1
|
Wang AG, Son M, Gorin A, Kenna E, Padhi A, Keisham B, Schauer A, Hoffmann A, Tay S. Macrophage memory emerges from coordinated transcription factor and chromatin dynamics. Cell Syst 2025; 16:101171. [PMID: 39938520 DOI: 10.1016/j.cels.2025.101171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/18/2024] [Accepted: 01/09/2025] [Indexed: 02/14/2025]
Abstract
Cells of the immune system operate in dynamic microenvironments where the timing, concentration, and order of signaling molecules constantly change. Despite this complexity, immune cells manage to communicate accurately and control inflammation and infection. It is unclear how these dynamic signals are encoded and decoded and if individual cells retain the memory of past exposure to inflammatory molecules. Here, we use live-cell analysis, ATAC sequencing, and an in vivo model of sepsis to show that sequential inflammatory signals induce memory in individual macrophages through reprogramming the nuclear factor κB (NF-κB) network and the chromatin accessibility landscape. We use transcriptomic profiling and deep learning to show that transcription factor and chromatin dynamics coordinate fine-tuned macrophage responses to new inflammatory signals. This work demonstrates how macrophages retain the memory of previous signals despite single-cell variability and elucidates the mechanisms of signal-induced memory in dynamic inflammatory conditions like sepsis.
Collapse
Affiliation(s)
- Andrew G Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Medical Scientist Training Program, University of Chicago, Chicago, IL 60637, USA
| | - Minjun Son
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Chan Zuckerberg Biohub Chicago, Chicago, IL, USA
| | - Aleksandr Gorin
- Department of Medicine, Division of Infectious Diseases, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emma Kenna
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Abinash Padhi
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Bijentimala Keisham
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Adam Schauer
- Chan Zuckerberg Biohub Chicago, Chicago, IL, USA
| | - Alexander Hoffmann
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
2
|
Schlotheuber LJ, Lüchtefeld I, Eyer K. Antibodies, repertoires and microdevices in antibody discovery and characterization. LAB ON A CHIP 2024; 24:1207-1225. [PMID: 38165819 PMCID: PMC10898418 DOI: 10.1039/d3lc00887h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/01/2023] [Indexed: 01/04/2024]
Abstract
Therapeutic antibodies are paramount in treating a wide range of diseases, particularly in auto-immunity, inflammation and cancer, and novel antibody candidates recognizing a vast array of novel antigens are needed to expand the usefulness and applications of these powerful molecules. Microdevices play an essential role in this challenging endeavor at various stages since many general requirements of the overall process overlap nicely with the general advantages of microfluidics. Therefore, microfluidic devices are rapidly taking over various steps in the process of new candidate isolation, such as antibody characterization and discovery workflows. Such technologies can allow for vast improvements in time-lines and incorporate conservative antibody stability and characterization assays, but most prominently screenings and functional characterization within integrated workflows due to high throughput and standardized workflows. First, we aim to provide an overview of the challenges of developing new therapeutic candidates, their repertoires and requirements. Afterward, this review focuses on the discovery of antibodies using microfluidic systems, technological aspects of micro devices and small-scale antibody protein characterization and selection, as well as their integration and implementation into antibody discovery workflows. We close with future developments in microfluidic detection and antibody isolation principles and the field in general.
Collapse
Affiliation(s)
- Luca Johannes Schlotheuber
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093 Zürich, Switzerland.
| | - Ines Lüchtefeld
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093 Zürich, Switzerland.
- ETH Laboratory for Tumor and Stem Cell Dynamics, Institute of Molecular Health Sciences, D-BIOL, ETH Zürich, 8093 Zürich, Switzerland
| | - Klaus Eyer
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
3
|
Raza MH, Desai S, Aravamudhan S, Zadegan R. An outlook on the current challenges and opportunities in DNA data storage. Biotechnol Adv 2023; 66:108155. [PMID: 37068530 PMCID: PMC11060094 DOI: 10.1016/j.biotechadv.2023.108155] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/23/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023]
Abstract
Silicon is the gold standard for information storage systems. The exponential generation of digital information will exhaust the global supply of refined silicon. Therefore, investing in alternative information storage materials such as DNA has gained momentum. DNA as a memory material possesses several advantages over silicon-based data storage, including higher storage capacity, data retention, and lower operational energy. Routine DNA data storage approaches encode data into chemically synthesized nucleotide sequences. The scalability of DNA data storage depends on factors such as the cost and the generation of hazardous waste during DNA synthesis, latency of writing and reading, and limited rewriting capacity. Here, we review the current status of DNA data storage encoding, writing, storing, retrieving and reading, and discuss the technology's challenges and opportunities.
Collapse
Affiliation(s)
- Muhammad Hassan Raza
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, Greensboro, NC 27401, USA
| | - Salil Desai
- Department of Industrial & Systems Engineering, North Carolina Agricultural & Technical State University, Greensboro, NC 27411, USA; Center of Excellence in Product Design and Advanced Manufacturing (CEPDAM), North Carolina Agricultural & Technical State University, Greensboro, NC 27411, USA
| | - Shyam Aravamudhan
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, Greensboro, NC 27401, USA; Center of Excellence in Product Design and Advanced Manufacturing (CEPDAM), North Carolina Agricultural & Technical State University, Greensboro, NC 27411, USA
| | - Reza Zadegan
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, Greensboro, NC 27401, USA; Center of Excellence in Product Design and Advanced Manufacturing (CEPDAM), North Carolina Agricultural & Technical State University, Greensboro, NC 27411, USA.
| |
Collapse
|
4
|
Son M, Wang AG, Kenna E, Tay S. High-throughput co-culture system for analysis of spatiotemporal cell-cell signaling. Biosens Bioelectron 2023; 225:115089. [PMID: 36736159 PMCID: PMC9991101 DOI: 10.1016/j.bios.2023.115089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023]
Abstract
Study of spatial and temporal aspects of signaling between individual cells is essential in understanding development, the immune response, and host-pathogen interactions. We present an automated high-throughput microfluidic platform that chemically stimulates immune cells to initiate cytokine secretion, and controls the formation of signal gradients that activate neighboring cell populations. Furthermore, our system enables controlling the cell type and density based on distance, and retrieval of cells from different regions for gene expression analysis. Our device performs these tasks in 192 independent chambers to simultaneously test different co-culture conditions. We demonstrate these capabilities by creating various cellular communication scenarios between macrophages and fibroblasts in vitro. We find that spatial distribution of macrophages and heterogeneity in cytokine secretion determine spatiotemporal gene expression responses. Furthermore, we describe how gene expression dynamics depend on a cell's distance from the signaling source. Our device addresses key challenges in the study of cell-to-cell signaling, and provides high-throughput and automated analysis over a wide range of co-culture conditions.
Collapse
Affiliation(s)
- Minjun Son
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA; Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
| | - Andrew G Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA; Medical Scientist Training Program, University of Chicago, Chicago, IL, 60637, USA
| | - Emma Kenna
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA; Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
5
|
Caringella G, Bandiera L, Menolascina F. Recent advances, opportunities and challenges in cybergenetic identification and control of biomolecular networks. Curr Opin Biotechnol 2023; 80:102893. [PMID: 36706519 DOI: 10.1016/j.copbio.2023.102893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023]
Abstract
Cybergenetics is a new area of research aimed at developing digital and biological controllers for living systems. Synthetic biologists have begun exploiting cybergenetic tools and platforms to both accelerate the development of mathematical models and develop control strategies for complex biological phenomena. Here, we review the state of the art in cybergenetic identification and control. Our aim is to lower the entry barrier to this field and foster the adoption of methods and technologies that will accelerate the pace at which Synthetic Biology progresses toward applications.
Collapse
Affiliation(s)
- Gianpio Caringella
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3DW, UK
| | - Lucia Bandiera
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3DW, UK; Centre for Engineering Biology, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Filippo Menolascina
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3DW, UK; Centre for Engineering Biology, The University of Edinburgh, Edinburgh EH9 3BF, UK.
| |
Collapse
|
6
|
Kim J, Rosenberger MG, Chen S, IP CKM, Bahmani A, Chen Q, Shen J, Tang Y, Wang A, Kenna E, Son M, Tay S, Ferguson AL, Esser-Kahn AP. Discovery of New States of Immunomodulation for Vaccine Adjuvants via High Throughput Screening: Expanding Innate Responses to PRRs. ACS CENTRAL SCIENCE 2023; 9:427-439. [PMID: 36968540 PMCID: PMC10037445 DOI: 10.1021/acscentsci.2c01351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Indexed: 06/18/2023]
Abstract
Stimulation of the innate immune system is crucial in both effective vaccinations and immunotherapies. This is often achieved through adjuvants, molecules that usually activate pattern recognition receptors (PRRs) and stimulate two innate immune signaling pathways: the nuclear factor kappa-light-chain-enhancer of activated B-cells pathway (NF-κB) and the interferon regulatory factors pathway (IRF). Here, we demonstrate the ability to alter and improve adjuvant activity via the addition of small molecule "immunomodulators". By modulating signaling activity instead of receptor binding, these molecules allow the customization of select innate responses. We demonstrate both inhibition and enhancement of the products of the NF-κB and IRF pathways by several orders of magnitude. Some modulators apply generally across many receptors, while others focus specifically on individual receptors. Modulators boost correlates of a protective immune responses in a commercial flu vaccine model and reduced correlates of reactogenicity in a typhoid vaccine model. These modulators have a range of applications: from adjuvanticity in prophylactics to enhancement of immunotherapy.
Collapse
Affiliation(s)
| | | | - Siquan Chen
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Carman KM IP
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Azadeh Bahmani
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Qing Chen
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Jinjing Shen
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Yifeng Tang
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Andrew Wang
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Emma Kenna
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Minjun Son
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Andrew L. Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Aaron P. Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
7
|
Van Eyndhoven LC, Tel J. Revising immune cell coordination: Origins and importance of single-cell variation. Eur J Immunol 2022; 52:1889-1897. [PMID: 36250412 PMCID: PMC10092580 DOI: 10.1002/eji.202250073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022]
Abstract
Moving from the optimalization of single-cell technologies to the interpretation of the multi-complex single-cell data, the field of immunoengineering is granted with numerous important insights into the coordination of immune cell activation and how to modulate it for therapeutic purposes. However, insights come with additional follow-up questions that challenge our perception on how immune responses are generated and fine-tuned to fight a wide array of pathogens in ever-changing and often unpredictable microenvironments. Are immune responses really either being tightly regulated by molecular determinants, or highly flexible attributed to stochasticity? What exactly makes up the basic rules by which single cells cooperate to establish tissue-level immunity? Taking the type I IFN system and its newest insights as a main example throughout this review, we revise the basic concepts of (single) immune cell coordination, redefine the concepts of noise, stochasticity and determinism, and highlight the importance of single-cell variation in immunology and beyond.
