1
|
Li H, Zhang KL, Kou Y, Xu S, Guo XM, Fu SY, Li Z, Zhang YJ, Chen X, Li JF. Resonance SERS probe based on the bifunctional molecule IR808 combined with SA test strips for highly sensitive detection of monkeypox virus. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 331:125761. [PMID: 39862575 DOI: 10.1016/j.saa.2025.125761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
As a zoonotic virus, highly sensitive detection of monkeypox virus is crucial for its prevention and control due to its rapid increase in cases worldwide and the extremely high risk of virus transmission. In this paper, based on the principle of antigen-antibody specific recognition, an ultrasensitive resonance Raman biosensing probe was prepared using a molecule with the bifunctionality of resonance Raman effect and capturing antibody; and with the strong affinity of the biotin-streptavidin (Bio-SA) system, Bio-antibody and SA test strips were prepared. To match the T-line of the test strip, a portable Raman instrument with a strip-shaped spot was designed. Its 0.2 mm spot width ensures full coverage of the T-line and stability of the obtained SERS spectrum of the test strip. Finally, in the pharyngeal swab system, the false positives generated by complex matrix interference were effectively reduced by utilizing the excellent hydrophobicity of S9 surfactant at a concentration of 0.5 %, ultimately achieving a detection limit of 1 pg/mL and taking less than 15 min. Experimental data shows that the SERS performance of SERRS probes is at least 2 orders of magnitude better than that of other highly sensitive molecular probes. Based on the use of bifunctional molecules and the affinity of the BiO-SA system, this approach ensures the strength of SERS signals, more efficient antibody loading, and the ability of the test strip to capture probes, and the effectiveness of surfactant S9% in suppressing false positives in throat swab systems was verified. The experiment proved that the scheme had certain reference value for the high-sensitivity POCT rapid detection of monkeypox virus based on SERS technology.
Collapse
Affiliation(s)
- Hongmei Li
- Clinical Research Institute, Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005 China
| | - Kai-Le Zhang
- Clinical Research Institute, Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005 China
| | - Yichuan Kou
- Clinical Research Institute, Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005 China
| | - Shanshan Xu
- Clinical Research Institute, Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005 China
| | - Xian-Ming Guo
- Clinical Research Institute, Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005 China
| | - Shi-Ying Fu
- Clinical Research Institute, Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005 China
| | - Zhiyong Li
- Clinical Research Institute, Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005 China.
| | - Yue-Jiao Zhang
- Clinical Research Institute, Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005 China.
| | - Xueqin Chen
- Clinical Research Institute, Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005 China.
| | - Jian-Feng Li
- Clinical Research Institute, Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005 China; Scientific Research Foundation of State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen 361005 China.
| |
Collapse
|
2
|
Shen R, Brownless ALR, Alansson N, Corbella M, Kamerlin SCL, Hengge AC. SHP-1 Variants Broaden the Understanding of pH-Dependent Activities in Protein Tyrosine Phosphatases. JACS AU 2024; 4:2874-2885. [PMID: 39211599 PMCID: PMC11350601 DOI: 10.1021/jacsau.4c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 09/04/2024]
Abstract
The protein tyrosine phosphatase (PTP) SHP-1 plays an important role in both immune regulation and oncogenesis. This enzyme is part of a broader family of PTPs that all play important regulatory roles in vivo. Common to these enzymes is a highly conserved aspartic acid (D421 in SHP-1) that acts as an acid/base catalyst during the PTP-catalyzed reaction. This residue is located on a mobile loop, the WPD-loop, the dynamic behavior of which is intimately connected to the catalytic activity. The SHP-1 WPD-loop variants H422Q, E427A, and S418A have been kinetically characterized and compared to those of the wild-type (WT) enzyme. These variants exhibit limiting magnitudes of k cat ranging from 43 to 77% of the WT enzyme. However, their pH profiles are significantly broadened in the basic pH range. As a result, above pH 6, the E427A and S418A variants have turnover numbers notably higher than those of WT SHP-1. Molecular modeling results indicate that the shifted pH dependencies result primarily from changes in solvation and hydrogen-bonding networks that affect the pK a of the D421 residue, explaining the changes in pH-rate profiles for k cat on the basic side. In contrast, a previous study of a noncatalytic residue variant of the PTP YopH, which also exhibited changes in pH dependency, showed that the catalytic change arose from mutation-induced changes in conformational equilibria of the WPD-loop. This finding and the present study show the existence of distinct strategies for nature to tune the activity of PTPs in particular environments through controlling the pH dependency of catalysis.
Collapse
Affiliation(s)
- Ruidan Shen
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322-0300, United States
| | - Alfie-Louise R. Brownless
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332-0400, United States
| | - Nikolas Alansson
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332-0400, United States
| | - Marina Corbella
- Departament
de Quımica Inorgànica i Orgànica (Secció
de Quımica Orgànica) & Institut de Quımica
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martı i Franquès 1, 08028 Barcelona, Spain
- Science
for Life Laboratory, Department of Chemistry—BMC, Uppsala University, BMC, P.O. Box 576, S-751 23 Uppsala, Sweden
| | - Shina C. L. Kamerlin
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332-0400, United States
- Science
for Life Laboratory, Department of Chemistry—BMC, Uppsala University, BMC, P.O. Box 576, S-751 23 Uppsala, Sweden
| | - Alvan C. Hengge
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322-0300, United States
| |
Collapse
|
3
|
Huang Y, Zhang Q, Lam CYK, Li C, Yang C, Zhong Z, Zhang R, Yan J, Chen J, Yin B, Wong SHD, Yang M. An Aggregation-Induced Emission-Based Dual Emitting Nanoprobe for Detecting Intracellular pH and Unravelling Metabolic Variations in Differentiating Lymphocytes. ACS NANO 2024; 18:15935-15949. [PMID: 38833531 DOI: 10.1021/acsnano.4c03796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Monitoring T lymphocyte differentiation is essential for understanding T cell fate regulation and advancing adoptive T cell immunotherapy. However, current biomarker analysis methods necessitate cell lysis, leading to source depletion. Intracellular pH (pHi) can be affected by the presence of lactic acid (LA), a metabolic mediator of T cell activity such as glycolysis during T cell activation; therefore, it is a potentially a good biomarker of T cell state. In this work, a dual emitting enhancement-based nanoprobe, namely, AIEgen@F127-AptCD8, was developed to accurately detect the pHi of T cells to "read" the T cell differentiation process. The nanocore of this probe comprises a pair of AIE dyes, TPE-AMC (pH-sensitive moiety) and TPE-TCF, that form a donor-acceptor pair for sensitive detection of pHi by dual emitting enhancement analysis. The nanoprobe exhibits a distinctly sensitive narrow range of pHi values (from 6.0 to 7.4) that can precisely distinguish the differentiated lymphocytes from naïve ones based on their distinct pHi profiles. Activated CD8+ T cells demonstrate lower pHi (6.49 ± 0.09) than the naïve cells (7.26 ± 0.11); Jurkat cells exhibit lower pHi (6.43 ± 0.06) compared to that of nonactivated ones (7.29 ± 0.09) on 7 days post-activation. The glycolytic product profiles in T cells strongly correlate with their pHi profiles, ascertaining the reliability of probing pHi for predicting T cell states. The specificity and dynamic detection capabilities of this nanoprobe make it a promising tool for indirectly and noninvasively monitoring T cell activation and differentiation states.
