1
|
Dong J, Dai M, Guo Z, Xu T, Li F, Li J. The Targets of Deep Brain Stimulation in the Treatment of Treatment-Resistant Depression: A Review. Brain Behav 2025; 15:e70505. [PMID: 40321033 PMCID: PMC12050660 DOI: 10.1002/brb3.70505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 03/24/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
PURPOSE The purpose of this review is to evaluate the current state and potential future directions of deep brain stimulation (DBS) therapy for treatment-resistant depression (TRD), a condition that significantly impacts patients' quality of life and for which conventional treatments are often ineffective. METHOD This review synthesizes evidence from clinical trials and preclinical studies published in five years, identified through PubMed searches using keywords ("Deep Brain Stimulation" OR DBS) AND ("Treatment-Resistant Depression" OR TRD). Included studies encompassed clinical research (randomized/non-randomized trials, cohort studies) and mechanistic preclinical studies, excluding non-English publications and nonhuman experiments. Screening prioritized neuroanatomical targets (e.g., SCG, NAcc) and stimulation parameter optimization data. Examining the therapeutic mechanisms of DBS, the neuroanatomical targets utilized, and the clinical outcomes observed. It also discusses the challenges faced in DBS application and proposes potential technological advancements, such as closed-loop therapy and fiber tracking technology. FINDING Preliminary evidence exists regarding the efficacy and safety of DBS in the treatment of TRD in the subcortical cingulate gyrus (SCG), nucleus accumbens (NAcc), ventral capsule/ventral striatum (VC/VS), anterior limb of the internal capsule (ALIC), and so forth. Nevertheless, the optimal stimulation target remains undetermined. The review highlights the complexity of TRD and the need for personalized treatment strategies, noting that genetic, epigenetic, and neurophysiological changes are implicated in DBS's therapeutic effects. CONCLUSION In conclusion, while DBS for TRD remains an experimental therapy, it offers a unique and potentially effective treatment option for patients unresponsive to traditional treatments. The review emphasizes the need for further research to refine DBS targets and parameters, improve patient selection, and develop personalized treatment plans to enhance efficacy and safety in TRD management.
Collapse
Affiliation(s)
- Jianyang Dong
- Department of RehabilitationShenzhen University, Shenzhen University General HospitalShenzhenChina
| | - Mengying Dai
- Department of RehabilitationShenzhen Children's HospitalShenzhenChina
| | - Zinan Guo
- Department of RehabilitationShenzhen University, Shenzhen University General HospitalShenzhenChina
| | - Ting Xu
- Department of Neurology, Guangzhou First People's HospitalSouth China University of TechnologyGuangzhouChina
| | - Fangming Li
- Department of NeurologyShenzhen University, Shenzhen University General HospitalShenzhenChina
| | - Jianjun Li
- Department of RehabilitationShenzhen University, Shenzhen University General HospitalShenzhenChina
| |
Collapse
|
2
|
Giacolini T, Alcaro A, Conversi D, Tarsitani L. Depression in adolescence and young adulthood: the difficulty to integrate motivational/emotional systems. Front Psychol 2025; 15:1391664. [PMID: 39834756 PMCID: PMC11743547 DOI: 10.3389/fpsyg.2024.1391664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 11/27/2024] [Indexed: 01/22/2025] Open
Abstract
Depression is presented as a multi-factorial bio-psycho-social expression that has evolved primarily as an effect of stressors related to the motivational/emotional systems that regulate the BrainMind in our relationship with conspecifics. These stressors may be caused by two sources of threat, firstly, the loss of bonding with the caregiver and later with a partner and/or group which relates to the SEPARATION (PANIC/GRIEF) system, secondly, social defeat as an expression of the social competition and social dominance. The sexual maturity drives the individual to social competition and social dominance, even if the latter often occurs before sexual maturity, e.g., chickens, dogs, non-human primates, and humans. Depression is an evolutionarily conserved mechanism in mammals to terminate both separation anxiety, so as to protect the vulnerable social brain from the consequences of prolonged separation anxiety, and the stress of social competition when social defeat is predictable. Adolescence and Young adulthood are particularly susceptible to these two types of threat because of human developmental characteristics that are summarized by the term neoteny. This refers to the slowing down of growth and development, resulting in both a prolonged period of dependence on a caring/protective adult and the persistence of juvenile characteristics throughout life. Therefore, neoteny makes the transition from childhood to sexual maturity more dramatic, making the integration of the SEPARATION (PANIC/GRIEF) system with the dynamics of social competition and dominance more stressful and a source of depression. Stress is an expression of the HPA-Hypothalamic-Pituitary-Adrenal axis that articulates with other systems, mainly the autonomic nervous system and the immune-inflammatory system. The latter is believed to be one of the most significant components in the dynamics of depressive processes, connected to the prodromes of its activation in childhood, under the pressure of environmental and relational stressors which can lead to learned helplessness. The recurrence of stressors makes it easier for the immune-inflammatory system to be activated in later life, which could make a significant contribution to the establishment of a depressive disease. The possible contribution of children's identification processes with their parents' depressive personalities through observational learning is considered.
Collapse
Affiliation(s)
- Teodosio Giacolini
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Antonio Alcaro
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - David Conversi
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Tarsitani
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Haidary M, Arif S, Hossaini D, Madadi S, Akbari E, Rezayee H. Pain-Insomnia-Depression Syndrome: Triangular Relationships, Pathobiological Correlations, Current Treatment Modalities, and Future Direction. Pain Ther 2024; 13:733-744. [PMID: 38814408 PMCID: PMC11255165 DOI: 10.1007/s40122-024-00614-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
Pain-insomnia-depression syndrome (PIDS) is a complex triad of chronic pain, insomnia, and depression that has profound effects on an individual's quality of life and mental health. The pathobiological context of PIDS involves complex neurobiological and physiological mechanisms, including alterations in neurotransmitter systems and impaired pain processing pathways. The first-line therapeutic approaches for the treatment of chronic pain, depression, and insomnia are a combination of pharmacological and non-pharmacological therapies. In cases where patients do not respond adequately to these treatments, additional interventions such as deep brain stimulation (DBS) may be required. Despite advances in understanding and treatment, there are still gaps in knowledge that need to be addressed. To improve our understanding, future research should focus on conducting longitudinal studies to uncover temporal associations, identify biomarkers and genetic markers associated with PIDS, examine the influence of psychosocial factors on treatment responses, and develop innovative interventions that address the complex nature of PIDS. The aim of this study is to provide a comprehensive overview of these components and to discuss their underlying pathobiological relationships.
Collapse
Affiliation(s)
- Murtaza Haidary
- Medical Research and Technology Center, Khatam Al-Nabieen University, Kabul, Afghanistan.
| | - Shamim Arif
- Medical Research Center, Kateb University, Kabul, Afghanistan
| | - Dawood Hossaini
- Department of Biology and Microbiology, Faculty of Medical Laboratory Technology, Khatam Al-Nabieen University, Kabul, Afghanistan
| | - Shekiba Madadi
- Medical Research Center, Kateb University, Kabul, Afghanistan
| | - Elham Akbari
- Department of Biology and Microbiology, Faculty of Medical Laboratory Technology, Khatam Al-Nabieen University, Kabul, Afghanistan
| | - Hossain Rezayee
- Department of Chemistry and Biochemistry, Faculty of Medical Laboratory Technology, Khatam Al-Nabieen University, Kabul, Afghanistan
| |
Collapse
|
4
|
Remore LG, Tolossa M, Wei W, Karnib M, Tsolaki E, Rifi Z, Bari AA. Deep Brain Stimulation of the Medial Forebrain Bundle for Treatment-Resistant Depression: A Systematic Review Focused on the Long-Term Antidepressive Effect. Neuromodulation 2024; 27:690-700. [PMID: 37115122 DOI: 10.1016/j.neurom.2023.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023]
Abstract
OBJECTIVE Major depression affects millions of people worldwide and has important social and economic consequences. Since up to 30% of patients do not respond to several lines of antidepressive drugs, deep brain stimulation (DBS) has been evaluated for the management of treatment-resistant depression (TRD). The superolateral branch of the medial forebrain bundle (slMFB) appears as a "hypothesis-driven target" because of its role in the reward-seeking system, which is dysfunctional in depression. Although initial results of slMFB-DBS from open-label studies were promising and characterized by a rapid clinical response, long-term outcomes of neurostimulation for TRD deserve particular attention. Therefore, we performed a systematic review focused on the long-term outcome of slMFB-DBS. MATERIALS AND METHODS A literature search using Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria was conducted to identify all studies reporting changes in depression scores after one-year follow-up and beyond. Patient, disease, surgical, and outcome data were extracted for statistical analysis. The Montgomery-Åsberg Depression Rating Scale (ΔMADRS) was used as the clinical outcome, defined as percentage reduction from baseline to follow-up evaluation. Responders' and remitters' rates were also calculated. RESULTS From 56 studies screened for review, six studies comprising 34 patients met the inclusion criteria and were analyzed. After one year of active stimulation, ΔMADRS was 60.7% ± 4%; responders' and remitters' rates were 83.8% and 61.5%, respectively. At the last follow-up, four to five years after the implantation, ΔMADRS reached 74.7% ± 4.6%. The most common side effects were stimulation related and reversible with parameter adjustments. CONCLUSIONS slMFB-DBS appears to have a strong antidepressive effect that increases over the years. Nevertheless, to date, the overall number of patients receiving implantations is limited, and the slMFB-DBS surgical technique seems to have an important impact on the clinical outcome. Further multicentric studies in a larger population are needed to confirm slMFB-DBS clinical outcomes.
Collapse
Affiliation(s)
- Luigi Gianmaria Remore
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA; University of Milan "La Statale," Milan, Italy.
| | - Meskerem Tolossa
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Wexin Wei
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Evangelia Tsolaki
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Ziad Rifi
- University of California Los Angeles, Los Angeles, CA, USA
| | - Ausaf Ahmad Bari
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
5
|
Lu B, Chen X, Xavier Castellanos F, Thompson PM, Zuo XN, Zang YF, Yan CG. The power of many brains: Catalyzing neuropsychiatric discovery through open neuroimaging data and large-scale collaboration. Sci Bull (Beijing) 2024; 69:1536-1555. [PMID: 38519398 DOI: 10.1016/j.scib.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/12/2023] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
Recent advances in open neuroimaging data are enhancing our comprehension of neuropsychiatric disorders. By pooling images from various cohorts, statistical power has increased, enabling the detection of subtle abnormalities and robust associations, and fostering new research methods. Global collaborations in imaging have furthered our knowledge of the neurobiological foundations of brain disorders and aided in imaging-based prediction for more targeted treatment. Large-scale magnetic resonance imaging initiatives are driving innovation in analytics and supporting generalizable psychiatric studies. We also emphasize the significant role of big data in understanding neural mechanisms and in the early identification and precise treatment of neuropsychiatric disorders. However, challenges such as data harmonization across different sites, privacy protection, and effective data sharing must be addressed. With proper governance and open science practices, we conclude with a projection of how large-scale imaging resources and collaborations could revolutionize diagnosis, treatment selection, and outcome prediction, contributing to optimal brain health.
Collapse
Affiliation(s)
- Bin Lu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Chen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Francisco Xavier Castellanos
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York 10016, USA; Nathan Kline Institute for Psychiatric Research, Orangeburg 10962, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA
| | - Xi-Nian Zuo
- Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; National Basic Science Data Center, Beijing 100190, China
| | - Yu-Feng Zang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310004, China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou 310030, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairment, Hangzhou 311121, China
| | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China; International Big-Data Center for Depression Research, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
6
|
Leserri S, Segura-Amil A, Nowacki A, Debove I, Petermann K, Schäppi L, Preti MG, Van De Ville D, Pollo C, Walther S, Nguyen TAK. Linking connectivity of deep brain stimulation of nucleus accumbens area with clinical depression improvements: a retrospective longitudinal case series. Eur Arch Psychiatry Clin Neurosci 2024; 274:685-696. [PMID: 37668723 PMCID: PMC10994999 DOI: 10.1007/s00406-023-01683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023]
Abstract
Treatment-resistant depression is a severe form of major depressive disorder and deep brain stimulation is currently an investigational treatment. The stimulation's therapeutic effect may be explained through the functional and structural connectivities between the stimulated area and other brain regions, or to depression-associated networks. In this longitudinal, retrospective study, four female patients with treatment-resistant depression were implanted for stimulation in the nucleus accumbens area at our center. We analyzed the structural and functional connectivity of the stimulation area: the structural connectivity was investigated with probabilistic tractography; the functional connectivity was estimated by combining patient-specific stimulation volumes and a normative functional connectome. These structural and functional connectivity profiles were then related to four clinical outcome scores. At 1-year follow-up, the remission rate was 66%. We observed a consistent structural connectivity to Brodmann area 25 in the patient with the longest remission phase. The functional connectivity analysis resulted in patient-specific R-maps describing brain areas significantly correlated with symptom improvement in this patient, notably the prefrontal cortex. But the connectivity analysis was mixed across patients, calling for confirmation in a larger cohort and over longer time periods.
Collapse
Affiliation(s)
- Simona Leserri
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- ARTORG Center for Biomedical Engineering Research, University Bern, Bern, Switzerland
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alba Segura-Amil
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- ARTORG Center for Biomedical Engineering Research, University Bern, Bern, Switzerland
| | - Andreas Nowacki
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ines Debove
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Katrin Petermann
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lea Schäppi
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Maria Giulia Preti
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Department of Radiology and Medical InformaticsFaculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dimitri Van De Ville
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Department of Radiology and Medical InformaticsFaculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Claudio Pollo
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - T A Khoa Nguyen
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- ARTORG Center for Biomedical Engineering Research, University Bern, Bern, Switzerland.
