI: 10.1016/j.msard.2024.105681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Current therapeutic strategies for multiple sclerosis (MS) aim to suppress the immune response and reduce relapse rates. As alternative treatments, mesenchymal stem cells (MSCs) are being explored. MSCs show promise in repairing nerve tissue and reducing autoimmune responses in people with MS (pwMS). OBJECTIVE This review delves into the literature on the efficacy and safety of MSC therapy for pwMS. METHODS A comprehensive search strategy was employed to identify relevant articles from five databases until January 2024. The inclusion criteria encompassed interventional studies. Efficacy and safety data concerning MSC therapy in relapsing-remitting MS (RRMS), secondary progressive MS (SPMS), and primary progressive MS (PPMS) groups were extracted and analyzed. RESULTS A comprehensive analysis encompassing 30 studies revealed that individuals who underwent intrathecal (IT) protocol-based transplantation of MSCs experienced a noteworthy improvement in their expanded disability status scale (EDSS) compared to the placebo group. Weighted mean difference (WMD) was -0.28; 95 % CI -0.53 to -0.03, I2 = 0 %, p-value = 0.028); however, the intravenous (IV) group did not show significant changes in EDSS scores. The annualized relapse rate (ARR) did not significantly decrease among pwMS (WMD = -0.34; 95 % CI -1.05 to 0.38, I2 = 98 %, p-value = 0.357). Favorable results were observed in magnetic resonance imaging (MRI), with only 19.11 % of pwMS showing contrast-enhanced lesions (CEL) in the short term and no long-term MRI activity. The most common complications in both short-term and long-term follow-ups were infection, back pain, and gastrointestinal symptoms. CONCLUSIONS The study highlights the safety potential of MSC therapy for pwMS. While MRI-based neural regeneration shows significant treatment potential, the effectiveness of MSC therapy remains uncertain due to study limitations and ineffective outcome measures. Further research is needed to establish efficacy and optimize evaluation methods for MSC therapy on pwMS.
Collapse
Affiliation(s)
- Saeed Vaheb
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahra Afshin
- Department of Neurology, School of Medicine, Hormozgan University of Medical Sciences, Bandarabbas, Iran
| | - Hamed Ghoshouni
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Moases Ghaffary
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahour Farzan
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Vahid Shaygannejad
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sangharsha Thapa
- Jacobs School of Biomedical Sciences, University of Buffalo, Department of Neurology, Buffalo, USA
| | - Aram Zabeti
- University of Cincinnati, Cincinnati, OH, USA
| | - Omid Mirmosayyeb
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
18
|
Chandanala S, Mohan G, Manukonda DL, Kumar A, Prasanna J. A novel role of CD73-IFNγ signalling axis in human mesenchymal stromal cell mediated inflammatory macrophage suppression. Regen Ther 2024; 26:89-101. [PMID: 38845846 PMCID: PMC11153905 DOI: 10.1016/j.reth.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/25/2024] [Accepted: 05/19/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction Immunomodulation is the predominant mechanism via which Mesenchymal stromal cells (MSCs) mediate their therapeutic benefits. However, inconsistent success in numerous clinical trials warrants a better understating of the molecular mechanisms regulating their immunomodulatory properties. CD73, an ecto-5'-nucleotidase is abundantly expressed by MSCs, however its precise role in regulating their immunomodulatory properties is still elusive. The present study explored the role of CD73 in Interferon-gamma (IFNγ) sensing and in turn their ability to suppress "inflammatory" M1 macrophages. Materials and methods CD73 knockdown MSCs (CD73-KDN) were initially assessed for expression of immunoregulatory molecules and IFNγ sensing ability by analysing expression of IFNγ signalling downstream targets such as pSTAT-1, Interferon-Stimulated Genes (ISG) and Indoleamine 2,3-dioxygnease (IDO), a prototypic IFNγ-induced immunomodulator. Next CD73-KDN MSCs were co-cultured with inflammatory M1 macrophages and evaluated for their ability to suppress them. To delineate the contributory role of CD73 and IFNγ signalling downstream target IDO, they were overexpressed independently in CD73-KDN MSCs and re-evaluated for their ability to suppress M1 macrophages. Results CD73-KDN MSCs exhibited reduced expression of immunoregulatory molecules and were refractory to IFNγ signalling as indicated by attenuated expression of pSTAT-1, Interferon-Stimulated Genes (ISG) and Indoleamine 2,3-dioxygnease (IDO) upon IFNγ exposure. Since sensing of inflammation is critical for MSC mediated immunomodulation, CD73-KDN MSCs were functionally evaluated for their ability to immune-modulate "inflammatory" M1 macrophages wherein they failed to suppress M1 macrophages. Interestingly, ectopic expression of either CD73 or IFNγ signalling target IDO1 in CD73-KDN MSCs restored their ability to suppress M1 macrophages, establishing the importance of CD73-IFNγ signalling axis in MSC-mediated inflammatory macrophage suppression. Conclusion The present study uncovers the unexplored role of CD73-IFNγ axis in MSC-mediated M1 macrophage suppression. MSC-educated macrophages are the actual immune-modulators at MSC transplant sites, thus CD73 can serve as a key immune-potency marker for benchmarking therapeutically relevant MSCs.
Collapse
Affiliation(s)
- Shashank Chandanala
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Govind Mohan
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - David-Luther Manukonda
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Anujith Kumar
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Jyothi Prasanna
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| |
Collapse
|
19
|
Barabadi M, Paton MCB, Kumar N, Lim R, Payne NL. Stem Cell Derived Extracellular Vesicle Therapy for Multiple Sclerosis, A Systematic Review and Meta-Analysis of Preclinical Studies. Stem Cells Transl Med 2024; 13:436-447. [PMID: 38507620 PMCID: PMC11092271 DOI: 10.1093/stcltm/szae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/27/2024] [Indexed: 03/22/2024] Open
Abstract
Stem cell therapy holds promise for multiple sclerosis (MS), with efficacy of different stem cell types reported across a range of preclinical MS animal models. While stem cell therapy has been approved for a small number of diseases in humans, extracellular vesicles (EVs) may provide an efficacious, cost-effective, and safer alternative to stem cell therapy. To this end, we conducted a systematic review with meta-analysis to assess the effectiveness of stem cell-derived secretome (EV and conditioned media (CM)) in animal models of MS. The data were extracted to calculate standardized mean differences for primary outcome measure of disease severity, using a random effect model. Additionally, several subgroup analyses were conducted to assess the impact of various study variables such as stem cell type and source, stem cell modification, route and time of administration, number of animals and animal's age, and EV isolation methods on secondary outcome. Publication quality and risk of bias were assessed. Overall, 19 preclinical studies were included in the meta-analysis where stem cell EV/CM was found to significantly reduce disease severity in EV-treated (SMD = 2, 95% CI: 1.18-2.83, P < .00001) and CM-treated animals (SMD = 2.58, 95% CI: 1.34-3.83, P < .00001) compared with controls. Our analysis indicated that stem cell secretome has a positive effect on reducing demyelination, systemic neuroinflammation, and disease severity in preclinical models of MS. These findings indicate a potential therapeutic effect that merits investigation and validation in clinical settings.
Collapse
Affiliation(s)
- Mehri Barabadi
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Victoria, Australia
| | - Madison C B Paton
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
- Department of Paediatrics, Monash University, Victoria, Australia
| | - Naveen Kumar
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Victoria, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Victoria, Australia
| | - Natalie L Payne
- Australian Regenerative Medicine Institute, Monash University, Victoria, Australia
| |
Collapse
|
20
|
Wu L, Lu J, Lan T, Zhang D, Xu H, Kang Z, Peng F, Wang J. Stem cell therapies: a new era in the treatment of multiple sclerosis. Front Neurol 2024; 15:1389697. [PMID: 38784908 PMCID: PMC11111935 DOI: 10.3389/fneur.2024.1389697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Multiple Sclerosis (MS) is an immune-mediated condition that persistently harms the central nervous system. While existing treatments can slow its course, a cure remains elusive. Stem cell therapy has gained attention as a promising approach, offering new perspectives with its regenerative and immunomodulatory properties. This article reviews the application of stem cells in MS, encompassing various stem cell types, therapeutic potential mechanisms, preclinical explorations, clinical research advancements, safety profiles of clinical applications, as well as limitations and challenges, aiming to provide new insights into the treatment research for MS.