Collapse
Affiliation(s)
- Yingying Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Qin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Ching Ying Katherine Lam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Chuanqi Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Chen Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Zhiming Zhong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Ruolin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Jiaxiang Yan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Jiareng Chen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Bohan Yin
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Siu Hong Dexter Wong
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
| |
Collapse
|
4
|
Tang M, Chen B, Xia H, Pan M, Zhao R, Zhou J, Yin Q, Wan F, Yan Y, Fu C, Zhong L, Zhang Q, Wang Y. pH-gated nanoparticles selectively regulate lysosomal function of tumour-associated macrophages for cancer immunotherapy. Nat Commun 2023; 14:5888. [PMID: 37735462 PMCID: PMC10514266 DOI: 10.1038/s41467-023-41592-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
Tumour-associated macrophages (TAMs), as one of the most abundant tumour-infiltrating immune cells, play a pivotal role in tumour antigen clearance and immune suppression. M2-like TAMs present a heightened lysosomal acidity and protease activity, limiting an effective antigen cross-presentation. How to selectively reprogram M2-like TAMs to reinvigorate anti-tumour immune responses is challenging. Here, we report a pH-gated nanoadjuvant (PGN) that selectively targets the lysosomes of M2-like TAMs in tumours rather than the corresponding organelles from macrophages in healthy tissues. Enabled by the PGN nanotechnology, M2-like TAMs are specifically switched to a M1-like phenotype with attenuated lysosomal acidity and cathepsin activity for improved antigen cross-presentation, thus eliciting adaptive immune response and sustained tumour regression in tumour-bearing female mice. Our findings provide insights into how to specifically regulate lysosomal function of TAMs for efficient cancer immunotherapy.
Collapse
Affiliation(s)
- Mingmei Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Binlong Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Heming Xia
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Meijie Pan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ruiyang Zhao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jiayi Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qingqing Yin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Fangjie Wan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yue Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Chuanxun Fu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Lijun Zhong
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing, China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yiguang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China.
- Chemical Biology Center, Peking University, Beijing, China.
| |
Collapse
|
5
|
Srivastava P, Tavernaro I, Scholtz L, Genger C, Welker P, Schreiber F, Meyer K, Resch-Genger U. Dual color pH probes made from silica and polystyrene nanoparticles and their performance in cell studies. Sci Rep 2023; 13:1321. [PMID: 36693888 PMCID: PMC9873940 DOI: 10.1038/s41598-023-28203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
Ratiometric green-red fluorescent nanosensors for fluorometrically monitoring pH in the acidic range were designed from 80 nm-sized polystyrene (PS) and silica (SiO2) nanoparticles (NPs), red emissive reference dyes, and a green emissive naphthalimide pH probe, analytically and spectroscopically characterized, and compared regarding their sensing performance in aqueous dispersion and in cellular uptake studies. Preparation of these optical probes, which are excitable by 405 nm laser or LED light sources, involved the encapsulation of the pH-inert red-fluorescent dye Nile Red (NR) in the core of self-made carboxylated PSNPs by a simple swelling procedure and the fabrication of rhodamine B (RhB)-stained SiO2-NPs from a silane derivative of pH-insensitive RhB. Subsequently, the custom-made naphthalimide pH probe, that utilizes a protonation-controlled photoinduced electron transfer process, was covalently attached to the carboxylic acid groups at the surface of both types of NPs. Fluorescence microscopy studies with the molecular and nanoscale optical probes and A549 lung cancer cells confirmed the cellular uptake of all probes and their penetration into acidic cell compartments, i.e., the lysosomes, indicated by the switching ON of the green naphthalimide fluorescence. This underlines their suitability for intracellular pH sensing, with the SiO2-based nanosensor revealing the best performance regarding uptake speed and stability.
Collapse
Affiliation(s)
- Priyanka Srivastava
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany
| | - Isabella Tavernaro
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany
| | - Lena Scholtz
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Claudia Genger
- nanoPET Pharma GmbH, Robert-Koch-Platz 4, 10115, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Pia Welker
- nanoPET Pharma GmbH, Robert-Koch-Platz 4, 10115, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Frank Schreiber
- Division Biodeterioration and Reference Organisms, Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205, Berlin, Germany
| | - Klas Meyer
- Division Process Analytical Technology, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany
| | - Ute Resch-Genger
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany.
| |
Collapse
|
6
|
Yong MJ, Kang B, Yang U, Oh SS, Je JH. Live Streaming of a Single Cell's Life over a Local pH-Monitoring Nanowire Waveguide. NANO LETTERS 2022; 22:6375-6382. [PMID: 35877544 PMCID: PMC9372996 DOI: 10.1021/acs.nanolett.2c02185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Spatiotemporal pH monitoring of single living cells across rigid cell and organelle membranes has been challenging, despite its significance in understanding cellular heterogeneity. Here, we developed a mechanically robust yet tolerably thin nanowire waveguide that enables in situ monitoring of pH dynamics at desired cellular compartments via direct optical communication. By chemically labeling fluorescein at one end of a poly(vinylbenzyl azide) nanowire, we continuously monitored pH variations of different compartments inside a living cell, successfully observing organelle-exclusive pH homeostasis and stimuli-selective pH regulations. Importantly, it was demonstrated for the first time that, during the mammalian cell cycle, the nucleus displays pH homeostasis in interphase but a tidal pH curve in the mitotic phase, implying the existence of independent pH-regulating activities by the nuclear envelope. The rapid and accurate local pH-reporting capability of our nanowire waveguide would be highly valuable for investigating cellular behaviors under diverse biological situations in living cells.
