1
|
Shioi G, Watanabe TM, Kaneshiro J, Azuma Y, Onami S. Trans-scale live-imaging of an E5.5 mouse embryo using incubator-type biaxial light-sheet microscopy. Life Sci Alliance 2025; 8:e202402839. [PMID: 39814551 PMCID: PMC11735545 DOI: 10.26508/lsa.202402839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025] Open
Abstract
During mouse embryonic development, the embryonic day (E) 5.5 stage represents a crucial period for the formation of the primitive body axis, where the symmetry breaking of cellular states influences the multicellular system. Elucidating the detailed mechanisms of this process necessitates a trans-layered dynamic observation of the embryo and all internal cells. In this report, we present our success in achieving in-toto single-cell observation in a whole hemisphere of an E5.5 embryo for 12 h, using a newly developed incubator-type biaxial light-sheet microscope. To achieve the success, we optimized our microscope system, including an incubator for culture stability, and refining the observation protocol to reduce phototoxicity. Our key discovery is that the scan speed during light-sheet formation plays a critical role in reducing phototoxicity, rather than the irradiation intensity or the interval time between frames. This innovative system not only enabled in-toto single-cell tracking but also led to the discovery of the abrupt shrinking of embryos whose contractile center was located at the extraembryonic ectoderm during monotonous growth up to the E6.5 stage.
Collapse
Affiliation(s)
- Go Shioi
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Tomonobu M Watanabe
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Junichi Kaneshiro
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Yusuke Azuma
- Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Shuichi Onami
- Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| |
Collapse
|
2
|
Savolainen A, Kapiainen E, Ronkainen VP, Izzi V, Matzuk MM, Monsivais D, Prunskaite-Hyyryläinen R. 3DMOUSEneST: a volumetric label-free imaging method evaluating embryo-uterine interaction and decidualization efficacy. Development 2024; 151:dev202938. [PMID: 39023143 PMCID: PMC11385321 DOI: 10.1242/dev.202938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Effective interplay between the uterus and the embryo is essential for pregnancy establishment; however, convenient methods to screen embryo implantation success and maternal uterine response in experimental mouse models are currently lacking. Here, we report 3DMOUSEneST, a groundbreaking method for analyzing mouse implantation sites based on label-free higher harmonic generation microscopy, providing unprecedented insights into the embryo-uterine dynamics during early pregnancy. The 3DMOUSEneST method incorporates second-harmonic generation microscopy to image the three-dimensional structure formed by decidual fibrillar collagen, named 'decidual nest', and third-harmonic generation microscopy to evaluate early conceptus (defined as the embryo and extra-embryonic tissues) growth. We demonstrate that decidual nest volume is a measurable indicator of decidualization efficacy and correlates with the probability of early pregnancy progression based on a logistic regression analysis using Smad1/5 and Smad2/3 conditional knockout mice with known implantation defects. 3DMOUSEneST has great potential to become a principal method for studying decidual fibrillar collagen and characterizing mouse models associated with early embryonic lethality and fertility issues.
Collapse
Affiliation(s)
- Audrey Savolainen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| | - Emmi Kapiainen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| | | | - Valerio Izzi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| | - Martin M Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diana Monsivais
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
3
|
Smith JJ, Kenny IW, Wolff C, Cray R, Kumar A, Sherwood DR, Matus DQ. A light sheet fluorescence microscopy protocol for Caenorhabditis elegans larvae and adults. Front Cell Dev Biol 2022; 10:1012820. [PMID: 36274853 PMCID: PMC9586288 DOI: 10.3389/fcell.2022.1012820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/20/2022] [Indexed: 01/07/2023] Open
Abstract
Light sheet fluorescence microscopy (LSFM) has become a method of choice for live imaging because of its fast acquisition and reduced photobleaching and phototoxicity. Despite the strengths and growing availability of LSFM systems, no generalized LSFM mounting protocol has been adapted for live imaging of post-embryonic stages of C. elegans. A major challenge has been to develop methods to limit animal movement using a mounting media that matches the refractive index of the optical system. Here, we describe a simple mounting and immobilization protocol using a refractive-index matched UV-curable hydrogel within fluorinated ethylene propylene (FEP) tubes for efficient and reliable imaging of larval and adult C. elegans stages.
