1
|
Rosenthal ZP, Majeski JB, Somarowthu A, Quinn DK, Lindquist BE, Putt ME, Karaj A, Favilla CG, Baker WB, Hosseini G, Rodriguez JP, Cristancho MA, Sheline YI, William Shuttleworth C, Abbott CC, Yodh AG, Goldberg EM. Electroconvulsive therapy generates a postictal wave of spreading depolarization in mice and humans. Nat Commun 2025; 16:4619. [PMID: 40383825 PMCID: PMC12086196 DOI: 10.1038/s41467-025-59900-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 05/08/2025] [Indexed: 05/20/2025] Open
Abstract
Electroconvulsive therapy (ECT) is a fast-acting, highly effective, and safe treatment for medication-resistant depression. Historically, the clinical benefits of ECT have been attributed to generating a controlled seizure; however, the underlying neurobiology is understudied and unresolved. Using optical neuroimaging of neural activity and hemodynamics in a mouse model of ECT, we demonstrated that a second brain event follows seizure: cortical spreading depolarization (CSD). We found that ECT pulse parameters and electrode configuration directly shaped the wave dynamics of seizure and subsequent CSD. To translate these findings to human patients, we used non-invasive diffuse optical monitoring of cerebral blood flow and oxygenation during routine ECT treatments. We observed that human brains reliably generate hyperemic waves after ECT seizure which are highly consistent with CSD. These results challenge a long-held assumption that seizure is the primary outcome of ECT and point to new opportunities for optimizing ECT stimulation parameters and treatment outcomes.
Collapse
Affiliation(s)
- Zachary P Rosenthal
- Psychiatry Residency Physician-Scientist Research Track, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Joseph B Majeski
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Ala Somarowthu
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Davin K Quinn
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Britta E Lindquist
- Department of Neurology, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Mary E Putt
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Antoneta Karaj
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chris G Favilla
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wesley B Baker
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Golkoo Hosseini
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jenny P Rodriguez
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mario A Cristancho
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuromodulation in Depression and Stress, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yvette I Sheline
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuromodulation in Depression and Stress, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Christopher C Abbott
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Ethan M Goldberg
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Rosenthal ZP, Majeski JB, Somarowthu A, Quinn DK, Lindquist BE, Putt ME, Karaj A, Favilla CG, Baker WB, Hosseini G, Rodriguez JP, Cristancho MA, Sheline YI, Shuttleworth CW, Abbott CC, Yodh AG, Goldberg EM. Electroconvulsive therapy generates a postictal wave of spreading depolarization in mice and humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.31.621357. [PMID: 39554135 PMCID: PMC11565954 DOI: 10.1101/2024.10.31.621357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Electroconvulsive therapy (ECT) is a fast-acting, highly effective, and safe treatment for medication-resistant depression. Historically, the clinical benefits of ECT have been attributed to generating a controlled seizure; however, the underlying neurobiology is understudied and unresolved. Using optical neuroimaging of neural activity and hemodynamics in a mouse model of ECT, we demonstrated that a second brain event follows seizure: cortical spreading depolarization (CSD). We found that ECT pulse parameters and electrode configuration directly shaped the wave dynamics of seizure and subsequent CSD. To translate these findings to human patients, we used non-invasive diffuse optical monitoring of cerebral blood flow and oxygenation during routine ECT treatments. We observed that human brains reliably generate hyperemic waves after ECT seizure which are highly consistent with CSD. These results challenge a long-held assumption that seizure is the primary outcome of ECT and point to new opportunities for optimizing ECT stimulation parameters and treatment outcomes.
