1
|
Ahmadi M, Rouhi N, Mirnajafi-Zadeh J, Saab BJ. Context-dependency in medicine: how neuronal excitability influences the impact of dopamine on cognition. Neural Regen Res 2025; 20:3225-3226. [PMID: 39715094 PMCID: PMC11881724 DOI: 10.4103/nrr.nrr-d-24-00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/29/2024] [Accepted: 09/19/2024] [Indexed: 12/25/2024] Open
Affiliation(s)
- Mahboubeh Ahmadi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nahid Rouhi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bechara J. Saab
- Mobio Interactive Pte. Ltd., Singapore, Republic of Singapore
| |
Collapse
|
2
|
De Paolis ML, Loffredo G, Krashia P, La Barbera L, Nobili A, Cauzzi E, Babicola L, Di Segni M, Coccurello R, Puglisi-Allegra S, Latagliata EC, D'Amelio M. Repetitive prefrontal tDCS activates VTA dopaminergic neurons, resulting in attenuation of Alzheimer's Disease-like deficits in Tg2576 mice. Alzheimers Res Ther 2025; 17:94. [PMID: 40301905 PMCID: PMC12039073 DOI: 10.1186/s13195-025-01736-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/07/2025] [Indexed: 05/01/2025]
Abstract
BACKGROUND Emerging evidence implicates early dysfunction of dopaminergic neurons in the Ventral Tegmental Area (VTA) as a key contributor to Alzheimer's Disease (AD) pathophysiology. Specifically, the VTA dopaminergic neurodegeneration and the consequent reduction of dopamine (DA) in mesocorticolimbic targets are associated with the onset of cognitive impairments and neuropsychiatric-like manifestations in AD animal models. Moreover, decreased midbrain volume and functional VTA disconnection are identified as predictors of accelerated progression from Mild Cognitive Impairment to AD-dementia in clinical populations. Given these findings, interventions capable of directly modulating VTA activity and augmenting DA release, despite the ongoing neurodegeneration, may hold therapeutic potential for mitigating DA-related deficits in AD. This study aims at evaluating the therapeutic potential of prefrontal transcranial Direct Current Stimulation (tDCS) in the Tg2576 mouse model of AD, exhibiting early VTA dopaminergic neurodegeneration. METHODS Repeated tDCS was applied to assess its ability to activate VTA DA neurons. We also evaluated tDCS effects on synaptic plasticity, cognitive and non-cognitive behaviours and AD-related pathology. Hippocampal DA release and Nucleus Accumbens (NAc) DA transporter (DAT) expression were measured. With immunohistochemistry we examined microglial density and morphological complexity at different disease stages. Additionally, intracellular amyloid-β (Aβ) levels and plaque burden were evaluated to determine the impact of tDCS on AD pathology. RESULTS Prefrontal tDCS enhanced the activity of VTA dopaminergic neurons, leading to increased hippocampal DA release and higher DAT levels in the NAc. The enhanced DA outflow is associated with restored CA3-CA1 synaptic plasticity and improvements in recognition memory and motivational behaviours. tDCS reduced microglial numbers and morphological complexity in Tg2576 mice at both pre-plaque stage (7-months) and at an advanced stage characterized by plaque accumulation (12-months). Notably, tDCS also decreased Aβ plaque burden, although no changes in intracellular Aβ levels were observed in younger Tg2576 mice. CONCLUSIONS These findings highlight the multifaceted therapeutic potential of prefrontal tDCS in targeting key AD pathophysiological hallmarks, including dopaminergic dysfunction, synaptic impairments, neuroinflammation and plaque deposition. As a non-invasive neuromodulatory approach, prefrontal tDCS emerges as a promising early intervention strategy to complement existing AD treatments, with the potential to improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Maria Luisa De Paolis
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Gilda Loffredo
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Paraskevi Krashia
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64, 00143, Rome, Italy
| | - Livia La Barbera
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64, 00143, Rome, Italy
| | - Annalisa Nobili
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64, 00143, Rome, Italy
| | - Emma Cauzzi
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Lucy Babicola
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64, 00143, Rome, Italy
- Department of Psychology, Sapienza University of Rome, P.Le Aldo Moro, 5, 00185, Rome, Italy
| | - Matteo Di Segni
- Child Psychopathology Unit, IRCCS Eugenio Medea, Via Don Luigi Monza, 20, 23842, Bosisio Parini, Italy
| | - Roberto Coccurello
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64, 00143, Rome, Italy
- National Research Council (CNR), Institute for Complex System (ISC), Via Dei Taurini, 19, 00185, Rome, Italy
| | - Stefano Puglisi-Allegra
- Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS) Neuromed, Via Atinense, 18, 86077, Pozzilli, Italy
| | - Emanuele Claudio Latagliata
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64, 00143, Rome, Italy.
- Department of Psychology, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186, Rome, Italy.
| | - Marcello D'Amelio
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy.
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64, 00143, Rome, Italy.
| |
Collapse
|
3
|
Zhang X, Yan F, He XJ, Chen Y, Gu R, Dong X, Wei Y, Bai L, Bai J. Thioredoxin-1 Downregulation in the SNpc Exacerbates the Cognitive Impairment Induced by MPTP. Antioxid Redox Signal 2025. [PMID: 40135707 DOI: 10.1089/ars.2024.0630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Aims: Parkinson's disease (PD) is characterized by dopaminergic (DAergic) neuron degeneration in the substantia nigra pars compacta (SNpc). Thioredoxin-1 (Trx-1) is a redox protein that protects neurons from various injuries. Our study revealed that Trx-1 overexpression improved the learning and memory impairments induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). However, the role of the specific transmission of signals from the SNpc to the hippocampus regulated by Trx-1 in cognition deficits associated with PD is still unknown. Results: We observed that Trx-1 downregulation in the SNpc aggravated cognitive dysfunction induced by MPTP. Importantly, we observed that the SNpc directly projects to the hippocampus. We found that the loss of DAergic neurons in the SNpc induced by MPTP resulted in a decrease in dopamine D1 receptor (D1R) expression in the hippocampus, which was promoted by Trx-1 downregulation in the SNpc. The levels of phosphorylated extracellular signal-regulated kinase (p-ERK1/2), phosphorylated cAMP-response element binding protein (p-CREB), brain-derived neurotrophic factor (BDNF), and postsynaptic density protein 95 (PSD95) in the hippocampus were decreased by MPTP and further decreased by Trx-1 downregulation in the SNpc. Finally, the number of synapses in the hippocampus was decreased by MPTP in the hippocampus and further reduced by Trx-1 downregulation in the SNpc. Innovation: Trx-1 downregulation accelerated the loss of DAergic neurons in the SNpc, leading to a decrease in the number dopaminergic projections to the hippocampus, subsequently inhibiting the D1R-ERK1/2-CREB-BDNF pathway in the hippocampus, and ultimately impairing hippocampus-dependent cognition. Conclusions: These results indicate that a decrease in Trx-1 level in the SNpc plays a critical regulatory role in cognitive dysfunction in individuals with PD by decreasing the hippocampal D1R signaling pathway. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Xianwen Zhang
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Fang Yan
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiong Jie He
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Yali Chen
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Rou Gu
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Xianghuan Dong
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Yonghang Wei
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Liping Bai
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Jie Bai
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
4
|
Kleinman MR, Foster DJ. Spatial localization of hippocampal replay requires dopamine signaling. eLife 2025; 13:RP99678. [PMID: 40126538 PMCID: PMC11932692 DOI: 10.7554/elife.99678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025] Open
Abstract
Sequenced reactivations of hippocampal neurons called replays, concomitant with sharp-wave ripples in the local field potential, are critical for the consolidation of episodic memory, but whether replays depend on the brain's reward or novelty signals is unknown. Here, we combined chemogenetic silencing of dopamine neurons in ventral tegmental area (VTA) and simultaneous electrophysiological recordings in dorsal hippocampal CA1, in freely behaving male rats experiencing changes to reward magnitude and environmental novelty. Surprisingly, VTA silencing did not prevent ripple increases where reward was increased, but caused dramatic, aberrant ripple increases where reward was unchanged. These increases were associated with increased reverse-ordered replays. On familiar tracks this effect disappeared, and ripples tracked reward prediction error (RPE), indicating that non-VTA reward signals were sufficient to direct replay. Our results reveal a novel dependence of hippocampal replay on dopamine, and a role for a VTA-independent RPE signal that is reliable only in familiar environments.
Collapse
Affiliation(s)
- Matthew R Kleinman
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, BerkeleyBerkeleyUnited States
| | - David J Foster
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
5
|
Ding M, Tomsick PL, Young RA, Jadhav SP. Ventral tegmental area dopamine neural activity switches simultaneously with rule representations in the prefrontal cortex and hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.09.611811. [PMID: 39314328 PMCID: PMC11419070 DOI: 10.1101/2024.09.09.611811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Multiple brain regions need to coordinate activity to support cognitive flexibility and behavioral adaptation. Neural activity in both the hippocampus (HPC) and prefrontal cortex (PFC) is known to represent spatial context and is sensitive to reward and rule alterations. Midbrain dopamine (DA) activity is key in reward seeking behavior and learning. There is abundant evidence that midbrain DA modulates HPC and PFC activity. However, it remains underexplored how these networks engage dynamically and coordinate temporally when animals must adjust their behavior according to changing reward contingencies. In particular, is there any relationship between DA reward prediction change during rule switching, and rule representation changes in PFC and CA1? We addressed these questions using simultaneous recording of neuronal population activity from the hippocampal area CA1, PFC and ventral tegmental area (VTA) in male TH-Cre rats performing two spatial working memory tasks with frequent rule switches in blocks of trials. CA1 and PFC ensembles showed rule-specific activity both during maze running and at reward locations, with PFC rule coding more consistent across animals compared to CA1. Optogenetically tagged VTA DA neuron firing activity responded to and predicted reward outcome. We found that the correct prediction in DA emerged gradually over trials after rule-switching in coordination with transitions in PFC and CA1 ensemble representations of the current rule after a rule switch, followed by behavioral adaptation to the correct rule sequence. Therefore, our study demonstrates a crucial temporal coordination between the rule representation in PFC/CA1, the dopamine reward signal and behavioral strategy.
Collapse
Affiliation(s)
- Mingxin Ding
- Graduate Program in Neuroscience, Brandeis University, Waltham, MA 02453, USA
| | - Porter L. Tomsick
- Undergraduate Program in Neuroscience, Brandeis University, Waltham, MA 02453, USA
- Department of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Ryan A. Young
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA
| | - Shantanu P. Jadhav
- Graduate Program in Neuroscience, Brandeis University, Waltham, MA 02453, USA
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, 02453, USA
| |
Collapse
|
6
|
Kleinman MR, Foster DJ. Spatial localization of hippocampal replay requires dopamine signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597435. [PMID: 38895442 PMCID: PMC11185723 DOI: 10.1101/2024.06.04.597435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Sequenced reactivations of hippocampal neurons called replays, concomitant with sharp-wave ripples in the local field potential, are critical for the consolidation of episodic memory, but whether replays depend on the brain's reward or novelty signals is unknown. Here we combined chemogenetic silencing of dopamine neurons in ventral tegmental area (VTA) and simultaneous electrophysiological recordings in dorsal hippocampal CA1, in freely behaving male rats experiencing changes to reward magnitude and environmental novelty. Surprisingly, VTA silencing did not prevent ripple increases where reward was increased, but caused dramatic, aberrant ripple increases where reward was unchanged. These increases were associated with increased reverse-ordered replays. On familiar tracks this effect disappeared, and ripples tracked reward prediction error, indicating that non-VTA reward signals were sufficient to direct replay. Our results reveal a novel dependence of hippocampal replay on dopamine, and a role for a VTA-independent reward prediction error signal that is reliable only in familiar environments.
