1
|
Nguyen CD, Chen Y, Kaplan DL, Mallidi S. Multi-parametric Photoacoustic Imaging Combined with Acoustic Radiation Force Impulse Imaging for Applications in Tissue Engineering. Ann Biomed Eng 2025; 53:371-382. [PMID: 39294465 DOI: 10.1007/s10439-024-03617-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Tissue engineering is a dynamic field focusing on the creation of advanced scaffolds for tissue and organ regeneration. These scaffolds are customized to their specific applications and are often designed to be complex, large structures to mimic tissues and organs. This study addresses the critical challenge of effectively characterizing these thick, optically opaque scaffolds that traditional imaging methods fail to fully image due to their optical limitations. We introduce a novel multi-modal imaging approach combining ultrasound, photoacoustic, and acoustic radiation force impulse imaging. This combination leverages its acoustic-based detection to overcome the limitations posed by optical imaging techniques. Ultrasound imaging is employed to monitor the scaffold structure, photoacoustic imaging is employed to monitor cell proliferation, and acoustic radiation force impulse imaging is employed to evaluate the homogeneity of scaffold stiffness. We applied this integrated imaging system to analyze melanoma cell growth within silk fibroin protein scaffolds with varying pore sizes and therefore stiffness over different cell incubation periods. Among various materials, silk fibroin was chosen for its unique combination of features including biocompatibility, tunable mechanical properties, and structural porosity which supports extensive cell proliferation. The results provide a detailed mesoscale view of the scaffolds' internal structure, including cell penetration depth and biomechanical properties. Our findings demonstrate that the developed multimodal imaging technique offers comprehensive insights into the physical and biological dynamics of tissue-engineered scaffolds. As the field of tissue engineering continues to advance, the importance of non-ionizing and non-invasive imaging systems becomes increasingly evident, and by facilitating a deeper understanding and better characterization of scaffold architectures, such imaging systems are pivotal in driving the success of future tissue-engineering solutions.
Collapse
Affiliation(s)
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
2
|
Power L, Shuhmaher R, Houtz P, Chen J, Rudolph S, Yuen J, Machour M, Levy E, Wu L, Levenberg S, Whalen M, Chen Y, Kaplan DL. 3D Neurovascular Unit Tissue Model to Assess Responses to Traumatic Brain Injury. J Biomed Mater Res A 2025; 113:e37816. [PMID: 39440483 DOI: 10.1002/jbm.a.37816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
The neurovascular unit (NVU) is a critical interface in the central nervous system that links vascular interactions with glial and neural tissue. Disruption of the NVU has been linked to the onset and progression of neurodegenerative diseases. Despite its significance the NVU remains challenging to study in a physiologically relevant manner. Here, a 3D cell triculture model of the NVU is developed that incorporates human primary brain microvascular endothelial cells, astrocytes, and pericytes into a tissue system that can be sustained in vitro for several weeks. This tissue model helps recapitulate the complexity of the NVU and can be used to interrogate the mechanisms of disease and cell-cell interactions. The NVU tissue model displays elevated cell death and inflammatory responses following mechanical damage, to emulate traumatic brain injury (TBI) under controlled laboratory conditions, including lactate dehydrogenase (LDH) release, elevated inflammatory markers TNF-α and monocyte chemoattractant cytokines MCP-2 and MCP-3 and reduced expression of the tight junction marker ZO-1. This 3D tissue model serves as a tool for deciphering mechanisms of TBIs and immune responses associated with the NVU.
Collapse
Affiliation(s)
- Liam Power
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Rita Shuhmaher
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Philip Houtz
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Jinpeng Chen
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Sara Rudolph
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - John Yuen
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Majd Machour
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Emily Levy
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Limin Wu
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Shulamit Levenberg
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Michael Whalen
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
3
|
Wang L, Bai L, Wang S, Zhou J, Liu Y, Zhang C, Yao S, He J, Liu C, Li D. Biomimetic design and integrated biofabrication of an in-vitro three-dimensional multi-scale multilayer cortical model. Mater Today Bio 2024; 28:101176. [PMID: 39171099 PMCID: PMC11334787 DOI: 10.1016/j.mtbio.2024.101176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/01/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
The lack of accurate and reliable in vitro brain models hinders the development of brain science and research on brain diseases. Owing to the complex structure of the brain tissue and its highly nonlinear characteristics, the construction of brain-like in vitro tissue models remains one of the most challenging research fields in the construction of living tissues. This study proposes a multi-scale design of a brain-like model with a biomimetic cortical structure, which includes the macroscopic structural features of six layers of different cellular components, as well as micrometer-scale continuous fiber structures running through all layers vertically. To achieve integrated biomanufacturing of such a complex multi-scale brain-like model, a multi-material composite printing/culturing integrated bioprinting platform was developed in-house by integrating cell-laden hydrogel ink direct writing printing and electrohydrodynamic fiber 3D printing technologies. Through integrated bioprinting, multi-scale models with different cellular components and fiber structural parameters were prepared to study the effects of macroscopic and microscopic structural features on the directionality of neural cells, as well as the interaction between glial cells and neurons within the tissue model in a three-dimensional manner. The results revealed that the manufactured in vitro biomimetic cortical model achieved morphological connections between the layers of neurons, reflecting the structure and cellular morphology of the natural cortex. Micrometer-scale (10 μm) cross-layer fibers effectively guided and controlled the extension length and direction of the neurites of surrounding neural cells but had no significant effect on the migration of neurons. In contrast, glial cells significantly promoted the migration of surrounding PC12 cells towards the glial layer but did not contribute to the extension of neurites. This study provides a basis for the design and manufacture of accurate brain-like models for the functionalization of neuronal tissues.
Collapse
Affiliation(s)
- Ling Wang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| | - Luge Bai
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| | - Sen Wang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| | - Jiajia Zhou
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| | - Yingjie Liu
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| | - Chenrui Zhang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| | - Siqi Yao
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| | - Jiankang He
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal, University College London, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Dichen Li
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, China
| |
Collapse
|
4
|
Sheng N, Lin W, Lin J, Feng Y, Wang Y, He X, He Y, Liang R, Li Z, Li J, Luo F, Tan H. Cross-linking manipulation of waterborne biodegradable polyurethane for constructing mechanically adaptable tissue engineering scaffolds. Regen Biomater 2024; 11:rbae111. [PMID: 39323747 PMCID: PMC11422185 DOI: 10.1093/rb/rbae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
Mechanical adaptation of tissue engineering scaffolds is critically important since natural tissue regeneration is highly regulated by mechanical signals. Herein, we report a facile and convenient strategy to tune the modulus of waterborne biodegradable polyurethanes (WBPU) via cross-linking manipulation of phase separation and water infiltration for constructing mechanically adaptable tissue engineering scaffolds. Amorphous aliphatic polycarbonate and trifunctional trimethylolpropane were introduced to polycaprolactone-based WBPUs to interrupt interchain hydrogen bonds in the polymer segments and suppress microphase separation, inhibiting the crystallization process and enhancing covalent cross-linking. Intriguingly, as the crosslinking density of WBPU increases and the extent of microphase separation decreases, the material exhibits a surprisingly soft modulus and enhanced water infiltration. Based on this strategy, we constructed WBPU scaffolds with a tunable modulus to adapt various cells for tissue regeneration and regulate the immune response. As a representative application of brain tissue regeneration model in vivo, it was demonstrated that the mechanically adaptable WBPU scaffolds can guide the migration and differentiation of endogenous neural progenitor cells into mature neurons and neuronal neurites and regulate immunostimulation with low inflammation. Therefore, the proposed strategy of tuning the modulus of WBPU can inspire the development of novel mechanically adaptable biomaterials, which has very broad application value.
Collapse
Affiliation(s)
- Nan Sheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center of Materials, Sichuan University, Chengdu 610065, China
| | - Weiwei Lin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center of Materials, Sichuan University, Chengdu 610065, China
| | - Jingjing Lin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center of Materials, Sichuan University, Chengdu 610065, China
| | - Yuan Feng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center of Materials, Sichuan University, Chengdu 610065, China
| | - Yanchao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Xueling He
- Laboratory Animal Center, Sichuan University, Chengdu 610041, China
| | - Yuanyuan He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center of Materials, Sichuan University, Chengdu 610065, China
| | - Ruichao Liang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center of Materials, Sichuan University, Chengdu 610065, China
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center of Materials, Sichuan University, Chengdu 610065, China
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center of Materials, Sichuan University, Chengdu 610065, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center of Materials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Han H, Li H, Wang L, Zhu Y, Guan H, Yao J, Xiao W, Li B, Liao X. Preparation of Autoclavable and Injectable Silk Fibroin Cryogels for Tissue Engineering Applications. Macromol Biosci 2024; 24:e2400038. [PMID: 38843388 DOI: 10.1002/mabi.202400038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/19/2024] [Indexed: 06/19/2024]
Abstract
A cryogel is a supermacroporous gel network that is generated at subzero temperatures by polymerizing monomers or gelating polymeric precursors. Since cryogels possess inherent characteristics such as interconnected macroporous structures, excellent mechanical properties, and high resistance to autoclave sterilization, they are highly desirable for tissue engineering and regenerative medicine. Silk fibroin, a natural protein obtained from Bombyx mori silkworms, is an excellent raw material for cryogel preparation. The aim of this study is to establish a controlled method for preparing silk fibroin cryogels with suitable properties for application as tissue engineering scaffolds. Using a dual crosslinking strategy consisting of low-temperature radical polymerization coupled with methanol-induced conformational transformation, porous cryogels are prepared. The cryogels display many unique characteristics, such as an interconnected macroporous structure, a high water absorption capacity, water-triggered shape memory, syringe injectability, and strong resilience to autoclave sterilization. Furthermore, the cryogels demonstrate excellent biocompatibility and cell affinity, facilitating cell adhesion, migration, and proliferation. The interconnected supermacroporous architecture resembling the native extracellular matrix, together with their unique physical properties and autoclaving stability, suggests that cryogels are promising candidate scaffolds for tissue engineering and cell therapy.
Collapse
Affiliation(s)
- Hongjuan Han
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Haiyan Li
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Lu Wang
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Yong Zhu
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Haoqing Guan
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Jingzhi Yao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Wenqian Xiao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Bo Li
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| |
Collapse
|
6
|
Kim BJ, Bonacchini GE, Ostrovsky-Snider NA, Omenetto FG. Bimodal Gating Mechanism in Hybrid Thin-Film Transistors Based on Dynamically Reconfigurable Nanoscale Biopolymer Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302062. [PMID: 37640508 DOI: 10.1002/adma.202302062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/02/2023] [Indexed: 08/31/2023]
Abstract
In recent years, increased control over naturally derived structural protein formulations and their self-assembly has enabled the application of high-resolution manufacturing techniques to silk-based materials, leading to bioactive interfaces with unprecedented miniaturized formats and functionalities. Here, a hybrid biopolymer-semiconductor device, obtained by integrating nanoscale silk layers in a well-established class of inorganic field-effect transistors (silk-FETs), is presented. The devices offer two distinct modes of operation-either traditional field-effect or electrolyte-gated-enabled by the precisely controlled thickness, morphology, and biochemistry of the integrated silk layers. The different operational modes are selectively accessed by dynamically modulating the free-water content within the nanoscale protein layer from the vapor phase. The utility of these hybrid devices is illustrated in a highly sensitive and ultrafast breath sensor, highlighting the opportunities offered by the integration of nanoscale biomaterial interfaces in conjunction with traditional semiconductor devices, enabling functional outcomes at the intersection between the worlds of microelectronics and biology.
