1
|
Uchibori R, Ohmine K, Teruya T, Mineno J, Ozawa K. BCMA-CAR Therapy for Multiple Myeloma in NOG Mice Prevents the Progression of Anemia and Bone Lesions. Hum Gene Ther 2025. [PMID: 40372999 DOI: 10.1089/hum.2024.263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025] Open
Abstract
Multiple myeloma (MM) is an incurable hematological malignancy of plasma cells. Myeloma cells interfere with hematopoietic activities of the bone marrow, often leading to anemia, and can cause the bones to develop osteoporotic and lytic lesions. Clinical experience with chimeric antigen receptor T-cell (CAR-T) therapy targeting B-cell maturation antigen (BCMA) has been promising, with good response rates, favorable safety profiles, and low incidences of severe cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. However, CAR-T therapy in MM is accompanied by several new challenges, including therapeutic failure and relapse, and much attention has been paid to the further development of B-cell maturation antigen-chimeric antigen receptor (BCMA-CAR). Although most of the reported benefits of BCMA-CAR have been discussed, whether cancer can be eliminated, as well as the efficacy of CAR-T therapy for anemia and bone lesions, both myeloma-defining events, have not yet been reported in any animal model. In this study, we designed and verified a novel BCMA-specific chimeric antigen receptor (CAR). Our BCMA-CAR demonstrated the fundamental properties of CAR-T cells, including target-specific cytotoxic activity, cytokine production, and in vivo antitumor effects. In addition, we evaluated the therapeutic effect of BCMA-CAR in mice by imaging bone lesions and conducting blood examinations. Tumor mouse models showed systemic progression of MM in the bone marrow, and mice treated with saline or nongene modified T cells showed continued tumor progression, progressive bone lesions, and prolonged anemia. In contrast, all mice treated with gene modified T cells achieved a complete response, improved anemia to the level observed in normal mice, and suppressed progression of bone lesions. We concluded that anemia was improved with BCMA-CAR-T cell therapy. However, novel strategies to support the recovery of bone lesions by enhancing CAR-T cell function must be developed.
Collapse
Affiliation(s)
- Ryosuke Uchibori
- Division Gene and Cell Therapy for Intractable Diseases, Department of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Ken Ohmine
- Division Gene and Cell Therapy for Intractable Diseases, Department of Medicine, Jichi Medical University, Shimotsuke, Japan
- Division of Hematology, Department of Medicine, Jichi Medical University, Shimotsuke-shi, Japan
| | | | | | - Keiya Ozawa
- Division Gene and Cell Therapy for Intractable Diseases, Department of Medicine, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
2
|
Sureka N, Zaheer S. Regulatory T Cells in Tumor Microenvironment: Therapeutic Approaches and Clinical Implications. Cell Biol Int 2025. [PMID: 40365758 DOI: 10.1002/cbin.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/19/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025]
Abstract
Regulatory T cells (Tregs), previously referred to as suppressor T cells, represent a distinct subset of CD4+ T cells that are uniquely specialized for immune suppression. They are characterized by the constitutive expression of the transcription factor FoxP3 in their nuclei, along with CD25 (the IL-2 receptor α-chain) and CTLA-4 on their cell surface. Tregs not only restrict natural killer cell-mediated cytotoxicity but also inhibit the proliferation of CD4+ and CD8+ T-cells and suppress interferon-γ secretion by immune cells, ultimately impairing an effective antitumor immune response. Treg cells are widely recognized as a significant barrier to the effectiveness of tumor immunotherapy in clinical settings. Extensive research has consistently shown that Treg cells play a pivotal role in facilitating tumor initiation and progression. Conversely, the depletion of Treg cells has been linked to a marked delay in tumor growth and development.
Collapse
Affiliation(s)
- Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
3
|
Villa R, Shiau YP, Mahri S, Racacho KJ, Tang M, Zong Q, Ruiz D, Kim J, Li Y. Immunomodulatory nanoplatforms with multiple mechanisms of action in cancer treatment. Nanomedicine (Lond) 2025:1-18. [PMID: 40331271 DOI: 10.1080/17435889.2025.2500906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025] Open
Abstract
Cancer immunotherapies have transformed oncology by utilizing the immune system to target malignancies; however, limitations in efficacy and potential side effects remain significant challenges. Nanoparticles have shown promise in enhancing drug delivery and improving immune activation, with the potential for numerous modifications to tailor them for specific environments or targets. Integrating nanoplatforms offers a promising avenue to overcome these hurdles, enhancing treatment outcomes and reducing adverse effects. By improving drug delivery, targeting, and immune modulation, nanoplatforms can unlock the full potential of cancer immunotherapy. This review explores the role of nanoplatforms in addressing these limitations and enhancing cancer immunotherapy outcomes, examining various types of nanoplatforms. Understanding the mechanisms of immunomodulation through nanoplatform deliveries is crucial. We discuss how these nanoplatforms interact with the tumor microenvironment, modulate tumor-associated macrophages and regulatory T cells, activate immune cells directly, enhance antigen presentation, and promote immunological memory. Further benefits include combination approaches integrating nanoplatforms with chemotherapy, radiotherapy, and phototherapy. Immunotherapy is a relatively new approach, but numerous clinical studies already utilize nanoplatform-based immunotherapies with promising results. This review aims to provide insights into the potential of nanoplatforms to enhance cancer immunotherapy and pave the way for more effective and personalized treatment strategies.
Collapse
Affiliation(s)
- Rodolfo Villa
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Ya-Ping Shiau
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Sohaib Mahri
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Kelsey Jane Racacho
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Menghuan Tang
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Qiufang Zong
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Donovan Ruiz
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Judy Kim
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
4
|
Zhang M, Liu C, Tu J, Tang M, Ashrafizadeh M, Nabavi N, Sethi G, Zhao P, Liu S. Advances in cancer immunotherapy: historical perspectives, current developments, and future directions. Mol Cancer 2025; 24:136. [PMID: 40336045 PMCID: PMC12057291 DOI: 10.1186/s12943-025-02305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/15/2025] [Indexed: 05/09/2025] Open
Abstract
Cancer immunotherapy, encompassing both experimental and standard-of-care therapies, has emerged as a promising approach to harnessing the immune system for tumor suppression. Experimental strategies, including novel immunotherapies and preclinical models, are actively being explored, while established treatments, such as immune checkpoint inhibitors (ICIs), are widely implemented in clinical settings. This comprehensive review examines the historical evolution, underlying mechanisms, and diverse strategies of cancer immunotherapy, highlighting both its clinical applications and ongoing preclinical advancements. The review delves into the essential components of anticancer immunity, including dendritic cell activation, T cell priming, and immune surveillance, while addressing the challenges posed by immune evasion mechanisms. Key immunotherapeutic strategies, such as cancer vaccines, oncolytic viruses, adoptive cell transfer, and ICIs, are discussed in detail. Additionally, the role of nanotechnology, cytokines, chemokines, and adjuvants in enhancing the precision and efficacy of immunotherapies were explored. Combination therapies, particularly those integrating immunotherapy with radiotherapy or chemotherapy, exhibit synergistic potential but necessitate careful management to reduce side effects. Emerging factors influencing immunotherapy outcomes, including tumor heterogeneity, gut microbiota composition, and genomic and epigenetic modifications, are also examined. Furthermore, the molecular mechanisms underlying immune evasion and therapeutic resistance are analyzed, with a focus on the contributions of noncoding RNAs and epigenetic alterations, along with innovative intervention strategies. This review emphasizes recent preclinical and clinical advancements, with particular attention to biomarker-driven approaches aimed at optimizing patient prognosis. Challenges such as immunotherapy-related toxicity, limited efficacy in solid tumors, and production constraints are highlighted as critical areas for future research. Advancements in personalized therapies and novel delivery systems are proposed as avenues to enhance treatment effectiveness and accessibility. By incorporating insights from multiple disciplines, this review aims to deepen the understanding and application of cancer immunotherapy, ultimately fostering more effective and widely accessible therapeutic solutions.
