1
|
Yang TH, Hsu YC, Yeh P, Hung CJ, Tsai YF, Fang MC, Yen ACC, Chen LF, Pan JY, Wu CC, Liu TC, Chung FL, Yu WM, Lin SW. Critical role of hepsin/TMPRSS1 in hearing and tectorial membrane morphogenesis: Insights from transgenic mouse models. Hear Res 2024; 453:109134. [PMID: 39437584 PMCID: PMC11531994 DOI: 10.1016/j.heares.2024.109134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Mutations in various type II transmembrane serine protease (TMPRSS) family members are associated with non-syndromic hearing loss, with some mechanisms still unclear. For instance, the mechanism underlying profound hearing loss and tectorial membrane (TM) malformations in hepsin/TMPRSS1 knockout (KO) mice remains elusive. In this study, we confirmed significantly elevated hearing thresholds and abnormal TM morphology in hepsin KO mice, characterized by enlarged TM with gaps and detachment from the spiral limbus. Transgenic mouse lines were created to express either wild-type or a serine protease-dead mutant of human hepsin in the KO background. The Tg68;KO line, expressing moderate levels of wild-type human hepsin in the cochlea, showed partial restoration of hearing function. Conversely, the Tg5;KO or TgRS;KO lines, with undetectable hepsin or protease-dead hepsin, did not show such improvement. Histological analyses revealed that Tg68;KO mice, but not Tg5;KO or TgRS;KO mice, had a more compact TM structure, partially attached to the spiral limbus. These results indicate that hepsin expression levels correlate with improvements in hearing and TM morphology, and its protease activity is critical for these effects. Hepsin's role was further examined by studying its relationship with α-tectorin (TECTA) and β-tectorin (TECTB), non-collagenous proteins crucial for TM formation. Hepsin was co-expressed with TECTA and TECTB in the developing cochlear epithelium. Immunostaining showed decreased levels of TECTA and TECTB in hepsin KO TM, partially restored in Tg68;KO mice. These findings suggest that hepsin is essential for proper TM morphogenesis and auditory function, potentially by proteolytic processing/maturation of TECTA and TECTB and their incorporation into the TM.
Collapse
Affiliation(s)
- Ting-Hua Yang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Chen Hsu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Liver Disease Prevention and Treatment Research Foundation, Taiwan
| | - Peng Yeh
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chia-Jui Hung
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Fei Tsai
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mo-Chu Fang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - Li-Fu Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jhih-Yu Pan
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tien-Chen Liu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Fong-Ling Chung
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Ming Yu
- Department of Biology, Loyola University Chicago, Chicago, IL, USA.
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Bizup B, Brutsaert S, Cunningham CL, Thathiah A, Tzounopoulos T. Cochlear zinc signaling dysregulation is associated with noise-induced hearing loss, and zinc chelation enhances cochlear recovery. Proc Natl Acad Sci U S A 2024; 121:e2310561121. [PMID: 38354264 PMCID: PMC10895357 DOI: 10.1073/pnas.2310561121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Exposure to loud noise triggers sensory organ damage and degeneration that, in turn, leads to hearing loss. Despite the troublesome impact of noise-induced hearing loss (NIHL) in individuals and societies, treatment strategies that protect and restore hearing are few and insufficient. As such, identification and mechanistic understanding of the signaling pathways involved in NIHL are required. Biological zinc is mostly bound to proteins, where it plays major structural or catalytic roles; however, there is also a pool of unbound, mobile (labile) zinc. Labile zinc is mostly found in vesicles in secretory tissues, where it is released and plays a critical signaling role. In the brain, labile zinc fine-tunes neurotransmission and sensory processing. However, injury-induced dysregulation of labile zinc signaling contributes to neurodegeneration. Here, we tested whether zinc dysregulation occurs and contributes to NIHL in mice. We found that ZnT3, the vesicular zinc transporter responsible for loading zinc into vesicles, is expressed in cochlear hair cells and the spiral limbus, with labile zinc also present in the same areas. Soon after noise trauma, ZnT3 and zinc levels are significantly increased, and their subcellular localization is vastly altered. Disruption of zinc signaling, either via ZnT3 deletion or pharmacological zinc chelation, mitigated NIHL, as evidenced by enhanced auditory brainstem responses, distortion product otoacoustic emissions, and number of hair cell synapses. These data reveal that noise-induced zinc dysregulation is associated with cochlear dysfunction and recovery after NIHL, and point to zinc chelation as a potential treatment for mitigating NIHL.
Collapse
Affiliation(s)
- Brandon Bizup
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA15261
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA15261
| | - Sofie Brutsaert
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA15261
| | - Christopher L. Cunningham
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA15261
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA15261
| | - Amantha Thathiah
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA15261
| | - Thanos Tzounopoulos
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA15261
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA15261
| |
Collapse
|
3
|
Pressé MT, Malgrange B, Delacroix L. The cochlear matrisome: Importance in hearing and deafness. Matrix Biol 2024; 125:40-58. [PMID: 38070832 DOI: 10.1016/j.matbio.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 02/12/2024]
Abstract
The extracellular matrix (ECM) consists in a complex meshwork of collagens, glycoproteins, and proteoglycans, which serves a scaffolding function and provides viscoelastic properties to the tissues. ECM acts as a biomechanical support, and actively participates in cell signaling to induce tissular changes in response to environmental forces and soluble cues. Given the remarkable complexity of the inner ear architecture, its exquisite structure-function relationship, and the importance of vibration-induced stimulation of its sensory cells, ECM is instrumental to hearing. Many factors of the matrisome are involved in cochlea development, function and maintenance, as evidenced by the variety of ECM proteins associated with hereditary deafness. This review describes the structural and functional ECM components in the auditory organ and how they are modulated over time and following injury.
Collapse
Affiliation(s)
- Mary T Pressé
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium
| | - Laurence Delacroix
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium.
| |
Collapse
|
4
|
Cheatham MA. Distortion Product Otoacoustic Emissions in Mice Above and Below the Eliciting Primaries. J Assoc Res Otolaryngol 2023; 24:413-428. [PMID: 37464091 PMCID: PMC10504173 DOI: 10.1007/s10162-023-00903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Normal hearing is associated with cochlear nonlinearity. When two tones (f1 and f2) are presented, the intracochlear response contains additional components that can be recorded from the ear canal as distortion product otoacoustic emissions (DPOAEs). Although the most prominent intermodulation distortion component is at 2f1-f2, other cubic distortion products are also generated. Because these measurements are noninvasive, they are used in humans and in animal models to detect hearing loss. This study evaluated how loss of sensitivity affects DPOAEs with frequencies above and below the stimulating primaries, i.e., for upper sideband (USB) components like 2f2-f1 and for lower sideband (LSB) components like 2f1-f2. DPOAEs were recorded in several mouse mutants with varying degrees of hearing loss associated with structural changes to the tectorial membrane (TM), or with loss of outer hair cell (OHC) somatic electromotility due to lack of prestin or to the expression of a non-functional prestin. In mice with changes in sensitivity, magnitude reductions were observed for 2f1-f2 relative to controls with mice lacking prestin showing the greatest changes. In contrast, 2f2-f1 was minimally affected by reductions in cochlear gain due to changes in the TM or by the loss of OHC somatic electromotility. In addition, TM mutants with spontaneous otoacoustic emissions (SOAEs) generated larger responses than controls at 2f2-f1 when its frequency was similar to that for the SOAEs. Although cochlear pathologies appear to affect USB and LSB DPOAEs in different ways, both 2f1-f2 and 2f2-f1 reflect nonlinearities associated with the transducer channels. However, in mice, the component at 2f2-f1 does not appear to receive enhancement due to prestin's motor action.
Collapse
Affiliation(s)
- Mary Ann Cheatham
- The Knowles Hearing Center, Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 2-240 Frances Searle Building, 2240 Campus Drive, Evanston, IL, 60208, USA.
| |
Collapse
|
5
|
Trigila AP, Castagna VC, Berasain L, Montini D, Rubinstein M, Gomez-Casati ME, Franchini LF. Accelerated Evolution Analysis Uncovers PKNOX2 as a Key Transcription Factor in the Mammalian Cochlea. Mol Biol Evol 2023; 40:msad128. [PMID: 37247388 PMCID: PMC10337857 DOI: 10.1093/molbev/msad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
The genetic bases underlying the evolution of morphological and functional innovations of the mammalian inner ear are poorly understood. Gene regulatory regions are thought to play an important role in the evolution of form and function. To uncover crucial hearing genes whose regulatory machinery evolved specifically in mammalian lineages, we mapped accelerated noncoding elements (ANCEs) in inner ear transcription factor (TF) genes and found that PKNOX2 harbors the largest number of ANCEs within its transcriptional unit. Using reporter gene expression assays in transgenic zebrafish, we determined that four PKNOX2-ANCEs drive differential expression patterns when compared with ortholog sequences from close outgroup species. Because the functional role of PKNOX2 in cochlear hair cells has not been previously investigated, we decided to study Pknox2 null mice generated by CRISPR/Cas9 technology. We found that Pknox2-/- mice exhibit reduced distortion product otoacoustic emissions (DPOAEs) and auditory brainstem response (ABR) thresholds at high frequencies together with an increase in peak 1 amplitude, consistent with a higher number of inner hair cells (IHCs)-auditory nerve synapsis observed at the cochlear basal region. A comparative cochlear transcriptomic analysis of Pknox2-/- and Pknox2+/+ mice revealed that key auditory genes are under Pknox2 control. Hence, we report that PKNOX2 plays a critical role in cochlear sensitivity at higher frequencies and that its transcriptional regulation underwent lineage-specific evolution in mammals. Our results provide novel insights about the contribution of PKNOX2 to normal auditory function and to the evolution of high-frequency hearing in mammals.
Collapse
Affiliation(s)
- Anabella P Trigila
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Valeria C Castagna
- Facultad de Medicina, Instituto de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lara Berasain
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Dante Montini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Lucía F Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
6
|
Dewey JB, Shera CA. Bandpass Shape of Distortion-Product Otoacoustic Emission Ratio Functions Reflects Cochlear Frequency Tuning in Normal-Hearing Mice. J Assoc Res Otolaryngol 2023:10.1007/s10162-023-00892-4. [PMID: 37072566 DOI: 10.1007/s10162-023-00892-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/02/2023] [Indexed: 04/20/2023] Open
Abstract
The frequency selectivity of the mammalian auditory system is critical for discriminating complex sounds like speech. This selectivity derives from the sharp tuning of the cochlea's mechanical response to sound, which is largely attributed to the amplification of cochlear vibrations by outer hair cells (OHCs). Due to its nonlinearity, the amplification process also leads to the generation of distortion products (DPs), some of which propagate out to the ear canal as DP otoacoustic emissions (DPOAEs). However, the insight that these signals provide about the tuned micro- and macro-mechanics underlying their generation remains unclear. Using optical coherence tomography to measure cochlear vibrations in mice, we show that the cochlea's frequency tuning is reflected in the bandpass shape that is observed in DPOAE amplitudes when the ratio of the two evoking stimulus frequencies is varied (here termed DPOAE "ratio functions"). The tuning sharpness of DPOAE ratio functions and cochlear vibrations co-varied with stimulus level, with a similar quantitative agreement in tuning sharpness observed for both apical and mid-cochlear locations. Measurement of intracochlear DPs revealed that the tuning of the DPOAE ratio functions was not caused by mechanisms that shape DPs locally near where they are generated. Instead, simple model simulations indicate that the bandpass shape is due to a more global wave interference phenomenon. It appears that the filtering of DPOAEs by wave interactions over an extended spatial region allows them to provide a window onto the frequency tuning of single cochlear locations.