Collapse
Affiliation(s)
- Beom Joon Kim
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | | | | | - Fiorenzo G Omenetto
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA, 02155, USA
- Department of Physics, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
7
|
Adelfio M, Bonzanni M, Callen GE, Paster BJ, Hasturk H, Ghezzi CE. A physiologically relevant culture platform for long-term studies of in vitro gingival tissue. Acta Biomater 2023; 167:321-334. [PMID: 37331612 PMCID: PMC10528240 DOI: 10.1016/j.actbio.2023.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/20/2023]
Abstract
There is a clinical need to understand the etiologies of periodontitis, considering the growing socio-economic impact of the disease. Despite recent advances in oral tissue engineering, experimental approaches have failed to develop a physiologically relevant gingival model that combines tissue organization with salivary flow dynamics and stimulation of the shedding and non-shedding oral surfaces. Herein, we develop a dynamic gingival tissue model composed of a silk scaffold, replicating the cyto-architecture and oxygen profile of the human gingiva, along with a saliva-mimicking medium that reflected the ionic composition, viscosity, and non-Newtonian behavior of human saliva. The construct was cultured in a custom designed bioreactor, in which force profiles on the gingival epithelium were modulated through analysis of inlet position, velocity and vorticity to replicate the physiological shear stress of salivary flow. The gingival bioreactor supported the long-term in vivo features of the gingiva and improved the integrity of the epithelial barrier, critical against the invasion of pathogenic bacteria. Furthermore, the challenge of the gingival tissue with P. gingivalis lipopolysaccharide, as an in vitro surrogate for microbial interactions, indicated a greater stability of the dynamic model in maintaining tissue homeostasis and, thus, its applicability in long-term studies. The model will be integrated into future studies with the human subgingival microbiome to investigate host-pathogen and host-commensal interactions. STATEMENT OF SIGNIFICANCE: The major societal impact of human microbiome had reverberated up to the establishment of the Common Fund's Human Microbiome Project, that has the intent of studying the role of microbial communities in human health and diseases, including periodontitis, atopic dermatitis, or asthma and inflammatory bowel disease. In addition, these chronic diseases are emergent drivers of global socioeconomic status. Not only common oral diseases have been shown to be directly correlated with several systemic conditions, but they are differentially impacting some racial/ethnic and socioeconomic groups. To address this growing social disparity, the development of in vitro gingival model would provide a time and cost-effective experimental platform, able to mimic the spectrum of periodontal disease presentation, for the identification of predictive biomarkers for early-stage diagnosis.
Collapse
Affiliation(s)
- M Adelfio
- Department of Biomedical Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - M Bonzanni
- Department of Neuroscience, School of Medicine, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
| | - G E Callen
- Department of Biomedical Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - B J Paster
- The Forsyth Institute, 245 First St, Cambridge, MA 02142, USA
| | - H Hasturk
- The Forsyth Institute, 245 First St, Cambridge, MA 02142, USA
| | - C E Ghezzi
- Department of Biomedical Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA.
| |
Collapse
|
8
|
Foster O, Shaidani S, Theodossiou SK, Falcucci T, Hiscox D, Smiley BM, Romano C, Kaplan DL. Sudan Black B Pretreatment to Suppress Autofluorescence in Silk Fibroin Scaffolds. ACS Biomater Sci Eng 2023. [PMID: 37171982 DOI: 10.1021/acsbiomaterials.3c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Natural polymers are extensively utilized as scaffold materials in tissue engineering and 3D disease modeling due to their general features of cytocompatibility, biodegradability, and ability to mimic the architecture and mechanical properties of the native tissue. A major limitation of many polymeric scaffolds is their autofluorescence under common imaging methods. This autofluorescence, a particular challenge with silk fibroin materials, can interfere with the visualization of fluorescently labeled cells and proteins grown on or in these scaffolds, limiting the assessment of outcomes. Here, Sudan Black B (SBB) was successfully used prefixation prior to cell seeding, in various silk matrices and 3D model systems to quench silk autofluorescence for live cell imaging. SBB was also trialed postfixation in silk hydrogels. We validated that multiple silk scaffolds pretreated with SBB (hexafluoro-2-propanol-silk scaffolds, salt-leached sponges, gel-spun catheters, and sponge-gel composite scaffolds) cultured with fibroblasts, adipose tissue, neural cells, and myoblasts demonstrated improved image resolution when compared to the nonpretreated scaffolds, while also maintaining normal cell behavior (attachment, growth, proliferation, differentiation). SBB pretreatment of silk scaffolds is an option for scaffold systems that require autofluorescence suppression.
Collapse
Affiliation(s)
- Olivia Foster
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, Massachusetts 02155, United States
| | - Sawnaz Shaidani
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, Massachusetts 02155, United States
| | - Sophia K Theodossiou
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, Massachusetts 02155, United States
| | - Thomas Falcucci
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, Massachusetts 02155, United States
| | - Derek Hiscox
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, Massachusetts 02155, United States
| | - Brooke M Smiley
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, Massachusetts 02155, United States
| | - Chiara Romano
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, Massachusetts 02155, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, Massachusetts 02155, United States
| |
Collapse
|
9
|
Adelfio M, Martin‐Moldes Z, Erndt‐Marino J, Tozzi L, Duncan MJ, Hasturk H, Kaplan DL, Ghezzi CE. Three-Dimensional Humanized Model of the Periodontal Gingival Pocket to Study Oral Microbiome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205473. [PMID: 36825685 PMCID: PMC10131835 DOI: 10.1002/advs.202205473] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The oral cavity contains distinct microenvironments that serve as oral barriers, such as the non-shedding surface of the teeth (e.g., enamel), the epithelial mucosa and gingival tissue (attached gingiva) where microbial communities coexist. The interactions and balances between these communities are responsible for oral tissue homeostasis or dysbiosis, that ultimately dictate health or disease. Disruption of this equilibrium can lead to chronic inflammation and permanent tissue damage in the case of chronic periodontitis. There are currently no experimental tissue models able to mimic the structural, physical, and metabolic conditions present in the human oral gingival tissue to support the long-term investigation of host-pathogens imbalances. Herein, the authors report an in vitro 3D anatomical gingival tissue model, fabricated from silk biopolymer by casting a replica mold of an adult human mandibular gingiva to recreate a tooth-gum unit. The model is based on human primary cultures that recapitulate physiological tissue organization, as well as a native oxygen gradient within the gingival pocket to support human subgingival plaque microbiome with a physiologically relevant level of microbial diversity up to 24 h. The modulation of inflammatory markers in the presence of oral microbiome indicates the humanized functional response of this model and establishes a new set of tools to investigate host-pathogen imbalances in gingivitis and periodontal diseases.
Collapse
Affiliation(s)
- Miryam Adelfio
- Department of Biomedical EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| | | | | | - Lorenzo Tozzi
- Department of Biomedical EngineeringTufts UniversityMedfordMA02155USA
| | | | - Hatice Hasturk
- Center for Clinical and Translational ResearchThe Forsyth InstituteCambridgeMA02142USA
| | - David L. Kaplan
- Department of Biomedical EngineeringTufts UniversityMedfordMA02155USA
| | - Chiara E. Ghezzi
- Department of Biomedical EngineeringUniversity of Massachusetts LowellLowellMA01854USA
- Department of Biomedical EngineeringTufts UniversityMedfordMA02155USA
| |
Collapse
|
10
|
Biosensor integrated brain-on-a-chip platforms: Progress and prospects in clinical translation. Biosens Bioelectron 2023; 225:115100. [PMID: 36709589 DOI: 10.1016/j.bios.2023.115100] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/07/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Because of the brain's complexity, developing effective treatments for neurological disorders is a formidable challenge. Research efforts to this end are advancing as in vitro systems have reached the point that they can imitate critical components of the brain's structure and function. Brain-on-a-chip (BoC) was first used for microfluidics-based systems with small synthetic tissues but has expanded recently to include in vitro simulation of the central nervous system (CNS). Defining the system's qualifying parameters may improve the BoC for the next generation of in vitro platforms. These parameters show how well a given platform solves the problems unique to in vitro CNS modeling (like recreating the brain's microenvironment and including essential parts like the blood-brain barrier (BBB)) and how much more value it offers than traditional cell culture systems. This review provides an overview of the practical concerns of creating and deploying BoC systems and elaborates on how these technologies might be used. Not only how advanced biosensing technologies could be integrated with BoC system but also how novel approaches will automate assays and improve point-of-care (PoC) diagnostics and accurate quantitative analyses are discussed. Key challenges providing opportunities for clinical translation of BoC in neurodegenerative disorders are also addressed.
Collapse
|
11
|
Spatio-temporal dynamics enhance cellular diversity, neuronal function and further maturation of human cerebral organoids. Commun Biol 2023; 6:173. [PMID: 36788328 PMCID: PMC9926461 DOI: 10.1038/s42003-023-04547-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
The bioengineerined and whole matured human brain organoids stand as highly valuable three-dimensional in vitro brain-mimetic models to recapitulate in vivo brain development, neurodevelopmental and neurodegenerative diseases. Various instructive signals affecting multiple biological processes including morphogenesis, developmental stages, cell fate transitions, cell migration, stem cell function and immune responses have been employed for generation of physiologically functional cerebral organoids. However, the current approaches for maturation require improvement for highly harvestable and functional cerebral organoids with reduced batch-to-batch variabilities. Here, we demonstrate two different engineering approaches, the rotating cell culture system (RCCS) microgravity bioreactor and a newly designed microfluidic platform (µ-platform) to improve harvestability, reproducibility and the survival of high-quality cerebral organoids and compare with those of traditional spinner and shaker systems. RCCS and µ-platform organoids have reached ideal sizes, approximately 95% harvestability, prolonged culture time with Ki-67 + /CD31 + /β-catenin+ proliferative, adhesive and endothelial-like cells and exhibited enriched cellular diversity (abundant neural/glial/ endothelial cell population), structural brain morphogenesis, further functional neuronal identities (glutamate secreting glutamatergic, GABAergic and hippocampal neurons) and synaptogenesis (presynaptic-postsynaptic interaction) during whole human brain development. Both organoids expressed CD11b + /IBA1 + microglia and MBP + /OLIG2 + oligodendrocytes at high levels as of day 60. RCCS and µ-platform organoids showing high levels of physiological fidelity a high level of physiological fidelity can serve as functional preclinical models to test new therapeutic regimens for neurological diseases and benefit from multiplexing.
Collapse
|
12
|
Callegari F, Brofiga M, Massobrio P. Modeling the three-dimensional connectivity of in vitro cortical ensembles coupled to Micro-Electrode Arrays. PLoS Comput Biol 2023; 19:e1010825. [PMID: 36780570 PMCID: PMC9956882 DOI: 10.1371/journal.pcbi.1010825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/24/2023] [Accepted: 12/17/2022] [Indexed: 02/15/2023] Open
Abstract
Nowadays, in vitro three-dimensional (3D) neuronal networks are becoming a consolidated experimental model to overcome most of the intrinsic limitations of bi-dimensional (2D) assemblies. In the 3D environment, experimental evidence revealed a wider repertoire of activity patterns, characterized by a modulation of the bursting features, than the one observed in 2D cultures. However, it is not totally clear and understood what pushes the neuronal networks towards different dynamical regimes. One possible explanation could be the underlying connectivity, which could involve a larger number of neurons in a 3D rather than a 2D space and could organize following well-defined topological schemes. Driven by experimental findings, achieved by recording 3D cortical networks organized in multi-layered structures coupled to Micro-Electrode Arrays (MEAs), in the present work we developed a large-scale computational network model made up of leaky integrate-and-fire (LIF) neurons to investigate possible structural configurations able to sustain the emerging patterns of electrophysiological activity. In particular, we investigated the role of the number of layers defining a 3D assembly and the spatial distribution of the connections within and among the layers. These configurations give rise to different patterns of activity that could be compared to the ones emerging from real in vitro 3D neuronal populations. Our results suggest that the introduction of three-dimensionality induced a global reduction in both firing and bursting rates with respect to 2D models. In addition, we found that there is a minimum number of layers necessary to obtain a change in the dynamics of the network. However, the effects produced by a 3D organization of the cells is somewhat mitigated if a scale-free connectivity is implemented in either one or all the layers of the network. Finally, the best matching of the experimental data is achieved supposing a 3D connectivity organized in structured bundles of links located in different areas of the 2D network.