- ARTORG IGT, Murtenstrasse 50, 3008, Bern, Switzerland.
| |
Collapse
|
7
|
Kilian HM, Schiller B, Meyer-Doll DM, Heinrichs M, Schläpfer TE. Normalized affective responsiveness following deep brain stimulation of the medial forebrain bundle in depression. Transl Psychiatry 2024; 14:6. [PMID: 38191528 PMCID: PMC10774255 DOI: 10.1038/s41398-023-02712-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
Deep brain stimulation (DBS) of the supero-lateral medial forebrain bundle (slMFB) is associated with rapid and sustained antidepressant effects in treatment-resistant depression (TRD). Beyond that, improvements in social functioning have been reported. However, it is unclear whether social skills, the basis of successful social functioning, are systematically altered following slMFB DBS. Therefore, the current study investigated specific social skills (affective empathy, compassion, and theory of mind) in patients with TRD undergoing slMFB DBS in comparison to healthy subjects. 12 patients with TRD and 12 age- and gender-matched healthy subjects (5 females) performed the EmpaToM, a video-based naturalistic paradigm differentiating between affective empathy, compassion, and theory of mind. Patients were assessed before and three months after DBS onset and compared to an age- and gender-matched sample of healthy controls. All data were analyzed using non-parametric Mann-Whitney U tests. DBS treatment significantly affected patients' affective responsiveness towards emotional versus neutral situations (i.e. affective empathy): While their affective responsiveness was reduced compared to healthy subjects at baseline, they showed normalized affective responsiveness three months after slMFB DBS onset. No effects occurred in other domains with persisting deficits in compassion and intact socio-cognitive skills. Active slMFB DBS resulted in a normalized affective responsiveness in patients with TRD. This specific effect might represent one factor supporting the resumption of social activities after recovery from chronic depression. Considering the small size of this unique sample as well as the explorative nature of this study, future studies are needed to investigate the robustness of these effects.
Collapse
Affiliation(s)
- Hannah Marlene Kilian
- Division of Interventional Biological Psychiatry, Department of Psychiatry and Psychotherapy Medical Center - University of Freiburg, Faculty of Medicine, DE-79104, Freiburg, Germany.
| | - Bastian Schiller
- Department of Psychology, Laboratory for Biological Psychology, Clinical Psychology and Psychotherapy, University of Freiburg, DE-79104, Freiburg, Germany
| | - Dora Margarete Meyer-Doll
- Division of Interventional Biological Psychiatry, Department of Psychiatry and Psychotherapy Medical Center - University of Freiburg, Faculty of Medicine, DE-79104, Freiburg, Germany
| | - Markus Heinrichs
- Department of Psychology, Laboratory for Biological Psychology, Clinical Psychology and Psychotherapy, University of Freiburg, DE-79104, Freiburg, Germany
| | - Thomas Eduard Schläpfer
- Division of Interventional Biological Psychiatry, Department of Psychiatry and Psychotherapy Medical Center - University of Freiburg, Faculty of Medicine, DE-79104, Freiburg, Germany
| |
Collapse
|
8
|
van Rooij SJH, Arulpragasam AR, McDonald WM, Philip NS. Accelerated TMS - moving quickly into the future of depression treatment. Neuropsychopharmacology 2024; 49:128-137. [PMID: 37217771 PMCID: PMC10700378 DOI: 10.1038/s41386-023-01599-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/24/2023]
Abstract
Accelerated TMS is an emerging application of Transcranial Magnetic Stimulation (TMS) aimed to reduce treatment length and improve response time. Extant literature generally shows similar efficacy and safety profiles compared to the FDA-cleared protocols for TMS to treat major depressive disorder (MDD), yet accelerated TMS research remains at a very early stage in development. The few applied protocols have not been standardized and vary significantly across a set of core elements. In this review, we consider nine elements that include treatment parameters (i.e., frequency and inter-stimulation interval), cumulative exposure (i.e., number of treatment days, sessions per day, and pulses per session), individualized parameters (i.e., treatment target and dose), and brain state (i.e., context and concurrent treatments). Precisely which of these elements is critical and what parameters are most optimal for the treatment of MDD remains unclear. Other important considerations for accelerated TMS include durability of effect, safety profiles as doses increase over time, the possibility and advantage of individualized functional neuronavigation, use of biological readouts, and accessibility for patients most in need of the treatment. Overall, accelerated TMS appears to hold promise to reduce treatment time and achieve rapid reduction in depressive symptoms, but at this time significant work remains to be done. Rigorous clinical trials combining clinical outcomes and neuroscientific measures such as electroencephalogram, magnetic resonance imaging and e-field modeling are needed to define the future of accelerated TMS for MDD.
Collapse
Affiliation(s)
- Sanne J H van Rooij
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Amanda R Arulpragasam
- Alpert Medical School of Brown University, Department of Psychiatry and Human Behavior, Providence, RI, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA
| | - William M McDonald
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Noah S Philip
- Alpert Medical School of Brown University, Department of Psychiatry and Human Behavior, Providence, RI, USA.
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA.
| |
Collapse
|
9
|
Fan JM, Lee AM, Sellers KK, Woodworth K, Makhoul GS, Liu TX, Henderson C, Astudillo Maya DA, Martinez R, Zamanian H, Speidel BA, Khambhati AN, Rao VR, Sugrue LP, Scangos KW, Chang EF, Krystal AD. Intracranial electrical stimulation of corticolimbic sites modulates arousal in humans. Brain Stimul 2023; 16:1072-1082. [PMID: 37385540 PMCID: PMC10634663 DOI: 10.1016/j.brs.2023.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Humans routinely shift their sleepiness and wakefulness levels in response to emotional factors. The diversity of emotional factors that modulates sleep-wake levels suggests that the ascending arousal network may be intimately linked with networks that mediate mood. Indeed, while animal studies have identified select limbic structures that play a role in sleep-wake regulation, the breadth of corticolimbic structures that directly modulates arousal in humans remains unknown. OBJECTIVE We investigated whether select regional activation of the corticolimbic network through direct electrical stimulation can modulate sleep-wake levels in humans, as measured by subjective experience and behavior. METHODS We performed intensive inpatient stimulation mapping in two human participants with treatment resistant depression, who underwent intracranial implantation with multi-site, bilateral depth electrodes. Stimulation responses of sleep-wake levels were measured by subjective surveys (i.e. Stanford Sleepiness Scale and visual-analog scale of energy) and a behavioral arousal score. Biomarker analyses of sleep-wake levels were performed by assessing spectral power features of resting-state electrophysiology. RESULTS Our findings demonstrated three regions whereby direct stimulation modulated arousal, including the orbitofrontal cortex (OFC), subgenual cingulate (SGC), and, most robustly, ventral capsule (VC). Modulation of sleep-wake levels was frequency-specific: 100Hz OFC, SGC, and VC stimulation promoted wakefulness, whereas 1Hz OFC stimulation increased sleepiness. Sleep-wake levels were correlated with gamma activity across broad brain regions. CONCLUSIONS Our findings provide evidence for the overlapping circuitry between arousal and mood regulation in humans. Furthermore, our findings open the door to new treatment targets and the consideration of therapeutic neurostimulation for sleep-wake disorders.
Collapse
Affiliation(s)
- Joline M Fan
- Department of Neurology, University of California, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
| | - A Moses Lee
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Kristin K Sellers
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA; Department of Neurosurgery, University of California, San Francisco, CA, USA
| | - Kai Woodworth
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Ghassan S Makhoul
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Tony X Liu
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Catherine Henderson
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Daniela A Astudillo Maya
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Rebecca Martinez
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Hashem Zamanian
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Benjamin A Speidel
- Department of Neurology, University of California, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Ankit N Khambhati
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA; Department of Neurosurgery, University of California, San Francisco, CA, USA
| | - Vikram R Rao
- Department of Neurology, University of California, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Leo P Sugrue
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA; Department of Radiology, University of California, San Francisco, CA, USA
| | - Katherine W Scangos
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Edward F Chang
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA; Department of Neurosurgery, University of California, San Francisco, CA, USA
| | - Andrew D Krystal
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
10
|
Li G, Bo B, Wang P, Qian P, Li M, Li Y, Tong C, Zhang K, Zhang B, Jiang T, Liang Z, Duan X. Instantaneous antidepressant effect of lateral habenula deep brain stimulation in rats studied with functional MRI. eLife 2023; 12:e84693. [PMID: 37261976 PMCID: PMC10234627 DOI: 10.7554/elife.84693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/12/2023] [Indexed: 06/03/2023] Open
Abstract
The available treatments for depression have substantial limitations, including low response rates and substantial lag time before a response is achieved. We applied deep brain stimulation (DBS) to the lateral habenula (LHb) of two rat models of depression (Wistar Kyoto rats and lipopolysaccharide-treated rats) and observed an immediate (within seconds to minutes) alleviation of depressive-like symptoms with a high-response rate. Simultaneous functional MRI (fMRI) conducted on the same sets of depressive rats used in behavioral tests revealed DBS-induced activation of multiple regions in afferent and efferent circuitry of the LHb. The activation levels of brain regions connected to the medial LHb (M-LHb) were correlated with the extent of behavioral improvements. Rats with more medial stimulation sites in the LHb exhibited greater antidepressant effects than those with more lateral stimulation sites. These results indicated that the antidromic activation of the limbic system and orthodromic activation of the monoaminergic systems connected to the M-LHb played a critical role in the rapid antidepressant effects of LHb-DBS. This study indicates that M-LHb-DBS might act as a valuable, rapid-acting antidepressant therapeutic strategy for treatment-resistant depression and demonstrates the potential of using fMRI activation of specific brain regions as biomarkers to predict and evaluate antidepressant efficacy.
Collapse
Affiliation(s)
- Gen Li
- Department of Biomedical Engineering, College of Future Technology, Peking UniversityBeijingChina
| | - Binshi Bo
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Key Laboratory of Primate Neurobiology, Chinese Academy of SciencesShanghaiChina
| | - Puxin Wang
- Department of Biomedical Engineering, College of Future Technology, Peking UniversityBeijingChina
- Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Peixing Qian
- Department of Biomedical Engineering, College of Future Technology, Peking UniversityBeijingChina
- Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Mingzhe Li
- Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Yuyan Li
- Department of Biomedical Engineering, College of Future Technology, Peking UniversityBeijingChina
| | - Chuanjun Tong
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Key Laboratory of Primate Neurobiology, Chinese Academy of SciencesShanghaiChina
- School of Biomedical Engineering, Southern Medical UniversityGuangzhouChina
| | - Kaiwei Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Key Laboratory of Primate Neurobiology, Chinese Academy of SciencesShanghaiChina
| | - Baogui Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijingChina
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijingChina
| | - Zhifeng Liang
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Key Laboratory of Primate Neurobiology, Chinese Academy of SciencesShanghaiChina
| | - Xiaojie Duan
- Department of Biomedical Engineering, College of Future Technology, Peking UniversityBeijingChina
- Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
- National Biomedical Imaging Center, Peking UniversityBeijingChina
| |
Collapse
|
11
|
Yan H, Elkaim LM, Venetucci Gouveia F, Huber JF, Germann J, Loh A, Benedetti-Isaac JC, Doshi PK, Torres CV, Segar DJ, Elias GJB, Boutet A, Cosgrove GR, Fasano A, Lozano AM, Kulkarni AV, Ibrahim GM. Deep brain stimulation for extreme behaviors associated with autism spectrum disorder converges on a common pathway: a systematic review and connectomic analysis. J Neurosurg 2022; 137:699-708. [PMID: 35061980 DOI: 10.3171/2021.11.jns21928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Individuals with autism spectrum disorder (ASD) may display extreme behaviors such as self-injury or aggression that often become refractory to psychopharmacology or behavioral intervention. Deep brain stimulation (DBS) is a surgical alternative that modulates brain circuits that have yet to be clearly elucidated. In the current study the authors performed a connectomic analysis to identify brain circuitry engaged by DBS for extreme behaviors associated with ASD. METHODS A systematic review was performed to identify prior reports of DBS as a treatment for extreme behaviors in patients with ASD. Individual patients' perioperative imaging was collected from corresponding authors. DBS electrode localization and volume of tissue activated modeling were performed. Volumes of tissue activated were used as seed points in high-resolution normative functional and structural imaging templates. The resulting individual functional and structural connectivity maps were pooled to identify networks and pathways that are commonly engaged by all targets. RESULTS Nine patients with ASD who were receiving DBS for symptoms of aggression or self-injurious behavior were identified. All patients had some clinical improvement with DBS. Connectomic analysis of 8 patients (from the systematic review and unpublished clinical data) demonstrated a common anatomical area of shared circuitry within the anterior limb of the internal capsule. Functional analysis of 4 patients identified a common network of distant brain areas including the amygdala, insula, and anterior cingulate engaged by DBS. CONCLUSIONS This study presents a comprehensive synopsis of the evidence for DBS in the treatment of extreme behaviors associated with ASD. Using network mapping, the authors identified key circuitry common to DBS targets.
Collapse
Affiliation(s)
- Han Yan
- 1Division of Neurosurgery, Department of Surgery, University of Toronto
- 2Division of Neurosurgery, The Hospital for Sick Children, Toronto
- 3Institute of Health Policy, Management and Evaluation, University of Toronto, Ontario
| | - Lior M Elkaim
- 4Division of Neurosurgery, McGill University, Montreal, Quebec
| | | | - Joelene F Huber
- 6Divisions of Paediatric Medicine and Developmental Paediatrics, Department of Paediatrics, The Hospital for Sick Children, Toronto
| | | | - Aaron Loh
- 7University Health Network, Toronto, Ontario, Canada
| | - Juan Carlos Benedetti-Isaac
- 8Stereotactic and Functional Neurosurgery Division, International Misericordia Clinic, Barranquilla, Colombia
| | - Paresh K Doshi
- 9Department of Stereotactic and Functional Neurosurgery, Jaslok Hospital and Research Centre, Mumbai, India
| | - Cristina V Torres
- 10Department of Neurosurgery, University Hospital La Princesa, Madrid, Spain
| | - David J Segar
- 11Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Alexandre Boutet
- 7University Health Network, Toronto, Ontario, Canada
- 12Joint Department of Medical Imaging, University of Toronto
| | - G Rees Cosgrove
- 11Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alfonso Fasano
- 13Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto
- 14Division of Neurology, University of Toronto
- 15Krembil Brain Institute, Toronto
| | - Andres M Lozano
- 7University Health Network, Toronto, Ontario, Canada
- 12Joint Department of Medical Imaging, University of Toronto
| | - Abhaya V Kulkarni
- 1Division of Neurosurgery, Department of Surgery, University of Toronto
- 2Division of Neurosurgery, The Hospital for Sick Children, Toronto
- 3Institute of Health Policy, Management and Evaluation, University of Toronto, Ontario
| | - George M Ibrahim
- 1Division of Neurosurgery, Department of Surgery, University of Toronto
- 2Division of Neurosurgery, The Hospital for Sick Children, Toronto
- 16Institute of Biomedical Engineering, University of Toronto; and
- 17Institute of Medical Science, University of Toronto, Ontario, Canada
| |
Collapse
|
12
|
Miguel Telega L, Ashouri Vajari D, Stieglitz T, Coenen VA, Döbrössy MD. New Insights into In Vivo Dopamine Physiology and Neurostimulation: A Fiber Photometry Study Highlighting the Impact of Medial Forebrain Bundle Deep Brain Stimulation on the Nucleus Accumbens. Brain Sci 2022; 12:brainsci12081105. [PMID: 36009169 PMCID: PMC9406226 DOI: 10.3390/brainsci12081105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
New technologies, such as fiber photometry, can overcome long-standing methodological limitations and promote a better understanding of neuronal mechanisms. This study, for the first time, aimed at employing the newly available dopamine indicator (GRABDA2m) in combination with this novel imaging technique. Here, we present a detailed methodological roadmap leading to longitudinal repetitive transmitter release monitoring in in vivo freely moving animals and provide proof-of-concept data. This novel approach enables a fresh look at dopamine release patterns in the nucleus accumbens, following the medial forebrain bundle (mfb) DBS in a rodent model. Our results suggest reliable readouts of dopamine levels over at least 14 days of DBS-induced photometric measurements. We show that mfb-DBS can elicit an increased dopamine response during stimulation (5 s and 20 s DBS) compared to its baseline dopamine activity state, reaching its maximum peak amplitude in about 1 s and then recovering back after stimulation. The effect of different DBS pulse widths (PWs) also suggests a potential differential effect on this neurotransmitter response, but future studies would need to verify this. Using the described approach, we aim to gain insights into the differences between pathological and healthy models and to elucidate more exhaustively the mechanisms under which DBS exerts its therapeutic action.