Collapse
Affiliation(s)
- Lei Wu
- Changchun University of Chinese Medicine, Changchun, China
| | - Jing Lu
- The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Tianye Lan
- The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Dongmei Zhang
- The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Hanying Xu
- Changchun University of Chinese Medicine, Changchun, China
| | - Zezheng Kang
- Changchun University of Chinese Medicine, Changchun, China
| | - Fang Peng
- Hunan Provincial People's Hospital, Changsha, China
| | - Jian Wang
- The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
21
|
Zhang X, Kuang Q, Xu J, Lin Q, Chi H, Yu D. MSC-Based Cell Therapy in Neurological Diseases: A Concise Review of the Literature in Pre-Clinical and Clinical Research. Biomolecules 2024; 14:538. [PMID: 38785945 PMCID: PMC11117494 DOI: 10.3390/biom14050538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells with the ability to self-renew and multi-directional differentiation potential. Exogenously administered MSCs can migrate to damaged tissue sites and participate in the repair of damaged tissues. A large number of pre-clinical studies and clinical trials have demonstrated that MSCs have the potential to treat the abnormalities of congenital nervous system and neurodegenerative diseases. Therefore, MSCs hold great promise in the treatment of neurological diseases. Here, we summarize and highlight current progress in the understanding of the underlying mechanisms and strategies of MSC application in neurological diseases.
Collapse
Affiliation(s)
- Xiaorui Zhang
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qihong Kuang
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianguang Xu
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qing Lin
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haoming Chi
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Daojin Yu
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
22
|
Knoedler L, Dean J, Diatta F, Thompson N, Knoedler S, Rhys R, Sherwani K, Ettl T, Mayer S, Falkner F, Kilian K, Panayi AC, Iske J, Safi AF, Tullius SG, Haykal S, Pomahac B, Kauke-Navarro M. Immune modulation in transplant medicine: a comprehensive review of cell therapy applications and future directions. Front Immunol 2024; 15:1372862. [PMID: 38650942 PMCID: PMC11033354 DOI: 10.3389/fimmu.2024.1372862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Balancing the immune response after solid organ transplantation (SOT) and vascularized composite allotransplantation (VCA) remains an ongoing clinical challenge. While immunosuppressants can effectively reduce acute rejection rates following transplant surgery, some patients still experience recurrent acute rejection episodes, which in turn may progress to chronic rejection. Furthermore, these immunosuppressive regimens are associated with an increased risk of malignancies and metabolic disorders. Despite significant advancements in the field, these IS related side effects persist as clinical hurdles, emphasizing the need for innovative therapeutic strategies to improve transplant survival and longevity. Cellular therapy, a novel therapeutic approach, has emerged as a potential pathway to promote immune tolerance while minimizing systemic side-effects of standard IS regiments. Various cell types, including chimeric antigen receptor T cells (CAR-T), mesenchymal stromal cells (MSCs), regulatory myeloid cells (RMCs) and regulatory T cells (Tregs), offer unique immunomodulatory properties that may help achieve improved outcomes in transplant patients. This review aims to elucidate the role of cellular therapies, particularly MSCs, T cells, Tregs, RMCs, macrophages, and dendritic cells in SOT and VCA. We explore the immunological features of each cell type, their capacity for immune regulation, and the prospective advantages and obstacles linked to their application in transplant patients. An in-depth outline of the current state of the technology may help SOT and VCA providers refine their perioperative treatment strategies while laying the foundation for further trials that investigate cellular therapeutics in transplantation surgery.
Collapse
Affiliation(s)
- Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Jillian Dean
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fortunay Diatta
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Noelle Thompson
- University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Samuel Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Richmond Rhys
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Khalil Sherwani
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Berufsgenossenschaft (BG) Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Tobias Ettl
- Department of Dental, Oral and Maxillofacial Surgery, Regensburg, Germany
| | - Simon Mayer
- University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Florian Falkner
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Berufsgenossenschaft (BG) Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Katja Kilian
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Berufsgenossenschaft (BG) Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Adriana C. Panayi
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Berufsgenossenschaft (BG) Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Jasper Iske
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ali-Farid Safi
- Faculty of Medicine, University of Bern, Bern, Switzerland
- Craniologicum, Center for Cranio-Maxillo-Facial Surgery, Bern, Switzerland
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Siba Haykal
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Bohdan Pomahac
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Martin Kauke-Navarro
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
23
|
Rogujski P, Lukomska B, Janowski M, Stanaszek L. Glial-restricted progenitor cells: a cure for diseased brain? Biol Res 2024; 57:8. [PMID: 38475854 DOI: 10.1186/s40659-024-00486-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The central nervous system (CNS) is home to neuronal and glial cells. Traditionally, glia was disregarded as just the structural support across the brain and spinal cord, in striking contrast to neurons, always considered critical players in CNS functioning. In modern times this outdated dogma is continuously repelled by new evidence unravelling the importance of glia in neuronal maintenance and function. Therefore, glia replacement has been considered a potentially powerful therapeutic strategy. Glial progenitors are at the center of this hope, as they are the source of new glial cells. Indeed, sophisticated experimental therapies and exciting clinical trials shed light on the utility of exogenous glia in disease treatment. Therefore, this review article will elaborate on glial-restricted progenitor cells (GRPs), their origin and characteristics, available sources, and adaptation to current therapeutic approaches aimed at various CNS diseases, with particular attention paid to myelin-related disorders with a focus on recent progress and emerging concepts. The landscape of GRP clinical applications is also comprehensively presented, and future perspectives on promising, GRP-based therapeutic strategies for brain and spinal cord diseases are described in detail.
Collapse
Affiliation(s)
- Piotr Rogujski
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, USA
| | - Luiza Stanaszek
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| |
Collapse
|
24
|
Xie Y, Chen X, Wang X, Liu S, Chen S, Yu Z, Wang W. Transforming growth factor-β1 protects against white matter injury and reactive astrogliosis via the p38 MAPK pathway in rodent demyelinating model. J Neurochem 2024; 168:83-99. [PMID: 38183677 DOI: 10.1111/jnc.16037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 01/08/2024]
Abstract
In central nervous system (CNS), demyelination is a pathological process featured with a loss of myelin sheaths around axons, which is responsible for the diseases of multiple sclerosis, neuromyelitis optica, and so on. Transforming growth factor-beta1 (TGF-β1) is a multifunctional cytokine participating in abundant physiological and pathological processes in CNS. However, the effects of TGF-β1 on CNS demyelinating disease and its underlying mechanisms are controversial and not well understood. Herein, we evaluated the protective potential of TGF-β1 in a rodent demyelinating model established by lysophosphatidylcholine (LPC) injection. It was identified that supplement of TGF-β1 evidently rescued the cognitive deficit and motor dysfunction in LPC modeling mice assessed by novel object recognition and balance beam behavioral tests. Besides, quantified by luxol fast blue staining, immunofluorescence, and western blot, administration of TGF-β1 was found to significantly ameliorate the demyelinating lesion and reactive astrogliosis by suppressing p38 MAPK pathway. Mechanistically, the results of in vitro experiments indicated that treatment of TGF-β1 could directly promote the differentiation and migration of cultured oligodendrocytes. Our study revealed that modulating TGF-β1 activity might serve as a promising and innovative therapeutic strategy in CNS demyelinating diseases.
Collapse
Affiliation(s)
- Yi Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Xuejiao Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyue Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Liu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, China
| | - Simiao Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Gavasso S, Kråkenes T, Olsen H, Evjenth EC, Ytterdal M, Haugsøen JB, Kvistad CE. The Therapeutic Mechanisms of Mesenchymal Stem Cells in MS-A Review Focusing on Neuroprotective Properties. Int J Mol Sci 2024; 25:1365. [PMID: 38338644 PMCID: PMC10855165 DOI: 10.3390/ijms25031365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
In multiple sclerosis (MS), there is a great need for treatment with the ability to suppress compartmentalized inflammation within the central nervous system (CNS) and to promote remyelination and regeneration. Mesenchymal stem cells (MSCs) represent a promising therapeutic option, as they have been shown to migrate to the site of CNS injury and exert neuroprotective properties, including immunomodulation, neurotrophic factor secretion, and endogenous neural stem cell stimulation. This review summarizes the current understanding of the underlying neuroprotective mechanisms and discusses the translation of MSC transplantation and their derivatives from pre-clinical demyelinating models to clinical trials with MS patients.