Collapse
Affiliation(s)
- Jayson J. Smith
- Department of Neurobiology, University of Chicago, Chicago, IL, United States,University of Chicago Neuroscience Institute, Chicago, IL, United States,Embryology: Modern Concepts and Techniques, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Isabel W. Kenny
- Embryology: Modern Concepts and Techniques, Marine Biological Laboratory, Woods Hole, MA, United States,Department of Biology, Duke University, Durham, NC, United States
| | - Carsten Wolff
- Embryology: Modern Concepts and Techniques, Marine Biological Laboratory, Woods Hole, MA, United States,Marine Biological Laboratory, Woods Hole, MA, United States
| | - Rachel Cray
- Marine Biological Laboratory, Woods Hole, MA, United States
| | - Abhishek Kumar
- Embryology: Modern Concepts and Techniques, Marine Biological Laboratory, Woods Hole, MA, United States,Marine Biological Laboratory, Woods Hole, MA, United States
| | - David R. Sherwood
- Embryology: Modern Concepts and Techniques, Marine Biological Laboratory, Woods Hole, MA, United States,Department of Biology, Duke University, Durham, NC, United States,*Correspondence: David R. Sherwood, ; David Q. Matus,
| | - David Q. Matus
- Embryology: Modern Concepts and Techniques, Marine Biological Laboratory, Woods Hole, MA, United States,Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States,*Correspondence: David R. Sherwood, ; David Q. Matus,
| |
Collapse
|
4
|
Dyer L, Parker A, Paphiti K, Sanderson J. Lightsheet Microscopy. Curr Protoc 2022; 2:e448. [PMID: 35838628 DOI: 10.1002/cpz1.448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this paper, we review lightsheet (selective plane illumination) microscopy for mouse developmental biologists. There are different means of forming the illumination sheet, and we discuss these. We explain how we introduced the lightsheet microscope economically into our core facility and present our results on fixed and living samples. We also describe methods of clearing fixed samples for three-dimensional imaging and discuss the various means of preparing samples with particular reference to mouse cilia, adipose spheroids, and cochleae. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Laura Dyer
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Andrew Parker
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Keanu Paphiti
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Jeremy Sanderson
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| |
Collapse
|
5
|
Li X, Yue Y, Zhang Y, Liao Y, Wang Q, Bian Y, Na J, He A. Continuous live imaging reveals a subtle pathological alteration with cell behaviors in congenital heart malformation. FUNDAMENTAL RESEARCH 2022; 2:14-22. [PMID: 38933910 PMCID: PMC11197809 DOI: 10.1016/j.fmre.2021.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
To form fully functional four-chambered structure, mammalian heart development undergoes a transient finger-shaped trabeculae, crucial for efficient contraction and exchange for gas and nutrient. Although its developmental origin and direct relevance to congenital heart disease has been studied extensively, the time-resolved cellular mechanism underlying hypotrabeculation remains elusive. Here, we employed in toto live imaging and reconstructed the holistic cell lineages and cellular behavior landscape of control and hypotrabeculed hearts of mouse embryos from E9.5 for up to 24 h. Compared to control, hypotrabeculation in ErbB2 mutants arose mainly through dual mechanisms: both reduced proliferation of trabecular cardiomyocytes from early cell fate segregation and markedly impaired oriented cell division and migration. Further examination of mosaic mutant hearts confirmed alterations in cellular behaviors in a cell autonomous manner. Thus, our work offers a framework for continuous live imaging and digital cell lineage analysis to better understand subtle pathological alterations in congenital heart disease.
Collapse
Affiliation(s)
- Xin Li
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yanzhu Yue
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Youdong Zhang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuanhui Liao
- School of Software and Microelectronics, Peking University, Beijing 100871, China
| | - Qianhao Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yunkun Bian
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jie Na
- Centre for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Aibin He
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Trophectoderm cell failure leads to peri-implantation lethality in Trpm7-deficient mouse embryos. Cell Rep 2021; 37:109851. [PMID: 34686339 DOI: 10.1016/j.celrep.2021.109851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/28/2021] [Accepted: 09/28/2021] [Indexed: 11/24/2022] Open
Abstract
Early embryogenesis depends on proper control of intracellular homeostasis of ions including Ca2+ and Mg2+. Deletion of the Ca2+ and Mg2+ conducting the TRPM7 channel is embryonically lethal in mice but leaves compaction, blastomere polarization, blastocoel formation, and correct specification of the lineages of the trophectoderm and inner cell mass unaltered despite that free cytoplasmic Ca2+ and Mg2+ is reduced at the two-cell stage. Although Trpm7-/- embryos are able to hatch from the zona pellucida, no expansion of Trpm7-/- trophoblast cells can be observed, and Trpm7-/- embryos are not identifiable in utero at E6.5 or later. Given the proliferation and adhesion defect of Trpm7-/- trophoblast stem cells and the ability of Trpm7-/- ESCs to develop to embryos in tetraploid embryo complementation assays, we postulate a critical role of TRPM7 in trophectoderm cells and their failure during implantation as the most likely explanation of the developmental arrest of Trpm7-deficient mouse embryos.
Collapse
|
7
|
Bostock MP, Prasad AR, Chaouni R, Yuen AC, Sousa-Nunes R, Amoyel M, Fernandes VM. An Immobilization Technique for Long-Term Time-Lapse Imaging of Explanted Drosophila Tissues. Front Cell Dev Biol 2020; 8:590094. [PMID: 33117817 PMCID: PMC7576353 DOI: 10.3389/fcell.2020.590094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/15/2020] [Indexed: 01/19/2023] Open
Abstract
Time-lapse imaging is an essential tool to study dynamic biological processes that cannot be discerned from fixed samples alone. However, imaging cell- and tissue-level processes in intact animals poses numerous challenges if the organism is opaque and/or motile. Explant cultures of intact tissues circumvent some of these challenges, but sample drift remains a considerable obstacle. We employed a simple yet effective technique to immobilize tissues in medium-bathed agarose. We applied this technique to study multiple Drosophila tissues from first-instar larvae to adult stages in various orientations and with no evidence of anisotropic pressure or stress damage. Using this method, we were able to image fine features for up to 18 h and make novel observations. Specifically, we report that fibers characteristic of quiescent neuroblasts are inherited by their basal daughters during reactivation; that the lamina in the developing visual system is assembled roughly 2-3 columns at a time; that lamina glia positions are dynamic during development; and that the nuclear envelopes of adult testis cyst stem cells do not break down completely during mitosis. In all, we demonstrate that our protocol is well-suited for tissue immobilization and long-term live imaging, enabling new insights into tissue and cell dynamics in Drosophila.