Collapse
Affiliation(s)
- Matthew R Kleinman
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, CA 94720, USA
| | - David J Foster
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, CA 94720, USA
- Lead contact
| |
Collapse
|
7
|
Heer C, Sheffield M. Distinct catecholaminergic pathways projecting to hippocampal CA1 transmit contrasting signals during navigation in familiar and novel environments. eLife 2024; 13:RP95213. [PMID: 39504262 PMCID: PMC11540301 DOI: 10.7554/elife.95213] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Neuromodulatory inputs to the hippocampus play pivotal roles in modulating synaptic plasticity, shaping neuronal activity, and influencing learning and memory. Recently, it has been shown that the main sources of catecholamines to the hippocampus, ventral tegmental area (VTA) and locus coeruleus (LC), may have overlapping release of neurotransmitters and effects on the hippocampus. Therefore, to dissect the impacts of both VTA and LC circuits on hippocampal function, a thorough examination of how these pathways might differentially operate during behavior and learning is necessary. We therefore utilized two-photon microscopy to functionally image the activity of VTA and LC axons within the CA1 region of the dorsal hippocampus in head-fixed male mice navigating linear paths within virtual reality (VR) environments. We found that within familiar environments some VTA axons and the vast majority of LC axons showed a correlation with the animals' running speed. However, as mice approached previously learned rewarded locations, a large majority of VTA axons exhibited a gradual ramping-up of activity, peaking at the reward location. In contrast, LC axons displayed a pre-movement signal predictive of the animal's transition from immobility to movement. Interestingly, a marked divergence emerged following a switch from the familiar to novel VR environments. Many LC axons showed large increases in activity that remained elevated for over a minute, while the previously observed VTA axon ramping-to-reward dynamics disappeared during the same period. In conclusion, these findings highlight distinct roles of VTA and LC catecholaminergic inputs in the dorsal CA1 hippocampal region. These inputs encode unique information, with reward information in VTA inputs and novelty and kinematic information in LC inputs, likely contributing to differential modulation of hippocampal activity during behavior and learning.
Collapse
Affiliation(s)
- Chad Heer
- The Department of Neurobiology, The University of ChicagoChicagoUnited States
| | - Mark Sheffield
- The Department of Neurobiology, The University of ChicagoChicagoUnited States
| |
Collapse
|
8
|
Basso V, Döbrössy MD, Thompson LH, Kirik D, Fuller HR, Gates MA. State of the Art in Sub-Phenotyping Midbrain Dopamine Neurons. BIOLOGY 2024; 13:690. [PMID: 39336117 PMCID: PMC11428604 DOI: 10.3390/biology13090690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
Dopaminergic neurons in the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNpc) comprise around 75% of all dopaminergic neurons in the human brain. While both groups of dopaminergic neurons are in close proximity in the midbrain and partially overlap, development, function, and impairments in these two classes of neurons are highly diverse. The molecular and cellular mechanisms underlying these differences are not yet fully understood, but research over the past decade has highlighted the need to differentiate between these two classes of dopaminergic neurons during their development and in the mature brain. This differentiation is crucial not only for understanding fundamental circuitry formation in the brain but also for developing therapies targeted to specific dopaminergic neuron classes without affecting others. In this review, we summarize the state of the art in our understanding of the differences between the dopaminergic neurons of the VTA and the SNpc, such as anatomy, structure, morphology, output and input, electrophysiology, development, and disorders, and discuss the current technologies and methods available for studying these two classes of dopaminergic neurons, highlighting their advantages, limitations, and the necessary improvements required to achieve more-precise therapeutic interventions.
Collapse
Affiliation(s)
- Valentina Basso
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
| | - Máté D Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional, Neurosurgery, Medical Center, University of Freiburg, 79106 Freiburg im Breisgau, Germany
- Department of Stereotactic and Functional Neurosurgery, Medical Center, University of Freiburg, 79106 Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Lachlan H Thompson
- Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (B.R.A.I.N.S) Unit, Department of Experimental Medical Science, Lund University, BMC D11, 22184 Lund, Sweden
| | - Heidi R Fuller
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Monte A Gates
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
| |
Collapse
|
9
|
Heer CM, Sheffield MEJ. Distinct catecholaminergic pathways projecting to hippocampal CA1 transmit contrasting signals during navigation in familiar and novel environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.29.569214. [PMID: 38076843 PMCID: PMC10705417 DOI: 10.1101/2023.11.29.569214] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Neuromodulatory inputs to the hippocampus play pivotal roles in modulating synaptic plasticity, shaping neuronal activity, and influencing learning and memory. Recently it has been shown that the main sources of catecholamines to the hippocampus, ventral tegmental area (VTA) and locus coeruleus (LC), may have overlapping release of neurotransmitters and effects on the hippocampus. Therefore, to dissect the impacts of both VTA and LC circuits on hippocampal function, a thorough examination of how these pathways might differentially operate during behavior and learning is necessary. We therefore utilized 2-photon microscopy to functionally image the activity of VTA and LC axons within the CA1 region of the dorsal hippocampus in head-fixed male mice navigating linear paths within virtual reality (VR) environments. We found that within familiar environments some VTA axons and the vast majority of LC axons showed a correlation with the animals' running speed. However, as mice approached previously learned rewarded locations, a large majority of VTA axons exhibited a gradual ramping-up of activity, peaking at the reward location. In contrast, LC axons displayed a pre-movement signal predictive of the animal's transition from immobility to movement. Interestingly, a marked divergence emerged following a switch from the familiar to novel VR environments. Many LC axons showed large increases in activity that remained elevated for over a minute, while the previously observed VTA axon ramping-to-reward dynamics disappeared during the same period. In conclusion, these findings highlight distinct roles of VTA and LC catecholaminergic inputs in the dorsal CA1 hippocampal region. These inputs encode unique information, with reward information in VTA inputs and novelty and kinematic information in LC inputs, likely contributing to differential modulation of hippocampal activity during behavior and learning.
Collapse
Affiliation(s)
- Chad M Heer
- The Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Mark E J Sheffield
- The Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
10
|
Sayegh FJP, Mouledous L, Macri C, Pi Macedo J, Lejards C, Rampon C, Verret L, Dahan L. Ventral tegmental area dopamine projections to the hippocampus trigger long-term potentiation and contextual learning. Nat Commun 2024; 15:4100. [PMID: 38773091 PMCID: PMC11109191 DOI: 10.1038/s41467-024-47481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/28/2024] [Indexed: 05/23/2024] Open
Abstract
In most models of neuronal plasticity and memory, dopamine is thought to promote the long-term maintenance of Long-Term Potentiation (LTP) underlying memory processes, but not the initiation of plasticity or new information storage. Here, we used optogenetic manipulation of midbrain dopamine neurons in male DAT::Cre mice, and discovered that stimulating the Schaffer collaterals - the glutamatergic axons connecting CA3 and CA1 regions - of the dorsal hippocampus concomitantly with midbrain dopamine terminals within a 200 millisecond time-window triggers LTP at glutamatergic synapses. Moreover, we showed that the stimulation of this dopaminergic pathway facilitates contextual learning in awake behaving mice, while its inhibition hinders it. Thus, activation of midbrain dopamine can operate as a teaching signal that triggers NeoHebbian LTP and promotes supervised learning.
Collapse
Affiliation(s)
- Fares J P Sayegh
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse, France.
| | - Lionel Mouledous
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse, France
| | - Catherine Macri
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse, France
| | - Juliana Pi Macedo
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse, France
| | - Camille Lejards
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse, France
| | - Laure Verret
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse, France.
| |
Collapse
|
11
|
Spoleti E, La Barbera L, Cauzzi E, De Paolis ML, Saba L, Marino R, Sciamanna G, Di Lazzaro V, Keller F, Nobili A, Krashia P, D'Amelio M. Dopamine neuron degeneration in the Ventral Tegmental Area causes hippocampal hyperexcitability in experimental Alzheimer's Disease. Mol Psychiatry 2024; 29:1265-1280. [PMID: 38228889 PMCID: PMC11189820 DOI: 10.1038/s41380-024-02408-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
Early and progressive dysfunctions of the dopaminergic system from the Ventral Tegmental Area (VTA) have been described in Alzheimer's Disease (AD). During the long pre-symptomatic phase, alterations in the function of Parvalbumin interneurons (PV-INs) are also observed, resulting in cortical hyperexcitability represented by subclinical epilepsy and aberrant gamma-oscillations. However, it is unknown whether the dopaminergic deficits contribute to brain hyperexcitability in AD. Here, using the Tg2576 mouse model of AD, we prove that reduced hippocampal dopaminergic innervation, due to VTA dopamine neuron degeneration, impairs PV-IN firing and gamma-waves, weakens the inhibition of pyramidal neurons and induces hippocampal hyperexcitability via lower D2-receptor-mediated activation of the CREB-pathway. These alterations coincide with reduced PV-IN numbers and Perineuronal Net density. Importantly, L-DOPA and the selective D2-receptor agonist quinpirole rescue p-CREB levels and improve the PV-IN-mediated inhibition, thus reducing hyperexcitability. Moreover, similarly to quinpirole, sumanirole - another D2-receptor agonist and a known anticonvulsant - not only increases p-CREB levels in PV-INs but also restores gamma-oscillations in Tg2576 mice. Conversely, blocking the dopaminergic transmission with sulpiride (a D2-like receptor antagonist) in WT mice reduces p-CREB levels in PV-INs, mimicking what occurs in Tg2576. Overall, these findings support the hypothesis that the VTA dopaminergic system integrity plays a key role in hippocampal PV-IN function and survival, disclosing a relevant contribution of the reduced dopaminergic tone to aberrant gamma-waves, hippocampal hyperexcitability and epileptiform activity in early AD.
Collapse
Affiliation(s)
- Elena Spoleti
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
| | - Livia La Barbera
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | - Emma Cauzzi
- Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Maria Luisa De Paolis
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
| | - Luana Saba
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | - Ramona Marino
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
| | - Giuseppe Sciamanna
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
- UniCamillus International University of Health Sciences, 00131, Rome, Italy
| | - Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
- Operative Research Unit of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128, Rome, Italy
| | - Flavio Keller
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
| | - Annalisa Nobili
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | - Paraskevi Krashia
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
| | - Marcello D'Amelio
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy.
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.
| |
Collapse
|
12
|
Elmers J, Colzato LS, Ziemssen F, Ziemssen T, Beste C. Optical coherence tomography as a potential surrogate marker of dopaminergic modulation across the life span. Ageing Res Rev 2024; 96:102280. [PMID: 38518921 DOI: 10.1016/j.arr.2024.102280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/02/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
The retina has been considered a "window to the brain" and shares similar innervation by the dopaminergic system with the cortex in terms of an unequal distribution of D1 and D2 receptors. Here, we provide a comprehensive overview that Optical Coherence Tomography (OCT), a non-invasive imaging technique, which provides an "in vivo" representation of the retina, shows promise to be used as a surrogate marker of dopaminergic neuromodulation in cognition. Overall, most evidence supports reduced retinal thickness in individuals with dopaminergic dysregulation (e.g., patients with Parkinson's Disease, non-demented older adults) and with poor cognitive functioning. By using the theoretical framework of metacontrol, we derive hypotheses that retinal thinning associated to decreased dopamine (DA) levels affecting D1 families, might lead to a decrease in the signal-to-noise ratio (SNR) affecting cognitive persistence (depending on D1-modulated DA activity) but not cognitive flexibility (depending on D2-modulated DA activity). We argue that the use of OCT parameters might not only be an insightful for cognitive neuroscience research, but also a potentially effective tool for individualized medicine with a focus on cognition. As our society progressively ages in the forthcoming years and decades, the preservation of cognitive abilities and promoting healthy aging will hold of crucial significance. OCT has the potential to function as a swift, non-invasive, and economical method for promptly recognizing individuals with a heightened vulnerability to cognitive deterioration throughout all stages of life.