Collapse
Affiliation(s)
- Sonia Gavasso
- Department of Clinical Medicine, University of Bergen, 5009 Bergen, Norway; (T.K.); (H.O.); (E.C.E.); (J.B.H.); (C.E.K.)
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Torbjørn Kråkenes
- Department of Clinical Medicine, University of Bergen, 5009 Bergen, Norway; (T.K.); (H.O.); (E.C.E.); (J.B.H.); (C.E.K.)
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Håkon Olsen
- Department of Clinical Medicine, University of Bergen, 5009 Bergen, Norway; (T.K.); (H.O.); (E.C.E.); (J.B.H.); (C.E.K.)
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Elisabeth Claire Evjenth
- Department of Clinical Medicine, University of Bergen, 5009 Bergen, Norway; (T.K.); (H.O.); (E.C.E.); (J.B.H.); (C.E.K.)
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Marie Ytterdal
- Department of Clinical Medicine, University of Bergen, 5009 Bergen, Norway; (T.K.); (H.O.); (E.C.E.); (J.B.H.); (C.E.K.)
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Jonas Bull Haugsøen
- Department of Clinical Medicine, University of Bergen, 5009 Bergen, Norway; (T.K.); (H.O.); (E.C.E.); (J.B.H.); (C.E.K.)
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Christopher Elnan Kvistad
- Department of Clinical Medicine, University of Bergen, 5009 Bergen, Norway; (T.K.); (H.O.); (E.C.E.); (J.B.H.); (C.E.K.)
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
26
|
Zhang H, Chen Q, Hu D, Lai J, Yan M, Wu Z, Yang Z, Zheng S, Liu W, Zhang L, Bai L. Manipulating HGF signaling reshapes the cirrhotic liver niche and fills a therapeutic gap in regeneration mediated by transplanted stem cells. Exp Cell Res 2024; 434:113867. [PMID: 38043723 DOI: 10.1016/j.yexcr.2023.113867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Long-term stem cell survival in the cirrhotic liver niche to maintain therapeutic efficacy has not been achieved. In a well-defined diethylnitrosamine (DEN)-induced liver fibrosis/cirrhosis animal model, we previously showed that liver-resident stem/progenitor cells (MLpvNG2+ cells) or immune cells have improved survival in the fibrotic liver environment but died via apoptosis in the cirrhotic liver environment, and increased levels of hepatocyte growth factor (HGF) mediated this cell death. We tested the hypothesis that inhibiting HGF signaling during the cirrhotic phase could keep the cells alive. We used adeno-associated virus (AAV) vectors designed to silence the c-Met (HGF-only receptor) gene or a neutralizing antibody (anti-cMet-Ab) to block the c-Met protein in the DEN-induced liver cirrhosis mouse model transplanted with MLpvNG2+ cells between weeks 6 and 7 after DEN administration, which is the junction of liver fibrosis and cirrhosis at the site where most intrahepatic stem cells move toward apoptosis. After 4 weeks of treatment, the transplanted MLpvNG2+ cells survived better in c-Met-deficient mice than in wild-type mice, and cell activity was similar to that of the mice that received MLpvNG2+ cells at 5 weeks after DEN administration (liver fibrosis phase when most of these cells proliferated). Mechanistically, a lack of c-Met signaling remodeled the cirrhotic environment, which favored transplanted MLpvNG2+ cell expansion to differentiation into mature hepatocytes and initiate endogenous regeneration by promoting mature host hepatocyte generation and mediating functional improvements. Therapeutically, c-Met-mediated regeneration can be mimicked by anti-cMet-Ab to interfere functions, which is a potential drug for cell-based treatment of liver fibrosis/cirrhosis.
Collapse
Affiliation(s)
- Hongyu Zhang
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, No. 30 Gaotanyan, ShapingBa District, Chongqing 400038, China
| | - Quanyu Chen
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, No. 30 Gaotanyan, ShapingBa District, Chongqing 400038, China
| | - Deyu Hu
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, No. 30 Gaotanyan, ShapingBa District, Chongqing 400038, China; Bioengineering College, Chongqing University, No. 175 Gaotan, ShapingBa Distract, Chongqing 400044, China
| | - Jiejuan Lai
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, No. 30 Gaotanyan, ShapingBa District, Chongqing 400038, China
| | - Min Yan
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, No. 30 Gaotanyan, ShapingBa District, Chongqing 400038, China; Department of Specific Medicine, the First Hospital of Shanxi Medical University, Taiyuan, 030000, China
| | - Zhifang Wu
- Department of Specific Medicine, the First Hospital of Shanxi Medical University, Taiyuan, 030000, China
| | - Zhiqing Yang
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, No. 30 Gaotanyan, ShapingBa District, Chongqing 400038, China
| | - Shuguo Zheng
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, No. 30 Gaotanyan, ShapingBa District, Chongqing 400038, China
| | - Wei Liu
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, No. 30 Gaotanyan, ShapingBa District, Chongqing 400038, China
| | - Leida Zhang
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, No. 30 Gaotanyan, ShapingBa District, Chongqing 400038, China
| | - Lianhua Bai
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, No. 30 Gaotanyan, ShapingBa District, Chongqing 400038, China; Bioengineering College, Chongqing University, No. 175 Gaotan, ShapingBa Distract, Chongqing 400044, China; Department of Specific Medicine, the First Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
27
|
Nakao M, Matsui M, Kim K, Nishiyama N, Grainger DW, Okano T, Kanazawa H, Nagase K. Umbilical cord-derived mesenchymal stem cell sheets transplanted subcutaneously enhance cell retention and survival more than dissociated stem cell injections. Stem Cell Res Ther 2023; 14:352. [PMID: 38072920 PMCID: PMC10712142 DOI: 10.1186/s13287-023-03593-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Human umbilical cord-derived mesenchymal stem cell (hUC-MSC) sheets have recently attracted attention as an alternative approach to injected cell suspensions for stem cell therapy. However, cell engraftment and cytokine expression levels between hUC-MSC sheets and their cell suspensions in vivo have not yet been compared. This study compares hUC-MSC in vivo engraftment efficacy and cytokine expression for both hUC-MSC sheets and cell suspensions. METHODS hUC-MSC sheets were prepared using temperature-responsive cell culture; two types of hUC-MSC suspensions were prepared, either by enzymatic treatment (trypsin) or by enzyme-free temperature reduction using temperature-responsive cell cultureware. hUC-MSC sheets and suspensions were transplanted subcutaneously into ICR mice through subcutaneous surgical placement and intravenous injection, respectively. hUC-MSC sheet engraftment after subcutaneous surgical transplantation was investigated by in vivo imaging while intravenously injected cell suspensions were analyzing using in vitro organ imaging. Cytokine levels in both transplant site tissues and blood were quantified by enzyme-linked immunosorbent assay. RESULTS After subcutaneous transplant, hUC-MSC sheets exhibited longer engraftment duration than hUC-MSC suspensions. This was attributed to extracellular matrix (ECM) and cell-cell junctions retained in sheets but enzymatically altered in suspensions. hUC-MSC suspensions harvested using enzyme-free temperature reduction exhibited relatively long engraftment duration after intravenous injection compared to suspensions prepared using trypsin, as enzyme-free harvest preserved cellular ECM. High HGF and TGF-β1 levels were observed in sheet-transplanted sites compared to hUC-MSC suspension sites. However, no differences in human cytokine levels in murine blood were detected, indicating that hUC-MSC sheets might exert local paracrine rather than endocrine effects. CONCLUSIONS hUC-MSC sheet transplantation could be a more effective cell therapeutic approach due to enhanced engraftment and secretion of therapeutic cytokines over injected hUC-MSC suspensions.