Collapse
Affiliation(s)
- Laura C Van Eyndhoven
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
8
|
Watson C, Liu C, Ansari A, Miranda HC, Somoza RA, Senyo SE. Multiplexed microfluidic chip for cell co-culture. Analyst 2022; 147:5409-5418. [PMID: 36300548 PMCID: PMC10077866 DOI: 10.1039/d2an01344d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Paracrine signaling is challenging to study in vitro, as conventional culture tools dilute soluble factors and offer little to no spatiotemporal control over signaling. Microfluidic chips offer potential to address both of these issues. However, few solutions offer both control over onset and duration of cell-cell communication, and high throughput. We have developed a microfluidic chip designed to culture cells in adjacent chambers, separated by valves to selectively allow or prevent exchange of paracrine signals. The chip features 16 fluidic inputs and 128 individually-addressable chambers arranged in 32 sets of 4 chambers. Media can be continuously perfused or delivered by diffusion, which we model under different culture conditions to ensure normal cell viability. Immunocytochemistry assays can be performed in the chip, which we modeled and fine-tuned to reduce total assay time to 1 h. Finally, we validate the use of the chip for co-culture studies by showing that HEK293Ta cells respond to signals secreted by RAW 264.7 immune cells in adjacent chambers, only when the valve between the chambers is opened.
Collapse
Affiliation(s)
- Craig Watson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Chao Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Ali Ansari
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Helen C Miranda
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Rodrigo A Somoza
- Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, OH, USA
- CWRU Center for Multimodal Evaluation of Engineered Cartilage, Cleveland, OH, USA
| | - Samuel E Senyo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
9
|
Son M, Frank T, Holst-Hansen T, Wang AG, Junkin M, Kashaf SS, Trusina A, Tay S. Spatiotemporal NF-κB dynamics encodes the position, amplitude, and duration of local immune inputs. SCIENCE ADVANCES 2022; 8:eabn6240. [PMID: 36044569 PMCID: PMC9432835 DOI: 10.1126/sciadv.abn6240] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 07/19/2022] [Indexed: 05/31/2023]
Abstract
Infected cells communicate through secreted signaling molecules like cytokines, which carry information about pathogens. How differences in cytokine secretion affect inflammatory signaling over space and how responding cells decode information from propagating cytokines are not understood. By computationally and experimentally studying NF-κB dynamics in cocultures of signal-sending cells (macrophages) and signal-receiving cells (fibroblasts), we find that cytokine signals are transmitted by wave-like propagation of NF-κB activity and create well-defined activation zones in responding cells. NF-κB dynamics in responding cells can simultaneously encode information about cytokine dose, duration, and distance to the cytokine source. Spatially resolved transcriptional analysis reveals that responding cells transmit local cytokine information to distance-specific proinflammatory gene expression patterns, creating "gene expression zones." Despite single-cell variability, the size and duration of the signaling zone are tightly controlled by the macrophage secretion profile. Our results highlight how macrophages tune cytokine secretion to control signal transmission distance and how inflammatory signaling interprets these signals in space and time.
Collapse
Affiliation(s)
- Minjun Son
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Tino Frank
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4058, Switzerland
| | | | - Andrew G. Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Michael Junkin
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4058, Switzerland
| | - Sara S. Kashaf
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Ala Trusina
- Niels Bohr Institute, University of Copenhagen, Copenhagen 2100, Denmark
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Wang AG, Son M, Kenna E, Thom N, Tay S. NF-κB memory coordinates transcriptional responses to dynamic inflammatory stimuli. Cell Rep 2022; 40:111159. [PMID: 35977475 PMCID: PMC10794069 DOI: 10.1016/j.celrep.2022.111159] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/11/2022] [Accepted: 07/13/2022] [Indexed: 12/13/2022] Open
Abstract
Many scenarios in cellular communication require cells to interpret multiple dynamic signals. It is unclear how exposure to inflammatory stimuli alters transcriptional responses to subsequent stimulus. Using high-throughput microfluidic live-cell analysis, we systematically profile the NF-κB response to different signal sequences in single cells. We find that NF-κB dynamics store the short-term history of received signals: depending on the prior pathogenic or cytokine signal, the NF-κB response to subsequent stimuli varies from no response to full activation. Using information theory, we reveal that these stimulus-dependent changes in the NF-κB response encode and reflect information about the identity and dose of the prior stimulus. Small-molecule inhibition, computational modeling, and gene expression profiling show that this encoding is driven by stimulus-dependent engagement of negative feedback modules. These results provide a model for how signal transduction networks process sequences of inflammatory stimuli to coordinate cellular responses in complex dynamic environments.
Collapse
Affiliation(s)
- Andrew G Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Medical Scientist Training Program, University of Chicago, Chicago, IL 60637, USA
| | - Minjun Son
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Emma Kenna
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Nicholas Thom
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
11
|
Dettinger P, Kull T, Arekatla G, Ahmed N, Zhang Y, Schneiter F, Wehling A, Schirmacher D, Kawamura S, Loeffler D, Schroeder T. Open-source personal pipetting robots with live-cell incubation and microscopy compatibility. Nat Commun 2022; 13:2999. [PMID: 35637179 PMCID: PMC9151679 DOI: 10.1038/s41467-022-30643-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/10/2022] [Indexed: 01/03/2023] Open
Abstract
Liquid handling robots have the potential to automate many procedures in life sciences. However, they are not in widespread use in academic settings, where funding, space and maintenance specialists are usually limiting. In addition, current robots require lengthy programming by specialists and are incompatible with most academic laboratories with constantly changing small-scale projects. Here, we present the Pipetting Helper Imaging Lid (PHIL), an inexpensive, small, open-source personal liquid handling robot. It is designed for inexperienced users, with self-production from cheap commercial and 3D-printable components and custom control software. PHIL successfully automates pipetting (incl. aspiration) for e.g. tissue immunostainings and stimulations of live stem and progenitor cells during time-lapse microscopy using 3D printed peristaltic pumps. PHIL is cheap enough to put a personal pipetting robot within the reach of most labs and enables users without programming skills to easily automate a large range of experiments.
Collapse
Affiliation(s)
- Philip Dettinger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.
| | - Tobias Kull
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Geethika Arekatla
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Nouraiz Ahmed
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Yang Zhang
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Florin Schneiter
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Arne Wehling
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Daniel Schirmacher
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Shunsuke Kawamura
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Dirk Loeffler
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
12
|
Yang H, Sinha N, Rand U, Hauser H, Köster M, de Greef TFA, Tel J. A universal microfluidic approach for integrated analysis of temporal homocellular and heterocellular signaling and migration dynamics. Biosens Bioelectron 2022; 211:114353. [PMID: 35594624 DOI: 10.1016/j.bios.2022.114353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022]
Abstract
Microfluidics offers precise and dynamic control of microenvironments for the study of temporal cellular responses. However, recent research focusing solely on either homocellular (single-cell, population) or heterocellular response may yield insufficient output, which possibly leads to partial comprehension about the underlying mechanisms of signaling events and corresponding cellular behaviors. Here, a universal microfluidic approach is developed for integrated analysis of temporal signaling and cell migration dynamics in multiple cellular contexts (single-cell, population and coculture). This approach allows to confine the desired number or mixture of specific cell sample types in a single device. Precise single cell seeding was achieved manually with bidirectional controllability. Coupled with time-lapse imaging, temporal cellular responses can be observed with single-cell resolution. Using NIH3T3 cells stably expressing signal transducer and activator of transcription 1/2 (STAT1/2) activity biosensors, temporal STAT1/2 activation and cell migration dynamics were explored in isolated single cells, populations and cocultures stimulated with temporal inputs, such as single-pulse and continuous signals of interferon γ (IFNγ) or lipopolysaccharide (LPS). We demonstrate distinct dynamic responses of fibroblasts in different cellular contexts. Our presented approach facilitates a multi-dimensional understanding of STAT signaling and corresponding migration behaviors.
Collapse
Affiliation(s)
- Haowen Yang
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5600MB, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, the Netherlands
| | - Nidhi Sinha
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5600MB, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, the Netherlands
| | - Ulfert Rand
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Hansjörg Hauser
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Mario Köster
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Tom F A de Greef
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, the Netherlands; Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600MB, Eindhoven, the Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5600MB, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, the Netherlands.
| |
Collapse
|
13
|
Ray A. Machine learning in postgenomic biology and personalized medicine. WILEY INTERDISCIPLINARY REVIEWS. DATA MINING AND KNOWLEDGE DISCOVERY 2022; 12:e1451. [PMID: 35966173 PMCID: PMC9371441 DOI: 10.1002/widm.1451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 12/22/2021] [Indexed: 06/15/2023]
Abstract
In recent years Artificial Intelligence in the form of machine learning has been revolutionizing biology, biomedical sciences, and gene-based agricultural technology capabilities. Massive data generated in biological sciences by rapid and deep gene sequencing and protein or other molecular structure determination, on the one hand, requires data analysis capabilities using machine learning that are distinctly different from classical statistical methods; on the other, these large datasets are enabling the adoption of novel data-intensive machine learning algorithms for the solution of biological problems that until recently had relied on mechanistic model-based approaches that are computationally expensive. This review provides a bird's eye view of the applications of machine learning in post-genomic biology. Attempt is also made to indicate as far as possible the areas of research that are poised to make further impacts in these areas, including the importance of explainable artificial intelligence (XAI) in human health. Further contributions of machine learning are expected to transform medicine, public health, agricultural technology, as well as to provide invaluable gene-based guidance for the management of complex environments in this age of global warming.