Collapse
Affiliation(s)
- Julia Elmers
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Lorenza S Colzato
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| | - Focke Ziemssen
- Ophthalmological Clinic, University Clinic Leipzig, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
13
|
Sagheddu C, Stojanovic T, Kouhnavardi S, Savchenko A, Hussein AM, Pistis M, Monje FJ, Plasenzotti R, Aufy M, Studenik CR, Lubec J, Lubec G. Cognitive performance in aged rats is associated with differences in distinctive neuronal populations in the ventral tegmental area and altered synaptic plasticity in the hippocampus. Front Aging Neurosci 2024; 16:1357347. [PMID: 38469164 PMCID: PMC10926450 DOI: 10.3389/fnagi.2024.1357347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Deterioration of cognitive functions is commonly associated with aging, although there is wide variation in the onset and manifestation. Albeit heterogeneity in age-related cognitive decline has been studied at the cellular and molecular level, there is poor evidence for electrophysiological correlates. The aim of the current study was to address the electrophysiological basis of heterogeneity of cognitive functions in cognitively Inferior and Superior old (19-20 months) rats in the ventral tegmental area (VTA) and the hippocampus, having Young (12 weeks) rats as a control. The midbrain VTA operates as a hub amidst affective and cognitive facets, processing sensory inputs related to motivated behaviours and hippocampal memory. Increasing evidence shows direct dopaminergic and non-dopaminergic input from the VTA to the hippocampus. Methods Aged Superior and Inferior male rats were selected from a cohort of 88 animals based on their performance in a spatial learning and memory task. Using in vivo single-cell recording in the VTA, we examined the electrical activity of different neuronal populations (putative dopaminergic, glutamatergic and GABAergic neurons). In the same animals, basal synaptic transmission and synaptic plasticity were examined in hippocampal slices. Results Electrophysiological recordings from the VTA and hippocampus showed alterations associated with aging per se, together with differences specifically linked to the cognitive status of aged animals. In particular, the bursting activity of dopamine neurons was lower, while the firing frequency of glutamatergic neurons was higher in VTA of Inferior old rats. The response to high-frequency stimulation in hippocampal slices also discriminated between Superior and Inferior aged animals. Discussion This study provides new insight into electrophysiological information underlying compromised cerebral ageing. Further understanding of brain senescence, possibly related to neurocognitive decline, will help develop new strategies towards the preservation of a high quality of life.
Collapse
Affiliation(s)
- Claudia Sagheddu
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Tamara Stojanovic
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| | - Shima Kouhnavardi
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Artem Savchenko
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
- Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - Ahmed M. Hussein
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Department of Zoology, Faculty of Science, Al-Azhar University, Asyut, Egypt
| | - Marco Pistis
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
- Section of Cagliari, Neuroscience Institute National Research Council of Italy (CNR), Cagliari, Italy
- Unit of Clinical Pharmacology, University Hospital, Cagliari, Italy
| | - Francisco J. Monje
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Roberto Plasenzotti
- Division of Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Mohammed Aufy
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Christian R. Studenik
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Jana Lubec
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| | - Gert Lubec
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
14
|
Reinshagen A. Grid cells: the missing link in understanding Parkinson's disease? Front Neurosci 2024; 18:1276714. [PMID: 38389787 PMCID: PMC10881698 DOI: 10.3389/fnins.2024.1276714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
The mechanisms underlying Parkinson's disease (PD) are complex and not fully understood, and the box-and-arrow model among other current models present significant challenges. This paper explores the potential role of the allocentric brain and especially its grid cells in several PD motor symptoms, including bradykinesia, kinesia paradoxa, freezing of gait, the bottleneck phenomenon, and their dependency on cueing. It is argued that central hubs, like the locus coeruleus and the pedunculopontine nucleus, often narrowly interpreted in the context of PD, play an equally important role in governing the allocentric brain as the basal ganglia. Consequently, the motor and secondary motor (e.g., spatially related) symptoms of PD linked with dopamine depletion may be more closely tied to erroneous computation by grid cells than to the basal ganglia alone. Because grid cells and their associated central hubs introduce both spatial and temporal information to the brain influencing velocity perception they may cause bradykinesia or hyperkinesia as well. In summary, PD motor symptoms may primarily be an allocentric disturbance resulting from virtual faulty computation by grid cells revealed by dopamine depletion in PD.
Collapse
|
15
|
Sosa M, Plitt MH, Giocomo LM. Hippocampal sequences span experience relative to rewards. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.27.573490. [PMID: 38234842 PMCID: PMC10793396 DOI: 10.1101/2023.12.27.573490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Hippocampal place cells fire in sequences that span spatial environments and non-spatial modalities, suggesting that hippocampal activity can anchor to the most behaviorally salient aspects of experience. As reward is a highly salient event, we hypothesized that sequences of hippocampal activity can anchor to rewards. To test this, we performed two-photon imaging of hippocampal CA1 neurons as mice navigated virtual environments with changing hidden reward locations. When the reward moved, the firing fields of a subpopulation of cells moved to the same relative position with respect to reward, constructing a sequence of reward-relative cells that spanned the entire task structure. The density of these reward-relative sequences increased with task experience as additional neurons were recruited to the reward-relative population. Conversely, a largely separate subpopulation maintained a spatially-based place code. These findings thus reveal separate hippocampal ensembles can flexibly encode multiple behaviorally salient reference frames, reflecting the structure of the experience.
Collapse
Affiliation(s)
- Marielena Sosa
- Department of Neurobiology, Stanford University School of Medicine; Stanford, CA, USA
| | - Mark H. Plitt
- Department of Neurobiology, Stanford University School of Medicine; Stanford, CA, USA
- Present address: Department of Molecular and Cell Biology, University of California Berkeley; Berkeley, CA, USA
| | - Lisa M. Giocomo
- Department of Neurobiology, Stanford University School of Medicine; Stanford, CA, USA
| |
Collapse
|
16
|
Ahmadi M, Rouhi N, Fathollahi Y, Shojaei A, Rezaei M, Rostami S, Saab BJ, Mirnajafi-Zadeh J. A Dual Effect of Dopamine on Hippocampal LTP and Cognitive Functions in Control and Kindled Mice. J Neurosci 2024; 44:e0926212023. [PMID: 38124004 PMCID: PMC10860576 DOI: 10.1523/jneurosci.0926-21.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/02/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The impact of dopamine on synaptic plasticity and cognitive function following seizure is not well understood. Here, using optogenetics in the freely behaving animal, we examined exploratory behavior and short-term memory in control and kindled male mice during tonic stimulation of dopaminergic neurons within the ventral tegmental area (VTA). Furthermore, using field potential recording, we compared the effect of dopamine on synaptic plasticity in stratum radiatum and stratum oriens layers of both ventral and dorsal hippocampal CA1 regions, and again in both control and kindled male mice. Our results demonstrate that tonic stimulation of VTA dopaminergic neurons enhances novelty-driven exploration and short-term spatial memory in kindled mice, essentially rescuing the seizure-induced cognitive impairment. In addition, we found that dopamine has a dual effect on LTP in control versus kindled mice, such that application of dopamine prevented LTP induction in slices from control mice, but rescued LTP in slices taken from the kindled animal. Taken together, our results highlight the potential for dopaminergic modulation in improving synaptic plasticity and cognitive function following seizure.
Collapse
Affiliation(s)
- Mahboubeh Ahmadi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Nahid Rouhi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Mahmoud Rezaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Sareh Rostami
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Bechara J Saab
- Preclinical Laboratory for Translational Research into Affective Disorders, DPPP, Psychiatric Hospital, University of Zurich, Zurich CH-8008, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH, Zurich 8057, Switzerland
- Mobio Interactive Pte. Ltd., 389637, Singapore, Republic of Singapore
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
- Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran 1411713116, Iran
| |
Collapse
|
17
|
Nikolic B, Trnski-Levak S, Kosic K, Drlje M, Banovac I, Hranilovic D, Jovanov-Milosevic N. Lasting mesothalamic dopamine imbalance and altered exploratory behavior in rats after a mild neonatal hypoxic event. Front Integr Neurosci 2024; 17:1304338. [PMID: 38304737 PMCID: PMC10832065 DOI: 10.3389/fnint.2023.1304338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024] Open
Abstract
Introduction Adversities during the perinatal period can decrease oxygen supply to the fetal brain, leading to various hypoxic brain injuries, which can compromise the regularity of brain development in different aspects. To examine the catecholaminergic contribution to the link between an early-life hypoxic insult and adolescent behavioral aberrations, we used a previously established rat model of perinatal hypoxia but altered the hypobaric to normobaric conditions. Methods Exploratory and social behavior and learning abilities were tested in 70 rats of both sexes at adolescent age. Inherent vertical locomotion, sensory-motor functions and spatial learning abilities were explored in a subset of animals to clarify the background of altered exploratory behavior. Finally, the concentrations of dopamine (DA) and noradrenaline in midbrain and pons, and the relative expression of genes for DA receptors D1 and D2, and their down-stream targets (DA- and cAMP-regulated phosphoprotein, Mr 32 kDa, the regulatory subunit of protein kinase A, and inhibitor-5 of protein phosphatase 1) in the hippocampus and thalamus were investigated in 31 rats. Results A lesser extent of alterations in exploratory and cognitive aspects of behavior in the present study suggests that normobaric conditions mitigate the hypoxic injury compared to the one obtained under hypobaric conditions. Increased exploratory rearing was the most prominent consequence, with impaired spatial learning in the background. In affected rats, increased midbrain/pons DA content, as well as mRNA levels for DA receptors and their down-stream elements in the thalamus, but not the hippocampus, were found. Conclusion We can conclude that a mild hypoxic event induced long-lasting disbalances in mesothalamic DA signaling, contributing to the observed behavioral alterations. The thalamus was thereby indicated as another structure, besides the well-established striatum, involved in mediating hypoxic effects on behavior through DA signaling.
Collapse
Affiliation(s)
- Barbara Nikolic
- Department of Biology, University of Zagreb Faculty of Science, Zagreb, Croatia
| | - Sara Trnski-Levak
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Kristina Kosic
- Department of Biology, University of Zagreb Faculty of Science, Zagreb, Croatia
| | - Matea Drlje
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivan Banovac
- Department of Biology, University of Zagreb School of Medicine, Zagreb, Croatia
- Department for Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Dubravka Hranilovic
- Department of Biology, University of Zagreb Faculty of Science, Zagreb, Croatia
| | - Natasa Jovanov-Milosevic
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Biology, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
18
|
Bénac N, Ezequiel Saraceno G, Butler C, Kuga N, Nishimura Y, Yokoi T, Su P, Sasaki T, Petit-Pedrol M, Galland R, Studer V, Liu F, Ikegaya Y, Sibarita JB, Groc L. Non-canonical interplay between glutamatergic NMDA and dopamine receptors shapes synaptogenesis. Nat Commun 2024; 15:27. [PMID: 38167277 PMCID: PMC10762086 DOI: 10.1038/s41467-023-44301-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Direct interactions between receptors at the neuronal surface have long been proposed to tune signaling cascades and neuronal communication in health and disease. Yet, the lack of direct investigation methods to measure, in live neurons, the interaction between different membrane receptors at the single molecule level has raised unanswered questions on the biophysical properties and biological roles of such receptor interactome. Using a multidimensional spectral single molecule-localization microscopy (MS-SMLM) approach, we monitored the interaction between two membrane receptors, i.e. glutamatergic NMDA (NMDAR) and G protein-coupled dopamine D1 (D1R) receptors. The transient interaction was randomly observed along the dendritic tree of hippocampal neurons. It was higher early in development, promoting the formation of NMDAR-D1R complexes in an mGluR5- and CK1-dependent manner, favoring NMDAR clusters and synaptogenesis in a dopamine receptor signaling-independent manner. Preventing the interaction in the neonate, and not adult, brain alters in vivo spontaneous neuronal network activity pattern in male mice. Thus, a weak and transient interaction between NMDAR and D1R plays a structural and functional role in the developing brain.
Collapse
Affiliation(s)
- Nathan Bénac
- Univ. Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
| | | | - Corey Butler
- Univ. Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Nahoko Kuga
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-aoba, Sendai, Miyagi, 980-8578, Japan
| | - Yuya Nishimura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Taiki Yokoi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-aoba, Sendai, Miyagi, 980-8578, Japan
| | - Ping Su
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-aoba, Sendai, Miyagi, 980-8578, Japan
| | | | - Rémi Galland
- Univ. Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Vincent Studer
- Univ. Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Fang Liu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
- Center for Information and Neural Networks, Suita City, Osaka, 565-0871, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan
| | | | - Laurent Groc
- Univ. Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France.
| |
Collapse
|
19
|
Plitt MH, Kaganovsky K, Südhof TC, Giocomo LM. Hippocampal place code plasticity in CA1 requires postsynaptic membrane fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567978. [PMID: 38045362 PMCID: PMC10690209 DOI: 10.1101/2023.11.20.567978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Rapid delivery of glutamate receptors to the postsynaptic membrane via vesicle fusion is a central component of synaptic plasticity. However, it is unknown how this process supports specific neural computations during behavior. To bridge this gap, we combined conditional genetic deletion of a component of the postsynaptic membrane fusion machinery, Syntaxin3 (Stx3), in hippocampal CA1 neurons of mice with population in vivo calcium imaging. This approach revealed that Stx3 is necessary for forming the neural dynamics that support novelty processing, spatial reward memory and offline memory consolidation. In contrast, CA1 Stx3 was dispensable for maintaining aspects of the neural code that exist presynaptic to CA1 such as representations of context and space. Thus, manipulating postsynaptic membrane fusion identified computations that specifically require synaptic restructuring via membrane trafficking in CA1 and distinguished them from neural representation that could be inherited from upstream brain regions or learned through other mechanisms.