Collapse
Affiliation(s)
- Mitsuyoshi Nakao
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Makoto Matsui
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Kyungsook Kim
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Molecular Pharmaceutics, University of Utah, Health Sciences, Salt Lake City, UT, 84112, USA
| | - Nobuhiro Nishiyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - David W Grainger
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Molecular Pharmaceutics, University of Utah, Health Sciences, Salt Lake City, UT, 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Teruo Okano
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Molecular Pharmaceutics, University of Utah, Health Sciences, Salt Lake City, UT, 84112, USA
| | - Hideko Kanazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| |
Collapse
|
28
|
Zhang Y, Gu J, Wang X, Li L, Fu L, Wang D, Wang X, Han X. Opportunities and challenges: mesenchymal stem cells in the treatment of multiple sclerosis. Int J Neurosci 2023; 133:1031-1044. [PMID: 35579409 DOI: 10.1080/00207454.2022.2042690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/08/2022] [Accepted: 02/09/2022] [Indexed: 10/18/2022]
Abstract
Multiple sclerosis (MS) was once considered an untreatable disease. Through years of research, many drugs have been discovered and are widely used for the treatment of MS. However, the current treatment can only alleviate the clinical symptoms of MS and has serious side effects. Mesenchymal stem cells (MSCs) provide neuroprotection by migrating to injured tissues, suppressing inflammation, and fostering neuronal repair. Therefore, MSCs therapy holds great promise for MS treatment. This review aimed to assess the feasibility and safety of use of MSCs in MS treatment as well as its development prospect in clinical treatment by analysing the existing clinical studies.
Collapse
Affiliation(s)
- Yingyu Zhang
- Department of Neurology, China-Japan Union hospital of Jilin University, Changchun city, Jilin, P.R. China
| | - Jiebing Gu
- Department of Neurology, China-Japan Union hospital of Jilin University, Changchun city, Jilin, P.R. China
| | - Xiaoshuang Wang
- Department of Neurology, China-Japan Union hospital of Jilin University, Changchun city, Jilin, P.R. China
| | - Linfang Li
- Department of Neurology, China-Japan Union hospital of Jilin University, Changchun city, Jilin, P.R. China
| | - Lingling Fu
- Department of Neurology, China-Japan Union hospital of Jilin University, Changchun city, Jilin, P.R. China
| | - Di Wang
- Department of Neurology, China-Japan Union hospital of Jilin University, Changchun city, Jilin, P.R. China
| | - Xiuting Wang
- Department of Neurology, China-Japan Union hospital of Jilin University, Changchun city, Jilin, P.R. China
| | - Xuemei Han
- Department of Neurology, China-Japan Union hospital of Jilin University, Changchun city, Jilin, P.R. China
| |
Collapse
|
29
|
Finocchio L, Zeppieri M, Gabai A, Spadea L, Salati C. Recent Advances of Adipose-Tissue-Derived Mesenchymal Stem Cell-Based Therapy for Retinal Diseases. J Clin Med 2023; 12:7015. [PMID: 38002628 PMCID: PMC10672618 DOI: 10.3390/jcm12227015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
With the rapid development of stem cell research in modern times, stem cell-based therapy has opened a new era of tissue regeneration, becoming one of the most promising strategies for currently untreatable retinal diseases. Among the various sources of stem cells, adipose tissue-derived mesenchymal stem cells (ADSCs) have emerged as a promising therapeutic modality due to their characteristics and multiple functions, which include immunoregulation, anti-apoptosis of neurons, cytokine and growth factor secretion, and antioxidative activities. Studies have shown that ADSCs can facilitate the replacement of dying cells, promote tissue remodeling and regeneration, and support the survival and growth of retinal cells. Recent studies in this field have provided numerous experiments using different preclinical models. The aim of our review is to provide an overview of the therapeutic strategies, modern-day clinical trials, experimental models, and potential clinical use of this fascinating class of cells in addressing retinal disorders and diseases.
Collapse
Affiliation(s)
- Lucia Finocchio
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy; (L.F.)
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy; (L.F.)
| | - Andrea Gabai
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy; (L.F.)
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, La Sapienza University of Rome, 00142 Rome, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy; (L.F.)
| |
Collapse
|
30
|
Jakl V, Popp T, Haupt J, Port M, Roesler R, Wiese S, Friemert B, Rojewski MT, Schrezenmeier H. Effect of Expansion Media on Functional Characteristics of Bone Marrow-Derived Mesenchymal Stromal Cells. Cells 2023; 12:2105. [PMID: 37626914 PMCID: PMC10453497 DOI: 10.3390/cells12162105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The therapeutic efficacy of mesenchymal stromal cells (MSCs) has been shown to rely on their immunomodulatory and regenerative properties. In order to obtain sufficient numbers of cells for clinical applications, MSCs have to be expanded ex vivo. Expansion media with xenogeneic-free (XF) growth-promoting supplements like human platelet lysate (PL) or serum- and xenogeneic-free (SF/XF) formulations have been established as safe and efficient, and both groups provide different beneficial qualities. In this study, MSCs were expanded in XF or SF/XF media as well as in mixtures thereof. MSCs cultured in these media were analyzed for phenotypic and functional properties. MSC expansion was optimal with SF/XF conditions when PL was present. Metabolic patterns, consumption of growth factors, and secretome of MSCs differed depending on the type and concentration of supplement. The lactate per glucose yield increased along with a higher proportion of PL. Many factors in the supernatant of cultured MSCs showed distinct patterns depending on the supplement (e.g., FGF-2, TGFβ, and insulin only in PL-expanded MSC, and leptin, sCD40L PDGF-AA only in SF/XF-expanded MSC). This also resulted in changes in cell characteristics like migratory potential. These findings support current approaches where growth media may be utilized for priming MSCs for specific therapeutic applications.
Collapse
Affiliation(s)
- Viktoria Jakl
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
| | - Tanja Popp
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
| | - Julian Haupt
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
- Clinic for Trauma Surgery and Orthopedics, Army Hospital Ulm, 89081 Ulm, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
| | - Reinhild Roesler
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany; (R.R.); (S.W.)
| | - Sebastian Wiese
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany; (R.R.); (S.W.)
| | - Benedikt Friemert
- Clinic for Trauma Surgery and Orthopedics, Army Hospital Ulm, 89081 Ulm, Germany
| | - Markus T. Rojewski
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg—Hessia and University Hospital Ulm, 89081 Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg—Hessia and University Hospital Ulm, 89081 Ulm, Germany
| |
Collapse
|
31
|
Harris VK, Wollowitz J, Greenwald J, Carlson AL, Sadiq SA. Mesenchymal stem cell-neural progenitors are enriched in cell signaling molecules implicated in their therapeutic effect in multiple sclerosis. PLoS One 2023; 18:e0290069. [PMID: 37566599 PMCID: PMC10420335 DOI: 10.1371/journal.pone.0290069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Mesenchymal stem cell-neural progenitors (MSC-NP) are a neural derivative of MSCs that are being investigated in clinical trials as an autologous intrathecal cell therapy to treat patients with secondary progressive (SP) or primary progressive (PP) multiple sclerosis (MS). MSC-NPs promote tissue repair through paracrine mechanisms, however which secreted factors mediate the therapeutic potential of MSC-NPs and how this cell population differs from MSCs remain poorly understood. The objective of this study was to define the transcriptional profile of MSCs and MSC-NPs from MS and non-MS donors to better characterize each cell population. MSCs derived from SPMS, PPMS, or non-MS bone marrow donors demonstrated minimal differential gene expression, despite differences in disease status. MSC-NPs from both MS and non-MS-donors exhibited significant differential gene expression compared to MSCs, with 2,156 and 1,467 genes upregulated and downregulated, respectively. Gene ontology analysis demonstrated pronounced downregulation of cell cycle genes in MSC-NPs compared to MSC consistent with reduced proliferation of MSC-NPs in vitro. In addition, MSC-NPs demonstrated significant enrichment of genes involved in cell signaling, cell communication, neuronal differentiation, chemotaxis, migration, and complement activation. These findings suggest that increased cell signaling and chemotactic capability of MSC-NPs may support their therapeutic potential in MS.