Collapse
Affiliation(s)
- Meiyin Zhang
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chaojun Liu
- Department of Breast Surgery, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University; People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Jing Tu
- Department of Pulmonary and Critical Care Medicine, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8 V 1P7, Canada
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research (N2CR) Yong Loo Lin, School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Peiqing Zhao
- Translational Medicine Center, Zibo Central Hospital Affiliated to Binzhou Medical University, No. 54 Communist Youth League Road, Zibo, China.
| | - Shijian Liu
- Department of General Medicine, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, 150081, China.
| |
Collapse
|
5
|
Antoniades E, Keffes N, Vorri S, Tsitouras V, Gkantsinikoudis N, Tsitsopoulos P, Magras J. The Molecular Basis of Pediatric Brain Tumors: A Review with Clinical Implications. Cancers (Basel) 2025; 17:1566. [PMID: 40361492 PMCID: PMC12071314 DOI: 10.3390/cancers17091566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Central nervous system (CNS) tumors are the most common solid malignancy in the pediatric population. These lesions are the result of the aberrant cell signaling step proteins, which normally regulate cell proliferation. Mitogen-activated protein kinase (MAPK) pathways and tyrosine kinase receptors are involved in tumorigenesis of low-grade gliomas. High-grade gliomas may carry similar mutations, but loss of epigenetic control is the dominant molecular event; it can occur either due to histone mutations or inappropriate binding or unbinding of DNA on histones. Therefore, despite the absence of genetic alteration in the classic oncogenes or tumor suppressor genes, uncontrolled transcription results in tumorigenesis. Isocitric dehydrogenase (IDH) mutations do not predominate compared to their adult counterpart. Embryonic tumors include medulloblastomas, which bear mutations of transcription-regulating pathways, such as wingless-related integration sites or sonic hedgehog pathways. They may also relate to high expression of Myc family genes. Atypical teratoid rhabdoid tumors harbor alterations of molecules that contribute to ATP hydrolysis of chromatin. Embryonic tumors with multilayered rosettes are associated with microRNA mutations and impaired translation. Ependymomas exhibit great variability. As far as supratentorial lesions are concerned, the major events are mutations either of NFkB or Hippo pathways. Posterior fossa tumors are further divided into two types with different prognoses. Type A group is associated with mutations of DNA damage repair molecules. Lastly, germ cell tumors are a heterogeneous group. Among them, germinomas manifest KIT receptor mutations, a subgroup of the tyrosine kinase receptor family.
Collapse
Affiliation(s)
- Elias Antoniades
- Second Department of Neurosurgery, Aristotle University School of Medicine, 546 36 Thessaloniki, Greece; (N.K.); (V.T.); (N.G.); (P.T.); (J.M.)
| | - Nikolaos Keffes
- Second Department of Neurosurgery, Aristotle University School of Medicine, 546 36 Thessaloniki, Greece; (N.K.); (V.T.); (N.G.); (P.T.); (J.M.)
| | - Stamatia Vorri
- New York City Health and Hospital—Jacobi Medical Center Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Vassilios Tsitouras
- Second Department of Neurosurgery, Aristotle University School of Medicine, 546 36 Thessaloniki, Greece; (N.K.); (V.T.); (N.G.); (P.T.); (J.M.)
| | - Nikolaos Gkantsinikoudis
- Second Department of Neurosurgery, Aristotle University School of Medicine, 546 36 Thessaloniki, Greece; (N.K.); (V.T.); (N.G.); (P.T.); (J.M.)
| | - Parmenion Tsitsopoulos
- Second Department of Neurosurgery, Aristotle University School of Medicine, 546 36 Thessaloniki, Greece; (N.K.); (V.T.); (N.G.); (P.T.); (J.M.)
| | - John Magras
- Second Department of Neurosurgery, Aristotle University School of Medicine, 546 36 Thessaloniki, Greece; (N.K.); (V.T.); (N.G.); (P.T.); (J.M.)
| |
Collapse
|
6
|
Bhutani B, Sharma V, Ganguly NK, Rana R. Unravelling the modified T cell receptor through Gen-Next CAR T cell therapy in Glioblastoma: Current status and future challenges. Biomed Pharmacother 2025; 186:117987. [PMID: 40117901 DOI: 10.1016/j.biopha.2025.117987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025] Open
Abstract
PURPOSE Despite current technological advancements in the treatment of glioma, immediate alleviation of symptoms can be catered by therapeutic modalities, including surgery, chemotherapy, and combinatorial radiotherapy that exploit aberrations of glioma. Additionally, a small number of target antigens, their heterogeneity, and immune evasion are the potential reasons for developing targeted therapies. This oncologic milestone has catalyzed interest in developing immunotherapies against Glioblastoma to improve overall survival and cure patients with high-grade glioma. The next-gen CAR-T Cell therapy is one of the effective immunotherapeutic strategies in which autologous T cells have been modified to express receptors against GBM and it modulates cytotoxicity. METHODS In this review article, we examine preclinical and clinical outcomes, and limitations as well as present cutting-edge techniques to improve the function of CAR-T cell therapy and explore the possibility of combination therapy. FINDINGS To date, several CAR T-cell therapies are being evaluated in clinical trials for GBM and other brain malignancies and multiple preclinical studies have demonstrated encouraging outcomes. IMPLICATIONS CAR-T cell therapy represents a promising therapeutic paradigm in the treatment of solid tumors but a few limitations include, the blood-brain barrier (BBB), antigen escape, tumor microenvironment (TME), tumor heterogeneity, and its plasticity that suppresses immune responses weakens the ability of this therapy. Additional investigation is required that can accurately identify the targets and reflect the similar architecture of glioblastoma, thus optimizing the efficiency of CAR-T cell therapy; allowing for the selection of patients most likely to benefit from immuno-based treatments.
Collapse
Affiliation(s)
- Bhavya Bhutani
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Vyoma Sharma
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Nirmal Kumar Ganguly
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Rashmi Rana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India.
| |
Collapse
|
7
|
Safaei S, Yari A, Pourbagherian O, Maleki LA. The role of cytokines in shaping the future of Cancer immunotherapy. Cytokine 2025; 189:156888. [PMID: 40010034 DOI: 10.1016/j.cyto.2025.156888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/13/2025] [Accepted: 02/05/2025] [Indexed: 02/28/2025]
Abstract
As essential immune system regulators, cytokines are essential for modulating both innate and adaptive immunological responses. They have become important tools in cancer immunotherapy, improving the immune system's capacity to identify and destroy tumor cells. This article examines the background, workings, and therapeutic uses of cytokines, such as interleukins, interferons, and granulocyte-macropHage colony-stimulating factors, in the management of cancer. It examines the many ways that cytokines affect immune cell activation, signaling pathways, tumor development, metastasis, and prognosis by modifying the tumor microenvironment. Despite the limited effectiveness of cytokine-based monotherapy, recent developments have concentrated on new fusion molecules such as immunocytokines, cytokine delivery improvements, and combination techniques to maximize treatment efficacy while reducing adverse effects. Current FDA-approved cytokine therapeutics and clinical trial results are also included in this study, which offers insights into how cytokines might be used with other therapies including checkpoint inhibitors, chemotherapy, and radiation therapy to address cancer treatment obstacles. This study addresses the intricacies of cytokine interactions in the tumor microenvironment, highlighting the possibility for innovative treatment methods and suggesting fresh techniques for enhancing cytokine-based immunotherapies. PEGylation, viral vector-mediated cytokine gene transfer, antibody-cytokine fusion proteins (immunocytokines), and other innovative cytokine delivery techniques are among the novelties of this work, which focuses on the most recent developments in cytokine-based immunotherapy. Additionally, the study offers a thorough examination of the little-reviewed topic of cytokine usage in conjunction with other treatment techniques. It also discusses the most recent clinical studies and FDA-approved therapies, providing a modern perspective on the developing field of cancer immunotherapy and suggesting creative ways to improve treatment effectiveness while lowering toxicity. BACKGROUND: Cytokines are crucial in cancer immunotherapy for regulating immune responses and modifying the tumor microenvironment (TME). However, challenges with efficacy and safety have driven research into advanced delivery methods and combination therapies to enhance their therapeutic potential.