Collapse
Affiliation(s)
- Lidia Miguel Telega
- Laboratory of Stereotaxy and Interventional Neurosciences (SIN), Department of Stereotactic and Functional Neurosurgery, University Freiburg Medical Center, 79106 Freiburg im Breisgau, Germany
- Department of Stereotactic and Functional Neurosurgery, University Freiburg Medical Center, 79106 Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
- BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Danesh Ashouri Vajari
- BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Thomas Stieglitz
- BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Volker A. Coenen
- Laboratory of Stereotaxy and Interventional Neurosciences (SIN), Department of Stereotactic and Functional Neurosurgery, University Freiburg Medical Center, 79106 Freiburg im Breisgau, Germany
- Department of Stereotactic and Functional Neurosurgery, University Freiburg Medical Center, 79106 Freiburg im Breisgau, Germany
- BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Center for Basics in Neuromodulation, University of Freiburg, 79106 Freiburg im Breisgau, Germany
| | - Máté D. Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences (SIN), Department of Stereotactic and Functional Neurosurgery, University Freiburg Medical Center, 79106 Freiburg im Breisgau, Germany
- Department of Stereotactic and Functional Neurosurgery, University Freiburg Medical Center, 79106 Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
- Center for Basics in Neuromodulation, University of Freiburg, 79106 Freiburg im Breisgau, Germany
- Correspondence:
| |
Collapse
|
13
|
Figee M, Riva-Posse P, Choi KS, Bederson L, Mayberg HS, Kopell BH. Deep Brain Stimulation for Depression. Neurotherapeutics 2022; 19:1229-1245. [PMID: 35817944 PMCID: PMC9587188 DOI: 10.1007/s13311-022-01270-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Deep brain stimulation has been extensively studied as a therapeutic option for treatment-resistant depression (TRD). DBS across different targets is associated with on average 60% response rates in previously refractory chronically depressed patients. However, response rates vary greatly between patients and between studies and often require extensive trial-and-error optimizations of stimulation parameters. Emerging evidence from tractography imaging suggests that targeting combinations of white matter tracts, rather than specific grey matter regions, is necessary for meaningful antidepressant response to DBS. In this article, we review efficacy of various DBS targets for TRD, which networks are involved in their therapeutic effects, and how we can use this information to improve targeting and programing of DBS for individual patients. We will also highlight how to integrate these DBS network findings into developing adaptive stimulation and optimal trial designs.
Collapse
Affiliation(s)
- Martijn Figee
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Patricio Riva-Posse
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Georgia, GA, USA
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lucia Bederson
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian H Kopell
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
14
|
Tartt AN, Mariani MB, Hen R, Mann JJ, Boldrini M. Dysregulation of adult hippocampal neuroplasticity in major depression: pathogenesis and therapeutic implications. Mol Psychiatry 2022; 27:2689-2699. [PMID: 35354926 PMCID: PMC9167750 DOI: 10.1038/s41380-022-01520-y] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023]
Abstract
Major depressive disorder (MDD) was previously hypothesized to be a disease of monoamine deficiency in which low levels of monoamines in the synaptic cleft were believed to underlie depressive symptoms. More recently, however, there has been a paradigm shift toward a neuroplasticity hypothesis of depression in which downstream effects of antidepressants, such as increased neurogenesis, contribute to improvements in cognition and mood. This review takes a top-down approach to assess how changes in behavior and hippocampal-dependent circuits may be attributed to abnormalities at the molecular, structural, and synaptic level. We conclude with a discussion of how antidepressant treatments share a common effect in modulating neuroplasticity and consider outstanding questions and future perspectives.
Collapse
Affiliation(s)
| | | | - Rene Hen
- Departments of Psychiatry, Columbia University, New York, NY, USA
- Neuroscience, Columbia University, New York, NY, USA
- Pharmacology, Columbia University, New York, NY, USA
- Integrative Neuroscience, NYS Psychiatric Institute, New York, NY, USA
| | - J John Mann
- Departments of Psychiatry, Columbia University, New York, NY, USA
- Molecular Imaging and Neuropathology, NYS Psychiatric Institute, New York, NY, USA
| | - Maura Boldrini
- Departments of Psychiatry, Columbia University, New York, NY, USA.
- Molecular Imaging and Neuropathology, NYS Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
15
|
Sharafi A, Pakkhesal S, Fakhari A, Khajehnasiri N, Ahmadalipour A. Rapid treatments for depression: Endocannabinoid system as a therapeutic target. Neurosci Biobehav Rev 2022; 137:104635. [PMID: 35351488 DOI: 10.1016/j.neubiorev.2022.104635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 12/16/2022]
Abstract
Current first-line treatments for major depressive disorder (MDD), i.e., antidepressant drugs and psychotherapy, show delayed onset of therapeutic effect as late as 2-3 weeks or more. In the clinic, the speed of beginning of the actions of antidepressant drugs or other interventions is vital for many reasons. Late-onset means that depression, its related disability, and the potential danger of suicide remain a threat for some patients. There are some rapid-acting antidepressant interventions, such as sleep deprivation, ketamine, acute exercise, which induce a significant response, ranging from a few hours to maximally one week, and most of them share a common characteristic that is the activation of the endocannabinoid (eCB) system. Activation of this system, i.e., augmentation of eCB signaling, appears to have anti-depressant-like actions. This article puts the idea forward that the activation of eCB signaling represents a critical mechanism of rapid-acting therapeutic interventions in MDD, and this system might contribute to the development of novel rapid-acting treatments for MDD.
Collapse
Affiliation(s)
- AmirMohammad Sharafi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Pakkhesal
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Fakhari
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazli Khajehnasiri
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Ali Ahmadalipour
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Pallikaras V, Shizgal P. The Convergence Model of Brain Reward Circuitry: Implications for Relief of Treatment-Resistant Depression by Deep-Brain Stimulation of the Medial Forebrain Bundle. Front Behav Neurosci 2022; 16:851067. [PMID: 35431828 PMCID: PMC9011331 DOI: 10.3389/fnbeh.2022.851067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/10/2022] [Indexed: 12/28/2022] Open
Abstract
Deep-brain stimulation of the medial forebrain bundle (MFB) can provide effective, enduring relief of treatment-resistant depression. Panksepp provided an explanatory framework: the MFB constitutes the core of the neural circuitry subserving the anticipation and pursuit of rewards: the “SEEKING” system. On that view, the SEEKING system is hypoactive in depressed individuals; background electrical stimulation of the MFB alleviates symptoms by normalizing activity. Panksepp attributed intracranial self-stimulation to excitation of the SEEKING system in which the ascending projections of midbrain dopamine neurons are an essential component. In parallel with Panksepp’s qualitative work, intracranial self-stimulation has long been studied quantitatively by psychophysical means. That work argues that the predominant directly stimulated substrate for MFB self-stimulation are myelinated, non-dopaminergic fibers, more readily excited by brief electrical current pulses than the thin, unmyelinated axons of the midbrain dopamine neurons. The series-circuit hypothesis reconciles this view with the evidence implicating dopamine in MFB self-stimulation as follows: direct activation of myelinated MFB fibers is rewarding due to their trans-synaptic activation of midbrain dopamine neurons. A recent study in which rats worked for optogenetic stimulation of midbrain dopamine neurons challenges the series-circuit hypothesis and provides a new model of intracranial self-stimulation in which the myelinated non-dopaminergic neurons and the midbrain dopamine projections access the behavioral final common path for reward seeking via separate, converging routes. We explore the potential implications of this convergence model for the interpretation of the antidepressant effect of MFB stimulation. We also discuss the consistent finding that psychomotor stimulants, which boost dopaminergic neurotransmission, fail to provide a monotherapy for depression. We propose that non-dopaminergic MFB components may contribute to the therapeutic effect in parallel to, in synergy with, or even instead of, a dopaminergic component.
Collapse
|
17
|
Sobstyl M, Kupryjaniuk A, Prokopienko M, Rylski M. Subcallosal Cingulate Cortex Deep Brain Stimulation for Treatment-Resistant Depression: A Systematic Review. Front Neurol 2022; 13:780481. [PMID: 35432155 PMCID: PMC9012165 DOI: 10.3389/fneur.2022.780481] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022] Open
Abstract
Background Deep brain stimulation (DBS) is considered a relatively new and still experimental therapeutic modality for treatment-resistant depression (TRD). There is clinical evidence to suggest that stimulation of the subcallosal cingulate cortex (SCC) involved in the pathogenesis of TRD may exert an antidepressant effect. Aims To conduct a systematic review of current studies, such as randomized clinical trials (RCTs), open-label trials, and placebo-controlled trials, examining SCC DBS for TRD in human participants. Method A formal review of the academic literature was performed using the Medical Literature, Analysis, and Retrieval System Online (MEDLINE) and Cochrane Central Register of Controlled Trials (CENTRAL) databases. This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Suitable studies were screened and assessed based on patient characteristics, clinical outcomes, adverse events related to DBS, and the stereotactic technique used to guide the implantation of DBS electrodes. Results The literature search identified 14 clinical studies that enrolled a total of 230 patients with TRD who underwent SCC DBS. The average duration of follow-up was 14 months (range 6–24 months). The response and remission rates at the last available follow-up visit ranged between 23–92% and 27–66.7%, respectively. Conclusion The current results of SCC DBS are limited by the relatively small number of patients treated worldwide. Nevertheless, studies to date suggest that SCC can be a promising and efficacious target for DBS, considering the high response and remission rates among patients with TRD. The adverse events of SCC DBS are usually transient and stimulation-induced.
Collapse
Affiliation(s)
- Michał Sobstyl
- Department of Neurosurgery, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Anna Kupryjaniuk
- Department of Neurosurgery, Institute of Psychiatry and Neurology, Warsaw, Poland
- *Correspondence: Anna Kupryjaniuk
| | - Marek Prokopienko
- Department of Neurosurgery, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Marcin Rylski
- Department of Radiology, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
18
|
Coenen VA, Schlaepfer TE, Sajonz BEA, Reinacher PC, Döbrössy MD, Reisert M. "The Heart Asks Pleasure First"-Conceptualizing Psychiatric Diseases as MAINTENANCE Network Dysfunctions through Insights from slMFB DBS in Depression and Obsessive-Compulsive Disorder. Brain Sci 2022; 12:438. [PMID: 35447971 PMCID: PMC9028695 DOI: 10.3390/brainsci12040438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
More than a decade ago, deep brain stimulation (DBS) of the superolateral medial forebrain bundle (slMFB), as part of the greater MFB system, had been proposed as a putative yet experimental treatment strategy for therapy refractory depression (TRD) and later for obsessive-compulsive disorders (OCD). Antidepressant and anti-OCD efficacy have been shown in open case series and smaller trials and were independently replicated. The MFB is anato-physiologically confluent with the SEEKING system promoting euphoric drive, reward anticipation and reward; functions realized through the mesocorticolimbic dopaminergic system. Growing clinical experience concerning surgical and stimulation aspects from a larger number of patients shows an MFB functionality beyond SEEKING and now re-informs the scientific rationale concerning the MFB's (patho-) physiology. In this white paper, we combine observations from more than 75 cases of slMFB DBS. We integrate these observations with a selected literature review to provide a new neuroethological view on the MFB. We here formulate a re-interpretation of the MFB as the main structure of an integrated SEEKING/MAINTENANCE circuitry, allowing for individual homeostasis and well-being through emotional arousal, basic and higher affect valence, bodily reactions, motor programing, vigor and flexible behavior, as the basis for the antidepressant and anti-OCD efficacy.
Collapse
Affiliation(s)
- Volker A. Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany; (B.E.A.S.); (P.C.R.); (M.D.D.); (M.R.)
- Medical Faculty, Freiburg University, 79106 Freiburg, Germany;
- Center for Deep Brain Stimulation, Medical Center of Freiburg University, 79106 Freiburg, Germany
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional, Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany
| | - Thomas E. Schlaepfer
- Medical Faculty, Freiburg University, 79106 Freiburg, Germany;
- Center for Deep Brain Stimulation, Medical Center of Freiburg University, 79106 Freiburg, Germany
- Department of Interventional Biological Psychiatry, Medical Center of University of Freiburg, 79106 Freiburg, Germany
| | - Bastian E. A. Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany; (B.E.A.S.); (P.C.R.); (M.D.D.); (M.R.)
- Medical Faculty, Freiburg University, 79106 Freiburg, Germany;
| | - Peter C. Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany; (B.E.A.S.); (P.C.R.); (M.D.D.); (M.R.)
- Medical Faculty, Freiburg University, 79106 Freiburg, Germany;
- Fraunhofer Institute for Laser Technology (ILT), 52074 Aachen, Germany
| | - Máté D. Döbrössy
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany; (B.E.A.S.); (P.C.R.); (M.D.D.); (M.R.)