Collapse
Affiliation(s)
- Violaine K. Harris
- Tisch Multiple Sclerosis Research Center of New York, New York, New York, United States of America
| | - Jaina Wollowitz
- Tisch Multiple Sclerosis Research Center of New York, New York, New York, United States of America
| | - Jacelyn Greenwald
- Tisch Multiple Sclerosis Research Center of New York, New York, New York, United States of America
| | - Alyssa L. Carlson
- Tisch Multiple Sclerosis Research Center of New York, New York, New York, United States of America
| | - Saud A. Sadiq
- Tisch Multiple Sclerosis Research Center of New York, New York, New York, United States of America
| |
Collapse
|
32
|
Mehta KJ. Iron-Related Genes and Proteins in Mesenchymal Stem Cell Detection and Therapy. Stem Cell Rev Rep 2023; 19:1773-1784. [PMID: 37269528 PMCID: PMC10238768 DOI: 10.1007/s12015-023-10569-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
Mesenchymal stem cells (MSCs) are located in various tissues of the body. These cells exhibit regenerative and reparative properties, which makes them highly valuable for cell-based therapy. Despite this, majority of MSC-related studies remain to be translated for regular clinical use. This is partly because there are methodical challenges in pre-administration MSC labelling, post-administration detection and tracking of cells, and in retention of maximal therapeutic potential in-vivo. This calls for exploration of alternative or adjunctive approaches that would enable better detection of transplanted MSCs via non-invasive methods and enhance MSC therapeutic potential in-vivo. Interestingly, these attributes have been demonstrated by some iron-related genes and proteins.Accordingly, this unique forward-looking article integrates the apparently distinct fields of iron metabolism and MSC biology, and reviews the utility of iron-related genes and iron-related proteins in facilitating MSC detection and therapy, respectively. Effects of genetic overexpression of the iron-related proteins ferritin, transferrin receptor-1 and MagA in MSCs and their utilisation as reporter genes for improving MSC detection in-vivo are critically evaluated. In addition, the beneficial effects of the iron chelator deferoxamine and the iron-related proteins haem oxygenase-1, lipocalin-2, lactoferrin, bone morphogenetic protein-2 and hepcidin in enhancing MSC therapeutics are highlighted with the consequent intracellular alterations in MSCs. This review aims to inform both regenerative and translational medicine. It can aid in formulating better methodical approaches that will improve, complement, or provide alternatives to the current pre-transplantation MSC labelling procedures, and enhance MSC detection or augment the post-transplantation MSC therapeutic potential.
Collapse
Affiliation(s)
- Kosha J Mehta
- Centre for Education, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
33
|
Slovinska L, Harvanova D. The Role of Mesenchymal Stromal Cells and Their Products in the Treatment of Injured Spinal Cords. Curr Issues Mol Biol 2023; 45:5180-5197. [PMID: 37367078 DOI: 10.3390/cimb45060329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
Spinal cord injury (SCI) is a destructive condition that results in lasting neurological damage resulting in disruption of the connection between the central nervous system and the rest of the body. Currently, there are several approaches in the treatment of a damaged spinal cord; however, none of the methods allow the patient to return to the original full-featured state of life before the injury. Cell transplantation therapies show great potential in the treatment of damaged spinal cords. The most examined type of cells used in SCI research are mesenchymal stromal cells (MSCs). These cells are at the center of interest of scientists because of their unique properties. MSCs regenerate the injured tissue in two ways: (i) they are able to differentiate into some types of cells and so can replace the cells of injured tissue and (ii) they regenerate tissue through their powerful known paracrine effect. This review presents information about SCI and the treatments usually used, aiming at cell therapy using MSCs and their products, among which active biomolecules and extracellular vesicles predominate.
Collapse
Affiliation(s)
- Lucia Slovinska
- Associated Tissue Bank, P.J. Šafárik University and L. Pasteur University Hospital, 040 01 Košice, Slovakia
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Denisa Harvanova
- Associated Tissue Bank, P.J. Šafárik University and L. Pasteur University Hospital, 040 01 Košice, Slovakia
| |
Collapse
|
34
|
Ghasemi M, Roshandel E, Mohammadian M, Farhadihosseinabadi B, Akbarzadehlaleh P, Shamsasenjan K. Mesenchymal stromal cell-derived secretome-based therapy for neurodegenerative diseases: overview of clinical trials. Stem Cell Res Ther 2023; 14:122. [PMID: 37143147 PMCID: PMC10161443 DOI: 10.1186/s13287-023-03264-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 03/06/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Over the past few years, mesenchymal stromal cells (MSCs) have attracted a great deal of scientific attention owing to their promising results in the treatment of incurable diseases. However, there are several concerns about their possible side effects after direct cell transplantation, including host immune response, time-consuming cell culture procedures, and the dependence of cell quality on the donor, which limit the application of MSCs in clinical trials. On the other hand, it is well accepted that the beneficial effects of MSCs are mediated by secretome rather than cell replacement. MSC secretome refers to a variety of bioactive molecules involved in different biological processes, specifically neuro-regeneration. MAIN BODY Due to the limited ability of the central nervous system to compensate for neuronal loss and relieve disease progress, mesenchymal stem cell products may be used as a potential cure for central nervous system disorders. In the present study, the therapeutic effects of MSC secretome were reviewed and discussed the possible mechanisms in the three most prevalent central nervous system disorders, namely Alzheimer's disease, multiple sclerosis, and Parkinson's disease. The current work aimed to help discover new medicine for the mentioned complications. CONCLUSION The use of MSC-derived secretomes in the treatment of the mentioned diseases has encouraging results, so it can be considered as a treatment option for which no treatment has been introduced so far.
Collapse
Affiliation(s)
- Maryam Ghasemi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhdeh Mohammadian
- Department of Hematology, School of Medicine, Tarbiat Modares University (TMU), Tehran, Iran
| | | | - Parvin Akbarzadehlaleh
- Pharmaceutical Biotechnology Department, Pharmacy Faculty, Tabriz University of Medical Science, Tabriz, Iran
| | - Karim Shamsasenjan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Siddiqui F, Gallagher D, Shuster-Hyman H, Lopez L, Gauthier-Fisher A, Librach CL. First trimester human umbilical cord perivascular cells (HUCPVC) modulate the kynurenine pathway and glutamate neurotransmission in an LPS-induced mouse model of neuroinflammation. J Inflamm (Lond) 2023; 20:15. [PMID: 37127610 PMCID: PMC10152638 DOI: 10.1186/s12950-023-00340-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND The Kynurenine Pathway (KP) of tryptophan degradation and glutamate toxicity is implicated in several neurological disorders, including depression. The therapeutic potential of mesenchymal stromal cells (MSC), owing to their well documented phagocytosis-driven mechanism of immunomodulation and neuroprotection, has been tested in many neurological disorders. However, their potential to influence KP and the glutamatergic system has not yet been investigated. Hence, this study sought to investigate the effect of HUCPVC, a rich and potent source of MSC, on Lipopolysaccharide (LPS)-activated KP metabolites, KP enzymes, and key components of glutamate neurotransmission. METHODS The immunomodulatory effect of peripherally administered HUCPVC on the expression profile of kynurenine pathway metabolites and enzymes was assessed in the plasma and brain of mice treated with LPS using LCMS and QPCR. An assessment of the glutamatergic system, including selected receptors, transporters and related proteins was also conducted by QPCR, immunohistochemistry and Western blot. RESULTS HUCPVC were found to modulate LPS-induced activation of KP enzymes and metabolites in the brain associated with neurotoxicity. Moreover, the reduced expression of the glutamatergic components due to LPS was also found to be significantly improved by HUCPVC. CONCLUSIONS The immunomodulatory properties of HUCPVC appear to confer neuroprotection, at least in part, through their ability to modulate the KP in the brain. This KP modulation enhances neuroprotective regulators and downregulates neurotoxic consequences, including glutamate neurotoxicity, which is associated with neuroinflammation and depressive behavior.
Collapse
Affiliation(s)
- Fyyaz Siddiqui
- CReATe Fertility Centre, 790 Bay Street, Suite 1100, Toronto, ON, M5G 1N8, Canada.
| | - Denis Gallagher
- CReATe Fertility Centre, 790 Bay Street, Suite 1100, Toronto, ON, M5G 1N8, Canada
| | - Hannah Shuster-Hyman
- CReATe Fertility Centre, 790 Bay Street, Suite 1100, Toronto, ON, M5G 1N8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Lianet Lopez
- CReATe Fertility Centre, 790 Bay Street, Suite 1100, Toronto, ON, M5G 1N8, Canada
| | | | - Clifford L Librach
- CReATe Fertility Centre, 790 Bay Street, Suite 1100, Toronto, ON, M5G 1N8, Canada.