Collapse
Affiliation(s)
- Mark H. Plitt
- Department of Neurobiology, Stanford University School of Medicine; Stanford, CA, USA
- These authors contributed equally to this work
- Present address: Department of Molecular and Cell Biology, University of California Berkeley; Berkeley, CA, USA
| | - Konstantin Kaganovsky
- Department of Neurosurgery, Stanford University School of Medicine; Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA, USA
- These authors contributed equally to this work
- Present address: Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences and Medicine, Stanford University School of Medicine; Stanford, CA, USA
| | - Thomas C. Südhof
- Department of Neurosurgery, Stanford University School of Medicine; Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine; Stanford, CA, USA
| | - Lisa M. Giocomo
- Department of Neurobiology, Stanford University School of Medicine; Stanford, CA, USA
| |
Collapse
|
20
|
Pupillo F, Bruckner R. Signed and unsigned effects of prediction error on memory: Is it a matter of choice? Neurosci Biobehav Rev 2023; 153:105371. [PMID: 37633626 DOI: 10.1016/j.neubiorev.2023.105371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Adaptive decision-making is governed by at least two types of memory processes. On the one hand, learned predictions through integrating multiple experiences, and on the other hand, one-shot episodic memories. These two processes interact, and predictions - particularly prediction errors - influence how episodic memories are encoded. However, studies using computational models disagree on the exact shape of this relationship, with some findings showing an effect of signed prediction errors and others showing an effect of unsigned prediction errors on episodic memory. We argue that the choice-confirmation bias, which reflects stronger learning from choice-confirming compared to disconfirming outcomes, could explain these seemingly diverging results. Our perspective implies that the influence of prediction errors on episodic encoding critically depends on whether people can freely choose between options (i.e., instrumental learning tasks) or not (Pavlovian learning tasks). The choice-confirmation bias on memory encoding might have evolved to prioritize memory representations that optimize reward-guided decision-making. We conclude by discussing open issues and implications for future studies.
Collapse
Affiliation(s)
- Francesco Pupillo
- Department of Psychology, Goethe-Universität Frankfurt, Germany; Tilburg School of Social and Behavioral Sciences, Tilburg University, Netherlands.
| | - Rasmus Bruckner
- Department of Education and Psychology, Freie Universität Berlin, Germany; Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
21
|
Hernández-Frausto M, Bilash OM, Masurkar AV, Basu J. Local and long-range GABAergic circuits in hippocampal area CA1 and their link to Alzheimer's disease. Front Neural Circuits 2023; 17:1223891. [PMID: 37841892 PMCID: PMC10570439 DOI: 10.3389/fncir.2023.1223891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
GABAergic inhibitory neurons are the principal source of inhibition in the brain. Traditionally, their role in maintaining the balance of excitation-inhibition has been emphasized. Beyond homeostatic functions, recent circuit mapping and functional manipulation studies have revealed a wide range of specific roles that GABAergic circuits play in dynamically tilting excitation-inhibition coupling across spatio-temporal scales. These span from gating of compartment- and input-specific signaling, gain modulation, shaping input-output functions and synaptic plasticity, to generating signal-to-noise contrast, defining temporal windows for integration and rate codes, as well as organizing neural assemblies, and coordinating inter-regional synchrony. GABAergic circuits are thus instrumental in controlling single-neuron computations and behaviorally-linked network activity. The activity dependent modulation of sensory and mnemonic information processing by GABAergic circuits is pivotal for the formation and maintenance of episodic memories in the hippocampus. Here, we present an overview of the local and long-range GABAergic circuits that modulate the dynamics of excitation-inhibition and disinhibition in the main output area of the hippocampus CA1, which is crucial for episodic memory. Specifically, we link recent findings pertaining to GABAergic neuron molecular markers, electrophysiological properties, and synaptic wiring with their function at the circuit level. Lastly, given that area CA1 is particularly impaired during early stages of Alzheimer's disease, we emphasize how these GABAergic circuits may contribute to and be involved in the pathophysiology.
Collapse
Affiliation(s)
- Melissa Hernández-Frausto
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Olesia M. Bilash
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Arjun V. Masurkar
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Jayeeta Basu
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
| |
Collapse
|
22
|
Nain N, Singh A, Khan S, Kukreti S. G-quadruplex formation at human DAT1 gene promoter: Effect of cytosine methylation. Biochem Biophys Rep 2023; 34:101464. [PMID: 37096205 PMCID: PMC10121379 DOI: 10.1016/j.bbrep.2023.101464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023] Open
Abstract
The dopamine transporter gene (DAT1), a recognized genetic risk factor for attention deficit hyperactivity disorder (ADHD) is principally responsible for the regulation of dopamine synaptic levels and serves as a key target in many psychostimulants drugs. DAT1 gene methylation has been considered an epigenetic marker in ADHD. The identification of G-rich sequence motifs potential to form G-quadruplexes is correlated with functionally important genomic regions. Herein, biophysical and biochemical techniques are employed to investigate the structural polymorphism along with the effect of cytosine methylation on a 26-nt G-rich sequence present in the promoter region of the DAT1 gene. The gel electrophoresis, circular dichroism spectroscopy, and UV-thermal melting data are well correlated and conclude the formation of a parallel (bimolecular), as well as antiparallel (tetramolecular) G-quadruplex in Na+ solution. Interestingly, the existence of uni-, bi-, tri-, and tetramolecular quadruplex structures in K+ solution exhibited only the parallel type G-quadruplex. The results demonstrate that in presence of either cation (Na+ or K+) the cytosine methylation reserved the structural topologies unaltered. However, methylation lowers the thermal stability of G-quadruplexes and the duplex structures, as well. These findings provide insights to understand the regulatory mechanisms underlying the formation of the G-quadruplex structure induced by DNA methylation.
Collapse
Affiliation(s)
- Nishu Nain
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Anju Singh
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi, 110007, India
- Department of Chemistry, Ramjas College, University of Delhi, Delhi, 110007, India
| | - Shoaib Khan
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi, 110007, India
- Corresponding author.
| |
Collapse
|
23
|
Xu J, Wu S, Huo L, Zhang Q, Liu L, Ye Z, Cao J, Ma H, Shang C, Ma C. Trigeminal nerve stimulation restores hippocampal dopamine deficiency to promote cognitive recovery in traumatic brain injury. Prog Neurobiol 2023:102477. [PMID: 37270025 DOI: 10.1016/j.pneurobio.2023.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/20/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023]
Abstract
Cognitive impairment (CI) is a common neurological disease resulting from traumatic brain injury (TBI). Trigeminal nerve stimulation (TNS) is an emerging, non-invasive, and effective neuromodulation therapy especially for patients suffering from brain function disorders. However, the treatment and recovery mechanisms of TNS remain poorly understood. By using combined advanced technologies, we revealed here that the neuroprotective potential of TNS to improve CI caused by TBI. The study results found that 40Hz TNS treatment has the ability to improve CI in TBI mice and communicates with central nervous system via the trigeminal ganglion (TG). Transsynaptic virus experiments revealed that TG is connected to the hippocampus (HPC) through the corticotropin-releasing hormone (CRH) neurons of paraventricular hypothalamic nucleus (PVN) and the dopamine transporter (DAT) neurons of substantia nigra pars compacta/ventral tegmental area (SNc/VTA). Mechanistically, the data showed that TNS can increase the release of dopamine in the HPC by activating the following neural circuit: TG→CRH+ PVN→DAT+ SNc/VTA → HPC. Bulk RNA sequencing confirmed changes in the expression of dopamine-related genes in the HPC. This work preliminarily explains the efficacy and mechanism of TNS and adds to the increasing evidence demonstrating that nerve stimulation is an effective method to treat neurological diseases. DATA AVAILABILITY: The data that support the findings of this study are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Jing Xu
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, China
| | - Shaoling Wu
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, China
| | - Lifang Huo
- Guangzhou Laboratory, Guangzhou, 510005, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Qian Zhang
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, China
| | - Lijiaqi Liu
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, China
| | - Zhimin Ye
- Guangzhou Laboratory, Guangzhou, 510005, China
| | - Jie Cao
- Guangzhou Laboratory, Guangzhou, 510005, China
| | - Haiyun Ma
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, China
| | - Congping Shang
- Guangzhou Laboratory, Guangzhou, 510005, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China; School of Basic Medical Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510005, China.
| | - Chao Ma
- Department of Rehabilitation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510030, China.
| |
Collapse
|
24
|
Pupillo F, Ortiz-Tudela J, Bruckner R, Shing YL. The effect of prediction error on episodic memory encoding is modulated by the outcome of the predictions. NPJ SCIENCE OF LEARNING 2023; 8:18. [PMID: 37248232 DOI: 10.1038/s41539-023-00166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 05/05/2023] [Indexed: 05/31/2023]
Abstract
Expectations can lead to prediction errors of varying degrees depending on the extent to which the information encountered in the environment conforms with prior knowledge. While there is strong evidence on the computationally specific effects of such prediction errors on learning, relatively less evidence is available regarding their effects on episodic memory. Here, we had participants work on a task in which they learned context/object-category associations of different strengths based on the outcomes of their predictions. We then used a reinforcement learning model to derive subject-specific trial-to-trial estimates of prediction error at encoding and link it to subsequent recognition memory. Results showed that model-derived prediction errors at encoding influenced subsequent memory as a function of the outcome of participants' predictions (correct vs. incorrect). When participants correctly predicted the object category, stronger prediction errors (as a consequence of weak expectations) led to enhanced memory. In contrast, when participants incorrectly predicted the object category, stronger prediction errors (as a consequence of strong expectations) led to impaired memory. These results highlight the important moderating role of choice outcome that may be related to interactions between the hippocampal and striatal dopaminergic systems.
Collapse
Affiliation(s)
- Francesco Pupillo
- Department of Psychology, Goethe University Frankfurt, Frankfurt, Germany.
- TS Social and Behavioral Sciences, Tilburg University, Tilburg, Netherlands.
| | | | - Rasmus Bruckner
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany
| | - Yee Lee Shing
- Department of Psychology, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
25
|
Luckey AM, McLeod LS, Huang Y, Mohan A, Vanneste S. Making memories last using the peripheral effect of direct current stimulation. eLife 2023; 12:e75586. [PMID: 37204308 PMCID: PMC10241520 DOI: 10.7554/elife.75586] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/18/2023] [Indexed: 05/20/2023] Open
Abstract
Most memories that are formed are forgotten, while others are retained longer and are subject to memory stabilization. We show that non-invasive transcutaneous electrical stimulation of the greater occipital nerve (NITESGON) using direct current during learning elicited a long-term memory effect. However, it did not trigger an immediate effect on learning. A neurobiological model of long-term memory proposes a mechanism by which memories that are initially unstable can be strengthened through subsequent novel experiences. In a series of studies, we demonstrate NITESGON's capability to boost the retention of memories when applied shortly before, during, or shortly after the time of learning by enhancing memory consolidation via activation and communication in and between the locus coeruleus pathway and hippocampus by plausibly modulating dopaminergic input. These findings may have a significant impact for neurocognitive disorders that inhibit memory consolidation such as Alzheimer's disease.