Collapse
Affiliation(s)
- Matthew P. Bostock
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Anadika R. Prasad
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Rita Chaouni
- Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Alice C. Yuen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Rita Sousa-Nunes
- Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Marc Amoyel
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Vilaiwan M. Fernandes
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
8
|
Bordes J, Incerti S, Mora-Ramirez E, Tranel J, Rossi C, Bezombes C, Bordenave J, Bardiès M, Brown R, Bordage MC. Monte Carlo dosimetry of a realistic multicellular model of follicular lymphoma in a context of radioimmunotherapy. Med Phys 2020; 47:5222-5234. [PMID: 32623743 DOI: 10.1002/mp.14370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/20/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Small-scale dosimetry studies generally consider an artificial environment where the tumors are spherical and the radionuclides are homogeneously biodistributed. However, tumor shapes are irregular and radiopharmaceutical biodistributions are heterogeneous, impacting the energy deposition in targeted radionuclide therapy. To bring realism, we developed a dosimetric methodology based on a three-dimensional in vitro model of follicular lymphoma incubated with rituximab, an anti-CD20 monoclonal antibody used in the treatment of non-Hodgkin lymphomas, which might be combined with a radionuclide. The effects of the realistic geometry and biodistribution on the absorbed dose were highlighted by comparison with literature data. Additionally, to illustrate the possibilities of this methodology, the effect of different radionuclides on the absorbed dose distribution delivered to the in vitro tumor were compared. METHODS The starting point was a model named multicellular aggregates of lymphoma cells (MALC). Three MALCs of different dimensions and their rituximab biodistribution were considered. Geometry, antibody location and concentration were extracted from selective plane illumination microscopy. Assuming antibody radiolabeling with Auger electron (125 I and 111 In) and β- particle emitters (177 Lu, 131 I and 90 Y), we simulated energy deposition in MALCs using two Monte Carlo codes: Geant4-DNA with "CPA100" physics models for Auger electron emitters and Geant4 with "Livermore" physics models for β- particle emitters. RESULTS MALCs had ellipsoid-like shapes with major radii, r, of ~0.25, ~0.5 and ~1.3 mm. Rituximab was concentrated in the periphery of the MALCs. The absorbed doses delivered by 177 Lu, 131 I and 90 Y in MALCs were compared with literature data for spheres with two types of homogeneous biodistributions (on the surface or throughout the volume). Compared to the MALCs, the mean absorbed doses delivered in spheres with surface biodistributions were between 18% and 38% lower, while with volume biodistribution they were between 15% and 29% higher. Regarding the radionuclides comparison, the relationship between MALC dimensions, rituximab biodistribution and energy released per decay impacted the absorbed doses. Despite releasing less energy, 125 I delivered a greater absorbed dose per decay than 111 In in the r ~ 0.25 mm MALC (6.78·10-2 vs 6.26·10-2 µGy·Bq-1 ·s-1 ). Similarly, the absorbed doses per decay in the r ~ 0.5 mm MALC for 177 Lu (2.41·10-2 µGy·Bq-1 ·s-1 ) and 131 I (2.46·10-2 µGy·Bq-1 ·s-1 ) are higher than for 90 Y (1.98·10-2 µGy·Bq-1 ·s-1 ). Furthermore, radionuclides releasing more energy per decay delivered absorbed dose more uniformly through the MALCs. Finally, when considering the radiopharmaceutical effective half-life, due to the biological half-life of rituximab being best matched by the physical half-life of 177 Lu and 131 I compared to 90 Y, the first two radionuclides delivered higher absorbed doses. CONCLUSION In the simulated configurations, β- emitters delivered higher and more uniform absorbed dose than Auger electron emitters. When considering radiopharmaceutical half-lives, 177 Lu and 131 I delivered absorbed doses higher than 90 Y. In view of real irradiation of MALCs, such a work may be useful to select suited radionuclides and to help explain the biological effects.
Collapse
Affiliation(s)
- Julien Bordes
- CRCT, UMR 1037 INSERM, Université Paul Sabatier, Toulouse, F-31037, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, F-31037, France
| | - Sébastien Incerti
- Université de Bordeaux, CENBG, UMR 5797, Gradignan, F-33170, France.,CNRS, IN2P3, CENBG, UMR 5797, Gradignan, F-33170, France
| | - Erick Mora-Ramirez
- CRCT, UMR 1037 INSERM, Université Paul Sabatier, Toulouse, F-31037, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, F-31037, France.,Escuela de Física, CICANUM, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - Jonathan Tranel
- CRCT, UMR 1037 INSERM, Université Paul Sabatier, Toulouse, F-31037, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, F-31037, France.,Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Cédric Rossi
- CRCT, UMR 1037 INSERM, Université Paul Sabatier, Toulouse, F-31037, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, F-31037, France.,CHU Dijon, Hématologie Clinique, Hôpital François Mitterand, Dijon, 21000, France
| | - Christine Bezombes
- CRCT, UMR 1037 INSERM, Université Paul Sabatier, Toulouse, F-31037, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, F-31037, France
| | - Julie Bordenave
- CRCT, UMR 1037 INSERM, Université Paul Sabatier, Toulouse, F-31037, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, F-31037, France
| | - Manuel Bardiès
- CRCT, UMR 1037 INSERM, Université Paul Sabatier, Toulouse, F-31037, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, F-31037, France
| | - Richard Brown
- Institute of Nuclear Medicine, University College London, 235 Euston Road, London, NW1 2BU, UK
| | - Marie-Claude Bordage
- CRCT, UMR 1037 INSERM, Université Paul Sabatier, Toulouse, F-31037, France.,UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, Toulouse, F-31037, France
| |
Collapse
|
9
|
Long-term, in toto live imaging of cardiomyocyte behaviour during mouse ventricle chamber formation at single-cell resolution. Nat Cell Biol 2020; 22:332-340. [PMID: 32123336 DOI: 10.1038/s41556-020-0475-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/31/2020] [Indexed: 11/08/2022]
Abstract
Mapping of the holistic cell behaviours sculpting the four-chambered mammalian heart has been a goal or previous studies, but so far only success in transparent invertebrates and lower vertebrates with two-chambered hearts has been achieved. Using a live-imaging system comprising a customized vertical light-sheet microscope equipped with a mouse embryo culture module, a heartbeat-gated imaging strategy and a digital image processing framework, we realized volumetric imaging of developing mouse hearts at single-cell resolution and with uninterrupted cell lineages for up to 1.5 d. Four-dimensional landscapes of Nppa+ cardiomyocyte cell behaviours revealed a blueprint for ventricle chamber formation by which biased outward migration of the outermost cardiomyocytes is coupled with cell intercalation and horizontal division. The inner-muscle architecture of trabeculae was developed through dual mechanisms: early fate segregation and transmural cell arrangement involving both oriented cell division and directional migration. Thus, live-imaging reconstruction of uninterrupted cell lineages affords a transformative means for deciphering mammalian organogenesis.