Collapse
Affiliation(s)
- Francesca Callegari
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
| | - Martina Brofiga
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
- ScreenNeuroPharm, Sanremo, Italy
| | - Paolo Massobrio
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
- National Institute for Nuclear Physics (INFN), Genova, Italy
- * E-mail:
| |
Collapse
|
13
|
Message in a Scaffold: Natural Biomaterials for Three-Dimensional (3D) Bioprinting of Human Brain Organoids. Biomolecules 2022; 13:biom13010025. [PMID: 36671410 PMCID: PMC9855696 DOI: 10.3390/biom13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/07/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Brain organoids are invaluable tools for pathophysiological studies or drug screening, but there are still challenges to overcome in making them more reproducible and relevant. Recent advances in three-dimensional (3D) bioprinting of human neural organoids is an emerging approach that may overcome the limitations of self-organized organoids. It requires the development of optimal hydrogels, and a wealth of research has improved our knowledge about biomaterials both in terms of their intrinsic properties and their relevance on 3D culture of brain cells and tissue. Although biomaterials are rarely biologically neutral, few articles have reviewed their roles on neural cells. We here review the current knowledge on unmodified biomaterials amenable to support 3D bioprinting of neural organoids with a particular interest in their impact on cell homeostasis. Alginate is a particularly suitable bioink base for cell encapsulation. Gelatine is a valuable helper agent for 3D bioprinting due to its viscosity. Collagen, fibrin, hyaluronic acid and laminin provide biological support to adhesion, motility, differentiation or synaptogenesis and optimize the 3D culture of neural cells. Optimization of specialized hydrogels to direct differentiation of stem cells together with an increased resolution in phenotype analysis will further extend the spectrum of possible bioprinted brain disease models.
Collapse
|
14
|
Castillo Ransanz L, Van Altena PFJ, Heine VM, Accardo A. Engineered cell culture microenvironments for mechanobiology studies of brain neural cells. Front Bioeng Biotechnol 2022; 10:1096054. [PMID: 36588937 PMCID: PMC9794772 DOI: 10.3389/fbioe.2022.1096054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
The biomechanical properties of the brain microenvironment, which is composed of different neural cell types, the extracellular matrix, and blood vessels, are critical for normal brain development and neural functioning. Stiffness, viscoelasticity and spatial organization of brain tissue modulate proliferation, migration, differentiation, and cell function. However, the mechanical aspects of the neural microenvironment are largely ignored in current cell culture systems. Considering the high promises of human induced pluripotent stem cell- (iPSC-) based models for disease modelling and new treatment development, and in light of the physiological relevance of neuromechanobiological features, applications of in vitro engineered neuronal microenvironments should be explored thoroughly to develop more representative in vitro brain models. In this context, recently developed biomaterials in combination with micro- and nanofabrication techniques 1) allow investigating how mechanical properties affect neural cell development and functioning; 2) enable optimal cell microenvironment engineering strategies to advance neural cell models; and 3) provide a quantitative tool to assess changes in the neuromechanobiological properties of the brain microenvironment induced by pathology. In this review, we discuss the biological and engineering aspects involved in studying neuromechanobiology within scaffold-free and scaffold-based 2D and 3D iPSC-based brain models and approaches employing primary lineages (neural/glial), cell lines and other stem cells. Finally, we discuss future experimental directions of engineered microenvironments in neuroscience.
Collapse
Affiliation(s)
- Lucía Castillo Ransanz
- Department of Child and Adolescence Psychiatry, Amsterdam Neuroscience, Emma Children’s Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Pieter F. J. Van Altena
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, Netherlands
| | - Vivi M. Heine
- Department of Child and Adolescence Psychiatry, Amsterdam Neuroscience, Emma Children’s Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Department of Complex Trait Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
15
|
Barberio C, Saez J, Withers A, Nair M, Tamagnini F, Owens RM. Conducting Polymer-ECM Scaffolds for Human Neuronal Cell Differentiation. Adv Healthc Mater 2022; 11:e2200941. [PMID: 35904257 DOI: 10.1002/adhm.202200941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/23/2022] [Indexed: 01/28/2023]
Abstract
3D cell culture formats more closely resemble tissue architecture complexity than 2D systems, which are lacking most of the cell-cell and cell-microenvironment interactions of the in vivo milieu. Scaffold-based systems integrating natural biomaterials are extensively employed in tissue engineering to improve cell survival and outgrowth, by providing the chemical and physical cues of the natural extracellular matrix (ECM). Using the freeze-drying technique, porous 3D composite scaffolds consisting of poly(3,4-ethylene-dioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS), containing ECM components (i.e., collagen, hyaluronic acid, and laminin) are engineered for hosting neuronal cells. The resulting scaffolds exhibit a highly porous microstructure and good conductivity, determined by scanning electron microscopy and electrochemical impedance spectroscopy, respectively. These supports boast excellent mechanical stability and water uptake capacity, making them ideal candidates for cell infiltration. SH-SY5Y human neuroblastoma cells show enhanced cell survival and proliferation in the presence of ECM compared to PEDOT:PSS alone. Whole-cell patch-clamp recordings acquired from differentiated SHSY5Y cells in the scaffolds demonstrate that ECM constituents promote neuronal differentiation in situ. These findings reinforce the usability of 3D conducting supports as engineered highly biomimetic and functional in vitro tissue-like platforms for drug or disease modeling.
Collapse
Affiliation(s)
- Chiara Barberio
- Bioelectronic Systems and Technology group, Department of Chemical Engineering and Biotechnology, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Janire Saez
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, 01006, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, E-48011, Spain
| | - Aimee Withers
- Bioelectronic Systems and Technology group, Department of Chemical Engineering and Biotechnology, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Malavika Nair
- Cambridge Centre for Medical Materials, Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Francesco Tamagnini
- University of Reading, School of Pharmacy, Hopkins Building, Reading, RG6 6LA, UK
| | - Roisin M Owens
- Bioelectronic Systems and Technology group, Department of Chemical Engineering and Biotechnology, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| |
Collapse
|
16
|
Cairns DM, Itzhaki RF, Kaplan DL. Potential Involvement of Varicella Zoster Virus in Alzheimer's Disease via Reactivation of Quiescent Herpes Simplex Virus Type 1. J Alzheimers Dis 2022; 88:1189-1200. [PMID: 35754275 DOI: 10.3233/jad-220287] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Varicella zoster virus (VZV) has been implicated in Alzheimer's disease (AD), and vaccination against shingles, caused by VZV, has been found to decrease the risk of AD/dementia. VZV might reside latently in brain, and on reactivation might cause direct damage leading to AD, as proposed for herpes simplex virus type 1 (HSV-1), a virus strongly implicated in AD. Alternatively, shingles could induce neuroinflammation and thence, reactivation of HSV-1 in brain. OBJECTIVE To investigate these possibilities by comparing the effects of VZV and HSV-1 infection of cultured cells, and the action of VZV infection on cells quiescently infected with HSV-1. METHODS We infected human-induced neural stem cell (hiNSC) cultures with HSV-1 and/or VZV and sought the presence of AD-related phenotypes such as amyloid-β (Aβ) and P-tau accumulation, gliosis, and neuroinflammation. RESULTS Cells infected with VZV did not show the main AD characteristics, Aβ and P-tau accumulation, which HSV-1 does cause, but did show gliosis and increased levels of pro-inflammatory cytokines, suggesting that VZV's action relating to AD/dementia is indirect. Strikingly, we found that VZV infection of cells quiescently infected with HSV-1 causes reactivation of HSV-1 and consequent AD-like changes, including Aβ and P-tau accumulation. CONCLUSION Our results are consistent with the suggestion that shingles causes reactivation of HSV1 in brain and with the protective effects against AD of various vaccines, as well as the decrease in herpes labialis reported after certain types of vaccination. They support an indirect role for VZV in AD/dementia via reactivation of HSV-1 in brain.
Collapse
Affiliation(s)
- Dana M Cairns
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Ruth F Itzhaki
- Institute of Population Ageing, University of Oxford, Oxford, UK
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| |
Collapse
|
17
|
Silveira IA, Mullis AS, Cairns DM, Shevzov-Zebrun A, Whalen J, Galuppo A, Walsh KG, Kaplan DL. Screening neuroprotective compounds in herpes-induced Alzheimer's disease cell and 3D tissue models. Free Radic Biol Med 2022; 186:76-92. [PMID: 35537596 DOI: 10.1016/j.freeradbiomed.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/22/2022]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder that can cause life-altering and debilitating cognitive decline. AD's etiology is poorly understood, and no disease-modifying therapeutics exist. Here, we describe the use of 2D and 3D tissue culture models of herpesvirus-induced AD, which recapitulate hallmark disease features of plaque formation, gliosis, neuroinflammation, and impaired neuronal signaling, to screen a panel of 21 medications, supplements, and nutraceuticals with purported neuroprotective benefits. This screen identified green tea catechins and resveratrol as having strong anti-plaque properties, functional neuroprotective benefits, and minimal neurotoxicity, providing support for their further investigation as AD preventives and therapies. Two other candidates, citicoline and metformin, reduced plaque formation and were minimally toxic, but did not protect against virus-induced impairments in neuronal signaling. This study establishes a simple platform for rapidly screening and characterizing AD compounds of interest in 2D and 3D human cortical tissue models representing physiologically relevant disease features.
Collapse
Affiliation(s)
- Isabella A Silveira
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Adam S Mullis
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Dana M Cairns
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA; Allen Discovery Center, Tufts University, Medford, MA, 02155, USA
| | - Anna Shevzov-Zebrun
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Jordyn Whalen
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Alexa Galuppo
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Katherine G Walsh
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA; Allen Discovery Center, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
18
|
Hasan MF, Trushina E. Advances in Recapitulating Alzheimer's Disease Phenotypes Using Human Induced Pluripotent Stem Cell-Based In Vitro Models. Brain Sci 2022; 12:552. [PMID: 35624938 PMCID: PMC9138647 DOI: 10.3390/brainsci12050552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disorder and the leading cause of death among older individuals. Available treatment strategies only temporarily mitigate symptoms without modifying disease progression. Recent studies revealed the multifaceted neurobiology of AD and shifted the target of drug development. Established animal models of AD are mostly tailored to yield a subset of disease phenotypes, which do not recapitulate the complexity of sporadic late-onset AD, the most common form of the disease. The use of human induced pluripotent stem cells (HiPSCs) offers unique opportunities to fill these gaps. Emerging technology allows the development of disease models that recapitulate a brain-like microenvironment using patient-derived cells. These models retain the individual's unraveled genetic background, yielding clinically relevant disease phenotypes and enabling cost-effective, high-throughput studies for drug discovery. Here, we review the development of various HiPSC-based models to study AD mechanisms and their application in drug discovery.
Collapse
Affiliation(s)
- Md Fayad Hasan
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
19
|
Tang-Schomer MD, Chandok H, Wu WB, Lau CC, Bookland MJ, George J. 3D patient-derived tumor models to recapitulate pediatric brain tumors In Vitro. Transl Oncol 2022; 20:101407. [PMID: 35381525 PMCID: PMC8980497 DOI: 10.1016/j.tranon.2022.101407] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Brain tumors are the leading cause of cancer-related deaths in children. Tailored therapies need preclinical brain tumor models representing a wide range of molecular subtypes. Here, we adapted a previously established brain tissue-model to fresh patient tumor cells with the goal of establishing3D in vitro culture conditions for each tumor type.Wereported our findings from 11 pediatric tumor cases, consisting of three medulloblastoma (MB) patients, three ependymoma (EPN) patients, one glioblastoma (GBM) patient, and four juvenile pilocytic astrocytoma (Ast) patients. Chemically defined media consisting of a mixture of pro-neural and pro-endothelial cell culture medium was found to support better growth than serum-containing medium for all the tumor cases we tested. 3D scaffold alone was found to support cell heterogeneity and tumor type-dependent spheroid-forming ability; both properties were lost in 2D or gel-only control cultures. Limited in vitro models showed that the number of differentially expressed genes between in vitro vs. primary tissues, are 104 (0.6%) of medulloblastoma, 3,392 (20.2%) of ependymoma, and 576 (3.4%) of astrocytoma, out of total 16,795 protein-coding genes and lincRNAs. Two models derived from a same medulloblastoma patient clustered together with the patient-matched primary tumor tissue; both models were 3D scaffold-only in Neurobasal and EGM 1:1 (v/v) mixture and differed by a 1-mo gap in culture (i.e., 6wk versus 10wk). The genes underlying the in vitrovs. in vivo tissue differences may provide mechanistic insights into the tumor microenvironment. This study is the first step towards establishing a pipeline from patient cells to models to personalized drug testing for brain cancer.