- Medical Faculty, Freiburg University, 79106 Freiburg, Germany;
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional, Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, 79106 Freiburg, Germany; (B.E.A.S.); (P.C.R.); (M.D.D.); (M.R.)
- Medical Faculty, Freiburg University, 79106 Freiburg, Germany;
- Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center of University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
19
|
Meyer DM, Spanier S, Kilian HM, Reisert M, Urbach H, Sajonz BEA, Reinacher PC, Normann C, Domschke K, Coenen VA, Schlaepfer TE. Efficacy of superolateral medial forebrain bundle deep brain stimulation in obsessive-compulsive disorder. Brain Stimul 2022; 15:582-585. [DOI: 10.1016/j.brs.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 11/02/2022] Open
|
20
|
Hollunder B, Rajamani N, Siddiqi SH, Finke C, Kühn AA, Mayberg HS, Fox MD, Neudorfer C, Horn A. Toward personalized medicine in connectomic deep brain stimulation. Prog Neurobiol 2022; 210:102211. [PMID: 34958874 DOI: 10.1016/j.pneurobio.2021.102211] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 02/08/2023]
Abstract
At the group-level, deep brain stimulation leads to significant therapeutic benefit in a multitude of neurological and neuropsychiatric disorders. At the single-patient level, however, symptoms may sometimes persist despite "optimal" electrode placement at established treatment coordinates. This may be partly explained by limitations of disease-centric strategies that are unable to account for heterogeneous phenotypes and comorbidities observed in clinical practice. Instead, tailoring electrode placement and programming to individual patients' symptom profiles may increase the fraction of top-responding patients. Here, we propose a three-step, circuit-based framework with the aim of developing patient-specific treatment targets that address the unique symptom constellation prevalent in each patient. First, we describe how a symptom network target library could be established by mapping beneficial or undesirable DBS effects to distinct circuits based on (retrospective) group-level data. Second, we suggest ways of matching the resulting symptom networks to circuits defined in the individual patient (template matching). Third, we introduce network blending as a strategy to calculate optimal stimulation targets and parameters by selecting and weighting a set of symptom-specific networks based on the symptom profile and subjective priorities of the individual patient. We integrate the approach with published literature and conclude by discussing limitations and future challenges.
Collapse
Affiliation(s)
- Barbara Hollunder
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Nanditha Rajamani
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Shan H Siddiqi
- Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Carsten Finke
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany; NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, MA, USA
| | - Clemens Neudorfer
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andreas Horn
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Tong Y, Pfeiffer L, Serchov T, Coenen VA, Döbrössy MD. Optogenetic stimulation of ventral tegmental area dopaminergic neurons in a female rodent model of depression: The effect of different stimulation patterns. J Neurosci Res 2022; 100:897-911. [PMID: 35088434 DOI: 10.1002/jnr.25014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 11/25/2021] [Accepted: 01/02/2022] [Indexed: 12/27/2022]
Abstract
Major depressive disorder is one of the most common mental disorders, and more than 300 million of people suffer from depression worldwide. Recent clinical trials indicate that deep brain stimulation of the superolateral medial forebrain bundle (mfb) can have rapid and long-term antidepressant effects in patients with treatment-resistant depression. However, the mechanisms of action are elusive. In this study, using female rats, we demonstrate the antidepressant effects of selective optogenetic stimulation of the ventral tegmental area's dopaminergic (DA) neurons passing through the mfb and compare different stimulation patterns. Chronic mild unpredictable stress (CMUS) induced depressive-like, but not anxiety-like phenotype. Short-term and long-term stimulation demonstrated antidepressant effect (OSST) and improved anxiolytic effect (EPM), while long-term stimulation during CMUS induction prevented depressive-like behavior (OSST and USV) and improved anxiolytic effect (EPM). The results highlight that long-term accumulative stimulation on DA pathways is required for antidepressant and anxiolytic effect.
Collapse
Affiliation(s)
- Yixin Tong
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| | - Lisa Pfeiffer
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Tsvetan Serchov
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Volker A Coenen
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Freiburg University, Freiburg, Germany
| | - Máté D Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
22
|
Giampiccolo D, Nunes S, Cattaneo L, Sala F. Functional Approaches to the Surgery of Brain Gliomas. Adv Tech Stand Neurosurg 2022; 45:35-96. [PMID: 35976447 DOI: 10.1007/978-3-030-99166-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the surgery of gliomas, recent years have witnessed unprecedented theoretical and technical development, which extensively increased indication to surgery. On one hand, it has been solidly demonstrated the impact of gross total resection on life expectancy. On the other hand, the paradigm shift from classical cortical localization of brain function towards connectomics caused by the resurgence of awake surgery and the advent of tractography has permitted safer surgeries focused on subcortical white matter tracts preservation and allowed for surgical resections within regions, such as Broca's area or the primary motor cortex, which were previously deemed inoperable. Furthermore, new asleep electrophysiological techniques have been developed whenever awake surgery is not an option, such as operating in situations of poor compliance (including paediatric patients) or pre-existing neurological deficits. One such strategy is the use of intraoperative neurophysiological monitoring (IONM), enabling the identification and preservation of functionally defined, but anatomically ambiguous, cortico-subcortical structures through mapping and monitoring techniques. These advances tie in with novel challenges, specifically risk prediction and the impact of neuroplasticity, the indication for tumour resection beyond visible borders, or supratotal resection, and most of all, a reappraisal of the importance of the right hemisphere from early psychosurgery to mapping and preservation of social behaviour, executive control, and decision making.Here we review current advances and future perspectives in a functional approach to glioma surgery.
Collapse
Affiliation(s)
- Davide Giampiccolo
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- Institute of Neurosciences, Cleveland Clinic London, London, UK
| | - Sonia Nunes
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy
| | - Luigi Cattaneo
- Center for Mind and Brain Sciences (CIMeC) and Center for Medical Sciences (CISMed), University of Trento, Trento, Italy
| | - Francesco Sala
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy.
| |
Collapse
|
23
|
Deep brain stimulation of the "medial forebrain bundle": a strategy to modulate the reward system and manage treatment-resistant depression. Mol Psychiatry 2022; 27:574-592. [PMID: 33903731 DOI: 10.1038/s41380-021-01100-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/21/2021] [Accepted: 04/01/2021] [Indexed: 02/02/2023]
Abstract
The medial forebrain bundle-a white matter pathway projecting from the ventral tegmental area-is a structure that has been under a lot of scrutinies recently due to its implications in the modulation of certain affective disorders such as major depression. In the following, we will discuss major depression in the context of being a disorder dependent on multiple relevant networks, the pathological performance of which is responsible for the manifestation of various symptoms of the disease which extend into emotional, motivational, physiological, and also cognitive domains of daily living. We will focus on the reward system, an evolutionarily conserved pathway whose underperformance leads to anhedonia and lack of motivation, which are key traits in depression. In the field of deep brain stimulation (DBS), different "hypothesis-driven" targets have been chosen as the subject of clinical trials on efficacy in the treatment-resistant depressed patient. The "medial forebrain bundle" is one such target for DBS, and has had remarkably rapid success in alleviating depressive symptoms, improving anhedonia and motivation. We will review what we have learned from pre-clinical animal studies on defining this white matter tract, its connectivity, and the complex molecular (i.e., neurotransmitter) mechanisms by which its modulation exerts its effects. Imaging studies in the form of tractographic depictions have elucidated its presence in the human brain. Such has led to ongoing clinical trials of DBS targeting this pathway to assess efficacy, which is promising yet still lack in sufficient numbers. Ultimately, one must confirm the mechanism of action and validate proof of antidepressant effect in order to have such treatment become mainstream, to promote widespread improvement in the quality of life of suffering patients.
Collapse
|
24
|
Neudorfer C, Elias GJB, Jakobs M, Boutet A, Germann J, Narang K, Loh A, Paff M, Horn A, Kucharczyk W, Deeb W, Salvato B, Almeida L, Foote KD, Rosenberg PB, Tang-Wai DF, Anderson WS, Mari Z, Ponce FA, Wolk DA, Burke AD, Salloway S, Sabbagh MN, Chakravarty MM, Smith GS, Lyketsos CG, Okun MS, Lozano AM. Mapping autonomic, mood, and cognitive effects of hypothalamic region deep brain stimulation. Brain 2021; 144:2837-2851. [PMID: 33905474 DOI: 10.1093/brain/awab170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 11/12/2022] Open
Abstract
Due to its involvement in a wide variety of cardiovascular, metabolic, and behavioral functions, the hypothalamus constitutes a potential target for neuromodulation in a number of treatment-refractory conditions. The precise neural substrates and circuitry subserving these responses, however, are poorly characterized to date. We sought to retrospectively explore the acute sequalae of hypothalamic region deep brain stimulation and characterize their neuroanatomical correlates. To this end we studied at multiple international centers 58 patients (mean age: 68.5 ± 7.9 years, 26 females) suffering from mild Alzheimer's disease who underwent stimulation of the fornix region between 2007 and 2019. We catalogued the diverse spectrum of acutely induced clinical responses during electrical stimulation and interrogated their neural substrates using volume of tissue activated modelling, voxel-wise mapping, and supervised machine learning techniques. In total 627 acute clinical responses to stimulation - including tachycardia, hypertension, flushing, sweating, warmth, coldness, nausea, phosphenes, and fear - were recorded and catalogued across patients using standard descriptive methods. The most common manifestations during hypothalamic region stimulation were tachycardia (30.9%) and warmth (24.6%) followed by flushing (9.1%) and hypertension (6.9%). Voxel-wise mapping identified distinct, locally separable clusters for all sequelae that could be mapped to specific hypothalamic and extrahypothalamic gray- and white-matter structures. K-nearest neighbor classification further validated the clinico-anatomical correlates emphasizing the functional importance of identified neural substrates with area under the receiving operating characteristic curves (AUROC) between 0.67 - 0.91. Overall, we were able to localize acute effects of hypothalamic region stimulation to distinct tracts and nuclei within the hypothalamus and the wider diencephalon providing clinico-anatomical insights that may help to guide future neuromodulation work.
Collapse
Affiliation(s)
- Clemens Neudorfer
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Gavin J B Elias
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Martin Jakobs
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Alexandre Boutet
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Keshav Narang
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Aaron Loh
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Michelle Paff
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Andreas Horn
- Movement Disorders and Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Berlin, Germany
| | - Walter Kucharczyk
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Wissam Deeb
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida Health, Gainesville, FL, USA
| | | | - Leonardo Almeida
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida Health, Gainesville, FL, USA
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida Health, Gainesville, FL, USA
| | - Paul B Rosenberg
- Johns Hopkins University, School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD, USA
| | - David F Tang-Wai
- Department of Neurology, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - William S Anderson
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Zoltan Mari
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Francisco A Ponce
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna D Burke
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Stephen Salloway
- Department of Psychiatry and Human Behavior and Neurology, Alpert Medical School of Brown University, Providence, RI, USA
| | - Marwan N Sabbagh
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Research Centre, Montreal QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada.,Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Gwenn S Smith
- Johns Hopkins University, School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD, USA
| | - Constantine G Lyketsos
- Johns Hopkins University, School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD, USA
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida Health, Gainesville, FL, USA
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Saleh Y, Le Heron C, Petitet P, Veldsman M, Drew D, Plant O, Schulz U, Sen A, Rothwell PM, Manohar S, Husain M. Apathy in small vessel cerebrovascular disease is associated with deficits in effort-based decision making. Brain 2021; 144:1247-1262. [PMID: 33734344 PMCID: PMC8240747 DOI: 10.1093/brain/awab013] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/23/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022] Open
Abstract
Patients with small vessel cerebrovascular disease frequently suffer from apathy, a debilitating neuropsychiatric syndrome, the underlying mechanisms of which remain to be established. Here we investigated the hypothesis that apathy is associated with disrupted decision making in effort-based decision making, and that these alterations are associated with abnormalities in the white matter network connecting brain regions that underpin such decisions. Eighty-two patients with MRI evidence of small vessel disease were assessed using a behavioural paradigm as well as diffusion weighted MRI. The decision-making task involved accepting or rejecting monetary rewards in return for performing different levels of physical effort (hand grip force). Choice data and reaction times were integrated into a drift diffusion model that framed decisions to accept or reject offers as stochastic processes approaching a decision boundary with a particular drift rate. Tract-based spatial statistics were used to assess the relationship between white matter tract integrity and apathy, while accounting for depression. Overall, patients with apathy accepted significantly fewer offers on this decision-making task. Notably, while apathetic patients were less responsive to low rewards, they were also significantly averse to investing in high effort. Significant reductions in white matter integrity were observed to be specifically related to apathy, but not to depression. These included pathways connecting brain regions previously implicated in effort-based decision making in healthy people. The drift rate to decision parameter was significantly associated with both apathy and altered white matter tracts, suggesting that both brain and behavioural changes in apathy are associated with this single parameter. On the other hand, depression was associated with an increase in the decision boundary, consistent with an increase in the amount of evidence required prior to making a decision. These findings demonstrate altered effort-based decision making for reward in apathy, and also highlight dissociable mechanisms underlying apathy and depression in small vessel disease. They provide clear potential brain and behavioural targets for future therapeutic interventions, as well as modelling parameters that can be used to measure the effects of treatment at the behavioural level.