Collapse
Affiliation(s)
- Alison M Luckey
- Global Brain Health Institute and Institute of Neuroscience, Trinity College DublinDublinIreland
| | - Lauren S McLeod
- School of Medicine, Texas Tech School of MedicineLubbockUnited States
| | - Yuefeng Huang
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Anusha Mohan
- Global Brain Health Institute and Institute of Neuroscience, Trinity College DublinDublinIreland
| | - Sven Vanneste
- Global Brain Health Institute and Institute of Neuroscience, Trinity College DublinDublinIreland
| |
Collapse
|
26
|
Vorobyov V, Deev A, Chaprov K, Ustyugov AA, Lysikova E. Age-Related Modifications of Electroencephalogram Coherence in Mice Models of Alzheimer's Disease and Amyotrophic Lateral Sclerosis. Biomedicines 2023; 11:biomedicines11041151. [PMID: 37189768 DOI: 10.3390/biomedicines11041151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 05/17/2023] Open
Abstract
Evident similarities in pathological features in aging and Alzheimer's disease (AD) raise the question of a role for natural age-related adaptive mechanisms in the prevention/elimination of disturbances in interrelations between different brain areas. In our previous electroencephalogram (EEG) studies on 5xFAD- and FUS-transgenic mice, as models of AD and amyotrophic lateral sclerosis (ALS), this suggestion was indirectly confirmed. In the current study, age-related changes in direct EEG synchrony/coherence between the brain structures were evaluated. METHODS In 5xFAD mice of 6-, 9-, 12-, and 18-month ages and their wild-type (WT5xFAD) littermates, we analyzed baseline EEG coherence between the cortex, hippocampus/putamen, ventral tegmental area, and substantia nigra. Additionally, EEG coherence between the cortex and putamen was analyzed in 2- and 5-month-old FUS mice. RESULTS In the 5xFAD mice, suppressed levels of inter-structural coherence vs. those in WT5xFAD littermates were observed at ages of 6, 9, and 12 months. In 18-month-old 5xFAD mice, only the hippocampus ventral tegmental area coherence was significantly reduced. In 2-month-old FUS vs. WTFUS mice, the cortex-putamen coherence suppression, dominated in the right hemisphere, was observed. In 5-month-old mice, EEG coherence was maximal in both groups. CONCLUSION Neurodegenerative pathologies are accompanied by the significant attenuation of intracerebral EEG coherence. Our data are supportive for the involvement of age-related adaptive mechanisms in intracerebral disturbances produced by neurodegeneration.
Collapse
Affiliation(s)
- Vasily Vorobyov
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Alexander Deev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Kirill Chaprov
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia
- Center of Pre-Clinical and Clinical Studies, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Aleksey A Ustyugov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Ekaterina Lysikova
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| |
Collapse
|
27
|
Li C, Saliba NB, Martin H, Losurdo NA, Kolahdouzan K, Siddiqui R, Medeiros D, Li W. Purkinje cell dopaminergic inputs to astrocytes regulate cerebellar-dependent behavior. Nat Commun 2023; 14:1613. [PMID: 36959176 PMCID: PMC10036610 DOI: 10.1038/s41467-023-37319-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/13/2023] [Indexed: 03/25/2023] Open
Abstract
Dopamine has a significant role in motor and cognitive function. The dopaminergic pathways originating from the midbrain have received the most attention; however, the relevance of the cerebellar dopaminergic system is largely undiscovered. Here, we show that the major cerebellar astrocyte type Bergmann glial cells express D1 receptors. Dopamine can be synthesized in Purkinje cells by cytochrome P450 and released in an activity-dependent fashion. We demonstrate that activation of D1 receptors induces membrane depolarization and Ca2+ release from the internal store. These astrocytic activities in turn modify Purkinje cell output by altering its excitatory and inhibitory synaptic input. Lastly, we show that conditional knockout of D1 receptors in Bergmann glial cells results in decreased locomotor activity and impaired social activity. These results contribute to the understanding of the molecular, cellular, and circuit mechanisms underlying dopamine function in the cerebellum, revealing a critical role for the cerebellar dopaminergic system in motor and social behavior.
Collapse
Affiliation(s)
- Chang Li
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Natalie B Saliba
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hannah Martin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Nicole A Losurdo
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Neuroscience Program, The University of Utah, Salt Lake City, UT, USA
| | - Kian Kolahdouzan
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Riyan Siddiqui
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Destynie Medeiros
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wei Li
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
28
|
Shaikh A, Ahmad F, Teoh SL, Kumar J, Yahaya MF. Honey and Alzheimer's Disease-Current Understanding and Future Prospects. Antioxidants (Basel) 2023; 12:427. [PMID: 36829985 PMCID: PMC9952506 DOI: 10.3390/antiox12020427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Alzheimer's disease (AD), a leading cause of dementia, has been a global concern. AD is associated with the involvement of the central nervous system that causes the characteristic impaired memory, cognitive deficits, and behavioral abnormalities. These abnormalities caused by AD is known to be attributed by extracellular aggregates of amyloid beta plaques and intracellular neurofibrillary tangles. Additionally, genetic factors such as abnormality in the expression of APOE, APP, BACE1, PSEN-1, and PSEN-2 play a role in the disease. As the current treatment aims to treat the symptoms and to slow the disease progression, there has been a continuous search for new nutraceutical agent or medicine to help prevent and cure AD pathology. In this quest, honey has emerged as a powerful nootropic agent. Numerous studies have demonstrated that the high flavonoids and phenolic acids content in honey exerts its antioxidant, anti-inflammatory, and neuroprotective properties. This review summarizes the effect of main flavonoid compounds found in honey on the physiological functioning of the central nervous system, and the effect of honey intake on memory and cognition in various animal model. This review provides a new insight on the potential of honey to prevent AD pathology, as well as to ameliorate the damage in the developed AD.
Collapse
Affiliation(s)
- Ammara Shaikh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
29
|
Tsetsenis T, Broussard JI, Dani JA. Dopaminergic regulation of hippocampal plasticity, learning, and memory. Front Behav Neurosci 2023; 16:1092420. [PMID: 36778837 PMCID: PMC9911454 DOI: 10.3389/fnbeh.2022.1092420] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/30/2022] [Indexed: 01/28/2023] Open
Abstract
The hippocampus is responsible for encoding behavioral episodes into short-term and long-term memory. The circuits that mediate these processes are subject to neuromodulation, which involves regulation of synaptic plasticity and local neuronal excitability. In this review, we present evidence to demonstrate the influence of dopaminergic neuromodulation on hippocampus-dependent memory, and we address the controversy surrounding the source of dopamine innervation. First, we summarize historical and recent retrograde and anterograde anatomical tracing studies of direct dopaminergic projections from the ventral tegmental area and discuss dopamine release from the adrenergic locus coeruleus. Then, we present evidence of dopaminergic modulation of synaptic plasticity in the hippocampus. Plasticity mechanisms are examined in brain slices and in recordings from in vivo neuronal populations in freely moving rodents. Finally, we review pharmacological, genetic, and circuitry research that demonstrates the importance of dopamine release for learning and memory tasks while dissociating anatomically distinct populations of direct dopaminergic inputs.
Collapse
Affiliation(s)
- Theodoros Tsetsenis
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,*Correspondence: Theodoros Tsetsenis John I. Broussard John A. Dani
| | - John I. Broussard
- Department of Neurobiology and Anatomy, UT Health Houston McGovern Medical School, Houston, TX, United States,*Correspondence: Theodoros Tsetsenis John I. Broussard John A. Dani
| | - John A. Dani
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,*Correspondence: Theodoros Tsetsenis John I. Broussard John A. Dani
| |
Collapse
|
30
|
La Barbera L, Nobili A, Cauzzi E, Paoletti I, Federici M, Saba L, Giacomet C, Marino R, Krashia P, Melone M, Keller F, Mercuri NB, Viscomi MT, Conti F, D’Amelio M. Upregulation of Ca 2+-binding proteins contributes to VTA dopamine neuron survival in the early phases of Alzheimer's disease in Tg2576 mice. Mol Neurodegener 2022; 17:76. [PMID: 36434727 PMCID: PMC9700939 DOI: 10.1186/s13024-022-00580-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Recent clinical and experimental studies have highlighted the involvement of Ventral Tegmental Area (VTA) dopamine (DA) neurons for the early pathogenesis of Alzheimer's Disease (AD). We have previously described a progressive and selective degeneration of these neurons in the Tg2576 mouse model of AD, long before amyloid-beta plaque formation. The degenerative process in DA neurons is associated with an autophagy flux impairment, whose rescue can prevent neuronal loss. Impairments in autophagy can be the basis for accumulation of damaged mitochondria, leading to disturbance in calcium (Ca2+) homeostasis, and to functional and structural deterioration of DA neurons. METHODS In Tg2576 mice, we performed amperometric recordings of DA levels and analysis of dopaminergic fibers in the Nucleus Accumbens - a major component of the ventral striatum precociously affected in AD patients - together with retrograde tracing, to identify the most vulnerable DA neuron subpopulations in the VTA. Then, we focused on these neurons to analyze mitochondrial integrity and Apoptosis-inducing factor (AIF) localization by electron and confocal microscopy, respectively. Stereological cell count was also used to evaluate degeneration of DA neuron subpopulations containing the Ca2+-binding proteins Calbindin-D28K and Calretinin. The expression levels for these proteins were analyzed by western blot and confocal microscopy. Lastly, using electrophysiology and microfluorometry we analyzed VTA DA neuron intrinsic properties and cytosolic free Ca2+ levels. RESULTS We found a progressive degeneration of mesolimbic DA neurons projecting to the ventral striatum, located in the paranigral nucleus and parabrachial pigmented subnucleus of the VTA. At the onset of degeneration (3 months of age), the vulnerable DA neurons in the Tg2576 accumulate damaged mitochondria, while AIF translocates from the mitochondria to the nucleus. Although we describe an age-dependent loss of the DA neurons expressing Calbindin-D28K or Calretinin, we observed that the remaining cells upregulate the levels of Ca2+-binding proteins, and the free cytosolic levels of Ca2+ in these neurons are significantly decreased. Coherently, TUNEL-stained Tg2576 DA neurons express lower levels of Calbindin-D28K when compared with non-apoptotic cells. CONCLUSION Overall, our results suggest that the overexpression of Ca2+-binding proteins in VTA DA neurons might be an attempt of cells to survive by increasing their ability to buffer free Ca2+. Exploring strategies to overexpress Ca2+-binding proteins could be fundamental to reduce neuronal suffering and improve cognitive and non-cognitive functions in AD.
Collapse
Affiliation(s)
- Livia La Barbera
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy ,grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Annalisa Nobili
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy ,grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Emma Cauzzi
- grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy ,grid.6530.00000 0001 2300 0941Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ilaria Paoletti
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Mauro Federici
- grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Luana Saba
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy ,grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Cecilia Giacomet
- grid.6530.00000 0001 2300 0941Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ramona Marino
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Paraskevi Krashia
- grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy ,grid.9657.d0000 0004 1757 5329Department of Sciences and Technologies for Humans and Environment, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Marcello Melone
- grid.7010.60000 0001 1017 3210Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche (UNIVPM), 60020 Ancona, Italy ,Center for Neurobiology of Aging, IRCCS Istituto Nazionale Ricovero e Cura Anziani (INRCA), 60020 Ancona, Italy
| | - Flavio Keller
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Nicola Biagio Mercuri
- grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy ,grid.6530.00000 0001 2300 0941Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Teresa Viscomi
- grid.8142.f0000 0001 0941 3192Department of Life Science and Public Health; Section of Histology and Embryology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy ,grid.414603.4Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy
| | - Fiorenzo Conti
- grid.7010.60000 0001 1017 3210Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche (UNIVPM), 60020 Ancona, Italy ,Center for Neurobiology of Aging, IRCCS Istituto Nazionale Ricovero e Cura Anziani (INRCA), 60020 Ancona, Italy ,grid.7010.60000 0001 1017 3210Foundation for Molecular Medicine, Università Politecnica delle Marche, 60020 Ancona, Italy
| | - Marcello D’Amelio
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy ,grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| |
Collapse
|
31
|
Sun Y, Giocomo LM. Neural circuit dynamics of drug-context associative learning in the mouse hippocampus. Nat Commun 2022; 13:6721. [PMID: 36344498 PMCID: PMC9640587 DOI: 10.1038/s41467-022-34114-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
The environmental context associated with previous drug consumption is a potent trigger for drug relapse. However, the mechanism by which neural representations of context are modified to incorporate information associated with drugs of abuse remains unknown. Using longitudinal calcium imaging in freely behaving mice, we find that unlike the associative learning of natural reward, drug-context associations for psychostimulants and opioids are encoded in a specific subset of hippocampal neurons. After drug conditioning, these neurons weakened their spatial coding for the non-drug paired context, resulting in an orthogonal representation for the drug versus non-drug context that was predictive of drug-seeking behavior. Furthermore, these neurons were selected based on drug-spatial experience and were exclusively tuned to animals' allocentric position. Together, this work reveals how drugs of abuse alter the hippocampal circuit to encode drug-context associations and points to the possibility of targeting drug-associated memory in the hippocampus.