Collapse
Affiliation(s)
- Min D. Tang-Schomer
- UConn Health, Department of Pediatrics, 263 Farmington Avenue, Farmington, Connecticut 06030, USA,Correspondence author.
| | - Harshpreet Chandok
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, Connecticut 06030, USA
| | - Wei-Biao Wu
- University of Chicago, Department of Statistics, 5747 S.Ellis Avenue, Chicago, IL 60637, USA
| | - Ching C. Lau
- Connecticut Children's Medical Center, 282 Washington St, Hartford, CT 06106, USA,UConn Health, Department of Pediatrics, 263 Farmington Avenue, Farmington, Connecticut 06030, USA,The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, Connecticut 06030, USA
| | - Markus J. Bookland
- Connecticut Children's Medical Center, 282 Washington St, Hartford, CT 06106, USA,UConn Health, Department of Pediatrics, 263 Farmington Avenue, Farmington, Connecticut 06030, USA
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, Connecticut 06030, USA
| |
Collapse
|
20
|
Amirifar L, Shamloo A, Nasiri R, de Barros NR, Wang ZZ, Unluturk BD, Libanori A, Ievglevskyi O, Diltemiz SE, Sances S, Balasingham I, Seidlits SK, Ashammakhi N. Brain-on-a-chip: Recent advances in design and techniques for microfluidic models of the brain in health and disease. Biomaterials 2022; 285:121531. [DOI: 10.1016/j.biomaterials.2022.121531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/10/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022]
|
21
|
Hsu CC, George JH, Waller S, Besnard C, Nagel DA, Hill EJ, Coleman MD, Korsunsky AM, Cui Z, Ye H. Increased connectivity of hiPSC-derived neural networks in multiphase granular hydrogel scaffolds. Bioact Mater 2022; 9:358-372. [PMID: 34820576 PMCID: PMC8586009 DOI: 10.1016/j.bioactmat.2021.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/17/2021] [Accepted: 07/07/2021] [Indexed: 12/21/2022] Open
Abstract
To reflect human development, it is critical to create a substrate that can support long-term cell survival, differentiation, and maturation. Hydrogels are promising materials for 3D cultures. However, a bulk structure consisting of dense polymer networks often leads to suboptimal microenvironments that impedes nutrient exchange and cell-to-cell interaction. Herein, granular hydrogel-based scaffolds were used to support 3D human induced pluripotent stem cell (hiPSC)-derived neural networks. A custom designed 3D printed toolset was developed to extrude hyaluronic acid hydrogel through a porous nylon fabric to generate hydrogel granules. Cells and hydrogel granules were combined using a weaker secondary gelation step, forming self-supporting cell laden scaffolds. At three and seven days, granular scaffolds supported higher cell viability compared to bulk hydrogels, whereas granular scaffolds supported more neurite bearing cells and longer neurite extensions (65.52 ± 11.59 μm) after seven days compared to bulk hydrogels (22.90 ± 4.70 μm). Long-term (three-month) cultures of clinically relevant hiPSC-derived neural cells in granular hydrogels supported well established neuronal and astrocytic colonies and a high level of neurite extension both inside and beyond the scaffold. This approach is significant as it provides a simple, rapid and efficient way to achieve a tissue-relevant granular structure within hydrogel cultures.
Collapse
Affiliation(s)
- Chia-Chen Hsu
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| | - Julian H. George
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| | - Sharlayne Waller
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| | - Cyril Besnard
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - David A Nagel
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
- Translational Medicine Research Group, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Eric J Hill
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Michael D. Coleman
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Alexander M. Korsunsky
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| |
Collapse
|
22
|
Abstract
Protection of the central nervous system (CNS) and cerebral homeostasis depend upon the blood-brain barrier (BBB) functions and permeability. BBB restrictive permeability hinders drug delivery for the treatment of several neurodegenerative diseases and brain tumors. Several in vivo animal models and in vitro systems have been developed to understand the BBB complex mechanisms and aid in the design of improved therapeutic strategies. However, there are still many limitations that should be addressed to achieve the structural and chemical environment of a human BBB. We developed a microfluidic-based model of the neurovascular unit. A monolayer of human cerebral endothelial cells (hCMEC-D3) was grown and cocultured with human brain microvascular pericytes (hBMVPC), and human induced pluripotent stem cells differentiated into astrocytes (hiPSC-AC) and neurons (hiPSC-N). To visualize the physiological morphology of each cell type, we used fluorescent cell-specific markers and confocal microscopy. Permeation of fluorescent solutes with different molecular weights was measured to demonstrate that the developed BBB was selectively permeable as a functional barrier.
Collapse
|
23
|
Brofiga M, Pisano M, Raiteri R, Massobrio P. On the road to the brain-on-a-chip: a review on strategies, methods, and applications. J Neural Eng 2021; 18. [PMID: 34280903 DOI: 10.1088/1741-2552/ac15e4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/19/2021] [Indexed: 11/12/2022]
Abstract
The brain is the most complex organ of our body. Such a complexity spans from the single-cell morphology up to the intricate connections that hundreds of thousands of neurons establish to create dense neuronal networks. All these components are involved in the genesis of the rich patterns of electrophysiological activity that characterize the brain. Over the years, researchers coming from different disciplines developedin vitrosimplified experimental models to investigate in a more controllable and observable way how neuronal ensembles generate peculiar firing rhythms, code external stimulations, or respond to chemical drugs. Nowadays, suchin vitromodels are namedbrain-on-a-chippointing out the relevance of the technological counterpart as artificial tool to interact with the brain: multi-electrode arrays are well-used devices to record and stimulate large-scale developing neuronal networks originated from dissociated cultures, brain slices, up to brain organoids. In this review, we will discuss the state of the art of the brain-on-a-chip, highlighting which structural and biological features a realisticin vitrobrain should embed (and how to achieve them). In particular, we identified two topological features, namely modular and three-dimensional connectivity, and a biological one (heterogeneity) that takes into account the huge number of neuronal types existing in the brain. At the end of this travel, we will show how 'far' we are from the goal and how interconnected-brain-regions-on-a-chip is the most appropriate wording to indicate the current state of the art.
Collapse
Affiliation(s)
- Martina Brofiga
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
| | - Marietta Pisano
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
| | - Roberto Raiteri
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, Genova, Italy.,CNR- Institute of Biophysics, Genova, Italy
| | - Paolo Massobrio
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, Genova, Italy.,National Institute for Nuclear Physics (INFN), Genova, Italy
| |
Collapse
|
24
|
Pei N, Hao Z, Wang S, Pan B, Fang A, Kang J, Li D, He J, Wang L. 3D Printing of Layered Gradient Pore Structure of Brain-like Tissue. Int J Bioprint 2021; 7:359. [PMID: 34286148 PMCID: PMC8287709 DOI: 10.18063/ijb.v7i3.359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/20/2021] [Indexed: 11/23/2022] Open
Abstract
The pathological research and drug development of brain diseases require appropriate brain models. Given the complex, layered structure of the cerebral cortex, as well as the constraints on the medical ethics and the inaccuracy of animal models, it is necessary to construct a brain-like model in vitro. In this study, we designed and built integrated three-dimensional (3D) printing equipment for cell printing/culture, which can guarantee cell viability in the printing process and provide the equipment foundation for manufacturing the layered structures with gradient distribution of pore size. Based on this printing equipment, to achieve the purpose of printing the layered structures with multiple materials, we conducted research on the performance of bio-inks with different compositions and optimized the printing process. By extruding and stacking materials, we can print the layered structure with the uniform distribution of cells and the gradient distribution of pore sizes. Finally, we can accurately print a structure with 30 layers. The line width (resolution) of the printed monolayer structure was about 478 mm, the forming accuracy can reach 97.24%, and the viability of cells in the printed structure is as high as 94.5%.
Collapse
Affiliation(s)
- Na Pei
- State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, 710054, Xi’an, Shaanxi, China
- School of Mechanical Engineering, Xi’an Jiaotong University, 710054, Xi’an, ShanXi, China
| | - Zhiyan Hao
- State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, 710054, Xi’an, Shaanxi, China
- School of Mechanical Engineering, Xi’an Jiaotong University, 710054, Xi’an, ShanXi, China
| | - Sen Wang
- State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, 710054, Xi’an, Shaanxi, China
- School of Mechanical Engineering, Xi’an Jiaotong University, 710054, Xi’an, ShanXi, China
| | - Binglei Pan
- State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, 710054, Xi’an, Shaanxi, China
- School of Mechanical Engineering, Xi’an Jiaotong University, 710054, Xi’an, ShanXi, China
| | - Ao Fang
- State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, 710054, Xi’an, Shaanxi, China
- School of Mechanical Engineering, Xi’an Jiaotong University, 710054, Xi’an, ShanXi, China
| | | | - Dichen Li
- State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, 710054, Xi’an, Shaanxi, China
- School of Mechanical Engineering, Xi’an Jiaotong University, 710054, Xi’an, ShanXi, China
| | - Jiankang He
- State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, 710054, Xi’an, Shaanxi, China
- School of Mechanical Engineering, Xi’an Jiaotong University, 710054, Xi’an, ShanXi, China
| | - Ling Wang
- State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, 710054, Xi’an, Shaanxi, China
- School of Mechanical Engineering, Xi’an Jiaotong University, 710054, Xi’an, ShanXi, China
| |
Collapse
|
25
|
Rouleau N, Cairns DM, Rusk W, Levin M, Kaplan DL. Learning and synaptic plasticity in 3D bioengineered neural tissues. Neurosci Lett 2021; 750:135799. [PMID: 33675883 PMCID: PMC7994196 DOI: 10.1016/j.neulet.2021.135799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/20/2021] [Accepted: 02/28/2021] [Indexed: 11/29/2022]
Abstract
Though neuroscientists have historically relied upon measurement of established nervous systems, contemporary advances in bioengineering have made it possible to design and build artificial neural tissues with which to investigate normative and diseased states [1-5] however, their potential to display features of learning and memory remains unexplored. Here, we demonstrate response patterns characteristic of habituation, a form of non-associative learning, in 3D bioengineered neural tissues exposed to repetitive injections of current to elicit evoked-potentials (EPs). A return of the evoked response following rest indicated learning was transient and partially reversible. Applying patterned current as massed or distributed pulse trains induced differential expression of immediate early genes (IEG) that are known to facilitate synaptic plasticity and participate in memory formation [6,7]. Our findings represent the first demonstration of a learning response in a bioengineered neural tissue in vitro.
Collapse
Affiliation(s)
- Nicolas Rouleau
- Department of Biomedical Engineering, Tufts University, United States; The Allen Discovery Center, Tufts University, United States; Initiative for Neural Science, Disease, and Engineering (INSciDE), Tufts University, United States.
| | - Dana M Cairns
- Department of Biomedical Engineering, Tufts University, United States; The Allen Discovery Center, Tufts University, United States; Initiative for Neural Science, Disease, and Engineering (INSciDE), Tufts University, United States.
| | - William Rusk
- Department of Biomedical Engineering, Tufts University, United States.
| | - Michael Levin
- Department of Biomedical Engineering, Tufts University, United States; The Allen Discovery Center, Tufts University, United States; Department of Biology, Tufts University, United States.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, United States; The Allen Discovery Center, Tufts University, United States; Initiative for Neural Science, Disease, and Engineering (INSciDE), Tufts University, United States.
| |
Collapse
|
26
|
Rouleau N, Murugan NJ, Kaplan DL. Toward Studying Cognition in a Dish. Trends Cogn Sci 2021; 25:294-304. [PMID: 33546973 PMCID: PMC7946736 DOI: 10.1016/j.tics.2021.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/31/2022]
Abstract
Bioengineered neural tissues help advance our understanding of neurodevelopment, regeneration, and neural disease; however, it remains unclear whether they can replicate higher-order functions including cognition. Building upon technical achievements in the fields of biomaterials, tissue engineering, and cell biology, investigators have generated an assortment of artificial brain structures and cocultured circuits. Though they have displayed basic electrochemical signaling, their capacities to generate minimal patterns of information processing suggestive of high-order cognitive analogues have not yet been explored. Here, we review the current state of neural tissue engineering and consider the possibility of a study of cognition in vitro. We adopt a practical definition of minimal cognition, anticipate problems of measurement, and discuss solutions toward a study of cognition in a dish.
