1
|
Chen W, Ye Z, Gao L, Jiang Y, Wei Y, Chen X, Li L, Mao T, Li Z. Synthesis and Protective Mechanisms of Fluorescent Copolymers against Multi-Band UV-Induced Photodamage in HCE-T Cells. Biomacromolecules 2025. [PMID: 40344195 DOI: 10.1021/acs.biomac.4c01789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
The corneal epithelium, the outermost barrier of the eye, is particularly susceptible to UV-induced photodamage. Owing to the limited protection provided by physical defense strategies, there is a critical need for effective UV-protective ocular medications. In this study, novel fluorescent copolymers were synthesized and evaluated for their anti-UV properties in human corneal epithelial (HCE-T) cells. These copolymers provided substantial protection to HCE-T cells against damage from various types of UV radiation. The protective effects were attributed to their ability to attenuate oxidative damage caused by UVA radiation and mitigate direct DNA damage induced by UVB and UVC radiation. Mechanistic investigations revealed that their antioxidant and DNA repair activities are mediated through the regulation of the PERK and NER signaling pathways. These findings underscore the potential of these functional polymers as promising ophthalmic agents against broad-spectrum UV-damage.
Collapse
Affiliation(s)
- Wenqian Chen
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing 100853, P. R. China
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Zi Ye
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing 100853, P. R. China
| | - Lixiong Gao
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing 100853, P. R. China
| | - Yuhang Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Yue Wei
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Xuejun Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Tengfei Mao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Zhaohui Li
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing 100853, P. R. China
| |
Collapse
|
2
|
Cai L, Chen H, Wang Y, Zhang J, Song D, Tan Y, Guo Z, Wang X. Platinum(IV) Complexes Trigger Death Receptors and Natural Killer Cells to Suppress Breast Cancer. J Med Chem 2025; 68:9162-9175. [PMID: 39886904 DOI: 10.1021/acs.jmedchem.4c02509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Chemoimmunotherapy is an alternative treatment against cancers. Platinum(IV) complexes FMP and DFMP, coupling formononetin derivative as axial ligand(s), were designed to suppress triple-negative breast cancer (TNBC) by activating death receptors (DRs) and natural killer (NK) cells. These complexes show great potential to overcome the resistance of TNBC to chemotherapy by inducing both intrinsic and extrinsic apoptosis in cancer cells. Particularly, FMP with one axial formononetin derivative not only induced the caspase-3-dependent intrinsic apoptosis but also upregulated the expression of DRs and caspase-8, triggered the extrinsic apoptosis, and enhanced the cytotoxic ability of NK92 cells. Moreover, FMP increased the release of granzyme B, restrained the proliferation and differentiation of myeloid-derived suppressor cells, and the secretion of IL-10, thus inhibiting the TNBC in vitro and in vivo. The results demonstrate that FMP overcomes the chemoresistance and immune escape of TNBC through a new mechanism involving the synergy of chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Linxiang Cai
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Hanhua Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Jingwen Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Dongfan Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yehong Tan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
3
|
Meng K, Liu Q, Qin Y, Qin W, Zhu Z, Sun L, Jiang M, Adu-Amankwaah J, Gao F, Tan R, Yuan J. Mechanism of mitochondrial oxidative phosphorylation disorder in male infertility. Chin Med J (Engl) 2025; 138:379-388. [PMID: 38855875 PMCID: PMC11845199 DOI: 10.1097/cm9.0000000000003126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Indexed: 06/11/2024] Open
Abstract
ABSTRACT Male infertility has become a global concern, accounting for 20-70% of infertility. Dysfunctional spermatogenesis is the most common cause of male infertility; thus, treating abnormal spermatogenesis may improve male infertility and has attracted the attention of the medical community. Mitochondria are essential organelles that maintain cell homeostasis and normal physiological functions in various ways, such as mitochondrial oxidative phosphorylation (OXPHOS). Mitochondrial OXPHOS transmits electrons through the respiratory chain, synthesizes adenosine triphosphate (ATP), and produces reactive oxygen species (ROS). These mechanisms are vital for spermatogenesis, especially to maintain the normal function of testicular Sertoli cells and germ cells. The disruption of mitochondrial OXPHOS caused by external factors can result in inadequate cellular energy supply, oxidative stress, apoptosis, or ferroptosis, all inhibiting spermatogenesis and damaging the male reproductive system, leading to male infertility. This article summarizes the latest pathological mechanism of mitochondrial OXPHOS disorder in testicular Sertoli cells and germ cells, which disrupts spermatogenesis and results in male infertility. In addition, we also briefly outline the current treatment of spermatogenic malfunction caused by mitochondrial OXPHOS disorders. However, relevant treatments have not been fully elucidated. Therefore, targeting mitochondrial OXPHOS disorders in Sertoli cells and germ cells is a research direction worthy of attention. We believe this review will provide new and more accurate ideas for treating male infertility.
Collapse
Affiliation(s)
- Kai Meng
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, China
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong 272067, China
| | - Qian Liu
- College of Basic Medical, Jining Medical University, Jining, Shandong 272067, China
| | - Yiding Qin
- College of Basic Medical, Jining Medical University, Jining, Shandong 272067, China
| | - Wenjie Qin
- College of Second Clinical Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Ziming Zhu
- College of Second Clinical Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Longlong Sun
- College of Second Clinical Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Mingchao Jiang
- College of Second Clinical Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Joseph Adu-Amankwaah
- College of Basic Medical, Xuzhou Medical University, Xuzhou, Zhejiang 221004, China
| | - Fei Gao
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, China
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong 272067, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 101408, China
| | - Rubin Tan
- College of Basic Medical, Xuzhou Medical University, Xuzhou, Zhejiang 221004, China
| | - Jinxiang Yuan
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, China
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong 272067, China
| |
Collapse
|
4
|
Shao N, Lu Q, Ouyang Z, Yang P, Wei T, Wang J, Cai B. Ganoderic acid a alleviates Aβ 25-35-induced HT22 cell apoptosis through the ERK/MAPK pathway: a system pharmacology and in vitro experimental validation. Metab Brain Dis 2024; 40:51. [PMID: 39625499 DOI: 10.1007/s11011-024-01429-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/31/2024] [Indexed: 02/27/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that occurs with aging. Ganoderma lucidum (Curtis.) P. Karst. (G. lucidum) is a traditional medicinal fungus believed to nourish the brain and anti-aging. Ganoderic acid A (GAA), a triterpenoid from G. lucidum, has demonstrated natural neuroprotective effects. This study aims to explore the therapeutic effect and molecular mechanism of GAA on AD. Systematic network pharmacology identified 95 targets, 8 biological functions, and multiple pathways. The results highlighted MAPK family members as core genes, with MAPK1 (ERK2) showing the highest binding affinity to GAA in molecular docking. In vitro experiments revealed that GAA dose-dependently increased the viability of Aβ25-35-injured HT22 cells and inhibited MAPK pathway-related protein expression. Similar to FR180204, 100 µM GAA significantly reversed ERK protein expression, oxidative stress markers, and mitochondrial damage in AD cell model. GAA also downregulated cleaved caspase-3 protein levels, apoptosis rates, Aβ and p-Tau expression by inhibiting the ERK signaling pathway. The therapeutic effect of GAA on AD was predicted and validated through network pharmacology and in vitro experiments. The ability of GAA to inhibit apoptosis via the ERK/MAPK signaling pathway positions it as a promising candidate for AD treatment.
Collapse
Affiliation(s)
- Nan Shao
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Qingyang Lu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Zhaorong Ouyang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Peizheng Yang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Tao Wei
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Jinghui Wang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| | - Biao Cai
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| |
Collapse
|
5
|
Jiang Q, Sun Y, Si X, Cui H, Li J, Bao Y, Wang L, Li B. Anthocyanin-loaded milk-derived extracellular vesicles nano-delivery system: Stability, mucus layer penetration, and pro-oxidant effect on HepG2 cells. Food Chem 2024; 458:140152. [PMID: 38944922 DOI: 10.1016/j.foodchem.2024.140152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/21/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
Anthocyanin (ACN) has attracted considerable attention due to its wide range of physiological effects. However, challenges such as poor stability and limited bioavailability have hindered its utilization in functional foods. To address these issues, this research utilized milk-derived extracellular vesicles (MEV) as carriers for encapsulating and binding ACN through various techniques, including ultrasonic, electroporation, saponin treatment, incubation, and freeze-thaw cycles. The objective of these approaches was to enhance the stability of ACN and improve its oral delivery. Notably, the ACN-loaded MEV (MEV-ACN) prepared through ultrasonic exhibited small particle sizes and good stability under processing, storage, and simulated digestion conditions. Cellular studies revealed that MEV-ACN exhibited pro-oxidant properties and induced oxidative stress, leading to cell apoptosis with greater efficacy compared to free ACN. These findings suggest that encapsulating ACN within MEV can significantly enhance its processing and oral stability, as well as strengthening its dietary defense capabilities in anti-tumor applications.
Collapse
Affiliation(s)
- Qiao Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China..
| | - Yongxin Sun
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang 110001, China..
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China..
| | - Huijun Cui
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China..
| | - Jiaxin Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China..
| | - Yiwen Bao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China..
| | - Li Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China..
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China..
| |
Collapse
|
6
|
Li H, Luo X, Zhu F, Wang C, Wang J, Wang S, Hua H, Lu J, Li D. Design and synthesis of 6,20-epoxy A-ring modified oridonin derivatives with antitumor activity through extrinsic and mitochondrial pathways. Bioorg Chem 2024; 151:107632. [PMID: 39003943 DOI: 10.1016/j.bioorg.2024.107632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Oridonin is an antitumor ent-kaurane diterpenoid that medicinal chemists have been paying close attention to in recent years. Herein, a novel 6,20-epoxy A-ring modified oridonin derivative 2 was obtained by a 6-step synthesis. A series of 14-O derivatives of 2 (EpskA1-EpskA24) were synthesized to further enhance the activity. Based on their cytotoxicity against MCF-7, A549 and L-02 cells, EpskA9, EpskA10 and EpskA21 were chosen for further screening to obtain a wider antitumor spectrum. Collectively, EpskA21 showed the most potent antiproliferative activity, inhibiting proliferation and migration, and inducing apoptosis and cell cycle arrest in MCF-7 and MIA-PaCa-2 cells. With the help of network pharmacology analysis, apoptosis-related proteins were selected and further tested by western blot assay. The inhibition of PI3K/AKT and an increase in the levels of Bax/Bcl-2 ratio, Cyt-C, cleaved-Caspase-9, cleaved-Caspase-3 and cleaved-PARP was observed, indicating that EpskA21 induced apoptosis through the mitochondrial pathway. Given that an increase in DR5 expression and activated Caspase-8 were also observed, the extrinsic apoptosis pathway might also be related to the antitumor effect.
Collapse
Affiliation(s)
- Haonan Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Xiaogang Luo
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Feilong Zhu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Chao Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Jiesen Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Siyuan Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, PR China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China.
| | - Jincai Lu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China.
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China.
| |
Collapse
|
7
|
Wang H, Zhuang H, Wu C, Wang B, Zhang S, Wang Y, Liu L, Yu L, Zhang L, Jing S, Fan Z. Colorectal cancer treatment strategy: Targeting O-GlcNAcylation of Yes-associated protein utilizing diselenide-bridged nanovesicles. CHEMICAL ENGINEERING JOURNAL 2024; 497:154750. [DOI: 10.1016/j.cej.2024.154750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
|
8
|
Xie K, Lu XY, Zhu H, Zhu LY, Li RT, Ye RR. Iridium(III) complexes conjugated with naproxen exhibit potent anti-tumor activities by inducing mitochondrial damage, modulating inflammation, and enhancing immunity. Dalton Trans 2024; 53:8772-8780. [PMID: 38712840 DOI: 10.1039/d4dt00575a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A series of Ir(III)-naproxen (NPX) conjugates with the molecular formula [Ir(C^N)2bpy(4-CH2ONPX-4'-CH2ONPX)](PF6) (Ir-NPX-1-3) were designed and synthesized, including C^N = 2-phenylpyridine (ppy, Ir-NPX-1), 2-(2-thienyl)pyridine (thpy, Ir-NPX-2) and 2-(2,4-difluorophenyl)pyridine (dfppy, Ir-NPX-3). Cytotoxicity tests showed that Ir-NPX-1-3 exhibited excellent antitumor activity, especially in A549R cells. The cellular uptake experiment showed that the complexes were mainly localized in mitochondria, and induced apoptosis in A549R cells by damaging the structure and function of mitochondria. The main manifestations are a decrease in the mitochondrial membrane potential (MMP), an increase in reactive oxygen species (ROS) levels, and cell cycle arrest. Furthermore, Ir-NPX-1-3 could inhibit the migration and colony formation of cancer cells, demonstrating potential anti-metastatic ability. Finally, the anti-inflammatory and immunological applications of Ir-NPX-1-3 were verified. The downregulation of cyclooxygenase-2 (COX-2) and programmed death-ligand 1 (PD-L1) expression levels and the release of immunogenic cell death (ICD) related signaling molecules such as damage-associated molecular patterns (DAMPs) (cell surface calreticulin (CRT), high mobility group box 1 (HMGB1), and adenosine triphosphate (ATP)) indicate that these Ir(III) -NPX conjugates are novel ICD inducers with synergistic effects in multiple anti-tumor pathways.
Collapse
Affiliation(s)
- Kai Xie
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Xing-Yun Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Hou Zhu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Lin-Yuan Zhu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Rui-Rong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| |
Collapse
|
9
|
De Biasi S, Gigan JP, Borella R, Santacroce E, Lo Tartaro D, Neroni A, Paschalidis N, Piwocka K, Argüello RJ, Gibellini L, Cossarizza A. Cell metabolism: Functional and phenotypic single cell approaches. Methods Cell Biol 2024; 186:151-187. [PMID: 38705598 DOI: 10.1016/bs.mcb.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Several metabolic pathways are essential for the physiological regulation of immune cells, but their dysregulation can cause immune dysfunction. Hypermetabolic and hypometabolic states represent deviations in the magnitude and flexibility of effector cells in different contexts, for example in autoimmunity, infections or cancer. To study immunometabolism, most methods focus on bulk populations and rely on in vitro activation assays. Nowadays, thanks to the development of single-cell technologies, including multiparameter flow cytometry, mass cytometry, RNA cytometry, among others, the metabolic state of individual immune cells can be measured in a variety of samples obtained in basic, translational and clinical studies. Here, we provide an overview of different single-cell approaches that are employed to investigate both mitochondrial functions and cell dependence from mitochondria metabolism. Moreover, besides the description of the appropriate experimental settings, we discuss the strengths and weaknesses of different approaches with the aim to suggest how to study cell metabolism in the settings of interest.
Collapse
Affiliation(s)
- Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy.
| | - Julien Paul Gigan
- Aix Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Anita Neroni
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Katarzyna Piwocka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Rafael José Argüello
- Aix Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
10
|
Zhou S, Cheng R, Zhang Y, Jiang Y, Zhang L, Jiang Z, Yu Q. CHIR-98014, a GSK 3β Inhibitor, Protects Against Triptolide/Lipopolysaccharide-Induced Hepatotoxicity by Mitochondria-Dependent Apoptosis Inhibition. Chem Res Toxicol 2024; 37:407-418. [PMID: 38284557 DOI: 10.1021/acs.chemrestox.3c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Triptolide (TP) is a remarkable anti-inflammatory and immunosuppressive component separated from Tripterygium wilfordii Hook. F. However, its hepatotoxicity limits its application in the clinical. Our group has proposed a new perspective on TP-induced hepatotoxicity, in which TP enhances liver hypersensitivity upon lipopolysaccharide (LPS) stimulation. Because the cause of the disease is unknown, there is currently no uniform treatment available. In this study, we attempted to determine whether the GSK-3β-JNK pathway affects liver damage and its regulatory mechanism in response to TP/LPS costimulation. In addition, we investigated the effect of CsA or the GSK 3β inhibitor CHIR-98014 on TP/LPS-induced hepatotoxicity. The results showed that the TP/LPS cotreatment mice exhibited obvious hepatotoxicity, as indicated by a remarkable increase in the serum ALT and AST levels, glycogen depletion, GSK 3β-JNK upregulation, and increased apoptosis. Instead of the specific knockdown of JNK1, the specific knockdown of JNK2 had a protective effect. Additionally, 40 mg/kg of CsA and 30 mg/kg of CHIR-98014 might provide protection. In summary, CHIR-98014 could protect against TP/LPS- or TP/TNF-α-induced activation of the GSK 3β-JNK pathway and mitochondria-dependent apoptosis, improving the indirect hepatotoxicity induced by TP.
Collapse
Affiliation(s)
- Shaoyun Zhou
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Ruohan Cheng
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Yue Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Yihan Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Luyong Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Qinwei Yu
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
11
|
Fang T, Cao X, Wang L, Chen M, Deng Y, Chen G. Bioresponsive and immunotherapeutic nanomaterials to remodel tumor microenvironment for enhanced immune checkpoint blockade. Bioact Mater 2024; 32:530-542. [PMID: 38026439 PMCID: PMC10660011 DOI: 10.1016/j.bioactmat.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapy is a revolutionary approach to treat cancers, but still have limited clinical applications. Accumulating evidence pinpoints the immunosuppressive characteristics of the tumor microenvironment (TME) as one major obstacle. The TME, characterized by acidity, hypoxia and elevated ROS levels, exerts its detrimental effects on infiltrating anti-tumor immune cells. Here, we developed a TME-responsive and immunotherapeutic catalase-loaded calcium carbonate nanoparticles (termed as CAT@CaCO3 NPs) as the simple yet versatile multi-modulator for TME remodeling. CaCO3 NPs can consume protons in the acidic TME to normalize the TME pH. CAT catalyzed the decomposition of ROS and thus generated O2. The released Ca2+ led to Ca2+ overload in the tumor cells which then triggered the release of damage-associated molecular patterns (DAMP) signals to initiate anti-tumor immune responses, including tumor antigen presentation by dendritic cells. Meanwhile, CAT@CaCO3 NPs-induced immunosupportive TME also promoted the polarization of the M2 tumor-associated macrophages to the M1 phenotype, further enhancing tumor antigen presentation. Consequently, T cell-mediated anti-tumor responses were activated, the efficacy of which was further boosted by aPD-1 immune checkpoint blockade. Our study demonstrated that local treatment of CAT@CaCO3 NPs and aPD-1 combination can effectively evoke local and systemic anti-tumor immune responses, inhibiting the growth of treated tumors and distant diseases.