Collapse
|
10
|
Araki S, Nakano M, Tsugane M, Sunaga F, Hattori M, Nakano M, Nagai T, Suzuki H. A simple microfluidic device for live-imaging of the vertical section of epithelial cells. Analyst 2020; 145:667-674. [PMID: 31799546 DOI: 10.1039/c9an02165e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We investigated the capability of simple microfluidic devices with trenches having vertical sidewalls for live-cell fluorescence imaging of adherent cells. An epithelial cell line that forms a two-dimensional (2D) sheet was cultured to adhere to the vertical sidewall so that its vertical section can be imaged directly using ordinal inverted-type laser-scanning microscopy. The material and the structure of the device were characterized. We show that the detailed distribution of intracellular organelles, such as microtubules and mitochondria, and of intercellular apparatus, such as claudin and zonula occludens, can be imaged with high spatio-temporal resolution with a single scan.
Collapse
Affiliation(s)
- Seigo Araki
- Precision Engineering Course, Graduate School of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan.
| | - Masayoshi Nakano
- Precision Engineering Course, Graduate School of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan.
| | - Mamiko Tsugane
- Dept. Precision Mechanics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan and Japan Society for the Promotion of Science (JSPS), 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, Japan
| | - Fumiko Sunaga
- Dept. Precision Mechanics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Mitsuru Hattori
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Masahiro Nakano
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Takeharu Nagai
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Hiroaki Suzuki
- Precision Engineering Course, Graduate School of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan. and Dept. Precision Mechanics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| |
Collapse
|
11
|
Kawasoe R, Shinoda T, Hattori Y, Nakagawa M, Pham TQ, Tanaka Y, Sagou K, Saito K, Katsuki S, Kotani T, Sano A, Fujimori T, Miyata T. Two-photon microscopic observation of cell-production dynamics in the developing mammalian neocortex in utero. Dev Growth Differ 2020; 62:118-128. [PMID: 31943159 PMCID: PMC7027555 DOI: 10.1111/dgd.12648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
Morphogenesis and organ development should be understood based on a thorough description of cellular dynamics. Recent studies have explored the dynamic behaviors of mammalian neural progenitor cells (NPCs) using slice cultures in which three‐dimensional systems conserve in vivo‐like environments to a considerable degree. However, live observation of NPCs existing truly in vivo, as has long been performed for zebrafish NPCs, has yet to be established in mammals. Here, we performed intravital two‐photon microscopic observation of NPCs in the developing cerebral cortex of H2B‐EGFP or Fucci transgenic mice in utero. Fetuses in the uterine sac were immobilized using several devices and were observed through a window made in the uterine wall and the amniotic membrane while monitoring blood circulation. Clear visibility was obtained to the level of 300 μm from the scalp surface of the fetus, which enabled us to quantitatively assess NPC behaviors, such as division and interkinetic nuclear migration, within a neuroepithelial structure called the ventricular zone at embryonic day (E) 13 and E14. In fetuses undergoing healthy monitoring in utero for 60 min, the frequency of mitoses observed at the apical surface was similar to those observed in slice cultures and in freshly fixed in vivo specimens. Although the rate and duration of successful in utero observations are still limited (33% for ≥10 min and 14% for 60 min), further improvements based on this study will facilitate future understanding of how organogenetic cellular behaviors occur or are pathologically influenced by the systemic maternal condition and/or maternal‐fetal relationships.
Collapse
Affiliation(s)
- Ryotaro Kawasoe
- Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoyasu Shinoda
- Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Hattori
- Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mami Nakagawa
- Division of Embryology, National Institute for Basic Biology (NIBB), Okazaki, Japan
| | - Trung Quang Pham
- Robotics Lab, Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Yoshihiro Tanaka
- Robotics Lab, Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Ken Sagou
- Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kanako Saito
- Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoru Katsuki
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihito Sano
- Robotics Lab, Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology (NIBB), Okazaki, Japan
| | - Takaki Miyata
- Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
12
|
Wan Y, McDole K, Keller PJ. Light-Sheet Microscopy and Its Potential for Understanding Developmental Processes. Annu Rev Cell Dev Biol 2019; 35:655-681. [PMID: 31299171 DOI: 10.1146/annurev-cellbio-100818-125311] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability to visualize and quantitatively measure dynamic biological processes in vivo and at high spatiotemporal resolution is of fundamental importance to experimental investigations in developmental biology. Light-sheet microscopy is particularly well suited to providing such data, since it offers exceptionally high imaging speed and good spatial resolution while minimizing light-induced damage to the specimen. We review core principles and recent advances in light-sheet microscopy, with a focus on concepts and implementations relevant for applications in developmental biology. We discuss how light-sheet microcopy has helped advance our understanding of developmental processes from single-molecule to whole-organism studies, assess the potential for synergies with other state-of-the-art technologies, and introduce methods for computational image and data analysis. Finally, we explore the future trajectory of light-sheet microscopy, discuss key efforts to disseminate new light-sheet technology, and identify exciting opportunities for further advances.