Collapse
Affiliation(s)
- James B Dewey
- Caruso Department of Otolaryngology - Head and Neck Surgery, University of Southern California, Los Angeles, 90033, CA, USA.
| | - Christopher A Shera
- Caruso Department of Otolaryngology - Head and Neck Surgery, University of Southern California, Los Angeles, 90033, CA, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
7
|
Zhou W, Jabeen T, Sabha S, Becker J, Nam JH. Deiters Cells Act as Mechanical Equalizers for Outer Hair Cells. J Neurosci 2022; 42:8361-8372. [PMID: 36123119 PMCID: PMC9653280 DOI: 10.1523/jneurosci.2417-21.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 11/21/2022] Open
Abstract
The outer hair cells in the mammalian cochlea are cellular actuators essential for sensitive hearing. The geometry and stiffness of the structural scaffold surrounding the outer hair cells will determine how the active cells shape mammalian hearing by modulating the organ of Corti (OoC) vibrations. Specifically, the tectorial membrane and the Deiters cell are mechanically in series with the hair bundle and soma, respectively, of the outer hair cell. Their mechanical properties and anatomic arrangement must determine the relative motion among different OoC structures. We measured the OoC mechanics in the cochleas acutely excised from young gerbils of both sexes at a resolution fine enough to distinguish the displacement of individual cells. A three-dimensional finite element model of fully deformable OoC was exploited to analyze the measured data in detail. As a means to verify the computer model, the basilar membrane deformations because of static and dynamic stimulations were measured and simulated. Two stiffness ratios have been identified that are critical to understand cochlear physics, which are the stiffness of the tectorial membrane with respect to the hair bundle and the stiffness of the Deiters cell with respect to the outer hair cell body. Our measurements suggest that the Deiters cells act like a mechanical equalizer so that the outer hair cells are constrained neither too rigidly nor too weakly.SIGNIFICANCE STATEMENT Mammals can detect faint sounds thanks to the action of mammalian-specific receptor cells called the outer hair cells. It is getting clearer that understanding the interactions between the outer hair cells and their surrounding structures such as the tectorial membrane and the Deiters cell is critical to resolve standing debates. Depending on theories, the stiffness of those two structures ranges from negligible to rigid. Because of their perceived importance, their properties have been measured in previous studies. However, nearly all existing data were obtained ex situ (after they were detached from the outer hair cells), which obscures their interaction with the outer hair cells. We quantified the mechanical properties of the tectorial membrane and the Deiters cell in situ.
Collapse
Affiliation(s)
| | - Talat Jabeen
- Biomedical Engineering, University of Rochester, Rochester, New York 14627
| | | | | | - Jong-Hoon Nam
- Departments of Mechanical Engineering
- Biomedical Engineering, University of Rochester, Rochester, New York 14627
- Neuroscience Program, University of Rochester Medical Center, Rochester, New York 14627
| |
Collapse
|
8
|
Xia A, Udagawa T, Quiñones PM, Atkinson PJ, Applegate BE, Cheng AG, Oghalai JS. The impact of targeted ablation of one row of outer hair cells and Deiters' cells on cochlear amplification. J Neurophysiol 2022; 128:1365-1373. [PMID: 36259670 PMCID: PMC9678430 DOI: 10.1152/jn.00501.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022] Open
Abstract
The mammalian cochlea contains three rows of outer hair cells (OHCs) that amplify the basilar membrane traveling wave with high gain and exquisite tuning. The pattern of OHC loss caused by typical methods of producing hearing loss in animal models (noise, ototoxic exposure, or aging) is variable and not consistent along the length of the cochlea. Thus, it is difficult to use these approaches to understand how forces from multiple OHCs summate to create normal cochlear amplification. Here, we selectively removed the third row of OHCs and Deiters' cells in adult mice and measured cochlear amplification. In the mature cochlear epithelia, expression of the Wnt target gene Lgr5 is restricted to the third row of Deiters' cells, the supporting cells directly underneath the OHCs. Diphtheria toxin administration to Lgr5DTR-EGFP/+ mice selectively ablated the third row of Deiters' cells and the third row of OHCs. Basilar membrane vibration in vivo demonstrated disproportionately lower reduction in cochlear amplification by about 13.5 dB. On a linear scale, this means that the 33% reduction in OHC number led to a 79% reduction in gain. Thus, these experimental data describe the impact of reducing the force of cochlear amplification by a specific amount. Furthermore, these data argue that because OHC forces progressively and sequentially amplify the traveling wave as it travels to its peak, the loss of even a relatively small number of OHCs, when evenly distributed longitudinally, will cause a substantial reduction in cochlear amplification.NEW & NOTEWORTHY Normal cochlear physiology involves force production from three rows of outer hair cells to amplify and tune the traveling wave. Here, we used a genetic approach to target and ablate the third row of outer hair cells in the mouse cochlea and found it reduced cochlear amplification by 79%. This means that the loss of even a relatively small number of OHCs, when evenly distributed, causes a substantial reduction in cochlear amplification.
Collapse
Affiliation(s)
- Anping Xia
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California
| | - Tomokatsu Udagawa
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Patricia M Quiñones
- Caruso Department of Otolaryngology-Head & Neck Surgery, University of Southern California, Los Angeles, California
| | - Patrick J Atkinson
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California
| | - Brian E Applegate
- Caruso Department of Otolaryngology-Head & Neck Surgery, University of Southern California, Los Angeles, California
- Department of Biomedical Engineering, Denney Research Center (DRB) 140, University of Southern California, Los Angeles, California
| | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California
| | - John S Oghalai
- Caruso Department of Otolaryngology-Head & Neck Surgery, University of Southern California, Los Angeles, California
- Department of Biomedical Engineering, Denney Research Center (DRB) 140, University of Southern California, Los Angeles, California
| |
Collapse
|
9
|
Levic S, Lukashkina VA, Simões P, Lukashkin AN, Russell IJ. A Gap-Junction Mutation Reveals That Outer Hair Cell Extracellular Receptor Potentials Drive High-Frequency Cochlear Amplification. J Neurosci 2022; 42:7875-7884. [PMID: 36261265 PMCID: PMC9617611 DOI: 10.1523/jneurosci.2241-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 08/02/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
Cochlear amplification enables the enormous dynamic range of hearing through amplifying cochlear responses to low- to moderate-level sounds and compressing them to loud sounds. Amplification is attributed to voltage-dependent electromotility of mechanosensory outer hair cells (OHCs) driven by changing voltages developed across their cell membranes. At low frequencies, these voltage changes are dominated by intracellular receptor potentials (RPs). However, OHC membranes have electrical low-pass filter properties that attenuate high-frequency RPs, which should potentially attenuate amplification of high-frequency cochlear responses and impede high-frequency hearing. We made in vivo intracellular and extracellular electrophysiological measurements from the organ of Corti of male and female mice of the CBA/J strain, with excellent high-frequency hearing, and from the CD-1 mouse strain, which has sensitive hearing below 12 kHz but loses high-frequency hearing within a few weeks postpartum. The CD-1 mouse strain was transfected with an A88V mutation of the connexin 30 gap-junction protein. By blocking the action of the GJ protein to reduce input resistance, the mutation increased the OHC extracellular RP (ERP) magnitude and rescued high-frequency hearing. However, by increasing the organ of Corti resistance, the mutation rescued high-frequency hearing through preserving the OHC extracellular RP (ERP) magnitude. We measured the voltage developed across the basolateral membranes of OHCs, which controls their electromotility, for low- to high-frequency sounds in male and female mice of the CD-1 strain that expressed the A88V mutation. We demonstrate that ERPs, not RPs, drive OHC motility and cochlear amplification at high frequencies because at high frequencies, ERPs are not frequency attenuated, exceed RPs in magnitude, and are appropriately timed to provide cochlear amplification.SIGNIFICANCE STATEMENT Cochlear amplification, which enables the enormous dynamic range of hearing, is attributed to voltage-dependent electromotility of the mechanosensory outer hair cells (OHCs) driven by sound-induced voltage changes across their membranes. OHC intracellular receptor potentials are electrically low-pass filtered, which should hinder high-frequency hearing. We measured the intracellular and extracellular voltages that control OHC electromotility in vivo in a mouse strain with impaired high-frequency hearing. A gap-junction mutation of the strain rescued high-frequency hearing, increased organ of Corti resistance, and preserved large OHC extracellular receptor potentials but reduced OHC intracellular receptor potentials and impaired low-frequency hearing. We concluded intracellular potentials drive OHC motility at low frequencies and extracellular receptor potentials drive OHC motility and cochlear amplification at high frequencies.
Collapse
Affiliation(s)
- Snezana Levic
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PX, United Kingdom
| | - Victoria A Lukashkina
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Patricio Simões
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Andrei N Lukashkin
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Ian J Russell
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| |
Collapse
|
10
|
Mansour A, Sellon JB, Filizzola D, Ghaffari R, Cheatham MA, Freeman DM. Age-related degradation of tectorial membrane dynamics with loss of CEACAM16. Biophys J 2021; 120:4777-4785. [PMID: 34555361 PMCID: PMC8595744 DOI: 10.1016/j.bpj.2021.09.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/01/2021] [Accepted: 09/16/2021] [Indexed: 11/29/2022] Open
Abstract
Studies of genetic disorders of sensorineural hearing loss have been instrumental in delineating mechanisms that underlie the remarkable sensitivity and selectivity that are hallmarks of mammalian hearing. For example, genetic modifications of TECTA and TECTB, which are principal proteins that comprise the tectorial membrane (TM), have been shown to alter auditory thresholds and frequency tuning in ways that can be understood in terms of changes in the mechanical properties of the TM. Here, we investigate effects of genetic modification targeting CEACAM16, a third important TM protein. Loss of CEACAM16 has been recently shown to lead to progressive reductions in sensitivity. Whereas age-related hearing losses have previously been linked to changes in sensory receptor cells, the role of the TM in progressive hearing loss is largely unknown. Here, we show that TM stiffness and viscosity are significantly reduced in adult mice that lack functional CEACAM16 relative to age-matched wild-type controls. By contrast, these same mechanical properties of TMs from juvenile mice that lack functional CEACAM16 are more similar to those of wild-type mice. Thus, changes in hearing phenotype align with changes in TM material properties and can be understood in terms of the same TM wave properties that were previously used to characterize modifications of TECTA and TECTB. These results demonstrate that CEACAM16 is essential for maintaining TM mechanical and wave properties, which in turn are necessary for sustaining the remarkable sensitivity and selectivity of mammalian hearing with increasing age.
Collapse
Affiliation(s)
- Amer Mansour
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jonathan B Sellon
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Daniel Filizzola
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Roozbeh Ghaffari
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Mary Ann Cheatham
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Knowles Hearing Center, Northwestern University, Evanston, Illinois
| | - Dennis M Freeman
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
11
|
Mackowetzky K, Yoon KH, Mackowetzky EJ, Waskiewicz AJ. Development and evolution of the vestibular apparatuses of the inner ear. J Anat 2021; 239:801-828. [PMID: 34047378 PMCID: PMC8450482 DOI: 10.1111/joa.13459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/07/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
The vertebrate inner ear is a labyrinthine sensory organ responsible for perceiving sound and body motion. While a great deal of research has been invested in understanding the auditory system, a growing body of work has begun to delineate the complex developmental program behind the apparatuses of the inner ear involved with vestibular function. These animal studies have helped identify genes involved in inner ear development and model syndromes known to include vestibular dysfunction, paving the way for generating treatments for people suffering from these disorders. This review will provide an overview of known inner ear anatomy and function and summarize the exciting discoveries behind inner ear development and the evolution of its vestibular apparatuses.