Collapse
Affiliation(s)
- Youssuf Saleh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Oxford, OX2 6GG, UK
| | - Campbell Le Heron
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,New Zealand Brain Research Institute, Christchurch 8011, New Zealand.,Department of Medicine, University of Otago, Christchurch 8011, New Zealand
| | - Pierre Petitet
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Oxford, OX2 6GG, UK
| | - Michele Veldsman
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Oxford, OX2 6GG, UK
| | - Daniel Drew
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Oxford, OX2 6GG, UK
| | - Olivia Plant
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Oxford, OX2 6GG, UK
| | - Ursula Schulz
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Arjune Sen
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Peter M Rothwell
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Dept Clinical Neurosciences, University of Oxford, UK
| | - Sanjay Manohar
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Oxford, OX2 6GG, UK
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Oxford, OX2 6GG, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| |
Collapse
|
26
|
Elyahoodayan S, Jiang W, Lee CD, Shao X, Weiland G, Whalen JJ, Petrossians A, Song D. Stimulation and Recording of the Hippocampus Using the Same Pt-Ir Coated Microelectrodes. Front Neurosci 2021; 15:616063. [PMID: 33716647 PMCID: PMC7943859 DOI: 10.3389/fnins.2021.616063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/28/2021] [Indexed: 01/11/2023] Open
Abstract
Same-electrode stimulation and recording with high spatial resolution, signal quality, and power efficiency is highly desirable in neuroscience and neural engineering. High spatial resolution and signal-to-noise ratio is necessary for obtaining unitary activities and delivering focal stimulations. Power efficiency is critical for battery-operated implantable neural interfaces. This study demonstrates the capability of recording single units as well as evoked potentials in response to a wide range of electrochemically safe stimulation pulses through high-resolution microelectrodes coated with co-deposition of Pt-Ir. It also compares signal-to-noise ratio, single unit activity, and power efficiencies between Pt-Ir coated and uncoated microelectrodes. To enable stimulation and recording with the same microelectrodes, microelectrode arrays were treated with electrodeposited platinum-iridium coating (EPIC) and tested in the CA1 cell body layer of rat hippocampi. The electrodes' ability to (1) inject a large range of electrochemically reversable stimulation pulses to the tissue, and (2) record evoked potentials and single unit activities were quantitively assessed over an acute time period. Compared to uncoated electrodes, EPIC electrodes recorded signals with higher signal-to-noise ratios (coated: 9.77 ± 1.95 dB; uncoated: 1.95 ± 0.40 dB) and generated lower voltages (coated: 100 mV; uncoated: 650 mV) for a given stimulus (5 μA). The improved performance corresponded to lower energy consumptions and electrochemically safe stimulation above 5 μA (>0.38 mC/cm2), which enabled elicitation of field excitatory post synaptic potentials and population spikes. Spontaneous single unit activities were also modulated by varying stimulation intensities and monitored through the same electrodes. This work represents an example of stimulation and recording single unit activities from the same microelectrode, which provides a powerful tool for monitoring and manipulating neural circuits at the single neuron level.
Collapse
Affiliation(s)
- Sahar Elyahoodayan
- Department of Biomedical Engineering, Center for Neural Engineering, University of Southern California, Los Angeles, CA, United States
| | - Wenxuan Jiang
- Department of Biomedical Engineering, Center for Neural Engineering, University of Southern California, Los Angeles, CA, United States
| | | | - Xiecheng Shao
- Department of Biomedical Engineering, Center for Neural Engineering, University of Southern California, Los Angeles, CA, United States
| | | | | | | | - Dong Song
- Department of Biomedical Engineering, Center for Neural Engineering, University of Southern California, Los Angeles, CA, United States
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
27
|
Bhattacharyya P, Anand A, Lin J, Altinay M. Left Dorsolateral Prefrontal Cortex Glx/tCr Predicts Efficacy of High Frequency 4- to 6-Week rTMS Treatment and Is Associated With Symptom Improvement in Adults With Major Depressive Disorder: Findings From a Pilot Study. Front Psychiatry 2021; 12:665347. [PMID: 34925079 PMCID: PMC8677827 DOI: 10.3389/fpsyt.2021.665347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 11/08/2021] [Indexed: 12/05/2022] Open
Abstract
About 20-40% of estimated 121 million patients with major depressive disorder (MDD) are not adequately responsive to medication treatment. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive, non-convulsive neuromodulation/neurostimulation method, has gained popularity in treatment of MDD. Because of the high cost involved in rTMS therapy, ability to predict the therapy effectiveness is both clinically and cost wise significant. This study seeks an imaging biomarker to predict efficacy of rTMS treatment using a standard high frequency 10-Hz 4- to 6-week protocol in adult population. Given the significance of excitatory and inhibitory neurotransmitters glutamate (Glu) and gamma aminobutyric acid (GABA) in the pathophysiology of MDD, and the involvement of the site of rTMS application, left dorsolateral prefrontal cortex (lDLPFC), in MDD, we explored lDLPFC Glx (Glu + glutamine) and GABA levels, measured by single voxel magnetic resonance spectroscopy (MRS) with total creatine (tCr; sum of creatine and phosphocreatine) as reference, as possible biomarkers of rTMS response prediction. Mescher-Garwood point-resolved spectroscopy (MEGA-PRESS) MRS data from 7 patients (40-74 y) were used in the study; 6 of these patients were scanned before and after 6 weeks of rTMS therapy. Findings from this study show inverse correlation between pretreatment lDLPFC Glx/tCr and (i) posttreatment depression score and (ii) change in depression score, suggesting higher Glx/tCr as a predictor of treatment efficacy. In addition association was observed between changes in depression scores and changes in Glx/tCr ratio. The preliminary findings did not show any such association between GABA/tCr and depression score.
Collapse
Affiliation(s)
- Pallab Bhattacharyya
- Cleveland Clinic, Imaging Institute, Cleveland, OH, United States.,Department of Radiology, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, United States
| | - Amit Anand
- Cleveland Clinic, Neurological Institute, Cleveland, OH, United States
| | - Jian Lin
- Cleveland Clinic, Imaging Institute, Cleveland, OH, United States
| | - Murat Altinay
- Cleveland Clinic, Neurological Institute, Cleveland, OH, United States
| |
Collapse
|
28
|
Chakraborty S, Tripathi SJ, Raju TR, Shankaranarayana Rao BS. Brain stimulation rewarding experience attenuates neonatal clomipramine-induced adulthood anxiety by reversal of pathological changes in the amygdala. Prog Neuropsychopharmacol Biol Psychiatry 2020; 103:110000. [PMID: 32512130 DOI: 10.1016/j.pnpbp.2020.110000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/04/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022]
Abstract
Major depressive disorder (MDD) is associated with enhanced anxiety and reduced reward processing leading to impaired cognitive flexibility. These pathological changes during depression are accompanied by dysfunctional hypothalamic-pituitary-adrenal (HPA) axis and its impaired regulation by the amygdala. Notably, the electrical stimulation of brain reward areas produces an antidepressant effect in both MDD patients and animal models of depression. However, the effects of chronic electrical self-stimulation of lateral hypothalamus - medial forebrain bundle (LH-MFB) on depression-associated anxiety and accompanying changes in plasma corticosterone levels, structural, and neurochemical alterations in the amygdala are unknown. Here, we used the neonatal clomipramine (CLI) model of depression. During adulthood, neonatal CLI and vehicle administered rats were subjected to bilateral electrode implantation at LH-MFB and trained to receive intracranial self-stimulation (ICSS) for 14 days. Rats were then tested for anhedonic and anxiety-like behaviors, followed by estimation of plasma corticosterone levels, assessment of amygdalar volumes and neuronal/glial numbers, levels of monoamines and their metabolites in the amygdala. We found that chronic ICSS of LH-MFB reverses CLI-induced anhedonia and anxiety. Interestingly, amelioration of CLI-induced enhanced anhedonia and anxiety in ICSS rats was associated with partial reversal of enhanced plasma corticosterone levels, hypertrophy of basolateral amygdala (BLA), and altered noradrenaline (NA) metabolism in the amygdalar complex. We suggest that beneficial effects of ICSS on CLI-induced anxiety at least in part mediated by the restoration of amygdalar and HPA axis functioning. Our results support the hypothesis that brain stimulation rewarding experience might be evolved as a therapeutic strategy for reversal of amygdalar dysfunction in depression.
Collapse
Affiliation(s)
- Suwarna Chakraborty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru 560 029, India
| | - Sunil Jamuna Tripathi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru 560 029, India
| | - T R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru 560 029, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru 560 029, India.
| |
Collapse
|
29
|
Endovascular deep brain stimulation: Investigating the relationship between vascular structures and deep brain stimulation targets. Brain Stimul 2020; 13:1668-1677. [PMID: 33035721 DOI: 10.1016/j.brs.2020.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/29/2020] [Accepted: 09/25/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Endovascular delivery of current using 'stentrodes' - electrode bearing stents - constitutes a potential alternative to conventional deep brain stimulation (DBS). The precise neuroanatomical relationships between DBS targets and the vascular system, however, are poorly characterized to date. OBJECTIVE To establish the relationships between cerebrovascular system and DBS targets and investigate the feasibility of endovascular stimulation as an alternative to DBS. METHODS Neuroanatomical targets as employed during deep brain stimulation (anterior limb of the internal capsule, dentatorubrothalamic tract, fornix, globus pallidus pars interna, medial forebrain bundle, nucleus accumbens, pedunculopontine nucleus, subcallosal cingulate cortex, subthalamic nucleus, and ventral intermediate nucleus) were superimposed onto probabilistic vascular atlases obtained from 42 healthy individuals. Euclidian distances between targets and associated vessels were measured. To determine the electrical currents necessary to encapsulate the predefined neurosurgical targets and identify potentially side-effect inducing substrates, a preliminary volume of tissue activated (VTA) analysis was performed. RESULTS Six out of ten DBS targets were deemed suitable for endovascular stimulation: medial forebrain bundle (vascular site: P1 segment of posterior cerebral artery), nucleus accumbens (vascular site: A1 segment of anterior cerebral artery), dentatorubrothalamic tract (vascular site: s2 segment of superior cerebellar artery), fornix (vascular site: internal cerebral vein), pedunculopontine nucleus (vascular site: lateral mesencephalic vein), and subcallosal cingulate cortex (vascular site: A2 segment of anterior cerebral artery). While VTAs effectively encapsulated mfb and NA at current thresholds of 3.5 V and 4.5 V respectively, incremental amplitude increases were required to effectively cover fornix, PPN and SCC target (mean voltage: 8.2 ± 4.8 V, range: 3.0-17.0 V). The side-effect profile associated with endovascular stimulation seems to be comparable to conventional lead implantation. Tailoring of targets towards vascular sites, however, may allow to reduce adverse effects, while maintaining the efficacy of neural entrainment within the target tissue. CONCLUSIONS While several challenges remain at present, endovascular stimulation of select DBS targets seems feasible offering novel and exciting opportunities in the neuromodulation armamentarium.
Collapse
|
30
|
Döbrössy MD, Ramanathan C, Ashouri Vajari D, Tong Y, Schlaepfer T, Coenen VA. Neuromodulation in Psychiatric disorders: Experimental and Clinical evidence for reward and motivation network Deep Brain Stimulation: Focus on the medial forebrain bundle. Eur J Neurosci 2020; 53:89-113. [PMID: 32931064 DOI: 10.1111/ejn.14975] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 07/24/2020] [Accepted: 08/27/2020] [Indexed: 12/28/2022]
Abstract
Deep brain stimulation (DBS) in psychiatric illnesses has been clinically tested over the past 20 years. The clinical application of DBS to the superolateral branch of the medial forebrain bundle in treatment-resistant depressed patients-one of several targets under investigation-has shown to be promising in a number of uncontrolled open label trials. However, there are remain numerous questions that need to be investigated to understand and optimize the clinical use of DBS in depression, including, for example, the relationship between the symptoms, the biological substrates/projections and the stimulation itself. In the context of precision and customized medicine, the current paper focuses on clinical and experimental research of medial forebrain bundle DBS in depression or in animal models of depression, demonstrating how clinical and scientific progress can work in tandem to test the therapeutic value and investigate the mechanisms of this experimental treatment. As one of the hypotheses is that depression engenders changes in the reward and motivational networks, the review looks at how stimulation of the medial forebrain bundle impacts the dopaminergic system.
Collapse
Affiliation(s)
- Máté D Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Freiburg University, Freiburg, Germany
| | - Chockalingam Ramanathan
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| | - Danesh Ashouri Vajari
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Yixin Tong
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| | - Thomas Schlaepfer
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Interventional Biological Psychiatry, University Hospital Freiburg, Freiburg, Germany
| | - Volker A Coenen
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Freiburg University, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
31
|
Deep Brain Stimulation for Major Depression and Obsessive-Compulsive Disorder—Discontinuation of Ongoing Stimulation. PSYCH 2020. [DOI: 10.3390/psych2030015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Deep brain stimulation (DBS) is currently under research for the treatment of psychiatric disorders, e.g., obsessive-compulsive disorder (OCD) and treatment-resistant depression (TRD). Since the application of DBS in psychiatry has been in use for about 20 years, it is necessary to evaluate its long-term use now. A main issue in the long-term treatment of DBS concerns the effects of a discontinuation of stimulation due to intended as well as unintended reasons. In this contribution, the literature describing discontinuation effects following DBS in OCD and TRD is reviewed. Furthermore, a patient is reported in depth who experienced an unintended discontinuation of supero-lateral medial forebrain bundle (slMFB) DBS for TRD. In this case, the battery was fully depleted without the patient noticing. DBS had led to a sustained response for seven years before discontinuation of stimulation for just several weeks caused a progressive worsening of depression. Altogether, the rapid occurrence of symptom worsening, the absence of a notification about the stimulation status and the difficulties to recapture antidepressant response represent important safety aspects. For a further understanding of the described effects, time courses until worsening of depression as well as biological mechanisms need to be investigated in double-blind controlled trials.
Collapse
|
32
|
A unified connectomic target for deep brain stimulation in obsessive-compulsive disorder. Nat Commun 2020; 11:3364. [PMID: 32620886 PMCID: PMC7335093 DOI: 10.1038/s41467-020-16734-3] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple surgical targets for treating obsessive-compulsive disorder with deep brain stimulation (DBS) have been proposed. However, different targets may modulate the same neural network responsible for clinical improvement. We analyzed data from four cohorts of patients (N = 50) that underwent DBS to the anterior limb of the internal capsule (ALIC), the nucleus accumbens or the subthalamic nucleus (STN). The same fiber bundle was associated with optimal clinical response in cohorts targeting either structure. This bundle connected frontal regions to the STN. When informing the tract target based on the first cohort, clinical improvements in the second could be significantly predicted, and vice versa. To further confirm results, clinical improvements in eight patients from a third center and six patients from a fourth center were significantly predicted based on their stimulation overlap with this tract. Our results show that connectivity-derived models may inform clinical improvements across DBS targets, surgeons and centers. The identified tract target is openly available in atlas form. Li et al. analyzed structural connectivity of deep brain stimulation electrodes in 50 patients suffering from obsessive-compulsive disorder operated at four centers. Connectivity to a specific tract within the anterior limb of the internal capsule was associated with optimal treatment response across cohorts, surgeons and centers.