Collapse
Affiliation(s)
- Tianxu Fang
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Xiaona Cao
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Li Wang
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Mo Chen
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Yueyang Deng
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| |
Collapse
|
12
|
Ren Q, Zhang X, Sheng Y, Yu N, Li M, Chen Z. Phytic acid-Cu 2+ framework/Cu 2-xS nanocomposites with heat-shock protein down-modulation ability for enhanced multimodal combination therapy. J Colloid Interface Sci 2023; 652:2116-2126. [PMID: 37703681 DOI: 10.1016/j.jcis.2023.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
Mild-temperature photothermal therapy (mPTT) has shown some advantages over traditional photothermal therapy, such as reducing the damage to surrounding healthy tissues and minimizing side effects. Nevertheless, cancer cells can easily repair damage caused by mild hyperthermia due to heat shock proteins (HSPs). Thus, it is imperative to maximize the mPTT efficiency by down-regulating HSPs overexpression and combining other cancer treatments. Herein, we report the synthesis of phytic acid (PA)-Cu2+ framework/copper sulfide (Cu2-xS) nanocomposites (abbreviated as PA-Cu/Cu2-xS NPs) as the novel therapeutic platform that can down-regulate HSPs overexpression for enhanced multimodal mPTT/chemodynamic therapy (CDT)/chemotherapy. PA-Cu/Cu2-xS NPs were prepared through self-assembly and in-situ vulcanization strategy, resulting in irregular-shaped particles with an approximate size of 100 nm. PA-Cu/Cu2-xS NPs display a plasmon effect from Cu2-xS, which enhances near-infrared (NIR) absorption and possesses excellent photothermal conversion efficiency (41.7%). Moreover, PA-Cu/Cu2-xS NPs exhibit Fenton-like reaction activity resulting from the Cu ions for CDT, and the reaction activity can be further improved 1.3 times due to mild hyperthermia during mPTT. Furthermore, the generated hydroxyl radical (•OH) can effectively decrease HSPs level to enhance mPTT. PA-Cu/Cu2-xS NPs can also serve as a drug delivery system, and they are capable of loading doxorubicin (DOX) with a loading ability (20.7%). Combining mPTT/CDT/chemotherapy exhibits significant inhibition of tumor growth. This approach can serve as a basis for designing more exquisite platforms that combine mPTT with other therapies to achieve more effective cancer treatment.
Collapse
Affiliation(s)
- Qian Ren
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaojing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yangyi Sheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Nuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Maoquan Li
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhigang Chen
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
13
|
Yao Y, Lei X, Wang Y, Zhang G, Huang H, Zhao Y, Shi S, Gao Y, Cai X, Gao S, Lin Y. A Mitochondrial Nanoguard Modulates Redox Homeostasis and Bioenergy Metabolism in Diabetic Peripheral Neuropathy. ACS NANO 2023; 17:22334-22354. [PMID: 37782570 DOI: 10.1021/acsnano.3c04462] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
As a major late complication of diabetes, diabetic peripheral neuropathy (DPN) is the primary reason for amputation. Nevertheless, there are no wonder drugs available. Regulating dysfunctional mitochondria is a key therapeutic target for DPN. Resveratrol (RSV) is widely proven to guard mitochondria, yet the unsatisfactory bioavailability restricts its clinical application. Tetrahedral framework nucleic acids (tFNAs) are promising carriers due to their excellent cell entrance efficiency, biological safety, and structure editability. Here, RSV was intercalated into tFNAs to form the tFNAs-RSV complexes. tFNAs-RSV achieved enhanced stability, bioavailability, and biocompatibility compared with tFNAs and RSV alone. With its treatment, reactive oxygen species (ROS) production was minimized and reductases were activated in an in vitro model of DPN. Besides, respiratory function and adenosine triphosphate (ATP) production were enhanced. tFNAs-RSV also exhibited favorable therapeutic effects on sensory dysfunction, neurovascular deterioration, demyelination, and neuroapoptosis in DPN mice. Metabolomics analysis revealed that redox regulation and energy metabolism were two principal mechanisms that were impacted during the process. Comprehensive inspections indicated that tFNAs-RSV inhibited nitrosation and oxidation and activated reductase and respiratory chain. In sum, tFNAs-RSV served as a mitochondrial nanoguard (mito-guard), representing a viable drilling target for clinical drug development of DPN.
Collapse
Affiliation(s)
- Yangxue Yao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaoyu Lei
- Research Center for Nano Biomaterials, and Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Yun Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Geru Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Hongxiao Huang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yuxuan Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yang Gao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
14
|
Lei H, Li Q, Pei Z, Liu L, Yang N, Cheng L. Nonferrous Ferroptosis Inducer Manganese Molybdate Nanoparticles to Enhance Tumor Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303438. [PMID: 37420331 DOI: 10.1002/smll.202303438] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/27/2023] [Indexed: 07/09/2023]
Abstract
Tumor immunotherapy is an important tool in oncology treatment. However, only a small percentage of patients have an effective immune response to tumor immunotherapy due to the poor infiltration of pro-inflammatory immune cells in immune "cold" tumors and an immunosuppressive network in the tumor microenvironment (TME). Ferroptosis has been widely used as a novel strategy to enhance tumor immunotherapy. Herein, manganese molybdate nanoparticles (MnMoOx NPs) depleted the highly expressed glutathione (GSH) in tumors and inhibited glutathione peroxidase 4 (GPX4) expression, thus triggering ferroptosis, inducing immune cell death (ICD), further releasing damage-associated molecular patterns (DAMPs), and enhancing tumor immunotherapy. Furthermore, MnMoOx NPs can efficiently suppress tumors, promote the maturation of dendritic cells (DCs), infiltrate T cells, and reverse the immunosuppressive microenvironment, making the tumor an immune "hot" tumor. Combination with an immune checkpoint inhibitor (ICI) (α-PD-L1) further enhanced the anti-tumor effect and inhibited metastases as well. The work provides a new idea for the development of nonferrous inducers of ferroptosis to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Quguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Zifan Pei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Lin Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Suzhou University, Suzhou, 215000, China
| | - Nailin Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
| |
Collapse
|
15
|
Wang J, Wang W, Shen Q, Lan L, Guan C, Xu X, Li W, Du Y. Cell-surface photochemistry mediated calcium overload for synergistic tumor therapy. J Nanobiotechnology 2023; 21:335. [PMID: 37726778 PMCID: PMC10510147 DOI: 10.1186/s12951-023-02090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023] Open
Abstract
Calcium (Ca2+) is essential for mitochondrial homeostasis and function coordination, particularly in cancer cells that metabolize frequently to sustain their growth. Photochemistry mediated calcium overload has attracted lots of attention as an effective way to achieve tumor suppression. Herein, we developed a photonanomedicine to synergistically induce calcium overload via cell-surface photochemistry and thus tumor suppression. Specifically, the photosensitizer, protoporphyrin IX (PpIX) was loaded onto upconversion nanoparticles (UCNP), which was subsequently modified by a polymer bearing photo-crosslinking cinnamate (CA) groups. The resulting nanoparticle was further functionalized by anti-CD20 aptamers (Apt), to give photonanomedicine. The interaction between CD20 receptors and anti-CD20 aptamers allowed photonanomedicine to accurately attach onto the Raji cell surface after an intravenous injection. Following the local application of a 980 nm NIR laser, the photonanomedicine was able to capture the NIR light and convert it into ultraviolet (UV) light. On one hand, the converted UV light led the crosslinking of cinnamate groups in photonanomedicine, further stimulating the clustering of CD20 receptors and causing Ca2+ influx. On the other hand, the UV light could simultaneously excited PpIX to generate reactive oxygen species (ROS) in situ to break down the integrity of cell membrane and lead to an influx of Ca2+. The synergistic Ca2+ overload mediated by photonanomedicine exhibited an enhanced and superior anti-tumor efficacy. We believe this photonanomedicine expands the toolbox to manipulate intracellular Ca2+ concentration and holds a great potential as an anti-tumor therapy.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacy, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Wei Wang
- Department of Pharmacy, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingmei Shen
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lan Lan
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Cuiping Guan
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Xinchang Xu
- Department of Pharmacy, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Weishuo Li
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, China.
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China.
| |
Collapse
|
16
|
da Silva CMB, Cano FEM, Gaitskell-Phillips G, Vega FJP. Multiparametric Flow Cytometry for Determination of Viability, Caspase 3 and 7 Activity, and Lipid Peroxidation Adduct (4-Hydroxynonenal) in Equine Spermatozoa. Curr Protoc 2023; 3:e885. [PMID: 37672491 DOI: 10.1002/cpz1.885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Flow cytometry is a powerful tool for the analysis of cell samples formed of multipopulations, such as spermatozoa. In recent years, multiparametric cytometers have evolved, allowing the study of different cellular characteristics, such as protein expression, DNA analysis, or mitochondrial activity. Whether using traditional fluorescent dyes or fluorophore-conjugated antibodies, each cell or cellular component is individually stained, the sample is analyzed at high velocities, and then is displayed and interpreted in a dot-plot. We hereby describe the procedure to perform a multiparametric flow cytometry analysis in equine spermatozoa using three sources of excitation and polychromatic flow cytometry for the detection of 4HNE, a lipid peroxidation adduct (by anti-4HNE antibody), apoptotic markers (by caspases 3 and 7 activity), and live/dead spermatozoa (by ethidium-homodimer) excluding the debris with Hoechst 33342 staining and gating. This multiparametric analysis allows the simultaneous detection of different spermatic parameters, providing useful information for the characterization of a seminal sample and fertility estimation. © 2023 Wiley Periodicals LLC. Basic Protocol: Determination of viability, caspase 3 and 7 activity, and 4-hydroxynonenal in equine spermatozoa by flow cytometry.
Collapse
Affiliation(s)
- Carolina Maria Balão da Silva
- Polytechnic Institute of Portalegre, Agrarian School of Elvas, Elvas, Portugal
- VALORIZA, Research Centre for Endogenous Resources Valorization, Polytechnic Institute of Portalegre, Portalegre, Portugal
| | - Francisco E Martín Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Universidad de Extremadura, Cáceres, Spain
| | - Gemma Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Universidad de Extremadura, Cáceres, Spain
| | - Fernando J Peña Vega
- Laboratory of Equine Reproduction and Equine Spermatology, Universidad de Extremadura, Cáceres, Spain
| |
Collapse
|
17
|
Wang Q, Peng X, Chen Y, Tang X, Qin Y, He M, Chen W, Chen H. Piezo1 alleviates acetaminophen-induced acute liver injury by activating Nrf2 and reducing mitochondrial reactive oxygen species. Biochem Biophys Res Commun 2023; 652:88-94. [PMID: 36841099 DOI: 10.1016/j.bbrc.2023.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/20/2023]
Abstract
Acetaminophen (APAP) overdose is the most common cause for acute liver failure (ALF) in the developed countries, with limited treatment options. Piezo1 is a mechanosensitive cation channel. We found that APAP caused upregulation of Piezo1 in both an APAP-induced acute liver injury (ALI) animal model and a mouse hepatocyte cell line AML12. Activation of Piezo1 by its activator Yoda1 reduced APAP-induced hepatotoxicity and ROS level. Mechanistically, activation of Piezo1 led to accumulation of the antioxidant regulator Nrf2 and upregulation of its target genes Nqo1 and Gsta1, while knockdown of Piezo1 downregulated this pathway. Finally, injection of Yoda1 decreased serum AST and ALT levels, reduced cell death and rescued liver injury in the APAP-induced ALI mouse model. Our findings suggested a previously undiscovered protective role of Piezo1 in APAP-induced ALI, which might shed light on a new therapeutic target for this disease.
Collapse
Affiliation(s)
- Qimeng Wang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China; Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xuyun Peng
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China; Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yifan Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yunfei Qin
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China; Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Mian He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Wenjie Chen
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China; Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| | - Hui Chen
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China; Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
18
|
Wang Z, Liu M, Lei H, Xiao S, Zheng Y. TEAD1 Silencing Regulates Cell Proliferation and Resistance to 5-Fluorouracil in Cutaneous Squamous Cell Carcinoma. Clin Cosmet Investig Dermatol 2022; 15:2685-2692. [PMID: 36536757 PMCID: PMC9759115 DOI: 10.2147/ccid.s386547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2023]
Abstract
PURPOSE Cutaneous squamous cell carcinoma (cSCC) is a skin malignant tumor account for approximately one-third of all nonmelanoma skin cancers. Studies have shown that TEA domain transcription factor 1 (TEAD1) is discovered to be involved in the pathogenesis of some human cancers, but to our knowledge its role in cSCC has not been reported. PATIENTS AND METHODS Samples from 16 cSCC patients and 27 healthy individuals were obtained for immunohistochemical staining of TEAD1. The expressions of TEAD1 in SCL-1, HSC-1 cells compared with the primary neonatal human epithelial keratinocytes were detected by Western blot and RT-qPCR. Proliferation and cell cycle of TEAD1 knockdown in cSCC cell lines were examined by MTT and flow cytometry analysis. Annexin V/PI and JC-1 staining were used to determine the cell apoptosis. RESULTS The expression of TEAD1 decreased significantly in cSCC compared to its expression in normal skin tissues and cell lines. Down-regulation of TEAD1 in cSCC cell lines promoted cell growth via regulation of the G2/M progression. Additionally, silence of TEAD1 also protected cells against 5-Fluorouracil-induced apoptosis and decreased the expression of apoptosis-related protein (p53). CONCLUSION Our results suggested that TEAD1 expression is down-regulated and functioned as a tumor suppressor in cSCC and that it may serve as a biomarker or therapeutic target of cSCC.
Collapse
Affiliation(s)
- Ziyang Wang
- Department of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Meng Liu
- Department of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Hao Lei
- Department of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Shengxiang Xiao
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yan Zheng
- Department of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
19
|
Bonadonna M, Altamura S, Tybl E, Palais G, Qatato M, Polycarpou-Schwarz M, Schneider M, Kalk C, Rüdiger W, Ertl A, Anstee N, Bogeska R, Helm D, Milsom MD, Galy B. Iron regulatory protein (IRP)-mediated iron homeostasis is critical for neutrophil development and differentiation in the bone marrow. SCIENCE ADVANCES 2022; 8:eabq4469. [PMID: 36197975 PMCID: PMC9534496 DOI: 10.1126/sciadv.abq4469] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/18/2022] [Indexed: 06/01/2023]
Abstract
Iron is mostly devoted to the hemoglobinization of erythrocytes for oxygen transport. However, emerging evidence points to a broader role for the metal in hematopoiesis, including the formation of the immune system. Iron availability in mammalian cells is controlled by iron-regulatory protein 1 (IRP1) and IRP2. We report that global disruption of both IRP1 and IRP2 in adult mice impairs neutrophil development and differentiation in the bone marrow, yielding immature neutrophils with abnormally high glycolytic and autophagic activity, resulting in neutropenia. IRPs promote neutrophil differentiation in a cell intrinsic manner by securing cellular iron supply together with transcriptional control of neutropoiesis to facilitate differentiation to fully mature neutrophils. Unlike neutrophils, monocyte count was not affected by IRP and iron deficiency, suggesting a lineage-specific effect of iron on myeloid output. This study unveils the previously unrecognized importance of IRPs and iron metabolism in the formation of a major branch of the innate immune system.
Collapse
Affiliation(s)
- Michael Bonadonna
- German Cancer Research Center, “Division of Virus-Associated Carcinogenesis”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Biosciences Faculty, University of Heidelberg, 69120 Heidelberg, Germany
| | - Sandro Altamura
- University of Heidelberg, Department of Pediatric Hematology, Oncology and Immunology, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
| | - Elisabeth Tybl
- German Cancer Research Center, “Division of Virus-Associated Carcinogenesis”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- IB-Cancer Research Foundation, Science Park 2, 66123 Saarbrücken, Germany
| | - Gael Palais
- German Cancer Research Center, “Division of Virus-Associated Carcinogenesis”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Maria Qatato
- German Cancer Research Center, “Division of Virus-Associated Carcinogenesis”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Maria Polycarpou-Schwarz
- German Cancer Research Center, “Division of Virus-Associated Carcinogenesis”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Martin Schneider
- German Cancer Research Center, Mass Spectrometry based Protein Analysis Unit, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Christina Kalk
- German Cancer Research Center, “Division of Virus-Associated Carcinogenesis”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Wibke Rüdiger
- German Cancer Research Center, “Division of Virus-Associated Carcinogenesis”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Alina Ertl
- German Cancer Research Center, “Division of Virus-Associated Carcinogenesis”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Natasha Anstee
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Research Center, “Division of Experimental Hematology”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ruzhica Bogeska
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Research Center, “Division of Experimental Hematology”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Dominic Helm
- German Cancer Research Center, Mass Spectrometry based Protein Analysis Unit, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Michael D. Milsom
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Research Center, “Division of Experimental Hematology”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Bruno Galy
- German Cancer Research Center, “Division of Virus-Associated Carcinogenesis”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
20
|
A Comprehensive Analysis and Anti-Cancer Activities of Quercetin in ROS-Mediated Cancer and Cancer Stem Cells. Int J Mol Sci 2022; 23:ijms231911746. [PMID: 36233051 PMCID: PMC9569933 DOI: 10.3390/ijms231911746] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) induce carcinogenesis by causing genetic mutations, activating oncogenes, and increasing oxidative stress, all of which affect cell proliferation, survival, and apoptosis. When compared to normal cells, cancer cells have higher levels of ROS, and they are responsible for the maintenance of the cancer phenotype; this unique feature in cancer cells may, therefore, be exploited for targeted therapy. Quercetin (QC), a plant-derived bioflavonoid, is known for its ROS scavenging properties and was recently discovered to have various antitumor properties in a variety of solid tumors. Adaptive stress responses may be induced by persistent ROS stress, allowing cancer cells to survive with high levels of ROS while maintaining cellular viability. However, large amounts of ROS make cancer cells extremely susceptible to quercetin, one of the most available dietary flavonoids. Because of the molecular and metabolic distinctions between malignant and normal cells, targeting ROS metabolism might help overcome medication resistance and achieve therapeutic selectivity while having little or no effect on normal cells. The powerful bioactivity and modulatory role of quercetin has prompted extensive research into the chemical, which has identified a number of pathways that potentially work together to prevent cancer, alongside, QC has a great number of evidences to use as a therapeutic agent in cancer stem cells. This current study has broadly demonstrated the function-mechanistic relationship of quercetin and how it regulates ROS generation to kill cancer and cancer stem cells. Here, we have revealed the regulation and production of ROS in normal cells and cancer cells with a certain signaling mechanism. We demonstrated the specific molecular mechanisms of quercetin including MAPK/ERK1/2, p53, JAK/STAT and TRAIL, AMPKα1/ASK1/p38, RAGE/PI3K/AKT/mTOR axis, HMGB1 and NF-κB, Nrf2-induced signaling pathways and certain cell cycle arrest in cancer cell death, and how they regulate the specific cancer signaling pathways as long-searched cancer therapeutics.