- Department of Obstetrics and Gynecology, Toronto, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
36
|
Zhou H, He Y, Xiong W, Jing S, Duan X, Huang Z, Nahal GS, Peng Y, Li M, Zhu Y, Ye Q. MSC based gene delivery methods and strategies improve the therapeutic efficacy of neurological diseases. Bioact Mater 2023; 23:409-437. [PMCID: PMC9713256 DOI: 10.1016/j.bioactmat.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 12/05/2022] Open
|
37
|
Tavasolian F, Inman RD. Biology and therapeutic potential of mesenchymal stem cell extracellular vesicles in axial spondyloarthritis. Commun Biol 2023; 6:413. [PMID: 37059822 PMCID: PMC10104809 DOI: 10.1038/s42003-023-04743-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/21/2023] [Indexed: 04/16/2023] Open
Abstract
Axial spondyloarthritis (AxSpA) is a chronic, inflammatory, autoimmune disease that predominantly affects the joints of the spine, causes chronic pain, and, in advanced stages, may result in spinal fusion. Recent developments in understanding the immunomodulatory and tissue-differentiating properties of mesenchymal stem cell (MSC) therapy have raised the possibility of applying such treatment to AxSpA. The therapeutic effectiveness of MSCs has been shown in numerous studies spanning a range of diseases. Several studies have been conducted examining acellular therapy based on MSC secretome. Extracellular vesicles (EVs) generated by MSCs have been proven to reproduce the impact of MSCs on target cells. These EVs are associated with immunological regulation, tissue remodeling, and cellular homeostasis. EVs' biological effects rely on their cargo, with microRNAs (miRNAs) integrated into EVs playing a particularly important role in gene expression regulation. In this article, we will discuss the impact of MSCs and EVs generated by MSCs on target cells and how these may be used as unique treatment strategies for AxSpA.
Collapse
Affiliation(s)
- Fataneh Tavasolian
- Spondylitis Program, Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| | - Robert D Inman
- Spondylitis Program, Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.
- Departments of Medicine and Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
38
|
Masuda H, Mori M, Uzawa A, Uchida T, Muto M, Ohtani R, Aoki R, Kuwabara S. Elevated serum levels of bone morphogenetic protein-9 are associated with better outcome in AQP4-IgG seropositive NMOSD. Sci Rep 2023; 13:3538. [PMID: 36864239 PMCID: PMC9981699 DOI: 10.1038/s41598-023-30594-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Lymphatic drainage in the central nervous system is regulated by meningeal lymphatic vasculature, and recurrent neuroinflammation alters lymphatic vessel remodeling. Patients with aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder (AQP4 + NMOSD) were reported to demonstrate worse outcomes compared with patients with anti-myelin oligodendrocyte glycoprotein-associated disorders (MOGAD). This study aimed to investigate the serum cytokines relevant to vascular remodeling after attacks and their prognostic role in patients with AQP4 + NMOSD. This study measured the serum levels of 12 cytokines relevant to vascular remodeling, including bone morphogenetic protein-9 (BMP-9) and leptin, in 20 patients with AQP4 + NMOSD and 17 healthy controls (HCs). Disease controls included 18 patients with MOGAD. Serum and cerebrospinal fluid interleukin-6 levels were also measured. Clinical severity was evaluated with Kurtzke's Expanded Disability Status Scale (EDSS). Compared with HCs, patients with AQP4 + NMOSD showed higher BMP-9 (median; 127 vs. 80.7 pg/mL; P = 0.0499) and leptin levels (median; 16,081 vs. 6770 pg/mL; P = 0.0224), but not those with MOGAD. Better improvement in EDSS at 6 months was associated with baseline BMP-9 levels in patients with AQP4 + NMOSD (Spearman's rho = - 0.47; P = 0.037). Serum BMP-9 is upregulated at relapse and may contribute to vascular remodeling in AQP4 + NMOSD. Serum BMP-9 levels could predict clinical recovery 6 months after the attack.
Collapse
Affiliation(s)
- Hiroki Masuda
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba-Shi, 260-8670, Japan.
| | - Masahiro Mori
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba-Shi, 260-8670, Japan
| | - Akiyuki Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba-Shi, 260-8670, Japan
| | - Tomohiko Uchida
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba-Shi, 260-8670, Japan
| | - Mayumi Muto
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba-Shi, 260-8670, Japan
- Department of Neurology, Chiba Rosai Hospital, 2-16, Tatsumidai-Higashi, Ichihara-Shi, 290-0003, Japan
| | - Ryohei Ohtani
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba-Shi, 260-8670, Japan
- Department of Neurology, Kimitsu Chuo Hospital, 1010, Sakurai, Kisarazu-Shi, 292-8535, Japan
| | - Reiji Aoki
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba-Shi, 260-8670, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba-Shi, 260-8670, Japan
| |
Collapse
|
39
|
Wang Y, Li H, Zhao Y, Qin F, Wang L, Jiang L, Wang X, Chen R, He Y, Wei Q, Li S, Chen Y, Xiao Y, Dai Y, Bu Q, Zhao Y, Tian J, Wang H, Cen X. Neonatal exposure to sevoflurane induces adolescent neurobehavioral dysfunction by interfering with hippocampal glycerophoslipid metabolism in rats. Cereb Cortex 2023; 33:1955-1971. [PMID: 35584785 DOI: 10.1093/cercor/bhac185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/12/2022] Open
Abstract
Sevoflurane exposure in the neonatal period causes long-term developmental neuropsychological dysfunction, including memory impairment and anxiety-like behaviors. However, the molecular mechanisms underlying such effects have not been fully elucidated. In this study, we investigated the effect of neonatal exposure to sevoflurane on neurobehavioral profiles in adolescent rats, and applied an integrated approach of lipidomics and proteomics to investigate the molecular network implicated in neurobehavioral dysfunction. We found that neonatal exposure to sevoflurane caused cognitive impairment and social behavior deficits in adolescent rats. Lipidomics analyses revealed that sevoflurane significantly remodeled hippocampal lipid metabolism, including lysophatidylcholine (LPC) metabolism, phospholipid carbon chain length and carbon chain saturation. Through a combined proteomics analysis, we found that neonatal exposure to sevoflurane significantly downregulated the expression of lysophosphatidylcholine acyltransferase 1 (LPCAT1), a key enzyme in the regulation of phospholipid metabolism, in the hippocampus of adolescent rats. Importantly, hippocampal LPCAT1 overexpression restored the dysregulated glycerophospholipid (GP) metabolism and alleviated the learning and memory deficits caused by sevoflurane. Collectively, our evidence that neonatal exposure to sevoflurane downregulates LPCAT1 expression and dysregulates GP metabolism in the hippocampus, which may contribute to the neurobehavioral dysfunction in the adolescent rats.