Collapse
|
33
|
Gundelach LA, Hüser MA, Beutner D, Ruther P, Bruegmann T. Towards the clinical translation of optogenetic skeletal muscle stimulation. Pflugers Arch 2020; 472:527-545. [PMID: 32415463 PMCID: PMC7239821 DOI: 10.1007/s00424-020-02387-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/05/2020] [Accepted: 04/28/2020] [Indexed: 12/27/2022]
Abstract
Paralysis is a frequent phenomenon in many diseases, and to date, only functional electrical stimulation (FES) mediated via the innervating nerve can be employed to restore skeletal muscle function in patients. Despite recent progress, FES has several technical limitations and significant side effects. Optogenetic stimulation has been proposed as an alternative, as it may circumvent some of the disadvantages of FES enabling cell type–specific, spatially and temporally precise stimulation of cells expressing light-gated ion channels, commonly Channelrhodopsin2. Two distinct approaches for the restoration of skeletal muscle function with optogenetics have been demonstrated: indirect optogenetic stimulation through the innervating nerve similar to FES and direct optogenetic stimulation of the skeletal muscle. Although both approaches show great promise, both have their limitations and there are several general hurdles that need to be overcome for their translation into clinics. These include successful gene transfer, sustained optogenetic protein expression, and the creation of optically active implantable devices. Herein, a comprehensive summary of the underlying mechanisms of electrical and optogenetic approaches is provided. With this knowledge in mind, we substantiate a detailed discussion of the advantages and limitations of each method. Furthermore, the obstacles in the way of clinical translation of optogenetic stimulation are discussed, and suggestions on how they could be overcome are provided. Finally, four specific examples of pathologies demanding novel therapeutic measures are discussed with a focus on the likelihood of direct versus indirect optogenetic stimulation.
Collapse
Affiliation(s)
- Lili A Gundelach
- Institute of Cardiovascular Physiology, University Medical Center, Göttingen, Germany
| | - Marc A Hüser
- Institute of Cardiovascular Physiology, University Medical Center, Göttingen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center, Göttingen, Germany
| | - Dirk Beutner
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center, Göttingen, Germany
| | - Patrick Ruther
- Microsystem Materials Laboratory, Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Cluster of Excellence at the University of Freiburg, Freiburg, Germany
| | - Tobias Bruegmann
- Institute of Cardiovascular Physiology, University Medical Center, Göttingen, Germany.
- DZHK e.V. (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
| |
Collapse
|
34
|
Ashouri Vajari D, Ramanathan C, Tong Y, Stieglitz T, Coenen VA, Döbrössy MD. Medial forebrain bundle DBS differentially modulates dopamine release in the nucleus accumbens in a rodent model of depression. Exp Neurol 2020; 327:113224. [PMID: 32035070 DOI: 10.1016/j.expneurol.2020.113224] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/20/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Medial forebrain bundle (MFB) deep brain stimulation (DBS) has anti-depressant effects clinically and in depression models. Currently, therapeutic mechanisms of MFB DBS or how stimulation parameters acutely impact neurotransmitter release, particularly dopamine, are unknown. Experimentally, MFB DBS has been shown to evoke dopamine response in healthy controls, but not yet in a rodent model of depression. OBJECTIVE The study investigated the impact of clinically used stimulation parameters on the dopamine induced response in a validated rodent depression model and in healthy controls. METHOD The stimulation-induced dopamine response in Flinders Sensitive Line (FSL, n = 6) rat model of depression was compared with Sprague Dawley (SD, n = 6) rats following MFB DSB, using Fast Scan Cyclic Voltammetry to assess the induced response in the nucleus accumbens. Stimulation parameters were 130 Hz ("clinically" relevant) with pulse widths between 100 and 350 μs. RESULTS Linear mixed model analysis showed significant impact in both models following MFB DBS both at 130 and 60 Hz with 100 μs pulse width in inducing dopamine response. Furthermore, at 130 Hz the evoked dopamine responses were different across the groups at the different pulse widths. CONCLUSION The differential impact of MFB DBS on the induced dopamine response, including different response patterns at given pulse widths, is suggestive of physiological and anatomical divergence in the MFB in the pathological and healthy state. Studying how varying stimulation parameters affect the physiological outcome will promote a better understanding of the biological substrate of the disease and the possible anti-depressant mechanisms at play in clinical MFB DBS.
Collapse
Affiliation(s)
- Danesh Ashouri Vajari
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Kohler-Allee 102, 79110 Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Georges-Kohler-Allee 80, 79110 Freiburg, Germany
| | - Chockalingam Ramanathan
- Laboratory for Stereotaxy and Interventional Neurosciences (SIN), Freiburg University, Department of Stereotactic and Functional Neurosurgery, University Medical Center Freiburg, Breisacher Strasse, 64 79106 Freiburg i.Br, Germany
| | - Yixin Tong
- Laboratory for Stereotaxy and Interventional Neurosciences (SIN), Freiburg University, Department of Stereotactic and Functional Neurosurgery, University Medical Center Freiburg, Breisacher Strasse, 64 79106 Freiburg i.Br, Germany
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Kohler-Allee 102, 79110 Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Georges-Kohler-Allee 80, 79110 Freiburg, Germany; Bernstein Center Freiburg, Hansastrasse 9a, 79104 Freiburg, Germany
| | - Volker A Coenen
- BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Georges-Kohler-Allee 80, 79110 Freiburg, Germany; Laboratory for Stereotaxy and Interventional Neurosciences (SIN), Freiburg University, Department of Stereotactic and Functional Neurosurgery, University Medical Center Freiburg, Breisacher Strasse, 64 79106 Freiburg i.Br, Germany; Medical Faculty, University of Freiburg, Germany; Center for Basics in Neuromodulation, Freiburg University, Freiburg, Germany
| | - Máté D Döbrössy
- BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Georges-Kohler-Allee 80, 79110 Freiburg, Germany; Laboratory for Stereotaxy and Interventional Neurosciences (SIN), Freiburg University, Department of Stereotactic and Functional Neurosurgery, University Medical Center Freiburg, Breisacher Strasse, 64 79106 Freiburg i.Br, Germany; Center for Basics in Neuromodulation, Freiburg University, Freiburg, Germany.
| |
Collapse
|
35
|
Thiele S, Sörensen A, Weis J, Braun F, Meyer PT, Coenen VA, Döbrössy MD. Deep Brain Stimulation of the Medial Forebrain Bundle in a Rodent Model of Depression: Exploring Dopaminergic Mechanisms with Raclopride and Micro-PET. Stereotact Funct Neurosurg 2020; 98:8-20. [PMID: 31982883 DOI: 10.1159/000504860] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/18/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the medial forebrain bundle (MFB) can reverse depressive-like symptoms clinically and in experimental models of depression, but the mechanisms of action are unknown. OBJECTIVES This study investigated the role of dopaminergic mechanisms in MFB stimulation-mediated behavior changes, in conjunction with raclopride administration and micropositron emission tomography (micro-PET). METHODS Flinders Sensitive Line (FSL) rats were allocated into 4 groups: FSL (no treatment), FSL+ (DBS), FSL.R (FSL with raclopride), and FSL.R+ (FSL with raclopride and DBS). Animals were implanted with bilateral electrodes targeting the MFB and given 11 days access to raclopride in the drinking water with or without concurrent continuous bilateral DBS over the last 10 days. Behavioral testing was conducted after stimulation. A PET scan using [18F]desmethoxyfallypride was performed to determine D2 receptor availability before and after raclopride treatment. Changes in gene expression in the nucleus accumbens and the hippocampus were assessed using quantitative polymerase chain reaction. RESULTS Micro-PET imaging showed that raclopride administration blocked 36% of the D2 receptor in the striatum, but the relative level of blockade was reduced/modulated by stimulation. Raclopride treatment enhanced depressive-like symptoms in several tasks, and the MFB DBS partially reversed the depressive-like phenotype. The raclopride-treated MFB DBS animals had increased levels of mRNA coding for dopamine receptor D1 and D2 suggestive of a stimulation-mediated increase in dopamine receptors. CONCLUSION Data suggest that chronic and continuous MFB DBS could act via the modulation of the midbrain dopaminergic transmission, including impacting on the postsynaptic dopamine receptor profile.
Collapse
Affiliation(s)
- Stephanie Thiele
- Department of Stereotactic and Functional Neurosurgery, University of Freiburg Medical Center, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Arnd Sörensen
- Department of Nuclear Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Jasmin Weis
- Department of Stereotactic and Functional Neurosurgery, University of Freiburg Medical Center, Freiburg, Germany
| | - Friederike Braun
- Department of Nuclear Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, University of Freiburg Medical Center, Freiburg, Germany
| | - Máté D Döbrössy
- Department of Stereotactic and Functional Neurosurgery, University of Freiburg Medical Center, Freiburg, Germany,
| |
Collapse
|
36
|
Coenen VA, Schlaepfer TE, Sajonz B, Döbrössy M, Kaller CP, Urbach H, Reisert M. Tractographic description of major subcortical projection pathways passing the anterior limb of the internal capsule. Corticopetal organization of networks relevant for psychiatric disorders. Neuroimage Clin 2020; 25:102165. [PMID: 31954987 PMCID: PMC6965747 DOI: 10.1016/j.nicl.2020.102165] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/06/2019] [Accepted: 01/09/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Major depression (MD) and obsessive-compulsive disorder (OCD) are psychiatric diseases with a huge impact on individual well-being. Despite optimal treatment regiments a subgroup of patients remains treatment resistant and stereotactic surgery (stereotactic lesion surgery, SLS or Deep Brain Stimulation, DBS) might be an option. Recent research has described four networks related to MD and OCD (affect, reward, cognitive control, default network) but only on a cortical and the adjacent sub-cortical level. Despite the enormous impact of comparative neuroanatomy, animal science and stereotactic approaches a holistic theory of subcortical and cortical network interactions is elusive. Because of the dominant hierarchical rank of the neocortex, corticofugal approaches have been used to identify connections in subcortical anatomy without anatomical priors and in part confusing results. We here propose a different corticopetal approach by identifying subcortical networks and search for neocortical convergences thereby following the principle of phylogenetic and ontogenetic network development. MATERIAL AND METHODS This work used a diffusion tensor imaging data from a normative cohort (Human Connectome Project, HCP; n = 200) to describe eight subcortical fiber projection pathways (PPs) from subthalamic nucleus (STN), substantia nigra (SNR), red nucleus (RN), ventral tegmental area (VTA), ventrolateral thalamus (VLT) and mediodorsal thalamus (MDT) in a normative space (MNI). Subcortical and cortical convergences were described including an assignment of the specific pathways to MD/OCD-related networks. Volumes of activated tissue for different stereotactic stimulation sites and procedures were simulated to understand the role of the distinct networks, with respect to symptoms and treatment of OCD and MD. RESULTS The detailed course of eight subcortical PPs (stnPP, snrPP, rnPP, vlATR, vlATRc, mdATR, mdATRc, vtaPP/slMFB) were described together with their subcortical and cortical convergences. The anterior limb of the internal capsule can be subdivided with respect to network occurrences in ventral-dorsal and medio-lateral gradients. Simulation of stereotactic procedures for OCD and MD showed dominant involvement of mdATR/mdATRc (affect network) and vtaPP/slMFB (reward network). DISCUSSION Corticofugal search strategies for the evaluation of stereotactic approaches without anatomical priors often lead to confusing results which do not allow for a clear assignment of a procedure to an involved network. According to our simulation of stereotactic procedures in the treatment of OCD and MD, most of the target regions directly involve the reward (and affect) networks, while side-effects can in part be explained with a co-modulation of the control network. CONCLUSION The here proposed corticopetal approach of a hierarchical description of 8 subcortical PPs with subcortical and cortical convergences represents a new systematics of networks found in all different evolutionary and distinct parts of the human brain.
Collapse
Affiliation(s)
- Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center and Medical Faculty of Freiburg University, Breisacher Strasse 64, Freiburg im Breisgau 79106, Germany; Center for Basics in Neuromodulation, Freiburg University, Germany.
| | - Thomas E Schlaepfer
- Department of Interventional Biological Psychiatry, Freiburg University Medical Center and Medical Faculty of Freiburg University, Germany
| | - Bastian Sajonz
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center and Medical Faculty of Freiburg University, Breisacher Strasse 64, Freiburg im Breisgau 79106, Germany
| | - Máté Döbrössy
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center and Medical Faculty of Freiburg University, Breisacher Strasse 64, Freiburg im Breisgau 79106, Germany
| | - Christoph P Kaller
- Department of Neuroradiology, Freiburg University Medical Center and Medical Faculty of Freiburg University, Germany
| | - Horst Urbach
- Department of Neuroradiology, Freiburg University Medical Center and Medical Faculty of Freiburg University, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center and Medical Faculty of Freiburg University, Breisacher Strasse 64, Freiburg im Breisgau 79106, Germany
| |
Collapse
|
37
|
Schumacher A, Haegele M, Spyth J, Moser A. Electrical high frequency stimulation of the nucleus accumbens shell does not modulate depressive-like behavior in rats. Behav Brain Res 2020; 378:112277. [DOI: 10.1016/j.bbr.2019.112277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/17/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022]
|
38
|
Calker D, Biber K, Domschke K, Serchov T. The role of adenosine receptors in mood and anxiety disorders. J Neurochem 2019; 151:11-27. [DOI: 10.1111/jnc.14841] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Dietrich Calker
- Department for Psychiatry and Psychotherapy, Medical Center ‐ University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Knut Biber
- Section Medical Physiology, Department of Neuroscience University Medical Center Groningen, University of Groningen Groningen The Netherlands
| | - Katharina Domschke
- Department for Psychiatry and Psychotherapy, Medical Center ‐ University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
- Centre for Basics in Neuromodulation, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Tsvetan Serchov
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, Medical Center ‐ University Freiburg University of Freiburg Freiburg Germany
| |
Collapse
|
39
|
Coenen VA, Schlaepfer TE, Bewernick B, Kilian H, Kaller CP, Urbach H, Li M, Reisert M. Frontal white matter architecture predicts efficacy of deep brain stimulation in major depression. Transl Psychiatry 2019; 9:197. [PMID: 31434867 PMCID: PMC6704187 DOI: 10.1038/s41398-019-0540-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/29/2019] [Accepted: 07/07/2019] [Indexed: 12/13/2022] Open
Abstract
Major depression is a frequent and severe disorder, with a combination of psycho- and pharmacotherapy most patients can be treated. However, ~20% of all patients suffering from major depressive disorder remain treatment resistant; a subgroup might be treated with deep brain stimulation (DBS). We present two trials of DBS to the superolateral medial forebrain bundle (slMFB DBS; FORESEE I and II). The goal was to identify informed features that allow to predict treatment response. Data from N = 24 patients were analyzed. Preoperative imaging including anatomical sequences (T1 and T2) and diffusion tensor imaging (DTI) magnetic resonance imaging sequences were used together with postoperative helical CT scans (for DBS electrode position). Pathway activation modeling (PAM) as well as preoperative structural imaging and morphometry was used to understand the response behavior of patients (MADRS). A left fronto-polar and partly orbitofrontal region was identified that showed increased volume in preoperative anatomical scans. Further statistical analysis shows that the volume of this "HUB-region" is predictive for later MADRS response from DBS. The HUB region connects to typical fiber pathways that have been addressed before in therapeutic DBS in major depression. Left frontal volume growth might indicate intrinsic activity upon disconnection form the main emotional network. The results are significant since for the first time we found an informed feature that might allow to identify and phenotype future responders for slMFB DBS. This is a clear step into the direction of personalized treatments.