Collapse
|
21
|
Combined Hepatotoxicity and Toxicity Mechanism of Intermedine and Lycopsamine. Toxins (Basel) 2022; 14:toxins14090633. [PMID: 36136571 PMCID: PMC9501075 DOI: 10.3390/toxins14090633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are common constituents of plants and have serious hepatotoxicity. Intermedine (Im) and lycopsamine (La) are two monoesters of PAs that frequently coexist in the PA-containing plants (e.g., comfrey and tea). The present study aimed to explore the combined hepatotoxicity and toxicity mechanism of the Im and La mixture. In vitro, the combined cytotoxicity of the Im and La mixture on human hepatocytes (HepD) was examined by CCK-8, colony formation, wound healing, and Annexin V/PI staining assays. The combination of Im and La inhibited the ability of HepD cells to proliferate, colonize, and migrate and induced hepatocytes apoptosis in a dose-dependent manner. In addition to significantly causing a burst of intracellular reactive oxygen species (ROS), mitochondrial apoptosis, and endoplasmic reticulum (ER) stress, the Im and La mixture can also cause an increase in intracellular Ca2+, triggering the PERK/eIF2α/ATF4/CHOP apoptosis pathway. This study provided the first direct evidence that the combined PAs induced hepatotoxicity through ER-mediated apoptosis. These results supplemented the basic toxicity data for the combined PAs and provided a new perspective for the risk assessment of combined PA toxicity.
Collapse
|
22
|
Multicentric Standardization of Protocols for the Diagnosis of Human Mitochondrial Respiratory Chain Defects. Antioxidants (Basel) 2022; 11:antiox11040741. [PMID: 35453428 PMCID: PMC9027926 DOI: 10.3390/antiox11040741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 01/27/2023] Open
Abstract
The quantification of mitochondrial respiratory chain (MRC) enzymatic activities is essential for diagnosis of a wide range of mitochondrial diseases, ranging from inherited defects to secondary dysfunctions. MRC lesion is frequently linked to extended cell damage through the generation of proton leak or oxidative stress, threatening organ viability and patient health. However, the intrinsic challenge of a methodological setup and the high variability in measuring MRC enzymatic activities represents a major obstacle for comparative analysis amongst institutions. To improve experimental and statistical robustness, seven Spanish centers with extensive experience in mitochondrial research and diagnosis joined to standardize common protocols for spectrophotometric MRC enzymatic measurements using minimum amounts of sample. Herein, we present the detailed protocols, reference ranges, tips and troubleshooting methods for experimental and analytical setups in different sample preparations and tissues that will allow an international standardization of common protocols for the diagnosis of MRC defects. Methodological standardization is a crucial step to obtain comparable reference ranges and international standards for laboratory assays to set the path for further diagnosis and research in the field of mitochondrial diseases.
Collapse
|
23
|
Wang X, Liu X, He P, Guan K, Yang Y, Lei Y, Cai J, Wang W, Wu T. The Imbalance of Mitochondrial Homeostasis of Peripheral Blood-Derived Macrophages Mediated by MAFLD May Impair the Walking Ability of Elderly Patients with Osteopenia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5210870. [PMID: 35368864 PMCID: PMC8970807 DOI: 10.1155/2022/5210870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022]
Abstract
Introduction Many Asian cohort studies have shown that nonalcoholic fatty liver disease (NAFLD), now renamed as metabolic dysfunction-associated fatty liver disease (MAFLD), increases the risk of osteoporosis, yet the effect of MAFLD on elderly patients with osteopenia (OPe) has not been reported. Objective This study aimed to explore the influence of MAFLD on the function of macrophages in patients with OPe. Methods A total of 107 elderly OPe patients with or without MAFLD who visited the Huadong Hospital Affiliated to Fudan University (Shanghai, China) between January 1st, 2021, and September 30th, 2021, were evaluated for an interviewer-assisted questionnaire, as well as clinical and biological assessments. Results Comparing two groups of elderly patients with the same bone mass level, we found that the six-minute walking distance (P = 0.012) and short physical performance battery (SPPB) score (P = 0.0029) of the elderly OPe patients with MAFLD are worse than those in OPe patients without MAFLD. Our results confirmed that the mitochondrial reactive oxygen species (mtROS) in peripheral blood of OPe patients with MAFLD was significantly higher than those without. We also observed the mitochondrial metabolism level of peripheral blood-derived macrophages in the included patients and peripheral blood macrophages in patients with MAFLD with more unbalanced mitochondrial dynamics of macrophages, more weakened mitochondrial respiratory capacity, and greater mitochondrial microstructure damage, when compared with the elderly patients without MAFLD. Conclusions To conclude, our data revealed that MAFLD itself may aggravate the inflammatory state in elderly OPe people due to mitochondrial homeostasis imbalance of peripheral blood macrophages. Damaged monocyte-macrophages might trigger attenuation of the walking ability of OPe patients.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Xuanqi Liu
- Department of Respiratory and Critical Care Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Peqing He
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Kangwei Guan
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Yijing Yang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Yiming Lei
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Jianhua Cai
- Department of General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Wenhao Wang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Tao Wu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| |
Collapse
|
24
|
Zhu C, Ma Q, Gong L, Di S, Gong J, Wang Y, Xiao S, Zhang L, Zhang Q, Fu JJ, Lu D, Lin Z. Manganese-based multifunctional nanoplatform for dual-modal imaging and synergistic therapy of breast cancer. Acta Biomater 2022; 141:429-439. [PMID: 35038584 DOI: 10.1016/j.actbio.2022.01.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/24/2021] [Accepted: 01/11/2022] [Indexed: 01/07/2023]
Abstract
Manganese has recently been exploited for cancer immunotherapy, fenton-like reaction-mediated chemo-dynamic therapy, and magnetic resonance imaging. The integration of multiple roles of manganese into one platform is of great significance for cancer theranostics and tumor inhibition. Here, we designed a multifunctional nanoplatform based on manganese, which consisted of a manganese-containing inner core and a phospholipid bilayer shell co-loaded with glucose oxidase (GOx), paclitaxel (PTX), and a NIR fluorescent dye (NanoMn-GOx-PTX). In a pH-dependent manner, the nanoplatform released manganese ions and payloads inside the tumor cells. In vitro characterization and cellular experiments indicated that NanoMn-GOx-PTX could catalyze the conversion of glucose into reactive oxygen species (ROS) through a cascade Fenton-like reaction as well as release free PTX. The consumption of glucose, ROS production, and the chemotherapeutic effect of PTX contributed to the superior cytotoxicity and apoptosis of 4T1 cancer cells. Moreover, NanoMn-GOx-PTX effectively induced the production of large amounts of type I interferon and pro-inflammatory cytokines in vivo, activating the innate immune response. Through the synergistic functions of the above components, NanoMn-GOx-PTX exerted the strongest anti-tumor effect in 4T1 tumor-bearing models. Therefore, the manganese-based nanoplatform could serve as a promising theranostic tool for breast cancer therapy. STATEMENT OF SIGNIFICANCE: 1) This nanoplatform can be used as a universal tool for delivering proteins and anticancer drugs into cells; 2) The PEG-modified phospholipid bilayer shell plays a significant role in retarding the release of overloaded manganese ions and drugs in a pH-sensitive manner; 3) The released Mn2+ has the ability to enhance T1 contrast in magnetic resonance imaging; 4) The released Mn2+ can function as nanoadjuvants to activate the cGAS-STING pathway and effectively induce the natural immune response;5) The overloaded manganese ions are combined with glucose oxidase to form a cascade reaction system, indirectly converting glucose into ROS to induce oxidative damage of tumor tissue.
Collapse
|
25
|
Wang B, Zeng H, Zuo X, Yang X, Wang X, He D, Yuan J. TLR4-Dependent DUOX2 Activation Triggered Oxidative Stress and Promoted HMGB1 Release in Dry Eye. Front Med (Lausanne) 2022; 8:781616. [PMID: 35096875 PMCID: PMC8793023 DOI: 10.3389/fmed.2021.781616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/09/2021] [Indexed: 12/30/2022] Open
Abstract
Dry eye disease (DED) is one of the most common ocular surface diseases worldwide. DED has been characterized by excessive accumulation of reactive oxygen species (ROS), following significant corneal epithelial cell death and ocular surface inflammation. However, the key regulatory factor remains unclear. In this study, we tended to explore whether DUOX2 contributed to DED development and the underlying mechanism. Human corneal epithelial (HCE) cells were treated with hyperosmolarity, C57BL/6 mice were injected of subcutaneous scopolamine to imitate DED. Expression of mRNA was investigated by RNA sequencing (RNA-seq) and quantitative real-time PCR (qPCR). Protein changes and distribution of DUOX2, high mobility group box 1 (HMGB1), Toll-like receptor 4 (TLR4), and 4-hydroxynonenal (4-HNE) were evaluated by western blot assays and immunofluorescence. Cell death was assessed by Cell Counting Kit-8 (CCK8), lactate dehydrogenase (LDH) release, and propidium iodide (PI) staining. Cellular ROS levels and mitochondrial membrane potential (MMP) were analyzed by flow cytometry. RNA-seq and western blot assay indicated a significant increase of DUOX2 dependent of TLR4 activation in DED both in vitro and in vivo. Immunofluorescence revealed significant translocation of HMGB1 within corneal epithelial cells under hyperosmolar stress. Interestingly, after ablated DUOX2 expression by siRNA, we found a remarkable decrease of ROS level and recovered MMP in HCE cells. Moreover, knockdown of DUOX2 greatly inhibited HMGB1 release, protected cell viability and abolished inflammatory activation. Taken together, our data here suggest that upregulation of DUOX2 plays a crucial role in ROS production, thereafter, induce HMGB1 release and cell death, which triggers ocular surface inflammation in DED.
Collapse
Affiliation(s)
- Bowen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Hao Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Xin Zuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Xue Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Xiaoran Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Dalian He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
26
|
Zhang H, He J, Zhao Y, Wu Q, Zou T, Sun J, Zhu H, Wang X, Sun F, Xing J, Tang K. Effect of glutathione S-transferase gene polymorphisms on semen quality in patients with idiopathic male infertility. J Int Med Res 2021; 49:3000605211061045. [PMID: 34871528 PMCID: PMC8652180 DOI: 10.1177/03000605211061045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To investigate the relationship between glutathione S-transferase enzyme (GSTM1, T1, and P1) genetic variants and semen quality in men with idiopathic infertility. METHODS Sperm characteristics were measured using computer-assisted sperm analysis. The malondialdehyde (MDA), nitric oxide (NO), and total antioxidant capacity (TAC) activities were detected by spectroscopic analysis, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) was detected by enzyme-linked immunosorbent assay. RESULTS This study included 246 idiopathic infertile men and 117 controls. The GSTM1(-), T1(-), and M1/T1(-/-) genotype frequencies significantly differed between the groups. The GSTM1(-) and T1(-) genotypes in idiopathic infertile men negatively correlated with sperm concentration, motility, mitochondrial membrane potential, and other parameters. However, these genotypes positively correlated with the amplitude of the lateral head displacement and NO and 8-OHdG levels. The GSTT1(-) genotype positively correlated with mean angular displacement and MDA activity. GSTM1(-) and T1(-) had a synergistic effect on semen quality. Sperm motility, normal morphology, straightness, and TAC were lower and amplitude of lateral head displacement and MDA were higher in the GSTP1(A/G + G/G) group than in the GSTP1(A/A) group among men with idiopathic infertility. CONCLUSIONS GSTM1, T1, and P1 genetic variants may be risk factors for infertility by affecting the semen quality men with idiopathic oligoasthenospermia.
Collapse
Affiliation(s)
- Hongyan Zhang
- The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Jun He
- The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yili Zhao
- The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Qifei Wu
- The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tiejun Zou
- People's Hospital of Shaanxi Province, Xi'an, Shaanxi, China
| | - Jianhua Sun
- Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China
| | - Haitao Zhu
- Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China
| | - Xinyang Wang
- The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fa Sun
- The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Junping Xing
- The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kaifa Tang
- The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.,Institute of Medical Science of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
27
|
Zhang Y, Fei W, Zhang H, Zhou Y, Tian L, Hao J, Yuan Y, Li W, Liu Y. Increasing anticancer effect in vitro and vivo of liposome-encapsulated iridium(III) complexes on BEL-7402 cells. J Inorg Biochem 2021; 225:111622. [PMID: 34624670 DOI: 10.1016/j.jinorgbio.2021.111622] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 01/04/2023]
Abstract
The studies of iridium (III) complexes as potent anticancer reagents have attracted great attention. Here, a new iridium (III) complex [Ir(bzq)2(PYIP)](PF6) (Ir1, bzq = benzo[h]quinoline, PYIP = 2-(pyren-1-yl)-1H-imidazo[4,5-f][1,10]phenanthroline) was synthesized and its liposomes (Ir1Lipo) was prepared. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method was used to detect the cytotoxic activity of Ir1 and Ir1Lipo on HepG2, SGC-7901, BEL-7402, HeLa, B16, A549 and normal NIH3T3 cells. The complex Ir1 displays no obvious inhibitory effect on the growth of BEL-7402 cells, while the Ir1Lipo shows significant cytotoxic activity on BEL-7402 cells (IC50 = 2.6 ± 0.03 μM). In further studies, Ir1Lipo induced apoptosis by the mitochondrial pathways, such as increasing intracellular reactive oxygen species (ROS) content and intracellular Ca2+ level, decreasing the mitochondrial membrane potential (MMP). In addition, after incubation with Ir1Lipo, the colony formation of BEL-7402 cells was significantly inhibited. Moreover, flow cytometry was used to detect the impact of Ir1Lipo on cell cycle distribution, and western blot was used to detect the expression of caspases and Bcl-2 (B-cell lymphoma-2) family proteins. Furthermore, Ir1Lipo exhibited significant antitumor activity in vivo with an inhibitory rate of 65.8%. These results indicated that Ir1Lipo induces apoptosis in BEL-7402 cells through intrinsic mitochondrial pathway.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, Zejiang University School of Medicine, Hangzhou 310006, PR China
| | - Huiwen Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yi Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Li Tian
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jing Hao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuhan Yuan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenlong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
28
|
Programmed Cell Death in SARS-CoV-2 Infection: A Short Review. JOURNAL OF RESPIRATION 2021. [DOI: 10.3390/jor1040021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the latest variant in the coronavirus family, causing COVID-19, has resulted in global pandemic since early 2020 leading to severe public health concern. So far, the pandemic has caused more than 200 million infections and 4 million deaths worldwide. Most of the studies are focused on developing prevention, intervention, and therapeutic strategies. However, underlying pathophysiology of the disease is important as well, which needs further attention. Cell death is one of the major causative mechanisms that leads to severe inflammation, and it is also an a posteriori consequence of the hyperinflammatory storm that renders poor prognosis of the disease. Substantial cell death has been reported in biopsy samples from post mortem patients. Among the distinct cell death pathways, apoptosis, the regulated programmed cell death plays an important role in the pathogenesis of the disease. Understanding the role of SARS-CoV-2 infection in apoptosis is critical to linearize the pathogenesis of the virus as well as the resultant disease, that may uncover novel therapeutic targets in treatment of COVID-19 patients. Here, we review the current progress on the underlying molecular mechanism(s) of SARS-CoV-2-induced apoptosis, not only at the level of the virus but also at its individual proteins.
Collapse
|
29
|
Bistaffa MJ, Camacho SA, Melo CFOR, Catharino RR, Toledo KA, Aoki PHB. Plasma membrane permeabilization to explain erythrosine B phototoxicity on in vitro breast cancer cell models. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 223:112297. [PMID: 34482154 DOI: 10.1016/j.jphotobiol.2021.112297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 02/02/2023]
Abstract
Lipid oxidation is ubiquitous in cell life under oxygen and essential for photodynamic therapy (PDT) of carcinomas. However, the mechanisms underlying lipid oxidation in rather complex systems such as plasma membranes remain elusive. Herein, Langmuir monolayers were assembled with the lipid extract of glandular breast cancer (MCF7) cells and used to probe the molecular interactions allowing adsorption of the photosensitizer (PS) erythrosine B and subsequent photooxidation outcomes. Surface pressure (π) versus area (cm2/mL) isotherms of MCF7 lipid extract shifted to larger areas upon erythrosine incorporation, driven by secondary interactions that affected the orientation of the carbonyl groups and lipid chain organization. Light-irradiation increased the surface area of the MCF7 lipid extract monolayer containing erythrosine owing to the lipid hydroperoxidation, which may further undergo decomposition, resulting in the chain cleavage of phospholipids and membrane permeabilization. Incorporation of erythrosine by MCF7 cells induced slight toxic effects on in vitro assays, differently of the severe phototoxicity caused by light-irradiation, which significantly decreased cell viability by more than 75% at 2.5 × 10-6 mol/L of erythrosine incubated for 3 and 24 h, reaching nearly 90% at 48 h of incubation. The origin of the phototoxic effects is in the rupture of the plasma membrane shown by the frontal (FSC) and side (SSC) light scattering of flow cytometry. Consistent with hydroperoxide decomposition, membrane permeabilization was also confirmed by cleaved lipids detected in mass spectrometry and subsidizes the necrotic pathway of cell death.