Collapse
Affiliation(s)
- Animesh Ray
- Riggs School of Applied Life Sciences, Keck Graduate Institute, 535 Watson Drive, Claremont, CA91711, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
14
|
Luo X, Chen JY, Ataei M, Lee A. Microfluidic Compartmentalization Platforms for Single Cell Analysis. BIOSENSORS 2022; 12:58. [PMID: 35200319 PMCID: PMC8869497 DOI: 10.3390/bios12020058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/25/2022]
Abstract
Many cellular analytical technologies measure only the average response from a cell population with an assumption that a clonal population is homogenous. The ensemble measurement often masks the difference among individual cells that can lead to misinterpretation. The advent of microfluidic technology has revolutionized single-cell analysis through precise manipulation of liquid and compartmentalizing single cells in small volumes (pico- to nano-liter). Due to its advantages from miniaturization, microfluidic systems offer an array of capabilities to study genomics, transcriptomics, and proteomics of a large number of individual cells. In this regard, microfluidic systems have emerged as a powerful technology to uncover cellular heterogeneity and expand the depth and breadth of single-cell analysis. This review will focus on recent developments of three microfluidic compartmentalization platforms (microvalve, microwell, and microdroplets) that target single-cell analysis spanning from proteomics to genomics. We also compare and contrast these three microfluidic platforms and discuss their respective advantages and disadvantages in single-cell analysis.
Collapse
Affiliation(s)
- Xuhao Luo
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA; (X.L.); (J.-Y.C.)
| | - Jui-Yi Chen
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA; (X.L.); (J.-Y.C.)
| | - Marzieh Ataei
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA;
| | - Abraham Lee
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA; (X.L.); (J.-Y.C.)
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA;
| |
Collapse
|
15
|
Tong A, Voronov R. A Minireview of Microfluidic Scaffold Materials in Tissue Engineering. Front Mol Biosci 2022; 8:783268. [PMID: 35087865 PMCID: PMC8787357 DOI: 10.3389/fmolb.2021.783268] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/14/2021] [Indexed: 01/09/2023] Open
Abstract
In 2020, nearly 107,000 people in the U.S needed a lifesaving organ transplant, but due to a limited number of donors, only ∼35% of them have actually received it. Thus, successful bio-manufacturing of artificial tissues and organs is central to satisfying the ever-growing demand for transplants. However, despite decades of tremendous investments in regenerative medicine research and development conventional scaffold technologies have failed to yield viable tissues and organs. Luckily, microfluidic scaffolds hold the promise of overcoming the major challenges associated with generating complex 3D cultures: 1) cell death due to poor metabolite distribution/clearing of waste in thick cultures; 2) sacrificial analysis due to inability to sample the culture non-invasively; 3) product variability due to lack of control over the cell action post-seeding, and 4) adoption barriers associated with having to learn a different culturing protocol for each new product. Namely, their active pore networks provide the ability to perform automated fluid and cell manipulations (e.g., seeding, feeding, probing, clearing waste, delivering drugs, etc.) at targeted locations in-situ. However, challenges remain in developing a biomaterial that would have the appropriate characteristics for such scaffolds. Specifically, it should ideally be: 1) biocompatible-to support cell attachment and growth, 2) biodegradable-to give way to newly formed tissue, 3) flexible-to create microfluidic valves, 4) photo-crosslinkable-to manufacture using light-based 3D printing and 5) transparent-for optical microscopy validation. To that end, this minireview summarizes the latest progress of the biomaterial design, and of the corresponding fabrication method development, for making the microfluidic scaffolds.
Collapse
Affiliation(s)
- Anh Tong
- Otto H. York Department of Chemical and Materials Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Roman Voronov
- Otto H. York Department of Chemical and Materials Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ, United States
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
16
|
Russo M, Cejas CM, Pitingolo G. Advances in microfluidic 3D cell culture for preclinical drug development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 187:163-204. [PMID: 35094774 DOI: 10.1016/bs.pmbts.2021.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drug development is often a very long, costly, and risky process due to the lack of reliability in the preclinical studies. Traditional current preclinical models, mostly based on 2D cell culture and animal testing, are not full representatives of the complex in vivo microenvironments and often fail. In order to reduce the enormous costs, both financial and general well-being, a more predictive preclinical model is needed. In this chapter, we review recent advances in microfluidic 3D cell culture showing how its development has allowed the introduction of in vitro microphysiological systems, laying the foundation for organ-on-a-chip technology. These findings provide the basis for numerous preclinical drug discovery assays, which raise the possibility of using micro-engineered systems as emerging alternatives to traditional models, based on 2D cell culture and animals.
Collapse
Affiliation(s)
- Maria Russo
- Microfluidics, MEMS, Nanostructures (MMN), CNRS UMR 8231, Institut Pierre Gilles de Gennes (IPGG) ESPCI Paris, PSL Research University, Paris France.
| | - Cesare M Cejas
- Microfluidics, MEMS, Nanostructures (MMN), CNRS UMR 8231, Institut Pierre Gilles de Gennes (IPGG) ESPCI Paris, PSL Research University, Paris France
| | - Gabriele Pitingolo
- Bioassays, Microsystems and Optical Engineering Unit, BIOASTER, Paris France
| |
Collapse
|
17
|
Lin J, Tay S. Ultra-Sensitive Quantification of Protein and mRNA in Single Mammalian Cells with Digital PLA. Methods Mol Biol 2021; 2386:157-169. [PMID: 34766271 DOI: 10.1007/978-1-0716-1771-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Digital proximity ligation assay (PLA) detects single protein molecules with a pair of oligonucleotide-conjugated antibodies and digital PCR (dPCR) readout, which allows absolute quantitation of proteins in single cells with high sensitivity. The pipeline also allows simultaneous measurement of protein and mRNA from the same single cell. The sensitivity of the assay has been further improved with implementation of the assay on a microfluidic system, which enables quantitation of rare protein species, with expression level as low as ~3000 protein molecules per cell.
Collapse
Affiliation(s)
- Jing Lin
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA.
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
18
|
Patel P, Drayman N, Liu P, Bilgic M, Tay S. Computer vision reveals hidden variables underlying NF-κB activation in single cells. SCIENCE ADVANCES 2021; 7:eabg4135. [PMID: 34678061 PMCID: PMC8535821 DOI: 10.1126/sciadv.abg4135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 09/02/2021] [Indexed: 05/31/2023]
Abstract
Individual cells are heterogeneous when responding to environmental cues. Under an external signal, certain cells activate gene regulatory pathways, while others completely ignore that signal. Mechanisms underlying cellular heterogeneity are often inaccessible because experiments needed to study molecular states destroy the very states that we need to examine. Here, we developed an image-based support vector machine learning model to uncover variables controlling activation of the immune pathway nuclear factor κB (NF-κB). Computer vision analysis predicts the identity of cells that will respond to cytokine stimulation and shows that activation is predetermined by minute amounts of “leaky” NF-κB (p65:p50) localization to the nucleus. Mechanistic modeling revealed that the ratio of NF-κB to inhibitor of NF-κB predetermines leakiness and activation probability of cells. While cells transition between molecular states, they maintain their overall probabilities for NF-κB activation. Our results demonstrate how computer vision can find mechanisms behind heterogeneous single-cell activation under proinflammatory stimuli.
Collapse
Affiliation(s)
- Parthiv Patel
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Nir Drayman
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Ping Liu
- Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA
| | - Mustafa Bilgic
- Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
19
|
Weterings SDC, van Oostrom MJ, Sonnen KF. Building bridges between fields: bringing together development and homeostasis. Development 2021; 148:270964. [PMID: 34279592 PMCID: PMC8326920 DOI: 10.1242/dev.193268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite striking parallels between the fields of developmental biology and adult tissue homeostasis, these are disconnected in contemporary research. Although development describes tissue generation and homeostasis describes tissue maintenance, it is the balance between stem cell proliferation and differentiation that coordinates both processes. Upstream signalling regulates this balance to achieve the required outcome at the population level. Both development and homeostasis require tight regulation of stem cells at the single-cell level and establishment of patterns at the tissue-wide level. Here, we emphasize that the general principles of embryonic development and tissue homeostasis are similar, and argue that interactions between these disciplines will be beneficial for both research fields.
Collapse
Affiliation(s)
- Sonja D C Weterings
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marek J van Oostrom
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Katharina F Sonnen
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
20
|
Nikiforov PO, Hejja B, Chahwan R, Soeller C, Gielen F, Chimerel C. Functional Phenotype Flow Cytometry: On Chip Sorting of Individual Cells According to Responses to Stimuli. Adv Biol (Weinh) 2021; 5:e2100220. [PMID: 34160140 DOI: 10.1002/adbi.202100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/21/2021] [Indexed: 11/11/2022]
Abstract
The ability to effectively separate and isolate biological cells into specific and well-defined subpopulations is crucial for the advancement of our understanding of cellular heterogeneity and its relevance to living systems. Here is described the development of the functional phenotype flow cytometer (FPFC), a new device designed to separate cells on the basis of their in situ real-time phenotypic responses to stimuli. The FPFC performs a cascade of cell processing steps on a microfluidic platform: introduces biological cells one at a time into a solution of a biological reagent that acts as a stimulus, incubates the cells with the stimulus solution in a flow, and sorts the cells into subpopulations according to their phenotypic responses to the provided stimulus. The presented implementation of the FPFC uses intracellular fluorescence as a readout, incubates cells for 75 s, and operates at a throughput of up to 4 cells min-1 -resulting in the profiling and sorting of hundreds of cells within a few hours. The design and operation of the FPFC are validated by sorting cells from the human Burkitt's lymphoma cancerous cell line Ramos on the basis of their response to activation of the B cell antigen receptor (BCR) by a targeted monoclonal antibody.
Collapse
Affiliation(s)
- Petar O Nikiforov
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Beata Hejja
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Richard Chahwan
- Institute of Experimental Immunology, University of Zurich, Zurich, 8057, Switzerland
| | - Christian Soeller
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Fabrice Gielen
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Catalin Chimerel
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|
21
|
A design and optimization of a high throughput valve based microfluidic device for single cell compartmentalization and analysis. Sci Rep 2021; 11:12995. [PMID: 34155296 PMCID: PMC8217553 DOI: 10.1038/s41598-021-92472-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/08/2021] [Indexed: 12/04/2022] Open
Abstract
The need for high throughput single cell screening platforms has been increasing with advancements in genomics and proteomics to identify heterogeneity, unique cell subsets or super mutants from thousands of cells within a population. For real-time monitoring of enzyme kinetics and protein expression profiling, valve-based microfluidics or pneumatic valving that can compartmentalize single cells is advantageous by providing on-demand fluid exchange capability for several steps in assay protocol and on-chip culturing. However, this technique is throughput limited by the number of compartments in the array. Thus, one big challenge lies in increasing the number of microvalves to several thousand that can be actuated in the microfluidic device to confine enzymes and substrates in picoliter volumes. This work explores the design and optimizations done on a microfluidic platform to achieve high-throughput single cell compartmentalization as applied to single-cell enzymatic assay for protein expression quantification. Design modeling through COMSOL Multiphysics was utilized to determine the circular microvalve’s optimized parameters, which can close thousands of microchambers in an array at lower sealing pressure. Multiphysical modeling results demonstrated the relationships of geometry, valve dimensions, and sealing pressure, which were applied in the fabrication of a microfluidic device comprising of up to 5000 hydrodynamic traps and corresponding microvalves. Comparing the effects of geometry, actuation media and fabrication technique, a sealing pressure as low as 0.04 MPa was achieved. Applying to single cell enzymatic assay, variations in granzyme B activity in Jurkat and human PBMC cells were observed. Improvement in the microfluidic chip’s throughput is significant in single cell analysis applications, especially in drug discovery and treatment personalization.