Collapse
Affiliation(s)
- Kacey Mackowetzky
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Kevin H. Yoon
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Andrew J. Waskiewicz
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Women & Children’s Health Research InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
12
|
Ingham NJ, Banafshe N, Panganiban C, Crunden JL, Chen J, Lewis MA, Steel KP. Inner hair cell dysfunction in Klhl18 mutant mice leads to low frequency progressive hearing loss. PLoS One 2021; 16:e0258158. [PMID: 34597341 PMCID: PMC8486144 DOI: 10.1371/journal.pone.0258158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/19/2021] [Indexed: 12/30/2022] Open
Abstract
Age-related hearing loss in humans (presbycusis) typically involves impairment of high frequency sensitivity before becoming progressively more severe at lower frequencies. Pathologies initially affecting lower frequency regions of hearing are less common. Here we describe a progressive, predominantly low-frequency recessive hearing impairment in two mutant mouse lines carrying different mutant alleles of the Klhl18 gene: a spontaneous missense mutation (Klhl18lowf) and a targeted mutation (Klhl18tm1a(KOMP)Wtsi). Both males and females were studied, and the two mutant lines showed similar phenotypes. Threshold for auditory brainstem responses (ABR; a measure of auditory nerve and brainstem neural activity) were normal at 3 weeks old but showed progressive increases from 4 weeks onwards. In contrast, distortion product otoacoustic emission (DPOAE) sensitivity and amplitudes (a reflection of cochlear outer hair cell function) remained normal in mutants. Electrophysiological recordings from the round window of Klhl18lowf mutants at 6 weeks old revealed 1) raised compound action potential thresholds that were similar to ABR thresholds, 2) cochlear microphonic potentials that were normal compared with wildtype and heterozygous control mice and 3) summating potentials that were reduced in amplitude compared to control mice. Scanning electron microscopy showed that Klhl18lowf mutant mice had abnormally tapering of the tips of inner hair cell stereocilia in the apical half of the cochlea while their synapses appeared normal. These results suggest that Klhl18 is necessary to maintain inner hair cell stereocilia and normal inner hair cell function at low frequencies.
Collapse
Affiliation(s)
- Neil J. Ingham
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Navid Banafshe
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Clarisse Panganiban
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Julia L. Crunden
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Jing Chen
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Morag A. Lewis
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Karen P. Steel
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| |
Collapse
|
13
|
Xu J, Yu D, Dong X, Xie X, Xu M, Guo L, Huang L, Tang Q, Gan L. GATA3 maintains the quiescent state of cochlear supporting cells by regulating p27 kip1. Sci Rep 2021; 11:15779. [PMID: 34349220 PMCID: PMC8338922 DOI: 10.1038/s41598-021-95427-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/26/2021] [Indexed: 01/22/2023] Open
Abstract
Haplo-insufficiency of the GATA3 gene causes hypoparathyroidism, sensorineural hearing loss, and renal disease (HDR) syndrome. Previous studies have shown that Gata3 is required for the development of the prosensory domain and spiral ganglion neurons (SGNs) of the mouse cochlea during embryogenesis. However, its role in supporting cells (SCs) after cell fate specification is largely unknown. In this study, we used tamoxifen-inducible Sox2CreERT2 mice to delete Gata3 in SCs of the neonatal mouse cochlea and showed that loss of Gata3 resulted in the proliferation of SCs, including the inner pillar cells (IPCs), inner border cells (IBCs), and lateral greater epithelium ridge (GER). In addition, loss of Gata3 resulted in the down-regulation of p27kip1, a cell cycle inhibitor, in the SCs of Gata3-CKO neonatal cochleae. Chromatin immunoprecipitation analysis revealed that GATA3 directly binds to p27kip1 promoter and could maintain the quiescent state of cochlear SCs by regulating p27kip1 expression. Furthermore, RNA-seq analysis revealed that loss of Gata3 function resulted in the change in the expression of genes essential for the development and function of cochlear SCs, including Tectb, Cyp26b1, Slitrk6, Ano1, and Aqp4.
Collapse
Affiliation(s)
- Jiadong Xu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA
| | - Dongliang Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Xuhui Dong
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Xiaoling Xie
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Mei Xu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA
| | - Luming Guo
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA
| | - Liang Huang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Qi Tang
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Gan
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA.
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
14
|
Cheatham MA. Spontaneous otoacoustic emissions are biomarkers for mice with tectorial membrane defects. Hear Res 2021; 409:108314. [PMID: 34332206 DOI: 10.1016/j.heares.2021.108314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/22/2021] [Accepted: 07/12/2021] [Indexed: 01/12/2023]
Abstract
Cochlear function depends on the operation of a coupled feedback loop, incorporating outer hair cells (OHCs), and structured to assure that inner hair cells (IHCs) convey frequency specific acoustic information to the brain, even at very low sound levels. Although our knowledge of OHC function and its contribution to cochlear amplification has expanded, the importance of the tectorial membrane (TM) to the processing of mechanical inputs has not been fully elucidated. In addition, there are a surprising number of genetic mutations that affect TM structure and that produce hearing loss in humans. By synthesizing old and new results obtained on several mouse mutants, we learned that animals with abnormal TMs are prone to generate spontaneous otoacoustic emissions (SOAE), which are uncommon in most wildtype laboratory animals. Because SOAEs are not produced in TM mutants or in humans when threshold shifts exceed approximately 25 dB, some degree of cochlear amplification is required. However, amplification by itself is not sufficient because normal mice are rarely spontaneous emitters. Since SOAEs reflect active cochlear operation, TM mutants are valuable for studying the oscillatory nature of the amplification process and the structures associated with its stabilization. Inasmuch as the mouse models were selected to mirror human auditory disorders, using SOAEs as a noninvasive clinical tool may assist the classification of individuals with genetic defects that influence the active mechanisms responsible for sensitivity and frequency selectivity, the hallmarks of mammalian hearing.
Collapse
Affiliation(s)
- Mary Ann Cheatham
- The Knowles Hearing Center, Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 2-240 Frances Searle Building, 2240 Campus Drive, Evanston, IL 60208, USA.
| |
Collapse
|
15
|
Chen T, Rohacek AM, Caporizzo M, Nankali A, Smits JJ, Oostrik J, Lanting CP, Kücük E, Gilissen C, van de Kamp JM, Pennings RJE, Rakowiecki SM, Kaestner KH, Ohlemiller KK, Oghalai JS, Kremer H, Prosser BL, Epstein DJ. Cochlear supporting cells require GAS2 for cytoskeletal architecture and hearing. Dev Cell 2021; 56:1526-1540.e7. [PMID: 33964205 PMCID: PMC8137675 DOI: 10.1016/j.devcel.2021.04.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/01/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022]
Abstract
In mammals, sound is detected by mechanosensory hair cells that are activated in response to vibrations at frequency-dependent positions along the cochlear duct. We demonstrate that inner ear supporting cells provide a structural framework for transmitting sound energy through the cochlear partition. Humans and mice with mutations in GAS2, encoding a cytoskeletal regulatory protein, exhibit hearing loss due to disorganization and destabilization of microtubule bundles in pillar and Deiters' cells, two types of inner ear supporting cells with unique cytoskeletal specializations. Failure to maintain microtubule bundle integrity reduced supporting cell stiffness, which in turn altered cochlear micromechanics in Gas2 mutants. Vibratory responses to sound were measured in cochleae from live mice, revealing defects in the propagation and amplification of the traveling wave in Gas2 mutants. We propose that the microtubule bundling activity of GAS2 imparts supporting cells with mechanical properties for transmitting sound energy through the cochlea.
Collapse
Affiliation(s)
- Tingfang Chen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alex M Rohacek
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Caporizzo
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amir Nankali
- The Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA, USA
| | - Jeroen J Smits
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jaap Oostrik
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cornelis P Lanting
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Erdi Kücük
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jiddeke M van de Kamp
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Ronald J E Pennings
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Staci M Rakowiecki
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Klaus H Kaestner
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin K Ohlemiller
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - John S Oghalai
- The Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA, USA
| | - Hannie Kremer
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Benjamin L Prosser
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas J Epstein
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Ding D, Jiang H, Salvi R. Cochlear spiral ganglion neuron degeneration following cyclodextrin-induced hearing loss. Hear Res 2020; 400:108125. [PMID: 33302057 DOI: 10.1016/j.heares.2020.108125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 01/12/2023]
Abstract
Because cyclodextrins are capable of removing cholesterol from cell membranes, there is growing interest in using these compounds to treat diseases linked to aberrant cholesterol metabolism. One compound, 2-hydroxypropyl-beta-cyclodextrin (HPβCD), is currently being evaluated as a treatment for Niemann-Pick Type C1 disease, a rare, fatal neurodegenerative disease caused by the buildup of lipids in endosomes and lysosomes. HPβCD can reduce some debilitating symptoms and extend life span, but the therapeutic doses used to treat the disease cause hearing loss. Initial studies in rodents suggested that HPβCD selectively damaged only cochlear outer hair cells during the first week post-treatment. However, our recent in vivo and in vitro studies suggested that the damage could become progressively worse and more extensive over time. To test this hypothesis, we treated rats subcutaneously with 1, 2, 3 or 4 g/kg of HPβCD and waited for 8-weeks to assess the long-term histological consequences. Our new results indicate that the two highest doses of HPβCD caused extensive damage not only to OHC, but also to inner hair cells, pillar cells and other support cells resulting in the collapse and flattening of the sensory epithelium. The 4 g/kg dose destroyed all the outer hair cells and three-fourths of the inner hair cells over the basal two-thirds of the cochlea and more than 85% of the nerve fibers in the habenula perforata and more than 80% of spiral ganglion neurons in the middle of basal turn of the cochlea. The mechanisms that lead to the delayed degeneration of inner hair cells, pillar cells, nerve fibers and spiral ganglion neurons remain poorly understood, but may be related to the loss of trophic support caused by the degeneration of sensory and/or support cells in the organ of Corti. Despite the massive damage to the cochlear sensory epithelium, the blood vessels in the stria vascularis and the vestibular hair cells in the utricle and saccule remained normal.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14221, USA
| | - Haiyan Jiang
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14221, USA
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14221, USA.
| |
Collapse
|
17
|
Olson ES, Strimbu CE. Cochlear mechanics: new insights from vibrometry and Optical Coherence Tomography. CURRENT OPINION IN PHYSIOLOGY 2020; 18:56-62. [PMID: 33103018 DOI: 10.1016/j.cophys.2020.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The cochlea is a complex biological machine that transduces sound-induced mechanical vibrations to neural signals. Hair cells within the sensory tissue of the cochlea transduce vibrations into electrical signals, and exert electromechanical feedback that enhances the passive frequency separation provided by the cochlea's traveling wave mechanics; this enhancement is termed cochlear amplification. The vibration of the sensory tissue has been studied with many techniques, and the current state of the art is optical coherence tomography (OCT). The OCT technique allows for motion of intra-organ structures to be measured in vivo at many layers within the sensory tissue, at several angles and in previously under-explored species. OCT-based observations are already impacting our understanding of hair cell excitation and cochlear amplification.