Collapse
Affiliation(s)
- Zachary P Rosenthal
- Psychiatry Residency Physician-Scientist Research Track, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph B. Majeski
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Ala Somarowthu
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, PA, USA
| | - Davin K Quinn
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Britta E. Lindquist
- Department of Neurology, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Mary E. Putt
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Antoneta Karaj
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chris G Favilla
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wesley B. Baker
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, PA, USA
| | - Golkoo Hosseini
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jenny P Rodriguez
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mario A Cristancho
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuromodulation in Depression and Stress, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yvette I Sheline
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuromodulation in Depression and Stress, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Christopher C. Abbott
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Ethan M Goldberg
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Lee J, Huh S, Park K, Kang N, Yu HS, Park HG, Kim YS, Kang UG, Won S, Kim SH. Behavioral and transcriptional effects of repeated electroconvulsive seizures in the neonatal MK-801-treated rat model of schizophrenia. Psychopharmacology (Berl) 2024; 241:817-832. [PMID: 38081977 DOI: 10.1007/s00213-023-06511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/23/2023] [Indexed: 03/13/2024]
Abstract
RATIONALE Electroconvulsive therapy (ECT) is an effective treatment modality for schizophrenia. However, its antipsychotic-like mechanism remains unclear. OBJECTIVES To gain insight into the antipsychotic-like actions of ECT, this study investigated how repeated treatments of electroconvulsive seizure (ECS), an animal model for ECT, affect the behavioral and transcriptomic profile of a neurodevelopmental animal model of schizophrenia. METHODS Two injections of MK-801 or saline were administered to rats on postnatal day 7 (PN7), and either repeated ECS treatments (E10X) or sham shock was conducted daily from PN50 to PN59. Ultimately, the rats were divided into vehicle/sham (V/S), MK-801/sham (M/S), vehicle/ECS (V/E), and MK-801/ECS (M/E) groups. On PN59, prepulse inhibition and locomotor activity were tested. Prefrontal cortex transcriptomes were analyzed with mRNA sequencing and network and pathway analyses, and quantitative real-time polymerase chain reaction (qPCR) analyses were subsequently conducted. RESULTS Prepulse inhibition deficit was induced by MK-801 and normalized by E10X. In M/S vs. M/E model, Egr1, Mmp9, and S100a6 were identified as center genes, and interleukin-17 (IL-17), nuclear factor kappa B (NF-κB), and tumor necrosis factor (TNF) signaling pathways were identified as the three most relevant pathways. In the V/E vs. V/S model, mitophagy, NF-κB, and receptor for advanced glycation end products (RAGE) pathways were identified. qPCR analyses demonstrated that Igfbp6, Btf3, Cox6a2, and H2az1 were downregulated in M/S and upregulated in M/E. CONCLUSIONS E10X reverses the behavioral changes induced by MK-801 and produces transcriptional changes in inflammatory, insulin, and mitophagy pathways, which provide mechanistic insight into the antipsychotic-like mechanism of ECT.
Collapse
Affiliation(s)
- Jeonghoon Lee
- Department of Psychiatry, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seonghoo Huh
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyungtaek Park
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Nuree Kang
- Department of Psychiatry, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Sook Yu
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hong Geun Park
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yong Sik Kim
- Department of Psychiatry, Nowon Eulji Medical Center, Eulji University, Seoul, Republic of Korea
| | - Ung Gu Kang
- Department of Psychiatry, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sungho Won
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
- RexSoft Inc., Seoul, Republic of Korea
| | - Se Hyun Kim
- Department of Psychiatry, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Meyers KT, Damphousse CC, Ozols AB, Campbell JM, Newbern JM, Hu C, Marrone DF, Gallitano AL. Serial electroconvulsive Seizure alters dendritic complexity and promotes cellular proliferation in the mouse dentate gyrus; a role for Egr3. Brain Stimul 2023; 16:889-900. [PMID: 37146791 PMCID: PMC10776161 DOI: 10.1016/j.brs.2023.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Despite being one of the safest, most effective treatments for severe mood disorders, the therapeutic mechanisms of electroconvulsive therapy remain unknown. Electroconvulsive seizure (ECS) induces rapid, high-level expression of immediate early genes (IEGs) and brain-derived neurotrophic factor (BDNF), in addition to stimulation of neurogenesis and dendritic remodeling of dentate gyrus (DG) neurons. We have previously shown that this upregulation of BDNF fails to occur in the hippocampus of mice lacking the IEG Egr3. Since BDNF influences neurogenesis and dendritic remodeling, we hypothesized that Egr3-/- mice will exhibit deficits in neurogenesis and dendritic remodeling in response to ECS. OBJECTIVE To test this hypothesis, we examined dendritic remodeling and cellular proliferation in the DG of Egr3-/- and wild-type mice following repeated ECS. METHODS Mice received 10 daily ECSs. Dendritic morphology was examined in Golgi-Cox-stained tissue and cellular proliferation was analyzed through bromodeoxyuridine (BrdU) immunohistochemistry and confocal imaging. RESULTS Serial ECS in mice results in dendritic remodeling, increased spine density, and cellular proliferation in the DG. Loss of Egr3 alters the dendritic remodeling induced by serial ECS but does not change the number of dendritic spines or cellular proliferation consequences of ECS. CONCLUSION Egr3 influences the dendritic remodeling induced by ECS but is not required for ECS-induced proliferation of hippocampal DG cells.