Collapse
Affiliation(s)
- Maria J Bistaffa
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Sabrina A Camacho
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil.; IFSC, São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP 13566-590, Brazil
| | - Carlos F O R Melo
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Rodrigo R Catharino
- INNOVARE Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Karina A Toledo
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil.; São Paulo State University (UNESP), Institute of Biosciences, Letters and Exact Sciences, São José do Rio Preto, SP 15054-000, Brazil
| | - Pedro H B Aoki
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil..
| |
Collapse
|
30
|
Shoaib S, Tufail S, Sherwani MA, Yusuf N, Islam N. Phenethyl Isothiocyanate Induces Apoptosis Through ROS Generation and Caspase-3 Activation in Cervical Cancer Cells. Front Pharmacol 2021; 12:673103. [PMID: 34393773 PMCID: PMC8358204 DOI: 10.3389/fphar.2021.673103] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/14/2021] [Indexed: 01/19/2023] Open
Abstract
The latest research shows that current chemotherapeutics are ineffective because of the development of resistance in cervical cancer cells, and hence, their scope of use is limited. The main concern of researchers at the moment is the discovery of safe and effective antiproliferative plant chemicals that can aid in the battle against cervical cancer. Previous studies have shown the possible anticancer potential of phenethyl isothiocyanate obtained from cruciferous plants for many cancers, which targets various signaling pathways to exercise chemopreventive and therapeutic effects. This provides the basis for studying phenethyl isothiocyanate's therapeutic potential against cervical cancer. In the present study, cervical cancer cells were treated with various doses of phenethyl isothiocyanate, alone and in combination with cisplatin. Phenethyl isothiocyanate alone was sufficient to cause nucleus condensation and fragmentation and induce apoptosis in cervical cancer cells, but evident synergistic effects were observed in combination with cisplatin. In addition, phenethyl isothiocyanate treatment increased the production of intracellular ROS in a dose-dependent manner in cervical cancer cells. Furthermore, investigation of phenethyl isothiocyanate induced mitochondrial reactive oxygen species production, and activation of caspases showed that phenethyl isothiocyanate significantly activated caspase-3.
Collapse
Affiliation(s)
- Shoaib Shoaib
- Department of Biochemistry, J.N.M.C, Aligarh Muslim University, Aligarh, India
| | - Saba Tufail
- Department of Biochemistry, J.N.M.C, Aligarh Muslim University, Aligarh, India
| | - Mohammad Asif Sherwani
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Najmul Islam
- Department of Biochemistry, J.N.M.C, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
31
|
Cell Death in Coronavirus Infections: Uncovering Its Role during COVID-19. Cells 2021; 10:cells10071585. [PMID: 34201847 PMCID: PMC8306954 DOI: 10.3390/cells10071585] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
Cell death mechanisms are crucial to maintain an appropriate environment for the functionality of healthy cells. However, during viral infections, dysregulation of these processes can be present and can participate in the pathogenetic mechanisms of the disease. In this review, we describe some features of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and some immunopathogenic mechanisms characterizing the present coronavirus disease (COVID-19). Lymphopenia and monocytopenia are important contributors to COVID-19 immunopathogenesis. The fine mechanisms underlying these phenomena are still unknown, and several hypotheses have been raised, some of which assign a role to cell death as far as the reduction of specific types of immune cells is concerned. Thus, we discuss three major pathways such as apoptosis, necroptosis, and pyroptosis, and suggest that all of them likely occur simultaneously in COVID-19 patients. We describe that SARS-CoV-2 can have both a direct and an indirect role in inducing cell death. Indeed, on the one hand, cell death can be caused by the virus entry into cells, on the other, the excessive concentration of cytokines and chemokines, a process that is known as a COVID-19-related cytokine storm, exerts deleterious effects on circulating immune cells. However, the overall knowledge of these mechanisms is still scarce and further studies are needed to delineate new therapeutic strategies.
Collapse
|
32
|
Han J, Mei Z, Lu C, Qian J, Liang Y, Sun X, Pan Z, Kong D, Xu S, Liu Z, Gao Y, Qi G, Shou Y, Chen S, Cao Z, Zhao Y, Lin C, Zhao Y, Geng Y, Chen J, Yan X, Ma W, Yang G. Ultra-High Dose Rate FLASH Irradiation Induced Radio-Resistance of Normal Fibroblast Cells Can Be Enhanced by Hypoxia and Mitochondrial Dysfunction Resulting From Loss of Cytochrome C. Front Cell Dev Biol 2021; 9:672929. [PMID: 33996831 PMCID: PMC8121317 DOI: 10.3389/fcell.2021.672929] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/08/2021] [Indexed: 01/15/2023] Open
Abstract
Ultra-high dose rate FLASH irradiation (FLASH-IR) has got extensive attention since it may provide better protection on normal tissues while maintain tumor killing effect compared with conventional dose rate irradiation. The FLASH-IR induced protection effect on normal tissues is exhibited as radio-resistance of the irradiated normal cells, and is suggested to be related to oxygen depletion. However, the detailed cell death profile and pathways are still unclear. Presently normal mouse embryonic fibroblast cells were FLASH irradiated (∼109 Gy/s) at the dose of ∼10–40 Gy in hypoxic and normoxic condition, with ultra-fast laser-generated particles. The early apoptosis, late apoptosis and necrosis of cells were detected and analyzed at 6, 12, and 24 h post FLASH-IR. The results showed that FLASH-IR induced significant early apoptosis, late apoptosis and necrosis in normal fibroblast cells, and the apoptosis level increased with time, in either hypoxic or normoxic conditions. In addition, the proportion of early apoptosis, late apoptosis and necrosis were significantly lower in hypoxia than that of normoxia, indicating that radio-resistance of normal fibroblast cells under FLASH-IR can be enhanced by hypoxia. To further investigate the apoptosis related profile and potential pathways, mitochondria dysfunction cells resulting from loss of cytochrome c (cyt c–/–) were also irradiated. The results showed that compared with irradiated normal cells (cyt c+/+), the late apoptosis and necrosis but not early apoptosis proportions of irradiated cyt c–/– cells were significant decreased in both hypoxia and normoxia, indicating mitochondrial dysfunction increased radio-resistance of FLASH irradiated cells. Taken together, to our limited knowledge, this is the first report shedding light on the death profile and pathway of normal and cyt c–/– cells under FLASH-IR in hypoxic and normoxic circumstances, which might help us improve the understanding of the FLASH-IR induced protection effect in normal cells, and thus might potentially help to optimize the future clinical FLASH treatment.
Collapse
Affiliation(s)
- Jintao Han
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Zhusong Mei
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Chunyang Lu
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Jing Qian
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yulan Liang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Xiaoyi Sun
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Zhuo Pan
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Defeng Kong
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Shirui Xu
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Zhipeng Liu
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Ying Gao
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Guijun Qi
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Yinren Shou
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Shiyou Chen
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Zhengxuan Cao
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Ye Zhao
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Chen Lin
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Yanying Zhao
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Yixing Geng
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Jiaer Chen
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Xueqing Yan
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China
| | - Wenjun Ma
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Gen Yang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| |
Collapse
|
33
|
Zhou L, Huo M, Qian X, Ding L, Yu L, Feng W, Cui X, Chen Y. Autophagy blockade synergistically enhances nanosonosensitizer-enabled sonodynamic cancer nanotherapeutics. J Nanobiotechnology 2021; 19:112. [PMID: 33879173 PMCID: PMC8056542 DOI: 10.1186/s12951-021-00855-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/07/2021] [Indexed: 01/07/2023] Open
Abstract
Ultrasound-triggered sonodynamic therapy (SDT) represents an emerging therapeutic modality for cancer treatment based on its specific feature of noninvasiveness, high tissue-penetrating depth and desirable therapeutic efficacy, but the SDT-induced pro-survival cancer-cell autophagy would significantly lower the SDT efficacy for cancer treatment. Here we propose an "all-in-one" combined tumor-therapeutic strategy by integrating nanosonosensitizers-augmented noninvasive SDT with autophagy inhibition based on the rationally constructed nanoliposomes that co-encapsulates clinically approved sonosensitizers protoporphyrin IX (PpIX) and early-phase autophagy-blocking agent 3-methyladenine (3-MA). It has been systematically demonstrated that nanosonosensitizers-augmented SDT induced cytoprotective pro-survival autophagy through activation of MAPK signaling pathway and inhibition of AMPK signaling pathway, and this could be efficaciously inhibited by 3-MA in early-phase autophagy, which significantly decreased the cell resistance to intracellular oxidative stress and complied a remarkable synergistic effect on SDT medicated cancer-cell apoptosis both in vitro at cellular level and in vivo on tumor-bearing animal model. Therefore, our results provide a proof-of-concept combinatorial tumor therapeutics based on nanosonosensitizers for the treatment of ROS-resistant cancer by autophagy inhibition-augmented SDT.
Collapse
Affiliation(s)
- Liqiang Zhou
- Sino-German Tongji-Caritas Research Center of Ultrasound in Medicine, Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Minfeng Huo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
| | - Xiaoqin Qian
- Department of Ultrasound, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, People's Republic of China
| | - Li Ding
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
| | - Luodan Yu
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Wei Feng
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Xinwu Cui
- Sino-German Tongji-Caritas Research Center of Ultrasound in Medicine, Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
| |
Collapse
|
34
|
Khan I, Yousif A, Chesnokov M, Hong L, Chefetz II. A decade of cell death studies: Breathing new life into necroptosis. Pharmacol Ther 2021; 220:107717. [DOI: 10.1016/j.pharmthera.2020.107717] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022]
|
35
|
Ring-Substituted 1-Hydroxynaphthalene-2-Carboxanilides Inhibit Proliferation and Trigger Mitochondria-Mediated Apoptosis. Int J Mol Sci 2020; 21:ijms21103416. [PMID: 32408543 PMCID: PMC7279329 DOI: 10.3390/ijms21103416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/05/2020] [Accepted: 05/10/2020] [Indexed: 12/13/2022] Open
Abstract
Ring-substituted 1-hydroxynaphthalene-2-carboxanilides were previously investigated for their antimycobacterial properties. In our study, we have shown their antiproliferative and cell death-inducing effects in cancer cell lines. Cell proliferation and viability were assessed by WST-1 assay and a dye exclusion test, respectively. Cell cycle distribution, phosphatidylserine externalization, levels of reactive oxygen or nitrogen species (RONS), mitochondrial membrane depolarization, and release of cytochrome c were estimated by flow cytometry. Levels of regulatory proteins were determined by Western blotting. Our data suggest that the ability to inhibit the proliferation of THP-1 or MCF-7 cells might be referred to meta- or para-substituted derivatives with electron-withdrawing groups -F, -Br, or -CF3 at anilide moiety. This effect was accompanied by accumulation of cells in G1 phase. Compound 10 also induced apoptosis in THP-1 cells in association with a loss of mitochondrial membrane potential and production of mitochondrial superoxide. Our study provides a new insight into the action of salicylanilide derivatives, hydroxynaphthalene carboxamides, in cancer cells. Thus, their structure merits further investigation as a model moiety of new small-molecule compounds with potential anticancer properties.
Collapse
|
36
|
Zecca A, Barili V, Canetti D, Regina V, Olivani A, Carone C, Capizzuto V, Zerbato B, Trenti T, Dalla Valle R, Ferrari C, Cariani E, Missale G. Energy metabolism and cell motility defect in NK-cells from patients with hepatocellular carcinoma. Cancer Immunol Immunother 2020; 69:1589-1603. [PMID: 32307580 DOI: 10.1007/s00262-020-02561-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
Functional rescue of NK-cells in solid tumors represents a central aim for new immunotherapeutic strategies. We have conducted a genomic, phenotypic and functional analysis of circulating NK-cells from patients with HCV-related liver cirrhosis and hepatocellular carcinoma. NK-cells were sorted from patients with HCC or liver cirrhosis and from healthy donors. Comparative mRNA gene expression profiling by whole-human-genome microarrays of sorted NK-cells was followed by phenotypic and functional characterization. To further identify possible mediators of NK-cell dysfunction, an in vitro model using media conditioned with patients' and controls' plasma was set up. Metabolic and cell motility defects were identified at the genomic level. Dysregulated gene expression profile has been translated into reduced cytokine production and degranulation despite a prevalent phenotype of terminally differentiated NK-cells. NKG2D-downregulation, high SMAD2 phosphorylation and other phenotypic and molecular alterations suggested TGF-β as possible mediator of this dysfunction. Blocking TGF-β could partially restore functional defects of NK-cells from healthy donors, exposed to TGF-β rich HCC patients' plasma, suggesting that TGF-β among other molecules may represent a suitable target for immunotherapeutic intervention aimed at NK-cell functional restoration. By an unbiased approach, we have identified energy metabolism and cell motility defects of circulating NK-cells as main mechanisms responsible for functional NK-cell impairment in patients with hepatocellular carcinoma. This opens the way to test different approaches to restore NK-cell response in these patients.
Collapse
Affiliation(s)
- Alessandra Zecca
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Valeria Barili
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Diana Canetti
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Valeria Regina
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Andrea Olivani
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Chiara Carone
- Toxicology and Advanced Diagnostics, Ospedale S. Agostino-Estense, Modena, Italy
| | - Valentina Capizzuto
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Barbara Zerbato
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Tommaso Trenti
- Toxicology and Advanced Diagnostics, Ospedale S. Agostino-Estense, Modena, Italy
| | - Raffaele Dalla Valle
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Carlo Ferrari
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Elisabetta Cariani
- Toxicology and Advanced Diagnostics, Ospedale S. Agostino-Estense, Modena, Italy
| | - Gabriele Missale
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy.
| |
Collapse
|
37
|
Kim H, Islam S, Park M, Kim A, Hwang G. A Comprehensive Analysis of Near‐Contact Photobiomodulation Therapy in the Host–Bacteria Interaction Model Using 3D‐Printed Modular LED Platform. ACTA ACUST UNITED AC 2020; 4:e1900227. [DOI: 10.1002/adbi.201900227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/09/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Hye‐Eun Kim
- Department of Preventive and Restorative SciencesCenter for Innovation & Precision DentistrySchool of Dental MedicineUniversity of Pennsylvania Philadelphia PA 19104 USA
| | - Sayemul Islam
- Department of Electrical and Computer EngineeringTemple University Philadelphia PA 19122 USA
| | - Moonchul Park
- Department of Electrical and Computer EngineeringTemple University Philadelphia PA 19122 USA
| | - Albert Kim
- Department of Electrical and Computer EngineeringTemple University Philadelphia PA 19122 USA
| | - Geelsu Hwang
- Department of Preventive and Restorative SciencesCenter for Innovation & Precision DentistrySchool of Dental MedicineUniversity of Pennsylvania Philadelphia PA 19104 USA
| |
Collapse
|
38
|
Borella R, Forti L, Gibellini L, De Gaetano A, De Biasi S, Nasi M, Cossarizza A, Pinti M. Synthesis and Anticancer Activity of CDDO and CDDO-Me, Two Derivatives of Natural Triterpenoids. Molecules 2019; 24:molecules24224097. [PMID: 31766211 PMCID: PMC6891335 DOI: 10.3390/molecules24224097] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/25/2019] [Accepted: 11/10/2019] [Indexed: 01/05/2023] Open
Abstract
Triterpenoids are natural compounds synthesized by plants through cyclization of squalene, known for their weak anti-inflammatory activity. 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO), and its C28 modified derivative, methyl-ester (CDDO-Me, also known as bardoxolone methyl), are two synthetic derivatives of oleanolic acid, synthesized more than 20 years ago, in an attempt to enhance the anti-inflammatory behavior of the natural compound. These molecules have been extensively investigated for their strong ability to exert antiproliferative, antiangiogenic, and antimetastatic activities, and to induce apoptosis and differentiation in cancer cells. Here, we discuss the chemical properties of natural triterpenoids, the pathways of synthesis and the biological effects of CDDO and its derivative CDDO-Me. At nanomolar doses, CDDO and CDDO-Me have been shown to protect cells and tissues from oxidative stress by increasing the transcriptional activity of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2). At doses higher than 100 nM, CDDO and CDDO-Me are able to modulate the differentiation of a variety of cell types, both tumor cell lines or primary culture cell, while at micromolar doses these compounds exert an anticancer effect in multiple manners; by inducing extrinsic or intrinsic apoptotic pathways, or autophagic cell death, by inhibiting telomerase activity, by disrupting mitochondrial functions through Lon protease inhibition, and by blocking the deubiquitylating enzyme USP7. CDDO-Me demonstrated its efficacy as anticancer drugs in different mouse models, and versus several types of cancer. Several clinical trials have been started in humans for evaluating CDDO-Me efficacy as anticancer and anti-inflammatory drug; despite promising results, significant increase in heart failure events represented an obstacle for the clinical use of CDDO-Me.
Collapse
Affiliation(s)
- Rebecca Borella
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.B.); (L.F.); (A.D.G.)
| | - Luca Forti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.B.); (L.F.); (A.D.G.)
| | - Lara Gibellini
- Department of Medical and Surgical Sciences of Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.G.); (S.D.B.)
| | - Anna De Gaetano
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.B.); (L.F.); (A.D.G.)
| | - Sara De Biasi
- Department of Medical and Surgical Sciences of Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.G.); (S.D.B.)
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.N.); (A.C.)
| | - Andrea Cossarizza
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.N.); (A.C.)
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.B.); (L.F.); (A.D.G.)
- Correspondence: ; Tel.: +39 059 205 5386; Fax: +39 059 205 5426
| |
Collapse
|
39
|
Shlomovitz I, Speir M, Gerlic M. Flipping the dogma - phosphatidylserine in non-apoptotic cell death. Cell Commun Signal 2019; 17:139. [PMID: 31665027 PMCID: PMC6819419 DOI: 10.1186/s12964-019-0437-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/10/2019] [Indexed: 12/18/2022] Open
Abstract
The exposure of phosphatidylserine (PS) on the outer plasma membrane has long been considered a unique feature of apoptotic cells. Together with other "eat me" signals, it enables the recognition and phagocytosis of dying cells (efferocytosis), helping to explain the immunologically-silent nature of apoptosis. Recently, however, PS exposure has also been reported in non-apoptotic forms of regulated inflammatory cell death, such as necroptosis, challenging previous dogma. In this review, we outline the evidence for PS exposure in non-apoptotic cells and extracellular vesicles (EVs), and discuss possible mechanisms based on our knowledge of apoptotic-PS exposure. In addition, we examine the outcomes of non-apoptotic PS exposure, including the reversibility of cell death, efferocytosis, and consequent inflammation. By examining PS biology, we challenge the established approach of distinguishing apoptosis from other cell death pathways by AnnexinV staining of PS externalization. Finally, we re-evaluate how PS exposure is thought to define apoptosis as an immunologically silent process distinct from other non-apoptotic and inflammatory cell death pathways. Ultimately, we suggest that a complete understanding of how regulated cell death processes affect the immune system is far from being fully elucidated.