Collapse
|
22
|
Cruz-Moreira D, Visone R, Vasques-Nóvoa F, S Barros A, Leite-Moreira A, Redaelli A, Moretti M, Rasponi M. Assessing the influence of perfusion on cardiac microtissue maturation: A heart-on-chip platform embedding peristaltic pump capabilities. Biotechnol Bioeng 2021; 118:3128-3137. [PMID: 34019719 PMCID: PMC8362142 DOI: 10.1002/bit.27836] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 01/24/2023]
Abstract
Heart‐on‐chip is an unprecedented technology for recapitulating key biochemical and biophysical cues in cardiac pathophysiology. Several designs have been proposed to improve its ability to mimic the native tissue and establish it as a reliable research platform. However, despite mimicking one of most vascularized organs, reliable strategies to deliver oxygen and substrates to densely packed constructs of metabolically demanding cells remain unsettled. Herein, we describe a new heart‐on‐chip platform with precise fluid control, integrating an on‐chip peristaltic pump, allowing automated and fine control over flow on channels flanking a 3D cardiac culture. The application of distinct flow rates impacted on temporal dynamics of microtissue structural and transcriptional maturation, improving functional performance. Moreover, a widespread transcriptional response was observed, suggesting flow‐mediated activation of critical pathways of cardiomyocyte structural and functional maturation and inhibition of cardiomyocyte hypoxic injury. In conclusion, the present design represents an important advance in bringing engineered cardiac microtissues closer to the native heart, overcoming traditional bulky off‐chip fluid handling systems, improving microtissue performance, and matching oxygen and energy substrate requirements of metabolically active constructs, avoiding cellular hypoxia. Distinct flow patterns differently impact on microtissue performance and gene expression program.
Collapse
Affiliation(s)
- Daniela Cruz-Moreira
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Francisco Vasques-Nóvoa
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - António S Barros
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Adelino Leite-Moreira
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Matteo Moretti
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| |
Collapse
|
23
|
Cytokine combinations for human blood stem cell expansion induce cell type- and cytokine-specific signaling dynamics. Blood 2021; 138:847-857. [PMID: 33988686 DOI: 10.1182/blood.2020008386] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/23/2021] [Indexed: 11/20/2022] Open
Abstract
How hematopoietic stem cells (HSCs) integrate signals from their environment to make fate decisions remains incompletely understood. Current knowledge is based on either averages of heterogeneous populations or snapshot analyses, both missing important information about the dynamics of intracellular signaling activity. By combining fluorescent biosensors with time-lapse imaging and microfluidics, we measured the activity of the extracellular signal-regulated kinase (ERK) pathway over time (i.e. dynamics) in live single human umbilical cord blood HSCs and multipotent progenitor cells (MPPs). In single cells, ERK signaling dynamics were highly heterogeneous and depended on the cytokines, their combinations, and cell types. ERK signaling was activated by SCF and FLT3L in HSCs, but by SCF, IL3 and GCSF in MPPs. Different cytokines and their combinations led to distinct ERK signaling dynamics frequencies, and ERK dynamics in HSCs were more transient than those in MPPs. A combination of 5 cytokines recently shown to maintain HSCs in long-term culture, had a more-than-additive effect in eliciting sustained ERK dynamics in HSCs. ERK signaling dynamics also predicted future cell fates. E.g. CD45RA expression increased more in HSC daughters with intermediate than with transient or sustained ERK signaling. We demonstrate heterogeneous, cytokine- and cell type- specific ERK signaling dynamics, illustrating their relevance in regulating HSPC fates.
Collapse
|
24
|
Son M, Wang AG, Tu HL, Metzig MO, Patel P, Husain K, Lin J, Murugan A, Hoffmann A, Tay S. NF-κB responds to absolute differences in cytokine concentrations. Sci Signal 2021; 14. [PMID: 34211635 DOI: 10.1126/scisignal.aaz4382] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cells receive a wide range of dynamic signaling inputs during immune regulation, but how gene regulatory networks measure such dynamic inputs is not well understood. Here, we used microfluidic single-cell analysis and mathematical modeling to study how the NF-κB pathway responds to immune inputs that vary over time such as increasing, decreasing, or fluctuating cytokine signals. We found that NF-κB activity responded to the absolute difference in cytokine concentration and not to the concentration itself. Our analyses revealed that negative feedback by the regulatory proteins A20 and IκBα enabled differential responses to changes in cytokine dose by providing a short-term memory of previous cytokine concentrations and by continuously resetting kinase cycling and receptor abundance. Investigation of NF-κB target gene expression showed that cells exhibited distinct transcriptional responses under different dynamic cytokine profiles. Our results demonstrate how cells use simple network motifs and transcription factor dynamics to efficiently extract information from complex signaling environments.
Collapse
Affiliation(s)
- Minjun Son
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Andrew G Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Hsiung-Lin Tu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Marie Oliver Metzig
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA.,Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| | - Parthiv Patel
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Kabir Husain
- James Franck Institute and Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | - Jing Lin
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Arvind Murugan
- James Franck Institute and Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | - Alexander Hoffmann
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA.,Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
25
|
Dettinger P, Wang W, Ahmed N, Zhang Y, Loeffler D, Kull T, Etzrodt M, Lengerke C, Schroeder T. An automated microfluidic system for efficient capture of rare cells and rapid flow-free stimulation. LAB ON A CHIP 2020; 20:4246-4254. [PMID: 33063816 DOI: 10.1039/d0lc00687d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cell fates are controlled by environmental stimuli that rapidly change the activity of intracellular signaling. Studying these processes requires rapid manipulations of micro-environmental conditions while continuously observing single cells over long periods of time. Current microfluidic devices are unable to simultaneously i) efficiently capture and concentrate rare cells, ii) conduct automated rapid media exchanges via diffusion without displacing non-adherent cells, and iii) allow sensitive high-throughput long-term time-lapse microscopy. Hematopoietic stem and progenitor cells pose a particular challenge for these types of experiments as they are impossible to obtain in very large numbers and are displaced by the fluid flow usually used to change culture media, thus preventing cell tracking. Here, we developed a programmable automated system composed of a novel microfluidic device for efficient capture of rare cells in independently addressable culture chambers, a custom incubation system, and user-friendly control software. The chip's culture chambers are optimized for efficient and sensitive fluorescence microscopy and their media can be individually and quickly changed by diffusion without non-adherent cell displacement. The chip allows efficient capture, stimulation, and sensitive high-frequency time-lapse observation of rare and sensitive murine and human primary hematopoietic stem cells. Our 3D-printed humidification and incubation system minimizes gas consumption, facilitates chip setup, and maintains stable humidity and gas composition during long-term cell culture. This approach now enables the required continuous long-term single-cell quantification of rare non-adherent cells with rapid environmental manipulations, e.g. of rapid signaling dynamics and the later stem cell fate choices they control.
Collapse
Affiliation(s)
- Philip Dettinger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Weijia Wang
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Nouraiz Ahmed
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Yang Zhang
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Dirk Loeffler
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Tobias Kull
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Martin Etzrodt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Claudia Lengerke
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
26
|
Chen P, Li S, Guo Y, Zeng X, Liu BF. A review on microfluidics manipulation of the extracellular chemical microenvironment and its emerging application to cell analysis. Anal Chim Acta 2020; 1125:94-113. [PMID: 32674786 DOI: 10.1016/j.aca.2020.05.065] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022]
Abstract
Spatiotemporal manipulation of extracellular chemical environments with simultaneous monitoring of cellular responses plays an essential role in exploring fundamental biological processes and expands our understanding of underlying mechanisms. Despite the rapid progress and promising successes in manipulation strategies, many challenges remain due to the small size of cells and the rapid diffusion of chemical molecules. Fortunately, emerging microfluidic technology has become a powerful approach for precisely controlling the extracellular chemical microenvironment, which benefits from its integration capacity, automation, and high-throughput capability, as well as its high resolution down to submicron. Here, we summarize recent advances in microfluidics manipulation of the extracellular chemical microenvironment, including the following aspects: i) Spatial manipulation of chemical microenvironments realized by convection flow-, diffusion-, and droplet-based microfluidics, and surface chemical modification; ii) Temporal manipulation of chemical microenvironments enabled by flow switching/shifting, moving/flowing cells across laminar flows, integrated microvalves/pumps, and droplet manipulation; iii) Spatiotemporal manipulation of chemical microenvironments implemented by a coupling strategy and open-space microfluidics; and iv) High-throughput manipulation of chemical microenvironments. Finally, we briefly present typical applications of the above-mentioned technical advances in cell-based analyses including cell migration, cell signaling, cell differentiation, multicellular analysis, and drug screening. We further discuss the future improvement of microfluidics manipulation of extracellular chemical microenvironments to fulfill the needs of biological and biomedical research and applications.
Collapse
Affiliation(s)
- Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiran Guo
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuemei Zeng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
27
|
Ai X, Wu Y, Lu W, Zhang X, Zhao L, Tu P, Wang K, Jiang Y. A Precise Microfluidic Assay in Single-Cell Profile for Screening of Transient Receptor Potential Channel Modulators. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000111. [PMID: 32537418 PMCID: PMC7284206 DOI: 10.1002/advs.202000111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/03/2020] [Accepted: 03/08/2020] [Indexed: 05/14/2023]
Abstract
Transient receptor potential (TRP) channels are emerging drug targets, and TRP channel modulators possess therapeutic potential for many indications. However, there is a lack of intellectual and robust screening assays against TRP channels utilizing the least amount of compounds. Here, a precise microfluidic assay in single-cell profile is developed for the screening of TRP channel modulators. The geometrically optimized microchip is designed for both trapping single cells and utilizing passive pumping for sequential media replacement with low shear stress. The microfluidic chip exhibits superior performance in screening, repeatable compound administration, and improved reproducibility. Using this screening platform, the false-positive and negative rate of the commonly used Ca2+ imaging is reduced from 76.2% to 4.8% and four coumarin derivatives isolated from Murraya species that inhibit TRP channels are identified. One coumarin derivative B-304 reverses TRPA1-mediated inflammatory pain in vivo. Taken together, the data demonstrate that the established microfluidic assay in single-cell profile could be used for the screening of TRP channel modulators that may have therapeutic potential for the channelopathies.