Collapse
Affiliation(s)
- K T Meyers
- Interdisciplinary Graduate Program in Neuroscience, Arizona State University, Tempe, AZ, 85281, USA; Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
| | - C C Damphousse
- Psychology, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - A B Ozols
- Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
| | - J M Campbell
- Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
| | - J M Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - C Hu
- Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health - Phoenix, 714 E Van Buren St #119, Phoenix, AZ, 85006, USA
| | - D F Marrone
- Psychology, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada.
| | - A L Gallitano
- Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA.
| |
Collapse
|
5
|
Ahmad Hariza AM, Mohd Yunus MH, Murthy JK, Wahab S. Clinical Improvement in Depression and Cognitive Deficit Following Electroconvulsive Therapy. Diagnostics (Basel) 2023; 13:diagnostics13091585. [PMID: 37174977 PMCID: PMC10178332 DOI: 10.3390/diagnostics13091585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Electroconvulsive therapy (ECT) is a long-standing treatment choice for disorders such as depression when pharmacological treatments have failed. However, a major drawback of ECT is its cognitive side effects. While numerous studies have investigated the therapeutic effects of ECT and its mechanism, much less research has been conducted regarding the mechanism behind the cognitive side effects of ECT. As both clinical remission and cognitive deficits occur after ECT, it is possible that both may share a common mechanism. This review highlights studies related to ECT as well as those investigating the mechanism of its outcomes. The process underlying these effects may lie within BDNF and NMDA signaling. Edema in the astrocytes may also be responsible for the adverse cognitive effects and is mediated by metabotropic glutamate receptor 5 and the protein Homer1a.
Collapse
Affiliation(s)
- Ahmad Mus'ab Ahmad Hariza
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Jaya Kumar Murthy
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Suzaily Wahab
- Department of Psychiatry, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
6
|
Nikolin S, Owens K, Francis-Taylor R, Chaimani A, Martin DM, Bull M, Sackeim HA, McLoughlin DM, Sienaert P, Kellner CH, Loo C. Comparative efficacy, cognitive effects and acceptability of electroconvulsive therapies for the treatment of depression: protocol for a systematic review and network meta-analysis. BMJ Open 2022; 12:e068313. [PMID: 36549738 PMCID: PMC9772645 DOI: 10.1136/bmjopen-2022-068313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION There have been important advances in the use of electroconvulsive therapy (ECT) to treat major depressive episodes. These include variations to the type of stimulus the brain regions stimulated, and the stimulus parameters (eg, stimulus duration/pulse width). Our aim is to investigate ECT types using a network meta-analysis (NMA) approach and report on comparative treatment efficacy, cognitive side effects and acceptability. METHOD We will conduct a systematic review to identify randomised controlled trials that compared two or more ECT protocols to treat depression. This will be done using the following databases: Embase, MEDLINE PubMed, Web of Science, Scopus, PsycINFO, Cochrane CENTRAL and will be supplemented by personal contacts with researchers in the field. All authors will be contacted to provide missing information. Primary outcomes will be symptom severity on a validated continuous clinician-rated scale of depression, cognitive functioning measured using anterograde verbal recall, and acceptability calculated using all-cause drop-outs. Secondary outcomes will include response and remission rates, autobiographical memory following a course of ECT, and anterograde visuospatial recall.Bayesian random effects hierarchical models will compare ECT types. Additional meta-regressions may be conducted to determine the impact of effect modifiers and patient-specific prognostic factors if sufficient data are available. DISCUSSION This NMA will facilitate clinician decision making and allow more sophisticated selection of ECT type according to the balance of efficacy, cognitive side effects and acceptability. ETHICS This systematic review and NMA does not require research ethics approval as it will use published aggregate data and will not collect nor disclose individually identifiable participant data. PROSPERO REGISTRATION NUMBER CRD42022357098.