Collapse
Affiliation(s)
- Inbar Shlomovitz
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mary Speir
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168 Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800 Australia
| | - Motti Gerlic
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
40
|
Cossarizza A, Chang HD, Radbruch A, Acs A, Adam D, Adam-Klages S, Agace WW, Aghaeepour N, Akdis M, Allez M, Almeida LN, Alvisi G, Anderson G, Andrä I, Annunziato F, Anselmo A, Bacher P, Baldari CT, Bari S, Barnaba V, Barros-Martins J, Battistini L, Bauer W, Baumgart S, Baumgarth N, Baumjohann D, Baying B, Bebawy M, Becher B, Beisker W, Benes V, Beyaert R, Blanco A, Boardman DA, Bogdan C, Borger JG, Borsellino G, Boulais PE, Bradford JA, Brenner D, Brinkman RR, Brooks AES, Busch DH, Büscher M, Bushnell TP, Calzetti F, Cameron G, Cammarata I, Cao X, Cardell SL, Casola S, Cassatella MA, Cavani A, Celada A, Chatenoud L, Chattopadhyay PK, Chow S, Christakou E, Čičin-Šain L, Clerici M, Colombo FS, Cook L, Cooke A, Cooper AM, Corbett AJ, Cosma A, Cosmi L, Coulie PG, Cumano A, Cvetkovic L, Dang VD, Dang-Heine C, Davey MS, Davies D, De Biasi S, Del Zotto G, Cruz GVD, Delacher M, Bella SD, Dellabona P, Deniz G, Dessing M, Di Santo JP, Diefenbach A, Dieli F, Dolf A, Dörner T, Dress RJ, Dudziak D, Dustin M, Dutertre CA, Ebner F, Eckle SBG, Edinger M, Eede P, Ehrhardt GR, Eich M, Engel P, Engelhardt B, Erdei A, et alCossarizza A, Chang HD, Radbruch A, Acs A, Adam D, Adam-Klages S, Agace WW, Aghaeepour N, Akdis M, Allez M, Almeida LN, Alvisi G, Anderson G, Andrä I, Annunziato F, Anselmo A, Bacher P, Baldari CT, Bari S, Barnaba V, Barros-Martins J, Battistini L, Bauer W, Baumgart S, Baumgarth N, Baumjohann D, Baying B, Bebawy M, Becher B, Beisker W, Benes V, Beyaert R, Blanco A, Boardman DA, Bogdan C, Borger JG, Borsellino G, Boulais PE, Bradford JA, Brenner D, Brinkman RR, Brooks AES, Busch DH, Büscher M, Bushnell TP, Calzetti F, Cameron G, Cammarata I, Cao X, Cardell SL, Casola S, Cassatella MA, Cavani A, Celada A, Chatenoud L, Chattopadhyay PK, Chow S, Christakou E, Čičin-Šain L, Clerici M, Colombo FS, Cook L, Cooke A, Cooper AM, Corbett AJ, Cosma A, Cosmi L, Coulie PG, Cumano A, Cvetkovic L, Dang VD, Dang-Heine C, Davey MS, Davies D, De Biasi S, Del Zotto G, Cruz GVD, Delacher M, Bella SD, Dellabona P, Deniz G, Dessing M, Di Santo JP, Diefenbach A, Dieli F, Dolf A, Dörner T, Dress RJ, Dudziak D, Dustin M, Dutertre CA, Ebner F, Eckle SBG, Edinger M, Eede P, Ehrhardt GR, Eich M, Engel P, Engelhardt B, Erdei A, Esser C, Everts B, Evrard M, Falk CS, Fehniger TA, Felipo-Benavent M, Ferry H, Feuerer M, Filby A, Filkor K, Fillatreau S, Follo M, Förster I, Foster J, Foulds GA, Frehse B, Frenette PS, Frischbutter S, Fritzsche W, Galbraith DW, Gangaev A, Garbi N, Gaudilliere B, Gazzinelli RT, Geginat J, Gerner W, Gherardin NA, Ghoreschi K, Gibellini L, Ginhoux F, Goda K, Godfrey DI, Goettlinger C, González-Navajas JM, Goodyear CS, Gori A, Grogan JL, Grummitt D, Grützkau A, Haftmann C, Hahn J, Hammad H, Hämmerling G, Hansmann L, Hansson G, Harpur CM, Hartmann S, Hauser A, Hauser AE, Haviland DL, Hedley D, Hernández DC, Herrera G, Herrmann M, Hess C, Höfer T, Hoffmann P, Hogquist K, Holland T, Höllt T, Holmdahl R, Hombrink P, Houston JP, Hoyer BF, Huang B, Huang FP, Huber JE, Huehn J, Hundemer M, Hunter CA, Hwang WYK, Iannone A, Ingelfinger F, Ivison SM, Jäck HM, Jani PK, Jávega B, Jonjic S, Kaiser T, Kalina T, Kamradt T, Kaufmann SHE, Keller B, Ketelaars SLC, Khalilnezhad A, Khan S, Kisielow J, Klenerman P, Knopf J, Koay HF, Kobow K, Kolls JK, Kong WT, Kopf M, Korn T, Kriegsmann K, Kristyanto H, Kroneis T, Krueger A, Kühne J, Kukat C, Kunkel D, Kunze-Schumacher H, Kurosaki T, Kurts C, Kvistborg P, Kwok I, Landry J, Lantz O, Lanuti P, LaRosa F, Lehuen A, LeibundGut-Landmann S, Leipold MD, Leung LY, Levings MK, Lino AC, Liotta F, Litwin V, Liu Y, Ljunggren HG, Lohoff M, Lombardi G, Lopez L, López-Botet M, Lovett-Racke AE, Lubberts E, Luche H, Ludewig B, Lugli E, Lunemann S, Maecker HT, Maggi L, Maguire O, Mair F, Mair KH, Mantovani A, Manz RA, Marshall AJ, Martínez-Romero A, Martrus G, Marventano I, Maslinski W, Matarese G, Mattioli AV, Maueröder C, Mazzoni A, McCluskey J, McGrath M, McGuire HM, McInnes IB, Mei HE, Melchers F, Melzer S, Mielenz D, Miller SD, Mills KH, Minderman H, Mjösberg J, Moore J, Moran B, Moretta L, Mosmann TR, Müller S, Multhoff G, Muñoz LE, Münz C, Nakayama T, Nasi M, Neumann K, Ng LG, Niedobitek A, Nourshargh S, Núñez G, O’Connor JE, Ochel A, Oja A, Ordonez D, Orfao A, Orlowski-Oliver E, Ouyang W, Oxenius A, Palankar R, Panse I, Pattanapanyasat K, Paulsen M, Pavlinic D, Penter L, Peterson P, Peth C, Petriz J, Piancone F, Pickl WF, Piconese S, Pinti M, Pockley AG, Podolska MJ, Poon Z, Pracht K, Prinz I, Pucillo CEM, Quataert SA, Quatrini L, Quinn KM, Radbruch H, Radstake TRDJ, Rahmig S, Rahn HP, Rajwa B, Ravichandran G, Raz Y, Rebhahn JA, Recktenwald D, Reimer D, e Sousa CR, Remmerswaal EB, Richter L, Rico LG, Riddell A, Rieger AM, Robinson JP, Romagnani C, Rubartelli A, Ruland J, Saalmüller A, Saeys Y, Saito T, Sakaguchi S, de-Oyanguren FS, Samstag Y, Sanderson S, Sandrock I, Santoni A, Sanz RB, Saresella M, Sautes-Fridman C, Sawitzki B, Schadt L, Scheffold A, Scherer HU, Schiemann M, Schildberg FA, Schimisky E, Schlitzer A, Schlosser J, Schmid S, Schmitt S, Schober K, Schraivogel D, Schuh W, Schüler T, Schulte R, Schulz AR, Schulz SR, Scottá C, Scott-Algara D, Sester DP, Shankey TV, Silva-Santos B, Simon AK, Sitnik KM, Sozzani S, Speiser DE, Spidlen J, Stahlberg A, Stall AM, Stanley N, Stark R, Stehle C, Steinmetz T, Stockinger H, Takahama Y, Takeda K, Tan L, Tárnok A, Tiegs G, Toldi G, Tornack J, Traggiai E, Trebak M, Tree TI, Trotter J, Trowsdale J, Tsoumakidou M, Ulrich H, Urbanczyk S, van de Veen W, van den Broek M, van der Pol E, Van Gassen S, Van Isterdael G, van Lier RA, Veldhoen M, Vento-Asturias S, Vieira P, Voehringer D, Volk HD, von Borstel A, von Volkmann K, Waisman A, Walker RV, Wallace PK, Wang SA, Wang XM, Ward MD, Ward-Hartstonge KA, Warnatz K, Warnes G, Warth S, Waskow C, Watson JV, Watzl C, Wegener L, Weisenburger T, Wiedemann A, Wienands J, Wilharm A, Wilkinson RJ, Willimsky G, Wing JB, Winkelmann R, Winkler TH, Wirz OF, Wong A, Wurst P, Yang JHM, Yang J, Yazdanbakhsh M, Yu L, Yue A, Zhang H, Zhao Y, Ziegler SM, Zielinski C, Zimmermann J, Zychlinsky A. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur J Immunol 2019; 49:1457-1973. [PMID: 31633216 PMCID: PMC7350392 DOI: 10.1002/eji.201970107] [Show More Authors] [Citation(s) in RCA: 736] [Impact Index Per Article: 122.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion.
Collapse
Affiliation(s)
- Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, Univ. of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Hyun-Dong Chang
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Andreas Acs
- Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Sabine Adam-Klages
- Institut für Transfusionsmedizin, Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | - William W. Agace
- Mucosal Immunology group, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
- Immunology Section, Lund University, Lund, Sweden
| | - Nima Aghaeepour
- Departments of Anesthesiology, Pain and Perioperative Medicine; Biomedical Data Sciences; and Pediatrics, Stanford University, Stanford, CA, USA
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Matthieu Allez
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U1160, and Gastroenterology Department, Hôpital Saint-Louis – APHP, Paris, France
| | | | - Giorgia Alvisi
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| | | | - Immanuel Andrä
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Achille Anselmo
- Flow Cytometry Core, Humanitas Clinical and Research Center, Milan, Italy
| | - Petra Bacher
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
- Institut für Klinische Molekularbiologie, Christian-Albrechts Universität zu Kiel, Germany
| | | | - Sudipto Bari
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy
| | | | | | - Wolfgang Bauer
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sabine Baumgart
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Nicole Baumgarth
- Center for Comparative Medicine & Dept. Pathology, Microbiology & Immunology, University of California, Davis, CA, USA
| | - Dirk Baumjohann
- Institute for Immunology, Faculty of Medicine, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
| | - Bianka Baying
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, The University of Technology Sydney, Sydney, NSW, Australia
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Switzerland
| | - Wolfgang Beisker
- Flow Cytometry Laboratory, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology, Center for Inflammation Research, Ghent University - VIB, Ghent, Belgium
| | - Alfonso Blanco
- Flow Cytometry Core Technologies, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Dominic A. Boardman
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Erlangen, Germany
- Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Medical Immunology Campus Erlangen, Erlangen, Germany
| | - Jessica G. Borger
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Giovanna Borsellino
- Neuroimmunology and Flow Cytometry Units, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Philip E. Boulais
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- The Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, New York, USA
| | | | - Dirk Brenner
- Luxembourg Institute of Health, Department of Infection and Immunity, Experimental and Molecular Immunology, Esch-sur-Alzette, Luxembourg
- Odense University Hospital, Odense Research Center for Anaphylaxis, University of Southern Denmark, Department of Dermatology and Allergy Center, Odense, Denmark
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Ryan R. Brinkman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
| | - Anna E. S. Brooks
- University of Auckland, School of Biological Sciences, Maurice Wilkins Center, Auckland, New Zealand
| | - Dirk H. Busch
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
- Focus Group “Clinical Cell Processing and Purification”, Institute for Advanced Study, Technische Universität München, Munich, Germany
| | - Martin Büscher
- Biophysics, R&D Engineering, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Timothy P. Bushnell
- Department of Pediatrics and Shared Resource Laboratories, University of Rochester Medical Center, Rochester, NY, USA
| | - Federica Calzetti
- University of Verona, Department of Medicine, Section of General Pathology, Verona, Italy
| | - Garth Cameron
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Ilenia Cammarata
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology, Nankai University, Tianjin, China
| | - Susanna L. Cardell
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Stefano Casola
- The FIRC Institute of Molecular Oncology (FOM), Milan, Italy
| | - Marco A. Cassatella
- University of Verona, Department of Medicine, Section of General Pathology, Verona, Italy
| | - Andrea Cavani
- National Institute for Health, Migration and Poverty (INMP), Rome, Italy
| | - Antonio Celada
- Macrophage Biology Group, School of Biology, University of Barcelona, Barcelona, Spain
| | - Lucienne Chatenoud
- Université Paris Descartes, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | | | - Sue Chow
- Divsion of Medical Oncology and Hematology, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Eleni Christakou
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institutes of Health Research Biomedical Research Centre at Guy’s and St. Thomas’ National Health Service, Foundation Trust and King’s College London, UK
| | - Luka Čičin-Šain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Department of Physiopathology and Transplants, University of Milan, Milan, Italy
- Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | | | - Laura Cook
- BC Children’s Hospital Research Institute, Vancouver, Canada
- Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Anne Cooke
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Andrea M. Cooper
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Antonio Cosma
- National Cytometry Platform, Luxembourg Institute of Health, Department of Infection and Immunity, Esch-sur-Alzette, Luxembourg
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pierre G. Coulie
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Ana Cumano
- Unit Lymphopoiesis, Department of Immunology, Institut Pasteur, Paris, France
| | - Ljiljana Cvetkovic
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Van Duc Dang
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Chantip Dang-Heine
- Clinical Research Unit, Berlin Institute of Health (BIH), Charite Universitätsmedizin Berlin, Berlin, Germany
| | - Martin S. Davey
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Derek Davies
- Flow Cytometry Scientific Technology Platform, The Francis Crick Institute, London, UK
| | - Sara De Biasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Univ. of Modena and Reggio Emilia, Modena, Italy
| | | | - Gelo Victoriano Dela Cruz
- Novo Nordisk Foundation Center for Stem Cell Biology – DanStem, University of Copenhagen, Copenhagen, Denmark
| | - Michael Delacher
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Germany
| | - Silvia Della Bella
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Paolo Dellabona
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Günnur Deniz
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul, Turkey
| | | | - James P. Di Santo
- Innate Immunty Unit, Department of Immunology, Institut Pasteur, Paris, France
- Institut Pasteur, Inserm U1223, Paris, France
| | - Andreas Diefenbach
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Francesco Dieli
- University of Palermo, Central Laboratory of Advanced Diagnosis and Biomedical Research, Department of Biomedicine, Neurosciences and Advanced Diagnostics, Palermo, Italy
| | - Andreas Dolf
- Flow Cytometry Core Facility, Institute of Experimental Immunology, University of Bonn, Bonn, Germany
| | - Thomas Dörner
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Dept. Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Germany
| | - Regine J. Dress
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Diana Dudziak
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Michael Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Charles-Antoine Dutertre
- Program in Emerging Infectious Disease, Duke-NUS Medical School, Singapore
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Friederike Ebner
- Institute of Immunology, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Germany
| | - Sidonia B. G. Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Matthias Edinger
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Germany
| | - Pascale Eede
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neuropathology, Germany
| | | | - Marcus Eich
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Pablo Engel
- University of Barcelona, Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Barcelona, Spain
| | | | - Anna Erdei
- Department of Immunology, University L. Eotvos, Budapest, Hungary
| | - Charlotte Esser
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Christine S. Falk
- Institute of Transplant Immunology, Hannover Medical School, MHH, Hannover, Germany
| | - Todd A. Fehniger
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mar Felipo-Benavent
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Principe Felipe Research Center, Valencia, Spain
| | - Helen Ferry
- Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Markus Feuerer
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Germany
| | - Andrew Filby
- The Flow Cytometry Core Facility, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | - Simon Fillatreau
- Institut Necker-Enfants Malades, Université Paris Descartes Sorbonne Paris Cité, Faculté de Médecine, AP-HP, Hôpital Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | - Marie Follo
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Universitaetsklinikum FreiburgLighthouse Core Facility, Zentrum für Translationale Zellforschung, Klinik für Innere Medizin I, Freiburg, Germany
| | - Irmgard Förster
- Immunology and Environment, LIMES Institute, University of Bonn, Bonn, Germany
| | | | - Gemma A. Foulds
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - Britta Frehse
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Paul S. Frenette
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- The Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Stefan Frischbutter
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venereology and Allergology
| | - Wolfgang Fritzsche
- Nanobiophotonics Department, Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
| | - David W. Galbraith
- School of Plant Sciences and Bio5 Institute, University of Arizona, Tucson, USA
- Honorary Dean of Life Sciences, Henan University, Kaifeng, China
| | - Anastasia Gangaev
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Natalio Garbi
- Institute of Experimental Immunology, University of Bonn, Germany
| | - Brice Gaudilliere
- Stanford Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, CA, USA
| | - Ricardo T. Gazzinelli
- Fundação Oswaldo Cruz - Minas, Laboratory of Immunopatology, Belo Horizonte, MG, Brazil
- Department of Mecicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jens Geginat
- INGM - Fondazione Istituto Nazionale di Genetica Molecolare “Ronmeo ed Enrica Invernizzi”, Milan, Italy
| | - Wilhelm Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lara Gibellini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Univ. of Modena and Reggio Emilia, Modena, Italy
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keisuke Goda
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Department of Chemistry, University of Tokyo, Tokyo, Japan
- Institute of Technological Sciences, Wuhan University, Wuhan, China
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | | | - Jose M. González-Navajas
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
| | - Carl S. Goodyear
- Institute of Infection Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow Biomedical Research Centre, Glasgow, UK
| | - Andrea Gori
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan
| | - Jane L. Grogan
- Cancer Immunology Research, Genentech, South San Francisco, CA, USA
| | | | - Andreas Grützkau
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Claudia Haftmann
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Jonas Hahn
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Hamida Hammad
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Zwijnaarde, Belgium
| | | | - Leo Hansmann
- Berlin Institute of Health (BIH), Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Berlin, Germany
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Goran Hansson
- Department of Medicine and Center for Molecular Medicine at Karolinska University Hospital, Solna, Sweden
| | | | - Susanne Hartmann
- Institute of Immunology, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Germany
| | - Andrea Hauser
- Department of Internal Medicine III, University Hospital Regensburg, Germany
| | - Anja E. Hauser
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin
- Department of Rheumatology and Clinical Immunology, Berlin Institute of Health, Berlin, Germany
| | - David L. Haviland
- Flow Cytometry, Houston Methodist Hospital Research Institute, Houston, TX, USA
| | - David Hedley
- Divsion of Medical Oncology and Hematology, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Daniela C. Hernández
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Medical Department I, Division of Gastroenterology, Infectiology and Rheumatology, Berlin, Germany
| | - Guadalupe Herrera
- Cytometry Service, Incliva Foundation. Clinic Hospital and Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Martin Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Christoph Hess
- Immunobiology Laboratory, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Thomas Höfer
- German Cancer Research Center (DKFZ), Division of Theoretical Systems Biology, Heidelberg, Germany
| | - Petra Hoffmann
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Germany
| | - Kristin Hogquist
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Tristan Holland
- Institute of Experimental Immunology, University of Bonn, Germany
| | - Thomas Höllt
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
- Computer Graphics and Visualization, Department of Intelligent Systems, TU Delft, Delft, The Netherlands
| | | | - Pleun Hombrink
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jessica P. Houston
- Department of Chemical & Materials Engineering, New Mexico State University, Las Cruces, NM, USA
| | - Bimba F. Hoyer
- Rheumatologie/Klinische Immunologie, Klinik für Innere Medizin I und Exzellenzzentrum Entzündungsmedizin, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Fang-Ping Huang
- Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, China
| | - Johanna E. Huber
- Institute for Immunology, Faculty of Medicine, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Hundemer
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William Y. K. Hwang
- Department of Hematology, Singapore General Hospital, Singapore
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore
- Executive Offices, National Cancer Centre Singapore, Singapore
| | - Anna Iannone
- Department of Diagnostic Medicine, Clinical and Public Health, Univ. of Modena and Reggio Emilia, Modena, Italy
| | - Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sabine M Ivison
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Peter K. Jani
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Beatriz Jávega
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Stipan Jonjic
- Department of Histology and Embryology/Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Toralf Kaiser
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Tomas Kalina