Collapse
Affiliation(s)
- Yinan Wan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| | - Katie McDole
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| |
Collapse
|
13
|
Abstract
Mouse genetic approaches when combined with live imaging tools are revolutionizing our current understanding of mammalian developmental biology. The availability and improvement of a wide variety of genetically encoded fluorescent proteins have provided indispensable tools to visualize cells and subcellular features in living organisms. It is now possible to generate genetically modified mouse lines expressing several spectrally distinct fluorescent proteins in a tissue-specific or -inducible manner. Such reporter-expressing lines make it possible to image dynamic cellular behaviors in the context of living embryos undergoing normal or aberrant development. As with all viviparous mammals, mouse embryos develop within the uterus, and so live imaging experiments require culture conditions that closely mimic the in vivo environment. Over the past decades, significant advances have been made in developing conditions for culturing both pre- and postimplantation-stage mouse embryos. In this chapter, we discuss routine methods for ex utero culture of preimplantation- and postimplantation-stage mouse embryos. In particular, we describe protocols for collecting mouse embryos of various stages, setting up culture conditions for their ex utero culture and imaging, and using laser scanning confocal microscopy to visualize live processes in mouse embryos expressing fluorescent reporters.
Collapse
Affiliation(s)
- Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna Piliszek
- Department of Experimental Embryology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
14
|
McDole K, Guignard L, Amat F, Berger A, Malandain G, Royer LA, Turaga SC, Branson K, Keller PJ. In Toto Imaging and Reconstruction of Post-Implantation Mouse Development at the Single-Cell Level. Cell 2018; 175:859-876.e33. [PMID: 30318151 DOI: 10.1016/j.cell.2018.09.031] [Citation(s) in RCA: 300] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/12/2018] [Accepted: 09/13/2018] [Indexed: 10/28/2022]
Abstract
The mouse embryo has long been central to the study of mammalian development; however, elucidating the cell behaviors governing gastrulation and the formation of tissues and organs remains a fundamental challenge. A major obstacle is the lack of live imaging and image analysis technologies capable of systematically following cellular dynamics across the developing embryo. We developed a light-sheet microscope that adapts itself to the dramatic changes in size, shape, and optical properties of the post-implantation mouse embryo and captures its development from gastrulation to early organogenesis at the cellular level. We furthermore developed a computational framework for reconstructing long-term cell tracks, cell divisions, dynamic fate maps, and maps of tissue morphogenesis across the entire embryo. By jointly analyzing cellular dynamics in multiple embryos registered in space and time, we built a dynamic atlas of post-implantation mouse development that, together with our microscopy and computational methods, is provided as a resource. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Katie McDole
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Léo Guignard
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Fernando Amat
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Andrew Berger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Grégoire Malandain
- Université Côte d'Azur, Inria, CNRS, I3S, 06900 Sophia Antipolis, France
| | - Loïc A Royer
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Srinivas C Turaga
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Kristin Branson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
15
|
Ovečka M, von Wangenheim D, Tomančák P, Šamajová O, Komis G, Šamaj J. Multiscale imaging of plant development by light-sheet fluorescence microscopy. NATURE PLANTS 2018; 4:639-650. [PMID: 30185982 DOI: 10.1038/s41477-018-0238-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/31/2018] [Indexed: 05/21/2023]
Abstract
Light-sheet fluorescence microscopy (LSFM) methods collectively represent the major breakthrough in developmental bio-imaging of living multicellular organisms. They are becoming a mainstream approach through the development of both commercial and custom-made LSFM platforms that are adjusted to diverse biological applications. Based on high-speed acquisition rates under conditions of low light exposure and minimal photo-damage of the biological sample, these methods provide ideal means for long-term and in-depth data acquisition during organ imaging at single-cell resolution. The introduction of LSFM methods into biology extended our understanding of pattern formation and developmental progress of multicellular organisms from embryogenesis to adult body. Moreover, LSFM imaging allowed the dynamic visualization of biological processes under almost natural conditions. Here, we review the most important, recent biological applications of LSFM methods in developmental studies of established and emerging plant model species, together with up-to-date methods of data editing and evaluation for modelling of complex biological processes. Recent applications in animal models push LSFM into the forefront of current bio-imaging approaches. Since LSFM is now the single most effective method for fast imaging of multicellular organisms, allowing quantitative analyses of their long-term development, its broader use in plant developmental biology will likely bring new insights.
Collapse
Affiliation(s)
- Miroslav Ovečka
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic
| | - Daniel von Wangenheim
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Pavel Tomančák
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Olga Šamajová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic
| | - George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic.
| |
Collapse
|
16
|
Abstract
We present an overview of symmetry breaking in early mammalian development as a continuous process from compaction to specification of the body axes. While earlier studies have focused on individual symmetry-breaking events, recent advances enable us to explore progressive symmetry breaking during early mammalian development. Although we primarily discuss embryonic development of the mouse, as it is the best-studied mammalian model system to date, we also highlight the shared and distinct aspects between different mammalian species. Finally, we discuss how insights gained from studying mammalian development can be generalized in light of self-organization principles. With this review, we hope to highlight new perspectives in studying symmetry breaking and self-organization in multicellular systems.