Collapse
Affiliation(s)
- Elizabeth S Olson
- Department of Otolaryngolgy Head and Neck Surgery, Vagelos College of Physicians and Surgeons, Columbia University, 630 W 168th St, New York, NY 10032.,Department Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue,New York, NY 10027
| | - C Elliott Strimbu
- Department of Otolaryngolgy Head and Neck Surgery, Vagelos College of Physicians and Surgeons, Columbia University, 630 W 168th St, New York, NY 10032
| |
Collapse
|
18
|
Strimbu CE, Wang Y, Olson ES. Manipulation of the Endocochlear Potential Reveals Two Distinct Types of Cochlear Nonlinearity. Biophys J 2020; 119:2087-2101. [PMID: 33091378 DOI: 10.1016/j.bpj.2020.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/02/2020] [Accepted: 10/07/2020] [Indexed: 11/26/2022] Open
Abstract
The mammalian hearing organ, the cochlea, contains an active amplifier to boost the vibrational response to low level sounds. Hallmarks of this active process are sharp location-dependent frequency tuning and compressive nonlinearity over a wide stimulus range. The amplifier relies on outer hair cell (OHC)-generated forces driven in part by the endocochlear potential, the ∼+80 mV potential maintained in scala media, generated by the stria vascularis. We transiently eliminated the endocochlear potential in vivo by an intravenous injection of furosemide and measured the vibrations of different layers in the cochlea's organ of Corti using optical coherence tomography. Distortion product otoacoustic emissions were also monitored. After furosemide injection, the vibrations of the basilar membrane lost the best frequency (BF) peak and showed broad tuning similar to a passive cochlea. The intra-organ of Corti vibrations measured in the region of the OHCs lost the BF peak and showed low-pass responses but retained nonlinearity. This strongly suggests that OHC electromotility was operating and being driven by nonlinear OHC current. Thus, although electromotility is presumably necessary to produce a healthy BF peak, the mere presence of electromotility is not sufficient. The BF peak recovered nearly fully within 2 h, along with the recovery of odd-order distortion product otoacoustic emissions. The recovery pattern suggests that physical shifts in operating condition are a critical step in the recovery process.
Collapse
Affiliation(s)
- C Elliott Strimbu
- Columbia University Medical Center, Department of Otolaryngology, New York, New York
| | - Yi Wang
- Columbia University, Department of Biomedical Engineering, New York, New York
| | - Elizabeth S Olson
- Columbia University Medical Center, Department of Otolaryngology, New York, New York; Columbia University, Department of Biomedical Engineering, New York, New York.
| |
Collapse
|
19
|
Guinan JJ. The interplay of organ-of-Corti vibrational modes, not tectorial- membrane resonance, sets outer-hair-cell stereocilia phase to produce cochlear amplification. Hear Res 2020; 395:108040. [PMID: 32784038 PMCID: PMC7502208 DOI: 10.1016/j.heares.2020.108040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 01/27/2023]
Abstract
The mechanical motions that deflect outer-hair-cell (OHC) stereocilia and the resulting effects of OHC motility are reviewed, concentrating on high-frequency cochlear regions. It has been proposed that a tectorial-membrane (TM) resonance makes the phase of OHC stereocilia motion be appropriate to produce cochlear amplification, i.e. so that the OHC force that pushes the basilar membrane (BM) is in the same direction as BM velocity. Evidence for and against the TM-resonance hypothesis are considered, including new cochlear-motion measurements using optical coherence tomography, and it is concluded that there is no such TM resonance. The evidence points to there being an advance in the phase of reticular lamina (RL) radial motion at a frequency approximately ½ octave below the BM characteristic frequency, and that this is the main source of the phase difference between the TM and RL radial motions that produces cochlear amplification. It appears that the change in phase of RL radial motion comes about because of a transition between different organ-of-Corti (OoC) vibrational modes that changes RL motion relative to BM and TM motion. The origins and consequences of the large phase change of RL radial motion relative to BM motion are considered; differences in the reported patterns of these changes may be due to different viewing angles. Detailed motion data and new models are needed to better specify the vibrational patterns of the OoC modes and the role of the various OoC structures in producing the modes and the mode transition.
Collapse
Affiliation(s)
- John J Guinan
- Eaton-Peabody Lab, Mass. Eye and Ear, 243 Charles St, Boston, MA, 02114, USA; Harvard Medical School, Dept. of Otolaryngology, Boston, MA, USA.
| |
Collapse
|
20
|
Yang LM, Stout L, Rauchman M, Ornitz DM. Analysis of FGF20-regulated genes in organ of Corti progenitors by translating ribosome affinity purification. Dev Dyn 2020; 249:1217-1242. [PMID: 32492250 DOI: 10.1002/dvdy.211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Understanding the mechanisms that regulate hair cell (HC) differentiation in the organ of Corti (OC) is essential to designing genetic therapies for hearing loss due to HC loss or damage. We have previously identified Fibroblast Growth Factor 20 (FGF20) as having a key role in HC and supporting cell differentiation in the mouse OC. To investigate the genetic landscape regulated by FGF20 signaling in OC progenitors, we employ Translating Ribosome Affinity Purification combined with Next Generation RNA Sequencing (TRAPseq) in the Fgf20 lineage. RESULTS We show that TRAPseq targeting OC progenitors effectively enriched for RNA from this rare cell population. TRAPseq identified differentially expressed genes (DEGs) downstream of FGF20, including Etv4, Etv5, Etv1, Dusp6, Hey1, Hey2, Heyl, Tectb, Fat3, Cpxm2, Sall1, Sall3, and cell cycle regulators such as Cdc20. Analysis of Cdc20 conditional-null mice identified decreased cochlea length, while analysis of Sall1-null and Sall1-ΔZn2-10 mice, which harbor a mutation that causes Townes-Brocks syndrome, identified a decrease in outer hair cell number. CONCLUSIONS We present two datasets: genes with enriched expression in OC progenitors, and DEGs downstream of FGF20 in the embryonic day 14.5 cochlea. We validate select DEGs via in situ hybridization and in vivo functional studies in mice.
Collapse
Affiliation(s)
- Lu M Yang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lisa Stout
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael Rauchman
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
21
|
Russell IJ, Lukashkina VA, Levic S, Cho YW, Lukashkin AN, Ng L, Forrest D. Emilin 2 promotes the mechanical gradient of the cochlear basilar membrane and resolution of frequencies in sound. SCIENCE ADVANCES 2020; 6:eaba2634. [PMID: 32577518 PMCID: PMC7286672 DOI: 10.1126/sciadv.aba2634] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
The detection of different frequencies in sound is accomplished with remarkable precision by the basilar membrane (BM), an elastic, ribbon-like structure with graded stiffness along the cochlear spiral. Sound stimulates a wave of displacement along the BM with maximal magnitude at precise, frequency-specific locations to excite neural signals that carry frequency information to the brain. Perceptual frequency discrimination requires fine resolution of this frequency map, but little is known of the intrinsic molecular features that demarcate the place of response on the BM. To investigate the role of BM microarchitecture in frequency discrimination, we deleted extracellular matrix protein emilin 2, which disturbed the filamentous organization in the BM. Emilin2 -/- mice displayed broadened mechanical and neural frequency tuning with multiple response peaks that are shifted to lower frequencies than normal. Thus, emilin 2 confers a stiffness gradient on the BM that is critical for accurate frequency resolution.
Collapse
Affiliation(s)
- Ian J. Russell
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Brighton BN2 4GJ, UK
| | - Victoria A. Lukashkina
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Brighton BN2 4GJ, UK
| | - Snezana Levic
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Brighton BN2 4GJ, UK
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PX, UK
| | - Young-Wook Cho
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Andrei N. Lukashkin
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Brighton BN2 4GJ, UK
| | - Lily Ng
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
|
23
|
Bullen A, Forge A, Wright A, Richardson GP, Goodyear RJ, Taylor R. Ultrastructural defects in stereocilia and tectorial membrane in aging mouse and human cochleae. J Neurosci Res 2019; 98:1745-1763. [DOI: 10.1002/jnr.24556] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Anwen Bullen
- UCL Ear Institute University College London London UK
| | - Andrew Forge
- UCL Ear Institute University College London London UK
| | | | - Guy P. Richardson
- Sussex Neuroscience School of Life Sciences University of Sussex Falmer, Brighton UK
| | - Richard J. Goodyear
- Sussex Neuroscience School of Life Sciences University of Sussex Falmer, Brighton UK
| | - Ruth Taylor
- UCL Ear Institute University College London London UK
| |
Collapse
|
24
|
Kim DK, Kim JA, Park J, Niazi A, Almishaal A, Park S. The release of surface-anchored α-tectorin, an apical extracellular matrix protein, mediates tectorial membrane organization. SCIENCE ADVANCES 2019; 5:eaay6300. [PMID: 31807709 PMCID: PMC6881170 DOI: 10.1126/sciadv.aay6300] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
The tectorial membrane (TM) is an apical extracellular matrix (ECM) that hovers over the cochlear sensory epithelium and plays an essential role in auditory transduction. The TM forms facing the luminal endolymph-filled space and exhibits complex ultrastructure. Contrary to the current extracellular assembly model, which posits that secreted collagen fibrils and ECM components self-arrange in the extracellular space, we show that surface tethering of α-tectorin (TECTA) via a glycosylphosphatidylinositol anchor is essential to prevent diffusion of secreted TM components. In the absence of surface-tethered TECTA, collagen fibrils aggregate randomly and fail to recruit TM glycoproteins. Conversely, conversion of TECTA into a transmembrane form results in a layer of collagens on the epithelial surface that fails to form a multilayered structure. We propose a three-dimensional printing model for TM morphogenesis: A new layer of ECM is printed on the cell surface concomitant with the release of a preestablished layer to generate the multilayered TM.
Collapse
Affiliation(s)
- Dong-Kyu Kim
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Ju Ang Kim
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Joosang Park
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Ava Niazi
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Ali Almishaal
- Department of Communication Sciences and Disorders, University of Utah, Salt Lake City, UT 84112, USA
| | - Sungjin Park
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
25
|
Sellon JB, Ghaffari R, Freeman DM. The Tectorial Membrane: Mechanical Properties and Functions. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033514. [PMID: 30348837 DOI: 10.1101/cshperspect.a033514] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The tectorial membrane (TM) is widely believed to play a critical role in determining the remarkable sensitivity and frequency selectivity that are hallmarks of mammalian hearing. Recently developed mouse models of human hearing disorders have provided new insights into the molecular, nanomechanical mechanisms that underlie resonance and traveling wave properties of the TM. Herein we review recent experimental and theoretical results detailing TM morphology, local poroelastic and electromechanical interactions, and global spread of excitation via TM traveling waves, with direct implications for cochlear mechanisms.