Collapse
Affiliation(s)
- Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - AmirHossein Yari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Omid Pourbagherian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
8
|
Lou E, Choudhry MS, Starr TK, Folsom TD, Bell J, Rathmann B, DeFeo AP, Kim J, Slipek N, Jin Z, Sumstad D, Klebanoff CA, Ladner K, Sarkari A, McIvor RS, Murray TA, Miller JS, Rao M, Jensen E, Ankeny J, Khalifa MA, Chauhan A, Spilseth B, Dixit A, Provenzano PP, Pan W, Weber D, Byrne-Steele M, Henley T, McKenna DH, Johnson MJ, Webber BR, Moriarity BS. Targeting the intracellular immune checkpoint CISH with CRISPR-Cas9-edited T cells in patients with metastatic colorectal cancer: a first-in-human, single-centre, phase 1 trial. Lancet Oncol 2025; 26:559-570. [PMID: 40315882 DOI: 10.1016/s1470-2045(25)00083-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND Over the past decade, immunotherapeutic strategies-mainly targeting the PD-1-PD-L1 immune checkpoint axis-have altered cancer treatment for many solid tumours, but few patients with gastrointestinal forms of cancer have benefited to date. There remains an urgent need to extend immunotherapy efficacy to more patients while addressing resistance to current immune checkpoint inhibitors. The aim of this study was to determine the safety and anti-tumour activity of knockout of CISH, which encodes cytokine-inducible SH2-containing protein, a novel intracellular immune checkpoint target and a founding member of the SOCS family of E3-ligases, using tumour infiltrating lymphocyte (TILs) genetically edited with CRISPR-Cas9 in patients with metastatic gastrointestinal epithelial cancers. METHODS For this first-in-human, single-centre, phase 1 trial, patients aged 18-70 years with a diagnosis of metastatic gastrointestinal epithelial cancer with progressive disease following at least one first line standard therapy, measurable disease with at least one lesion identified as resectable for TIL generation and at least one other lesion meeting RECIST criteria as measurable to serve as an indicator of disease response, and an ECOG performance status of 0 or 1 were screened and enrolled if meeting these and all other eligibility criteria. TILs procured from tumour biopsies were expanded on the basis of neoantigen reactivity, subjected to CRISPR-Cas9-mediated CISH knockout, and infused intravenously into 12 patients after non-myeloablative lymphocyte depleting chemotherapy (cyclophosphamide 60 mg/kg per dose on study days -6 and -5, and fludarabine 25 mg/m2 per dose on days -7 to -3) followed by high-dose IL-2 (aldesleukin; 720 000 IU/kg per dose). The primary endpoint was safety of administration of neoantigen-reactive TILs with knockout of the CISH gene, and a key secondary endpoint was anti-tumour activity measured as objective radiographic response and progression-free and overall survival. This study is registered with ClinicalTrials.gov, NCT04426669, and is complete. FINDINGS Between May 12, 2020, and Sept 16, 2022, 22 participants were enrolled in the trial (one patient was enrolled twice owing to lack of TIL outgrowth on the first attempt); ten patients were female, and 11 were male (self-defined). One patient was Asian, the remainder were White (self-defined). We successfully manufactured CISH knockout TIL products for 19 (86%) of the patients, of whom 12 (63%) received autologous CISH knockout TIL infusion. The median follow-up time for the study was 129 days (IQR 15-283). All 12 (100%) patients had treatment-related severe adverse events. The most common grade 3-4 adverse events included haematological events (12 patients [100%]) attributable to the preparative lymphodepleting chemotherapy regimen or expected effects of IL-2, fatigue (four patients [33%]), and anorexia (three patients [25%]). Deaths of any cause for patients on study were attributed to the underlying disease under study (metastatic gastrointestinal cancer) and related complications (10 patients) or infection (grade 5 septicaemia in one patient). There were no severe (≥grade 3) cytokine release or neurotoxicity events. Six (50%) of 12 patients had stable disease by day 28, and four (33%) had stable disease ongoing at 56 days. One young adult patient with microsatellite-instability-high colorectal cancer refractory to anti-PD1/CTLA-4 therapies had a complete and ongoing response (>21 months). INTERPRETATION These results support the safety and potential antitumour activity of inhibiting the immune checkpoint CISH through the administration of neoantigen-reactive CISH-knockout TILs, with implications for patients with advanced metastatic cancers refractory to checkpoint inhibitor immunotherapies, and provide the first evidence that a novel intracellular checkpoint can be targeted with therapeutic effect. FUNDING Intima Bioscience.
Collapse
Affiliation(s)
- Emil Lou
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA.
| | | | - Timothy K Starr
- Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN, USA
| | - Timothy D Folsom
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jason Bell
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Blaine Rathmann
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Anthony P DeFeo
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jihyun Kim
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas Slipek
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Zhaohui Jin
- Deparment of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Darin Sumstad
- Cell Therapy Clinical Laboratory, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Christopher A Klebanoff
- Department of Medicine, Human Oncology and Pathogenesis Program, and Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katherine Ladner
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Akshat Sarkari
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - R Scott McIvor
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Thomas A Murray
- Division of Biostatistics and Health Data Science, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jeffrey S Miller
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Madhuri Rao
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Eric Jensen
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jacob Ankeny
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Mahmoud A Khalifa
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Anil Chauhan
- Department of Radiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Benjamin Spilseth
- Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ajay Dixit
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA; Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Paolo P Provenzano
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA; Center for Multiparametric Imaging of Tumor Immune Microenvironments, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | - David H McKenna
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Cell Therapy Clinical Laboratory, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Matthew J Johnson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Beau R Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
9
|
Zhao T, You J, Wang C, Li B, Liu Y, Shao M, Zhao W, Zhou C. Cell-based immunotherapies for solid tumors: advances, challenges, and future directions. Front Oncol 2025; 15:1551583. [PMID: 40356763 PMCID: PMC12066282 DOI: 10.3389/fonc.2025.1551583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/31/2025] [Indexed: 05/15/2025] Open
Abstract
Cell-based immunotherapies, including CAR-T, CAR-NK, and TCR-T therapies, represent a transformative approach to cancer treatment by offering precise targeting of tumor cells. Despite their success in hematologic malignancies, these therapies encounter significant challenges in treating solid tumors, such as antigen heterogeneity, immunosuppressive tumor microenvironments, limited cellular infiltration, off-target toxicity, and difficulties in manufacturing scalability. CAR-T cells have demonstrated exceptional efficacy in blood cancers but face obstacles in solid tumors, whereas CAR-NK cells offer reduced graft-versus-host disease but encounter similar barriers. TCR-T cells expand the range of treatable cancers by targeting intracellular antigens but require meticulous antigen selection to prevent off-target effects. Alternative therapies like TIL, NK, and CIK cells show promise but require further optimization to enhance persistence and overcome immunosuppressive barriers. Manufacturing complexity, high costs, and ensuring safety and efficacy remain critical challenges. Future advancements in gene editing, multi-antigen targeting, synthetic biology, off-the-shelf products, and personalized medicine hold the potential to address these issues and expand the use of cell-based therapies. Continued research and innovation are essential to improving safety, efficacy, and scalability, ultimately leading to better patient outcomes.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| | - Jinping You
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| | - Congyue Wang
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| | - Bo Li
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| | - Yuhan Liu
- Department of Medical Oncology, Anshan Cancer Hospital, Anshan, China
| | - Mingjia Shao
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| | - Wuyang Zhao
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| | - Chuang Zhou
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| |
Collapse
|
10
|
Sarangi R, Mishra S, Mahapatra S. Cancer Vaccines: A Novel Revolutionized Approach to Cancer Therapy. Indian J Clin Biochem 2025; 40:191-200. [PMID: 40123637 PMCID: PMC11928706 DOI: 10.1007/s12291-024-01201-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/19/2024] [Indexed: 03/25/2025]
Abstract
Over the past few decades, there has been significant advancement in the field of tumor immunotherapy. For many years vaccination against infectious diseases have been available. On the other hand very few cancer vaccines have been approved for human use. Ideal Cancer vaccines are biological response modifier work by stimulating both humoral and cellular immunity while overcoming the immunological suppression found in tumor. Two types of cancer vaccine: Prophylactic and therapeutic cancer vaccines are recommended for clinical use of individuals. HPV and HBV vaccines are the two widely used preventive vaccine used for treatment of cervical and hepatocellular carcinoma respectively and are approved by Food and Drug Administration (FDA). In therapeutic vaccine only three are approved: Sipuleucel T-cell vaccine for treatment refractory prostatic cancer, BCG vaccine for early bladder cancer and T-VEC for inoperable melanoma. Active ingredient in all cancer vaccines is an antigen. Antigens used for formulating cancer vaccines along with adjuvants optimizes immunogenicity in it. Heterogeneity within and between cancer types, screening and identifying suitable antigen specific to tumors and selection of vaccine delivery platforms are challenges in the development of vaccines. Adoptive cell therapy, Chimeric antigen receptor T cell therapy are recent breakthrough for cancer treatment.