Collapse
Affiliation(s)
- Hui Ting Zhang
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| | - Takashi Hiiragi
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| |
Collapse
|
17
|
Robinson JE, Gradinaru V. Dopaminergic dysfunction in neurodevelopmental disorders: recent advances and synergistic technologies to aid basic research. Curr Opin Neurobiol 2018; 48:17-29. [PMID: 28850815 PMCID: PMC5825239 DOI: 10.1016/j.conb.2017.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/03/2017] [Indexed: 12/19/2022]
Abstract
Neurodevelopmental disorders (NDDs) represent a diverse group of syndromes characterized by abnormal development of the central nervous system and whose symptomatology includes cognitive, emotional, sensory, and motor impairments. The identification of causative genetic defects has allowed for creation of transgenic NDD mouse models that have revealed pathophysiological mechanisms of disease phenotypes in a neural circuit- and cell type-specific manner. Mouse models of several syndromes, including Rett syndrome, Fragile X syndrome, Angelman syndrome, Neurofibromatosis type 1, etc., exhibit abnormalities in the structure and function of dopaminergic circuitry, which regulates motivation, motor behavior, sociability, attention, and executive function. Recent advances in technologies for functional circuit mapping, including tissue clearing, viral vector-based tracing methods, and optical readouts of neural activity, have refined our knowledge of dopaminergic circuits in unperturbed states, yet these tools have not been widely applied to NDD research. Here, we will review recent findings exploring dopaminergic function in NDD models and discuss the promise of new tools to probe NDD pathophysiology in these circuits.
Collapse
Affiliation(s)
- J Elliott Robinson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
18
|
Three-dimensional microCT imaging of murine embryonic development from immediate post-implantation to organogenesis: application for phenotyping analysis of early embryonic lethality in mutant animals. Mamm Genome 2017; 29:245-259. [PMID: 29170794 PMCID: PMC5887010 DOI: 10.1007/s00335-017-9723-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/09/2017] [Indexed: 10/28/2022]
Abstract
In this work, we applied three-dimensional microCT imaging to study murine embryogenesis in the range from immediate post-implantation period (embryonic day 5.5) to mid-gestation (embryonic day 12.5) with the resolution up to 1.4 µm/voxel. Also, we introduce an imaging procedure for non-invasive volumetric estimation of an entire litter of embryos within the maternal uterine structures. This method allows for an accurate, detailed and systematic morphometric analysis of both embryonic and extra-embryonic components during embryogenesis. Three-dimensional imaging of unperturbed embryos was performed to visualize the egg cylinder, primitive streak, gastrulation and early organogenesis stages of murine development in the C57Bl6/N mouse reference strain. Further, we applied our microCT imaging protocol to determine the earliest point when embryonic development is arrested in a mouse line with knockout for tRNA splicing endonuclease subunit Tsen54 gene. Our analysis determined that the embryonic development in Tsen54 null embryos does not proceed beyond implantation. We demonstrated that application of microCT imaging to entire litter of non-perturbed embryos greatly facilitate studies to unravel gene function during early embryogenesis and to determine the precise point at which embryonic development is arrested in mutant animals. The described method is inexpensive, does not require lengthy embryos dissection and can be applicable for detailed analysis of mutant mice at laboratory scale as well as for high-throughput projects.
Collapse
|
19
|
Growth and Morphogenesis during Early Heart Development in Amniotes. J Cardiovasc Dev Dis 2017; 4:jcdd4040020. [PMID: 29367549 PMCID: PMC5753121 DOI: 10.3390/jcdd4040020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 11/17/2022] Open
Abstract
In this review, we will focus on the growth and morphogenesis of the developing heart, an aspect of cardiovascular development to which Antoon Moorman and colleagues have extensively contributed. Over the last decades, genetic studies and characterization of regionally regulated gene programs have provided abundant novel insights into heart development essential to understand the basis of congenital heart disease. Heart morphogenesis, however, is inherently a complex and dynamic three-dimensional process and we are far from understanding its cellular basis. Here, we discuss recent advances in studying heart morphogenesis and regionalization under the light of the pioneering work of Moorman and colleagues, which allowed the reinterpretation of regional gene expression patterns under a new morphogenetic framework. Two aspects of early heart formation will be discussed in particular: (1) the initial formation of the heart tube and (2) the formation of the cardiac chambers by the ballooning process. Finally, we emphasize that in addition to analyses based on fixed samples, new approaches including clonal analysis, single-cell sequencing, live-imaging and quantitative analysis of the data generated will likely lead to novel insights in understanding early heart tube regionalization and morphogenesis in the near future.
Collapse
|
20
|
Moo JGS, Pumera M. Self-Propelled Micromotors Monitored by Particle-Electrode Impact Voltammetry. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00314] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- James Guo Sheng Moo
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Martin Pumera
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
21
|
Kobayashi S, Iwamoto M, Haraguchi T. Live correlative light-electron microscopy to observe molecular dynamics in high resolution. Microscopy (Oxf) 2016; 65:296-308. [DOI: 10.1093/jmicro/dfw024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/01/2016] [Indexed: 12/19/2022] Open
|
22
|
Rieckher M. Light Sheet Microscopy to Measure Protein Dynamics. J Cell Physiol 2016; 232:27-35. [DOI: 10.1002/jcp.25451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/07/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Matthias Rieckher
- Institute for Genome Stability in Ageing and Disease; Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne; Cologne Germany
| |
Collapse
|
23
|
Icha J, Schmied C, Sidhaye J, Tomancak P, Preibisch S, Norden C. Using Light Sheet Fluorescence Microscopy to Image Zebrafish Eye Development. J Vis Exp 2016:e53966. [PMID: 27167079 PMCID: PMC4941907 DOI: 10.3791/53966] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Light sheet fluorescence microscopy (LSFM) is gaining more and more popularity as a method to image embryonic development. The main advantages of LSFM compared to confocal systems are its low phototoxicity, gentle mounting strategies, fast acquisition with high signal to noise ratio and the possibility of imaging samples from various angles (views) for long periods of time. Imaging from multiple views unleashes the full potential of LSFM, but at the same time it can create terabyte-sized datasets. Processing such datasets is the biggest challenge of using LSFM. In this protocol we outline some solutions to this problem. Until recently, LSFM was mostly performed in laboratories that had the expertise to build and operate their own light sheet microscopes. However, in the last three years several commercial implementations of LSFM became available, which are multipurpose and easy to use for any developmental biologist. This article is primarily directed to those researchers, who are not LSFM technology developers, but want to employ LSFM as a tool to answer specific developmental biology questions. Here, we use imaging of zebrafish eye development as an example to introduce the reader to LSFM technology and we demonstrate applications of LSFM across multiple spatial and temporal scales. This article describes a complete experimental protocol starting with the mounting of zebrafish embryos for LSFM. We then outline the options for imaging using the commercially available light sheet microscope. Importantly, we also explain a pipeline for subsequent registration and fusion of multiview datasets using an open source solution implemented as a Fiji plugin. While this protocol focuses on imaging the developing zebrafish eye and processing data from a particular imaging setup, most of the insights and troubleshooting suggestions presented here are of general use and the protocol can be adapted to a variety of light sheet microscopy experiments.