Collapse
Affiliation(s)
- Jonathan B Sellon
- Research Laboratory of Electronics, MIT, Cambridge, Massachusetts 02139
| | - Roozbeh Ghaffari
- Research Laboratory of Electronics, MIT, Cambridge, Massachusetts 02139
| | - Dennis M Freeman
- Research Laboratory of Electronics, MIT, Cambridge, Massachusetts 02139.,Department of Electrical Engineering and Computer Science, MIT, Cambridge, Massachusetts 02139
| |
Collapse
|
26
|
PKHD1L1 is a coat protein of hair-cell stereocilia and is required for normal hearing. Nat Commun 2019; 10:3801. [PMID: 31444330 PMCID: PMC6707252 DOI: 10.1038/s41467-019-11712-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/28/2019] [Indexed: 12/18/2022] Open
Abstract
The bundle of stereocilia on inner ear hair cells responds to subnanometer deflections produced by sound or head movement. Stereocilia are interconnected by a variety of links and also carry an electron-dense surface coat. The coat may contribute to stereocilia adhesion or protect from stereocilia fusion, but its molecular identity remains unknown. From a database of hair-cell-enriched translated proteins, we identify Polycystic Kidney and Hepatic Disease 1-Like 1 (PKHD1L1), a large, mostly extracellular protein of 4249 amino acids with a single transmembrane domain. Using serial immunogold scanning electron microscopy, we show that PKHD1L1 is expressed at the tips of stereocilia, especially in the high-frequency regions of the cochlea. PKHD1L1-deficient mice lack the surface coat at the upper but not lower regions of stereocilia, and they develop progressive hearing loss. We conclude that PKHD1L1 is a component of the surface coat and is required for normal hearing in mice. There is little known about the function or molecular identity of the electron-dense stereocilia coat, which is transiently present at the surface of stereocilia. In this study authors screened a database of hair-cell-enriched translated proteins to identify the expression of Polycystic Kidney and Hepatic Disease 1-Like 1 (PKHD1L1), a large, mostly extracellular protein, and show that it forms the coat at the tips of stereocilia and is required for normal hearing in mice
Collapse
|
27
|
Abstract
The spatial variations of the intricate cytoarchitecture, fluid scalae, and mechano-electric transduction in the mammalian cochlea have long been postulated to provide the organ with the ability to perform a real-time, time-frequency processing of sound. However, the precise manner by which this tripartite coupling enables the exquisite cochlear filtering has yet to be articulated in a base-to-apex mathematical model. Moreover, while sound-evoked tuning curves derived from mechanical gains are excellent surrogates for auditory nerve fiber thresholds at the base of the cochlea, this correlation fails at the apex. The key factors influencing the divergence of both mechanical and neural tuning at the apex, as well as the spatial variation of mechanical tuning, are incompletely understood. We develop a model that shows that the mechanical effects arising from the combination of the taper of the cochlear scalae and the spatial variation of the cytoarchitecture of the cochlea provide robust mechanisms that modulate the outer hair cell-mediated active response and provide the basis for the transition of the mechanical gain spectra along the cochlear spiral. Further, the model predicts that the neural tuning at the base is primarily governed by the mechanical filtering of the cochlear partition. At the apex, microscale fluid dynamics and nanoscale channel dynamics must also be invoked to describe the threshold neural tuning for low frequencies. Overall, the model delineates a physiological basis for the difference between basal and apical gain seen in experiments and provides a coherent description of high- and low-frequency cochlear tuning.
Collapse
|
28
|
Goodyear RJ, Cheatham MA, Naskar S, Zhou Y, Osgood RT, Zheng J, Richardson GP. Accelerated Age-Related Degradation of the Tectorial Membrane in the Ceacam16βgal/βgal Null Mutant Mouse, a Model for Late-Onset Human Hereditary Deafness DFNB113. Front Mol Neurosci 2019; 12:147. [PMID: 31249509 PMCID: PMC6582249 DOI: 10.3389/fnmol.2019.00147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/20/2019] [Indexed: 12/20/2022] Open
Abstract
CEACAM16 is a non-collagenous protein of the tectorial membrane, an extracellular structure of the cochlea essential for normal hearing. Dominant and recessive mutations in CEACAM16 have been reported to cause postlingual and progressive forms of deafness in humans. In a previous study of young Ceacam16βgal/βgal null mutant mice on a C57Bl/6J background, the incidence of spontaneous otoacoustic emissions (SOAEs) was greatly increased relative to Ceacam16+/+ and Ceacam16+/βgal mice, but auditory brain-stem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs) were near normal, indicating auditory thresholds were not significantly affected. To determine if the loss of CEACAM16 leads to hearing loss at later ages in this mouse line, cochlear structure and auditory function were examined in Ceacam16+/+, Ceacam16+/βgal and Ceacam16βgal/βgal mice at 6 and 12 months of age and compared to that previously described at 1 month. Analysis of older Ceacam16βgal/βgal mice reveals a progressive loss of matrix from the core of the tectorial membrane that is more extensive in the apical, low-frequency regions of the cochlea. In Ceacam16βgal/βgal mice at 6-7 months, the DPOAE magnitude at 2f1-f2 and the incidence of SOAEs both decrease relative to young animals. By ∼12 months, SOAEs and DPOAEs are not detected in Ceacam16βgal/βgal mice and ABR thresholds are increased by up to ∼40 dB across frequency, despite a complement of hair cells similar to that present in Ceacam16+/+ mice. Although SOAE incidence decreases with age in Ceacam16βgal/βgal mice, it increases in aging heterozygous Ceacam16+/βgal mice and is accompanied by a reduction in the accumulation of CEACAM16 in the tectorial membrane relative to controls. An apically-biased loss of matrix from the core of the tectorial membrane, similar to that observed in young Ceacam16βgal/βgal mice, is also seen in Ceacam16+/+ and Ceacam16+/βgal mice, and other strains of wild-type mice, but at much later ages. The loss of Ceacam16 therefore accelerates age-related degeneration of the tectorial membrane leading, as in humans with mutations in CEACAM16, to a late-onset progressive form of hearing loss.
Collapse
Affiliation(s)
- Richard J. Goodyear
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Mary Ann Cheatham
- The Knowles Hearing Center, Northwestern University, Evanston, IL, United States
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Souvik Naskar
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Yingjie Zhou
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Richard T. Osgood
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Jing Zheng
- The Knowles Hearing Center, Northwestern University, Evanston, IL, United States
- Department of Otolaryngology – Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Guy P. Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
29
|
Bowling T, Lemons C, Meaud J. Reducing tectorial membrane viscoelasticity enhances spontaneous otoacoustic emissions and compromises the detection of low level sound. Sci Rep 2019; 9:7494. [PMID: 31097743 PMCID: PMC6522542 DOI: 10.1038/s41598-019-43970-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/02/2019] [Indexed: 01/08/2023] Open
Abstract
The mammalian cochlea is able to detect faint sounds due to the presence of an active nonlinear feedback mechanism that boosts cochlear vibrations of low amplitude. Because of this feedback, self-sustained oscillations called spontaneous otoacoustic emissions (SOAEs) can often be measured in the ear canal. Recent experiments in genetically modified mice have demonstrated that mutations of the genes expressed in the tectorial membrane (TM), an extracellular matrix located in the cochlea, can significantly enhance the generation of SOAEs. Multiple untested mechanisms have been proposed to explain these unexpected results. In this work, a physiologically motivated computational model of a mammalian species commonly studied in auditory research, the gerbil, is used to demonstrate that altering the viscoelastic properties of the TM tends to affect the linear stability of the cochlea, SOAE generation and the cochlear response to low amplitude stimuli. These results suggest that changes in TM properties might be the underlying cause for SOAE enhancement in some mutant mice. Furthermore, these theoretical findings imply that the TM contributes to keeping the mammalian cochlea near an oscillatory instability, which promotes high sensitivity and the detection of low level stimuli.
Collapse
Affiliation(s)
- Thomas Bowling
- G.W.W. School of Mechanical Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia, 30332, USA
| | - Charlsie Lemons
- G.W.W. School of Mechanical Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia, 30332, USA
| | - Julien Meaud
- G.W.W. School of Mechanical Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia, 30332, USA. .,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
30
|
Burwood GWS, Fridberger A, Wang RK, Nuttall AL. Revealing the morphology and function of the cochlea and middle ear with optical coherence tomography. Quant Imaging Med Surg 2019; 9:858-881. [PMID: 31281781 PMCID: PMC6571188 DOI: 10.21037/qims.2019.05.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/09/2019] [Indexed: 01/17/2023]
Abstract
Optical coherence tomography (OCT) has revolutionized physiological studies of the hearing organ, the vibration and morphology of which can now be measured without opening the surrounding bone. In this review, we provide an overview of OCT as used in the otological research, describing advances and different techniques in vibrometry, angiography, and structural imaging.
Collapse
Affiliation(s)
- George W. S. Burwood
- Department of Otolaryngology, Oregon Hearing Research Center/HNS, Oregon Health & Science University, Portland, OR, USA
| | - Anders Fridberger
- Department of Otolaryngology, Oregon Hearing Research Center/HNS, Oregon Health & Science University, Portland, OR, USA
- Department of Clinical and Experimental Medicine, Section for Neurobiology, Linköping University, Linköping, Sweden
| | - Ruikang K. Wang
- Department of Bioengineering and Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Alfred L. Nuttall
- Department of Otolaryngology, Oregon Hearing Research Center/HNS, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
31
|
Abstract
A new mechanism that contributes to control of hearing sensitivity is described here. We show that an accessory structure in the hearing organ, the tectorial membrane, affects the function of inner ear sensory cells by storing calcium ions. When the calcium store is depleted, by brief exposure to rock concert-level sounds or by the introduction of calcium chelators, the sound-evoked responses of the sensory cells decrease. Upon restoration of tectorial membrane calcium, sensory cell function returns. This previously unknown mechanism contributes to explaining the temporary numbness in the ear that follows from listening to sounds that are too loud, a phenomenon that most people experience at some point in their lives. When sound stimulates the stereocilia on the sensory cells in the hearing organ, Ca2+ ions flow through mechanically gated ion channels. This Ca2+ influx is thought to be important for ensuring that the mechanically gated channels operate within their most sensitive response region, setting the fraction of channels open at rest, and possibly for the continued maintenance of stereocilia. Since the extracellular Ca2+ concentration will affect the amount of Ca2+ entering during stimulation, it is important to determine the level of the ion close to the sensory cells. Using fluorescence imaging and fluorescence correlation spectroscopy, we measured the Ca2+ concentration near guinea pig stereocilia in situ. Surprisingly, we found that an acellular accessory structure close to the stereocilia, the tectorial membrane, had much higher Ca2+ than the surrounding fluid. Loud sounds depleted Ca2+ from the tectorial membrane, and Ca2+ manipulations had large effects on hair cell function. Hence, the tectorial membrane contributes to control of hearing sensitivity by influencing the ionic environment around the stereocilia.
Collapse
|
32
|
Amplification and Suppression of Traveling Waves along the Mouse Organ of Corti: Evidence for Spatial Variation in the Longitudinal Coupling of Outer Hair Cell-Generated Forces. J Neurosci 2019; 39:1805-1816. [PMID: 30651330 DOI: 10.1523/jneurosci.2608-18.2019] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/06/2019] [Accepted: 01/09/2019] [Indexed: 11/21/2022] Open
Abstract
Mammalian hearing sensitivity and frequency selectivity depend on a mechanical amplification process mediated by outer hair cells (OHCs). OHCs are situated within the organ of Corti atop the basilar membrane (BM), which supports sound-evoked traveling waves. It is well established that OHCs generate force to selectively amplify BM traveling waves where they peak, and that amplification accumulates from one location to the next over this narrow cochlear region. However, recent measurements demonstrate that traveling waves along the apical surface of the organ of Corti, the reticular lamina (RL), are amplified over a much broader region. Whether OHC forces accumulate along the length of the RL traveling wave to provide a form of "global" cochlear amplification is unclear. Here we examined the spatial accumulation of RL amplification. In mice of either sex, we used tones to suppress amplification from different cochlear regions and examined the effect on RL vibrations near and far from the traveling-wave peak. We found that although OHC forces amplify the entire RL traveling wave, amplification only accumulates near the peak, over the same region where BM motion is amplified. This contradicts the notion that RL motion is involved in a global amplification mechanism and reveals that the mechanical properties of the BM and organ of Corti tune how OHC forces accumulate spatially. Restricting the spatial buildup of amplification enhances frequency selectivity by sharpening the peaks of cochlear traveling waves and constrains the number of OHCs responsible for mechanical sensitivity at each location.SIGNIFICANCE STATEMENT Outer hair cells generate force to amplify traveling waves within the mammalian cochlea. This force generation is critical to the ability to detect and discriminate sounds. Nevertheless, how these forces couple to the motions of the surrounding structures and integrate along the cochlear length remains poorly understood. Here we demonstrate that outer hair cell-generated forces amplify traveling-wave motion on the organ of Corti throughout the wave's extent, but that these forces only accumulate longitudinally over a region near the wave's peak. The longitudinal coupling of outer hair cell-generated forces is therefore spatially tuned, likely by the mechanical properties of the basilar membrane and organ of Corti. Our findings provide new insight into the mechanical processes that underlie sensitive hearing.