Collapse
Affiliation(s)
- Yonghai Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation Yantai University, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, #30 Qingquan Road, Laishan District, Yantai 264005, China
| | - Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Ying Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Feng Qin
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Linhong Jiang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Xiaojie Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Rong Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Yuman He
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Qinfan Wei
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Shu Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Yuanyuan Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Yuzhou Xiao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Yanping Dai
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Qian Bu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Yinglan Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation Yantai University, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, #30 Qingquan Road, Laishan District, Yantai 264005, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation Yantai University, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, #30 Qingquan Road, Laishan District, Yantai 264005, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, #1 Keyuan Road 4, Gaopeng Street, High-tech Development Zone, Chengdu 610041, China
| |
Collapse
|
40
|
Musa M, Zeppieri M, Enaholo ES, Salati C, Parodi PC. Adipose Stem Cells in Modern-Day Ophthalmology. Clin Pract 2023; 13:230-245. [PMID: 36826163 PMCID: PMC9955457 DOI: 10.3390/clinpract13010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Stem cells (SCs) have evolved as an interesting and viable factor in ophthalmologic patient care in the past decades. SCs have been classified as either embryonic, mesenchymal, tissue-specific, or induced pluripotent cells. Multiple novel management techniques and clinical trials have been established to date. While available publications are predominantly animal-model-based, significant material is derived from human studies and case-selected scenarios. This possibility of explanting cells from viable tissue to regenerate/repair damaged tissue points to an exciting future of therapeutic options in all fields of medicine, and ophthalmology is surely not left out. Adipose tissue obtained from lipo-aspirates has been shown to produce mesenchymal SCs that are potentially useful in different body parts, including the oculo-visual system. An overview of the anatomy, physiology, and extraction process for adipose-tissue-derived stem cells (ADSC) is important for better understanding the potential therapeutic benefits. This review examines published data on ADSCs in immune-modulatory, therapeutic, and regenerative treatments. We also look at the future of ADSC applications for ophthalmic patient care. The adverse effects of this relatively novel therapy are also discussed.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Nigeria
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | | | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Pier Camillo Parodi
- Department of Plastic Surgery, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
41
|
Hepatocyte growth factor-mediated apoptosis mechanisms of cytotoxic CD8 + T cells in normal and cirrhotic livers. Cell Death Dis 2023; 9:13. [PMID: 36658107 PMCID: PMC9852593 DOI: 10.1038/s41420-023-01313-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/20/2023]
Abstract
Intrahepatic stem/progenitor cells and cytotoxic CD8+ T cells (CD8+ T cells) in the cirrhotic liver undergo apoptosis, which potentially facilitates progression to cancer. Here, we report that hepatocyte growth factor (HGF) signaling plays an important role in promoting normal and damaged liver CD8+ T cell Fas-mediated apoptosis through its only receptor, c-Met. In addition to binding with HGF, c-Met also binds to Fas to form a complex. Using a diethylnitrosamine (DEN)-induced liver fibrosis/cirrhosis mouse model, immunostaining, and terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) staining, we found that HGF secretion was significantly higher at 10 weeks post-DEN, the liver cirrhotic phase (LCP), than at 3 weeks post-DEN, the liver fibrotic phase (LFP). Correspondingly, differences in CD8+ T cell proliferation and apoptosis were noted between the two phases. Interestingly, staining and TUNEL assays revealed lower smooth muscle actin (α-SMA)+ cell apoptosis, a marker for hepatic stellate cells (HSCs), in the LFP group than in the LCP group, which suggested a beneficial correlation among HGF, CD8+ T cells and HSCs in improving the fibrotic load during damaged liver repair. In cultures, when met different concentrations of recombinant HGF (rHGF), phytohemagglutinin (PHA)-stimulated naive mouse splenic CD8+ T cells (pn-msCD8+ T cells) responded differently; as increases in rHGF increased were associated with decreases in the clonal numbers of pn-msCD8+ T cells, and when the rHGF dose was greater than 200 ng/mL, the clonal numbers significantly decreased. In the presence of 400 ng/mL rHGF, the death-inducing signaling complex (DISC) can be directly activated in both nsCD8+ T cells and healthy human peripheral blood CD8+ T cells (hp-CD8+ T cells), as indicated by recruitment of FADD and caspase-8 because DISC forms via the recruitment of FADD and caspase-8, among others. These findings suggest that Fas-mediated apoptosis, may also indicate a regulatory role of HGF signaling in hepatic homeostasis.
Collapse
|
42
|
Borda M, Aquino JB, Mazzone GL. Cell-based experimental strategies for myelin repair in multiple sclerosis. J Neurosci Res 2023; 101:86-111. [PMID: 36164729 DOI: 10.1002/jnr.25129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/21/2022] [Accepted: 09/09/2022] [Indexed: 11/10/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disorder of the central nervous system (CNS), diagnosed at a mean age of 32 years. CNS glia are crucial players in the onset of MS, primarily involving astrocytes and microglia that can cause/allow massive oligodendroglial cells death, without immune cell infiltration. Current therapeutic approaches are aimed at modulating inflammatory reactions during relapsing episodes, but lack the ability to induce very significant repair mechanisms. In this review article, different experimental approaches based mainly on the application of different cell types as therapeutic strategies applied for the induction of myelin repair and/or the amelioration of the disease are discussed. Regarding this issue, different cell sources were applied in various experimental models of MS, with different results, both in significant improvements in remyelination and the reduction of neuroinflammation and glial activation, or in neuroprotection. All cell types tested have advantages and disadvantages, which makes it difficult to choose a better option for therapeutic application in MS. New strategies combining cell-based treatment with other applications would result in further improvements and would be good candidates for MS cell therapy and myelin repair.
Collapse
Affiliation(s)
- Maximiliano Borda
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina
| | - Jorge B Aquino
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina.,CONICET, Comisión Nacional de Investigaciones Científicas y Técnicas
| | - Graciela L Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina.,CONICET, Comisión Nacional de Investigaciones Científicas y Técnicas
| |
Collapse
|
43
|
Sheikholeslami A, Fazaeli H, Kalhor N, Khoshandam M, Eshagh Hoseini SJ, Sheykhhasan M. Use of Mesenchymal Stem Cells in Crohn's Disease and Perianal Fistulas: A Narrative Review. Curr Stem Cell Res Ther 2023; 18:76-92. [PMID: 34530720 DOI: 10.2174/1574888x16666210916145717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Crohn's Disease (CD), which usually leads to anal fistulas among patients, is the most important inflammatory bowel disease that causes morbidity in many people around the world. This review article proposes using MSCs as a hopeful therapeutic strategy for CD and anal fistula treatment in both preclinical and clinical conditions. Finally, darvadstrocel, a cell-based medication to treat complex anal fistulas in adults, as the only European Medicines Agency (EMA)-approved product for the treatment of anal fistulas in CD is addressed. Although several common therapies, such as surgery and anti-tumor necrosis factor-alpha (TNF-α) drugs as well as a combination of these methods is used to improve this disease, however, due to the low effectiveness of these treatments, the use of new strategies with higher efficiency is still recommended. Cell therapy is among the new emerging therapeutic strategies that have attracted great attention from clinicians due to its unique capabilities. One of the most widely used cell sources administrated in cell therapy is mesenchymal stem cell (MSC). This review article will discuss preclinical and clinical studies about MSCs as a potent and promising therapeutic option in the treatment of CD and anal fistula.
Collapse
Affiliation(s)
- Azar Sheikholeslami
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
| | - Hoda Fazaeli
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom,Iran
| | - Naser Kalhor
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
| | - Mohadeseh Khoshandam
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
| | | | - Mohsen Sheykhhasan
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
- Department of Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
44
|
Li M, Chen H, Zhu M. Mesenchymal stem cells for regenerative medicine in central nervous system. Front Neurosci 2022; 16:1068114. [PMID: 36583105 PMCID: PMC9793714 DOI: 10.3389/fnins.2022.1068114] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells, whose paracrine and immunomodulatory potential has made them a promising candidate for central nervous system (CNS) regeneration. Numerous studies have demonstrated that MSCs can promote immunomodulation, anti-apoptosis, and axon re-extension, which restore functional neural circuits. The therapeutic effects of MSCs have consequently been evaluated for application in various CNS diseases including spinal cord injury, cerebral ischemia, and neurodegenerative disease. In this review, we will focus on the research works published in the field of mechanisms and therapeutic effects of MSCs in CNS regeneration.