Collapse
Affiliation(s)
- Stevan Nikolin
- Department of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
- Black Dog Institute, Randwick, New South Wales, Australia
| | - Kieran Owens
- Department of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Rohan Francis-Taylor
- Department of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
- Black Dog Institute, Randwick, New South Wales, Australia
| | - Anna Chaimani
- Research Center of Epidemiology (CRESS-UMR1153), INSERM, INRA, Universite de Paris, Paris, France
| | - Donel M Martin
- Department of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
- Black Dog Institute, Randwick, New South Wales, Australia
| | - Michael Bull
- Department of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
- Black Dog Institute, Randwick, New South Wales, Australia
| | - Harold A Sackeim
- Department of Psychiatry, Columbia University, New York, New York, USA
| | | | - Pascal Sienaert
- Department of Neurosciences, KU Leuven Psychiatric University Hospital KU Leuven, Leuven, Belgium
| | - Charles H Kellner
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Colleen Loo
- Department of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
- Black Dog Institute, Randwick, New South Wales, Australia
| |
Collapse
|
7
|
Göverti D, Büyüklüoğlu N, Kaya H, Yüksel RN, Yücel Ç, Göka E. Neuronal pentraxin-2 (NPTX2) serum levels during an acute psychotic episode in patients with schizophrenia. Psychopharmacology (Berl) 2022; 239:2585-2591. [PMID: 35482070 DOI: 10.1007/s00213-022-06147-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 04/14/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Neuronal pentraxin-2 (NPTX2, an immediate-early gene), which regulates synapse activity and neuroplasticity, plays an essential role in the neurodevelopmental process. NPTX2 possibly enhances the accumulation of amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptors (AMPAR) on the postsynaptic membranes and stimulates excitatory synaptogenesis. We aimed to evaluate the plasma concentrations of NPTX2 of patients with schizophrenia in acute psychotic episodes compared with matched community-based controls. METHODS Ninety-three (93) patients diagnosed with schizophrenia according to DSM-5 and 83 healthy controls were included. The patients, all of which were in acute psychotic episodes, were recruited from the inpatient clinic. The patients were assessed by the Positive and Negative Syndrome Scale (PANSS) and Clinical Global Impression- Severity (CGIS) scale, whereas the healthy subjects were evaluated with Structured Clinical Interview for DSM-5 (SCID-5) to exclude any major psychiatric diagnoses. RESULTS NPTX2 serum concentrations were significantly higher in the schizophrenia group (p < 0.001). NPTX2 levels negatively correlated with age (p = 0.004) and PANSS-positive symptom scores (p < 0.001). The most determinant factors in predicting the change in NPTX2 levels were PANSS-positive symptom and general psychopathology scores. CONCLUSIONS We conclude that NPTX2 could be involved in schizophrenia pathophysiology and valuable as a synapse-derived and glutamate-related biomarker. Further studies in larger samples assessing NPTX2 levels in remitted schizophrenia patients and combining neuroimaging techniques and cognitive evaluations with blood samples are needed.