Collapse
|
33
|
Lemons C, Sellon JB, Boatti E, Filizzola D, Freeman DM, Meaud J. Anisotropic Material Properties of Wild-Type and Tectb -/- Tectorial Membranes. Biophys J 2019; 116:573-585. [PMID: 30665694 DOI: 10.1016/j.bpj.2018.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/28/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022] Open
Abstract
The tectorial membrane (TM) is an extracellular matrix that is directly coupled with the mechanoelectrical receptors responsible for sensory transduction and amplification. As such, the TM is often hypothesized to play a key role in the remarkable sensory abilities of the mammalian cochlea. Genetic studies targeting TM proteins have shown that changes in TM structure dramatically affect cochlear function in mice. Precise information about the mechanical properties of the TMs of wild-type and mutant mice at audio frequencies is required to elucidate the role of the TM and to understand how these genetic mutations affect cochlear mechanics. In this study, images of isolated TM segments are used to determine both the radial and longitudinal motions of the TM in response to a harmonic radial excitation. The resulting longitudinally propagating radial displacement and highly spatially dependent longitudinal displacement are modeled using finite-element models that take into account the anisotropy and finite dimensions of TMs. An automated, least-square fitting algorithm is used to find the anisotropic material properties of wild-type and Tectb-/- mice at audio frequencies. Within the auditory frequency range, it is found that the TM is a highly viscoelastic and anisotropic structure with significantly higher stiffness in the direction of the collagen fibers. Although no decrease in the stiffness in the fiber direction is observed, the stiffness of the TM in shear and in the transverse direction is found to be significantly reduced in Tectb-/- mice. As a result, TMs of the mutant mice tend to be significantly more anisotropic within the frequency range examined in this study. The effects of the Tectb-/- mutation on the TM's anisotropic material properties may be responsible for the changes in cochlear tuning and sensitivity that have been previously reported for these mice.
Collapse
Affiliation(s)
- Charlsie Lemons
- G.W.W. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Jonathan B Sellon
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Elisa Boatti
- G.W.W. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Daniel Filizzola
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Dennis M Freeman
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Julien Meaud
- G.W.W. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
34
|
Spontaneous Otoacoustic Emissions in TectaY1870C/+ Mice Reflect Changes in Cochlear Amplification and How It Is Controlled by the Tectorial Membrane. eNeuro 2018; 5:eN-NWR-0314-18. [PMID: 30627650 PMCID: PMC6325554 DOI: 10.1523/eneuro.0314-18.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 12/26/2022] Open
Abstract
Spontaneous otoacoustic emissions (SOAEs) recorded from the ear canal in the absence of sound reflect cochlear amplification, an outer hair cell (OHC) process required for the extraordinary sensitivity and frequency selectivity of mammalian hearing. Although wild-type mice rarely emit, those with mutations that influence the tectorial membrane (TM) show an incidence of SOAEs similar to that in humans. In this report, we characterized mice with a missense mutation in Tecta, a gene required for the formation of the striated-sheet matrix within the core of the TM. Mice heterozygous for the Y1870C mutation (TectaY1870C/+) are prolific emitters, despite a moderate hearing loss. Additionally, Kimura’s membrane, into which the OHC stereocilia insert, separates from the main body of the TM, except at apical cochlear locations. Multimodal SOAEs are also observed in TectaY1870C/+ mice where energy is present at frequencies that are integer multiples of a lower-frequency SOAE (the primary). Second-harmonic SOAEs, at twice the frequency of a lower-frequency primary, are the most frequently observed. These secondary SOAEs are found in spatial regions where stimulus-evoked OAEs are small or in the noise floor. Introduction of high-level suppressors just above the primary SOAE frequency reduce or eliminate both primary and second-harmonic SOAEs. In contrast, second-harmonic SOAEs are not affected by suppressors, either above or below the second-harmonic SOAE frequency, even when they are much larger in amplitude. Hence, second-harmonic SOAEs do not appear to be spatially separated from their primaries, a finding that has implications for cochlear mechanics and the consequences of changes to TM structure.
Collapse
|
35
|
He W, Kemp D, Ren T. Timing of the reticular lamina and basilar membrane vibration in living gerbil cochleae. eLife 2018; 7:37625. [PMID: 30183615 PMCID: PMC6125122 DOI: 10.7554/elife.37625] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/14/2018] [Indexed: 12/22/2022] Open
Abstract
Auditory sensory outer hair cells are thought to amplify sound-induced basilar membrane vibration through a feedback mechanism to enhance hearing sensitivity. For optimal amplification, the outer hair cell-generated force must act on the basilar membrane at an appropriate time at every cycle. However, the temporal relationship between the outer hair cell-driven reticular lamina vibration and the basilar membrane vibration remains unclear. By measuring sub-nanometer vibrations directly from outer hair cells using a custom-built heterodyne low-coherence interferometer, we demonstrate in living gerbil cochleae that the reticular lamina vibration occurs after, not before, the basilar membrane vibration. Both tone- and click-induced responses indicate that the reticular lamina and basilar membrane vibrate in opposite directions at the cochlear base and they oscillate in phase near the best-frequency location. Our results suggest that outer hair cells enhance hearing sensitivity through a global hydromechanical mechanism, rather than through a local mechanical feedback as commonly supposed. What is the quietest sound the ear can detect? All sounds begin as vibrating air molecules, which enter the ear and cause the eardrum to vibrate. We can detect vibrations that move the eardrum by a distance of less than one picometer. That’s one thousandth of a nanometer, or about 100 times smaller than a hydrogen atom. But how does the ear achieve this level of sensitivity? Vibrations of the eardrum cause three small bones within the middle ear to vibrate. The vibrations then spread to the cochlea, a fluid-filled spiral structure in the inner ear. Tiny hair cells lining the cochlea move as a result of the vibrations. There are two types of hair cells: inner and outer. Outer hair cells amplify the vibrations. It is this amplification that enables us to detect such small movements of the eardrum. Inner hair cells then convert the amplified vibrations into electrical signals, which travel via the auditory nerve to the brain. The bases of outer hair cells are connected to a structure called the basilar membrane, while their tops are anchored to a structure called the reticular lamina. It was generally assumed that outer hair cells amplify vibrations of the basilar membrane via a local positive feedback mechanism that requires the hair cells to vibrate first. But by comparing the timing of reticular lamina and basilar membrane vibrations in gerbils, He et al. show that this is not the case. Outer hair cells vibrate after the basilar membrane, not before. This indicates that outer hair cells use a mechanism other than commonly assumed local feedback to amplify sounds. The results presented by He et al. change our understanding of how the cochlea works, and may help bioengineers to design better hearing aids and cochlea implants. Millions of patients worldwide who suffer from hearing loss may ultimately stand to benefit.
Collapse
Affiliation(s)
- Wenxuan He
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, Portland, United States
| | - David Kemp
- University College London Ear Institute, University College London, London, United Kingdom
| | - Tianying Ren
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, Portland, United States
| |
Collapse
|
36
|
Elliott KL, Fritzsch B, Duncan JS. Evolutionary and Developmental Biology Provide Insights Into the Regeneration of Organ of Corti Hair Cells. Front Cell Neurosci 2018; 12:252. [PMID: 30135646 PMCID: PMC6092489 DOI: 10.3389/fncel.2018.00252] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/23/2018] [Indexed: 01/19/2023] Open
Abstract
We review the evolution and development of organ of Corti hair cells with a focus on their molecular differences from vestibular hair cells. Such information is needed to therapeutically guide organ of Corti hair cell development in flat epithelia and generate the correct arrangement of different hair cell types, orientation of stereocilia, and the delayed loss of the kinocilium that are all essential for hearing, while avoiding driving hair cells toward a vestibular fate. Highlighting the differences from vestibular organs and defining what is known about the regulation of these differences will help focus future research directions toward successful restoration of an organ of Corti following long-term hair cell loss.
Collapse
Affiliation(s)
- Karen L Elliott
- Department of Biology, University of Iowa, Iowa City, IA, United States
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, United States
| | - Jeremy S Duncan
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| |
Collapse
|
37
|
Dewey JB, Xia A, Müller U, Belyantseva IA, Applegate BE, Oghalai JS. Mammalian Auditory Hair Cell Bundle Stiffness Affects Frequency Tuning by Increasing Coupling along the Length of the Cochlea. Cell Rep 2018; 23:2915-2927. [PMID: 29874579 PMCID: PMC6309882 DOI: 10.1016/j.celrep.2018.05.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/24/2018] [Accepted: 05/08/2018] [Indexed: 01/15/2023] Open
Abstract
The stereociliary bundles of cochlear hair cells convert mechanical vibrations into the electrical signals required for auditory sensation. While the stiffness of the bundles strongly influences mechanotransduction, its influence on the vibratory response of the cochlear partition is unclear. To assess this, we measured cochlear vibrations in mutant mice with reduced bundle stiffness or with a tectorial membrane (TM) that is detached from the sensory epithelium. We found that reducing bundle stiffness decreased the high-frequency extent and sharpened the tuning of vibratory responses obtained postmortem. Detaching the TM further reduced the high-frequency extent of the vibrations but also lowered the partition's resonant frequency. Together, these results demonstrate that the bundle's stiffness and attachment to the TM contribute to passive longitudinal coupling in the cochlea. We conclude that the stereociliary bundles and TM interact to facilitate passive-wave propagation to more apical locations, possibly enhancing active-wave amplification in vivo.