Collapse
Affiliation(s)
- Moon-Jung Yong
- X-ray
Imaging Center and Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Byunghwa Kang
- X-ray
Imaging Center and Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Un Yang
- X-ray
Imaging Center and Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Seung Soo Oh
- X-ray
Imaging Center and Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Jung Ho Je
- X-ray
Imaging Center and Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| |
Collapse
|
7
|
Srivastava P, Tavernaro I, Genger C, Welker P, Hübner O, Resch-Genger U. Multicolor Polystyrene Nanosensors for the Monitoring of Acidic, Neutral, and Basic pH Values and Cellular Uptake Studies. Anal Chem 2022; 94:9656-9664. [PMID: 35731967 DOI: 10.1021/acs.analchem.2c00944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A first tricolor fluorescent pH nanosensor is presented, which was rationally designed from biocompatible carboxylated polystyrene nanoparticles and two analyte-responsive molecular fluorophores. Its fabrication involved particle staining with a blue-red-emissive dyad, consisting of a rhodamine moiety responsive to acidic pH values and a pH-inert quinoline fluorophore, followed by the covalent attachment of a fluorescein dye to the particle surface that signals neutral and basic pH values with a green fluorescence. These sensor particles change their fluorescence from blue to red and green, depending on the pH and excitation wavelength, and enable ratiometric pH measurements in the pH range of 3.0-9.0. The localization of the different sensor dyes in the particle core and at the particle surface was confirmed with fluorescence microscopy utilizing analogously prepared polystyrene microparticles. To show the application potential of these polystyrene-based multicolor sensor particles, fluorescence microscopy studies with a human A549 cell line were performed, which revealed the cellular uptake of the pH nanosensor and the differently colored emissions in different cell organelles, that is, compartments of the endosomal-lysosomal pathway. Our results demonstrate the underexplored potential of biocompatible polystyrene particles for multicolor and multianalyte sensing and bioimaging utilizing hydrophobic and/or hydrophilic stimuli-responsive luminophores.
Collapse
Affiliation(s)
- Priyanka Srivastava
- Division Biophotonics, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Isabella Tavernaro
- Division Biophotonics, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Claudia Genger
- nanoPET Pharma GmbH, Robert-Koch-Platz 4, Luisencarée, 10115 Berlin, Germany
| | - Pia Welker
- nanoPET Pharma GmbH, Robert-Koch-Platz 4, Luisencarée, 10115 Berlin, Germany
| | - Oskar Hübner
- Division Biophotonics, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Ute Resch-Genger
- Division Biophotonics, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| |
Collapse
|
8
|
Fluorescent Silicon-based Nanomaterials Imaging Technology in Diseases. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Hollmann B, Perkins M, Chauhan VM, Aylott JW, Hardie KR. Fluorescent nanosensors reveal dynamic pH gradients during biofilm formation. NPJ Biofilms Microbiomes 2021; 7:50. [PMID: 34140515 PMCID: PMC8211749 DOI: 10.1038/s41522-021-00221-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the dynamic environmental microniches of biofilms will permit us to detect, manage and exploit these communities. The components and architecture of biofilms have been interrogated in depth; however, little is known about the environmental microniches present. This is primarily because of the absence of tools with the required measurement sensitivity and resolution to detect these changes. We describe the application of ratiometric fluorescent pH-sensitive nanosensors, as a tool, to observe physiological pH changes in biofilms in real time. Nanosensors comprised two pH-sensitive fluorophores covalently encapsulated with a reference pH-insensitive fluorophore in an inert polyacrylamide nanoparticle matrix. The nanosensors were used to analyse the real-time three-dimensional pH variation for two model biofilm formers: (i) opportunistic pathogen Pseudomonas aeruginosa and (ii) oral pathogen Streptococcus mutans. The detection of sugar metabolism in real time by nanosensors provides a potential application to identify therapeutic solutions to improve oral health.
Collapse
Affiliation(s)
- Birte Hollmann
- Biodiscovery Institute, School of Life Sciences, University Park, University of Nottingham, Nottingham, UK
- Advanced Materials & Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Mark Perkins
- Biodiscovery Institute, School of Life Sciences, University Park, University of Nottingham, Nottingham, UK
- Advanced Materials & Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Veeren M Chauhan
- Advanced Materials & Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Jonathan W Aylott
- Advanced Materials & Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Kim R Hardie
- Biodiscovery Institute, School of Life Sciences, University Park, University of Nottingham, Nottingham, UK.
| |
Collapse
|
10
|
Steinegger A, Wolfbeis OS, Borisov SM. Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications. Chem Rev 2020; 120:12357-12489. [PMID: 33147405 PMCID: PMC7705895 DOI: 10.1021/acs.chemrev.0c00451] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 12/13/2022]
Abstract
This is the first comprehensive review on methods and materials for use in optical sensing of pH values and on applications of such sensors. The Review starts with an introduction that contains subsections on the definition of the pH value, a brief look back on optical methods for sensing of pH, on the effects of ionic strength on pH values and pKa values, on the selectivity, sensitivity, precision, dynamic ranges, and temperature dependence of such sensors. Commonly used optical sensing schemes are covered in a next main chapter, with subsections on methods based on absorptiometry, reflectometry, luminescence, refractive index, surface plasmon resonance, photonic crystals, turbidity, mechanical displacement, interferometry, and solvatochromism. This is followed by sections on absorptiometric and luminescent molecular probes for use pH in sensors. Further large sections cover polymeric hosts and supports, and methods for immobilization of indicator dyes. Further and more specific sections summarize the state of the art in materials with dual functionality (indicator and host), nanomaterials, sensors based on upconversion and 2-photon absorption, multiparameter sensors, imaging, and sensors for extreme pH values. A chapter on the many sensing formats has subsections on planar, fiber optic, evanescent wave, refractive index, surface plasmon resonance and holography based sensor designs, and on distributed sensing. Another section summarizes selected applications in areas, such as medicine, biology, oceanography, bioprocess monitoring, corrosion studies, on the use of pH sensors as transducers in biosensors and chemical sensors, and their integration into flow-injection analyzers, microfluidic devices, and lab-on-a-chip systems. An extra section is devoted to current challenges, with subsections on challenges of general nature and those of specific nature. A concluding section gives an outlook on potential future trends and perspectives.