Collapse
Affiliation(s)
- Nicolas Rouleau
- Department of Psychology, Algoma University, 1520 Queen Street East, Sault Ste. Marie, Ontario, Canada, P6A 2G4; Department of Biomedical Engineering, Tufts University, Science and Technology Center, 4 Colby Street, Medford, MA 02155, USA
| | - Nirosha J Murugan
- Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste. Marie, Ontario, Canada, P6A 2G4
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Science and Technology Center, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
27
|
Yonesi M, Garcia-Nieto M, Guinea GV, Panetsos F, Pérez-Rigueiro J, González-Nieto D. Silk Fibroin: An Ancient Material for Repairing the Injured Nervous System. Pharmaceutics 2021; 13:429. [PMID: 33806846 PMCID: PMC8004633 DOI: 10.3390/pharmaceutics13030429] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/25/2022] Open
Abstract
Silk refers to a family of natural fibers spun by several species of invertebrates such as spiders and silkworms. In particular, silkworm silk, the silk spun by Bombyx mori larvae, has been primarily used in the textile industry and in clinical settings as a main component of sutures for tissue repairing and wound ligation. The biocompatibility, remarkable mechanical performance, controllable degradation, and the possibility of producing silk-based materials in several formats, have laid the basic principles that have triggered and extended the use of this material in regenerative medicine. The field of neural soft tissue engineering is not an exception, as it has taken advantage of the properties of silk to promote neuronal growth and nerve guidance. In addition, silk has notable intrinsic properties and the by-products derived from its degradation show anti-inflammatory and antioxidant properties. Finally, this material can be employed for the controlled release of factors and drugs, as well as for the encapsulation and implantation of exogenous stem and progenitor cells with therapeutic capacity. In this article, we review the state of the art on manufacturing methodologies and properties of fiber-based and non-fiber-based formats, as well as the application of silk-based biomaterials to neuroprotect and regenerate the damaged nervous system. We review previous studies that strategically have used silk to enhance therapeutics dealing with highly prevalent central and peripheral disorders such as stroke, Alzheimer's disease, Parkinson's disease, and peripheral trauma. Finally, we discuss previous research focused on the modification of this biomaterial, through biofunctionalization techniques and/or the creation of novel composite formulations, that aim to transform silk, beyond its natural performance, into more efficient silk-based-polymers towards the clinical arena of neuroprotection and regeneration in nervous system diseases.
Collapse
Affiliation(s)
- Mahdi Yonesi
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (M.Y.); (G.V.G.)
- Silk Biomed SL, 28260 Madrid, Spain;
| | | | - Gustavo V. Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (M.Y.); (G.V.G.)
- Silk Biomed SL, 28260 Madrid, Spain;
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Fivos Panetsos
- Silk Biomed SL, 28260 Madrid, Spain;
- Neurocomputing and Neurorobotics Research Group, Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| | - José Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (M.Y.); (G.V.G.)
- Silk Biomed SL, 28260 Madrid, Spain;
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (M.Y.); (G.V.G.)
- Silk Biomed SL, 28260 Madrid, Spain;
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
28
|
Koroleva A, Deiwick A, El-Tamer A, Koch L, Shi Y, Estévez-Priego E, Ludl AA, Soriano J, Guseva D, Ponimaskin E, Chichkov B. In Vitro Development of Human iPSC-Derived Functional Neuronal Networks on Laser-Fabricated 3D Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7839-7853. [PMID: 33559469 DOI: 10.1021/acsami.0c16616] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Neural progenitor cells generated from human induced pluripotent stem cells (hiPSCs) are the forefront of ″brain-on-chip″ investigations. Viable and functional hiPSC-derived neuronal networks are shaping powerful in vitro models for evaluating the normal and abnormal formation of cortical circuits, understanding the underlying disease mechanisms, and investigating the response to drugs. They therefore represent a desirable instrument for both the scientific community and the pharmacological industry. However, culture conditions required for the full functional maturation of individual neurons and networks are still unidentified. It has been recognized that three-dimensional (3D) culture conditions can better emulate in vivo neuronal tissue development compared to 2D cultures and thus provide a more desirable in vitro approach. In this paper, we present the design and implementation of a 3D scaffold platform that supports and promotes intricate neuronal network development. 3D scaffolds were produced through direct laser writing by two-photon polymerization (2PP), a high-resolution 3D laser microstructuring technology, using the biocompatible and nondegradable photoreactive resin Dental LT Clear (DClear). Neurons developed and interconnected on a 3D environment shaped by vertically stacked scaffold layers. The developed networks could support different cell types. Starting at the day 50 of 3D culture, neuronal progenitor cells could develop into cortical projection neurons (CNPs) of all six layers, different types of inhibitory neurons, and glia. Additionally and in contrast to 2D conditions, 3D scaffolds supported the long-term culturing of neuronal networks over the course of 120 days. Network health and functionality were probed through calcium imaging, which revealed a strong spontaneous neuronal activity that combined individual and collective events. Taken together, our results highlight advanced microstructured 3D scaffolds as a reliable platform for the 3D in vitro modeling of neuronal functions.
Collapse
Affiliation(s)
- Anastasia Koroleva
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- Laser Zentrum Hannover e.V., 30419 Hannover, Germany
| | - Andrea Deiwick
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
| | | | - Lothar Koch
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
| | - Yichen Shi
- Axol Bioscience Ltd., CB10 1XL Cambridge, UK
| | - Estefanía Estévez-Priego
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), 08028 Barcelona, Spain
| | - Adriaan-Alexander Ludl
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), 08028 Barcelona, Spain
- Computational Biology Unit, Department of Informatics, University of Bergen, 5020 Bergen, Norway
| | - Jordi Soriano
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), 08028 Barcelona, Spain
| | - Daria Guseva
- Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
- Department of Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Boris Chichkov
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
| |
Collapse
|
29
|
Advances in modelling the human microbiome-gut-brain axis in vitro. Biochem Soc Trans 2021; 49:187-201. [PMID: 33544117 PMCID: PMC7924999 DOI: 10.1042/bst20200338] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/23/2020] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
The human gut microbiome has emerged as a key player in the bidirectional communication of the gut–brain axis, affecting various aspects of homeostasis and pathophysiology. Until recently, the majority of studies that seek to explore the mechanisms underlying the microbiome–gut–brain axis cross-talk, relied almost exclusively on animal models, and particularly gnotobiotic mice. Despite the great progress made with these models, various limitations, including ethical considerations and interspecies differences that limit the translatability of data to human systems, pushed researchers to seek for alternatives. Over the past decades, the field of in vitro modelling of tissues has experienced tremendous growth, thanks to advances in 3D cell biology, materials, science and bioengineering, pushing further the borders of our ability to more faithfully emulate the in vivo situation. The discovery of stem cells has offered a new source of cells, while their use in generating gastrointestinal and brain organoids, among other tissues, has enabled the development of novel 3D tissues that better mimic the native tissue structure and function, compared with traditional assays. In parallel, organs-on-chips technology and bioengineered tissues have emerged as highly promising alternatives to animal models for a wide range of applications. Here, we discuss how recent advances and trends in this area can be applied in host–microbe and host–pathogen interaction studies. In addition, we highlight paradigm shifts in engineering more robust human microbiome-gut-brain axis models and their potential to expand our understanding of this complex system and hence explore novel, microbiome-based therapeutic approaches.
Collapse
|
30
|
Moysidou CM, Barberio C, Owens RM. Advances in Engineering Human Tissue Models. Front Bioeng Biotechnol 2021; 8:620962. [PMID: 33585419 PMCID: PMC7877542 DOI: 10.3389/fbioe.2020.620962] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Research in cell biology greatly relies on cell-based in vitro assays and models that facilitate the investigation and understanding of specific biological events and processes under different conditions. The quality of such experimental models and particularly the level at which they represent cell behavior in the native tissue, is of critical importance for our understanding of cell interactions within tissues and organs. Conventionally, in vitro models are based on experimental manipulation of mammalian cells, grown as monolayers on flat, two-dimensional (2D) substrates. Despite the amazing progress and discoveries achieved with flat biology models, our ability to translate biological insights has been limited, since the 2D environment does not reflect the physiological behavior of cells in real tissues. Advances in 3D cell biology and engineering have led to the development of a new generation of cell culture formats that can better recapitulate the in vivo microenvironment, allowing us to examine cells and their interactions in a more biomimetic context. Modern biomedical research has at its disposal novel technological approaches that promote development of more sophisticated and robust tissue engineering in vitro models, including scaffold- or hydrogel-based formats, organotypic cultures, and organs-on-chips. Even though such systems are necessarily simplified to capture a particular range of physiology, their ability to model specific processes of human biology is greatly valued for their potential to close the gap between conventional animal studies and human (patho-) physiology. Here, we review recent advances in 3D biomimetic cultures, focusing on the technological bricks available to develop more physiologically relevant in vitro models of human tissues. By highlighting applications and examples of several physiological and disease models, we identify the limitations and challenges which the field needs to address in order to more effectively incorporate synthetic biomimetic culture platforms into biomedical research.
Collapse
Affiliation(s)
| | | | - Róisín Meabh Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
31
|
Cenini G, Hebisch M, Iefremova V, Flitsch LJ, Breitkreuz Y, Tanzi RE, Kim DY, Peitz M, Brüstle O. Dissecting Alzheimer's disease pathogenesis in human 2D and 3D models. Mol Cell Neurosci 2021; 110:103568. [DOI: 10.1016/j.mcn.2020.103568] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
|
32
|
Zhu H, Qiao X, Liu W, Wang C, Zhao Y. Microglia Play an Essential Role in Synapse Development and Neuron Maturation in Tissue-Engineered Neural Tissues. Front Neurosci 2020; 14:586452. [PMID: 33328858 PMCID: PMC7717954 DOI: 10.3389/fnins.2020.586452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/15/2020] [Indexed: 12/04/2022] Open
Abstract
In the process of constructing engineered neural tissues, we often use mixed primary neural cells, which contain microglia in the cell culture. However, the role that microglia play in the construction of engineered neural tissue has not been well studied. Here, we generated three-dimensional (3D) engineered neural tissues by silk fibroin/collagen composite scaffolds and primary mixed cortical cells. We depleted microglial cells by magnetic separation. Then, we analyzed the neural growth, development, mature and synapse-related gene, and protein expressions compared with the control engineered neural tissues with the microglia-depleted engineered neural tissues. We found that the engineered neural tissues constructed by magnetic separation to remove microglia showed a decrease in the number of synaptic proteins and mature neurons. These findings link microglia to neuron and synaptic maturation and suggest the importance of microglia in constructing engineered neural tissues in vitro.
Collapse
Affiliation(s)
- Huimin Zhu
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and BiologicalInterdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Xin Qiao
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and BiologicalInterdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Wei Liu
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and BiologicalInterdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Changyong Wang
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and BiologicalInterdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Yuwei Zhao
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and BiologicalInterdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
33
|
Lacalle-Aurioles M, Cassel de Camps C, Zorca CE, Beitel LK, Durcan TM. Applying hiPSCs and Biomaterials Towards an Understanding and Treatment of Traumatic Brain Injury. Front Cell Neurosci 2020; 14:594304. [PMID: 33281561 PMCID: PMC7689345 DOI: 10.3389/fncel.2020.594304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of disability and mortality in children and young adults and has a profound impact on the socio-economic wellbeing of patients and their families. Initially, brain damage is caused by mechanical stress-induced axonal injury and vascular dysfunction, which can include hemorrhage, blood-brain barrier disruption, and ischemia. Subsequent neuronal degeneration, chronic inflammation, demyelination, oxidative stress, and the spread of excitotoxicity can further aggravate disease pathology. Thus, TBI treatment requires prompt intervention to protect against neuronal and vascular degeneration. Rapid advances in the field of stem cells (SCs) have revolutionized the prospect of repairing brain function following TBI. However, more than that, SCs can contribute substantially to our knowledge of this multifaced pathology. Research, based on human induced pluripotent SCs (hiPSCs) can help decode the molecular pathways of degeneration and recovery of neuronal and glial function, which makes these cells valuable tools for drug screening. Additionally, experimental approaches that include hiPSC-derived engineered tissues (brain organoids and bio-printed constructs) and biomaterials represent a step forward for the field of regenerative medicine since they provide a more suitable microenvironment that enhances cell survival and grafting success. In this review, we highlight the important role of hiPSCs in better understanding the molecular pathways of TBI-related pathology and in developing novel therapeutic approaches, building on where we are at present. We summarize some of the most relevant findings for regenerative therapies using biomaterials and outline key challenges for TBI treatments that remain to be addressed.