Collapse
Affiliation(s)
- Xiaoni Ai
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Yang Wu
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- Department of PharmacologyQingdao University School of Pharmacy38 Dengzhou RoadQingdao266021China
| | - Wenbo Lu
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Xinran Zhang
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- Department of PharmacologyQingdao University School of Pharmacy38 Dengzhou RoadQingdao266021China
| | - Lin Zhao
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - KeWei Wang
- Department of PharmacologyQingdao University School of Pharmacy38 Dengzhou RoadQingdao266021China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| |
Collapse
|
28
|
Liu W, He H, Zheng SY. Microfluidics in Single-Cell Virology: Technologies and Applications. Trends Biotechnol 2020; 38:1360-1372. [PMID: 32430227 DOI: 10.1016/j.tibtech.2020.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022]
Abstract
Microfluidics has proven to be a powerful tool for probing biology at the single-cell level. However, it is only in the past 5 years that single-cell microfluidics has been used in the field of virology. An array of strategies based on microwells, microvalves, and droplets is now available for tracking viral infection dynamics, identifying cell subpopulations with particular phenotypes, as well as high-throughput screening. The insights into the virus-host interactions gained at the single-cell level are unprecedented and usually inaccessible by population-based experiments. Therefore, single-cell microfluidics, which opens new avenues for mechanism elucidation and development of antiviral therapeutics, would be a valuable tool for the study of viral pathogenesis.
Collapse
Affiliation(s)
- Wu Liu
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Hongzhang He
- Captis Diagnostics Inc., Pittsburgh, PA 15213, USA
| | - Si-Yang Zheng
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
29
|
Hu J, Li X, Judd RL, Easley CJ. Rapid lipolytic oscillations in ex vivo adipose tissue explants revealed through microfluidic droplet sampling at high temporal resolution. LAB ON A CHIP 2020; 20:1503-1512. [PMID: 32239045 PMCID: PMC7380261 DOI: 10.1039/d0lc00103a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Our understanding of adipose tissue biology has steadily evolved. While structural and energy storage functionalities have been in the forefront, a key endocrine role for adipocytes was revealed only over the last few decades. In contrast to the wealth of information on dynamic function of other endocrine tissues, few studies have focused on dynamic adipose tissue function or on tool development toward that end. Here, we apply our unique droplet-based microfluidic devices to culture, perfuse, and sample secretions from primary murine epididymal white adipose tissue (eWAT), and from predifferentiated clusters of 3T3-L1 adipocytes. Through automated control, oil-segmented aqueous droplets (∼2.6 nL) were sampled from tissue or cells at 3.5 second temporal resolution (including sample and reference droplets), with integrated enzyme assays enabling real-time quantification of glycerol (down to 1.9 fmol per droplet). This high resolution revealed previously unreported oscillations in secreted glycerol at frequencies of 0.2 to 2.0 min-1 (∼30-300 s periods) present in the primary tissue but not in clustered cells. Low-level bursts (∼50 fmol) released in basal conditions were contrasted with larger bursts (∼300 fmol) during stimulation. Further, both fold changes and burst magnitudes were decreased in eWAT of aged and obese mice. These results, combined with immunostaining and photobleaching analyses, suggest that gap-junctional coupling or nerve cell innervation within the intact ex vivo tissue explants play important roles in this apparent tissue-level, lipolytic synchronization. High-resolution, quantitative sampling by droplet microfluidics thus permitted unique biological information to be observed, giving an analytical framework poised for future studies of dynamic oscillatory function of adipose and other tissues.
Collapse
Affiliation(s)
- Juan Hu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | | | | | | |
Collapse
|
30
|
On-chip Carba NP test for accurate and high throughput detection of carbapenemase-producing Enterobacteriaceae. Talanta 2020; 210:120656. [DOI: 10.1016/j.talanta.2019.120656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/09/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022]
|
31
|
Kang K, Wang X, Meng C, He L, Sang X, Zheng Y, Xu H. The application of single-cell sequencing technology in the diagnosis and treatment of hepatocellular carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:790. [PMID: 32042806 DOI: 10.21037/atm.2019.11.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Single-cell sequencing technology refers to the sequencing of the genome, transcriptome and epigenome in one single cell. Comparing to traditional histology, single-cell sequencing can reveal the genetic heterogeneity among different cells. Due to the complex pathogenesis and various pathological types of hepatocellular carcinoma (HCC), studies on the heterogeneity of tumor cells confer improvement for its clinical diagnosis, treatment and prognosis. This article summarizes the principal basis and development of single-cell sequencing technology, as well as its increasing application in the field of HCC.
Collapse
Affiliation(s)
- Kai Kang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xuezhu Wang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Chan Meng
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Li He
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yongchang Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Haifeng Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
32
|
Laing AF, Tirumala V, Hegarty E, Mondal S, Zhao P, Hamilton WB, Brickman JM, Ben-Yakar A. An automated microfluidic device for time-lapse imaging of mouse embryonic stem cells. BIOMICROFLUIDICS 2019; 13:054102. [PMID: 31558920 PMCID: PMC6748857 DOI: 10.1063/1.5124057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
Long-term, time-lapse imaging studies of embryonic stem cells (ESCs) require a controlled and stable culturing environment for high-resolution imaging. Microfluidics is well-suited for such studies, especially when the media composition needs to be rapidly and accurately altered without disrupting the imaging. Current studies in plates, which can only add molecules at the start of an experiment without any information on the levels of endogenous signaling before the exposure, are incompatible with continuous high-resolution imaging and cell-tracking. Here, we present a custom designed, fully automated microfluidic chip to overcome these challenges. A unique feature of our chip includes three-dimensional ports that can connect completely sealed on-chip valves for fluid control to individually addressable cell culture chambers with thin glass bottoms for high-resolution imaging. We developed a robust protocol for on-chip culturing of mouse ESCs for minimum of 3 days, to carry out experiments reliably and repeatedly. The on-chip ESC growth rate was similar to that on standard culture plates with same initial cell density. We tested the chips for high-resolution, time-lapse imaging of a sensitive reporter of ESC lineage priming, Nanog-GFP, and HHex-Venus with an H2B-mCherry nuclear marker for cell-tracking. Two color imaging of cells was possible over a 24-hr period while maintaining cell viability. Importantly, changing the media did not affect our ability to track individual cells. This system now enables long-term fluorescence imaging studies in a reliable and automated manner in a fully controlled microenvironment.
Collapse
Affiliation(s)
- Adam F. Laing
- Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton St., Austin, Texas 78712, USA
| | - Venkat Tirumala
- Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St., Austin, Texas 78712, USA
| | - Evan Hegarty
- Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton St., Austin, Texas 78712, USA
| | - Sudip Mondal
- Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton St., Austin, Texas 78712, USA
| | - Peisen Zhao
- Department of Electrical and Computer Engineering, The University of Texas at Austin, 2501 Speedway, Austin, Texas 78712, USA
| | - William B. Hamilton
- The Novo Nordisk Foundation Center for Stem Cell Biology—DanStem, University of Copenhagen, 3B Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Joshua M. Brickman
- The Novo Nordisk Foundation Center for Stem Cell Biology—DanStem, University of Copenhagen, 3B Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | | |
Collapse
|
33
|
Lin J, Jordi C, Son M, Van Phan H, Drayman N, Abasiyanik MF, Vistain L, Tu HL, Tay S. Ultra-sensitive digital quantification of proteins and mRNA in single cells. Nat Commun 2019; 10:3544. [PMID: 31391463 PMCID: PMC6685952 DOI: 10.1038/s41467-019-11531-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 07/16/2019] [Indexed: 12/15/2022] Open
Abstract
Simultaneous measurement of proteins and mRNA in single cells enables quantitative understanding and modeling of cellular functions. Here, we present an automated microfluidic system for multi-parameter and ultra-sensitive protein/mRNA measurements in single cells. Our technology improves the sensitivity of digital proximity ligation assay by up to 55-fold, with a detection limit of 2277 proteins per cell and with detection efficiency of as few as 29 protein molecules. Our measurements using this system reveal higher mRNA/protein correlation in single mammalian cells than previous estimates. Furthermore, time-lapse imaging of herpes simplex virus 1 infected epithelial cells enabled by our device shows that expression of ICP4 -a major transcription factor regulating hundreds of viral genes- is only partially correlated with viral protein counts, suggesting that many cells go through abortive infection. These results highlight the importance of high-sensitivity protein/mRNA quantification for understanding fundamental molecular mechanisms in individual cells. Digital proximity ligation assay (dPLA) can measure proteins and mRNAs in single cells, but is not compatible with cell imaging and cannot quantify rare proteins due to a high dilution factor. Here the authors present an automated microfluidic device that combines live-cell imaging, chemical stimulation, and dPLA in a smaller reaction volume.
Collapse
Affiliation(s)
- Jing Lin
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Christian Jordi
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.,Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | - Minjun Son
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Hoang Van Phan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Nir Drayman
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Mustafa Fatih Abasiyanik
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Luke Vistain
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Hsiung-Lin Tu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.,Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA. .,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
34
|
Sonnen KF, Merten CA. Microfluidics as an Emerging Precision Tool in Developmental Biology. Dev Cell 2019; 48:293-311. [PMID: 30753835 DOI: 10.1016/j.devcel.2019.01.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/13/2018] [Accepted: 01/10/2019] [Indexed: 12/18/2022]
Abstract
Microfluidics has become a precision tool in modern biology. It enables omics data to be obtained from individual cells, as compared to averaged signals from cell populations, and it allows manipulation of biological specimens in entirely new ways. Cells and organisms can be perturbed at extraordinary spatiotemporal resolution, revealing mechanistic insights that would otherwise remain hidden. In this perspective article, we discuss the current and future impact of microfluidic technology in the field of developmental biology. In addition, we provide detailed information on how to start using this technology even without prior experience.