Collapse
Affiliation(s)
- Diğdem Göverti
- Department of Psychiatry, University of Health Sciences, Erenkoy Mental Health and Neurologic Disorders Training and Research Hospital, Istanbul, Turkey.
| | - Nihan Büyüklüoğlu
- Department of Psychiatry, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Hasan Kaya
- Department of Psychiatry, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Rabia Nazik Yüksel
- Department of Psychiatry, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Çiğdem Yücel
- Department of Biochemistry, University of Health Sciences, Gulhane Training and Research Hospital, Ankara, Turkey
| | - Erol Göka
- Department of Psychiatry, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
8
|
An X, Wang Y. Electroconvulsive shock increases neurotrophy and neurogenesis: Time course and treatment session effects. Psychiatry Res 2022; 309:114390. [PMID: 35063747 DOI: 10.1016/j.psychres.2022.114390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 01/03/2022] [Accepted: 01/08/2022] [Indexed: 10/19/2022]
Abstract
Increasing evidence suggests that hippocampal neurotrophy may be related to the development of major depressive disorders. Neurogenesis, which can be regulated by neurotrophic factors, is also involved in antidepressant efficacy. This paper reviewed literature on neurotrophic signaling and cell proliferation after electroconvulsive shock (ECS) treatment. All articles were from PubMed, Web of Science, and Scopus databases between 2000 and 2020. The keywords used in the literature search are: "ECS," "ECT," "electroconvulsive seizure," "electroconvulsive shock," "electroconvulsive therapy," "neurotrophic factor," "nerve growth factor," "neurotrophins," "neurogenesis," and "cell proliferation." Eighty-two articles were included in the final analysis. It was shown that compared with acute ECS, repeated ECS increased neurotrophin expression in more brain regions at higher levels and was maintained for a longer time. Similarly, ECS increased cell proliferation in a dose- and time-dependent manner. The increase in cell proliferation was positively correlated with the amount of ECS administered and the newly born cells survived for a long time. The effects of ECS in inducing increases in neurotrophin levels and neurogenesis may contribute to brain function changes and antidepressant effects. Future research may focus on optimal sessions of ECT treatment to obtain the best therapeutic effect.
Collapse
Affiliation(s)
- Xianli An
- School of Educational Science, Yangzhou University, Yangzhou, JiangSu Province, China.
| | - Yaqing Wang
- School of Educational Science, Yangzhou University, Yangzhou, JiangSu Province, China
| |
Collapse
|
9
|
Ramnauth AD, Maynard KR, Kardian AS, Phan BN, Tippani M, Rajpurohit S, Hobbs JW, Cerceo Page S, Jaffe AE, Martinowich K. Induction of Bdnf from promoter I following electroconvulsive seizures contributes to structural plasticity in neurons of the piriform cortex. Brain Stimul 2022; 15:427-433. [PMID: 35183789 PMCID: PMC8957536 DOI: 10.1016/j.brs.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/19/2022] [Accepted: 02/10/2022] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Electroconvulsive therapy (ECT) efficacy is hypothesized to depend on induction of molecular and cellular events that trigger neuronal plasticity. Investigating how electroconvulsive seizures (ECS) impact plasticity in animal models can help inform our understanding of basic mechanisms by which ECT relieves symptoms of depression. ECS-induced plasticity is associated with differential expression of unique isoforms encoding the neurotrophin, brain-derived neurotrophic factor (BDNF). HYPOTHESIS We hypothesized that cells expressing the Bdnf exon 1-containing isoform are important for ECS-induced structural plasticity in the piriform cortex, a highly epileptogenic region that is responsive to ECS. METHODS We selectively labeled Bdnf exon 1-expressing neurons in mouse piriform cortex using Cre recombinase dependent on GFP technology (CRE-DOG). We then quantified changes in dendrite morphology and density of Bdnf exon 1-expressing neurons. RESULTS Loss of promoter I-derived BDNF caused changes in spine density and morphology in Bdnf exon 1-expressing neurons following ECS. CONCLUSIONS Promoter I-derived Bdnf is required for ECS-induced dendritic structural plasticity in Bdnf exon 1-expressing neurons.