Collapse
Affiliation(s)
- María Lacalle-Aurioles
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Camille Cassel de Camps
- Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Cornelia E Zorca
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Lenore K Beitel
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
34
|
Qiu B, Bessler N, Figler K, Buchholz M, Rios AC, Malda J, Levato R, Caiazzo M. Bioprinting Neural Systems to Model Central Nervous System Diseases. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910250. [PMID: 34566552 PMCID: PMC8444304 DOI: 10.1002/adfm.201910250] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 05/09/2023]
Abstract
To date, pharmaceutical progresses in central nervous system (CNS) diseases are clearly hampered by the lack of suitable disease models. Indeed, animal models do not faithfully represent human neurodegenerative processes and human in vitro 2D cell culture systems cannot recapitulate the in vivo complexity of neural systems. The search for valuable models of neurodegenerative diseases has recently been revived by the addition of 3D culture that allows to re-create the in vivo microenvironment including the interactions among different neural cell types and the surrounding extracellular matrix (ECM) components. In this review, the new challenges in the field of CNS diseases in vitro 3D modeling are discussed, focusing on the implementation of bioprinting approaches enabling positional control on the generation of the 3D microenvironments. The focus is specifically on the choice of the optimal materials to simulate the ECM brain compartment and the biofabrication technologies needed to shape the cellular components within a microenvironment that significantly represents brain biochemical and biophysical parameters.
Collapse
Affiliation(s)
- Boning Qiu
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Nils Bessler
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25Utrecht3584 CSThe Netherlands
| | - Kianti Figler
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Maj‐Britt Buchholz
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25Utrecht3584 CSThe Netherlands
| | - Anne C. Rios
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25Utrecht3584 CSThe Netherlands
| | - Jos Malda
- Department of Orthopaedics and Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584CXThe Netherlands
- Department of Equine SciencesFaculty of Veterinary MedicineUtrecht UniversityYalelaan 112Utrecht3584CXThe Netherlands
| | - Riccardo Levato
- Department of Orthopaedics and Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584CXThe Netherlands
- Department of Equine SciencesFaculty of Veterinary MedicineUtrecht UniversityYalelaan 112Utrecht3584CXThe Netherlands
| | - Massimiliano Caiazzo
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples “Federico II”Via Pansini 5Naples80131Italy
| |
Collapse
|
35
|
Dingle YTL, Liaudanskaya V, Finnegan LT, Berlind KC, Mizzoni C, Georgakoudi I, Nieland TJF, Kaplan DL. Functional Characterization of Three-Dimensional Cortical Cultures for In Vitro Modeling of Brain Networks. iScience 2020; 23:101434. [PMID: 32805649 PMCID: PMC7452433 DOI: 10.1016/j.isci.2020.101434] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/27/2020] [Accepted: 08/03/2020] [Indexed: 12/22/2022] Open
Abstract
Three-dimensional (3D) in vitro cultures recapitulate key features of the brain including morphology, cell-cell and cell-extracellular matrix interactions, gradients of factors, and mechanical properties. However, there remains a need for experimental and computational tools to investigate network functions in these 3D models. To address this need, we present an experimental system based on 3D scaffold-based cortical neuron cultures in which we expressed the genetically encoded calcium indicator GCaMP6f to record neuronal activity at the millimeter-scale. Functional neural network descriptors were computed with graph-theory-based network analysis methods, showing the formation of functional networks at 3 weeks of culture. Changes to the functional network properties upon perturbations to glutamatergic neurotransmission or GABAergic neurotransmission were quantitatively characterized. The results illustrate the applicability of our 3D experimental system for the study of brain network development, function, and disruption in a biomimetic microenvironment.
Collapse
Affiliation(s)
- Yu-Ting L Dingle
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA 02155, USA
| | - Volha Liaudanskaya
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA 02155, USA
| | - Liam T Finnegan
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA 02155, USA
| | - Kyler C Berlind
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA 02155, USA
| | - Craig Mizzoni
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA 02155, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA 02155, USA
| | - Thomas J F Nieland
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 200 College Avenue, Medford, MA 02155, USA.
| |
Collapse
|
36
|
Rouleau N, Bonzanni M, Erndt-Marino JD, Sievert K, Ramirez CG, Rusk W, Levin M, Kaplan DL. A 3D Tissue Model of Traumatic Brain Injury with Excitotoxicity That Is Inhibited by Chronic Exposure to Gabapentinoids. Biomolecules 2020; 10:E1196. [PMID: 32824600 PMCID: PMC7463727 DOI: 10.3390/biom10081196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022] Open
Abstract
Injury progression associated with cerebral laceration is insidious. Following the initial trauma, brain tissues become hyperexcitable, begetting further damage that compounds the initial impact over time. Clinicians have adopted several strategies to mitigate the effects of secondary brain injury; however, higher throughput screening tools with modular flexibility are needed to expedite mechanistic studies and drug discovery that will contribute to the enhanced protection, repair, and even the regeneration of neural tissues. Here we present a novel bioengineered cortical brain model of traumatic brain injury (TBI) that displays characteristics of primary and secondary injury, including an outwardly radiating cell death phenotype and increased glutamate release with excitotoxic features. DNA content and tissue function were normalized by high-concentration, chronic administrations of gabapentinoids. Additional experiments suggested that the treatment effects were likely neuroprotective rather than regenerative, as evidenced by the drug-mediated decreases in cell excitability and an absence of drug-induced proliferation. We conclude that the present model of traumatic brain injury demonstrates validity and can serve as a customizable experimental platform to assess the individual contribution of cell types on TBI progression, as well as to screen anti-excitotoxic and pro-regenerative compounds.
Collapse
Affiliation(s)
- Nicolas Rouleau
- Department of Biomedical Engineering, Science and Technology Center, 4 Colby Street, School of Engineering, Tufts University, Medford, MA 02155, USA; (N.R.); (M.B.); (J.D.E.-M.); (K.S.); (C.G.R.); (W.R.)
- Department of Biomedical Engineering, Initiative for Neural Science, Disease, and Engineering (INSciDE), Science & Engineering Complex, 200 College Avenue, Tufts University, Medford, MA 02155, USA
- Department of Biology, Allen Discovery Center at Tufts University, Science & Engineering Complex, 200 College, Avenue, Medford, MA 021553, USA;
| | - Mattia Bonzanni
- Department of Biomedical Engineering, Science and Technology Center, 4 Colby Street, School of Engineering, Tufts University, Medford, MA 02155, USA; (N.R.); (M.B.); (J.D.E.-M.); (K.S.); (C.G.R.); (W.R.)
- Department of Biomedical Engineering, Initiative for Neural Science, Disease, and Engineering (INSciDE), Science & Engineering Complex, 200 College Avenue, Tufts University, Medford, MA 02155, USA
- Department of Biology, Allen Discovery Center at Tufts University, Science & Engineering Complex, 200 College, Avenue, Medford, MA 021553, USA;
| | - Joshua D. Erndt-Marino
- Department of Biomedical Engineering, Science and Technology Center, 4 Colby Street, School of Engineering, Tufts University, Medford, MA 02155, USA; (N.R.); (M.B.); (J.D.E.-M.); (K.S.); (C.G.R.); (W.R.)
- Department of Biomedical Engineering, Initiative for Neural Science, Disease, and Engineering (INSciDE), Science & Engineering Complex, 200 College Avenue, Tufts University, Medford, MA 02155, USA
- Department of Biology, Allen Discovery Center at Tufts University, Science & Engineering Complex, 200 College, Avenue, Medford, MA 021553, USA;
| | - Katja Sievert
- Department of Biomedical Engineering, Science and Technology Center, 4 Colby Street, School of Engineering, Tufts University, Medford, MA 02155, USA; (N.R.); (M.B.); (J.D.E.-M.); (K.S.); (C.G.R.); (W.R.)
| | - Camila G. Ramirez
- Department of Biomedical Engineering, Science and Technology Center, 4 Colby Street, School of Engineering, Tufts University, Medford, MA 02155, USA; (N.R.); (M.B.); (J.D.E.-M.); (K.S.); (C.G.R.); (W.R.)
| | - William Rusk
- Department of Biomedical Engineering, Science and Technology Center, 4 Colby Street, School of Engineering, Tufts University, Medford, MA 02155, USA; (N.R.); (M.B.); (J.D.E.-M.); (K.S.); (C.G.R.); (W.R.)
| | - Michael Levin
- Department of Biology, Allen Discovery Center at Tufts University, Science & Engineering Complex, 200 College, Avenue, Medford, MA 021553, USA;
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Science and Technology Center, 4 Colby Street, School of Engineering, Tufts University, Medford, MA 02155, USA; (N.R.); (M.B.); (J.D.E.-M.); (K.S.); (C.G.R.); (W.R.)
- Department of Biomedical Engineering, Initiative for Neural Science, Disease, and Engineering (INSciDE), Science & Engineering Complex, 200 College Avenue, Tufts University, Medford, MA 02155, USA
- Department of Biology, Allen Discovery Center at Tufts University, Science & Engineering Complex, 200 College, Avenue, Medford, MA 021553, USA;
| |
Collapse
|
37
|
Rouleau N, Murugan NJ, Rusk W, Koester C, Kaplan DL. Matrix Deformation with Ectopic Cells Induced by Rotational Motion in Bioengineered Neural Tissues. Ann Biomed Eng 2020; 48:2192-2203. [PMID: 32671625 PMCID: PMC7405955 DOI: 10.1007/s10439-020-02561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/29/2020] [Indexed: 11/30/2022]
Abstract
The brain's extracellular matrix (ECM) is a dynamic protein-based scaffold within which neural networks can form, self-maintain, and re-model. When the brain incurs injuries, microscopic tissue tears and active ECM re-modelling give way to abnormal brain structure and function including the presence of ectopic cells. Post-mortem and neuroimaging data suggest that the brains of jet pilots and astronauts, who are exposed to rotational forces, accelerations, and microgravity, display brain anomalies which could be indicative of a mechanodisruptive pathology. Here we present a model of non-impact-based brain injury induced by matrix deformation following mechanical shaking. Using a bioengineered 3D neural tissue platform, we designed a repetitive shaking paradigm to simulate subtle rotational acceleration. Our results indicate shaking induced ectopic cell clustering that could be inhibited by physically restraining tissue movement. Imaging revealed that the collagen substrate surrounding cells was deformed following shaking. Applied to neonatal rat brains, shaking induced deformation of extracellular spaces within the cerebral cortices and reduced the number of cell bodies at higher accelerations. We hypothesize that ECM deformation may represent a more significant role in brain injury progression than previously assumed and that the present model system contributes to its understanding as a phenomenon.
Collapse
Affiliation(s)
- Nicolas Rouleau
- Department of Biomedical Engineering, Science & Technology Center, Tufts University, Medford, MA, USA
- Initiative for Neural Science, Disease, and Engineering (INSciDE), Tufts University, Medford, USA
- The Allen Discovery Center, Tufts University, Medford, USA
| | - Nirosha J Murugan
- Department of Biomedical Engineering, Science & Technology Center, Tufts University, Medford, MA, USA
- The Allen Discovery Center, Tufts University, Medford, USA
- Department of Biology, Tufts University, Medford, USA
| | - William Rusk
- Department of Biomedical Engineering, Science & Technology Center, Tufts University, Medford, MA, USA
| | - Cole Koester
- Department of Biomedical Engineering, Science & Technology Center, Tufts University, Medford, MA, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Science & Technology Center, Tufts University, Medford, MA, USA.
- Initiative for Neural Science, Disease, and Engineering (INSciDE), Tufts University, Medford, USA.
- The Allen Discovery Center, Tufts University, Medford, USA.
| |
Collapse
|
38
|
Omelchenko A, Singh NK, Firestein BL. Current advances in in vitro models of central nervous system trauma. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020; 14:34-41. [PMID: 32671312 PMCID: PMC7363028 DOI: 10.1016/j.cobme.2020.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CNS trauma is a prominent cause of mortality and morbidity, and although much effort has focused on developing treatments for CNS trauma-related pathologies, little progress has been made. Pre-clinical models of TBI and SCI suffer from significant drawbacks, which result in substantial failures during clinical translation of promising pre-clinical therapies. Here, we review recent advances made in the development of in vitro models of CNS trauma, the promises and drawbacks of current in vitro CNS injury models, and the attributes necessary for future models to accurately mimic the trauma microenvironment and facilitate CNS trauma drug discovery. The goal is to provide insight for the development of future CNS injury models and to aid researchers in selecting effective models for pre-clinical research of trauma therapeutics.