Collapse
Affiliation(s)
- Yanjun Sun
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Lisa M Giocomo
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
32
|
Midbrain dopamine neurons signal phasic and ramping reward prediction error during goal-directed navigation. Cell Rep 2022; 41:111470. [PMID: 36223748 PMCID: PMC9631116 DOI: 10.1016/j.celrep.2022.111470] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 08/17/2022] [Accepted: 09/19/2022] [Indexed: 01/06/2023] Open
Abstract
Goal-directed navigation requires learning to accurately estimate location and select optimal actions in each location. Midbrain dopamine neurons are involved in reward value learning and have been linked to reward location learning. They are therefore ideally placed to provide teaching signals for goal-directed navigation. By imaging dopamine neural activity as mice learned to actively navigate a closed-loop virtual reality corridor to obtain reward, we observe phasic and pre-reward ramping dopamine activity, which are modulated by learning stage and task engagement. A Q-learning model incorporating position inference recapitulates our results, displaying prediction errors resembling phasic and ramping dopamine neural activity. The model predicts that ramping is followed by improved task performance, which we confirm in our experimental data, indicating that the dopamine ramp may have a teaching effect. Our results suggest that midbrain dopamine neurons encode phasic and ramping reward prediction error signals to improve goal-directed navigation.
Collapse
|
33
|
Munzuroğlu M, Danışman B, Akçay G, Yelli İ, Aslan M, Derin N. Effects Of Biotin Deficiency On Short Term Memory: The Role Of Glutamate, Glutamic Acid, Dopamine And Protein Kinase A. Brain Res 2022; 1792:148031. [PMID: 35901964 DOI: 10.1016/j.brainres.2022.148031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
Insufficient dietary biotin intake, biotinidase deficiency, drug-biotin interactions can cause biotin deficiency which may result in central nervous system dysfunctions. We hypothesized that biotin deficiency could disrupt learning and memory functions by altering glutamate, glutamine, dopamine levels and protein kinase A (PKA) activity in the hippocampus. Sixteen female and 4 male Wistar rats were mated and females were separated into 4 groups. Three pups were selected from each mother and a total of 48 pups were divided into the following experimental groups. NN group, normal diet in the prenatal and postnatal period. NB group, normal diet in the prenatal and a biotin-deficient diet in the postnatal period. BN group: biotin-deficient diet in the prenatal and a normal diet in the postnatal period, BB group: biotin-deficient diet in both the prenatal and postnatal period. Open Field, Y-Maze, Object Location, and Novel Object Recognition Tests were performed in all groups and rats were sacrificed. Glutamine, glutamate, dopamine levels and PKA activity were analyzed in the hippocampus. In the open field test, distance and velocity values of NB, BN and BB groups were decreased with respect to the NN group. Learning and memory functions of NB, BN and BB groups were found to be impaired in behavioral tests. Dopamine levels and PKA activity were also decreased in all rat pups fed with a biotin deficient diet. In conclusion, we demonstrated that biotin deficiency deteriorates short-term memory and locomotor activity. This impairment may relate to decreased dopamine levels and PKA activity in the hippocampus.
Collapse
Affiliation(s)
- Mustafa Munzuroğlu
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya 07070,Turkey
| | - Betül Danışman
- Department of Biophysics, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey
| | - Güven Akçay
- Department of Biophysics, Faculty of Medicine, Hitit University, Çorum 19040, Turkey
| | - İhsan Yelli
- Faculty of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Mutay Aslan
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Narin Derin
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya 07070,Turkey.
| |
Collapse
|
34
|
Segat HJ, Martini F, Roversi K, Rosa SG, Muller SG, Rossato DR, Nogueira CW, Burger ME. Impact of two different types of exercise training on AMPH addiction: Role of hippocampal neurotrophins. Physiol Behav 2022; 251:113804. [PMID: 35398334 DOI: 10.1016/j.physbeh.2022.113804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Amphetamine (AMPH) abuse results in neurobehavioral alterations related to the reward circuit. The hippocampus plays a role in cognition, reward, and drug addiction. There are no pharmacological approaches to prevent AMPH relapse. Physical exercise has been studied as a non-pharmacological promising influence to attenuate reward symptoms related to addictive drugs. OBJECTIVE This study aimed to compare the effects of non-weight-loaded and weight-loaded physical exercise on behavioral (relapse, memory and anxiety) and hippocampal molecular parameters associated with AMPH addiction in Wistar rats. METHODS Male rats were subjected to the AMPH-Conditioned Place Preference (CPP) paradigm. After 8-conditioning days, they were subjected to swimming physical exercise protocol (without or with weight-load). Behavioral evaluations were performed to assess the influence of both exercise protocols in addiction parameters, including relapse after AMPH reconditioning, working memory, locomotor activity, and anxiety-like symptoms. Subsequently, protein levels of Brain-Derived Neurotrophic Factor (BDNF) and pro-BDNF ex-vivo assays were carried out in samples of the hippocampus of the animals. RESULTS AMPH relapse and anxiety-like behaviors were reduced only in rats subjected to non-weight-loaded exercise. Hippocampal BDNF and pro-BDNF immunoreactivity were increased in non-weight-loaded exercise rats. Behavioral and molecular analyses were not modified in rats subjected to weight-loaded exercise. CONCLUSION These findings demonstrate that non-weight-loaded exercise was more effective against relapse and anxiety-like behavior induced by AMPH. Non-weight-loaded exercise upregulated the hippocampal immunocontent levels in rats.
Collapse
Affiliation(s)
- Hecson Jesser Segat
- Pós-Graduação em Bioquímica Toxicológica; Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Franciele Martini
- Pós-Graduação em Bioquímica Toxicológica; Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | - Karine Roversi
- Departement de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada
| | - Suzan Gonçalves Rosa
- Pós-Graduação em Bioquímica Toxicológica; Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | - Sabrina Grendene Muller
- Pós-Graduação em Bioquímica Toxicológica; Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | | | - Cristina Wayne Nogueira
- Pós-Graduação em Bioquímica Toxicológica; Universidade Federal de Santa Maria (UFSM), RS, Brazil
| | - Marilise Escobar Burger
- Pós-Graduação em Bioquímica Toxicológica; Universidade Federal de Santa Maria (UFSM), RS, Brazil; Pós-Graduação em Farmacologia; UFSM, RS, Brazil
| |
Collapse
|
35
|
Fuchsberger T, Paulsen O. Modulation of hippocampal plasticity in learning and memory. Curr Opin Neurobiol 2022; 75:102558. [PMID: 35660989 DOI: 10.1016/j.conb.2022.102558] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022]
Abstract
Synaptic plasticity plays a central role in the study of neural mechanisms of learning and memory. Plasticity rules are not invariant over time but are under neuromodulatory control, enabling behavioral states to influence memory formation. Neuromodulation controls synaptic plasticity at network level by directing information flow, at circuit level through changes in excitation/inhibition balance, and at synaptic level through modulation of intracellular signaling cascades. Although most research has focused on modulation of principal neurons, recent progress has uncovered important roles for interneurons in not only routing information, but also setting conditions for synaptic plasticity. Moreover, astrocytes have been shown to both gate and mediate plasticity. These additional mechanisms must be considered for a comprehensive mechanistic understanding of learning and memory.
Collapse
Affiliation(s)
- Tanja Fuchsberger
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
36
|
Cai J, Tong Q. Anatomy and Function of Ventral Tegmental Area Glutamate Neurons. Front Neural Circuits 2022; 16:867053. [PMID: 35669454 PMCID: PMC9164627 DOI: 10.3389/fncir.2022.867053] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022] Open
Abstract
The ventral tegmental area (VTA) is well known for regulating reward consumption, learning, memory, and addiction behaviors through mediating dopamine (DA) release in downstream regions. Other than DA neurons, the VTA is known to be heterogeneous and contains other types of neurons, including glutamate neurons. In contrast to the well-studied and established functions of DA neurons, the role of VTA glutamate neurons is understudied, presumably due to their relatively small quantity and a lack of effective means to study them. Yet, emerging studies have begun to reveal the importance of glutamate release from VTA neurons in regulating diverse behavioral repertoire through a complex intra-VTA and long-range neuronal network. In this review, we summarize the features of VTA glutamate neurons from three perspectives, namely, cellular properties, neural connections, and behavioral functions. Delineation of VTA glutamatergic pathways and their interactions with VTA DA neurons in regulating behaviors may reveal previously unappreciated functions of the VTA in other physiological processes.
Collapse
Affiliation(s)
- Jing Cai
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, UTHealth McGovern Medical School, Houston, TX, United States
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, UTHealth McGovern Medical School, Houston, TX, United States
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
37
|
Tsetsenis T, Badyna JK, Li R, Dani JA. Activation of a Locus Coeruleus to Dorsal Hippocampus Noradrenergic Circuit Facilitates Associative Learning. Front Cell Neurosci 2022; 16:887679. [PMID: 35496910 PMCID: PMC9051520 DOI: 10.3389/fncel.2022.887679] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 01/22/2023] Open
Abstract
Processing of contextual information during a new episodic event is crucial for learning and memory. Neuromodulation in the hippocampus and prefrontal cortex plays an important role in the formation of associations between environmental cues and an aversive experience. Noradrenergic neurons in the locus coeruleus send dense projections to both regions, but their contribution to contextual associative learning has not been established. Here, we utilize selective optogenetic and pharmacological manipulations to control noradrenergic transmission in the hippocampus during the encoding of a contextual fear memory. We find that boosting noradrenergic terminal release in the dorsal CA1 enhances the acquisition of contextual associative learning and that this effect requires local activation of β-adrenenergic receptors. Moreover, we show that increasing norepinephrine release can ameliorate contextual fear learning impairments caused by dopaminergic dysregulation in the hippocampus. Our data suggest that increasing of hippocampal noradrenergic activity can have important implications in the treatment of cognitive disorders that involve problems in contextual processing.
Collapse
Affiliation(s)
- Theodoros Tsetsenis
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Julia K. Badyna
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Rebecca Li
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - John A. Dani
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
38
|
Steiger TK, Sobczak A, Reineke R, Bunzeck N. Novelty processing associated with neural beta oscillations improves recognition memory in young and older adults. Ann N Y Acad Sci 2022; 1511:228-243. [PMID: 35188272 DOI: 10.1111/nyas.14750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022]
Abstract
Novelty anticipation activates the mesolimbic system and promotes subsequent long-term memory in younger adults. Importantly, mesolimbic structures typically degenerate with age, which might reduce positive effects of novelty anticipation. Here, we used electroencephalography in combination with an established paradigm in healthy young (19-33 years old, n = 28) and older (53-84, n = 27) humans. Colored cues predicted the subsequent presentation of either a novel or previously familiarized image (75% cue validity). On the subsequent day, recognition memory for the novel images was tested. Behaviorally, novelty anticipation improved recollection-based but not familiarity-based recognition memory in both groups, and this effect was more pronounced in older subjects. Furthermore, novelty and familiarity cues increased theta (4-8 Hz) and decreased alpha/beta power (9-20 Hz); at outcome, expected novel and familiar images both increased beta power (13-25 Hz). Finally, a subsequent memory effect for expected novel images was associated with increases in beta power independent of age. Together, novelty anticipation drives hippocampus-dependent long-term recognition memory across the life span, and this effect appears to be related to neural beta oscillations.
Collapse
Affiliation(s)
| | | | - Ramona Reineke
- Department of Psychology, University of Lübeck, Lübeck, Germany
| | - Nico Bunzeck
- Department of Psychology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
39
|
Piszár I, Lőrincz ML. Differential Serotonergic Modulation of Principal Neurons and Interneurons in the Anterior Piriform Cortex. Front Neuroanat 2022; 16:821695. [PMID: 35221934 PMCID: PMC8864633 DOI: 10.3389/fnana.2022.821695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/11/2022] [Indexed: 12/05/2022] Open
Abstract
Originating from the brainstem raphe nuclei, serotonin is an important neuromodulator involved in a variety of physiological and pathological functions. Specific optogenetic stimulation of serotonergic neurons results in the divisive suppression of spontaneous, but not sensory evoked activity in the majority of neurons in the primary olfactory cortex and an increase in firing in a minority of neurons. To reveal the mechanisms involved in this dual serotonergic control of cortical activity we used a combination of in vitro electrophysiological recordings from identified neurons in the primary olfactory cortex, optogenetics and pharmacology and found that serotonin suppressed the activity of principal neurons, but excited local interneurons. The results have important implications in sensory information processing and other functions of the olfactory cortex and related brain areas.