Collapse
Affiliation(s)
- James B Dewey
- The Caruso Department of Otolaryngology - Head & Neck Surgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Anping Xia
- Department of Otolaryngology - Head & Neck Surgery, Stanford University, Stanford, CA 94305, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Brian E Applegate
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - John S Oghalai
- The Caruso Department of Otolaryngology - Head & Neck Surgery, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
38
|
Requena T, Gallego-Martinez A, Lopez-Escamez JA. Bioinformatic Integration of Molecular Networks and Major Pathways Involved in Mice Cochlear and Vestibular Supporting Cells. Front Mol Neurosci 2018; 11:108. [PMID: 29674954 PMCID: PMC5895758 DOI: 10.3389/fnmol.2018.00108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/19/2018] [Indexed: 12/18/2022] Open
Abstract
Background: Cochlear and vestibular epithelial non-hair cells (ENHCs) are the supporting elements of the cellular architecture in the organ of Corti and the vestibular neuroepithelium in the inner ear. Intercellular and cell-extracellular matrix interactions are essential to prevent an abnormal ion redistribution leading to hearing and vestibular loss. The aim of this study is to define the main pathways and molecular networks in the mouse ENHCs. Methods: We retrieved microarray and RNA-seq datasets from mouse epithelial sensory and non-sensory cells from gEAR portal (http://umgear.org/index.html) and obtained gene expression fold-change between ENHCs and non-epithelial cells (NECs) against HCs for each gene. Differentially expressed genes (DEG) with a log2 fold change between 1 and -1 were discarded. The remaining genes were selected to search for interactions using Ingenuity Pathway Analysis and STRING platform. Specific molecular networks for ENHCs in the cochlea and the vestibular organs were generated and significant pathways were identified. Results: Between 1723 and 1559 DEG were found in the mouse cochlear and vestibular tissues, respectively. Six main pathways showed enrichment in the supporting cells in both tissues: (1) "Inhibition of Matrix Metalloproteases"; (2) "Calcium Transport I"; (3) "Calcium Signaling"; (4) "Leukocyte Extravasation Signaling"; (5) "Signaling by Rho Family GTPases"; and (6) "Axonal Guidance Si". In the mouse cochlea, ENHCs showed a significant enrichment in 18 pathways highlighting "axonal guidance signaling (AGS)" (p = 4.37 × 10-8) and "RhoGDI Signaling" (p = 3.31 × 10-8). In the vestibular dataset, there were 20 enriched pathways in ENHCs, the most significant being "Leukocyte Extravasation Signaling" (p = 8.71 × 10-6), "Signaling by Rho Family GTPases" (p = 1.20 × 10-5) and "Calcium Signaling" (p = 1.20 × 10-5). Among the top ranked networks, the most biologically significant network contained the "auditory and vestibular system development and function" terms. We also found 108 genes showing tonotopic gene expression in the cochlear ENHCs. Conclusions: We have predicted the main pathways and molecular networks for ENHCs in the organ of Corti and vestibular neuroepithelium. These pathways will facilitate the design of molecular maps to select novel candidate genes for hearing or vestibular loss to conduct functional studies.
Collapse
Affiliation(s)
- Teresa Requena
- Otology & Neurotology Group CTS495, Department of Genomic Medicine-Centro de Genómica e Investigación Oncológica-Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain
| | - Alvaro Gallego-Martinez
- Otology & Neurotology Group CTS495, Department of Genomic Medicine-Centro de Genómica e Investigación Oncológica-Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain
| | - Jose A Lopez-Escamez
- Otology & Neurotology Group CTS495, Department of Genomic Medicine-Centro de Genómica e Investigación Oncológica-Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain.,Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.GRANADA, Hospital Virgen de las Nieves, Universidad de Granada, Granada, Spain.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
39
|
Goodyear RJ, Richardson GP. Structure, Function, and Development of the Tectorial Membrane: An Extracellular Matrix Essential for Hearing. Curr Top Dev Biol 2018; 130:217-244. [PMID: 29853178 DOI: 10.1016/bs.ctdb.2018.02.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The tectorial membrane is an extracellular matrix that lies over the apical surface of the auditory epithelia in the inner ears of reptiles, birds, and mammals. Recent studies have shown it is composed of a small set of proteins, some of which are only produced at high levels in the ear and many of which are the products of genes that, when mutated, cause nonsyndromic forms of human hereditary deafness. Quite how the proteins of the tectorial membrane are assembled within the lumen of the inner ear to form a structure that is precisely regulated in its size and physical properties along the length of a tonotopically organized hearing organ is a question that remains to be fully answered. In this brief review we will summarize what is known thus far about the structure, protein composition, and function of the tectorial membrane in birds and mammals, describe how the tectorial membrane develops, and discuss major events that have occurred during the evolution of this extracellular matrix.
Collapse
Affiliation(s)
- Richard J Goodyear
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Guy P Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom.
| |
Collapse
|
40
|
Agopiantz M, Xandre-Rodriguez L, Jin B, Urbistondoy G, Ialy-Radio C, Chalbi M, Wolf JP, Ziyyat A, Lefèvre B. Growth arrest specific 1 (Gas1) and glial cell line-derived neurotrophic factor receptor α1 (Gfrα1), two mouse oocyte glycosylphosphatidylinositol-anchored proteins, are involved in fertilisation. Reprod Fertil Dev 2018; 29:824-837. [PMID: 28442042 DOI: 10.1071/rd15367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/10/2015] [Indexed: 12/25/2022] Open
Abstract
Recently, Juno, the oocyte receptor for Izumo1, a male immunoglobulin, was discovered. Juno is an essential glycosylphosphatidylinositol (GIP)-anchored protein. This result did not exclude the participation of other GIP-anchored proteins in this process. After bibliographic and database searches we selected five GIP-anchored proteins (Cpm, Ephrin-A4, Gas1, Gfra1 and Rgmb) as potential oocyte candidates participating in fertilisation. Western blot and immunofluorescence analyses showed that only three were present on the mouse ovulated oocyte membrane and, of these, only two were clearly involved in the fertilisation process, namely growth arrest specific 1 (Gas1) and glial cell line-derived neurotrophic factor receptor α1 (Gfrα1). This was demonstrated by evaluating oocyte fertilisability after treatment of oocytes with antibodies against the selected proteins, with their respective short interference RNA or both. Gfrα1 and Gas1 seem to be neither redundant nor synergistic. In conclusion, oocyte Gas1 and Gfrα1 are both clearly involved in fertilisation.
Collapse
Affiliation(s)
- M Agopiantz
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - L Xandre-Rodriguez
- Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - B Jin
- Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - G Urbistondoy
- Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - C Ialy-Radio
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - M Chalbi
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - J-P Wolf
- Service d'Histologie Embryologie Biologie de la Reproduction - CECOS, Hôpital Cochin, AP-HP, F75014 Paris, France
| | - A Ziyyat
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - B Lefèvre
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| |
Collapse
|
41
|
Olivocochlear efferents: Their action, effects, measurement and uses, and the impact of the new conception of cochlear mechanical responses. Hear Res 2017; 362:38-47. [PMID: 29291948 DOI: 10.1016/j.heares.2017.12.012] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/08/2017] [Accepted: 12/12/2017] [Indexed: 12/27/2022]
Abstract
The anatomy and physiology of olivocochlear (OC) efferents are reviewed. To help interpret these, recent advances in cochlear mechanics are also reviewed. Lateral OC (LOC) efferents innervate primary auditory-nerve (AN) fiber dendrites. The most important LOC function may be to reduce auditory neuropathy. Medial OC (MOC) efferents innervate the outer hair cells (OHCs) and act to turn down the gain of cochlear amplification. Cochlear amplification had been thought to act only through basilar membrane (BM) motion, but recent reports show that motion near the reticular lamina (RL) is amplified more than BM motion, and that RL-motion amplification extends to several octaves below the local characteristic frequency. Data on efferent effects on AN-fiber responses, otoacoustic emissions (OAEs) and human psychophysics are reviewed and reinterpreted in the light of the new cochlear-mechanical data. The possible origin of OAEs in RL motion is considered. MOC-effect measuring methods and MOC-induced changes in human responses are also reviewed, including that ipsilateral and contralateral sound can produce MOC effects with different patterns across frequency. MOC efferents help to reduce damage due to acoustic trauma. Many, but not all, reports show that subjects with stronger contralaterally-evoked MOC effects have better ability to detect signals (e.g. speech) in noise, and that MOC effects can be modulated by attention.
Collapse
|
42
|
Goodyear RJ, Lu X, Deans MR, Richardson GP. A tectorin-based matrix and planar cell polarity genes are required for normal collagen-fibril orientation in the developing tectorial membrane. Development 2017; 144:3978-3989. [PMID: 28935705 PMCID: PMC5702074 DOI: 10.1242/dev.151696] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 09/08/2017] [Indexed: 12/20/2022]
Abstract
The tectorial membrane is an extracellular structure of the cochlea. It develops on the surface of the auditory epithelium and contains collagen fibrils embedded in a tectorin-based matrix. The collagen fibrils are oriented radially with an apically directed slant - a feature considered crucial for hearing. To determine how this pattern is generated, collagen-fibril formation was examined in mice lacking a tectorin-based matrix, epithelial cilia or the planar cell polarity genes Vangl2 and Ptk7 In wild-type mice, collagen-fibril bundles appear within a tectorin-based matrix at E15.5 and, as fibril number rapidly increases, become co-aligned and correctly oriented. Epithelial width measurements and data from Kif3acKO mice suggest, respectively, that radial stretch and cilia play little, if any, role in determining normal collagen-fibril orientation; however, evidence from tectorin-knockout mice indicates that confinement is important. PRICKLE2 distribution reveals the planar cell polarity axis in the underlying epithelium is organised along the length of the cochlea and, in mice in which this polarity is disrupted, the apically directed collagen offset is no longer observed. These results highlight the importance of the tectorin-based matrix and epithelial signals for precise collagen organisation in the tectorial membrane.
Collapse
Affiliation(s)
- Richard J Goodyear
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Xiaowei Lu
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22098, USA
| | - Michael R Deans
- Department of Surgery, Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Guy P Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| |
Collapse
|
43
|
Mao B, Moss CF, Wilkinson GS. Age-dependent gene expression in the inner ear of big brown bats (Eptesicus fuscus). PLoS One 2017; 12:e0186667. [PMID: 29073148 PMCID: PMC5658057 DOI: 10.1371/journal.pone.0186667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 10/05/2017] [Indexed: 12/25/2022] Open
Abstract
For echolocating bats, hearing is essential for survival. Specializations for detecting and processing high frequency sounds are apparent throughout their auditory systems. Recent studies on echolocating mammals have reported evidence of parallel evolution in some hearing-related genes in which distantly related groups of echolocating animals (bats and toothed whales), cluster together in gene trees due to apparent amino acid convergence. However, molecular adaptations can occur not only in coding sequences, but also in the regulation of gene expression. The aim of this study was to examine the expression of hearing-related genes in the inner ear of developing big brown bats, Eptesicus fuscus, during the period in which echolocation vocalizations increase dramatically in frequency. We found that seven genes were significantly upregulated in juveniles relative to adults, and that the expression of four genes through development correlated with estimated age. Compared to available data for mice, it appears that expression of some hearing genes is extended in juvenile bats. These results are consistent with a prolonged growth period required to develop larger cochlea relative to body size, a later maturation of high frequency hearing, and a greater dependence on high frequency hearing in echolocating bats.
Collapse
Affiliation(s)
- Beatrice Mao
- Department of Biology, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Cynthia F. Moss
- Department of Psychological and Brain Sciences, Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Gerald S. Wilkinson
- Department of Biology, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
44
|
Tlili A, Fahd Al Mutery A, Mahfood M, Kamal Eddine Ahmad Mohamed W, Bajou K. Identification of a novel frameshift mutation in the ILDR1 gene in a UAE family, mutations review and phenotype genotype correlation. PLoS One 2017; 12:e0185281. [PMID: 28945813 PMCID: PMC5612695 DOI: 10.1371/journal.pone.0185281] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/08/2017] [Indexed: 12/17/2022] Open
Abstract
Autosomal recessive non-syndromic hearing loss is one of the most common monogenic diseases. It is characterized by high allelic and locus heterogeneities that make a precise diagnosis difficult. In this study, whole-exome sequencing was performed for an affected patient allowing us to identify a new frameshift mutation (c.804delG) in the Immunoglobulin-Like Domain containing Receptor-1 (ILDR1) gene. Direct Sanger sequencing and segregation analysis were performed for the family pedigree. The mutation was homozygous in all affected siblings but heterozygous in the normal consanguineous parents. The present study reports a first ILDR1 gene mutation in the UAE population and confirms that the whole-exome sequencing approach is a robust tool for the diagnosis of monogenic diseases with high levels of allelic and locus heterogeneity. In addition, by reviewing all reported ILDR1 mutations, we attempt to establish a genotype phenotype correlation to explain the phenotypic variability observed at low frequencies.