Collapse
Affiliation(s)
- Anton Omelchenko
- Department of Cell Biology and Neuroscience; Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854-8082
- Neuroscience Graduate Program, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854-8082
| | - Nisha K. Singh
- Department of Cell Biology and Neuroscience; Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854-8082
- Molecular Biosciences Graduate Program, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854-8082
| | - Bonnie L. Firestein
- Department of Cell Biology and Neuroscience; Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854-8082
| |
Collapse
|
39
|
Cairns DM, Rouleau N, Parker RN, Walsh KG, Gehrke L, Kaplan DL. A 3D human brain-like tissue model of herpes-induced Alzheimer's disease. SCIENCE ADVANCES 2020; 6:eaay8828. [PMID: 32494701 PMCID: PMC7202879 DOI: 10.1126/sciadv.aay8828] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/18/2020] [Indexed: 05/23/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that causes cognitive decline, memory loss, and inability to perform everyday functions. Hallmark features of AD-including generation of amyloid plaques, neurofibrillary tangles, gliosis, and inflammation in the brain-are well defined; however, the cause of the disease remains elusive. Growing evidence implicates pathogens in AD development, with herpes simplex virus type I (HSV-1) gaining increasing attention as a potential causative agent. Here, we describe a multidisciplinary approach to produce physiologically relevant human tissues to study AD using human-induced neural stem cells (hiNSCs) and HSV-1 infection in a 3D bioengineered brain model. We report a herpes-induced tissue model of AD that mimics human disease with multicellular amyloid plaque-like formations, gliosis, neuroinflammation, and decreased functionality, completely in the absence of any exogenous mediators of AD. This model will allow for future studies to identify potential downstream drug targets for treating this devastating disease.
Collapse
Affiliation(s)
- Dana M. Cairns
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - Nicolas Rouleau
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - Rachael N. Parker
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | | - Lee Gehrke
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
40
|
Janzen D, Bakirci E, Wieland A, Martin C, Dalton PD, Villmann C. Cortical Neurons form a Functional Neuronal Network in a 3D Printed Reinforced Matrix. Adv Healthc Mater 2020; 9:e1901630. [PMID: 32181992 DOI: 10.1002/adhm.201901630] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/17/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022]
Abstract
Impairments in neuronal circuits underly multiple neurodevelopmental and neurodegenerative disorders. 3D cell culture models enhance the complexity of in vitro systems and provide a microenvironment closer to the native situation than with 2D cultures. Such novel model systems will allow the assessment of neuronal network formation and their dysfunction under disease conditions. Here, mouse cortical neurons are cultured from embryonic day E17 within in a fiber-reinforced matrix. A soft Matrigel with a shear modulus of 31 ± 5.6 Pa is reinforced with scaffolds created by melt electrowriting, improving its mechanical properties and facilitating the handling. Cortical neurons display enhance cell viability and the neuronal network maturation in 3D, estimated by staining of dendrites and synapses over 21 days in vitro, is faster in 3D compared to 2D cultures. Using functional readouts with electrophysiological recordings, different firing patterns of action potentials are observed, which are absent in the presence of the sodium channel blocker, tetrodotoxin. Voltage-gated sodium currents display a current-voltage relationship with a maximum peak current at -25 mV. With its high customizability in terms of scaffold reinforcement and soft matrix formulation, this approach represents a new tool to study neuronal networks in 3D under normal and, potentially, disease conditions.
Collapse
Affiliation(s)
- Dieter Janzen
- Institute for Clinical NeurobiologyUniversity Hospital Würzburg Versbacherstr. 5 Würzburg 97078 Germany
| | - Ezgi Bakirci
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity Hospital Würzburg Pleicherwall 2 Würzburg 97070 Germany
| | - Annalena Wieland
- Department of Obstetrics and GynecologyUniversity Hospital ErlangenLaboratory for Molecular MedicineFAU Erlangen‐Nürnberg Universitätsstrasse, 21–23 Erlangen 91054 Germany
| | - Corinna Martin
- Institute for Clinical NeurobiologyUniversity Hospital Würzburg Versbacherstr. 5 Würzburg 97078 Germany
| | - Paul D. Dalton
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity Hospital Würzburg Pleicherwall 2 Würzburg 97070 Germany
| | - Carmen Villmann
- Institute for Clinical NeurobiologyUniversity Hospital Würzburg Versbacherstr. 5 Würzburg 97078 Germany
| |
Collapse
|
41
|
Rouleau N, Cantley WL, Liaudanskaya V, Berk A, Du C, Rusk W, Peirent E, Koester C, Nieland TJF, Kaplan DL. A Long-Living Bioengineered Neural Tissue Platform to Study Neurodegeneration. Macromol Biosci 2020; 20:e2000004. [PMID: 32065736 PMCID: PMC7292623 DOI: 10.1002/mabi.202000004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/13/2020] [Indexed: 01/01/2023]
Abstract
The prevalence of dementia and other neurodegenerative diseases continues to rise as age demographics in the population shift, inspiring the development of long-term tissue culture systems with which to study chronic brain disease. Here, it is investigated whether a 3D bioengineered neural tissue model derived from human induced pluripotent stem cells (hiPSCs) can remain stable and functional for multiple years in culture. Silk-based scaffolds are seeded with neurons and glial cells derived from hiPSCs supplied by human donors who are either healthy or have been diagnosed with Alzheimer's disease. Cell retention and markers of stress remain stable for over 2 years. Diseased samples display decreased spontaneous electrical activity and a subset displays sporadic-like indicators of increased pathological β-amyloid and tau markers characteristic of Alzheimer's disease with concomitant increases in oxidative stress. It can be concluded that the long-term stability of the platform is suited to study chronic brain disease including neurodegeneration.
Collapse
Affiliation(s)
- Nicolas Rouleau
- Department of Biomedical Engineering, School of Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, MA, 02155, USA
- Initiative for Neural Science, Disease & Engineering, Tufts University, Science & Engineering Complex, 200 College Avenue, Medford, MA, 02155, USA
- The Allen Discovery Center at Tufts University, Biology Department, Tufts University, 200 Boston Ave. Suite 4600, Medford, MA, 02155, USA
| | - William L Cantley
- Department of Biomedical Engineering, School of Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, MA, 02155, USA
- Initiative for Neural Science, Disease & Engineering, Tufts University, Science & Engineering Complex, 200 College Avenue, Medford, MA, 02155, USA
| | - Volha Liaudanskaya
- Department of Biomedical Engineering, School of Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, MA, 02155, USA
- Initiative for Neural Science, Disease & Engineering, Tufts University, Science & Engineering Complex, 200 College Avenue, Medford, MA, 02155, USA
| | - Alexander Berk
- Department of Biomedical Engineering, School of Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, MA, 02155, USA
| | - Chuang Du
- Department of Biomedical Engineering, School of Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, MA, 02155, USA
- Initiative for Neural Science, Disease & Engineering, Tufts University, Science & Engineering Complex, 200 College Avenue, Medford, MA, 02155, USA
| | - William Rusk
- Department of Biomedical Engineering, School of Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, MA, 02155, USA
| | - Emily Peirent
- Department of Biomedical Engineering, School of Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, MA, 02155, USA
| | - Cole Koester
- Department of Biomedical Engineering, School of Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, MA, 02155, USA
| | - Thomas J F Nieland
- Department of Biomedical Engineering, School of Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, MA, 02155, USA
- Initiative for Neural Science, Disease & Engineering, Tufts University, Science & Engineering Complex, 200 College Avenue, Medford, MA, 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, School of Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, MA, 02155, USA
- Initiative for Neural Science, Disease & Engineering, Tufts University, Science & Engineering Complex, 200 College Avenue, Medford, MA, 02155, USA
- The Allen Discovery Center at Tufts University, Biology Department, Tufts University, 200 Boston Ave. Suite 4600, Medford, MA, 02155, USA
| |
Collapse
|
42
|
Functional maturation of human neural stem cells in a 3D bioengineered brain model enriched with fetal brain-derived matrix. Sci Rep 2019; 9:17874. [PMID: 31784595 PMCID: PMC6884597 DOI: 10.1038/s41598-019-54248-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022] Open
Abstract
Brain extracellular matrix (ECM) is often overlooked in vitro brain tissue models, despite its instructive roles during development. Using developmental stage-sourced brain ECM in reproducible 3D bioengineered culture systems, we demonstrate enhanced functional differentiation of human induced neural stem cells (hiNSCs) into healthy neurons and astrocytes. Particularly, fetal brain tissue-derived ECM supported long-term maintenance of differentiated neurons, demonstrated by morphology, gene expression and secretome profiling. Astrocytes were evident within the second month of differentiation, and reactive astrogliosis was inhibited in brain ECM-enriched cultures when compared to unsupplemented cultures. Functional maturation of the differentiated hiNSCs within fetal ECM-enriched cultures was confirmed by calcium signaling and spectral/cluster analysis. Additionally, the study identified native biochemical cues in decellularized ECM with notable comparisons between fetal and adult brain-derived ECMs. The development of novel brain-specific biomaterials for generating mature in vitro brain models provides an important path forward for interrogation of neuron-glia interactions.
Collapse
|
43
|
Drobnik J, Pietrucha K, Janczar K, Polis L, Polis B, Safandowska M, Szymański J. Intra-cerebral implantation of a variety of collagenous scaffolds with nervous embryonic cells. Exp Ther Med 2019; 18:4758-4764. [PMID: 31772645 PMCID: PMC6862020 DOI: 10.3892/etm.2019.8116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 08/27/2019] [Indexed: 12/28/2022] Open
Abstract
Collagenous scaffolds provide good conditions for embryonic nerve cell growth. The aim of the current study was to assess the brains reaction to the implantation of 3D sponge-shaped scaffolds. These scaffolds consisted of collagen (Col) and Col with chondroitin sulphate, which is modified by carbodiimide, or Col crosslinked with dialdehyde cellulose. The current study also evaluated the expression of integrins α2 and β1 in embryonic nerve cells. Embryonic nerve cells were isolated from the brains of rat embryos. Acellular scaffolds, or scaffolds populated with embryonic nerve cells, were implanted into the rats brain. The fibers of all the implanted scaffolds remained intact and served as a template for cell infiltration. The implants induced minimal to moderate inflammatory responses and minimal glial scar formations. Immunohistochemical studies did not indicate any microtubule-associated protein 2 or glial fibrillary acidic protein-positive cells inside the scaffolds. Acellular and cell-populated scaffolds yielded similar responses in the brain. The expression of integrin α2 and β1 was observed in embryonic nervous cells. TC-I15, the integrin α2β1 inhibitor, was not demonstrated to modify cell entrapment within the collagenous scaffolds. All applied scaffolds were well tolerated by the tissue and were indicated to support blood vessel formation. Therefore, all tested biomaterials are recommended for further studies. Additional chemical modifications of the material are suggested to protect the seeded cells from apoptosis after implantation into the brain.
Collapse
Affiliation(s)
- Jacek Drobnik
- Laboratory of Connective Tissue Metabolism, Department of Pathophysiology, Medical University of Lodz, 90-136 Lodz, Poland
| | - Krystyna Pietrucha
- Department of Material and Commodity Sciences and Textile Metrology, Lodz University of Technology, 90-924 Lodz, Poland
| | - Karolina Janczar
- Department of Pathomorphology, Medical University of Lodz, 92-213 Lodz, Poland
| | - Lech Polis
- Department of Neurosurgery, Polish Mothers' Memorial Hospital-Research Institute, 93-338 Lodz, Poland
| | - Bartosz Polis
- Department of Neurosurgery, Polish Mothers' Memorial Hospital-Research Institute, 93-338 Lodz, Poland
| | - Marta Safandowska
- Department of Material and Commodity Sciences and Textile Metrology, Lodz University of Technology, 90-924 Lodz, Poland
| | - Jacek Szymański
- Central Scientific Laboratory, Medical University of Lodz, 92-215 Lodz, Poland
| |
Collapse
|
44
|
Balikov DA, Neal EH, Lippmann ES. Organotypic Neurovascular Models: Past Results and Future Directions. Trends Mol Med 2019; 26:273-284. [PMID: 31699496 DOI: 10.1016/j.molmed.2019.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022]
Abstract
The high failure rates of clinical trials in neurodegeneration, perhaps most apparent in recent high-profile failures of potential Alzheimer's disease therapies, have partially motivated the development of improved human cell-based models to bridge the gap between well-plate assays and preclinical efficacy studies in mice. Recently, cerebral organoids derived from stem cells have gained significant traction as 3D models of central nervous system (CNS) regions. Although this technology is promising, several limitations still exist; most notably, improper structural organization of neural cells and a lack of functional glia and vasculature. Here, we provide an overview of the cerebral organoid field and speculate how engineering strategies, including biomaterial fabrication and templating, might be used to overcome existing challenges.