Collapse
Affiliation(s)
- Ildikó Piszár
- Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences University of Szeged, Szeged, Hungary
| | - Magor L. Lőrincz
- Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences University of Szeged, Szeged, Hungary
- Department of Physiology, University of Szeged, Szeged, Hungary
- “Momentum” Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
- Neuroscience Division, Cardiff University, Cardiff, United Kingdom
- *Correspondence: Magor L. Lőrincz,
| |
Collapse
|
40
|
Spatial working memory is disparately interrelated with social status through different developmental stages in rats. Behav Brain Res 2022; 416:113547. [PMID: 34437940 DOI: 10.1016/j.bbr.2021.113547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/15/2021] [Accepted: 08/21/2021] [Indexed: 02/02/2023]
Abstract
Social life necessitates cognitive competence to meet the dynamic demands of social development. The formation of dominance hierarchy is a general phenomenon in social groups. As an essential element of executive and cognitive function, working memory could influence and be influenced by social status in a dominance hierarchy. However, the direction and degree of the association between them through different developmental stages remain unclear. To address this issue and clarify the "cause or consequence" problem, we investigated the spatial working memory performance in a Y-maze and Morris water maze in home-caged sibling Wistar rats (N = 26 cages, three rats/cage) through three stages of their life: before (week 7), during (week 10), and after (week 20) assumed timings of the social dominance hierarchy formation (SDHF). We used the social dominance tube test during the assumed time of hierarchy formation (weeks 9-11) to measure the relative dominance status in each cage. Here, we found that higher working memory index before SDHF could be predictive of later acquisition of higher social status. Working memory performance declined for all animals during SDHF, in which agonistic conflicts are increased. However, living within an established hierarchical social network for several weeks deteriorated the working memory performance of dominant and middle-ranked animals, while the performance of subordinates improved and got significantly better than higher-ranked animals. In conclusion, while working memory and social status were correlated positively before dominance hierarchy formation, there was a trade-off between them after the formation of it. In contrast to the common view, these results highlight the adverse effect of higher social status on cognitive behavior.
Collapse
|
41
|
Krashia P, Spoleti E, D'Amelio M. The VTA dopaminergic system as diagnostic and therapeutical target for Alzheimer's disease. Front Psychiatry 2022; 13:1039725. [PMID: 36325523 PMCID: PMC9618946 DOI: 10.3389/fpsyt.2022.1039725] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Neuropsychiatric symptoms (NPS) occur in nearly all patients with Alzheimer's Disease (AD). Most frequently they appear since the mild cognitive impairment (MCI) stage preceding clinical AD, and have a prognostic importance. Unfortunately, these symptoms also worsen the daily functioning of patients, increase caregiver stress and accelerate the disease progression from MCI to AD. Apathy and depression are the most common of these NPS, and much attention has been given in recent years to understand the biological mechanisms related to their appearance in AD. Although for many decades these symptoms have been known to be related to abnormalities of the dopaminergic ventral tegmental area (VTA), a direct association between deficits in the VTA and NPS in AD has never been investigated. Fortunately, this scenario is changing since recent studies using preclinical models of AD, and clinical studies in MCI and AD patients demonstrated a number of functional, structural and metabolic alterations affecting the VTA dopaminergic neurons and their mesocorticolimbic targets. These findings appear early, since the MCI stage, and seem to correlate with the appearance of NPS. Here, we provide an overview of the recent evidence directly linking the dopaminergic VTA with NPS in AD and propose a setting in which the precocious identification of dopaminergic deficits can be a helpful biomarker for early diagnosis. In this scenario, treatments of patients with dopaminergic drugs might slow down the disease progression and delay the impairment of daily living activities.
Collapse
Affiliation(s)
- Paraskevi Krashia
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Elena Spoleti
- Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Marcello D'Amelio
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
42
|
Spoleti E, Krashia P, La Barbera L, Nobili A, Lupascu CA, Giacalone E, Keller F, Migliore M, Renzi M, D'Amelio M. Early derailment of firing properties in CA1 pyramidal cells of the ventral hippocampus in an Alzheimer's disease mouse model. Exp Neurol 2021; 350:113969. [PMID: 34973962 DOI: 10.1016/j.expneurol.2021.113969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022]
Abstract
Gradual decline in cognitive and non-cognitive functions are considered clinical hallmarks of Alzheimer's Disease (AD). Post-mortem autoptic analysis shows the presence of amyloid β deposits, neuroinflammation and severe brain atrophy. However, brain circuit alterations and cellular derailments, assessed in very early stages of AD, still remain elusive. The understanding of these early alterations is crucial to tackle defective mechanisms. In a previous study we proved that the Tg2576 mouse model of AD displays functional deficits in the dorsal hippocampus and relevant behavioural AD-related alterations. We had shown that these deficits in Tg2576 mice correlate with the precocious degeneration of dopamine (DA) neurons in the Ventral Tegmental Area (VTA) and can be restored by L-DOPA treatment. Due to the distinct functionality and connectivity of dorsal versus ventral hippocampus, here we investigated neuronal excitability and synaptic functionality in the ventral CA1 hippocampal sub-region of Tg2576 mice. We found an age-dependent alteration of cell excitability and firing in pyramidal neurons starting at 3 months of age, that correlates with reduced levels in the ventral CA1 of tyrosine hydroxylase - the rate-limiting enzyme of DA synthesis. Additionally, at odds with the dorsal hippocampus, we found no alterations in basal glutamatergic transmission and long-term plasticity of ventral neurons in 8-month old Tg2576 mice compared to age-matched controls. Last, we used computational analysis to model the early derailments of firing properties observed and hypothesize that the neuronal alterations found could depend on dysfunctional sodium and potassium conductances, leading to anticipated depolarization-block of action potential firing. The present study depicts that impairment of cell excitability and homeostatic control of firing in ventral CA1 pyramidal neurons is a prodromal feature in Tg2576 AD mice.
Collapse
Affiliation(s)
- Elena Spoleti
- Faculty of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, Rome 00128, Italy
| | - Paraskevi Krashia
- Faculty of Medicine and Surgery, University Campus Bio-Medico, Rome 00128, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome 00143, Italy
| | - Livia La Barbera
- Faculty of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, Rome 00128, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome 00143, Italy
| | - Annalisa Nobili
- Faculty of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, Rome 00128, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome 00143, Italy
| | | | | | - Flavio Keller
- Faculty of Medicine and Surgery, University Campus Bio-Medico, Rome 00128, Italy
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo 90146, Italy
| | - Massimiliano Renzi
- Department of Physiology and Pharmacology, Sapienza University, Rome 00185, Italy.
| | - Marcello D'Amelio
- Faculty of Medicine and Surgery, University Campus Bio-Medico, Rome 00128, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome 00143, Italy.
| |
Collapse
|
43
|
Cell-type-specific disruption of PERK-eIF2α signaling in dopaminergic neurons alters motor and cognitive function. Mol Psychiatry 2021; 26:6427-6450. [PMID: 33879865 PMCID: PMC8526653 DOI: 10.1038/s41380-021-01099-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/20/2021] [Accepted: 04/01/2021] [Indexed: 02/02/2023]
Abstract
Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) has been shown to activate the eIF2α kinase PERK to directly regulate translation initiation. Tight control of PERK-eIF2α signaling has been shown to be necessary for normal long-lasting synaptic plasticity and cognitive function, including memory. In contrast, chronic activation of PERK-eIF2α signaling has been shown to contribute to pathophysiology, including memory impairments, associated with multiple neurological diseases, making this pathway an attractive therapeutic target. Herein, using multiple genetic approaches we show that selective deletion of the PERK in mouse midbrain dopaminergic (DA) neurons results in multiple cognitive and motor phenotypes. Conditional expression of phospho-mutant eIF2α in DA neurons recapitulated the phenotypes caused by deletion of PERK, consistent with a causal role of decreased eIF2α phosphorylation for these phenotypes. In addition, deletion of PERK in DA neurons resulted in altered de novo translation, as well as changes in axonal DA release and uptake in the striatum that mirror the pattern of motor changes observed. Taken together, our findings show that proper regulation of PERK-eIF2α signaling in DA neurons is required for normal cognitive and motor function in a non-pathological state, and also provide new insight concerning the onset of neuropsychiatric disorders that accompany UPR failure.
Collapse
|
44
|
Midbrain dopaminergic innervation of the hippocampus is sufficient to modulate formation of aversive memories. Proc Natl Acad Sci U S A 2021; 118:2111069118. [PMID: 34580198 DOI: 10.1073/pnas.2111069118] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 11/18/2022] Open
Abstract
Aversive memories are important for survival, and dopaminergic signaling in the hippocampus has been implicated in aversive learning. However, the source and mode of action of hippocampal dopamine remain controversial. Here, we utilize anterograde and retrograde viral tracing methods to label midbrain dopaminergic projections to the dorsal hippocampus. We identify a population of midbrain dopaminergic neurons near the border of the substantia nigra pars compacta and the lateral ventral tegmental area that sends direct projections to the dorsal hippocampus. Using optogenetic manipulations and mutant mice to control dopamine transmission in the hippocampus, we show that midbrain dopamine potently modulates aversive memory formation during encoding of contextual fear. Moreover, we demonstrate that dopaminergic transmission in the dorsal CA1 is required for the acquisition of contextual fear memories, and that this acquisition is sustained in the absence of catecholamine release from noradrenergic terminals. Our findings identify a cluster of midbrain dopamine neurons that innervate the hippocampus and show that the midbrain dopamine neuromodulation in the dorsal hippocampus is sufficient to maintain aversive memory formation.
Collapse
|
45
|
Cepeda-Prado EA, Khodaie B, Quiceno GD, Beythien S, Edelmann E, Lessmann V. Calcium-Permeable AMPA Receptors Mediate Timing-Dependent LTP Elicited by Low Repeat Coincident Pre- and Postsynaptic Activity at Schaffer Collateral-CA1 Synapses. Cereb Cortex 2021; 32:1682-1703. [PMID: 34498663 DOI: 10.1093/cercor/bhab306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/26/2022] Open
Abstract
High-frequency stimulation induced long-term potentiation (LTP) and low-frequency stimulation induced LTD are considered as cellular models of memory formation. Interestingly, spike timing-dependent plasticity (STDP) can induce equally robust timing-dependent LTP (t-LTP) and t-LTD in response to low frequency repeats of coincident action potential (AP) firing in presynaptic and postsynaptic cells. Commonly, STDP paradigms relying on 25-100 repeats of coincident AP firing are used to elicit t-LTP or t-LTD, but the minimum number of repeats required for successful STDP is barely explored. However, systematic investigation of physiologically relevant low repeat STDP paradigms is of utmost importance to explain learning mechanisms in vivo. Here, we examined low repeat STDP at Schaffer collateral-CA1 synapses by pairing one presynaptic AP with either one postsynaptic AP (1:1 t-LTP), or a burst of 4 APs (1:4 t-LTP) and found 3-6 repeats to be sufficient to elicit t-LTP. 6× 1:1 t-LTP required postsynaptic Ca2+ influx via NMDARs and L-type VGCCs and was mediated by increased presynaptic glutamate release. In contrast, 1:4 t-LTP depended on postsynaptic metabotropic GluRs and ryanodine receptor signaling and was mediated by postsynaptic insertion of AMPA receptors. Unexpectedly, both 6× t-LTP variants were strictly dependent on activation of postsynaptic Ca2+-permeable AMPARs but were differentially regulated by dopamine receptor signaling. Our data show that synaptic changes induced by only 3-6 repeats of mild STDP stimulation occurring in ≤10 s can take place on time scales observed also during single trial learning.