Collapse
Affiliation(s)
- Andreas Steinegger
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Otto S. Wolfbeis
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040 Regensburg, Germany
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| |
Collapse
|
11
|
Tsai ES, Joud F, Wiesholler LM, Hirsch T, Hall EAH. Upconversion nanoparticles as intracellular pH messengers. Anal Bioanal Chem 2020; 412:6567-6581. [PMID: 32613570 PMCID: PMC7442772 DOI: 10.1007/s00216-020-02768-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 02/02/2023]
Abstract
Upconversion nanoparticles (UCNPs) should be particularly well suited for measurement inside cells because they can be imaged down to submicrometer dimensions in near real time using fluorescence microscopy, and they overcome problems, such as photobleaching, autofluorescence, and deep tissue penetration, that are commonly encountered in cellular imaging applications. In this study, the performance of an UCNP modified with a pH-sensitive dye (pHAb) is studied. The dye (emission wavelength 580 nm) was attached in a polyethylene imine (PEI) coating on the UCNP and excited via the 540-nm UCNP emission under 980-nm excitation. The UC resonance energy transfer efficiencies at different pHs ranged from 25 to 30% and a Förster distance of 2.56 nm was predicted from these results. Human neuroblastoma SH-SY5Y cells, equilibrated with nigericin H+/K+ ionophore to equalize the intra- and extracellular pH' showed uptake of the UCNP-pHAb conjugate particles and, taking the ratio of the intensity collected from the pHAb emission channel (565-630 nm) to that from the UCNP red emission channel (640-680 nm), produced a sigmoidal pH response curve with an apparent pKa for the UCNP-pHAb of ~ 5.1. The UCNP-pHAb were shown to colocalize with LysoBrite dye, a lysosome marker. Drug inhibitors such as chlorpromazine (CPZ) and nystatin (NYS) that interfere with clathrin-mediated endocytosis and caveolae-mediated endocytosis, respectively, were investigated to elucidate the mechanism of nanoparticle uptake into the cell. This preliminary study suggests that pH indicator-modified UCNPs such as UCNP-pHAb can report pH in SH-SY5Y cells and that the incorporation of the nanoparticles into the cell occurs via clathrin-mediated endocytosis. Graphical abstract.
Collapse
Affiliation(s)
- Evaline S Tsai
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Dr., Cambridge, CB3 0AS, UK
| | - Fadwa Joud
- Cancer Research UK Cambridge Institute, University of Cambridge, LiKa Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Lisa M Wiesholler
- Institute of Analytical Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Thomas Hirsch
- Institute of Analytical Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Elizabeth A H Hall
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Dr., Cambridge, CB3 0AS, UK.
| |
Collapse
|
12
|
Zhang Y, Hou D, Yu X. Facile preparation of FITC-modified silicon nanodots for ratiometric pH sensing and imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 234:118276. [PMID: 32203687 DOI: 10.1016/j.saa.2020.118276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 05/09/2023]
Abstract
A ratiometric fluorescent pH sensor was facilely constructed by covalent modification of amino-terminated silicon nanodots (SiND) with pH-sensitive fluorescein isothiocyanate (FITC). After optimization, the SiND-FITC(40:1) material with a SiND:FITC initial mass ratio of 40:1 was selected for the sensing of hydrogen ions. It was observed that the material inherits the unique features of SiND and FITC, and there is significant improvement of SiND acid-base stability, which is a favorable factor in terms of providing fluorescence reference signal. The SiND-FITC(40:1) material displays not only high pH sensitivity, but also good stability and anti-interference ability, and the response process is highly reversible. Deploying the SiND-FITC(40:1) material, we have made available a simple, sensitive, and precise approach for pH sensing. In aqueous solutions, the I517/I466 fluorescence intensity ratio of SiND-FITC(40:1) increases linearly in the pH range of 5.40-7.76. This dual emission nanosensor was successfully applied for pH sensing and cellular fluorescence imaging.
Collapse
Affiliation(s)
- Yanan Zhang
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Dajun Hou
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Xueli Yu
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China
| |
Collapse
|
13
|
Nsanzamahoro S, Li L, Mutuyimana FP, Liu J, Ren C, Qin H, Chen H. Synthesis of fluorescent and water-soluble silicon nanoparticles with a high pH response and its application to pH measurement and gastric parietal cell imaging. NEW J CHEM 2020. [DOI: 10.1039/d0nj04917d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this work, an effective, simple and facile approach was applied to prepare Si NPs, which emitted yellow fluorescence and were used for pH measurement and fluorescence imaging.
Collapse
Affiliation(s)
- Stanislas Nsanzamahoro
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Lanzhou University
- Lanzhou 730000
| | - Ling Li
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Lanzhou University
- Lanzhou 730000
| | - Félicité Pacifique Mutuyimana
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Lanzhou University
- Lanzhou 730000
| | - Juanjuan Liu
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Lanzhou University
- Lanzhou 730000
| | - Cuiling Ren
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Lanzhou University
- Lanzhou 730000
| | - Hongyan Qin
- Department of Pharmacy
- The First Hospital of Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Hongli Chen
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|
14
|
Shamsipur M, Barati A, Nematifar Z. Fluorescent pH nanosensors: Design strategies and applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Chandirasekar S, You JG, Xue JH, Tseng WL. Synthesis of gold nanocluster-loaded lysozyme nanoparticles for label-free ratiometric fluorescent pH sensing: applications to enzyme–substrate systems and cellular imaging. J Mater Chem B 2019. [DOI: 10.1039/c9tb00640k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have demonstrated the synthesis of gold nanocluster-loaded lysozyme nanoparticles as a dual-emission probe for ratiometric sensing of pH changes in enzyme–substrate systems and live cells.
Collapse
Affiliation(s)
| | - Jyun-Guo You
- Department of Chemistry
- National Sun Yat-sen University
- Kaohsiung 80424
- Taiwan
| | - Jhe-Hong Xue
- Department of Chemistry
- National Sun Yat-sen University
- Kaohsiung 80424
- Taiwan
| | - Wei-Lung Tseng
- Department of Chemistry
- National Sun Yat-sen University
- Kaohsiung 80424
- Taiwan
- School of Pharmacy
| |
Collapse
|
16
|
Wang M, Cai X, Yang J, Wang C, Tong L, Xiao J, Li L. A Targeted and pH-Responsive Bortezomib Nanomedicine in the Treatment of Metastatic Bone Tumors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41003-41011. [PMID: 30403331 DOI: 10.1021/acsami.8b07527] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Bortezomib is a boronate proteasome inhibitor widely used as an efficient anticancer drug; however, the clinical use of bortezomib is hampered by its adverse effects such as hematotoxicity and peripheral neuropathy, and low efficacy on solid tumors due to unfavorable pharmacokinetics and poor penetration in the solid tumors. In this study, we developed a tripeptide Arg-Gly-Asp (RGD)-targeted dendrimer conjugated with catechol and poly(ethylene glycol) groups for the targeted delivery of bortezomib to metastatic bone tumors. Bortezomib was loaded on the dendrimer via a boronate-catechol linkage with pH-responsive property, which plays an essential role in the control of bortezomib loading and release. The nontargeted bortezomib nanomedicine showed minimal cytotoxicity at pH 7.4, but significantly increased anticancer activity when cyclic RGD (cRGD) moieties were anchored on the dendrimer surface. The ligand cRGD enabled efficient internalization of the bortezomib complex by breast cancer cells such as MDA-MB-231 cells. The targeted nanomedicine efficiently depressed the progression of metastatic bone tumors and significantly inhibited the tumor-associated osteolysis in a model of bone tumors. This study provided an insight into the development of nanomedicine for metastatic bone tumors.