Collapse
Affiliation(s)
- Jaroslav Icha
- Max Planck Institute of Molecular Cell Biology and Genetics;
| | | | | | - Pavel Tomancak
- Max Planck Institute of Molecular Cell Biology and Genetics
| | - Stephan Preibisch
- Max Planck Institute of Molecular Cell Biology and Genetics; HHMI Janelia Research Campus; Berlin Institute of Medical Systems Biology of the Max Delbrück Center
| | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics;
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Throughout history, development of novel microscopy techniques has been of fundamental importance to advance the vascular biology field.This review offers a concise summary of the most recently developed imaging techniques and discusses how they can be applied to vascular biology. In addition, we reflect upon the most important fluorescent reporters for vascular research that are currently available. RECENT FINDINGS Recent advances in light sheet-based imaging techniques now offer the ability to live image the vascular system in whole organs or even in whole animals during development and in pathological conditions with a satisfactory spatial and temporal resolution. Conversely, super resolution microscopy now allows studying cellular processes at a near-molecular resolution. SUMMARY Major recent improvements in a number of imaging techniques now allow study of vascular biology in ways that could not be considered previously. Researchers now have well-developed tools to specifically examine the dynamic nature of vascular development during angiogenic sprouting, remodeling and regression as well as the vascular responses in disease situations in vivo. In addition, open questions in endothelial and lymphatic cell biology that require subcellular resolution such as actin dynamics, junctional complex formation and stability, vascular permeability and receptor trafficking can now be approached with high resolution.
Collapse
Affiliation(s)
- Bàrbara Laviña
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
25
|
Sutherland AE. Tissue morphodynamics shaping the early mouse embryo. Semin Cell Dev Biol 2016; 55:89-98. [PMID: 26820524 DOI: 10.1016/j.semcdb.2016.01.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/22/2016] [Indexed: 12/20/2022]
Abstract
Generation of the elongated vertebrate body plan from the initially radially symmetrical embryo requires comprehensive changes to tissue form. These shape changes are generated by specific underlying cell behaviors, coordinated in time and space. Major principles and also specifics are emerging, from studies in many model systems, of the cell and physical biology of how region-specific cell behaviors produce regional tissue morphogenesis, and how these, in turn, are integrated at the level of the embryo. New technical approaches have made it possible more recently, to examine the morphogenesis of the mouse embryo in depth, and to elucidate the underlying cellular mechanisms. This review focuses on recent advances in understanding the cellular basis for the early fundamental events that establish the basic form of the embryo.
Collapse
Affiliation(s)
- Ann E Sutherland
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22908, United States.
| |
Collapse
|
26
|
Unleashing Optics and Optoacoustics for Developmental Biology. Trends Biotechnol 2015; 33:679-691. [PMID: 26435161 DOI: 10.1016/j.tibtech.2015.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 08/11/2015] [Accepted: 08/18/2015] [Indexed: 01/23/2023]
Abstract
The past decade marked an optical revolution in biology: an unprecedented number of optical techniques were developed and adopted for biological exploration, demonstrating increasing interest in optical imaging and in vivo interrogations. Optical methods have become faster and have reached nanoscale resolution, and are now complemented by optoacoustic (photoacoustic) methods capable of imaging whole specimens in vivo. Never before were so many optical imaging barriers broken in such a short time-frame: with new approaches to optical microscopy and mesoscopy came an increased ability to image biology at unprecedented speed, resolution, and depth. This review covers the most relevant techniques for imaging in developmental biology, and offers an outlook on the next steps for these technologies and their applications.
Collapse
|
27
|
Live imaging of Tribolium castaneum embryonic development using light-sheet-based fluorescence microscopy. Nat Protoc 2015; 10:1486-507. [PMID: 26334868 DOI: 10.1038/nprot.2015.093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tribolium castaneum has become an important insect model organism for evolutionary developmental biology, genetics and biotechnology. However, few protocols for live fluorescence imaging of Tribolium have been reported, and little image data is available. Here we provide a protocol for recording the development of Tribolium embryos with light-sheet-based fluorescence microscopy. The protocol can be completed in 4-7 d and provides procedural details for: embryo collection, microscope configuration, embryo preparation and mounting, noninvasive live imaging for up to 120 h along multiple directions, retrieval of the live embryo once imaging is completed, and image data processing, for which exemplary data is provided. Stringent quality control criteria for developmental biology studies are also discussed. Light-sheet-based fluorescence microscopy complements existing toolkits used to study Tribolium development, can be adapted to other insect species, and requires no advanced imaging or sample preparation skills.