Collapse
Affiliation(s)
- RajLaxmi Sarangi
- Departments of Biochemistry, Kalinga Institute of Medical Sciences (KIMS), Bhubaneswar, Odisha 751024 India
| | - Sanjukta Mishra
- Departments of Biochemistry, Kalinga Institute of Medical Sciences (KIMS), Bhubaneswar, Odisha 751024 India
| | - Srikrushna Mahapatra
- Departments of Biochemistry, Kalinga Institute of Medical Sciences (KIMS), Bhubaneswar, Odisha 751024 India
| |
Collapse
|
11
|
Tarannum M, Ding X, Barisa M, Hu S, Anderson J, Romee R, Zhang J. Engineering innate immune cells for cancer immunotherapy. Nat Biotechnol 2025; 43:516-533. [PMID: 40229380 DOI: 10.1038/s41587-025-02629-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/05/2025] [Indexed: 04/16/2025]
Abstract
Innate immune cells, including natural killer cells, macrophages and γδ T cells, are gaining prominence as promising candidates for cancer immunotherapy. Unlike conventional T cells, these cells possess attributes such as inherent antitumor activity, rapid immune responses, favorable safety profiles and the ability to target diverse malignancies without requiring prior antigen sensitization. In this Review, we examine the engineering strategies used to enhance their anticancer potential. We discuss challenges associated with each cell type and summarize insights from preclinical and clinical work. We propose strategies to address existing barriers, providing a perspective on the advancement of innate immune engineering as a powerful modality in anticancer treatment.
Collapse
Affiliation(s)
- Mubin Tarannum
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Xizhong Ding
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Marta Barisa
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Sabrina Hu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John Anderson
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Rizwan Romee
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
| | - Jin Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
12
|
Gomaa S, Nassef M, Tabl G, Gabry SE. Immunoenhancing of the anti-cancer therapy and anti-oxidative stress by co-administration of granulocyte-colony stimulating factor-mobilized stem cells or cells derived from bone marrow and/or spleen plus vaccination with chemotherapeutic cyclophosphamide. Immunol Res 2025; 73:62. [PMID: 40091102 DOI: 10.1007/s12026-025-09610-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
The combination of immunotherapy and chemotherapy, referred to as chemo-immunotherapy, represents a promising regimen for developing new cancer treatments that target the local tumor microenvironment and target tumors in their early stages. However, this approach carries potential risks, including myelo- and immunosuppression, as well as the emergence of chemo-resistant tumor cells. The purpose of this study was to investigate how well mobilizing hematopoietic stem cells (HSCs) work when used alongside chemotherapy and immunotherapy to enhance and modulate the immune response, thereby overcoming immunosuppression and eliminating distant cancer cells. Ehrlich ascetic carcinoma (EAC) tumor-bearing mice were intraperitoneal (i.p.) preconditioned with CTX (4 mg/mouse). EAC-bearing mice that were preconditioned with CTX were intravenous (i.v.) administered with adoptive transferred naive mice-derived bone marrow cells (nBMCs) at 5 × 106 through lateral tail vein (nBMCs group), adoptive transferred tumor-bearing mice-derived bone marrow cells (tBMCs) at 5 × 106 cell/mouse (tBMCs group), a combination of adoptive transferred naïve mice-derived bone marrow cells (nBMCs) and naïve mice-derived splenocytes (nSPs) at 5 × 106 (nBMCs/nSPs group), a combination of adoptive transferred tumor-bearing mice-derived bone marrow cells (tBMCs) and tumor-bearing mice derived-splenocytes (tSPs) at 5 × 106 cell/mouse (tBMCs/tSPs group), or G-CSF administrated subcutaneously (s.c.) at 5 µg/mouse (G-CSF group). Subsequently, all mice groups were vaccinated with tumor lysate at a dosage of 100 µg/mouse. Treating EAC tumor-bearing mice with G-CSF, adoptive transferred nBMCs, adoptive transferred tBMCs, adoptive transferred nBMCs/nSPs, adoptive transferred tBMCs/tSPs, resulted in a significantly enhanced anti-tumor effect that was evidenced by increased anti-proliferative activity and growth inhibition against EAC tumor cells, increased necrosis and apoptosis rates among EAC tumor cells, restricted tumor growth in EAC tumor-bearing mice, and reduced levels of carcinoembryonic antigen (CEA) tumor marker. Furthermore, there was an improvement in serum levels of antioxidant enzyme superoxide dismutase (SOD) and malondialdehyde (MDA) in EAC tumor-bearing mice receiving G-CSF, adoptive transferred tBMCs, adoptive transferred nBMCs/nSPs, and adoptive transferred tBMCs/tSPs. Notably, this treatment regimen ameliorates liver and kidney damage associated with CTX administration in EA tumor-bearing mice. The integration of G-CSF-mobilized HSCs, adoptive transferred nBMCs, adoptive transferred tBMCs, adoptive transferred nBMCs/nSPs combination, and adoptive transferred tBMCs/tSPs combination may yield powerful anti-cancer therapy, thereby facilitating more effective anti-tumor immunotherapy strategies when align with anti-tumor responses. This research may propose a novel therapeutic approach that combines chemotherapy and immunotherapy for addressing early-stage cancer. Further research is necessary to connect the biomedical application and heterogeneity of human tumors and immune systems of this regimen to both diagnostic and therapeutic methodologies.
Collapse
Affiliation(s)
- Soha Gomaa
- Department of Zoology, Science Faculty, University of Tanta, 31527, Tanta, Egypt.
| | - Mohamed Nassef
- Department of Zoology, Science Faculty, University of Tanta, 31527, Tanta, Egypt
| | - Ghada Tabl
- Department of Zoology, Science Faculty, University of Tanta, 31527, Tanta, Egypt
| | - Shaimaa El Gabry
- Department of Zoology, Science Faculty, University of Tanta, 31527, Tanta, Egypt
| |
Collapse
|
13
|
Li R, Grosskopf AK, Joslyn LR, Stefanich EG, Shivva V. Cellular Kinetics and Biodistribution of Adoptive T Cell Therapies: from Biological Principles to Effects on Patient Outcomes. AAPS J 2025; 27:55. [PMID: 40032717 DOI: 10.1208/s12248-025-01017-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/06/2025] [Indexed: 03/05/2025] Open
Abstract
Cell-based immunotherapy has revolutionized cancer treatment in recent years and is rapidly expanding as one of the major therapeutic options in immuno-oncology. So far ten adoptive T cell therapies (TCTs) have been approved by the health authorities for cancer treatment, and they have shown remarkable anti-tumor efficacy with potent and durable responses. While adoptive T cell therapies have shown success in treating hematological malignancies, they are lagging behind in establishing promising efficacy in treating solid tumors, partially due to our incomplete understanding of the cellular kinetics (CK) and biodistribution (including tumoral penetration) of cell therapy products. Indeed, recent clinical studies have provided ample evidence that CK of TCTs can influence clinical outcomes in both hematological malignancies and solid tumors. In this review, we will discuss the current knowledge on the CK and biodistribution of anti-tumor TCTs. We will first describe the typical CK and biodistribution characteristics of these "living" drugs, and the biological factors that influence these characteristics. We will then review the relationships between CK and pharmacological responses of TCT, and potential strategies in enhancing the persistence and tumoral penetration of TCTs in the clinic. Finally, we will also summarize bioanalytical methods, preclinical in vitro and in vivo tools, and in silico modeling approaches used to assess the CK and biodistribution of TCTs.