Collapse
Affiliation(s)
- Mingming Wang
- Shanghai Key Laboratory of Regulatory Biology , East China Normal University , Shanghai 200241 , P. R. China
| | - Xiaopan Cai
- Department of Orthopedic Oncology , Changzheng Hospital , Shanghai 200003 , P. R. China
| | - Jian Yang
- Department of Orthopedic Oncology , Changzheng Hospital , Shanghai 200003 , P. R. China
| | - Changping Wang
- Shanghai Key Laboratory of Regulatory Biology , East China Normal University , Shanghai 200241 , P. R. China
| | - Lu Tong
- Shanghai Key Laboratory of Regulatory Biology , East China Normal University , Shanghai 200241 , P. R. China
| | - Jianru Xiao
- Department of Orthopedic Oncology , Changzheng Hospital , Shanghai 200003 , P. R. China
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology , East China Normal University , Shanghai 200241 , P. R. China
| |
Collapse
|
17
|
Pyo K, Ly NH, Han SM, Hatshan MB, Abuhagr A, Wiederrecht G, Joo SW, Ramakrishna G, Lee D. Unique Energy Transfer in Fluorescein-Conjugated Au 22 Nanoclusters Leading to 160-Fold pH-Contrasting Photoluminescence. J Phys Chem Lett 2018; 9:5303-5310. [PMID: 30165739 DOI: 10.1021/acs.jpclett.8b02130] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Accurate measurements of intracellular pH are of crucial importance in understanding the cellular activities and in the development of intracellular drug delivery systems. Here we report a highly sensitive pH probe based on a fluorescein-conjugated Au22 nanocluster. Steady-state photoluminescence (PL) measurements have shown that, when conjugated to Au22, fluorescein exhibits more than 160-fold pH-contrasting PL in the pH range of 4.3-7.8. Transient absorption measurements show that there are two competing ultrafast processes in the fluorescein-conjugated Au22 nanocluster: the intracore-state relaxation and the energy transfer from the nonthermalized states of Au22 to fluorescein. The latter becomes predominant at a higher pH, leading to dramatic PL enhancement of fluorescein. In addition to the intrinsically low toxicity, fluorescein-conjugated Au22 nanoclusters exhibit high pH sensitivity, wide dynamic range, and excellent photostability, providing a powerful tool for the study of intracellular processes.
Collapse
Affiliation(s)
- Kyunglim Pyo
- Department of Chemistry , Yonsei University , Seoul 03722 , Korea
| | - Nguyen Hoang Ly
- Department of Chemistry , Soongsil University , Seoul 06978 , Korea
| | - Sang Myeong Han
- Department of Chemistry , Yonsei University , Seoul 03722 , Korea
| | - Mohammad Bin Hatshan
- Department of Chemistry , Western Michigan University , Kalamazoo , Michigan 49008 , United States
| | - Abubkr Abuhagr
- Department of Chemistry , Western Michigan University , Kalamazoo , Michigan 49008 , United States
| | - Gary Wiederrecht
- Center for Nanoscale Materials , Argonne National Laboratory , Chicago , Illinois 60439 , United States
| | - Sang-Woo Joo
- Department of Chemistry , Soongsil University , Seoul 06978 , Korea
- Department of Information Communication, Materials Engineering, Chemistry Convergence Technology , Soongsil University , Seoul 06978 , Korea
| | - Guda Ramakrishna
- Department of Chemistry , Western Michigan University , Kalamazoo , Michigan 49008 , United States
| | - Dongil Lee
- Department of Chemistry , Yonsei University , Seoul 03722 , Korea
| |
Collapse
|
18
|
Huang X, Song J, Yung BC, Huang X, Xiong Y, Chen X. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem Soc Rev 2018; 47:2873-2920. [PMID: 29568836 PMCID: PMC5926823 DOI: 10.1039/c7cs00612h] [Citation(s) in RCA: 487] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exploring and understanding biological and pathological changes are of great significance for early diagnosis and therapy of diseases. Optical sensing and imaging approaches have experienced major progress in this field. Particularly, an emergence of various functional optical nanoprobes has provided enhanced sensitivity, specificity, targeting ability, as well as multiplexing and multimodal capabilities due to improvements in their intrinsic physicochemical and optical properties. However, one of the biggest challenges of conventional optical nanoprobes is their absolute intensity-dependent signal readout, which causes inaccurate sensing and imaging results due to the presence of various analyte-independent factors that can cause fluctuations in their absolute signal intensity. Ratiometric measurements provide built-in self-calibration for signal correction, enabling more sensitive and reliable detection. Optimizing nanoprobe designs with ratiometric strategies can surmount many of the limitations encountered by traditional optical nanoprobes. This review first elaborates upon existing optical nanoprobes that exploit ratiometric measurements for improved sensing and imaging, including fluorescence, surface enhanced Raman scattering (SERS), and photoacoustic nanoprobes. Next, a thorough discussion is provided on design strategies for these nanoprobes, and their potential biomedical applications for targeting specific biomolecule populations (e.g. cancer biomarkers and small molecules with physiological relevance), for imaging the tumor microenvironment (e.g. pH, reactive oxygen species, hypoxia, enzyme and metal ions), as well as for intraoperative image guidance of tumor-resection procedures.
Collapse
Affiliation(s)
- Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China. and Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA. and MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Bryant C Yung
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Xiaohua Huang
- Department of Chemistry, University of Memphis, 213 Smith Chemistry Bldg., Memphis, TN 38152, USA
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| |
Collapse
|
19
|
Advances in Nano Based Biosensors for Food and Agriculture. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2018. [DOI: 10.1007/978-3-319-70166-0_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Chu B, Song B, Ji X, Su Y, Wang H, He Y. Fluorescent Silicon Nanorods-Based Ratiometric Sensors for Long-Term and Real-Time Measurements of Intracellular pH in Live Cells. Anal Chem 2017; 89:12152-12159. [PMID: 29050473 DOI: 10.1021/acs.analchem.7b02791] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Long-term and real-time investigation of the dynamic process of pHi changes is critically significant for understanding the related pathogenesis of diseases and the design of intracellular drug delivery systems. Herein, we present a one-step synthetic strategy to construct ratiometric pH sensors, which are made of europium (Eu)-doped one-dimensional silicon nanorods (Eu@SiNRs). The as-prepared Eu@SiNRs have distinct emission maxima peaks at 470 and 620 nm under 405 nm excitation. Of particular note, the fluorescence emission intensity at 470 nm decreases along with the increase of pH, while the one at 620 nm is nearly unaffected by pH changes, making Eu@SiNRs a feasible probe for pH sensing ratiometrically. Moreover, Eu@SiNRs are found to be responsive to a broad pH range (ca. 3-9), biocompatible (e.g., ∼100% of cell viability during 24 h treatment) and photostable (e.g., ∼10% loss of intensity after 40 min continuous UV irradiation). Taking advantages of these merits, we employ Eu@SiNRs for the visualization of the cytoplasmic alkalization process mediated by nigericin in living cells, for around 30 min without interruption, revealing important information for understanding the dynamic process of pHi fluctuations.