Collapse
Affiliation(s)
| | - Christoph A Merten
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
35
|
Jeknić S, Kudo T, Covert MW. Techniques for Studying Decoding of Single Cell Dynamics. Front Immunol 2019; 10:755. [PMID: 31031756 PMCID: PMC6470274 DOI: 10.3389/fimmu.2019.00755] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/21/2019] [Indexed: 12/21/2022] Open
Abstract
Cells must be able to interpret signals they encounter and reliably generate an appropriate response. It has long been known that the dynamics of transcription factor and kinase activation can play a crucial role in selecting an individual cell's response. The study of cellular dynamics has expanded dramatically in the last few years, with dynamics being discovered in novel pathways, new insights being revealed about the importance of dynamics, and technological improvements increasing the throughput and capabilities of single cell measurements. In this review, we highlight the important developments in this field, with a focus on the methods used to make new discoveries. We also include a discussion on improvements in methods for engineering and measuring single cell dynamics and responses. Finally, we will briefly highlight some of the many challenges and avenues of research that are still open.
Collapse
Affiliation(s)
- Stevan Jeknić
- Department of Bioengineering, Stanford University, Stanford, CA, United States.,Allen Discovery Center for Systems Modeling of Infection, Stanford, CA, United States
| | - Takamasa Kudo
- Allen Discovery Center for Systems Modeling of Infection, Stanford, CA, United States.,Department of Chemical and Systems Biology, Stanford University, Stanford, CA, United States
| | - Markus W Covert
- Department of Bioengineering, Stanford University, Stanford, CA, United States.,Allen Discovery Center for Systems Modeling of Infection, Stanford, CA, United States.,Department of Chemical and Systems Biology, Stanford University, Stanford, CA, United States
| |
Collapse
|
36
|
Özkale B, Parreira R, Bekdemir A, Pancaldi L, Özelçi E, Amadio C, Kaynak M, Stellacci F, Mooney DJ, Sakar MS. Modular soft robotic microdevices for dexterous biomanipulation. LAB ON A CHIP 2019; 19:778-788. [PMID: 30714604 PMCID: PMC6394202 DOI: 10.1039/c8lc01200h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/18/2019] [Indexed: 05/20/2023]
Abstract
We present a methodology for building biologically inspired, soft microelectromechanical systems (MEMS) devices. Our strategy combines several advanced techniques including programmable colloidal self-assembly, light-harvesting with plasmonic nanotransducers, and in situ polymerization of compliant hydrogel mechanisms. We synthesize optomechanical microactuators using a template-assisted microfluidic approach in which gold nanorods coated with thermoresponsive poly(N-isopropylmethacrylamide) (pNIPMAM) polymer function as nanoscale building blocks. The resulting microactuators exhibit mechanical properties (4.8 ± 2.1 kPa stiffness) and performance metrics (relative stroke up to 0.3 and stress up to 10 kPa) that are comparable to that of bioengineered muscular constructs. Near-infrared (NIR) laser illumination provides effective spatiotemporal control over actuation (sub-micron spatial resolution at millisecond temporal resolution). Spatially modulated hydrogel photolithography guided by an experimentally validated finite element-based design methodology allows construction of compliant poly(ethylene glycol) diacrylate (PEGDA) mechanisms around the microactuators. We demonstrate the versatility of our approach by manufacturing a diverse array of microdevices including lever arms, continuum microrobots, and dexterous microgrippers. We present a microscale compression device that is developed for mechanical testing of three-dimensional biological samples such as spheroids under physiological conditions.
Collapse
Affiliation(s)
- Berna Özkale
- Institute of Mechanical Engineering and Institute of Bioengineering
, Ecole Polytechnique Federale de Lausanne (EPFL)
,
CH-1015 Lausanne
, Switzerland
.
- Wyss Institute of Biologically Inspired Engineering
, School of Engineering and Applied Sciences
, Harvard University
,
Massachusetts 02138
, USA
| | - Raquel Parreira
- Institute of Mechanical Engineering and Institute of Bioengineering
, Ecole Polytechnique Federale de Lausanne (EPFL)
,
CH-1015 Lausanne
, Switzerland
.
| | - Ahmet Bekdemir
- Institute of Materials Science and Engineering
, EPFL
,
CH-1015 Lausanne
, Switzerland
| | - Lucio Pancaldi
- Institute of Mechanical Engineering and Institute of Bioengineering
, Ecole Polytechnique Federale de Lausanne (EPFL)
,
CH-1015 Lausanne
, Switzerland
.
| | - Ece Özelçi
- Institute of Mechanical Engineering and Institute of Bioengineering
, Ecole Polytechnique Federale de Lausanne (EPFL)
,
CH-1015 Lausanne
, Switzerland
.
| | - Claire Amadio
- Institute of Mechanical Engineering and Institute of Bioengineering
, Ecole Polytechnique Federale de Lausanne (EPFL)
,
CH-1015 Lausanne
, Switzerland
.
| | - Murat Kaynak
- Institute of Mechanical Engineering and Institute of Bioengineering
, Ecole Polytechnique Federale de Lausanne (EPFL)
,
CH-1015 Lausanne
, Switzerland
.
| | - Francesco Stellacci
- Institute of Materials Science and Engineering
, EPFL
,
CH-1015 Lausanne
, Switzerland
| | - David J. Mooney
- Wyss Institute of Biologically Inspired Engineering
, School of Engineering and Applied Sciences
, Harvard University
,
Massachusetts 02138
, USA
| | - Mahmut Selman Sakar
- Institute of Mechanical Engineering and Institute of Bioengineering
, Ecole Polytechnique Federale de Lausanne (EPFL)
,
CH-1015 Lausanne
, Switzerland
.
| |
Collapse
|
37
|
Lazar IM, Deng J, Stremler MA, Ahuja S. Microfluidic reactors for advancing the MS analysis of fast biological responses. MICROSYSTEMS & NANOENGINEERING 2019; 5:7. [PMID: 31057934 PMCID: PMC6369226 DOI: 10.1038/s41378-019-0048-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/08/2018] [Accepted: 12/29/2018] [Indexed: 06/09/2023]
Abstract
The response of cells to physical or chemical stimuli is complex, unfolding on time-scales from seconds to days, with or without de novo protein synthesis, and involving signaling processes that are transient or sustained. By combining the technology of microfluidics that supports fast and precise execution of a variety of cell handling operations, with that of mass spectrometry detection that facilitates an accurate and complex characterization of the protein complement of cells, in this work, we developed a platform that supports (near) real-time sampling and proteome-level capturing of cellular responses to a perturbation such as treatment with mitogens. The geometric design of the chip supports three critical features: (a) capture of a sufficient number of cells to meet the detection limit requirements of mass spectrometry instrumentation, (b) fluid delivery for uniform stimulation of the resident cells, and (c) fast cell recovery, lysis and processing for accurate sampling of time-sensitive cellular responses to a stimulus. COMSOL simulations and microscopy were used to predict and evaluate the flow behavior inside the microfluidic device. Proteomic analysis of the cellular extracts generated by the chip experiments revealed that the identified proteins were representative of all cellular locations, exosomes, and major biological processes related to proliferation and signaling, demonstrating that the device holds promising potential for integration into complex lab-on-chip work-flows that address systems biology questions. The applicability of the chips to study time-sensitive cellular responses is discussed in terms of technological challenges and biological relevance.
Collapse
Affiliation(s)
- Iulia M. Lazar
- Department of Biological Sciences, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA 24061 USA
- Virginia Tech Carilion School of Medicine, Virginia Tech, 2 Riverside Circle, Roanoke, VA 24016 USA
| | - Jingren Deng
- Department of Biological Sciences, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA 24061 USA
| | - Mark A. Stremler
- Department of Mechanical Engineering, Virginia Tech, 780 Drillfield Drive, Room 333P, Blacksburg, VA 24061 USA
| | - Shreya Ahuja
- Department of Biological Sciences, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA 24061 USA
| |
Collapse
|
38
|
Cai B, Ji TT, Wang N, Li XB, He RX, Liu W, Wang G, Zhao XZ, Wang L, Wang Z. A microfluidic platform utilizing anchored water-in-oil-in-water double emulsions to create a niche for analyzing single non-adherent cells. LAB ON A CHIP 2019; 19:422-431. [PMID: 30575843 DOI: 10.1039/c8lc01130c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Non-adherent cells play key roles in various biological processes. Studies on this type of cell, especially at single-cell resolution, help reveal molecular mechanisms underlying many biological and pathological processes. The emerging microfluidics technology has developed effective methods for analyzing cells. However, it remains challenging to treat and monitor single live non-adherent cells in an in situ, long-term, and real-time manner. Herein, a microfluidic platform was set up to generate and anchor cell-laden water-in-oil-in-water (W/O/W) double emulsions (DEs) to investigate these cells. Within the device, W/O/W DEs encapsulating non-adherent cells were generated through two adjacent flow-focusing structures and subsequently anchored in an array of microchambers. These droplets maintained the W/O/W structure and the anchorage status in the continuous perfusion fluid for at least one week. The mass transfer of different molecules with suitable molecular weights and partition coefficients between the interior and exterior of W/O/W DEs could be regulated by perfusion fluid flow rates. These features endow this platform with potential to continuously supply encapsulated non-adherent cells with nutrients or small-molecule stimuli/drugs through fluid perfusion. Meanwhile, the confinement of cells in the anchored DEs favored long-term monitoring of cellular dynamic behaviors and responses. As a proof of concept, fluorescein diacetate (FDA) was employed to visualize the cellular uptake and biochemical metabolism of TF-1 human erythroleukemia cells. We believe that this W/O/W DE anchorage and perfusion platform would benefit single-cell-level studies as well as small-molecule drug discovery requiring live non-adherent cells.
Collapse
Affiliation(s)
- Bo Cai
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhang X, Li Y, Fang H, Wei H, Mu Y, Lang MF, Sun J. The influence of cell morphology on microfluidic single cell analysis. RSC Adv 2018; 9:139-144. [PMID: 35521600 PMCID: PMC9059331 DOI: 10.1039/c8ra08303g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/16/2018] [Indexed: 11/21/2022] Open
Abstract
Microfluidics has been widely used in single cell analysis. Current protocols allow either spread or round cells to be analyzed. However, the contribution of cell morphology to single cell analysis has not been noted. In this study, four proteins (EGFR, PTEN, pAKT, and pS6) in the EGFR signaling pathway are measured simultaneously using microfluidic image cytometry (MIC) in glioblastoma cells U87. The results show that the MIC technology can reveal different subsets of cells corresponding to the four protein expression levels no matter whether they are round or spread at the time of the measurements. However, sharper distinction is obtained from round cells, which implies that cellular heterogeneity can be better resolved with round cells during in situ protein quantification by imaging cytometry. This study calls attention to the role of cell morphology in single cell analysis. Future studies should examine whether differences in data interpretation resulting from cell morphology could reveal altered biological meanings.