Collapse
Affiliation(s)
- Anthony D. Ramnauth
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristen R. Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Alisha S. Kardian
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - BaDoi N. Phan
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA,Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA,Medical Scientist Training Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Sumita Rajpurohit
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - John W. Hobbs
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Stephanie Cerceo Page
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Andrew E. Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Mental Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Goldfarb S, Fainstein N, Ganz T, Vershkov D, Lachish M, Ben-Hur T. Electric neurostimulation regulates microglial activation via retinoic acid receptor α signaling. Brain Behav Immun 2021; 96:40-53. [PMID: 33989746 DOI: 10.1016/j.bbi.2021.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/20/2021] [Accepted: 05/09/2021] [Indexed: 12/14/2022] Open
Abstract
Brain stimulation by electroconvulsive therapy is effective in neuropsychiatric disorders by unknown mechanisms. Microglial toxicity plays key role in neuropsychiatric, neuroinflammatory and degenerative diseases. We examined the mechanism by which electroconvulsive seizures (ECS) regulates microglial phenotype and response to stimuli. Microglial responses were examined by morphological analysis, Iba1 and cytokine expression. ECS did not affect resting microglial phenotype or morphology but regulated their activation by Lipopolysaccharide stimulation. Microglia were isolated after ECS or sham sessions in naïve mice for transcriptome analysis. RNA sequencing identified 141 differentially expressed genes. ECS modulated multiple immune-associated gene families and attenuated neurotoxicity-associated gene expression. Blood brain barrier was examined by injecting Biocytin-TMR tracer. There was no breakdown of the BBB, nor increase in gene-signature of peripheral monocytes, suggesting that ECS effect is mainly on resident microglia. Unbiased analysis of regulatory sequences identified the induction of microglial retinoic acid receptor α (RARα) gene expression and a putative common RARα-binding motif in multiple ECS-upregulated genes. The effects of AM580, a selective RARα agonist on microglial response to LPS was examined in vitro. AM580 prevented LPS-induced cytokine expression and reactive oxygen species production. Chronic murine experimental autoimmune encephalomyelitis (EAE) was utilized to confirm the role RARα signaling as mediator of ECS-induced transcriptional pathway in regulating microglial toxicity. Continuous intracerebroventricular delivery of AM580 attenuated effectively EAE severity. In conclusion, ECS regulates CNS innate immune system responses by activating microglial retinoic acid receptor α pathway, signifying a novel therapeutic approach for chronic neuroinflammatory, neuropsychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- Smadar Goldfarb
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Nina Fainstein
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Tal Ganz
- Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Dan Vershkov
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel; The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Marva Lachish
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Tamir Ben-Hur
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
11
|
Abstract
The mechanism of action of electroconvulsive therapy (ECT) is not fully elucidated, with prevailing theories ranging from neuroendocrinological to neuroplasticity effects of ECT or epileptiform brain plasticity. Youth with autism can present with catatonia. ECT is a treatment that can safely and rapidly resolve catatonia in autism and should be considered promptly. The literature available for ECT use in youth with autism is consistently growing. Under-recognition of the catatonic syndrome and delayed diagnosis and implementation of the anticatatonic treatment paradigms, including ECT, as well as stigma and lack of knowledge of ECT remain clinical stumbling blocks.
Collapse
Affiliation(s)
- Sa Eun Park
- Kennedy Krieger Institute, 1741 Ashland Avenue, Baltimore, MD 21205, USA.