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Thomas Kamradt
- Jena University Hospital, Institute of Immunology, Jena, Germany
| | | | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Steven L. C. Ketelaars
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ahad Khalilnezhad
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Srijit Khan
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Jan Kisielow
- Institute of Molecular Health Sciences, ETH Zurich, Zürich, Switzerland
| | - Paul Klenerman
- Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jasmin Knopf
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Katja Kobow
- Department of Neuropathology, Universitätsklinikum Erlangen, Germany
| | - Jay K. Kolls
- John W Deming Endowed Chair in Internal Medicine, Center for Translational Research in Infection and Inflammation Tulane School of Medicine, New Orleans, LA, USA
| | - Wan Ting Kong
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zurich, Zürich, Switzerland
| | - Thomas Korn
- Department of Neurology, Technical University of Munich, Munich, Germany
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - Hendy Kristyanto
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas Kroneis
- Division of Cell Biology, Histology & Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jenny Kühne
- Institute of Transplant Immunology, Hannover Medical School, MHH, Hannover, Germany
| | - Christian Kukat
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Désirée Kunkel
- Flow & Mass Cytometry Core Facility, Charité - Universitätsmedizin Berlin and Berlin Institute of Health, Berlin, Germany
- BCRT Flow Cytometry Lab, Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin
| | - Heike Kunze-Schumacher
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Tomohiro Kurosaki
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Christian Kurts
- Institute of Experimental Immunology, University of Bonn, Germany
| | - Pia Kvistborg
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jonathan Landry
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Olivier Lantz
- INSERM U932, PSL University, Institut Curie, Paris, France
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, Centre on Aging Sciences and Translational Medicine (Ce.S.I.-Me.T.), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Francesca LaRosa
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Agnès Lehuen
- Institut Cochin, CNRS8104, INSERM1016, Department of Endocrinology, Metabolism and Diabetes, Université de Paris, Paris, France
| | | | - Michael D. Leipold
- The Human Immune Monitoring Center (HIMC), Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, CA, USA
| | - Leslie Y.T. Leung
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Megan K. Levings
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
| | - Andreia C. Lino
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Dept. Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Germany
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Yanling Liu
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, ANA Futura, Karolinska Institutet, Stockholm, Sweden
| | - Michael Lohoff
- Inst. f. Med. Mikrobiology and Hospital Hygiene, University of Marburg, Germany
| | - Giovanna Lombardi
- King’s College London, “Peter Gorer” Department of Immunobiology, London, UK
| | | | - Miguel López-Botet
- IMIM(Hospital de Mar Medical Research Institute), University Pompeu Fabra, Barcelona, Spain
| | - Amy E. Lovett-Racke
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Erik Lubberts
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Herve Luche
- Centre d’Immunophénomique - CIPHE (PHENOMIN), Aix Marseille Université (UMS3367), Inserm (US012), CNRS (UMS3367), Marseille, France
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
- Flow Cytometry Core, Humanitas Clinical and Research Center, Milan, Italy
| | - Sebastian Lunemann
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Holden T. Maecker
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Orla Maguire
- Flow and Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Florian Mair
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Kerstin H. Mair
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Alberto Mantovani
- Istituto Clinico Humanitas IRCCS and Humanitas University, Pieve Emanuele, Milan, Italy
- William Harvey Research Institute, Queen Mary University, London, United Kingdom
| | - Rudolf A. Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Aaron J. Marshall
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | - Glòria Martrus
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ivana Marventano
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Wlodzimierz Maslinski
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Department of Pathophysiology and Immunology, Warsaw, Poland
| | - Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecologie Mediche, Università di Napoli Federico II and Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy
| | - Anna Vittoria Mattioli
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Univ. of Modena and Reggio Emilia, Modena, Italy
- Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Christian Maueröder
- Cell Clearance in Health and Disease Lab, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Mairi McGrath
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Helen M. McGuire
- Ramaciotti Facility for Human Systems Biology, and Discipline of Pathology, The University of Sydney, Camperdown, Australia
| | - Iain B. McInnes
- Institute of Infection Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow Biomedical Research Centre, Glasgow, UK
| | - Henrik E. Mei
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Fritz Melchers
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Susanne Melzer
- Clinical Trial Center Leipzig, University Leipzig, Leipzig, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Stephen D. Miller
- Interdepartmental Immunobiology Center, Dept. of Microbiology-Immunology, Northwestern Univ. Medical School, Chicago, IL, USA
| | - Kingston H.G. Mills
- Trinity College Dublin, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Hans Minderman
- Flow and Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, ANA Futura, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical and Experimental Medine, Linköping University, Linköping, Sweden
| | - Jonni Moore
- Abramson Cancer Center Flow Cytometry and Cell Sorting Shared Resource, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Barry Moran
- Trinity College Dublin, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesu Children’s Hospital, Rome, Italy
| | - Tim R. Mosmann
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Susann Müller
- Centre for Environmental Research - UFZ, Department Environmental Microbiology, Leipzig, Germany
| | - Gabriele Multhoff
- Institute for Innovative Radiotherapy (iRT), Experimental Immune Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum rechts der Isar, Munich, Germany
| | - Luis Enrique Muñoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Christian Münz
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Switzerland
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba city, Chiba, Japan
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Univ. of Modena and Reggio Emilia, Modena, Italy
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
- Discipline of Dermatology, University of Sydney, Sydney, New South Wales, Australia
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Antonia Niedobitek
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Sussan Nourshargh
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, the University of Michigan, Ann Arbor, Michigan, USA
| | - José-Enrique O’Connor
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Aaron Ochel
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Oja
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Diana Ordonez
- Flow Cytometry Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Alberto Orfao
- Department of Medicine, Cancer Research Centre (IBMCC-CSIC/USAL), Cytometry Service, University of Salamanca, CIBERONC and Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Eva Orlowski-Oliver
- Burnet Institute, AMREP Flow Cytometry Core Facility, Melbourne, Victoria, Australia
| | - Wenjun Ouyang
- Inflammation and Oncology, Research, Amgen Inc, South San Francisco, USA
| | | | - Raghavendra Palankar
- Department of Transfusion Medicine, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Isabel Panse
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Kovit Pattanapanyasat
- Center of Excellence for Flow Cytometry, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Malte Paulsen
- Flow Cytometry Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Dinko Pavlinic
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Livius Penter
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Christian Peth
- Biophysics, R&D Engineering, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Jordi Petriz
- Functional Cytomics Group, Josep Carreras Leukaemia Research Institute, Campus ICO-Germans Trias i Pujol, Universitat Autònoma de Barcelona, UAB, Badalona, Spain
| | - Federica Piancone
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Winfried F. Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Silvia Piconese
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - A. Graham Pockley
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
- Chromocyte Limited, Electric Works, Sheffield, UK
| | - Malgorzata Justyna Podolska
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
- Department for Internal Medicine 3, Institute for Rheumatology and Immunology, AG Munoz, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Zhiyong Poon
- Department of Hematology, Singapore General Hospital, Singapore
| | - Katharina Pracht
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Sally A. Quataert
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesu Children’s Hospital, Rome, Italy
| | - Kylie M. Quinn
- School of Biomedical and Health Sciences, RMIT University, Bundoora, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Helena Radbruch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neuropathology, Germany
| | - Tim R. D. J. Radstake
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Susann Rahmig
- Regeneration in Hematopoiesis, Leibniz-Institute on Aging, Fritz-Lipmann-Institute (FLI), Jena, Germany
| | - Hans-Peter Rahn
- Preparative Flow Cytometry, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Bartek Rajwa
- Bindley Biosciences Center, Purdue University, West Lafayette, IN, USA
| | - Gevitha Ravichandran
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yotam Raz
- Department of Internal Medicine, Groene Hart Hospital, Gouda, The Netherlands
| | - Jonathan A. Rebhahn
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Dorothea Reimer
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Ester B.M. Remmerswaal
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Renal Transplant Unit, Division of Internal Medicine, Academic Medical Centre, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisa Richter
- Core Facility Flow Cytometry, Biomedical Center, Ludwig-Maximilians-University Munich, Germany
| | - Laura G. Rico
- Functional Cytomics Group, Josep Carreras Leukaemia Research Institute, Campus ICO-Germans Trias i Pujol, Universitat Autònoma de Barcelona, UAB, Badalona, Spain
| | - Andy Riddell
- Flow Cytometry Scientific Technology Platform, The Francis Crick Institute, London, UK
| | - Aja M. Rieger
- Department of Medical Microbiology and Immunology, University of Alberta, Alberta, Canada
| | - J. Paul Robinson
- Purdue University Cytometry Laboratories, Purdue University, West Lafayette, IN, USA
| | - Chiara Romagnani
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Medical Department I, Division of Gastroenterology, Infectiology and Rheumatology, Berlin, Germany
| | - Anna Rubartelli
- Cell Biology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Jürgen Ruland
- Institut für Klinische Chemie und Pathobiochemie, Fakultät für Medizin, Technische Universität München, München, Germany
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Takashi Saito
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shimon Sakaguchi
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Francisco Sala de-Oyanguren
- Flow Cytometry Facility, Ludwig Cancer Institute, Faculty of Medicine and Biology, University of Lausanne, Epalinges, Switzerland
| | - Yvonne Samstag
- Heidelberg University, Institute of Immunology, Section of Molecular Immunology, Heidelberg, Germany
| | - Sharon Sanderson
- Translational Immunology Laboratory, NIHR BRC, University of Oxford, Kennedy Institute of Rheumatology, Oxford, UK
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, IRCCS, Neuromed, Pozzilli, Italy
| | - Ramon Bellmàs Sanz
- Institute of Transplant Immunology, Hannover Medical School, MHH, Hannover, Germany
| | - Marina Saresella
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | | | - Birgit Sawitzki
- Charité – Universitätsmedizin Berlin, and Berlin Institute of Health, Institute of Medical Immunology, Berlin, Germany
| | - Linda Schadt
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Switzerland
| | - Alexander Scheffold
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Hans U. Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias Schiemann
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Frank A. Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | | | - Andreas Schlitzer
- Quantitative Systems Biology, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Josephine Schlosser
- Institute of Immunology, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Germany
| | - Stephan Schmid
- Internal Medicine I, University Hospital Regensburg, Germany
| | - Steffen Schmitt
- Flow Cytometry Core Facility, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Kilian Schober
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Daniel Schraivogel
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Reiner Schulte
- University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Axel Ronald Schulz
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Sebastian R. Schulz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Cristiano Scottá
- King’s College London, “Peter Gorer” Department of Immunobiology, London, UK
| | - Daniel Scott-Algara
- Institut Pasteur, Cellular Lymphocytes Biology, Immunology Departement, Paris, France
| | - David P. Sester
- TRI Flow Cytometry Suite (TRI.fcs), Translational Research Institute, Wooloongabba, QLD, Australia
| | | | - Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | | | - Katarzyna M. Sitnik
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Silvano Sozzani
- Dept. Molecular Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniel E. Speiser
- Department of Oncology, University of Lausanne and CHUV, Epalinges, Switzerland
| | | | - Anders Stahlberg
- Lundberg Laboratory for Cancer, Department of Pathology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | | | - Natalie Stanley
- Departments of Anesthesiology, Pain and Perioperative Medicine; Biomedical Data Sciences; and Pediatrics, Stanford University, Stanford, CA, USA
| | - Regina Stark
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Christina Stehle
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Medical Department I, Division of Gastroenterology, Infectiology and Rheumatology, Berlin, Germany
| | - Tobit Steinmetz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Kiyoshi Takeda
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Leonard Tan
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Attila Tárnok
- Departement for Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
- Department of Precision Instruments, Tsinghua University, Beijing, China
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Julia Tornack
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- BioGenes GmbH, Berlin, Germany
| | - Elisabetta Traggiai
- Novartis Biologics Center, Mechanistic Immunology Unit, Novartis Institute for Biomedical Research, NIBR, Basel, Switzerland
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, PA, United States
| | - Timothy I.M. Tree
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institutes of Health Research Biomedical Research Centre at Guy’s and St. Thomas’ National Health Service, Foundation Trust and King’s College London, UK
| | | | - John Trowsdale
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Sophia Urbanczyk
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Maries van den Broek
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Switzerland
| | - Edwin van der Pol
- Vesicle Observation Center; Biomedical Engineering & Physics; Laboratory Experimental Clinical Chemistry; Amsterdam University Medical Centers, Location AMC, The Netherlands
| | - Sofie Van Gassen
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | | | - René A.W. van Lier
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marc Veldhoen
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | | | - Paulo Vieira
- Unit Lymphopoiesis, Department of Immunology, Institut Pasteur, Paris, France
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Hans-Dieter Volk
- BIH Center for Regenerative Therapies (BCRT) Charité Universitätsmedizin Berlin and Berlin Institute of Health, Core Unit ImmunoCheck
| | - Anouk von Borstel
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | | | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | | | - Paul K. Wallace
- Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, USA
| | - Sa A. Wang
- Dept of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin M. Wang
- The Scientific Platforms, the Westmead Institute for Medical Research, the Westmead Research Hub, Westmead, New South Wales, Australia
| | | | | | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gary Warnes
- Flow Cytometry Core Facility, Blizard Institute, Queen Mary London University, London, UK
| | - Sarah Warth
- BCRT Flow Cytometry Lab, Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin
| | - Claudia Waskow
- Regeneration in Hematopoiesis, Leibniz-Institute on Aging, Fritz-Lipmann-Institute (FLI), Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | | | - Carsten Watzl
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| | - Leonie Wegener
- Biophysics, R&D Engineering, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Thomas Weisenburger
- Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Annika Wiedemann
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Dept. Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Germany
| | - Jürgen Wienands
- Institute for Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Robert John Wilkinson
- Department of Infectious Disease, Imperial College London, UK
- Wellcome Centre for Infectious Diseases Research in Africa and Department of Medicine, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa
- Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Gerald Willimsky
- Cooperation Unit for Experimental and Translational Cancer Immunology, Institute of Immunology (Charité - Universitätsmedizin Berlin) and German Cancer Research Center (DKFZ), Berlin, Germany
| | - James B. Wing
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Rieke Winkelmann
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Thomas H. Winkler
- Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Oliver F. Wirz
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Alicia Wong
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Peter Wurst
- University Bonn, Medical Faculty, Bonn, Germany
| | - Jennie H. M. Yang
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institutes of Health Research Biomedical Research Centre at Guy’s and St. Thomas’ National Health Service, Foundation Trust and King’s College London, UK
| | - Juhao Yang
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Alice Yue
- School of Computing Science, Simon Fraser University, Burnaby, Canada
| | - Hanlin Zhang
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Susanne Maria Ziegler
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Christina Zielinski
- German Center for Infection Research (DZIF), Munich, Germany
- Institute of Virology, Technical University of Munich, Munich, Germany
- TranslaTUM, Technical University of Munich, Munich, Germany
| | - Jakob Zimmermann
- Maurice Müller Laboratories (Department of Biomedical Research), Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | | |
Collapse
|
41
|
Wang G, Liu J, Zhu L, Ma X, Wang X, Yang X, Guo Y, Yang L, Lu J. Self-Destruction of Cancer Induced by Ag 2 S Amorphous Nanodots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902945. [PMID: 31531961 DOI: 10.1002/smll.201902945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Studies on distinctive performances and novel applications of amorphous inorganic nanomaterials are becoming attractive. Herein, Ag2 S amorphous and crystalline nanodots (ANDs and CNDs) are prepared via facile methods. In vitro and in vivo studies indicate that Ag2 S ANDs, rather than CNDs, can induce the self-destruction of tumors, which can be attributed to their distinctive chemical properties, e.g., the higher electrochemical active surface area and lower redox potential well matching with the redox reaction requirement in the tumor microenvironment. Ag2 S ANDs can be oxidized by intracellular reactive oxygen species (ROS) to release Ag+ , which further stimulates high generation of intracellular ROS. This mutual stimulation damages the mitochondria, induces apoptosis, and leads to the self-destruction of the tumor. Moreover, Ag2 S ANDs do not show observable in vitro and in vivo side effects. These findings provide a promising self-destructive strategy for cancer therapy by utilizing distinctive chemical properties of inorganic nanomaterials, while avoiding complicated external assistance.