Collapse
Affiliation(s)
- Ran Li
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA.
| | - Abigail K Grosskopf
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Louis R Joslyn
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Eric Gary Stefanich
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Vittal Shivva
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA.
| |
Collapse
|
14
|
De Sousa RAL, Mendes BF. T-regulatory cells and extracellular vesicles in Alzheimer's disease: New therapeutic concepts and hypotheses. Brain Res 2025; 1850:149393. [PMID: 39672489 DOI: 10.1016/j.brainres.2024.149393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/27/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Cell-based treatment has experienced exponential expansion in recent years in terms of clinical application and market share among pharmaceutical companies. When malignant cells in a healthy individual produce antigenic peptides derived from mutant or improperly synthesized proteins, the immune system attacks and kills the transforming cells. This process is carried out continuously by immune cells scanning the body for altered cells that could cause some harm. T-regulatory cells (Tregs), which preserve immunological tolerance and can exert neuroprotective benefits in numerous disorders, including animal models of Alzheimer's disease (AD), have demonstrated considerable therapeutic potential. Evidence also suggests that not only Tregs, but extracellular vesicles (EVs) are involved in a wide range of diseases, such as cellular homoeostasis, infection propagation, cancer development and heart disease, and have become a promisor cell-based therapeutic field too. Nevertheless, despite significant recent clinical and commercial breakthroughs, cell-based medicines still confront numerous challenges that hinder their general translation and commercialization. These challenges include, but are not limited to, choosing the best cell source, and creating a product that is safe, adequately viable, and fits the needs of individual patients and diseases. Here, we summarize what we know about Tregs and EVs and their potential therapeutic usage in AD.
Collapse
Affiliation(s)
- Ricardo Augusto Leoni De Sousa
- Physical Education Department, Federal University of the Valleys of Jequitinhonha and Mucuri (UFVJM), Diamantina, MG, Brazil.
| | - Bruno Ferreira Mendes
- Physical Education Department, Federal University of the Valleys of Jequitinhonha and Mucuri (UFVJM), Diamantina, MG, Brazil; Physical Education Department, UNIPTAN, São João Del Rey, MG, Brazil
| |
Collapse
|
15
|
Ruan L, Wang L. Adoptive cell therapy against tumor immune evasion: mechanisms, innovations, and future directions. Front Oncol 2025; 15:1530541. [PMID: 40094019 PMCID: PMC11906336 DOI: 10.3389/fonc.2025.1530541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
Tumors employ a range of strategies to evade detection and eradication by the host's immune system. These include downregulating antigen expression, altering antigen presentation processes, and inhibiting immune checkpoint pathways. etc. Adoptive Cell Therapy (ACT) represents a strategy that boosts anti-tumor immunity. This is achieved by amplifying or genetically engineering immune cells, which are either sourced from the patient or a donor, in a laboratory setting. Subsequently, these cells are reintroduced into the patient to bolster their immune response against cancer. ACT has successfully restored anti-tumor immune responses by amplifying the activity of T cells from patients or donors. This review focuses on the mechanisms underlying tumor escape, including alterations in tumor cell antigens, the immunosuppressive tumor microenvironment (TME), and modulation of immune checkpoint pathways. It further explores how ACT can avddress these factors to enhance therapeutic efficacy. Additionally, the review discusses the application of gene-editing technologies (such as CRISPR) in ACT, highlighting their potential to strengthen the anti-tumor capabilities of T cells. Looking forward, the personalized design of ACT, combined with immune checkpoint inhibitors and targeted therapies, is expected to significantly improve treatment outcomes, positioning this approach as a key strategy in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Liqin Ruan
- Department of Hepatobiliary Surgery, JiuJiang City Key Laboratory of Cell Therapy, JiuJiang No.1 People's Hospital, Jiujiang, Jiangxi, China
| | - Lu Wang
- Department of Oncology, JiuJiang City Key Laboratory of Cell Therapy, JiuJiang No.1 People's Hospital, Jiujiang, Jiangxi, China
| |
Collapse
|
16
|
Zawidzka EM, Biavati L, Thomas A, Zanettini C, Marchionni L, Leone R, Borrello I. Tumor-specific CD8 + T cells from the bone marrow resist exhaustion and exhibit increased persistence in tumor-bearing hosts as compared with tumor-infiltrating lymphocytes. J Immunother Cancer 2025; 13:e009367. [PMID: 40010772 PMCID: PMC11865787 DOI: 10.1136/jitc-2024-009367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/30/2024] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Immunotherapy is now an integral aspect of cancer therapy. Strategies employing adoptive cell therapy (ACT) have seen the establishment of chimeric antigen receptor (CAR)-T cells using peripheral blood lymphocytes as well as tumor-infiltrating lymphocytes (TILs) with significant clinical results. The bone marrow (BM) is an immunological niche housing T cells with specificity for previously encountered antigens, including tumor-associated antigens from certain solid cancers. This study sought to improve our understanding of tumor-specific BM T cells in the context of solid tumors by comparing them with TILs, and to assess whether there is a rationale for using the BM as a source of T cells for ACT against solid malignancies. METHODS We used the murine B16 melanoma model examining both the endogenous OVA-specific T cell response using an OVA-specific tetramer or examining the OVA-specific response with OVA-specific transgenic CD8+ (OT-1) T cells. Specifically, we compared baseline intrinsic properties of TILs or BM T cells from tumor-bearing mice and their changes following adoptive transfer in the tumor and bone marrow (as well as other compartments when indicated). RESULTS In tumor-bearing mice, endogenous tumor-specific T cells could be detected in the BM early in the course of tumor progression and possessed a more stem-cell-like and memory phenotype in an unsupervised cluster analysis compared with TILs which appeared more exhausted. The BM and tumor microenvironments significantly impact the fate of T cells. Naïve OT-1 transferred T cells acquired an exhausted phenotype in the tumor but maintained a more memory-like phenotype in the BM with tumor progression. Importantly, in a competitive transfer experiment, BM T cells infiltrated the tumor more efficiently than TILs, displayed a higher polyfunctionality with interleukin-2, interferon-γ, tumor necrosis factor-α production and showed greater persistence compared with TILs. CONCLUSIONS T cells from the BM appear superior to TILs as a source of cells for cellular therapy. They possess a memory-enriched phenotype and exhibit improved effector function, greater persistence within a tumor-bearing host, and the capacity for increased tumor infiltration. These data provide a foundation for further exploring the BM as a source of tumor-specific T cells for ACT in solid malignancies.