Collapse
Affiliation(s)
- Xuxin Zhang
- Affiliated Zhongshan Hospital of Dalian University Dalian 116001 China
| | - Yanzhao Li
- Affiliated Zhongshan Hospital of Dalian University Dalian 116001 China
| | - Hanshu Fang
- Medical College, Institute of Microanalysis, Dalian University Dalian 116622 China
| | - Hongquan Wei
- First Hospital of China Medical University Shenyang 110001 China
| | - Ying Mu
- Institute of Cyber-Systems and Control, Zhejiang University Hangzhou 310007 China
| | - Ming-Fei Lang
- Medical College, Institute of Microanalysis, Dalian University Dalian 116622 China
| | - Jing Sun
- The Key Laboratory of Biomarker High-throughput Screening and Target Translation of Breast and Gastrointestinal Tumor of Liaoning Province, Dalian University Dalian 116622 China.,College of Environmental and Chemical Engineering, Institute of Microanalysis, Dalian University Dalian 116622 China
| |
Collapse
|
40
|
Chen P, Yan S, Wang J, Guo Y, Dong Y, Feng X, Zeng X, Li Y, Du W, Liu BF. Dynamic Microfluidic Cytometry for Single-Cell Cellomics: High-Throughput Probing Single-Cell-Resolution Signaling. Anal Chem 2018; 91:1619-1626. [DOI: 10.1021/acs.analchem.8b05179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics−Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuangqian Yan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics−Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jie Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics−Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiran Guo
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics−Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yue Dong
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics−Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics−Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuemei Zeng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics−Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics−Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics−Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics−Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
41
|
Abstract
Microfluidics has played a vital role in developing novel methods to investigate biological phenomena at the molecular and cellular level during the last two decades. Microscale engineering of cellular systems is nevertheless a nascent field marked inherently by frequent disruptive advancements in technology such as PDMS-based soft lithography. Viable culture and manipulation of cells in microfluidic devices requires knowledge across multiple disciplines including molecular and cellular biology, chemistry, physics, and engineering. There has been numerous excellent reviews in the past 15 years on applications of microfluidics for molecular and cellular biology including microfluidic cell culture (Berthier et al., 2012; El-Ali, Sorger, & Jensen, 2006; Halldorsson et al., 2015; Kim et al., 2007; Mehling & Tay, 2014; Sackmann et al., 2014; Whitesides, 2006; Young & Beebe, 2010), cell culture models (Gupta et al., 2016; Inamdar & Borenstein, 2011; Meyvantsson & Beebe, 2008), cell secretion (Schrell et al., 2016), chemotaxis (Kim & Wu, 2012; Wu et al., 2013), neuron culture (Millet & Gillette, 2012a, 2012b), drug screening (Dittrich & Manz, 2006; Eribol, Uguz, & Ulgen, 2016; Wu, Huang, & Lee, 2010), cell sorting (Autebert et al., 2012; Bhagat et al., 2010; Gossett et al., 2010; Wyatt Shields Iv, Reyes, & López, 2015), single cell studies (Lecault et al., 2012; Reece et al., 2016; Yin & Marshall, 2012), stem cell biology (Burdick & Vunjak-Novakovic, 2009; Wu et al., 2011; Zhang & Austin, 2012), cell differentiation (Zhang et al., 2017a), systems biology (Breslauer, Lee, & Lee, 2006), 3D cell culture (Huh et al., 2011; Li et al., 2012; van Duinen et al., 2015), spheroids and organoids (Lee et al., 2016; Montanez-Sauri, Beebe, & Sung, 2015; Morimoto & Takeuchi, 2013; Skardal et al., 2016; Young, 2013), organ-on-chip (Bhatia & Ingber, 2014; Esch, Bahinski, & Huh, 2015; Huh et al., 2011; van der Meer & van den Berg, 2012), and tissue engineering (Andersson & Van Den Berg, 2004; Choi et al., 2007; Hasan et al., 2014). In this chapter, we provide an overview of PDMS-based microdevices for microfluidic cell culture. We discuss the advantages and challenges of using PDMS-based soft lithography for microfluidic cell culture and highlight recent progress and future directions in this area.
Collapse
Affiliation(s)
- Melikhan Tanyeri
- Biomedical Engineering Program, Duquesne University, Pittsburgh, PA, United States
| | - Savaş Tay
- Institute of Molecular Engineering, University of Chicago, Chicago, IL, United States; Institute of Genomics and Systems Biology, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
42
|
Dannhauser D, Rossi D, Memmolo P, Finizio A, Ferraro P, Netti PA, Causa F. Biophysical investigation of living monocytes in flow by collaborative coherent imaging techniques. BIOMEDICAL OPTICS EXPRESS 2018; 9:5194-5204. [PMID: 30460122 PMCID: PMC6238935 DOI: 10.1364/boe.9.005194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/21/2018] [Accepted: 09/23/2018] [Indexed: 05/17/2023]
Abstract
We implemented a completely label-free biophysical (morphometric and optical) property characterization of living monocytes in flow, using measurements obtained from two coherent imaging techniques: a pure light scattering approach to obtain an optical signature (OS) of cells, and a digital holography (DH) approach to achieve optical cell reconstructions in flow. A precise 3D cell alignment platform, taking advantage of viscoelastic fluid properties and microfluidic channel geometry, was used to investigate the OS of cells to achieve their refractive index, ratio of the nucleus over cytoplasm, and overall cell dimension. Further quantitative phase-contrast reconstructions by DH were employed to calculate surface area, dry mass, and biovolume of monocytes by using the OS outcomes as input parameters. The results show significantly different biophysical cell properties, confirming the possibility to differentiate monocytes from other cell classes in flow, thus avoiding chemical cell staining or labeling, which are nowadays used.
Collapse
Affiliation(s)
- David Dannhauser
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Domenico Rossi
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Pasquale Memmolo
- CNR-ISASI Institute of Applied Sciences & Intelligent Systems “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Andrea Finizio
- CNR-ISASI Institute of Applied Sciences & Intelligent Systems “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Pietro Ferraro
- CNR-ISASI Institute of Applied Sciences & Intelligent Systems “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Università degli Studi di Napoli “Federico II”, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Filippo Causa
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Università degli Studi di Napoli “Federico II”, Piazzale Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
43
|
Sinha N, Subedi N, Tel J. Integrating Immunology and Microfluidics for Single Immune Cell Analysis. Front Immunol 2018; 9:2373. [PMID: 30459757 PMCID: PMC6232771 DOI: 10.3389/fimmu.2018.02373] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022] Open
Abstract
The field of immunoengineering aims to develop novel therapies and modern vaccines to manipulate and modulate the immune system and applies innovative technologies toward improved understanding of the immune system in health and disease. Microfluidics has proven to be an excellent technology for analytics in biology and chemistry. From simple microsystem chips to complex microfluidic designs, these platforms have witnessed an immense growth over the last decades with frequent emergence of new designs. Microfluidics provides a highly robust and precise tool which led to its widespread application in single-cell analysis of immune cells. Single-cell analysis allows scientists to account for the heterogeneous behavior of immune cells which often gets overshadowed when conventional bulk study methods are used. Application of single-cell analysis using microfluidics has facilitated the identification of several novel functional immune cell subsets, quantification of signaling molecules, and understanding of cellular communication and signaling pathways. Single-cell analysis research in combination with microfluidics has paved the way for the development of novel therapies, point-of-care diagnostics, and even more complex microfluidic platforms that aid in creating in vitro cellular microenvironments for applications in drug and toxicity screening. In this review, we provide a comprehensive overview on the integration of microsystems and microfluidics with immunology and focus on different designs developed to decode single immune cell behavior and cellular communication. We have categorized the microfluidic designs in three specific categories: microfluidic chips with cell traps, valve-based microfluidics, and droplet microfluidics that have facilitated the ongoing research in the field of immunology at single-cell level.
Collapse
Affiliation(s)
- Nidhi Sinha
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Nikita Subedi
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
44
|
Sun Y, Cai B, Wei X, Wang Z, Rao L, Meng QF, Liao Q, Liu W, Guo S, Zhao X. A valve-based microfluidic device for on-chip single cell treatments. Electrophoresis 2018; 40:961-968. [PMID: 30155963 DOI: 10.1002/elps.201800213] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/19/2018] [Accepted: 08/22/2018] [Indexed: 11/08/2022]
Abstract
Assays toward single-cell analysis have attracted the attention in biological and biomedical researches to reveal cellular mechanisms as well as heterogeneity. Yet nowadays microfluidic devices for single-cell analysis have several drawbacks: some would cause cell damage due to the hydraulic forces directly acting on cells, while others could not implement biological assays since they could not immobilize cells while manipulating the reagents at the same time. In this work, we presented a two-layer pneumatic valve-based platform to implement cell immobilization and treatment on-chip simultaneously, and cells after treatment could be collected non-destructively for further analysis. Target cells could be encapsulated in sodium alginate droplets which solidified into hydrogel when reacted with Ca2+ . The size of hydrogel beads could be precisely controlled by modulating flow rates of continuous/disperse phases. While regulating fluid resistance between the main channel and passages by the integrated pneumatic valves, on-chip capture and release of hydrogel beads was implemented. As a proof of concept for on-chip single-cell treatments, we showed cellular live/dead staining based on our devices. This method would have potential in single cell manipulation for biochemical cellular assays.