Collapse
Affiliation(s)
- Volker A. Coenen
- 0000 0000 9428 7911grid.7708.8Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg, Germany ,grid.5963.9Medical Faculty, Freiburg University, Freiburg, Germany ,0000 0000 8786 803Xgrid.15090.3dDepartment of Neurosurgery, Bonn University Medical Center, Bonn, Germany ,grid.5963.9BrainLinks/BrainTools, Cluster of Excellence, Freiburg University, Freiburg, Germany ,grid.5963.9Neuromod, Center for Basics in NeuroModulation, Freiburg University, Freiburg, Germany
| | - Thomas E. Schlaepfer
- grid.5963.9Medical Faculty, Freiburg University, Freiburg, Germany ,grid.5963.9BrainLinks/BrainTools, Cluster of Excellence, Freiburg University, Freiburg, Germany ,0000 0000 9428 7911grid.7708.8Department of Interventional Biological Psychiatry, Freiburg University Medical Center, Freiburg, Germany ,0000 0000 8786 803Xgrid.15090.3dDepartment of Psychiatry and Psychotherapy, Bonn University Medical Center, Bonn, Germany
| | - Bettina Bewernick
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Psychiatry and Psychotherapy, Bonn University Medical Center, Bonn, Germany ,0000 0000 8786 803Xgrid.15090.3dDepartment of Geronto-Psychiatry, Bonn University Medical Center, Bonn, Germany
| | - Hannah Kilian
- grid.5963.9Medical Faculty, Freiburg University, Freiburg, Germany ,0000 0000 9428 7911grid.7708.8Department of Interventional Biological Psychiatry, Freiburg University Medical Center, Freiburg, Germany
| | - Christoph P. Kaller
- grid.5963.9Medical Faculty, Freiburg University, Freiburg, Germany ,grid.5963.9BrainLinks/BrainTools, Cluster of Excellence, Freiburg University, Freiburg, Germany ,0000 0000 9428 7911grid.7708.8Department of Neuroradiology, Freiburg University Medical Center, Freiburg, Germany
| | - Horst Urbach
- grid.5963.9Medical Faculty, Freiburg University, Freiburg, Germany ,0000 0000 9428 7911grid.7708.8Department of Neuroradiology, Freiburg University Medical Center, Freiburg, Germany ,0000 0000 8786 803Xgrid.15090.3dDivision of Neuroradiology/Department of Radiology, Bonn University Medical Center, Bonn, Germany
| | - Meng Li
- 0000 0000 9428 7911grid.7708.8Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg, Germany ,grid.5963.9Medical Faculty, Freiburg University, Freiburg, Germany ,0000 0001 2190 1447grid.10392.39Clinical Affective Neuroimaging Laboratory, Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg, Germany. .,Medical Faculty, Freiburg University, Freiburg, Germany.
| |
Collapse
|
40
|
Coenen VA, Schlaepfer TE, Varkuti B, Schuurman PR, Reinacher PC, Voges J, Zrinzo L, Blomstedt P, Fenoy AJ, Hariz M. Surgical decision making for deep brain stimulation should not be based on aggregated normative data mining. Brain Stimul 2019; 12:1345-1348. [PMID: 31353286 DOI: 10.1016/j.brs.2019.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/02/2019] [Accepted: 07/18/2019] [Indexed: 11/25/2022] Open
Affiliation(s)
- Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Medical Faculty of Freiburg University, Germany; Center for Basics in Neuromodulation, Freiburg University, Germany.
| | - Thomas E Schlaepfer
- Department of Interventional Biological Psychiatry, Freiburg University Medical Center, Medical Faculty of Freiburg University, Germany
| | | | - P Rick Schuurman
- Amsterdam UMC, University of Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Medical Faculty of Freiburg University, Germany
| | - Juergen Voges
- Department of Stereotactic Neurosurgery, Otto von Guericke University, Magdeburg, Germany
| | - Ludvic Zrinzo
- Functional Neurosurgery Unit, UCL Queen Square Institute of Neurology, London, UK
| | - Patric Blomstedt
- Department of Clinical Neuroscience, University Hospital, 90185, Umeå, Sweden
| | - Albert J Fenoy
- Department of Neurosurgery, McGovern Medical School, University of Texas, Houston, USA
| | - Marwan Hariz
- Department of Clinical Neuroscience, University Hospital, 90185, Umeå, Sweden
| |
Collapse
|
41
|
Coenen VA, Bewernick BH, Kayser S, Kilian H, Boström J, Greschus S, Hurlemann R, Klein ME, Spanier S, Sajonz B, Urbach H, Schlaepfer TE. Superolateral medial forebrain bundle deep brain stimulation in major depression: a gateway trial. Neuropsychopharmacology 2019; 44:1224-1232. [PMID: 30867553 PMCID: PMC6785007 DOI: 10.1038/s41386-019-0369-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/04/2019] [Accepted: 03/03/2019] [Indexed: 12/13/2022]
Abstract
Short- and long-term antidepressant effects of deep brain stimulation (DBS) in treatment-resistant depression (TRD) have been demonstrated for several brain targets in open-label studies. For two stimulation targets, pivotal randomized trials have been conducted; both failed a futility analysis. We assessed efficacy and safety of DBS of the supero-lateral branch of the medial forebrain bundle (slMFB) in a small Phase I clinical study with a randomized-controlled onset of stimulation in order to obtain data for the planning of a large RCT. Sixteen patients suffering from TRD received DBS of the slMFB and were randomized to sham or real stimulation for the duration of 2 months after implantation. Primary outcome measure was mean reduction in Montgomery-Åsberg Depression Rating Scale (MADRS) during 12 months of DBS (timeline analysis). Secondary outcomes were the difference in several clinical measures between sham and real stimulation at 8 weeks and during stimulation phases. MADRS ratings decreased significantly from 29.6 (SD +/- 4) at baseline to 12.9 (SD +/- 9) during 12 months of DBS (mean MADRS, n = 16). All patients reached the response criterion, most patients (n = 10) responded within a week; 50% of patients were classified as remitters after 1 year of stimulation. The most frequent side effect was transient strabismus. Both groups (active/sham) demonstrated an antidepressant micro-lesioning effect but patients had an additional antidepressant effect after initiation of stimulation. Both rapid onset and stability of the antidepressant effects of slMFB-DBS were demonstrated as in our previous pilot study. Given recent experiences from pivotal trials in DBS for MDD, we believe that slow, careful, and adaptive study development is germane. After our exploratory study and a large-scale study, we conducted this gateway trial in order to better inform planning of the latter. Important aspects for the planning of RCTs in the field of DBS for severe and chronic diseases are discussed including meaningful phases of intra-individual and between-group comparisons and timeline instead of single endpoint analyses.
Collapse
Affiliation(s)
- Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Bettina H Bewernick
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- Department of Interventional Biological Psychiatry, University Hospital Freiburg, Freiburg, Germany
| | - Sarah Kayser
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Hannah Kilian
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Neuroradiology, Department of Radiology, University of Bonn, Bonn, Germany
| | - Jan Boström
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Susanne Greschus
- Division of Neuroradiology, Department of Radiology, University of Bonn, Bonn, Germany
| | - René Hurlemann
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Margaretha Eva Klein
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Susanne Spanier
- Department of Interventional Biological Psychiatry, University Hospital Freiburg, Freiburg, Germany
| | - Bastian Sajonz
- Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Horst Urbach
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Neuroradiology, Department of Radiology, University of Bonn, Bonn, Germany
- Department of Neuroradiology, University Hospital Freiburg, Freiburg, Germany
| | - Thomas E Schlaepfer
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany.
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany.
- Department of Interventional Biological Psychiatry, University Hospital Freiburg, Freiburg, Germany.
- Departments of Psychiatry and Mental Health, The Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
42
|
Biomarkers for closed-loop deep brain stimulation in Parkinson disease and beyond. Nat Rev Neurol 2019; 15:343-352. [DOI: 10.1038/s41582-019-0166-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Chronic brain stimulation rewarding experience ameliorates depression-induced cognitive deficits and restores aberrant plasticity in the prefrontal cortex. Brain Stimul 2019; 12:752-766. [PMID: 30765272 DOI: 10.1016/j.brs.2019.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/12/2018] [Accepted: 01/27/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a multifactorial disease which often coexists with cognitive deficits. Depression-induced cognitive deficits are known to be associated with aberrant reward processing, neurochemical and structural alterations. Recent studies have shown that chronic electrical stimulation of brain reward areas induces a robust antidepressant effect. However, the effects of repeated electrical self-stimulation of lateral hypothalamus - medial forebrain bundle (LH-MFB) on depression-induced cognitive deficits and associated neurochemical and structural alterations in the prefrontal cortex (PFC) are unknown. OBJECTIVES We investigated the effect of chronic rewarding self-stimulation of LH-MFB in neonatal clomipramine (CLI) model of depression. During adulthood, neonatal CLI and saline administered rats were implanted with bilateral electrodes stereotaxically in the LH-MFB and trained to receive intracranial self-stimulation (ICSS) for 14 days. The rats were tested for depressive-like behaviors, learning and memory followed by estimation of PFC volumes, levels of monoamines and its metabolites in the PFC. RESULTS We found that chronic ICSS of LH-MFB reverses CLI-induced behavioral despair and anhedonia. Interestingly, self-stimulation normalizes the impaired novel object and location recognition memory in CLI rats. The amelioration of learning impairments in CLI rats was associated with the reversal of volume loss and restoration of monoamine metabolism in the PFC. CONCLUSION We demonstrated that repeated intracranial self-stimulation of LH-MFB ameliorates CLI-induced learning deficits, reverses altered monoamine metabolism and the atrophy of PFC. Our results support the hypothesis that chronic brain stimulation rewarding experience might be evolved as a potential treatment strategy for reversal of learning deficits in depression and associated disorders.
Collapse
|
44
|
Ou Y, Su Q, Liu F, Ding Y, Chen J, Zhang Z, Zhao J, Guo W. Increased Nucleus Accumbens Connectivity in Resting-State Patients With Drug-Naive, First-Episode Somatization Disorder. Front Psychiatry 2019; 10:585. [PMID: 31474890 PMCID: PMC6706814 DOI: 10.3389/fpsyt.2019.00585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/25/2019] [Indexed: 11/13/2022] Open
Abstract
The nucleus accumbens (NAc) plays an important role in the reward circuit, and abnormal regional activities of the reward circuit have been reported in various psychiatric disorders including somatization disorder (SD). However, few researches are designed to analyze the NAc connectivity in SD. This study was designed to explore the NAc connectivity in first-episode, drug-naive patients with SD using the bilateral NAc as seeds. Twenty-five first-episode, drug-naive patients with SD and 28 healthy controls were recruited. Functional connectivity (FC) was designed to analyze the images. LIBSVM (a library for support vector machines) was used to identify whether abnormal FC could be utilized to discriminate the patients from the controls. The patients showed significantly increased FC between the left NAc and the right gyrus rectus and left medial prefrontal cortex/anterior cingulate cortex (MPFC/ACC), and between the right NAc and the left gyrus rectus and left MPFC/ACC compared with the controls. The patients could be separated from the controls through increased FC between the left NAc and the right gyrus rectus with a sensitivity of 88.00% and a specificity of 82.14%. The findings reveal that patients with SD have increased NAc connectivity with the frontal regions of the reward circuit. Increased left NAc-right gyrus rectus connectivity can be used as a potential marker to discriminate patients with SD from healthy controls. The study thus highlights the importance of the reward circuit in the neuropathology of SD.
Collapse
Affiliation(s)
- Yangpan Ou
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders, Changsha, China
| | - Qinji Su
- Mental Health Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yudan Ding
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders, Changsha, China
| | - Jindong Chen
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders, Changsha, China
| | - Zhikun Zhang
- Mental Health Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingping Zhao
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders, Changsha, China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders, Changsha, China
| |
Collapse
|
45
|
Dandekar MP, Saxena A, Scaini G, Shin JH, Migut A, Giridharan VV, Zhou Y, Barichello T, Soares JC, Quevedo J, Fenoy AJ. Medial Forebrain Bundle Deep Brain Stimulation Reverses Anhedonic-Like Behavior in a Chronic Model of Depression: Importance of BDNF and Inflammatory Cytokines. Mol Neurobiol 2018; 56:4364-4380. [PMID: 30317434 DOI: 10.1007/s12035-018-1381-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/04/2018] [Indexed: 12/28/2022]
Abstract
Deep brain stimulation (DBS) of the medial forebrain bundle (MFB) displays a promising antidepressant effects in patients with treatment-refractory depression; however, a clear consensus on underlying mechanisms is still enigmatic. Herein, we investigated the effects of MFB-DBS on anhedonic-like behavior using the Froot Loops® consumption in a chronic unpredictable mild stress (CUS) model of depression, biochemical estimation of peripheral and central inflammatory cytokines, stress hormone, and brain-derived neurotrophic factor (BDNF). Seven days of MFB-DBS significantly reversed the 42-day CUS-generated anhedonic-like phenotype (p < 0.02) indicated by an increase in Froot Loops® consumption. Gross locomotor activity and body weight remained unaffected across the different groups. A dramatic augmentation of adrenocorticotropic hormone levels was seen in the plasma and cerebrospinal fluid (CSF) samples of CUS rats, which significantly reduced following MFB-DBS treatment. However, C-reactive protein levels were found to be unaffected. Interestingly, decreased levels of BDNF in the CUS animals were augmented in the plasma, CSF, and hippocampus following MFB-DBS, but remained unaltered in the nucleus accumbens (NAc). While multiplex assay revealed no change in the neuronal levels of inflammatory cytokines including IL-1α, IL-4, IL-10, IL-12, IL-13, and IL-17 in the neuroanatomical framework of the hippocampus and NAc, increased levels of IL-1β, IL-2, IL-5, IL-6, IL-7, IL-18, TNF-α, and INF-γ were seen in these brain structures after CUS and were differentially modulated in the presence of MFB stimulation. Here, we show that there is dysregulation of BDNF and neuroimmune mediators in a stress-driven chronic depression model, and that chronic MFB-DBS has the potential to undo these aberrations.