| | - Marco Grados
- Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205, USA
| | - Lee Wachtel
- Kennedy Krieger Institute, Johns Hopkins School of Medicine, 707 North Broadway Street, Baltimore, MD 21209, USA
| | - Sanjay Kaji
- Johns Hopkins Hospital, 1800 Orleans Street, Baltimore, MD 21287, USA
| |
Collapse
|
12
|
Giacobbe J, Pariante CM, Borsini A. The innate immune system and neurogenesis as modulating mechanisms of electroconvulsive therapy in pre-clinical studies. J Psychopharmacol 2020; 34:1086-1097. [PMID: 32648795 PMCID: PMC7672674 DOI: 10.1177/0269881120936538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is a powerful and fast-acting anti-depressant strategy, often used in treatment-resistant patients. In turn, patients with treatment-resistant depression often present an increased inflammatory response. The impact of ECT on several pathophysiological mechanisms of depression has been investigated, with a focus which has largely been on cellular and synaptic plasticity. Although changes in the immune system are known to influence neurogenesis, these processes have principally been explored independently from each other in the context of ECT. OBJECTIVE The aim of this review was to compare the time-dependent consequences of acute and chronic ECT on concomitant innate immune system and neurogenesis-related outcomes measured in the central nervous system in pre-clinical studies. RESULTS During the few hours following acute electroconvulsive shock (ECS), the expression of the astrocytic reactivity marker glial fibrillary acidic protein (GFAP) and inflammatory genes, such as cyclooxygenase-2 (COX2), were significantly increased together with the neurogenic brain-derived neurotrophic factor (BDNF) and cell proliferation. Similarly, chronic ECS caused an initial upregulation of the same astrocytic marker, immune genes, and neurogenic factors. Interestingly, over time, inflammation appeared to be dampened, while glial activation and neurogenesis were maintained, after either acute or chronic ECS. CONCLUSION Regardless of treatment duration ECS would seemingly trigger a rapid increase in inflammatory molecules, dampened over time, as well as a long-lasting activation of astrocytes and production of growth and neurotrophic factors, leading to cell proliferation. This suggests that both innate immune system response and neurogenesis might contribute to the efficacy of ECT.
Collapse
Affiliation(s)
| | | | - Alessandra Borsini
- Alessandra Borsini, King’s College London, Institute of Psychiatry, Psychology & Neuroscience, Division of Psychological Medicine, Stress, Psychiatry and Immunology Lab & Perinatal Psychiatry, The Maurice Wohl Clinical Neuroscience Institute, Cutcombe Road, London SE5 9RT, UK.
| |
Collapse
|
13
|
Goldfarb S, Fainstein N, Ben-Hur T. Electroconvulsive stimulation attenuates chronic neuroinflammation. JCI Insight 2020; 5:137028. [PMID: 32780728 PMCID: PMC7526446 DOI: 10.1172/jci.insight.137028] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
Electroconvulsive therapy is highly effective in resistant depression by unknown mechanisms. Microglial toxicity was suggested to mediate depression and plays key roles in neuroinflammatory and degenerative diseases, where there is critical shortage in therapies. We examined the effects of electroconvulsive seizures (ECS) on chronic neuroinflammation and microglial neurotoxicity. Electric brain stimulation inducing full tonic-clonic seizures during chronic relapsing-progressive experimental autoimmune encephalomyelitis (EAE) reduced spinal immune cell infiltration, reduced myelin and axonal loss, and prevented clinical deterioration. Using the transfer EAE model, we examined the effect of ECS on systemic immune response in donor mice versus ECS effect on CNS innate immune activity in recipient mice. ECS did not affect encephalitogenicity of systemic T cells, but it targeted the CNS directly to inhibit T cell-induced neuroinflammation. In vivo and ex vivo assays indicated that ECS suppressed microglial neurotoxicity by reducing inducible NOS expression, nitric oxide, and reactive oxygen species (ROS) production, and by reducing CNS oxidative stress. Microglia from ECS-treated EAE mice expressed less T cell stimulatory and chemoattractant factors. Our findings indicate that electroconvulsive therapy targets the CNS innate immune system to reduce neuroinflammation by attenuating microglial neurotoxicity. These findings signify a potentially novel therapeutic approach for chronic neuroinflammatory, neuropsychiatric, and neurodegenerative diseases.