Collapse
Affiliation(s)
- Daniel A Balikov
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Emma H Neal
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ethan S Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
45
|
Sood D, Tang-Schomer M, Pouli D, Mizzoni C, Raia N, Tai A, Arkun K, Wu J, Black LD, Scheffler B, Georgakoudi I, Steindler DA, Kaplan DL. 3D extracellular matrix microenvironment in bioengineered tissue models of primary pediatric and adult brain tumors. Nat Commun 2019; 10:4529. [PMID: 31586101 PMCID: PMC6778192 DOI: 10.1038/s41467-019-12420-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 08/27/2019] [Indexed: 12/15/2022] Open
Abstract
Dynamic alterations in the unique brain extracellular matrix (ECM) are involved in malignant brain tumors. Yet studies of brain ECM roles in tumor cell behavior have been difficult due to lack of access to the human brain. We present a tunable 3D bioengineered brain tissue platform by integrating microenvironmental cues of native brain-derived ECMs and live imaging to systematically evaluate patient-derived brain tumor responses. Using pediatric ependymoma and adult glioblastoma as examples, the 3D brain ECM-containing microenvironment with a balance of cell-cell and cell-matrix interactions supports distinctive phenotypes associated with tumor type-specific and ECM-dependent patterns in the tumor cells' transcriptomic and release profiles. Label-free metabolic imaging of the composite model structure identifies metabolically distinct sub-populations within a tumor type and captures extracellular lipid-containing droplets with potential implications in drug response. The versatile bioengineered 3D tumor tissue system sets the stage for mechanistic studies deciphering microenvironmental role in brain tumor progression.
Collapse
Affiliation(s)
- Disha Sood
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Min Tang-Schomer
- Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.,Connecticut Children's Medical Center, Harford, CT, 06106, USA
| | - Dimitra Pouli
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.,Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02114, USA
| | - Craig Mizzoni
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Nicole Raia
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Albert Tai
- Genomics Core, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Knarik Arkun
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA, 02111, USA
| | - Julian Wu
- Department of Neurosurgery, Tufts Medical Center, Boston, MA, 02111, USA
| | - Lauren D Black
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Bjorn Scheffler
- Department of Neuroscience, University of Florida, McKnight Brain Institute, Gainesville, FL, 32610, USA.,DKFZ-Division of Translational Oncology/ Neurooncology, German Cancer Consortium (DKTK), Heidelberg & University Hospital Essen, Essen, Germany
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Dennis A Steindler
- Department of Neuroscience, University of Florida, McKnight Brain Institute, Gainesville, FL, 32610, USA.,Neuroscience and Aging Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
46
|
Sandvig A, Sandvig I. Connectomics of Morphogenetically Engineered Neurons as a Predictor of Functional Integration in the Ischemic Brain. Front Neurol 2019; 10:630. [PMID: 31249553 PMCID: PMC6582372 DOI: 10.3389/fneur.2019.00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/28/2019] [Indexed: 11/13/2022] Open
Abstract
Recent advances in cell reprogramming technologies enable the in vitro generation of theoretically unlimited numbers of cells, including cells of neural lineage and specific neuronal subtypes from human, including patient-specific, somatic cells. Similarly, as demonstrated in recent animal studies, by applying morphogenetic neuroengineering principles in situ, it is possible to reprogram resident brain cells to the desired phenotype. These developments open new exciting possibilities for cell replacement therapy in stroke, albeit not without caveats. Main challenges include the successful integration of engineered cells in the ischemic brain to promote functional restoration as well as the fact that the underlying mechanisms of action are not fully understood. In this review, we aim to provide new insights to the above in the context of connectomics of morphogenetically engineered neural networks. Specifically, we discuss the relevance of combining advanced interdisciplinary approaches to: validate the functionality of engineered neurons by studying their self-organizing behavior into neural networks as well as responses to stroke-related pathology in vitro; derive structural and functional connectomes from these networks in healthy and perturbed conditions; and identify and extract key elements regulating neural network dynamics, which might predict the behavior of grafted engineered neurons post-transplantation in the stroke-injured brain.
Collapse
Affiliation(s)
- Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Pharmacology and Clinical Neurosciences, Division of Neuro, Head, and Neck, Umeå University Hospital, Umeå, Sweden
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
47
|
Fang A, Li D, Hao Z, Wang L, Pan B, Gao L, Qu X, He J. Effects of astrocyte on neuronal outgrowth in a layered 3D structure. Biomed Eng Online 2019; 18:74. [PMID: 31215491 PMCID: PMC6582480 DOI: 10.1186/s12938-019-0694-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/10/2019] [Indexed: 12/15/2022] Open
Abstract
Background Human brain models and pharmacological models of brain diseases are in high demand for drug screening because animal models have been found to be less than ideal for fully representing the human brain and are likely to fail during drug screening and testing; therefore, the construction of brain-like tissues is necessary. Due to the complexity of cortical tissue, the in vitro construction of brain-like tissue models has been restricted to mostly two-dimensional (2D) models and, on a limited scale, three-dimensional (3D) models. Methods In this study, 3D tissue blocks encapsulating neurons and astrocytes were constructed and cultured in vitro to mimic the cortex of the brain and to investigate the effects of astrocytes on the growth of neurons in a 3D culture. Results The results indicated that such methodology can provide a 3D culture environment suitable for neurons and astrocytes to live and function. When both cells were evenly mixed and cultured in a 3D manner, the astrocytes, which showed better outgrowth and a higher proliferation rate, benefited more than the neurons. On the other hand, the neurons benefited, showing longer axons and a denser network of dendrites, when they were accompanied by astrocytes at a certain distance. Conclusion In conclusion, astrocytes stimulated the outgrowth of neurons in a 3D culture environment in vitro. Regardless, the spatial relationship between both types of cells should be controlled. Thus, culturing cells in a 3D manner is necessary to investigate the correlations between them. This study provides a foundation for biofabricating 3D neurons’ cultures to allow for a deeper insight into the relationship between astrocytes or other glial cells and neurons in a 3D culture that is similar to the natural environment of the brain.
Collapse
Affiliation(s)
- Ao Fang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.,State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Dichen Li
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.,State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Zhiyan Hao
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.,State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Ling Wang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China. .,State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710054, China.
| | - Binglei Pan
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.,State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Lin Gao
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.,State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xiaoli Qu
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.,State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jiankang He
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.,State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
48
|
McGill M, Holland GP, Kaplan DL. Experimental Methods for Characterizing the Secondary Structure and Thermal Properties of Silk Proteins. Macromol Rapid Commun 2019; 40:e1800390. [PMID: 30073740 PMCID: PMC6425979 DOI: 10.1002/marc.201800390] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/16/2018] [Indexed: 12/17/2022]
Abstract
Silk proteins are biopolymers produced by spinning organisms that have been studied extensively for applications in materials engineering, regenerative medicine, and devices due to their high tensile strength and extensibility. This remarkable combination of mechanical properties arises from their unique semi-crystalline secondary structure and block copolymer features. The secondary structure of silks is highly sensitive to processing, and can be manipulated to achieve a wide array of material profiles. Studying the secondary structure of silks is therefore critical to understanding the relationship between structure and function, the strength and stability of silk-based materials, and the natural fiber synthesis process employed by spinning organisms. However, silks present unique challenges to structural characterization due to high-molecular-weight protein chains, repetitive sequences, and heterogeneity in intra- and interchain domain sizes. Here, experimental techniques used to study the secondary structure of silks, the information attainable from these techniques, and the limitations associated with them are reviewed. Ultimately, the appropriate utilization of a suite of techniques discussed here will enable detailed characterization of silk-based materials, from studying fundamental processing-structure-function relationships to developing commercially useful quality control assessments.
Collapse
Affiliation(s)
- Meghan McGill
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Gregory P. Holland
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
49
|
Collins W, Rouleau N, Bonzanni M, Kapner K, Jeremiah A, Du C, Pothos EN, Kaplan DL. Functional Effects of a Neuromelanin Analogue on Dopaminergic Neurons in 3D Cell Culture. ACS Biomater Sci Eng 2018; 5:308-317. [PMID: 33405867 DOI: 10.1021/acsbiomaterials.8b00976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The substantia nigra pars compacta (SNpc) is a discrete region of the brain that exhibits a dark pigment, neuromelanin (NM), a biomaterial with unique properties and the subject of ongoing research pertaining to neurodegenerative conditions like Parkinson's disease (PD). Obtaining human tissue to isolate this pigment is costly and labor intensive, making it necessary to find alternatives to model the biochemical interaction of NM and its implications on PD. To address this limitation, we modified our established silk 3D brain tissue model to emulate key characteristics of the SNpc by using a structural analogue of NM to examine the effects of the material on dopaminergic neurons using Lund's human mesencephalon (LUHMES) cells. We utilized a sepia-melanin, squid ink, derived NM analogue (NM-sim) to chelate ferric iron, and this iron-neuromelanin precipitate (Fe-NM) was purified and characterized. We then exposed LUHMES dopaminergic cells to the NM-sim, Fe-NM-sim, and control vehicle within 3D silk protein scaffolds. The presence of both NM-sim and Fe-NM-sim in the scaffolds negatively impacted spontaneous electrical activity from the LUMES networks, as evidenced by changes in local field potential (LFP) electrophysiological recordings. Furthermore, the Fe-NM-sim precipitate generated peroxides, depleted nutrients/antioxidants, and increased protein oxidation by carbonylation in sustained (>2 weeks) 3D cultures, thereby contributing to cell dysfunction. The results suggest that this 3D tissue engineered brain-like model may provide useful readouts related to PD neuro-toxicology research.
Collapse
Affiliation(s)
- Will Collins
- Department of Pharmacology & Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Tufts University, Boston, Massachusetts 02111, United States.,Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Nicolas Rouleau
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States.,Tufts Allen Discovery Center, Tufts University, 200 College Avenue, Medford, Massachusetts 02155, United States
| | - Mattia Bonzanni
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States.,Tufts Allen Discovery Center, Tufts University, 200 College Avenue, Medford, Massachusetts 02155, United States
| | - Kevin Kapner
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Alex Jeremiah
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Chuang Du
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Emmanuel N Pothos
- Department of Pharmacology & Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Tufts University, Boston, Massachusetts 02111, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States.,Tufts Allen Discovery Center, Tufts University, 200 College Avenue, Medford, Massachusetts 02155, United States
| |
Collapse
|
50
|
Cantley W, Du C, Lomoio S, DePalma T, Peirent E, Kleinknecht D, Hunter M, Tang-Schomer M, Tesco G, Kaplan DL. Functional and Sustainable 3D Human Neural Network Models from Pluripotent Stem Cells. ACS Biomater Sci Eng 2018; 4:4278-4288. [PMID: 33304995 PMCID: PMC7725274 DOI: 10.1021/acsbiomaterials.8b00622] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Three-dimensional in vitro cell culture models, particularly for the central nervous system, allow for the exploration of mechanisms of organ development, cellular interactions, and disease progression within defined environments. Here we describe the development and characterization of three-dimensional tissue models that promote the differentiation and long-term survival of functional neural networks. These tissue cultures show diverse cell populations including neurons and glial cells (astrocytes) interacting in 3D with spontaneous neural activity confirmed through electrophysiological recordings and calcium imaging over at least 8 months. This approach allows for the direct integration of pluripotent stem cells into the 3D construct bypassing early neural differentiation steps (embryoid bodies and neural rosettes), which streamlines the process while also providing a system that can be manipulated to support a variety of experimental applications. This tissue model has been tested in stem cells derived from healthy individuals as well as Alzheimer's and Parkinson's disease patients, with similar growth and gene expression responses indicating potential use in the modeling of disease states related to neurodegenerative diseases.
Collapse
Affiliation(s)
- William Cantley
- Department of Cell, Molecular and Developmental Biology, Sackler School, Tufts University, Boston, MA
| | - Chuang Du
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - Selene Lomoio
- Department of Neuroscience, Sackler School, Tufts University, Boston, MA
| | - Thomas DePalma
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - Emily Peirent
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | | | - Martin Hunter
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - Min Tang-Schomer
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - Giuseppina Tesco
- Department of Neuroscience, Sackler School, Tufts University, Boston, MA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA
| |
Collapse
|