Collapse
|
28
|
Abstract
Long-term fluorescence live-cell imaging experiments have long been limited by the effects of excitation-induced phototoxicity. The advent of light-sheet microscopy now allows users to overcome this limitation by restricting excitation to a narrow illumination plane. In addition, light-sheet imaging allows for high-speed image acquisition with uniform illumination of samples composed of multiple cell layers. The majority of studies conducted thus far have used custom-built platforms with specialized hardware and software, along with specific sample handling approaches. The first versatile commercially available light-sheet microscope, Lightsheet Z.1, offers a number of innovative solutions, but it requires specific strategies for sample handling during long-term imaging experiments. There are currently no standard procedures describing the preparation of plant specimens for imaging with the Lightsheet Z.1. Here we describe a detailed protocol to prepare plant specimens for light-sheet microscopy, in which Arabidopsis seeds or seedlings are placed in solid medium within glass capillaries or fluorinated ethylene propylene tubes. Preparation of plant material for imaging may be completed within one working day.
Collapse
|
29
|
Dsilva CJ, Lim B, Lu H, Singer A, Kevrekidis IG, Shvartsman SY. Temporal ordering and registration of images in studies of developmental dynamics. Development 2015; 142:1717-24. [PMID: 25834019 DOI: 10.1242/dev.119396] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/04/2015] [Indexed: 01/24/2023]
Abstract
Progress of development is commonly reconstructed from imaging snapshots of chemical or mechanical processes in fixed tissues. As a first step in these reconstructions, snapshots must be spatially registered and ordered in time. Currently, image registration and ordering are often done manually, requiring a significant amount of expertise with a specific system. However, as the sizes of imaging data sets grow, these tasks become increasingly difficult, especially when the images are noisy and the developmental changes being examined are subtle. To address these challenges, we present an automated approach to simultaneously register and temporally order imaging data sets. The approach is based on vector diffusion maps, a manifold learning technique that does not require a priori knowledge of image features or a parametric model of the developmental dynamics. We illustrate this approach by registering and ordering data from imaging studies of pattern formation and morphogenesis in three model systems. We also provide software to aid in the application of our methodology to other experimental data sets.
Collapse
Affiliation(s)
- Carmeline J Dsilva
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA These authors contributed equally to this work
| | - Bomyi Lim
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA These authors contributed equally to this work
| | - Hang Lu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Amit Singer
- Department of Mathematics, Princeton University, Princeton, NJ 08544, USA Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA
| | - Ioannis G Kevrekidis
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
30
|
Carneiro K, de Brito JM, Rossi MID. Development by three-dimensional approaches and four-dimensional imaging: to the knowledge frontier and beyond. ACTA ACUST UNITED AC 2015; 105:1-8. [PMID: 25789860 DOI: 10.1002/bdrc.21089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many advances have been taken on elucidating embryonic development and tissue homeostasis and repair by the use of experimental strategies that preserve the three-dimensional (3D) organization and allow quantitative analysis of images over time (four-dimensional). Ranging from the understanding about the relationship between blastomeres and the events that take place during gastrulation by the use of time-lapse imaging through 3D cultures that mimic organogenesis, the advances in this area are of critical value. The studies on embryonic development without disrupting the original architecture and the development of 3D organoid cultures pave a new avenue for unprecedented experimental advances that will positively impact the emergence of new treatments applying regenerative principles for both tissue repair and organ transplant.
Collapse
Affiliation(s)
- Katia Carneiro
- Biomedical Institute of Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
31
|
Liu M, Maurer B, Hermann B, Zabihian B, Sandrian MG, Unterhuber A, Baumann B, Zhang EZ, Beard PC, Weninger WJ, Drexler W. Dual modality optical coherence and whole-body photoacoustic tomography imaging of chick embryos in multiple development stages. BIOMEDICAL OPTICS EXPRESS 2014; 5:3150-9. [PMID: 25401028 PMCID: PMC4230868 DOI: 10.1364/boe.5.003150] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 05/19/2023]
Abstract
Chick embryos are an important animal model for biomedical studies. The visualization of chick embryos, however, is limited mostly to postmortem sectional imaging methods. In this work, we present a dual modality optical imaging system that combines swept-source optical coherence tomography and whole-body photoacoustic tomography, and apply it to image chick embryos at three different development stages. The explanted chick embryos were imaged in toto with complementary contrast from both optical scattering and optical absorption. The results serve as a prelude to the use of the dual modality system in longitudinal whole-body monitoring of chick embryos in ovo.
Collapse
Affiliation(s)
- Mengyang Liu
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, AKH 4L, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Barbara Maurer
- Center for Anatomy and Cell Biology, Medical University of Vienna, Währinger Straße 13, Vienna 1090, Austria
| | - Boris Hermann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, AKH 4L, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Behrooz Zabihian
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, AKH 4L, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Michelle G. Sandrian
- Department of Ophthalmology, University of Pittsburgh, Eye & Ear Institute, 203 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Angelika Unterhuber
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, AKH 4L, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Bernhard Baumann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, AKH 4L, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Edward Z. Zhang
- Department of Medical Physics and Bioengineering, University College London, Shropshire House, 11-20 Capper Street, London WC1E 6JA, UK
| | - Paul C. Beard
- Department of Medical Physics and Bioengineering, University College London, Shropshire House, 11-20 Capper Street, London WC1E 6JA, UK
| | - Wolfgang J. Weninger
- Center for Anatomy and Cell Biology, Medical University of Vienna, Währinger Straße 13, Vienna 1090, Austria
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, AKH 4L, Währinger Gürtel 18-20, Vienna 1090, Austria
| |
Collapse
|