Collapse
|
14
|
Abstract
The mechanism of action of electroconvulsive therapy (ECT) is not fully elucidated, with prevailing theories ranging from neuroendocrinological to neuroplasticity effects of ECT or epileptiform brain plasticity. Youth with autism can present with catatonia. ECT is a treatment that can safely and rapidly resolve catatonia in autism and should be considered promptly. The literature available for ECT use in youth with autism is consistently growing. Under-recognition of the catatonic syndrome and delayed diagnosis and implementation of the anticatatonic treatment paradigms, including ECT, as well as stigma and lack of knowledge of ECT remain clinical stumbling blocks.
Collapse
Affiliation(s)
- Sa Eun Park
- Kennedy Krieger Institute, 1741 Ashland Avenue, Baltimore, MD 21205, USA.
| | - Marco Grados
- Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205, USA
| | - Lee Wachtel
- Kennedy Krieger Institute, Johns Hopkins School of Medicine, 707 North Broadway Street, Baltimore, MD 21209, USA
| | - Sanjay Kaji
- Johns Hopkins Hospital, 1800 Orleans Street, Baltimore, MD 21287, USA
| |
Collapse
|
15
|
Acute and long-term effects of electroconvulsive therapy on human dentate gyrus. Neuropsychopharmacology 2019; 44:1805-1811. [PMID: 30622299 PMCID: PMC6785137 DOI: 10.1038/s41386-019-0312-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/27/2018] [Accepted: 12/30/2018] [Indexed: 12/29/2022]
Abstract
Electroconvulsive therapy (ECT) is the most effective treatment for severe depression, although the underlying mechanisms remain unclear. Animal studies have consistently shown that electroconvulsive stimulation induces neuroplastic changes in the dentate gyrus. To date, few studies have investigated the effect of ECT on human hippocampal subfields. In the current study, structural magnetic resonance imaging (MRI) was conducted in 25 patients with major depressive episodes at 3 time points: before ECT (TP1), after 1 week of the last ECT (TP2) and after 3 months of the last ECT (TP3). Twenty healthy controls were scanned twice with an interval similar to patients between TP1 and TP2. Volumetric analyses of the cornu ammonis (CA)4/dentate gyrus (DG) were performed using the MAGeT-Brain (Multiple Automatically Generated Templates) algorithm. Clinically remitted patients after ECT showed larger volume increases in the right CA4/DG than non-remitted patients. Volume increases in the right CA4/DG were negatively associated with age. Increased CA4/DG volumes after ECT returned to baseline levels after 3 months irrespective of clinical state. ECT-induced volume increase in the CA4/DG was associated with age and clinical remission. These findings are consistent with the neurotrophic processes seen in preclinical studies. Neuroplastic change in the CA4/DG might mediate some of the short-term antidepressant effects of ECT.
Collapse
|
16
|
Hermida AP, Glass OM, Shafi H, McDonald WM. Electroconvulsive Therapy in Depression: Current Practice and Future Direction. Psychiatr Clin North Am 2018; 41:341-353. [PMID: 30098649 DOI: 10.1016/j.psc.2018.04.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The current practice of electroconvulsive therapy (ECT) has evolved over several decades with the implementation of safer equipment and advancement of techniques. In addition, modifications in the delivery of ECT, such as the utilization of brief and ultrabrief pulse widths and individualization of treatment parameters, have improved the safety of ECT without sacrificing efficacy. This article aims to provide psychiatrists with a balanced, in-depth look into the recent advances in ECT technique as well as the evidence of ECT for managing depression in special populations and patients with comorbid medical problems.
Collapse
Affiliation(s)
- Adriana P Hermida
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 12 Executive Park Drive Northeast, Atlanta, GA 30329, USA.
| | - Oliver M Glass
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 12 Executive Park Drive Northeast, Atlanta, GA 30329, USA
| | - Hadia Shafi
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 12 Executive Park Drive Northeast, Atlanta, GA 30329, USA
| | - William M McDonald
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 12 Executive Park Drive Northeast, Atlanta, GA 30329, USA
| |
Collapse
|