Collapse
Affiliation(s)
- Binbin Chu
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University , Suzhou, Jiangsu 215123, China
| | - Bin Song
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University , Suzhou, Jiangsu 215123, China
| | - Xiaoyuan Ji
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University , Suzhou, Jiangsu 215123, China
| | - Yuanyuan Su
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University , Suzhou, Jiangsu 215123, China
| | - Houyu Wang
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University , Suzhou, Jiangsu 215123, China
| | - Yao He
- Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University , Suzhou, Jiangsu 215123, China
| |
Collapse
|
21
|
Sikka A, M E Barnes E, Keun HC. The role of biophysics and engineering in investigating tumour pH and its regulation. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017. [DOI: 10.1088/2057-1739/aa5cd9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
|
23
|
Izquierdo MA, Wadhavane PD, Vigara L, Burguete MI, Galindo F, Luis SV. The interaction of amino acids with macrocyclic pH probes of pseudopeptidic nature. Photochem Photobiol Sci 2017; 16:1320-1326. [DOI: 10.1039/c7pp00167c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fluorescence quenching, by a series of amino acids, of pseudopeptidic compounds acting as probes for cellular acidity has been investigated.
Collapse
Affiliation(s)
- M. Angeles Izquierdo
- Universitat Jaume I
- Departamento de Química Inorgánica y Orgánica
- E-12071 Castellón
- Spain
| | - Prashant D. Wadhavane
- Universitat Jaume I
- Departamento de Química Inorgánica y Orgánica
- E-12071 Castellón
- Spain
| | - Laura Vigara
- Universitat Jaume I
- Departamento de Química Inorgánica y Orgánica
- E-12071 Castellón
- Spain
| | - M. Isabel Burguete
- Universitat Jaume I
- Departamento de Química Inorgánica y Orgánica
- E-12071 Castellón
- Spain
| | - Francisco Galindo
- Universitat Jaume I
- Departamento de Química Inorgánica y Orgánica
- E-12071 Castellón
- Spain
| | - Santiago V. Luis
- Universitat Jaume I
- Departamento de Química Inorgánica y Orgánica
- E-12071 Castellón
- Spain
| |
Collapse
|
24
|
Chu B, Wang H, Song B, Peng F, Su Y, He Y. Fluorescent and Photostable Silicon Nanoparticles Sensors for Real-Time and Long-Term Intracellular pH Measurement in Live Cells. Anal Chem 2016; 88:9235-42. [PMID: 27539306 DOI: 10.1021/acs.analchem.6b02488] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Fluorescent sensors suitable for dynamic measurement of intracellular pH (pHi) fluctuations should feature the following properties: feeble cytotoxicity, wide-pH range response, and strong fluorescence coupled with good photostability, which are still remaining scanty to date. Herein, by functionalizing fluorescent silicon nanoparticles (SiNPs) with pH-sensitive dopamine (DA) and pH-insensitive rhodamine B isothiocyanate (RBITC), we present the first demonstration of fluorescent SiNPs-based sensors, simultaneously exhibiting minimal toxicity (cell viability of treated cells remains above 95% during 24-h treatment), sensitive fluorescent response to a broad pH range (∼4-10), and bright fluorescence coupled with robust photostability (∼9% loss of fluorescence intensity after 40 min continuous excitation; in contrast, fluorescence of Lyso-tracker is rapidly quenched in 5 min under the same experiment conditions). Taking advantage of these merits, we further employ the resultant fluorescent SiNPs sensors for the detection of lysosomal pH change mediated by nigericin in live HeLa and MCF-7 cells in long-term (e.g., 30 min) manners. Interestingly, two consecutive stages, i.e., alkalization lag phase and logarithmic growth phase, are observed based on recording the whole process of pH change, offering important information for understanding the dynamic process of pHi fluctuations.
Collapse
Affiliation(s)
- Binbin Chu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University , Suzhou, Jiangsu 215123, China
| | - Houyu Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University , Suzhou, Jiangsu 215123, China
| | - Bin Song
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University , Suzhou, Jiangsu 215123, China
| | - Fei Peng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University , Suzhou, Jiangsu 215123, China
| | - Yuanyuan Su
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University , Suzhou, Jiangsu 215123, China
| | - Yao He
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University , Suzhou, Jiangsu 215123, China
| |
Collapse
|
25
|
Matrone C, Dzamko N, Madsen P, Nyegaard M, Pohlmann R, Søndergaard RV, Lassen LB, Andresen TL, Halliday GM, Jensen PH, Nielsen MS. Mannose 6-Phosphate Receptor Is Reduced in -Synuclein Overexpressing Models of Parkinsons Disease. PLoS One 2016; 11:e0160501. [PMID: 27509067 PMCID: PMC4979956 DOI: 10.1371/journal.pone.0160501] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/20/2016] [Indexed: 12/03/2022] Open
Abstract
Increasing evidence points to defects in autophagy as a common denominator in most neurodegenerative conditions. Progressive functional decline in the autophagy-lysosomal pathway (ALP) occurs with age, and the consequent impairment in protein processing capacity has been associated with a higher risk of neurodegeneration. Defects in cathepsin D (CD) processing and α-synuclein degradation causing its accumulation in lysosomes are particularly relevant for the development of Parkinson's disease (PD). However, the mechanism by which alterations in CD maturation and α-synuclein degradation leads to autophagy defects in PD neurons is still uncertain. Here we demonstrate that MPR300 shuttling between endosomes and the trans Golgi network is altered in α-synuclein overexpressing neurons. Consequently, CD is not correctly trafficked to lysosomes and cannot be processed to generate its mature active form, leading to a reduced CD-mediated α-synuclein degradation and α-synuclein accumulation in neurons. MPR300 is downregulated in brain from α-synuclein overexpressing animal models and in PD patients with early diagnosis. These data indicate MPR300 as crucial player in the autophagy-lysosomal dysfunctions reported in PD and pinpoint MRP300 as a potential biomarker for PD.