Collapse
Affiliation(s)
- Elizabeth M Zawidzka
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine School of Medicine, Baltimore, Maryland, USA
| | - Luca Biavati
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine School of Medicine, Baltimore, Maryland, USA
| | - Amy Thomas
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine School of Medicine, Baltimore, Maryland, USA
| | | | | | - Robert Leone
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine School of Medicine, Baltimore, Maryland, USA
| | - Ivan Borrello
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine School of Medicine, Baltimore, Maryland, USA
- Cancer Institute, Tampa General Hospital, Tampa, Florida, USA
| |
Collapse
|
17
|
Zhao C, Jia B, Jiang Y, Shike H, Annageldiyev C, Cioccio J, Minagawa K, Mineishi S, Ehmann WC, Schell TD, Cheng H, Zheng H. Cytotoxic lymphocytes induced by engineered human dendritic cells mediate potent anti-leukemia activity. Cancer Immunol Immunother 2025; 74:117. [PMID: 39998689 PMCID: PMC11861774 DOI: 10.1007/s00262-025-03971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
Effective treatment of acute myeloid leukemia (AML) remains an urgent unmet need. Adoptive transfer of cytotoxic T cells (CTLs) against leukemia-associated antigen (LAA) has strong potential to improve AML treatment. However, the clinical translation of this therapeutic modality is hindered by the difficulty of obtaining large quantities of LAA-specific CTLs. Stimulating naïve T cells using monocyte-derived dendritic cells (MoDCs) loaded with LAA is commonly used for the generation of CTLs. This approach has drawbacks as MoDCs loaded with desired antigen need to be developed repeatedly with multiple steps and have limited growth potential. We have established immortalized human dendritic cells (DC) lines (termed ihv-DCs). Here, we report the successful generation of CTLs by culturing AML patient-derived T cells with our off-the-shelf ihv-DCs that carry HLA-A2-restricted human telomerase reverse transcriptase (hTERT), a known LAA. These CTLs exert a potent cytotoxic activity against leukemia cell lines and primary AML blasts in vitro. Importantly, using a highly clinically relevant PDX model where CTLs (derived from clinical donors) were adoptively transferred into NSG mice bearing patient-derived AML cells (that were partial or full HLA match with the donors), we showed that the CTLs effectively reduced leukemia growth in vivo. Our results are highly translational and provide proof of concept using the novel DC methodology to improve the strategy of adoptive T cell transfer for AML treatment.
Collapse
MESH Headings
- Humans
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/transplantation
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/transplantation
- Animals
- Mice
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Immunotherapy, Adoptive/methods
- Telomerase/immunology
- Telomerase/genetics
- Telomerase/metabolism
- Mice, Inbred NOD
- Cytotoxicity, Immunologic
- Mice, SCID
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- HLA-A2 Antigen/immunology
Collapse
Affiliation(s)
- Chenchen Zhao
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Bei Jia
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Yixing Jiang
- Department of Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, MD, 21201, USA
| | - Hiroko Shike
- Department of Pathology, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Charyguly Annageldiyev
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Joseph Cioccio
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Kentaro Minagawa
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Shin Mineishi
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - WChristopher Ehmann
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Todd D Schell
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, 17033, USA
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Hua Cheng
- ImmuCision Biotherapeutics, LLC, 801W Baltimore Street, Baltimore, MD, 21201, USA
| | - Hong Zheng
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
18
|
Wang Y, Casarin S, Daher M, Mohanty V, Dede M, Shanley M, Başar R, Rezvani K, Chen K. Agent-based modeling of cellular dynamics in adoptive cell therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638701. [PMID: 40027823 PMCID: PMC11870559 DOI: 10.1101/2025.02.17.638701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Adoptive cell therapies (ACT) leverage tumor-immune interactions to cure cancer. Despite promising phase I/II clinical trials of chimeric-antigen-receptor natural killer (CAR-NK) cell therapies, molecular mechanisms and cellular properties required to achieve clinical benefits in broad cancer spectra remain underexplored. While in vitro and in vivo experiments are required in this endeavor, they are typically expensive, laborious, and limited to targeted investigations. Here, we present ABMACT (Agent-Based Model for Adoptive Cell Therapy), an in silico approach employing agent-based models (ABM) to simulate the continuous course and dynamics of an evolving tumor-immune ecosystem, consisting of heterogeneous "virtual cells" created based on knowledge and omics data observed in experiments and patients. Applying ABMACT in multiple therapeutic context indicates that to achieve optimal ACT efficacy, it is key to enhance immune cellular proliferation, cytotoxicity, and serial killing capacity. With ABMACT, in silico trials can be performed systematically to inform ACT product development and predict optimal treatment strategies.
Collapse
|
19
|
Besliu C, Tanase AD, Rotaru I, Espinoza J, Vidal L, Poelman M, Juan M, de Larrea CF, Saini KS. The Evolving Landscape in Multiple Myeloma: From Risk Stratification to T Cell-Directed Advanced Therapies. Cancers (Basel) 2025; 17:525. [PMID: 39941892 PMCID: PMC11817212 DOI: 10.3390/cancers17030525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Multiple myeloma is biologically and clinically a complex and heterogeneous disease which develops late in life, with the median age at the time of initial diagnosis being 66 years. In 1975, Durie and Salmon developed the first broadly adopted staging system in multiple myeloma, and in the ensuing decades, the risk stratification tools have improved and now incorporate different parameters to better predict the prognosis and to guide the treatment decisions. The International Staging System (ISS) was initially developed in 2005, revised in 2015 (R-ISS), and again in 2022 (R2-ISS). Tremendous progress has been achieved in multiple myeloma therapy over the past 25 years with the approval of immunomodulatory drugs, proteasome inhibitors, and anti-CD38 monoclonal antibodies, resulting in a major paradigm shift. The dysfunction of the innate and adaptive immune system, especially in the T cell repertoire, represents a hallmark of multiple myeloma evolution over time, supporting the need for additional therapeutic approaches to activate the host's immune system and to overcome the immunosuppressive tumor microenvironment. Novel T cell-directed therapies include chimeric antigen receptor (CAR) T cell therapies and bispecific antibodies that leverage the immune system's T cells to recognize and attack the tumor cells. Second-generation anti-BCMA CAR T cell therapies and bispecific antibodies that bind the tumor antigen BCMA or GPRC5D onto myeloma cells and CD3 on the T cell's surface are currently available for the treatment of relapsed/refractory multiple myeloma. Despite impressive results obtained with currently approved treatments, multiple myeloma remains incurable, and almost all patients eventually relapse. Moreover, patients with extramedullary disease and plasma cell leukemia represent an unmet medical need that require additional strategies to improve the outcome. In this review, we provide an overview of the evolution of risk stratification and the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Carmen Besliu
- Fortrea Inc., 8 Moore Drive, Durham, NC 27709, USA; (C.B.); (J.E.); (L.V.); (M.P.)
| | - Alina Daniela Tanase
- Department of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute Bucharest, 022328 Bucharest, Romania;
| | - Ionela Rotaru
- Department of Hematology, Municipal Hospital Craiova, 010024 Craiova, Romania;
| | - Jose Espinoza
- Fortrea Inc., 8 Moore Drive, Durham, NC 27709, USA; (C.B.); (J.E.); (L.V.); (M.P.)
| | - Laura Vidal
- Fortrea Inc., 8 Moore Drive, Durham, NC 27709, USA; (C.B.); (J.E.); (L.V.); (M.P.)
| | - Martine Poelman
- Fortrea Inc., 8 Moore Drive, Durham, NC 27709, USA; (C.B.); (J.E.); (L.V.); (M.P.)
| | - Manel Juan
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic de Barcelona, 08036 Barcelona, Spain; (M.J.); (C.F.d.L.)
| | - Carlos Fernández de Larrea
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic de Barcelona, 08036 Barcelona, Spain; (M.J.); (C.F.d.L.)
| | - Kamal S. Saini
- Fortrea Inc., 8 Moore Drive, Durham, NC 27709, USA; (C.B.); (J.E.); (L.V.); (M.P.)
- Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| |
Collapse
|
20
|
Altan M, Lopes G, Hiltermann TJN, Govindan R, Villaruz LC, Calvo E, Edelman MJ, Furqan M, Neal J, Felip E, Carlisle JW, Heymach JV, O’Cearbhaill RE, Zauderer M, Chisamore M, Corigliano E, Eleftheriadou I, Zajic S, Jenkins B, Goodison S, Suchindran S, Ramos-Hernandez N, Tarek N, Schoenfeld AJ. Safety and Tolerability of Letetresgene Autoleucel (GSK3377794): Pilot Studies in Patients with Advanced Non-Small Cell Lung Cancer. Clin Cancer Res 2025; 31:529-542. [PMID: 39576208 PMCID: PMC11788651 DOI: 10.1158/1078-0432.ccr-24-1591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/11/2024] [Accepted: 11/20/2024] [Indexed: 02/04/2025]
Abstract
PURPOSE The study aims to evaluate the safety, tolerability, and antitumor response of letetresgene autoleucel (lete-cel), genetically modified autologous T cells expressing a T-cell receptor specific for New York esophageal squamous cell carcinoma 1 (NY-ESO-1)/LAGE-1a shared epitope, alone or in combination with pembrolizumab, in HLA-A*02-positive (HLA-A*02:01, HLA-A*02:05, and/or HLA-A*02:06) patients with NY-ESO-1- and/or LAGE-1a-positive non-small cell lung cancer. PATIENTS AND METHODS Study 208749 was a single-arm study of lete-cel alone. Study 208471 was a multiarm study of lete-cel alone or in combination with pembrolizumab in patients with advanced or recurrent non-small cell lung cancer. RESULTS More than 2,500 patients were screened for target expression. In the multiarm study, 738 (45%) of 1,638 tested patients were HLA-A*02-positive. NY-ESO-1 and LAGE-1a testing was positive in 12% (62/525) and 4% (15/348) of tested patients, respectively. Forty-one patients positive for HLA-A*02 and antigen expression were screened in the single-arm study. Overall, 43 patients underwent leukapheresis and 18 received lete-cel across studies. Lete-cel demonstrated a manageable safety profile. No fatal treatment-related serious adverse events (AE) were reported in either study. Cytopenias and cytokine release syndrome were the most common treatment-emergent AEs. Combining pembrolizumab with lete-cel did not seem to increase toxicity over lete-cel alone. Limited antitumor activity was observed; one of 18 patients had a durable response persisting for 18 months. Pharmacokinetic data showed similar T-cell expansion in all patients. CONCLUSIONS Extensive HLA-A*02 and antigen expression testing was performed to identify potential participants. Lete-cel was generally well tolerated and had no unexpected AEs. Antitumor activity was observed in a limited number of patients.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/therapy
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/genetics
- Male
- Female
- Middle Aged
- Aged
- Pilot Projects
- Lung Neoplasms/therapy
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Lung Neoplasms/genetics
- Antibodies, Monoclonal, Humanized/administration & dosage
- Adult
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/genetics
- HLA-A2 Antigen/immunology
- HLA-A2 Antigen/genetics
- T-Lymphocytes/immunology
- Treatment Outcome
- Aged, 80 and over
- Cancer Vaccines/adverse effects
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/immunology
- Neoplasm Staging
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Membrane Proteins
Collapse
Affiliation(s)
- Mehmet Altan
- Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | | | | | - Ramaswamy Govindan
- Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | | | - Emiliano Calvo
- START Madrid-CIOCC, Centro Integral Oncologico Clara Campal, Madrid, Spain
| | | | - Muhammad Furqan
- Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Joel Neal
- Stanford Cancer Institute, Stanford University, Palo Alto, California
| | - Enriqueta Felip
- Vall d’Hebron University Hospital and Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - John V. Heymach
- Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Omotoso MO, Est-Witte SE, Shannon SR, Li S, Nair NM, Neshat SY, Kang SS, Tzeng SY, Green JJ, Schneck JP. Alginate-based artificial antigen presenting cells expand functional CD8 + T cells with memory characteristics for adoptive cell therapy. Biomaterials 2025; 313:122773. [PMID: 39217794 PMCID: PMC11423771 DOI: 10.1016/j.biomaterials.2024.122773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/23/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
The development of artificial Antigen Presenting Cells (aAPCs) has led to improvements in adoptive T cell therapy (ACT), an immunotherapy, for cancer treatment. aAPCs help to streamline the consistent production and expansion of T cells, thus reducing the time and costs associated with ACT. However, several issues still exist with ACT, such as insufficient T cell potency, which diminishes the translational potential for ACT. While aAPCs have been used primarily to increase production efficiency of T cells for ACT, the intrinsic properties of a biomaterial-based aAPC may affect T cell phenotype and function. In CD8+ T cells, reactive oxygen species (ROS) and oxidative stress accumulation can activate Forkhead box protein O1 (FOXO1) to transcribe antioxidants which reduce ROS and improve memory formation. Alginate, a biocompatible and antioxidant rich biomaterial, is promising for incorporation into an aAPC formulation to modulate T cell phenotype. To investigate its utility, a novel alginate-based aAPC platform was developed that preferentially expanded CD8+ T cells with memory related features. Alginate-based aAPCs allowed for greater control of CD8+ T cell qualities, including, significantly improved in vivo persistence and augmented in vivo anti-tumor T cell responses.
Collapse
Affiliation(s)
- Mary O Omotoso
- Department of Biomedical Engineering, School of Medicine, USA; Institute for Cell Engineering, School of Medicine, USA; Department of Pathology, School of Medicine, USA
| | - Savannah E Est-Witte
- Department of Biomedical Engineering, School of Medicine, USA; Translational Tissue Engineering Center, USA; Institute for NanoBioTechnology, USA
| | - Sydney R Shannon
- Department of Biomedical Engineering, School of Medicine, USA; Department of Pathology, School of Medicine, USA; Translational Tissue Engineering Center, USA; Institute for NanoBioTechnology, USA
| | - Shuyi Li
- Department of Pathology, School of Medicine, USA; Institute for NanoBioTechnology, USA
| | - Nina M Nair
- Department of Biomedical Engineering, Whiting School of Engineering, USA
| | - Sarah Y Neshat
- Department of Biomedical Engineering, School of Medicine, USA; Translational Tissue Engineering Center, USA; Institute for NanoBioTechnology, USA
| | - Si-Sim Kang
- Department of Pathology, School of Medicine, USA
| | - Stephany Y Tzeng
- Translational Tissue Engineering Center, USA; Department of Biomedical Engineering, Whiting School of Engineering, USA; Johns Hopkins Translational ImmunoEngineering Center, USA
| | - Jordan J Green
- Department of Biomedical Engineering, School of Medicine, USA; Translational Tissue Engineering Center, USA; Institute for NanoBioTechnology, USA; Johns Hopkins Translational ImmunoEngineering Center, USA.
| | - Jonathan P Schneck
- Department of Biomedical Engineering, School of Medicine, USA; Institute for Cell Engineering, School of Medicine, USA; Department of Pathology, School of Medicine, USA; Johns Hopkins Translational ImmunoEngineering Center, USA; Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
22
|
Yang W, Di S, Yang Z, Cao J, Fu Q, Ren H, Cheng H, Xie Y, Jia W, Dai X, Yu M, Chen Y, Cui X. One-dimensional nanosonosensitizer boosted multiple branches of immune responses against MHC-deficient immune-evasive urologic tumor. SCIENCE ADVANCES 2025; 11:eado7373. [PMID: 39879294 PMCID: PMC11777198 DOI: 10.1126/sciadv.ado7373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/26/2024] [Indexed: 01/31/2025]
Abstract
Cancer immunotherapies rely on CD8+ cytolytic T lymphocytes (CTLs) in recognition and eradication of tumor cells via antigens presented on major histocompatibility complex class I (MHC-I) molecules. However, we observe MHC-I deficiency in human and murine urologic tumors, posing daunting challenges for successful immunotherapy. We herein report an unprecedented nanosonosensitizer of one-dimensional bamboo-like multisegmented manganese dioxide@manganese-bismuth vanadate (BMMBV) to boost multiple branches of immune responses targeting MHC-I-deficient tumors. BMMBV markedly augments sonodynamic activity contributed by manganese heteroatoms in the lattice of bismuth vanadate with narrowing bandgaps. Under sonoirradiation, BMMBV enhances tumor antigen spreading and emission of adjuvant signals, which potentiate dendritic cell maturation, thereby eliciting high aptitude of CTLs. This therapy substantially up-regulates MHC expression on tumor cells, which are reversely sensitive to CTLs. Alongside, extensive innate immune cells complement the cytolytic activity of CTLs for eliminating mouse urologic tumors. This study offers a reinforced strategy against antigen-loss immune-evasive tumor.