Collapse
Affiliation(s)
- Yue Sun
- School of Physics and Technology, Wuhan University, Wuhan, P. R. China
| | - Bo Cai
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xiaoyun Wei
- School of Physics and Technology, Wuhan University, Wuhan, P. R. China
| | - Zixiang Wang
- School of Physics and Technology, Wuhan University, Wuhan, P. R. China
| | - Lang Rao
- School of Physics and Technology, Wuhan University, Wuhan, P. R. China
| | - Qian-Fang Meng
- School of Physics and Technology, Wuhan University, Wuhan, P. R. China
| | - Qingquan Liao
- School of Physics and Technology, Wuhan University, Wuhan, P. R. China
| | - Wei Liu
- School of Physics and Technology, Wuhan University, Wuhan, P. R. China
| | - Shishang Guo
- School of Physics and Technology, Wuhan University, Wuhan, P. R. China
| | - Xingzhong Zhao
- School of Physics and Technology, Wuhan University, Wuhan, P. R. China
| |
Collapse
|
45
|
Lee DH, Li X, Jiang A, Lee AP. An integrated microfluidic platform for size-selective single-cell trapping of monocytes from blood. BIOMICROFLUIDICS 2018; 12:054104. [PMID: 30271519 PMCID: PMC6145860 DOI: 10.1063/1.5049149] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/03/2018] [Indexed: 05/08/2023]
Abstract
Reliable separation and isolation of target single cells from bodily fluids with high purity is of great significance for an accurate and quantitative understanding of the cellular heterogeneity. Here, we describe a fully integrated single-blood-cell analysis platform capable of size-selective cell separation from a population containing a wide distribution of sizes such as diluted blood sample and highly efficient entrapment of single monocytes. The spiked single U937 cells (human monocyte cell line) are separated in sequence by two different-sized microfilters for removing large cell clumps, white blood cells, and red blood cells and then discriminated by dielectrophoretic force and isolated individually by downstream single-cell trapping arrays. When 2% hematocrit blood cells with a final ratio of 1:1000 U937 cells were introduced under the flow rate of 0.2 ml/h, 400 U937 cells were trapped sequentially and deterministically within 40 s with single-cell occupancy of up to 85%. As a proof-of-concept, we also demonstrated single monocyte isolation from diluted blood using the integrated microfluidic device. This size-selective, label-free, and live-cell enrichment microfluidic single blood-cell isolation platform for the processing of cancer and blood cells has a myriad of applications in areas such as single-cell genetic analysis, stem cell biology, point-of-care diagnostics, and cancer diagnostics.
Collapse
Affiliation(s)
| | - Xuan Li
- Department of Biomedical Engineering, University of California at Irvine, Irvine, California 92967, USA
| | - Alan Jiang
- Department of Biomedical Engineering, University of California at Irvine, Irvine, California 92967, USA
| | | |
Collapse
|
46
|
Dettinger P, Frank T, Etzrodt M, Ahmed N, Reimann A, Trenzinger C, Loeffler D, Kokkaliaris KD, Schroeder T, Tay S. Automated Microfluidic System for Dynamic Stimulation and Tracking of Single Cells. Anal Chem 2018; 90:10695-10700. [PMID: 30059208 DOI: 10.1021/acs.analchem.8b00312] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dynamic environments determine cell fate decisions and function. Understanding the relationship between extrinsic signals on cellular responses and cell fate requires the ability to dynamically change environmental inputs in vitro, while continuously observing individual cells over extended periods of time. This is challenging for nonadherent cells, such as hematopoietic stem and progenitor cells, because media flow displaces and disturbs such cells, preventing culture and tracking of single cells. Here, we present a programmable microfluidic system designed for the long-term culture and time-lapse imaging of nonadherent cells in dynamically changing cell culture conditions without losing track of individual cells. The dynamic, valve-controlled design permits targeted seeding of cells in up to 48 independently controlled culture chambers, each providing sufficient space for long-term cell colony expansion. Diffusion-based media exchange occurs rapidly and minimizes displacement of cells and eliminates shear stress. The chip was successfully tested with long-term culture and tracking of primary hematopoietic stem and progenitor cells, and murine embryonic stem cells. This system will have important applications to analyze dynamic signaling inputs controlling fate choices.
Collapse
Affiliation(s)
- Philip Dettinger
- Department of Biosystems Science and Engineering , ETH Zurich, Mattenstrasse 26 4058 Basel , Switzerland
| | - Tino Frank
- Department of Biosystems Science and Engineering , ETH Zurich, Mattenstrasse 26 4058 Basel , Switzerland
| | - Martin Etzrodt
- Department of Biosystems Science and Engineering , ETH Zurich, Mattenstrasse 26 4058 Basel , Switzerland
| | - Nouraiz Ahmed
- Department of Biosystems Science and Engineering , ETH Zurich, Mattenstrasse 26 4058 Basel , Switzerland
| | - Andreas Reimann
- Department of Biosystems Science and Engineering , ETH Zurich, Mattenstrasse 26 4058 Basel , Switzerland
| | - Christoph Trenzinger
- Department of Biosystems Science and Engineering , ETH Zurich, Mattenstrasse 26 4058 Basel , Switzerland
| | - Dirk Loeffler
- Department of Biosystems Science and Engineering , ETH Zurich, Mattenstrasse 26 4058 Basel , Switzerland
| | - Konstantinos D Kokkaliaris
- Department of Biosystems Science and Engineering , ETH Zurich, Mattenstrasse 26 4058 Basel , Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering , ETH Zurich, Mattenstrasse 26 4058 Basel , Switzerland
| | - Savaş Tay
- Department of Biosystems Science and Engineering , ETH Zurich, Mattenstrasse 26 4058 Basel , Switzerland.,Institute for Molecular Engineering , The University of Chicago , 5640 S. Ellis Ave , Chicago , Illinois 60637 , United States
| |
Collapse
|
47
|
Nano-scale microfluidics to study 3D chemotaxis at the single cell level. PLoS One 2018; 13:e0198330. [PMID: 29879160 PMCID: PMC5991685 DOI: 10.1371/journal.pone.0198330] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/17/2018] [Indexed: 11/19/2022] Open
Abstract
Directed migration of cells relies on their ability to sense directional guidance cues and to interact with pericellular structures in order to transduce contractile cytoskeletal- into mechanical forces. These biomechanical processes depend highly on microenvironmental factors such as exposure to 2D surfaces or 3D matrices. In vivo, the majority of cells are exposed to 3D environments. Data on 3D cell migration are mostly derived from intravital microscopy or collagen-based in vitro assays. Both approaches offer only limited controllability of experimental conditions. Here, we developed an automated microfluidic system that allows positioning of cells in 3D microenvironments containing highly controlled diffusion-based chemokine gradients. Tracking migration in such gradients was feasible in real time at the single cell level. Moreover, the setup allowed on-chip immunocytochemistry and thus linking of functional with phenotypical properties in individual cells. Spatially defined retrieval of cells from the device allows down-stream off-chip analysis. Using dendritic cells as a model, our setup specifically allowed us for the first time to quantitate key migration characteristics of cells exposed to identical gradients of the chemokine CCL19 yet placed on 2D vs in 3D environments. Migration properties between 2D and 3D migration were distinct. Morphological features of cells migrating in an in vitro 3D environment were similar to those of cells migrating in animal tissues, but different from cells migrating on a surface. Our system thus offers a highly controllable in vitro-mimic of a 3D environment that cells traffic in vivo.
Collapse
|
48
|
Jeong J, Frohberg NJ, Zhou E, Sulchek T, Qiu P. Accurately tracking single-cell movement trajectories in microfluidic cell sorting devices. PLoS One 2018; 13:e0192463. [PMID: 29414993 PMCID: PMC5802930 DOI: 10.1371/journal.pone.0192463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/23/2018] [Indexed: 01/08/2023] Open
Abstract
Microfluidics are routinely used to study cellular properties, including the efficient quantification of single-cell biomechanics and label-free cell sorting based on the biomechanical properties, such as elasticity, viscosity, stiffness, and adhesion. Both quantification and sorting applications require optimal design of the microfluidic devices and mathematical modeling of the interactions between cells, fluid, and the channel of the device. As a first step toward building such a mathematical model, we collected video recordings of cells moving through a ridged microfluidic channel designed to compress and redirect cells according to cell biomechanics. We developed an efficient algorithm that automatically and accurately tracked the cell trajectories in the recordings. We tested the algorithm on recordings of cells with different stiffness, and showed the correlation between cell stiffness and the tracked trajectories. Moreover, the tracking algorithm successfully picked up subtle differences of cell motion when passing through consecutive ridges. The algorithm for accurately tracking cell trajectories paves the way for future efforts of modeling the flow, forces, and dynamics of cell properties in microfluidics applications.
Collapse
Affiliation(s)
- Jenny Jeong
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Nicholas J. Frohberg
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Enlu Zhou
- School of Industrial and System Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Todd Sulchek
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Peng Qiu
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
49
|
Yang Y, Le Gac S, Terstappen LWMM, Rho HS. Parallel probing of drug uptake of single cancer cells on a microfluidic device. Electrophoresis 2017; 39:548-556. [DOI: 10.1002/elps.201700351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/07/2017] [Accepted: 11/20/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Yoonsun Yang
- Medical Cell BioPhysics Group; MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente; The Netherlands
| | - Séverine Le Gac
- Applied Microfluidics for BioEngineering Research Group; MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Engineering and Technical Medicine; University of Twente; The Netherlands
| | - Leon WMM Terstappen
- Medical Cell BioPhysics Group; MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente; The Netherlands
| | - Hoon Suk Rho
- Applied Microfluidics for BioEngineering Research Group; MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Engineering and Technical Medicine; University of Twente; The Netherlands
| |
Collapse
|
50
|
Villone MM, Memmolo P, Merola F, Mugnano M, Miccio L, Maffettone PL, Ferraro P. Full-angle tomographic phase microscopy of flowing quasi-spherical cells. LAB ON A CHIP 2017; 18:126-131. [PMID: 29168877 DOI: 10.1039/c7lc00943g] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We report a reliable full-angle tomographic phase microscopy (FA-TPM) method for flowing quasi-spherical cells along microfluidic channels. This method lies in a completely passive optical system, i.e. mechanical scanning or multi-direction probing of the sample is avoided. It exploits the engineered rolling of cells while they are flowing along a microfluidic channel. Here we demonstrate significant progress with respect to the state of the art of in-flow TPM by showing a general extension to cells having almost spherical shapes while they are flowing in suspension. In fact, the adopted strategy allows the accurate retrieval of rotation angles through a theoretical model of the cells' rotation in a dynamic microfluidic flow by matching it with phase-contrast images resulting from holographic reconstructions. So far, the proposed method is the first and the only one that permits to get in-flow TPM by probing the cells with full-angle, achieving accurate 3D refractive index mapping and the simplest optical setup, simultaneously. Proof of concept experiments were performed successfully on human breast adenocarcinoma MCF-7 cells, opening the way for the full characterization of circulating tumor cells (CTCs) in the new paradigm of liquid biopsy.
Collapse
Affiliation(s)
- Massimiliano M Villone
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples "Federico II", Piazzale Tecchio 80, 80125 Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|