Collapse
Affiliation(s)
- Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Human Genetics and Stem cell laboratory, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates
- * E-mail:
| | - Abdullah Fahd Al Mutery
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mona Mahfood
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Khalid Bajou
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Human Genetics and Stem cell laboratory, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
45
|
Fettiplace R. Hair Cell Transduction, Tuning, and Synaptic Transmission in the Mammalian Cochlea. Compr Physiol 2017; 7:1197-1227. [PMID: 28915323 DOI: 10.1002/cphy.c160049] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sound pressure fluctuations striking the ear are conveyed to the cochlea, where they vibrate the basilar membrane on which sit hair cells, the mechanoreceptors of the inner ear. Recordings of hair cell electrical responses have shown that they transduce sound via submicrometer deflections of their hair bundles, which are arrays of interconnected stereocilia containing the mechanoelectrical transducer (MET) channels. MET channels are activated by tension in extracellular tip links bridging adjacent stereocilia, and they can respond within microseconds to nanometer displacements of the bundle, facilitated by multiple processes of Ca2+-dependent adaptation. Studies of mouse mutants have produced much detail about the molecular organization of the stereocilia, the tip links and their attachment sites, and the MET channels localized to the lower end of each tip link. The mammalian cochlea contains two categories of hair cells. Inner hair cells relay acoustic information via multiple ribbon synapses that transmit rapidly without rundown. Outer hair cells are important for amplifying sound-evoked vibrations. The amplification mechanism primarily involves contractions of the outer hair cells, which are driven by changes in membrane potential and mediated by prestin, a motor protein in the outer hair cell lateral membrane. Different sound frequencies are separated along the cochlea, with each hair cell being tuned to a narrow frequency range; amplification sharpens the frequency resolution and augments sensitivity 100-fold around the cell's characteristic frequency. Genetic mutations and environmental factors such as acoustic overstimulation cause hearing loss through irreversible damage to the hair cells or degeneration of inner hair cell synapses. © 2017 American Physiological Society. Compr Physiol 7:1197-1227, 2017.
Collapse
Affiliation(s)
- Robert Fettiplace
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
46
|
Burwood GWS, Russell IJ, Lukashkin AN. Rippling pattern of distortion product otoacoustic emissions evoked by high-frequency primaries in guinea pigs. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:855. [PMID: 28863551 DOI: 10.1121/1.4998584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The origin of ripples in distortion product otoacoustic emission (DPOAE) amplitude which appear at specific DPOAE frequencies during f1 tone sweeps using fixed high frequency f2 (>20 kHz) in guinea pigs is investigated. The peaks of the ripples, or local DPOAE amplitude maxima, are separated by approximately half octave intervals and are accompanied by phase oscillations. The local maxima appear at the same frequencies in DPOAEs of different order and velocity responses of the stapes and do not shift with increasing levels of the primaries. A suppressor tone had little effect on the frequencies of the maxima, but partially suppressed DPOAE amplitude when it was placed close to the f2 frequencies. These findings agree with earlier observations that the maxima occur at the same DPOAE frequencies, which are independent of the f2 and the primary ratio, and thus are likely to be associated with DPOAE propagation mechanisms. Furthermore, the separation of the local maxima by approximately half an octave may suggest that the maxima are due to interference of the travelling waves along the basilar membrane at the frequency of the DPOAE. It is suggested that the rippling pattern appears because of interaction between DPOAE reverse travelling waves with standing waves formed in the cochlea.
Collapse
Affiliation(s)
- George W S Burwood
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Ian J Russell
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Andrei N Lukashkin
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| |
Collapse
|
47
|
Amplification mode differs along the length of the mouse cochlea as revealed by connexin 26 deletion from specific gap junctions. Sci Rep 2017; 7:5185. [PMID: 28701711 PMCID: PMC5507891 DOI: 10.1038/s41598-017-04279-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/17/2017] [Indexed: 01/26/2023] Open
Abstract
The sharp frequency tuning and exquisite sensitivity of the mammalian cochlea is due to active forces delivered by outer hair cells (OHCs) to the cochlear partition. Force transmission is mediated and modulated by specialized cells, including Deiters’ cells (DCs) and pillar cells (PCs), coupled by gap-junctions composed of connexin 26 (Cx26) and Cx30. We created a mouse with conditional Cx26 knock-out (Cx26 cKO) in DCs and PCs that did not influence sensory transduction, receptor-current-driving-voltage, low-mid-frequency distortion-product-otoacoustic-emissions (DPOAEs), and passive basilar membrane (BM) responses. However, the Cx26 cKO desensitizes mid-high-frequency DPOAEs and active BM responses and sensitizes low-mid-frequency neural excitation. This functional segregation may indicate that the flexible, apical turn cochlear partition facilitates transfer of OHC displacements (isotonic forces) for cochlear amplification and neural excitation. DC and PC Cx26 expression is essential for cochlear amplification in the stiff basal turn, possibly through maintaining cochlear partition mechanical impedance, thereby ensuring effective transfer of OHC isometric forces.
Collapse
|
48
|
Two-Dimensional Cochlear Micromechanics Measured In Vivo Demonstrate Radial Tuning within the Mouse Organ of Corti. J Neurosci 2017; 36:8160-73. [PMID: 27488636 DOI: 10.1523/jneurosci.1157-16.2016] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/07/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED The exquisite sensitivity and frequency discrimination of mammalian hearing underlie the ability to understand complex speech in noise. This requires force generation by cochlear outer hair cells (OHCs) to amplify the basilar membrane traveling wave; however, it is unclear how amplification is achieved with sharp frequency tuning. Here we investigated the origin of tuning by measuring sound-induced 2-D vibrations within the mouse organ of Corti in vivo Our goal was to determine the transfer function relating the radial shear between the structures that deflect the OHC bundle, the tectorial membrane and reticular lamina, to the transverse motion of the basilar membrane. We found that, after normalizing their responses to the vibration of the basilar membrane, the radial vibrations of the tectorial membrane and reticular lamina were tuned. The radial tuning peaked at a higher frequency than transverse basilar membrane tuning in the passive, postmortem condition. The radial tuning was similar in dead mice, indicating that this reflected passive, not active, mechanics. These findings were exaggerated in Tecta(C1509G/C1509G) mice, where the tectorial membrane is detached from OHC stereocilia, arguing that the tuning of radial vibrations within the hair cell epithelium is distinct from tectorial membrane tuning. Together, these results reveal a passive, frequency-dependent contribution to cochlear filtering that is independent of basilar membrane filtering. These data argue that passive mechanics within the organ of Corti sharpen frequency selectivity by defining which OHCs enhance the vibration of the basilar membrane, thereby tuning the gain of cochlear amplification. SIGNIFICANCE STATEMENT Outer hair cells amplify the traveling wave within the mammalian cochlea. The resultant gain and frequency sharpening are necessary for speech discrimination, particularly in the presence of background noise. Here we measured the 2-D motion of the organ of Corti in mice and found that the structures that stimulate the outer hair cell stereocilia, the tectorial membrane and reticular lamina, were sharply tuned in the radial direction. Radial tuning was similar in dead mice and in mice lacking a tectorial membrane. This suggests that radial tuning comes from passive mechanics within the hair cell epithelium, and that these mechanics, at least in part, may tune the gain of cochlear amplification.
Collapse
|
49
|
Recio-Spinoso A, Oghalai JS. Mechanical tuning and amplification within the apex of the guinea pig cochlea. J Physiol 2017; 595:4549-4561. [PMID: 28382742 DOI: 10.1113/jp273881] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/28/2017] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS A popular conception of mammalian cochlear physiology is that tuned mechanical vibration of the basilar membrane defines the frequency response of the innervating auditory nerve fibres However, the data supporting these concepts come from vibratory measurements at cochlear locations tuned to high frequencies (>7 kHz). Here, we measured the travelling wave in regions of the guinea pig cochlea that respond to low frequencies (<2 kHz) and found that mechanical tuning was broad and did not match auditory nerve tuning characteristics. Non-linear amplification of the travelling wave functioned over a broad frequency range and did not substantially sharpen frequency tuning. Thus, the neural encoding of low-frequency sounds, which includes most of the information conveyed by human speech, is not principally determined by basilar membrane mechanics. ABSTRACT The popular notion of mammalian cochlear function is that auditory nerves are tuned to respond best to different sound frequencies because basilar membrane vibration is mechanically tuned to different frequencies along its length. However, this concept has only been demonstrated in regions of the cochlea tuned to frequencies >7 kHz, not in regions sensitive to lower frequencies where human speech is encoded. Here, we overcame historical technical limitations and non-invasively measured sound-induced vibrations at four locations distributed over the apical two turns of the guinea pig cochlea. In turn 3, the responses demonstrated low-pass filter characteristics. In turn 2, the responses were low-pass-like, in that they occasionally did have a slight peak near the corner frequency. The corner frequencies of the responses were tonotopically tuned and ranged from 384 to 668 Hz. Non-linear gain, or amplification of the vibrations in response to low-intensity stimuli, was found both below and above the corner frequencies. Post mortem, cochlear gain disappeared. The non-linear gain was typically 10-30 dB and was broad-band rather than sharply tuned. However, the gain did reach nearly 50 dB in turn 2 for higher stimulus frequencies, nearly the amount of gain found in basal cochlear regions. Thus, our data prove that mechanical responses do not match neural responses and that cochlear amplification does not appreciably sharpen frequency tuning for cochlear regions that respond to frequencies <2 kHz. These data indicate that the non-linear processing of sound performed by the guinea pig cochlea varies substantially between the cochlear apex and base.
Collapse
Affiliation(s)
- Alberto Recio-Spinoso
- Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha, Albacete, Spain
| | - John S Oghalai
- Deparment of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
50
|
Sellon JB, Ghaffari R, Freeman DM. Geometric Requirements for Tectorial Membrane Traveling Waves in the Presence of Cochlear Loads. Biophys J 2017; 112:1059-1062. [PMID: 28237025 PMCID: PMC5375137 DOI: 10.1016/j.bpj.2017.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/25/2017] [Accepted: 02/03/2017] [Indexed: 11/30/2022] Open
Abstract
Recent studies suggest that wave motions of the tectorial membrane (TM) play a critical role in determining the frequency selectivity of hearing. However, frequency tuning is also thought to be limited by viscous loss in subtectorial fluid. Here, we analyze effects of this loss and other cochlear loads on TM traveling waves. Using a viscoelastic model, we demonstrate that hair bundle stiffness has little effect on TM traveling waves calculated with physiological parameters, that the limbal attachment can cause small (<20%) increases in TM wavelength, and that viscous loss in the subtectorial fluid can cause small (<20%) decreases in TM wave decay constants. However, effects of viscous loss in the subtectorial fluid are significantly increased if TM thickness is decreased. In contrast, increasing TM thickness above its physiological range has little effect on the wave, suggesting that the TM is just thick enough to maximize the spatial extent of the TM traveling wave.
Collapse
Affiliation(s)
- Jonathan B Sellon
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| | - Roozbeh Ghaffari
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Dennis M Freeman
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|