Collapse
Affiliation(s)
- Efrain A Cepeda-Prado
- Institut für Physiologie, Otto-von-Guericke-Universität (OVGU), Medizinische Fakultät, Magdeburg 39120, Germany
| | - Babak Khodaie
- Institut für Physiologie, Otto-von-Guericke-Universität (OVGU), Medizinische Fakultät, Magdeburg 39120, Germany.,OVGU International ESF-funded Graduate School ABINEP, Magdeburg 39104, Germany
| | - Gloria D Quiceno
- Institut für Physiologie, Otto-von-Guericke-Universität (OVGU), Medizinische Fakultät, Magdeburg 39120, Germany
| | - Swantje Beythien
- Institut für Physiologie, Otto-von-Guericke-Universität (OVGU), Medizinische Fakultät, Magdeburg 39120, Germany
| | - Elke Edelmann
- Institut für Physiologie, Otto-von-Guericke-Universität (OVGU), Medizinische Fakultät, Magdeburg 39120, Germany.,OVGU International ESF-funded Graduate School ABINEP, Magdeburg 39104, Germany.,Center for Behavioral Brain Sciences, Magdeburg 39104, Germany
| | - Volkmar Lessmann
- Institut für Physiologie, Otto-von-Guericke-Universität (OVGU), Medizinische Fakultät, Magdeburg 39120, Germany.,OVGU International ESF-funded Graduate School ABINEP, Magdeburg 39104, Germany.,Center for Behavioral Brain Sciences, Magdeburg 39104, Germany
| |
Collapse
|
46
|
Amphetamine sensitization alters hippocampal neuronal morphology and memory and learning behaviors. Mol Psychiatry 2021; 26:4784-4794. [PMID: 32555421 DOI: 10.1038/s41380-020-0809-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/22/2022]
Abstract
It is known that continuous abuse of amphetamine (AMPH) results in alterations in neuronal structure and cognitive behaviors related to the reward system. However, the impact of AMPH abuse on the hippocampus remains unknown. The aim of this study was to determine the damage caused by AMPH in the hippocampus in an addiction model. We reproduced the AMPH sensitization model proposed by Robinson et al. in 1997 and performed the novel object recognition test (NORt) to evaluate learning and memory behaviors. After the NORt, we performed Golgi-Cox staining, a stereological cell count, immunohistochemistry to determine the presence of GFAP, CASP3, and MT-III, and evaluated oxidative stress in the hippocampus. We found that AMPH treatment generates impairment in short- and long-term memories and a decrease in neuronal density in the CA1 region of the hippocampus. The morphological test showed an increase in the total dendritic length, but a decrease in the number of mature spines in the CA1 region. GFAP labeling increased in the CA1 region and MT-III increased in the CA1 and CA3 regions. Finally, we found a decrease in Zn concentration in the hippocampus after AMPH treatment. An increase in the dopaminergic tone caused by AMPH sensitization generates oxidative stress, neuronal death, and morphological changes in the hippocampus that affect cognitive behaviors like short- and long-term memories.
Collapse
|
47
|
Abstract
An organism's survival can depend on its ability to recall and navigate to spatial locations associated with rewards, such as food or a home. Accumulating research has revealed that computations of reward and its prediction occur on multiple levels across a complex set of interacting brain regions, including those that support memory and navigation. However, how the brain coordinates the encoding, recall and use of reward information to guide navigation remains incompletely understood. In this Review, we propose that the brain's classical navigation centres - the hippocampus and the entorhinal cortex - are ideally suited to coordinate this larger network by representing both physical and mental space as a series of states. These states may be linked to reward via neuromodulatory inputs to the hippocampus-entorhinal cortex system. Hippocampal outputs can then broadcast sequences of states to the rest of the brain to store reward associations or to facilitate decision-making, potentially engaging additional value signals downstream. This proposal is supported by recent advances in both experimental and theoretical neuroscience. By discussing the neural systems traditionally tied to navigation and reward at their intersection, we aim to offer an integrated framework for understanding navigation to reward as a fundamental feature of many cognitive processes.
Collapse
|
48
|
Chen APF, Chen L, Kim TA, Xiong Q. Integrating the Roles of Midbrain Dopamine Circuits in Behavior and Neuropsychiatric Disease. Biomedicines 2021; 9:biomedicines9060647. [PMID: 34200134 PMCID: PMC8228225 DOI: 10.3390/biomedicines9060647] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 01/11/2023] Open
Abstract
Dopamine (DA) is a behaviorally and clinically diverse neuromodulator that controls CNS function. DA plays major roles in many behaviors including locomotion, learning, habit formation, perception, and memory processing. Reflecting this, DA dysregulation produces a wide variety of cognitive symptoms seen in neuropsychiatric diseases such as Parkinson’s, Schizophrenia, addiction, and Alzheimer’s disease. Here, we review recent advances in the DA systems neuroscience field and explore the advancing hypothesis that DA’s behavioral function is linked to disease deficits in a neural circuit-dependent manner. We survey different brain areas including the basal ganglia’s dorsomedial/dorsolateral striatum, the ventral striatum, the auditory striatum, and the hippocampus in rodent models. Each of these regions have different reported functions and, correspondingly, DA’s reflecting role in each of these regions also has support for being different. We then focus on DA dysregulation states in Parkinson’s disease, addiction, and Alzheimer’s Disease, emphasizing how these afflictions are linked to different DA pathways. We draw upon ideas such as selective vulnerability and region-dependent physiology. These bodies of work suggest that different channels of DA may be dysregulated in different sets of disease. While these are great advances, the fine and definitive segregation of such pathways in behavior and disease remains to be seen. Future studies will be required to define DA’s necessity and contribution to the functional plasticity of different striatal regions.
Collapse
Affiliation(s)
- Allen PF Chen
- Department of Neurobiology and Behavior, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (A.P.C.); (L.C.); (T.A.K.)
- Medical Scientist Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Lu Chen
- Department of Neurobiology and Behavior, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (A.P.C.); (L.C.); (T.A.K.)
| | - Thomas A. Kim
- Department of Neurobiology and Behavior, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (A.P.C.); (L.C.); (T.A.K.)
- Medical Scientist Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Qiaojie Xiong
- Department of Neurobiology and Behavior, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (A.P.C.); (L.C.); (T.A.K.)
- Correspondence:
| |
Collapse
|
49
|
La Barbera L, Vedele F, Nobili A, Krashia P, Spoleti E, Latagliata EC, Cutuli D, Cauzzi E, Marino R, Viscomi MT, Petrosini L, Puglisi-Allegra S, Melone M, Keller F, Mercuri NB, Conti F, D'Amelio M. Nilotinib restores memory function by preventing dopaminergic neuron degeneration in a mouse model of Alzheimer's Disease. Prog Neurobiol 2021; 202:102031. [PMID: 33684513 DOI: 10.1016/j.pneurobio.2021.102031] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 02/15/2021] [Accepted: 02/28/2021] [Indexed: 01/18/2023]
Abstract
What happens precociously to the brain destined to develop Alzheimer's Disease (AD) still remains to be elucidated and this is one reason why effective AD treatments are missing. Recent experimental and clinical studies indicate that the degeneration of the dopaminergic (DA) neurons in the Ventral Tegmental Area (VTA) could be one of the first events occurring in AD. However, the causes of the increased vulnerability of DA neurons in AD are missing. Here, we deeply investigate the physiology of DA neurons in the VTA before, at the onset, and after onset of VTA neurodegeneration. We use the Tg2576 mouse model of AD, overexpressing a mutated form of the human APP, to identify molecular targets that can be manipulated pharmacologically. We show that in Tg2576 mice, DA neurons of the VTA at the onset of degeneration undergo slight but functionally relevant changes in their electrophysiological properties and cell morphology. Importantly, these changes are associated with accumulation of autophagosomes, suggestive of a dysfunctional autophagy, and with enhanced activation of c-Abl, a tyrosine kinase previously implicated in the pathogenesis of neurodegenerative diseases. Chronic treatment of Tg2576 mice with Nilotinib, a validated c-Abl inhibitor, reduces c-Abl phosphorylation, improves autophagy, reduces Aβ levels and - more importantly - prevents degeneration as well as functional and morphological alterations in DA neurons of the VTA. Interestingly, the drug prevents the reduction of DA outflow to the hippocampus and ameliorates hippocampal-related cognitive functions. Our results strive to identify early pathological brain changes in AD, to provide a rational basis for new therapeutic interventions able to slow down the disease progression.
Collapse
Affiliation(s)
- Livia La Barbera
- Department of Medicine and Surgery, Department of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, 00128, Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | - Francescangelo Vedele
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Annalisa Nobili
- Department of Medicine and Surgery, Department of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, 00128, Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | - Paraskevi Krashia
- Department of Medicine and Surgery, Department of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, 00128, Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.
| | - Elena Spoleti
- Department of Medicine and Surgery, Department of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, 00128, Rome, Italy
| | | | - Debora Cutuli
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy; Department of Psychology, Sapienza University of Rome, 00185, Rome, Italy
| | - Emma Cauzzi
- Department of Medicine and Surgery, Department of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, 00128, Rome, Italy; School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Ramona Marino
- Department of Medicine and Surgery, Department of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, 00128, Rome, Italy
| | - Maria Teresa Viscomi
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy; Department of Life Science and Public Health Section of Histology and Embryology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Laura Petrosini
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | | | - Marcello Melone
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche (UNIVPM), 60020, Ancona, Italy; Center for Neurobiology of Aging, IRCCS Istituto Nazionale Ricovero e Cura Anziani (INRCA), 60020, Ancona, Italy
| | - Flavio Keller
- Department of Medicine and Surgery, Department of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, 00128, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Fiorenzo Conti
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche (UNIVPM), 60020, Ancona, Italy; Center for Neurobiology of Aging, IRCCS Istituto Nazionale Ricovero e Cura Anziani (INRCA), 60020, Ancona, Italy; Foundation for Molecular Medicine, Università Politecnica delle Marche, 60020, Ancona, Italy
| | - Marcello D'Amelio
- Department of Medicine and Surgery, Department of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, 00128, Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.
| |
Collapse
|
50
|
Espadas I, Ortiz O, García-Sanz P, Sanz-Magro A, Alberquilla S, Solis O, Delgado-García JM, Gruart A, Moratalla R. Dopamine D2R is Required for Hippocampal-dependent Memory and Plasticity at the CA3-CA1 Synapse. Cereb Cortex 2021; 31:2187-2204. [PMID: 33264389 PMCID: PMC7945019 DOI: 10.1093/cercor/bhaa354] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/04/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
Dopamine receptors play an important role in motivational, emotional, and motor responses. In addition, growing evidence suggests a key role of hippocampal dopamine receptors in learning and memory. It is well known that associative learning and synaptic plasticity of CA3-CA1 requires the dopamine D1 receptor (D1R). However, the specific role of the dopamine D2 receptor (D2R) on memory-related neuroplasticity processes is still undefined. Here, by using two models of D2R loss, D2R knockout mice (Drd2-/-) and mice with intrahippocampal injections of Drd2-small interfering RNA (Drd2-siRNA), we aimed to investigate how D2R is involved in learning and memory as well as in long-term potentiation of the hippocampus. Our studies revealed that the genetic inactivation of D2R impaired the spatial memory, associative learning, and the classical conditioning of eyelid responses. Similarly, deletion of D2R reduced the activity-dependent synaptic plasticity in the hippocampal CA1-CA3 synapse. Our results demonstrate the first direct evidence that D2R is essential in behaving mice for trace eye blink conditioning and associated changes in hippocampal synaptic strength. Taken together, these results indicate a key role of D2R in regulating hippocampal plasticity changes and, in consequence, acquisition and consolidation of spatial and associative forms of memory.
Collapse
Affiliation(s)
- Isabel Espadas
- Neurobiologia Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid 28002, Spain
- CIBERNED, ISCIII, Madrid 28002, Spain
| | - Oscar Ortiz
- Neurobiologia Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid 28002, Spain
- CIBERNED, ISCIII, Madrid 28002, Spain
| | - Patricia García-Sanz
- Neurobiologia Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid 28002, Spain
- CIBERNED, ISCIII, Madrid 28002, Spain
| | - Adrián Sanz-Magro
- Neurobiologia Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid 28002, Spain
- CIBERNED, ISCIII, Madrid 28002, Spain
| | - Samuel Alberquilla
- Neurobiologia Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid 28002, Spain
- CIBERNED, ISCIII, Madrid 28002, Spain
| | - Oscar Solis
- Neurobiologia Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid 28002, Spain
- CIBERNED, ISCIII, Madrid 28002, Spain
| | | | - Agnès Gruart
- División de Neurociencias, Univ. Pablo de Olavide, Sevilla 41013, Spain
| | - Rosario Moratalla
- Neurobiologia Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid 28002, Spain
- CIBERNED, ISCIII, Madrid 28002, Spain
| |
Collapse
|