Collapse
Affiliation(s)
- Man Li
- Department of Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Chen
- Department of Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingxin Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Mingxin Zhu,
| |
Collapse
|
45
|
Zhu L, Wang S, Qu J, Hui Z, Kan C, Hou N, Sun X. The Therapeutic Potential of Mesenchymal Stem Cells in the Treatment of Diabetes Mellitus. Cell Reprogram 2022; 24:329-342. [PMID: 35877064 DOI: 10.1089/cell.2022.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mesenchymal stem cells (MSCs) exist in many tissues and can differentiate into cells of multiple lineages, such as adipocytes, osteoblasts, or chondrocytes. MSC administration has demonstrated therapeutic potential in various degenerative and inflammatory diseases (e.g., graft-vs.-host disease, multiple sclerosis, Crohn's disease, organ fibrosis, and diabetes mellitus [DM]). The mechanisms involved in the therapeutic effects of MSCs are multifaceted. Generally, implanted MSCs can migrate to sites of injury, where they establish an anti-inflammatory and regenerative microenvironment in damaged tissues. In addition, MSCs can modulate innate and adaptive immune responses through immunosuppressive mechanisms that involve immune cells, inflammatory cytokines, chemokines, and immunomodulatory factors. DM has a high prevalence worldwide; it also contributes to a high rate of mortality worldwide. MSCs offer a promising therapeutic agent to prevent or repair damage from DM and diabetic complications through properties such as multilineage differentiation, homing, promotion of angiogenesis, and immunomodulation (e.g., prevention of oxidative stress, fibrosis, and cell death). In this study, we review current findings regarding the immunomodulatory and regenerative mechanisms of MSCs, as well as their therapeutic applications in DM and DM-related complications.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Sheng Wang
- Department of Spinal Surgery, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - JunSheng Qu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zongguang Hui
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
46
|
Ahmed T. Neural stem cell engineering for the treatment of multiple sclerosis. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
47
|
Wang Y, Fang J, Liu B, Shao C, Shi Y. Reciprocal regulation of mesenchymal stem cells and immune responses. Cell Stem Cell 2022; 29:1515-1530. [DOI: 10.1016/j.stem.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
|
48
|
Wei X, Ma W, Gu H, Liu D, Luo W, Cao S, Jia S, Huang T, He Y, Bai Y, Wang W, Yuan Z. Intra-amniotic mesenchymal stem cell therapy improves the amniotic fluid microenvironment in rat spina bifida aperta fetuses. Cell Prolif 2022; 56:e13354. [PMID: 36266504 PMCID: PMC9890536 DOI: 10.1111/cpr.13354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/22/2022] [Accepted: 10/10/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES Spina bifida aperta (SBA) is one of the most common neural tube defects. Neural injury in SBA occurs in two stages involving failed neural tube closure and progressive degeneration through contact with the amniotic fluid. We previously suggested that intra-amniotic bone marrow-derived mesenchymal stem cell (BMSC) therapy for fetal rat SBA could achieve beneficial functional recovery through lesion-specific differentiation. The aim of this study is to examine whether the amniotic fluid microenvironment can be improved by intra-amniotic BMSC transplantation. METHODS The intra-amniotic BMSC injection was performed using in vivo rat fetal SBA models. The various cytokine expressions in rat amniotic fluid were screened by protein microassays. Intervention experiments were used to study the function of differentially expressed cytokines. RESULTS A total of 32 cytokines showed significant upregulated expression in the BMSC-injected amniotic fluid. We focused on Activin A, NGF, BDNF, CNTF, and CXCR4. Intervention experiments showed that the upregulated Activin A, NGF, BDNF, and CNTF could inhibit apoptosis and promote synaptic development in fetal spinal cords. Inhibiting the activity of these factors weakened the anti-apoptotic and pro-differentiation effects of transplanted BMSCs. Inhibition of CXCR4 activity reduced the engraftment rate of BMSCs in SBA fetuses. CONCLUSION BMSC transplantation can improve the amniotic fluid environment, and this is beneficial for SBA repair.
Collapse
Affiliation(s)
- Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing HospitalChina Medical UniversityShenyangPeople's Republic of China
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing HospitalChina Medical UniversityShenyangPeople's Republic of China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing HospitalChina Medical UniversityShenyangPeople's Republic of China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing HospitalChina Medical UniversityShenyangPeople's Republic of China
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing HospitalChina Medical UniversityShenyangPeople's Republic of China
| | - Songying Cao
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing HospitalChina Medical UniversityShenyangPeople's Republic of China
| | - Shanshan Jia
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing HospitalChina Medical UniversityShenyangPeople's Republic of China
| | - Tianchu Huang
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing HospitalChina Medical UniversityShenyangPeople's Republic of China
| | - Yiwen He
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing HospitalChina Medical UniversityShenyangPeople's Republic of China
| | - Yuzuo Bai
- Department of Pediatric Surgery, Shengjing HospitalChina Medical UniversityShenyangPeople's Republic of China
| | - Weilin Wang
- Department of Pediatric Surgery, Shengjing HospitalChina Medical UniversityShenyangPeople's Republic of China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing HospitalChina Medical UniversityShenyangPeople's Republic of China
| |
Collapse
|
49
|
Sarsenova M, Kim Y, Raziyeva K, Kazybay B, Ogay V, Saparov A. Recent advances to enhance the immunomodulatory potential of mesenchymal stem cells. Front Immunol 2022; 13:1010399. [PMID: 36211399 PMCID: PMC9537745 DOI: 10.3389/fimmu.2022.1010399] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Considering the unique therapeutic potential of mesenchymal stem cells (MSCs), including their immunosuppressive and immunomodulatory properties as well as their ability to improve tissue regeneration, these cells have attracted the attention of scientists and clinicians for the treatment of different inflammatory and immune system mediated disorders. However, various clinical trials using MSCs for the therapeutic purpose are conflicting and differ from the results of promising preclinical studies. This inconsistency is caused by several factors such as poor migration and homing capacities, low survival rate, low level of proliferation and differentiation, and donor-dependent variation of the cells. Enhancement and retention of persistent therapeutic effects of the cells remain a challenge to overcome in MSC-based therapy. In this review, we summarized various approaches to enhance the clinical outcomes of MSC-based therapy as well as revised current and future perspectives for the creation of cellular products with improved potential for diverse clinical applications.
Collapse
Affiliation(s)
- Madina Sarsenova
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Yevgeniy Kim
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Kamila Raziyeva
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Bexultan Kazybay
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Vyacheslav Ogay
- Laboratory of Stem Cells, National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
- *Correspondence: Arman Saparov,
| |
Collapse
|
50
|
Errede M, Annese T, Petrosino V, Longo G, Girolamo F, de Trizio I, d'Amati A, Uccelli A, Kerlero de Rosbo N, Virgintino D. Microglia-derived CCL2 has a prime role in neocortex neuroinflammation. Fluids Barriers CNS 2022; 19:68. [PMID: 36042496 PMCID: PMC9429625 DOI: 10.1186/s12987-022-00365-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022] Open
Abstract
Background In myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), several areas of demyelination are detectable in mouse cerebral cortex, where neuroinflammation events are associated with scarce inflammatory infiltrates and blood–brain barrier (BBB) impairment. In this condition, the administration of mesenchymal stem cells (MSCs) controls neuroinflammation, attenuating astrogliosis and promoting the acquisition of stem cell traits by astrocytes. To contribute to the understanding of the mechanisms involved in the pathogenesis of EAE in gray matter and in the reverting effects of MSC treatment, the neocortex of EAE-affected mice was investigated by analyzing the cellular source(s) of chemokine CCL2, a molecule involved in immune cell recruitment and BBB-microvessel leakage. Methods The study was carried out by immunohistochemistry (IHC) and dual RNAscope IHC/in situ hybridization methods, using astrocyte, NG2-glia, macrophage/microglia, and microglia elective markers combined with CCL2. Results The results showed that in EAE-affected mice, hypertrophic microglia are the primary source of CCL2, surround the cortex neurons and the damaged BBB microvessels. In EAE-affected mice treated with MSCs, microgliosis appeared diminished very soon (6 h) after treatment, an observation that was long-lasting (tested after 10 days). This was associated with a reduced CCL2 expression and with apparently preserved/restored BBB features. In conclusion, the hallmark of EAE in the mouse neocortex is a condition of microgliosis characterized by high levels of CCL2 expression. Conclusions This finding supports relevant pathogenetic and clinical aspects of the human disease, while the demonstrated early control of neuroinflammation and BBB permeability exerted by treatment with MSCs may have important therapeutic implications. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00365-5.
Collapse
Affiliation(s)
- Mariella Errede
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Piazza Giulio Cesare, Policlinics, 70124, Bari, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Piazza Giulio Cesare, Policlinics, 70124, Bari, Italy.,Department of Medicine and Surgery, LUM University, Casamassima Bari, Italy
| | - Valentina Petrosino
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Giovanna Longo
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Piazza Giulio Cesare, Policlinics, 70124, Bari, Italy
| | - Francesco Girolamo
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Piazza Giulio Cesare, Policlinics, 70124, Bari, Italy
| | - Ignazio de Trizio
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Piazza Giulio Cesare, Policlinics, 70124, Bari, Italy
| | - Antonio d'Amati
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Piazza Giulio Cesare, Policlinics, 70124, Bari, Italy.,Department of Emergency and Organ Transplantation, Pathology Section, University of Bari School of Medicine, Bari, Italy
| | - Antonio Uccelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Nicole Kerlero de Rosbo
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,TomaLab, Institute of Nanotechnology, Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Piazza Giulio Cesare, Policlinics, 70124, Bari, Italy.
| |
Collapse
|