Collapse
Affiliation(s)
- Ge Wang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Jing Liu
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Lin Zhu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiaoming Ma
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiaobing Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiaoli Yang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yuming Guo
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Lin Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Jun Lu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| |
Collapse
|
42
|
Xia Y, Feng M, Wang E, Chen L, Wang J, Hou R, Zhao Y. An ent-Kaurane Diterpenoid Isolated from Rabdosia excisa Suppresses Bcr-Abl Protein Expression in Vitro and in Vivo and Induces Apoptosis of CML Cells. Chem Biodivers 2019; 16:e1900443. [PMID: 31468670 DOI: 10.1002/cbdv.201900443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 08/29/2019] [Indexed: 11/09/2022]
Abstract
Chronic myelogenous leukemia (CML) is a disease of the blood stem cells that features the oncoprotein Bcr-Abl. Tyrosine kinase inhibitors (TKIs) are used to treat CML patients, but these have limited efficacy due to the emergence of resistance via genetic mutation. Kamebakaurin is an ent-kaurane diterpenoid that has been isolated from Rabdosia excisa (Maxim.) H.Hara. Herein, we investigate the potential of kamebakaurin as a chemotherapy reagent for the treatment of CML. We conducted in vitro and in vivo biological experiments and found that kamebakaurin potently inhibits cell proliferation, mainly by enhancing cell apoptosis and down-regulating Bcr-Abl protein levels. In addition, kamebakaurin was found to inhibit tumor growth and has no side effects on five internal organs for in vivo experiment. These results suggest that kamebakaurin is a potential anticancer agent and is a key compound for further investigations.
Collapse
Affiliation(s)
- Yan Xia
- College of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, P. R. China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Miao Feng
- College of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, P. R. China.,Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Li Chen
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Jin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,Department of Chemistry and Physics, State University of New York at Stony Brook, New York, 11790, USA
| | - Ruibin Hou
- College of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, P. R. China.,Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Yinping Zhao
- College of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, P. R. China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| |
Collapse
|
43
|
Pardo M, Xu F, Shemesh M, Qiu X, Barak Y, Zhu T, Rudich Y. Nrf2 protects against diverse PM 2.5 components-induced mitochondrial oxidative damage in lung cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:303-313. [PMID: 30878937 DOI: 10.1016/j.scitotenv.2019.01.436] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Nrf2 is an important transcription factor implicated in the oxidative stress response, which has been reported to play an important role in the way by which air pollution particulate matter (PM2.5) induces adverse health effects. This study investigates the mechanism by which Nrf2 exerts its protective effect in PM2.5 induced toxicity in lung cells. Lung cells silenced for Nrf2 (shNrf2) demonstrated diverse susceptibility to various PM extracts; water extracts containing high levels of dissolved metals exhibited higher capacity to generate mitochondrial reactive oxygen species (ROS) and hence increased oxidative stress levels. Organic extracts containing high levels of polycyclic aromatic hydrocarbons (PAHs) increased mortality and reduced ROS production in the silenced cells. shNrf2 cells exhibited a higher basal mitochondrial respiration rate compared to the control cells. Following exposure to water extracts, the mitochondrial respiration increased, which was not observed with the organic extracts. shNrf2 cells exposed to the organic extracts showed lower mitochondrial membrane potential and lower mtDNA copy number. Nrf2 may act as a signaling mediator for the mitochondria function following PM2.5 exposure.
Collapse
Affiliation(s)
- Michal Pardo
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Fanfan Xu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Michal Shemesh
- Cell Observatory of the MICC Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| | - Yoav Barak
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Tong Zhu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
44
|
Gurunanselage Don RAS, Yap MKK. Arctium lappa L. root extract induces cell death via mitochondrial-mediated caspase-dependent apoptosis in Jurkat human leukemic T cells. Biomed Pharmacother 2018; 110:918-929. [PMID: 30572196 DOI: 10.1016/j.biopha.2018.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023] Open
Abstract
Arctium lappa L. is a perennial herb traditionally consumed to improve well-being. It has been widely reported for its antioxidant properties; however, very little is known for its exact mechanisms underlying the anticancer activity. This study aimed to investigate the mechanisms of anticancer action for different A. lappa root extracts. Arctium lappa root was extracted with ethanol, hexane and ethyl acetate, then examined for in vitro anticancer activity against cancerous HeLa, MCF-7, Jurkat cell lines and non-cancerous 3T3 cell lines. Induction of apoptosis was determined by cellular morphological changes, mitochondrial membrane potential (ΔΨm), caspase-3/7 activity and DNA fragmentation. The active compounds present in the most potent root extracts were identified by LC-ESI-MS. Among all the extracts, ethyl acetate root extract has the highest potency with IC50 of 102.2 ± 42.4 μg/ml, followed by ethanolic root extract in Jurkat T cells, at 24 h. None of the extracts were cytotoxic against 3T3 cells, suggesting that the extracts were selective against cancerous cells only. Both ethyl acetate and ethanolic root extracts exhibited significant morphological changes in Jurkat T cells, including the detachment from adjacent cells, appearance of apoptotic bodies and cells shrinkage. The extracts treated cells also displayed an increase in caspase-3/7 activity and alteration in mitochondrial membrane potential. Only ethyl acetate root extract at IC50 induced DNA fragmentation in Jurkat T cells. LC-ESI-MS analysis of the extract revealed the presence of 8 compounds, of which only 6 compounds with various biological activities reported. These findings suggest that the ethyl acetate extract of A. lappa had strong anticancer potential and induced intrinsic apoptosis via loss of ΔΨm and activation of caspase-3/7 This study can provide new insight to the discovery of new promising lead compound in chemopreventive and chemotherapeutic strategies.
Collapse
Affiliation(s)
| | - Michelle Khai Khun Yap
- School of Science, Monash University Malaysia, 47500, Jalan Lagoon Selatan, Bandar Sunway, Malaysia.
| |
Collapse
|
45
|
Han X, Peng B, Xiao BB, Sheng-Li Cao, Yang CR, Wang WZ, Wang FC, Li HY, Yuan XL, Shi R, Liao J, Wang H, Li J, Xu X. Synthesis and evaluation of chalcone analogues containing a 4-oxoquinazolin-2-yl group as potential anti-tumor agents. Eur J Med Chem 2018; 162:586-601. [PMID: 30472605 DOI: 10.1016/j.ejmech.2018.11.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/11/2018] [Accepted: 11/14/2018] [Indexed: 12/27/2022]
Abstract
The chalcone motif can be found in many molecules that contribute to essential biological processes, and many chalcone-containing compounds exhibit potent anti-cancer activity. Here, we synthesized two series of chalcone analogues (3a-s and 6a-s) based on substituting the chalcone B-ring or A-ring with a 4-oxoquinazolin-2-yl group, and then evaluated them for cytotoxic activity in human colorectal HCT-116 and breast cancer MCF-7 cell lines. Compounds 3a-s (in which a 4-oxoquinazolin-2-yl group functioned as the B-ring) were markedly more cytotoxic than compounds 6a-s (in which 4-oxoquinazolin-2-yl group functioned as the A-ring), based on their IC50 values to inhibit proliferation. Compound 3f was found as the most potent among 38 analogues and the mechanism of its cytotoxicity was investigated. Flow cytometry indicated that HCT-116 cells treated with compound 3f resulted in a dose-dependent accumulation of cells in the sub-G1 phase, which is representative of apoptotic cells. Subsequent assays (including Annexin V-FITC/PI, AO-EB, MitoSOX™ Red and JC-1 staining) confirmed that 3f exposure induced apoptosis in HCT-116 cells. Immunoblotting analysis indicated that cellular exposure to 3f increased the cleavage of PARP1 and caspases 3, 7, and 9. Taken together, this novel chalcone analogue has a cytotoxic effect on cultured cancer cell-lines that is likely mediated by inducing apoptosis via the mitochondrial death pathway.
Collapse
Affiliation(s)
- Xue Han
- Department of Chemistry and Beijing Key Laboratory of DNA Damage Response, Capital Normal University, Beijing, 100048, PR China
| | - Bin Peng
- Shenzhen University School of Medicine and Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen, Guangdong, 518060, PR China
| | - Bei-Bei Xiao
- Department of Chemistry and Beijing Key Laboratory of DNA Damage Response, Capital Normal University, Beijing, 100048, PR China
| | - Sheng-Li Cao
- Department of Chemistry and Beijing Key Laboratory of DNA Damage Response, Capital Normal University, Beijing, 100048, PR China.
| | - Chao-Rui Yang
- Department of Chemistry and Beijing Key Laboratory of DNA Damage Response, Capital Normal University, Beijing, 100048, PR China
| | - Wen-Zhu Wang
- Department of Chemistry and Beijing Key Laboratory of DNA Damage Response, Capital Normal University, Beijing, 100048, PR China
| | - Fu-Cheng Wang
- Department of Chemistry and Beijing Key Laboratory of DNA Damage Response, Capital Normal University, Beijing, 100048, PR China
| | - Hong-Yun Li
- Department of Chemistry and Beijing Key Laboratory of DNA Damage Response, Capital Normal University, Beijing, 100048, PR China
| | - Xiao-Li Yuan
- Department of Chemistry and Beijing Key Laboratory of DNA Damage Response, Capital Normal University, Beijing, 100048, PR China
| | - Ruifeng Shi
- Shenzhen University School of Medicine and Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen, Guangdong, 518060, PR China
| | - Ji Liao
- College of Life Science and Beijing Key Laboratory of DNA Damage Response, Capital Normal University, Beijing, 100048, PR China
| | - Hailong Wang
- College of Life Science and Beijing Key Laboratory of DNA Damage Response, Capital Normal University, Beijing, 100048, PR China
| | - Jing Li
- College of Life Science and Beijing Key Laboratory of DNA Damage Response, Capital Normal University, Beijing, 100048, PR China
| | - Xingzhi Xu
- Shenzhen University School of Medicine and Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen, Guangdong, 518060, PR China.
| |
Collapse
|
46
|
Fan YJ, Zhou YX, Zhang LR, Lin QF, Gao PZ, Cai F, Zhu LP, Liu B, Xu JH. C1206, a novel curcumin derivative, potently inhibits Hsp90 and human chronic myeloid leukemia cells in vitro. Acta Pharmacol Sin 2018; 39:649-658. [PMID: 29219946 DOI: 10.1038/aps.2017.160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/16/2017] [Indexed: 12/30/2022]
Abstract
4-(4-Pyridinyl methylene) curcumin (C1206) is a new derivative of curcumin that is more active than curcumin in inhibition of heat shock protein 90 (Hsp90) and antitumor action. In this study we investigated the relationship between C1206-induced inhibition of Hsp90 and its anti-leukemic effects. The fluorescence quenching experiments showed that C1206 seemed to bind the middle dimerization domain of Hsp90. The interaction between C1206 and Hsp90 was driven mainly by electrostatic interaction. In in vitro enzyme activity assay, C1206 dose-dependently inhibited Hsp90 ATPase activity with an IC50 value of 4.17 μmol/L. In both imatinib-sensitive K562 chronic myeloid leukemia cells and imatinib-resistant K562/G01 chronic myeloid leukemia cells, C1206 (0.4-3.2 μmol/L) dose-dependently caused the degradation of Hsp90 client proteins and downstream proteins (AKT, MEK, ERK, C-RAF, P-AKT, P-MEK and P-ERK). Furthermore, C1206 (0.4-3.2 μmol/L) dose-dependently induced apoptosis of K562 and K562/G01 cells through triggering mitochondrial pathway. Consistent with this result, C1206 inhibited the proliferation of K562 and K562/G01 cells with IC50 values of 1.10 and 0.60 μmol/L, respectively. These results suggest that C1206 is a novel Hsp90 inhibitor and a promising therapeutic agent for chronic myeloid leukemia.
Collapse
|
47
|
Srivastava A, Singh S, Rajpurohit CS, Srivastava P, Pandey A, Kumar D, Khanna VK, Pant AB. Secretome of Differentiated PC12 Cells Restores the Monocrotophos-Induced Damages in Human Mesenchymal Stem Cells and SHSY-5Y Cells: Role of Autophagy and Mitochondrial Dynamics. Neuromolecular Med 2018; 20:233-251. [PMID: 29603067 DOI: 10.1007/s12017-018-8487-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/28/2018] [Indexed: 12/16/2022]
Abstract
A perturbed cellular homeostasis is a key factor associated with xenobiotic exposure resulting in various ailments. The local cellular microenvironment enriched with secretory components aids in cell-cell communication that restores this homeostasis. Deciphering the underlying mechanism behind this restorative potential of secretome could serve as a possible solution to many health hazards. We, therefore, explored the protective efficacy of the secretome of differentiated PC12 cells with emphasis on induction of autophagy and mitochondrial biogenesis. Monocrotophos (MCP), a widely used neurotoxic organophosphate, was used as the test compound at sublethal concentration. The conditioned medium (CM) of differentiated PC12 cells comprising of their secretome restored the cell viability, oxidative stress and apoptotic cell death in MCP-challenged human mesenchymal stem cells and SHSY-5Y, a human neuroblastoma cell line. Delving further to identify the underlying mechanism of this restorative effect we observed a marked increase in the expression of autophagy markers LC3, Beclin-1, Atg5 and Atg7. Exposure to autophagy inhibitor, 3-methyladenine, led to a reduced expression of these markers with a concomitant increase in the expression of pro-apoptotic caspase-3. Besides that, the increased mitochondrial fission in MCP-exposed cells was balanced with increased fusion in the presence of CM facilitated by AMPK/SIRT1/PGC-1α signaling cascade. Mitochondrial dysfunctions are strongly associated with autophagy activation and as per our findings, cellular secretome too induces autophagy. Therefore, connecting these three potential apices can be a major breakthrough in repair and rescue of xenobiotic-damaged tissues and cells.
Collapse
Affiliation(s)
- A Srivastava
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), MG Marg, Lucknow, Uttar Pradesh, 226001, India
| | - S Singh
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), MG Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, India
| | - C S Rajpurohit
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), MG Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, India
| | - P Srivastava
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), MG Marg, Lucknow, Uttar Pradesh, 226001, India
| | - A Pandey
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), MG Marg, Lucknow, Uttar Pradesh, 226001, India
| | - D Kumar
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), MG Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, India
| | - V K Khanna
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), MG Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, India
| | - A B Pant
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), MG Marg, Lucknow, Uttar Pradesh, 226001, India.
- Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, India.
| |
Collapse
|
48
|
Zeng F, Ju RJ, Liu L, Xie HJ, Mu LM, Lu WL. Efficacy in Treating Lung Metastasis of Invasive Breast Cancer with Functional Vincristine Plus Dasatinib Liposomes. Pharmacology 2017; 101:43-53. [DOI: 10.1159/000480737] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/25/2017] [Indexed: 11/19/2022]
Abstract
Background: The metastasis of breast cancer is the leading cause of death, while lung metastasis is a major clinical phenomenon in patients with invasive breast cancer. The current treatment option comprising surgery, radiation, and standard chemotherapy cannot achieve a satisfactory effect on the treatment of lung metastasis of breast cancer. In this study, we report the potential of preventing lung metastasis of invasive breast cancer using the newly developed functional vincristine plus dasatinib liposomes. Methods: The investigations were performed on invasive breast cancer MDA-MB-231 cells in vitro and in lung metastatic model of invasive breast cancer MDA-MB-231 cells in nude mice. Results: The functional drug liposomes were able to induce cell cycle arrest at G2/M phase, induce apoptosis, inhibit adhesion, migration, and invasion of breast cancer cells in vitro, and prevent lung metastasis of breast cancer in nude mice. Conclusion: These findings indicate a potential clinical use of functional vincristine plus dasatinib liposomes for treating metastatic breast cancer.