Collapse
Affiliation(s)
- Manoj P Dandekar
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Ashwini Saxena
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Giselli Scaini
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Joo Hyun Shin
- Department of Neurosurgery, McGovern Medical School, Mischer Neurosurgical Associates, The University of Texas Health Science Center at Houston (UTHealth), 6400 Fannin, Suite 2800, Houston, TX, 77030, USA
| | - Agata Migut
- Department of Neurosurgery, McGovern Medical School, Mischer Neurosurgical Associates, The University of Texas Health Science Center at Houston (UTHealth), 6400 Fannin, Suite 2800, Houston, TX, 77030, USA
| | - Vijayasree Vayalanellore Giridharan
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Yuzhi Zhou
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Tatiana Barichello
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jair C Soares
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Joao Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Albert J Fenoy
- Department of Neurosurgery, McGovern Medical School, Mischer Neurosurgical Associates, The University of Texas Health Science Center at Houston (UTHealth), 6400 Fannin, Suite 2800, Houston, TX, 77030, USA.
| |
Collapse
|
46
|
Howell B, Choi KS, Gunalan K, Rajendra J, Mayberg HS, McIntyre CC. Quantifying the axonal pathways directly stimulated in therapeutic subcallosal cingulate deep brain stimulation. Hum Brain Mapp 2018; 40:889-903. [PMID: 30311317 DOI: 10.1002/hbm.24419] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/21/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022] Open
Abstract
Deep brain stimulation (DBS) of the subcallosal cingulate (SCC) is an emerging experimental therapy for treatment-resistant depression. New developments in SCC DBS surgical targeting are focused on identifying specific axonal pathways for stimulation that are estimated from patient-specific computational models. This connectomic-based biophysical modeling strategy has proven successful in improving the clinical response to SCC DBS therapy, but the DBS models used to date have been relatively simplistic, limiting the precision of the pathway activation estimates. Therefore, we used the most detailed patient-specific foundation for DBS modeling currently available (i.e., field-cable modeling) to evaluate SCC DBS in our most recent cohort of six subjects, all of which were responders to the therapy. We quantified activation of four major pathways in the SCC region: forceps minor (FM), cingulum bundle (CB), uncinate fasciculus (UF), and subcortical connections between the frontal pole and the thalamus or ventral striatum (FP). We then used the percentage of activated axons in each pathway as regressors in a linear model to predict the time it took patients to reach a stable response, or TSR. Our analysis suggests that stimulation of the left and right CBs, as well as FM are the most likely therapeutic targets for SCC DBS. In addition, the right CB alone predicted 84% of the variation in the TSR, and the correlation was positive, suggesting that activation of the right CB beyond a critical percentage may actually protract the recovery process.
Collapse
Affiliation(s)
- Bryan Howell
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio.,Department of Psychiatry and Behavioral Science, Emory University, Atlanta, Georgia
| | - Ki Sueng Choi
- Department of Psychiatry and Behavioral Science, Emory University, Atlanta, Georgia.,Department of Radiology, Mount Sinai School of Medicine, New York, New York.,Department of Neurosurgery, Mount Sinai School of Medicine, New York, New York
| | - Kabilar Gunalan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Justin Rajendra
- Scientific and Statistical Computational Core, National Institute of Mental Health, Bethesda, Maryland
| | - Helen S Mayberg
- Department of Psychiatry and Behavioral Science, Emory University, Atlanta, Georgia.,Department of Neurosurgery, Mount Sinai School of Medicine, New York, New York.,Department of Neurology, Mount Sinai School of Medicine, New York, New York.,Department of Psychiatry, Mount Sinai School of Medicine, New York, New York
| | - Cameron C McIntyre
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
47
|
Cassimjee N, van Coller R, Slabbert P, Fletcher L, Vaidyanathan J. Longitudinal neuropsychological outcomes in treatment-resistant depression following bed nucleus of the stria terminalis-area deep brain stimulation: a case review. Neurocase 2018; 24:231-237. [PMID: 30507338 DOI: 10.1080/13554794.2018.1549680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Studies have demonstrated the effectiveness of deep brain stimulation (DBS) as a treatment modality for psychiatric conditions. We present a case reviewing the longitudinal neuropsychological performance outcomes following bed nucleus of the stria terminalis-area (BNST) DBS in a patient with treatment-resistant depression (TRD). The cognitive safety of DBS is well documented for various targets, however cognitive outcomes of BNST-area DBS have not been extensively reported for patients with TRD. Neuropsychological assessment was conducted pre- and post-DBS. Twelve months following DBS, augmented general cognitive performance was observed with significant changes in specific domains.
Collapse
Affiliation(s)
- Nafisa Cassimjee
- a Department of Psychology , University of Pretoria , Pretoria , South Africa
| | - Riaan van Coller
- b Department of Neurology , University of Pretoria , South Africa
| | - Pieter Slabbert
- c Neurosurgeon , Pretoria East Hospital , Pretoria , South Africa
| | - Lizelle Fletcher
- d Department of Statistics , University of Pretoria , Pretoria , South Africa
| | | |
Collapse
|
48
|
Krüger MT, Coenen VA, Jenkner C, Urbach H, Egger K, Reinacher PC. Combination of CT angiography and MRI in surgical planning of deep brain stimulation. Neuroradiology 2018; 60:1151-1158. [DOI: 10.1007/s00234-018-2079-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 08/13/2018] [Indexed: 12/20/2022]
|
49
|
Coenen VA, Sajonz B, Reisert M, Bostroem J, Bewernick B, Urbach H, Jenkner C, Reinacher PC, Schlaepfer TE, Mädler B. Tractography-assisted deep brain stimulation of the superolateral branch of the medial forebrain bundle (slMFB DBS) in major depression. NEUROIMAGE-CLINICAL 2018; 20:580-593. [PMID: 30186762 PMCID: PMC6120598 DOI: 10.1016/j.nicl.2018.08.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 01/01/2023]
Abstract
Background Deep brain stimulation (DBS) of the superolateral branch of the medial forebrain bundle (slMFB) emerges as a - yet experimental - treatment for major depressive disorder (MDD) and other treatment refractory psychiatric diseases. First experiences have been reported from two open label pilot trials in major depression (MDD) and long-term effectiveness for MDD (50 months) has been reported. Objective To give a detailed description of the surgical technique for DBS of the superolateral branch of the medial forebrain bundle (slMFB) in MDD. Methods Surgical experience from bilateral implantation procedures in n = 24 patients with MDD is reported. The detailed procedure of tractography-assisted targeting together with detailed electrophysiology in 144 trajectories in the target region (recording and stimulation) is described. Achieved electrode positions were evaluated based on postoperative helical CT and fused to preoperative high resolution anatomical magnetic resonance imaging (MRI; Philips Medical Systems, Best, Netherlands), including the pre-operative diffusion tensor imaging (DTI) tractographic information (StealthViz DTI, Medtronic, USA; Framelink 5.0, Medtronic, USA). Midcommissural point (MCP) coordinates of effective contact (EC) location, together with angles of entry into the target region were evaluated. To investigate incidental stimulation of surrounding nuclei (subthalamic nucleus, STN; substantia nigra, SNr; and red nucleus, RN) as a possible mechanism, a therapeutic triangle (TT) was defined, located between these structures (based on MRI criteria in T2) and evaluated with respect to EC locations. Results Bilateral slMFB DBS was performed in all patients. We identified an electrophysiological environment (defined by autonomic reaction, passive microelectrode recording, acute effects and oculomotor effects) that helps to identify the proper target site on the operation table. Postoperative MCP-evaluation of effective contacts (EC) shows a significant variability with respect to localization. Evaluation of the TT shows that responders will typically have their active contacts inside the triangle and that surrounding nuclei (STN, SNr, RN) are not directly hit by EC, indicating a predominant white matter stimulation. The individual EC position within the triangle cannot be predicted and is based on individual slMFB (tractography) geometry. There was one intracranial bleeding (FORESEE I study) during a first implantation attempt in a patient who later received full bilateral implantation. Typical oculomotor side effects are idiosyncratic for the target region and at inferior contacts. Conclusion The detailed surgical procedure of slMFB DBS implantation has not been described before. The slMFB emerges as an interesting region for the treatment of major depression (and other psychiatric diseases) with DBS. So far it has only been successfully researched in open label clinical case series and in 15 patients published. Stimulation probably achieves its effect through direct white-matter modulation of slMFB fibers. The surgical implantation comprises a standardized protocol combining tractographic imaging based on DTI, targeting and electrophysiological evaluation of the target region. To this end, slMFB DBS surgery is in technical aspects comparable to typical movement disorder surgery. In our view, slMFB DBS should only be performed under tractographic assistance. The slMFB is an emerging target for DBS in therapy refractory Depression. The therapeutic effect is related to modulation of white matter. Surgery for slMFB DBS is tractography assisted surgery. DBS of the slMFB is in many aspects similar to movement disorder surgery.
Collapse
Key Words
- CT, computed tomography
- DBS, deep brain stimulation
- DTI FT, DTI fiber tractography
- DTI, diffusion tensor magnetic resonance imaging
- Deep brain stimulation
- Depression
- Diffusion tensor imaging
- EC, effective contact
- FT, fiber tractography
- Fiber tracking
- HF, high frequency
- Hz, Hertz [1/s]
- IPG, internal pulse generator
- MADRS, Montgomery-Åsberg Depression Rating Scale
- MCP, mid-commissural point
- MDD, major depressive disorder
- MRI, magnetic resonance imaging
- Medial forebrain bundle
- OCD
- RN, red nucleus
- SNr, substantia nigra pars reticulata
- STN, subthalamic nucleus
- Stereotactic surgery
- Tractography
- VAT, volume of activated tissue
- VTA, ventral tegmental area
- mA, milli-ampere
- slMFB
- μs, micro second
Collapse
Affiliation(s)
- Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Germany; Medical Faculty, Freiburg University, Freiburg, Germany; Department of Neurosurgery, Bonn University Medical Center, Germany; BrainLinks/BrainTools, Cluster of Excellence, Freiburg University, Germany.
| | - Bastian Sajonz
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Germany; Medical Faculty, Freiburg University, Freiburg, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Germany; Medical Faculty, Freiburg University, Freiburg, Germany
| | - Jan Bostroem
- Department of Neurosurgery, Bonn University Medical Center, Germany
| | - Bettina Bewernick
- Division of Interventional Biological Psychiatry, Department of Psychiatry and Psychotherapy, Freiburg University Medical Center, Germany; Medical Faculty, Freiburg University, Freiburg, Germany; Department of Psychiatry and Psychotherapy, Geriatric Psychiatry and Neurodegenerative Disorders, Bonn University Medical Center, Germany
| | - Horst Urbach
- Department of Neuroradiology, Freiburg University Medical Center, Germany; Medical Faculty, Freiburg University, Freiburg, Germany; Division of Neuroradiology, Department of Radiology, Bonn University Medical Center, Germany
| | - Carolin Jenkner
- Clinical Trials Unit, Freiburg University, Germany; Medical Faculty, Freiburg University, Freiburg, Germany
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Germany; Medical Faculty, Freiburg University, Freiburg, Germany
| | - Thomas E Schlaepfer
- Division of Interventional Biological Psychiatry, Department of Psychiatry and Psychotherapy, Freiburg University Medical Center, Germany; Medical Faculty, Freiburg University, Freiburg, Germany; Department of Psychiatry and Psychotherapy, Geriatric Psychiatry and Neurodegenerative Disorders, Bonn University Medical Center, Germany; BrainLinks/BrainTools, Cluster of Excellence, Freiburg University, Germany
| | - Burkhard Mädler
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Germany; Medical Faculty, Freiburg University, Freiburg, Germany; Philips GmbH DACH, Hamburg, Germany
| |
Collapse
|
50
|
Nuno-Perez A, Tchenio A, Mameli M, Lecca S. Lateral Habenula Gone Awry in Depression: Bridging Cellular Adaptations With Therapeutics. Front Neurosci 2018; 12:485. [PMID: 30083090 PMCID: PMC6064733 DOI: 10.3389/fnins.2018.00485] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
Depression is a highly heterogeneous disease characterized by symptoms spanning from anhedonia and behavioral despair to social withdrawal and learning deficit. Such diversity of behavioral phenotypes suggests that discrete neural circuits may underlie precise aspects of the disease, rendering its treatment an unmet challenge for modern neuroscience. Evidence from humans and animal models indicate that the lateral habenula (LHb), an epithalamic center devoted to processing aversive stimuli, is aberrantly affected during depression. This raises the hypothesis that rescuing maladaptations within this nucleus may be a potential way to, at least partially, treat aspects of mood disorders. In this review article, we will discuss pre-clinical and clinical evidence highlighting the role of LHb and its cellular adaptations in depression. We will then describe interventional approaches aiming to rescue LHb dysfunction and ultimately ameliorate depressive symptoms. Altogether, we aim to merge the mechanistic-, circuit-, and behavioral-level knowledge obtained about LHb maladaptations in depression to build a general framework that might prove valuable for potential therapeutic interventions.
Collapse
Affiliation(s)
- Alvaro Nuno-Perez
- Department of Fundamental Neuroscience, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Anna Tchenio
- Department of Fundamental Neuroscience, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Manuel Mameli
- Department of Fundamental Neuroscience, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,INSERM, UMR-S 839, Paris, France
| | - Salvatore Lecca
- Department of Fundamental Neuroscience, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|