Collapse
Affiliation(s)
- Carmela Matrone
- Department of Biomedicine, Faculty of Health, Aarhus University, 8000 Aarhus C, Denmark
- * E-mail: ;
| | - Nicolas Dzamko
- Neuroscience Research Australia, Sydney, NSW 2031, and School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Peder Madsen
- Department of Biomedicine, Faculty of Health, Aarhus University, 8000 Aarhus C, Denmark
- Research Initiative on Blood Brain and Drug Delivery, The Lundbeck Foundation, 8000 Aarhus C, Denmark
| | - Mette Nyegaard
- Department of Biomedicine, Faculty of Health, Aarhus University, 8000 Aarhus C, Denmark
| | - Regina Pohlmann
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Rikke V. Søndergaard
- Research Initiative on Blood Brain and Drug Delivery, The Lundbeck Foundation, 8000 Aarhus C, Denmark
- Department of Micro- and Nanotechnology, Technical University of Denmark (DTU) Nanotech, DTU, 2800 Lyngby, Denmark
| | - Louise B. Lassen
- Department of Biomedicine, Faculty of Health, Aarhus University, 8000 Aarhus C, Denmark
| | - Thomas L. Andresen
- Research Initiative on Blood Brain and Drug Delivery, The Lundbeck Foundation, 8000 Aarhus C, Denmark
- Department of Micro- and Nanotechnology, Technical University of Denmark (DTU) Nanotech, DTU, 2800 Lyngby, Denmark
| | - Glenda M. Halliday
- Neuroscience Research Australia, Sydney, NSW 2031, and School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Poul Henning Jensen
- Department of Biomedicine, Faculty of Health, Aarhus University, 8000 Aarhus C, Denmark
| | - Morten S. Nielsen
- Department of Biomedicine, Faculty of Health, Aarhus University, 8000 Aarhus C, Denmark
- Research Initiative on Blood Brain and Drug Delivery, The Lundbeck Foundation, 8000 Aarhus C, Denmark
- * E-mail: ;
| |
Collapse
|
26
|
Elucidating the role of free polycations in gene knockdown by siRNA polyplexes. Acta Biomater 2016; 35:248-59. [PMID: 26884277 DOI: 10.1016/j.actbio.2016.02.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 12/18/2015] [Accepted: 02/12/2016] [Indexed: 12/18/2022]
Abstract
Future improvements of non-viral vectors for siRNA delivery require better understanding of intracellular processing and vector interactions with target cells. Here, we have compared the siRNA delivery properties of a lipid derivative of bPEI 1.8kDa (DOPE-PEI) with branched polyethyleneimine (bPEI) with average molecular weights of 1.8kDa (bPEI 1.8kDa) and 25kDa (bPEI 25kDa). We find mechanistic differences between the DOPE-PEI conjugate and bPEI regarding siRNA condensation and intracellular processing. bPEI 1.8kDa and bPEI 25kDa have similar properties with respect to condensation capability, but are very different regarding siRNA decondensation, cellular internalization and induction of reporter gene knockdown. Lipid conjugation of bPEI 1.8kDa improves the siRNA delivery properties, but with markedly different formulation requirements and mechanisms of action compared to conventional PEIs. Interestingly, strong knockdown using bPEI 25kDa is dependent on the presence of a free vector fraction which does not increase siRNA uptake. Finally, we have investigated the effect on lysosomal pH induced by these vectors to elucidate the differences in the proton sponge effect between lipid conjugated PEI and conventional PEI: Neither DOPE-PEI nor bPEI 25kDa affected lysosomal pH as a function of time, underlining that the possible proton sponge effect is not associated with changes in lysosomal pH. STATEMENT OF SIGNIFICANCE Gene silencing therapy has the potential to treat diseases which are beyond the reach of current small molecule-based medicines. However, delivery of the small interfering RNAs (siRNAs) remains a bottleneck to clinical implementation, and the development of safe and efficient delivery systems would be one of the most important achievements in medicine today. A major reason for the lack of progress is insufficient understanding of cell-polyplex interaction. We investigate siRNA delivery using polyethyleneimine (PEI) based vectors and examine how crucial formulation parameters determine the challenges associated with PEI as a delivery vector. We further evaluate how lipid conjugation of PEI influences formulation, cytotoxicity and polymer interaction with cells and cargo as well as the proton sponge capabilities of the vectors.
Collapse
|
27
|
Clear KJ, Virga K, Gray L, Smith BD. Using membrane composition to fine-tune the p Ka of an optical liposome pH sensor. JOURNAL OF MATERIALS CHEMISTRY. C 2016; 4:2925-2930. [PMID: 27087967 PMCID: PMC4830428 DOI: 10.1039/c5tc03480a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Liposomes containing membrane-anchored pH-sensitive optical probes are valuable sensors for monitoring pH in various biomedical samples. The dynamic range of the sensor is maximized when the probe pKa is close to the expected sample pH. While some biomedical samples are close to neutral pH there are several circumstances where the pH is 1 or 2 units lower. Thus, there is a need to fine-tune the probe pKa in a predictable way. This investigation examined two lipid-conjugated optical probes, each with appended deep-red cyanine dyes containing indoline nitrogen atoms that are protonated in acid. The presence of anionic phospholipids in the liposomes stabilized the protonated probes and increased the probe pKa values by < 1 unit. The results show that rational modification of the membrane composition is a general non-covalent way to fine-tune the pKa of an optical liposome sensor for optimal pH sensing performance.
Collapse
|
28
|
Xu W, Lu S, Xu M, Jiang Y, Wang Y, Chen X. Simultaneous imaging of intracellular pH and O2 using functionalized semiconducting polymer dots. J Mater Chem B 2016; 4:292-298. [DOI: 10.1039/c5tb02071a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We developed novel functionalized semiconducting polymer dots (Pdots) for the simultaneous imaging of intracellular pH and oxygen.