Collapse
|
49
|
Cossarizza A, Chang HD, Radbruch A, Akdis M, Andrä I, Annunziato F, Bacher P, Barnaba V, Battistini L, Bauer WM, Baumgart S, Becher B, Beisker W, Berek C, Blanco A, Borsellino G, Boulais PE, Brinkman RR, Büscher M, Busch DH, Bushnell TP, Cao X, Cavani A, Chattopadhyay PK, Cheng Q, Chow S, Clerici M, Cooke A, Cosma A, Cosmi L, Cumano A, Dang VD, Davies D, De Biasi S, Del Zotto G, Della Bella S, Dellabona P, Deniz G, Dessing M, Diefenbach A, Di Santo J, Dieli F, Dolf A, Donnenberg VS, Dörner T, Ehrhardt GRA, Endl E, Engel P, Engelhardt B, Esser C, Everts B, Dreher A, Falk CS, Fehniger TA, Filby A, Fillatreau S, Follo M, Förster I, Foster J, Foulds GA, Frenette PS, Galbraith D, Garbi N, García-Godoy MD, Geginat J, Ghoreschi K, Gibellini L, Goettlinger C, Goodyear CS, Gori A, Grogan J, Gross M, Grützkau A, Grummitt D, Hahn J, Hammer Q, Hauser AE, Haviland DL, Hedley D, Herrera G, Herrmann M, Hiepe F, Holland T, Hombrink P, Houston JP, Hoyer BF, Huang B, Hunter CA, Iannone A, Jäck HM, Jávega B, Jonjic S, Juelke K, Jung S, Kaiser T, Kalina T, Keller B, Khan S, Kienhöfer D, Kroneis T, et alCossarizza A, Chang HD, Radbruch A, Akdis M, Andrä I, Annunziato F, Bacher P, Barnaba V, Battistini L, Bauer WM, Baumgart S, Becher B, Beisker W, Berek C, Blanco A, Borsellino G, Boulais PE, Brinkman RR, Büscher M, Busch DH, Bushnell TP, Cao X, Cavani A, Chattopadhyay PK, Cheng Q, Chow S, Clerici M, Cooke A, Cosma A, Cosmi L, Cumano A, Dang VD, Davies D, De Biasi S, Del Zotto G, Della Bella S, Dellabona P, Deniz G, Dessing M, Diefenbach A, Di Santo J, Dieli F, Dolf A, Donnenberg VS, Dörner T, Ehrhardt GRA, Endl E, Engel P, Engelhardt B, Esser C, Everts B, Dreher A, Falk CS, Fehniger TA, Filby A, Fillatreau S, Follo M, Förster I, Foster J, Foulds GA, Frenette PS, Galbraith D, Garbi N, García-Godoy MD, Geginat J, Ghoreschi K, Gibellini L, Goettlinger C, Goodyear CS, Gori A, Grogan J, Gross M, Grützkau A, Grummitt D, Hahn J, Hammer Q, Hauser AE, Haviland DL, Hedley D, Herrera G, Herrmann M, Hiepe F, Holland T, Hombrink P, Houston JP, Hoyer BF, Huang B, Hunter CA, Iannone A, Jäck HM, Jávega B, Jonjic S, Juelke K, Jung S, Kaiser T, Kalina T, Keller B, Khan S, Kienhöfer D, Kroneis T, Kunkel D, Kurts C, Kvistborg P, Lannigan J, Lantz O, Larbi A, LeibundGut-Landmann S, Leipold MD, Levings MK, Litwin V, Liu Y, Lohoff M, Lombardi G, Lopez L, Lovett-Racke A, Lubberts E, Ludewig B, Lugli E, Maecker HT, Martrus G, Matarese G, Maueröder C, McGrath M, McInnes I, Mei HE, Melchers F, Melzer S, Mielenz D, Mills K, Mirrer D, Mjösberg J, Moore J, Moran B, Moretta A, Moretta L, Mosmann TR, Müller S, Müller W, Münz C, Multhoff G, Munoz LE, Murphy KM, Nakayama T, Nasi M, Neudörfl C, Nolan J, Nourshargh S, O'Connor JE, Ouyang W, Oxenius A, Palankar R, Panse I, Peterson P, Peth C, Petriz J, Philips D, Pickl W, Piconese S, Pinti M, Pockley AG, Podolska MJ, Pucillo C, Quataert SA, Radstake TRDJ, Rajwa B, Rebhahn JA, Recktenwald D, Remmerswaal EBM, Rezvani K, Rico LG, Robinson JP, Romagnani C, Rubartelli A, Ruckert B, Ruland J, Sakaguchi S, Sala-de-Oyanguren F, Samstag Y, Sanderson S, Sawitzki B, Scheffold A, Schiemann M, Schildberg F, Schimisky E, Schmid SA, Schmitt S, Schober K, Schüler T, Schulz AR, Schumacher T, Scotta C, Shankey TV, Shemer A, Simon AK, Spidlen J, Stall AM, Stark R, Stehle C, Stein M, Steinmetz T, Stockinger H, Takahama Y, Tarnok A, Tian Z, Toldi G, Tornack J, Traggiai E, Trotter J, Ulrich H, van der Braber M, van Lier RAW, Veldhoen M, Vento-Asturias S, Vieira P, Voehringer D, Volk HD, von Volkmann K, Waisman A, Walker R, Ward MD, Warnatz K, Warth S, Watson JV, Watzl C, Wegener L, Wiedemann A, Wienands J, Willimsky G, Wing J, Wurst P, Yu L, Yue A, Zhang Q, Zhao Y, Ziegler S, Zimmermann J. Guidelines for the use of flow cytometry and cell sorting in immunological studies. Eur J Immunol 2017; 47:1584-1797. [PMID: 29023707 PMCID: PMC9165548 DOI: 10.1002/eji.201646632] [Show More Authors] [Citation(s) in RCA: 407] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, Univ. of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Hyun-Dong Chang
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Immanuel Andrä
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | | | | | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Via Regina Elena 324, 00161 Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Luca Battistini
- Neuroimmunology and Flow Cytometry Units, Santa Lucia Foundation, Rome, Italy
| | - Wolfgang M Bauer
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sabine Baumgart
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Burkhard Becher
- University of Zurich, Institute of Experimental Immunology, Zürich, Switzerland
| | - Wolfgang Beisker
- Flow Cytometry Laboratory, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental Health
| | - Claudia Berek
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Alfonso Blanco
- Flow Cytometry Core Technologies, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Giovanna Borsellino
- Neuroimmunology and Flow Cytometry Units, Santa Lucia Foundation, Rome, Italy
| | - Philip E Boulais
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- The Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, New York, USA
| | - Ryan R Brinkman
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Martin Büscher
- Biopyhsics, R&D Engineering, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Dirk H Busch
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- DZIF - National Centre for Infection Research, Munich, Germany
- Focus Group ''Clinical Cell Processing and Purification", Institute for Advanced Study, Technische Universität München, Munich, Germany
| | - Timothy P Bushnell
- Department of Pediatrics and Shared Resource Laboratories, University of Rochester Medical Center, Rochester NY, United States of America
| | - Xuetao Cao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, China
- Department of Immunology & Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | | | | | - Qingyu Cheng
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Medizinische Immunolologie Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sue Chow
- Divsion of Medical Oncology and Hematology, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Mario Clerici
- University of Milano and Don C Gnocchi Foundation IRCCS, Milano, Italy
| | - Anne Cooke
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Antonio Cosma
- CEA - Université Paris Sud - INSERM U, Immunology of viral infections and autoimmune diseases, France
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italia
| | - Ana Cumano
- Lymphopoiesis Unit, Immunology Department Pasteur Institute, Paris, France
| | - Van Duc Dang
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Derek Davies
- Flow Cytometry Facility, The Francis Crick Institute, London, United Kingdom
| | - Sara De Biasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Univ. of Modena and Reggio Emilia, Modena, Italy
| | | | - Silvia Della Bella
- University of Milan, Department of Medical Biotechnologies and Translational Medicine
- Humanitas Clinical and Research Center, Lab of Clinical and Experimental Immunology, Rozzano, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, Head, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - Günnur Deniz
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul, Turkey
| | | | | | | | - Francesco Dieli
- University of Palermo, Department of Biopathology, Palermo, Italy
| | - Andreas Dolf
- Institute of Experimental Immunology, University Bonn, Bonn, Germany
| | - Vera S Donnenberg
- Department of Cardiothoracic Surgery, School of Medicine, University of Pittsburgh, PA
| | - Thomas Dörner
- Department of Medicine/Rheumatology and Clinical Immunology, Charite Universitätsmedizin Berlin, Germany
| | | | - Elmar Endl
- Department of Molecular Medicine and Experimental Immunology, (Core Facility Flow Cytometry) University of Bonn, Germany
| | - Pablo Engel
- Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain
| | - Britta Engelhardt
- Professor for Immunobiology, Director, Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Charlotte Esser
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Bart Everts
- Leiden University Medical Center, Department of Parasitology, Leiden, The Netherlands
| | - Anita Dreher
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Christine S Falk
- Institute of Transplant Immunology, IFB-Tx, MHH Hannover Medical School, Hannover, Germany
- German Center for Infectious diseases (DZIF), TTU-IICH, Hannover, Germany
| | - Todd A Fehniger
- Divisions of Hematology & Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO
| | - Andrew Filby
- The Flow Cytometry Core Facility, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Simon Fillatreau
- Institut Necker-Enfants Malades (INEM), INSERM U-CNRS UMR, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants Malades, Paris, France
| | - Marie Follo
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Irmgard Förster
- Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | | | - Gemma A Foulds
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - Paul S Frenette
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - David Galbraith
- University of Arizona, Bio Institute, School of Plant Sciences and Arizona Cancer Center, Tucson, Arizona, USA
| | - Natalio Garbi
- Institute of Experimental Immunology, University Bonn, Bonn, Germany
- Department of Molecular Immunology, Institute of Experimental Immunology, Bonn, Germany
| | | | - Jens Geginat
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Kamran Ghoreschi
- Flow Cytometry Core Facility, Department of Dermatology, University Medical Center, Eberhard Karls University Tübingen, Germany
| | - Lara Gibellini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Univ. of Modena and Reggio Emilia, Modena, Italy
| | | | - Carl S Goodyear
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow
| | - Andrea Gori
- Clinic of Infectious Diseases, "San Gerardo" Hospital - ASST Monza, University Milano-Bicocca, Monza, Italy
| | - Jane Grogan
- Genentech, Department of Cancer Immunology, South San Francisco, California, USA
| | - Mor Gross
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Andreas Grützkau
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | | | - Jonas Hahn
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Quirin Hammer
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Anja E Hauser
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Immundynamics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - David Hedley
- Divsion of Medical Oncology and Hematology, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Guadalupe Herrera
- Cytometry Service, Incliva Foundation. Clinic Hospital and Faculty of Medicine, The University of Valencia. Av. Blasco Ibáñez, Valencia, Spain
| | - Martin Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Falk Hiepe
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Medizinische Immunolologie Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tristan Holland
- Department of Molecular Immunology, Institute of Experimental Immunology, Bonn, Germany
| | - Pleun Hombrink
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Jessica P Houston
- Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Bimba F Hoyer
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Medizinische Immunolologie Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Bo Huang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Immunology, Institute of Basic Medical Sciences & State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anna Iannone
- Department of Diagnostic Medicine, Clinical and Public Health, Univ. of Modena and Reggio Emilia, Modena, Italy
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Internal Medicine III, Nikolaus-Fiebiger-Center of MolecularMedicine, University Hospital Erlangen, Erlangen, Germany
| | - Beatriz Jávega
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, The University of Valencia. Av. Blasco Ibáñez, Valencia, Spain
| | - Stipan Jonjic
- Faculty of Medicine, Center for Proteomics, University of Rijeka, Rijeka, Croatia
- Department for Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Kerstin Juelke
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Toralf Kaiser
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Tomas Kalina
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Baerbel Keller
- Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Srijit Khan
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Deborah Kienhöfer
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Thomas Kroneis
- Medical University of Graz, Institute of Cell Biology, Histology & Embryology, Graz, Austria
| | - Désirée Kunkel
- BCRT Flow Cytometry Lab, Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin
| | - Christian Kurts
- Institute of Experimental Immunology, University Bonn, Bonn, Germany
| | - Pia Kvistborg
- Division of immunology, the Netherlands Cancer Institute, Amsterdam
| | - Joanne Lannigan
- University of Virginia School of Medicine, Flow Cytometry Shared Resource, Charlottesville, VA, USA
| | - Olivier Lantz
- INSERM U932, Institut Curie, Paris 75005, France
- Laboratoire d'immunologie clinique, Institut Curie, Paris 75005, France
- Centre d'investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Institut Curie, Paris 75005, France
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Principal Investigator, Biology of Aging Program
- Director Flow Cytomerty Platform, Immunomonitoring Platform, Agency for Science Technology and Research (A*STAR), Singapore
- Department of Medicine, University of Sherbrooke, Qc, Canada
- Faculty of Sciences, ElManar University, Tunis, Tunisia
| | | | - Michael D Leipold
- The Human Immune Monitoring Center (HIMC), Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, CA, USA
| | - Megan K Levings
- Department of Surgery, University of British Columbia & British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | | | - Yanling Liu
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Michael Lohoff
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg 35043, Germany
| | - Giovanna Lombardi
- MRC Centre for Transplantation, King's College London, Guy's Hospital, SE1 9RT London, UK
| | | | - Amy Lovett-Racke
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Erik Lubberts
- Erasmus MC, University Medical Center, Department of Rheumatology, Rotterdam, The Netherlands
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Holden T Maecker
- The Human Immune Monitoring Center (HIMC), Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, CA, USA
| | - Glòria Martrus
- Department of Virus Immunology, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Giuseppe Matarese
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Napoli, Italy and Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy
| | - Christian Maueröder
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Mairi McGrath
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Iain McInnes
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow
| | - Henrik E Mei
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Fritz Melchers
- Senior Group on Lymphocyte Development, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Susanne Melzer
- Clinical Trial Center Leipzig, University Leipzig, Leipzig, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Kingston Mills
- Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin, Ireland
| | - David Mirrer
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute Stockholm, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | - Jonni Moore
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Barry Moran
- Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin, Ireland
| | - Alessandro Moretta
- Department of Experimental Medicine, University of Genova, Genova, Italy
- Centro di Eccellenza per la Ricerca Biomedica-CEBR, Genova, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesu Children's Hospital, Rome, Italy
| | - Tim R Mosmann
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Susann Müller
- Centre for Environmental Research - UFZ, Department Environemntal Microbiology, Leipzig, Germany
| | - Werner Müller
- Bill Ford Chair in Cellular Immunology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Christian Münz
- University of Zurich, Institute of Experimental Immunology, Zürich, Switzerland
| | - Gabriele Multhoff
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München (TUM), Munich, Germany
- Institute for Innovative Radiotherapy (iRT), Experimental Immune Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Luis Enrique Munoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Kenneth M Murphy
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Howard Hughes Medical Institute, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Univ. of Modena and Reggio Emilia, Modena, Italy
| | - Christine Neudörfl
- Institute of Transplant Immunology, IFB-Tx, MHH Hannover Medical School, Hannover, Germany
| | - John Nolan
- The Scintillon Institute, Nancy Ridge Drive, San Diego, CA, USA
| | - Sussan Nourshargh
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - José-Enrique O'Connor
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, The University of Valencia. Av. Blasco Ibáñez, Valencia, Spain
| | - Wenjun Ouyang
- Department of Inflammation and Oncology, Amgen Inc., South San Francisco, CA, USA
| | | | - Raghav Palankar
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17489, Greifswald, Germany
| | - Isabel Panse
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Christian Peth
- Biopyhsics, R&D Engineering, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Jordi Petriz
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Daisy Philips
- Division of immunology, the Netherlands Cancer Institute, Amsterdam
| | - Winfried Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Silvia Piconese
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Via Regina Elena 324, 00161 Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Marcello Pinti
- Department of Life Sciences, Univ. of Modena and Reggio Emilia, Modena, Italy
| | - A Graham Pockley
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
- Chromocyte Limited, Electric Works, Sheffield, UK
| | - Malgorzata Justyna Podolska
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Carlo Pucillo
- Univeristy of Udine - Department of Medicine, Lab of Immunology, Udine, Italy
| | - Sally A Quataert
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Timothy R D J Radstake
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands; Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bartek Rajwa
- Bindley Biosciences Center, Purdue University, West Lafayette, In, USA
| | - Jonathan A Rebhahn
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Ester B M Remmerswaal
- Department of Experimental Immunology and Renal Transplant Unit, Division of Internal Medicine, Academic Medical Centre, The Netherlands
| | - Katy Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Laura G Rico
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - J Paul Robinson
- The SVM Professor of Cytomics & Professor of Biomedical Engineering, Purdue University Cytometry Laboratories, Purdue University, West Lafayette, IN, USA
| | - Chiara Romagnani
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | | | - Beate Ruckert
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Jürgen Ruland
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Francisco Sala-de-Oyanguren
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, The University of Valencia. Av. Blasco Ibáñez, Valencia, Spain
| | - Yvonne Samstag
- Institute of Immunology, Section Molecular Immunology, Ruprecht-Karls-University, D-69120, Heidelberg, Germany
| | - Sharon Sanderson
- Translational Immunology Laboratory, NIHR BRC, University of Oxford, Kennedy Institute of Rheumatology,Oxford, United Kingdom
| | - Birgit Sawitzki
- Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin
- Berlin Institute of Health, Institute of Medical Immunology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Alexander Scheffold
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Germany
| | - Matthias Schiemann
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Frank Schildberg
- Harvard Medical School, Department of Microbiology and Immunobiology, Boston, MA, USA
| | | | - Stephan A Schmid
- Klinik und Poliklinik für Innere Medizin I, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Steffen Schmitt
- Imaging and Cytometry Core Facility, Flow Cytometry Unit, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Kilian Schober
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Axel Ronald Schulz
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Ton Schumacher
- Division of immunology, the Netherlands Cancer Institute, Amsterdam
| | - Cristiano Scotta
- MRC Centre for Transplantation, King's College London, Guy's Hospital, SE1 9RT London, UK
| | | | - Anat Shemer
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Josef Spidlen
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada
| | | | - Regina Stark
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Christina Stehle
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Merle Stein
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Tobit Steinmetz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Yousuke Takahama
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Attila Tarnok
- Departement for Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Institute for Medical Informatics, IMISE, Leipzig, Germany
| | - ZhiGang Tian
- School of Life Sciences and Medical Center, Institute of Immunology, Key Laboratory of Innate Immunity and Chronic Disease of Chinese Academy of Science, University of Science and Technology of China, Hefei, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Gergely Toldi
- University of Birmingham, Institute of Immunology and Immunotherapy, Birmingham, UK
| | - Julia Tornack
- Senior Group on Lymphocyte Development, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | | | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo
| | | | - René A W van Lier
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | | | | | - Paulo Vieira
- Unité Lymphopoiese, Institut Pasteur, Paris, France
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen, Wasserturmstr. 3/5, 91054 Erlangen, Germany
| | | | | | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | | | | | - Klaus Warnatz
- Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sarah Warth
- BCRT Flow Cytometry Lab, Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin
| | | | - Carsten Watzl
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund, IfADo, Department of Immunology, Dortmund, Germany
| | - Leonie Wegener
- Biopyhsics, R&D Engineering, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Annika Wiedemann
- Department of Medicine/Rheumatology and Clinical Immunology, Charite Universitätsmedizin Berlin, Germany
| | - Jürgen Wienands
- Universitätsmedizin Göttingen, Georg-August-Universität, Abt. Zelluläre und Molekulare Immunologie, Humboldtallee 34, 37073 Göttingen, Germany
| | - Gerald Willimsky
- Cooperation Unit for Experimental and Translational Cancer Immunology, Institute of Immunology (Charité - Universitätsmedizin Berlin) and German Cancer Research Center (DKFZ), Berlin, Germany
| | - James Wing
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Peter Wurst
- Institute of Experimental Immunology, University Bonn, Bonn, Germany
| | | | - Alice Yue
- School of Computing Science, Simon Fraser University, Burnaby, Canada
| | | | - Yi Zhao
- Department of Rheumatology & Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Susanne Ziegler
- Department of Virus Immunology, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Jakob Zimmermann
- Maurice Müller Laboratories (DKF), Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Murtenstrasse, Bern
| |
Collapse
|
50
|
Kankala RK, Liu CG, Chen AZ, Wang SB, Xu PY, Mende LK, Liu CL, Lee CH, Hu YF. Overcoming Multidrug Resistance through the Synergistic Effects of Hierarchical pH-Sensitive, ROS-Generating Nanoreactors. ACS Biomater Sci Eng 2017; 3:2431-2442. [PMID: 33445301 DOI: 10.1021/acsbiomaterials.7b00569] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ranjith Kumar Kankala
- Institute
of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, P. R. China
| | - Chen-Guang Liu
- Institute
of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Ai-Zheng Chen
- Institute
of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, P. R. China
| | - Shi-Bin Wang
- Institute
of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, P. R. China
| | - Pei-Yao Xu
- Institute
of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Lokesh Kumar Mende
- Department
of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan
| | - Chen-Lun Liu
- Department
of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan
| | - Chia-Hung Lee
- Department
of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan
| | - Yu-Fang Hu
- Pharmaceutical
Drug Delivery Division, TTY Biopharm Company Limited, Taipei 11469, Taiwan
| |
Collapse
|