Collapse
Affiliation(s)
- Wei Xu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Sisi Lu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Mengxi Xu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Yaqi Jiang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Yiru Wang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Xi Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| |
Collapse
|
29
|
Wang H, Wei H, Huang Q, Liu H, Hu J, Cheng Y, Xiao J. Nucleobase-modified dendrimers as nonviral vectors for efficient and low cytotoxic gene delivery. Colloids Surf B Biointerfaces 2015; 136:1148-55. [DOI: 10.1016/j.colsurfb.2015.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/10/2015] [Accepted: 11/07/2015] [Indexed: 12/30/2022]
|
30
|
Schäferling M. Nanoparticle-based luminescent probes for intracellular sensing and imaging of pH. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:378-413. [PMID: 26395962 DOI: 10.1002/wnan.1366] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 07/06/2015] [Accepted: 07/22/2015] [Indexed: 12/13/2022]
Abstract
Fluorescence imaging microscopy is an essential tool in biomedical research. Meanwhile, various fluorescent probes are available for the staining of cells, cell membranes, and organelles. Though, to monitor intracellular processes and dysfunctions, probes that respond to ubiquitous chemical parameters determining the cellular function such as pH, pO2 , and Ca(2+) are required. This review is focused on the progress in the design, fabrication, and application of photoluminescent nanoprobes for sensing and imaging of pH in living cells. The advantages of using nanoprobes carrying fluorescent pH indicators compared to single molecule probes are discussed as well as their limitations due to the mostly lysosomal uptake by cells. Particular attention is paid to ratiometric dual wavelength nanosensors that enable intrinsic referenced measurements. Referencing and proper calibration procedures are basic prerequisites to carry out reliable quantitative pH determinations in complex samples such as living cells. A variety of examples will be presented that highlight the diverseness of nanocarrier materials (polymers, micelles, silica, quantum dots, carbon dots, gold, photon upconversion nanocrystals, or bacteriophages), fluorescent pH indicators for the weak acidic range, and referenced sensing mechanisms, that have been applied intracellularly up to now. WIREs Nanomed Nanobiotechnol 2016, 8:378-413. doi: 10.1002/wnan.1366 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Michael Schäferling
- Division 1.10 Biophotonics, Federal Institute for Materials Research and Testing, Berlin, Germany
| |
Collapse
|
31
|
Søndergaard RV, Christensen NM, Henriksen JR, Kumar EKP, Almdal K, Andresen TL. Facing the Design Challenges of Particle-Based Nanosensors for Metabolite Quantification in Living Cells. Chem Rev 2015; 115:8344-78. [PMID: 26244372 DOI: 10.1021/cr400636x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Rikke V Søndergaard
- Department of Micro- and Nanotechnology, Technical University of Denmark , Produktionstorvet 423, 2800 Lyngby, Denmark
| | - Nynne M Christensen
- Department of Micro- and Nanotechnology, Technical University of Denmark , Produktionstorvet 423, 2800 Lyngby, Denmark
| | - Jonas R Henriksen
- Department of Micro- and Nanotechnology, Technical University of Denmark , Produktionstorvet 423, 2800 Lyngby, Denmark
| | - E K Pramod Kumar
- Department of Micro- and Nanotechnology, Technical University of Denmark , Produktionstorvet 423, 2800 Lyngby, Denmark
| | - Kristoffer Almdal
- Department of Micro- and Nanotechnology, Technical University of Denmark , Produktionstorvet 423, 2800 Lyngby, Denmark
| | - Thomas L Andresen
- Department of Micro- and Nanotechnology, Technical University of Denmark , Produktionstorvet 423, 2800 Lyngby, Denmark
| |
Collapse
|
32
|
Kumar EKP, Jølck RI, Andresen TL. Synthesis of Cross-Linked Polymeric Micelle pH Nanosensors: An Investigation of Design Flexibility. Macromol Rapid Commun 2015; 36:1598-604. [DOI: 10.1002/marc.201500236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 05/22/2015] [Indexed: 11/08/2022]
Affiliation(s)
- E. K. Pramod Kumar
- DTU Nanotech Department of Micro- and Nanotechnology; Center for Nanomedicine and Theranostics; Technical University of Denmark; Building 423 2800 Lyngby Denmark
| | - Rasmus I. Jølck
- DTU Nanotech Department of Micro- and Nanotechnology; Center for Nanomedicine and Theranostics; Technical University of Denmark; Building 423 2800 Lyngby Denmark
| | - Thomas L. Andresen
- DTU Nanotech Department of Micro- and Nanotechnology; Center for Nanomedicine and Theranostics; Technical University of Denmark; Building 423 2800 Lyngby Denmark
| |
Collapse
|
33
|
Zhang M, Søndergaard RV, Kumar EKP, Henriksen JR, Cui D, Hammershøj P, Clausen MH, Andresen TL. A hydrogel based nanosensor with an unprecedented broad sensitivity range for pH measurements in cellular compartments. Analyst 2015; 140:7246-53. [DOI: 10.1039/c5an01014d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This quadruple-labelled nanosensor has a broad sensitivity range from pH 1.4 to 7.0. It covers the full physiologically relevant range where especially the low pH range of some specialized cells can now be monitored.
Collapse
Affiliation(s)
- M. Zhang
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai
- China
- Institute of Nano Biomedicine and Engineering
| | - R. V. Søndergaard
- Department of Micro- and Nanotechnology
- Technical University of Denmark
- Lyngby
- Denmark
- Center for Nanomedicine and Theranostics
| | - E. K. P. Kumar
- Department of Micro- and Nanotechnology
- Technical University of Denmark
- Lyngby
- Denmark
- Center for Nanomedicine and Theranostics
| | - J. R. Henriksen
- Center for Nanomedicine and Theranostics
- Technical University of Denmark
- Lyngby
- Denmark
- Department of Chemistry
| | - D. Cui
- Institute of Nano Biomedicine and Engineering
- Department of Instrument Science and Engineering
- School of Electronic Information and Electrical Engineering
- Shanghai Jiao Tong University
- Shanghai
| | - P. Hammershøj
- Center for Nanomedicine and Theranostics
- Technical University of Denmark
- Lyngby
- Denmark
- Department of Chemistry
| | - M. H. Clausen
- Center for Nanomedicine and Theranostics
- Technical University of Denmark
- Lyngby
- Denmark
- Department of Chemistry
| | - T. L. Andresen
- Department of Micro- and Nanotechnology
- Technical University of Denmark
- Lyngby
- Denmark
- Center for Nanomedicine and Theranostics
| |
Collapse
|
34
|
Saura AV, Marín MJ, Burguete MI, Russell DA, Galindo F, Luis SV. The synthesis of new fluorescent bichromophoric compounds as ratiometric pH probes for intracellular measurements. Org Biomol Chem 2015; 13:7736-49. [DOI: 10.1039/c5ob00704f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Three different bichromophoric compounds (1–3) containing an aminomethyl anthracene moiety linked to a second chromophore have been prepared and their fluorescent properties studied.
Collapse
Affiliation(s)
- A. Vanessa Saura
- Departamento de Química Inorgánica y Orgánica
- Universitat Jaume I
- Castellón
- Spain
| | | | - M. Isabel Burguete
- Departamento de Química Inorgánica y Orgánica
- Universitat Jaume I
- Castellón
- Spain
| | | | - Francisco Galindo
- Departamento de Química Inorgánica y Orgánica
- Universitat Jaume I
- Castellón
- Spain
| | - Santiago V. Luis
- Departamento de Química Inorgánica y Orgánica
- Universitat Jaume I
- Castellón
- Spain
| |
Collapse
|