Collapse
Affiliation(s)
- Wei Yang
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P. R. China
| | - Sichen Di
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P. R. China
| | - Zihuan Yang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Jianwei Cao
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P. R. China
| | - Qingqiao Fu
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hui Cheng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yujie Xie
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang 325088, P. R. China
- Shanghai Institute of Materdicine, Shanghai 200051, P. R. China
| | - Xingang Cui
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P. R. China
| |
Collapse
|
23
|
Chamseddine I, Kambara M, Bhatt P, Pilon-Thomas S, Rejniak KA. Optimizing the Efficacy of Vaccine-Induced Immunotherapy in Melanomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631283. [PMID: 39829889 PMCID: PMC11741369 DOI: 10.1101/2025.01.06.631283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Cancer therapeutic vaccines are used to strengthen a patient's own immune system by amplifying existing immune responses. Intralesional administration of the bacteria-based emm55 vaccine together with the PD1 checkpoint inhibitor produced a strong anti-tumor effect against the B16 melanoma murine model. However, it is not trivial to design an optimal order and frequency of injections for combination therapies. Here, we developed a coupled ordinary differential equations model calibrated to experimental data and used the mesh adaptive direct search method to optimize the treatment protocols of the emm55 vaccine and anti-PD1 combined therapy. This method determined that early consecutive vaccine injections combined with distributed anti-PD1 injections of decreasing separation time yielded the best tumor size reduction. The optimized protocols led to a twofold decrease in tumor area for the vaccine-alone treatment, and a fourfold decrease for the combined therapy. Our results reveal the tumor subpopulation dynamics in the optimal treatment condition, defining the path for efficacious treatment design. Similar computational frameworks can be applied to other tumors and other combination therapies to generate experimentally testable hypotheses in a fairly unrestricted and inexpensive setting.
Collapse
Affiliation(s)
- Ibrahim Chamseddine
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Manoj Kambara
- High-School Internship Program at Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Priya Bhatt
- High-School Internship Program at Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Shari Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Katarzyna A Rejniak
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
24
|
Kumbhojkar N, Mitragotri S. Activated neutrophils: A next generation cellular immunotherapy. Bioeng Transl Med 2025; 10:e10704. [PMID: 39801751 PMCID: PMC11711228 DOI: 10.1002/btm2.10704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 01/16/2025] Open
Abstract
Cell therapies are at the forefront of novel therapeutics. Neutrophils, despite being the most populous immune cells in human blood circulation, are not considered a viable option for cellular therapies because of their short lifespan and poor understanding of their role in the pathophysiology of various diseases. In inflammatory conditions, neutrophils exhibit an activated phenotype. Activation brings about significant changes to neutrophil biology such as increased lifespan, inflammatory cytokine secretion, and enhanced effector functions. Activated neutrophils also possess the potential to stimulate the downstream immune response and are described as essential effectors in the immune response to tumors. This makes activated neutrophils an interesting candidate for cell therapies. Here, we review the biology of activated neutrophils in detail. We discuss the different ways neutrophils can be activated and the effect they have on other immune cells for stimulation of downstream immune response. We review the conditions where activated neutrophil therapy can be therapeutically beneficial and discuss the challenges associated with their eventual translation. Overall, this review summarizes the current state of understanding of neutrophil-based immunotherapies and their clinical potential.
Collapse
Affiliation(s)
- Ninad Kumbhojkar
- Harvard John A. Paulson School of Engineering and Applied SciencesAllstonMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Samir Mitragotri
- Harvard John A. Paulson School of Engineering and Applied SciencesAllstonMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| |
Collapse
|
25
|
Metts J, Rodriguez-Valentin M, Hensel J, Alfaro A, Snyder CW, Binitie O, Chebli C, Monforte H, Pilon-Thomas S, Mullinax J. Expansion of tumor-infiltrating and marrow-infiltrating lymphocytes from pediatric malignant solid tumors. Cytotherapy 2025; 27:29-35. [PMID: 39243253 PMCID: PMC11668621 DOI: 10.1016/j.jcyt.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 09/09/2024]
Abstract
INTRODUCTION The expansion of tumor-infiltrating lymphocytes (TIL) for adoptive cellular therapy is under investigation in many solid tumors of adulthood. Marrow-infiltrating lymphocytes (MIL) have demonstrated antitumor reactivity preclinically. Successful expansion of TIL/MIL has not been reported across pediatric solid tumor histologies. The objective of this study was to demonstrate successful expansion of TIL from pediatric solid tumors for translation in an adoptive cell therapy (ACT) treatment strategy. METHODS A prospective study of TIL/MIL expansion was performed on solid tumors of pediatric patients undergoing standard-of-care procedures. TIL/MIL expansions were performed in the presence of high-dose interleukin 2. To demonstrate a full-scale expansion to clinically-relevant cell doses for TIL therapy, initial TIL culture was followed by a rapid expansion protocol for select patients. Expanded specimens were analyzed for phenotype by flow cytometry and for anti-tumor reactivity by the interferon-gamma release assay. RESULTS Eighteen tumor samples were obtained. Initial TIL cultures were successfully generated from 14/18 samples (77.7%). A median of 5.52 × 107 (range: 2.5 × 106-3.23 × 108) cells were produced from initial cultures, with 46.9% expressing a CD3 phenotype (46.9%). Eight samples underwent rapid expansion, demonstrating a median 458-fold expansion and a CD3 phenotype of 98%. Initial MIL cultures were successfully generated from five samples, with a predominantly CD3 phenotype (45.2%). Sufficient tumor tissue was only available for seven TIL samples to be tested for reactivity; none demonstrated responsiveness to autologous tumor. CONCLUSIONS TIL and MIL expansion from pediatric solid tumors was successful, including the full-scale expansion process. This data supports translation to an ACT-TIL treatment strategy in the pediatric population and thus a Phase I trial of ACT-TIL in pediatric high-risk solid tumors is planned.
Collapse
Affiliation(s)
- Jonathan Metts
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St Petersburg, Florida, USA; Departments of Sarcoma, Immunology, and Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA.
| | | | | | - Alex Alfaro
- Departments of Sarcoma, Immunology, and Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Christopher W Snyder
- Division of Pediatric Surgery, Johns Hopkins All Children's Hospital, St Petersburg, Florida, USA
| | - Odion Binitie
- Departments of Sarcoma, Immunology, and Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Caroline Chebli
- Department of Orthopedic Surgery, James A Haley Veteran's Administration Hospital, Tampa, Florida, USA
| | - Hector Monforte
- Section of Anatomic Pathology, Johns Hopkins All Children's Hospital, St Petersburg, Florida, USA
| | - Shari Pilon-Thomas
- Departments of Sarcoma, Immunology, and Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - John Mullinax
- Departments of Sarcoma, Immunology, and Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
26
|
Zheng DX, Bozym DJ, Tarantino G, Sullivan RJ, Liu D, Jenkins RW. Overcoming Resistance Mechanisms to Melanoma Immunotherapy. Am J Clin Dermatol 2025; 26:77-96. [PMID: 39636504 DOI: 10.1007/s40257-024-00907-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
The advent of immune checkpoint inhibition has revolutionized treatment of advanced melanoma. While most patients derive survival benefit from established immunotherapies, notably monoclonal antibodies blocking cytotoxic T-lymphocyte antigen 4 and programmed cell death protein 1, a subset does not optimally respond due to the manifestation of innate or acquired resistance to these therapies. Combination regimens have proven efficacious relative to single-agent blockade, but also yield high-grade treatment toxicities that are often dose-limiting for patients. In this review, we discuss the significant strides made in the past half-decade toward expanding the melanoma immunotherapy treatment paradigm. These include newly approved therapies, adoption of neoadjuvant immunotherapy, and studies in the clinical trials pipeline targeting alternative immune checkpoints and key immunoregulatory molecules. We then review how developments in molecular and functional diagnostics have furthered our understanding of the tumor-intrinsic and -extrinsic mechanisms driving immunotherapy resistance, as well as highlight novel biomarkers for predicting treatment response. Throughout, we discuss potential approaches for targeting these resistance mechanisms in rational combination with established immunotherapies to improve outcomes for patients with melanoma.
Collapse
Affiliation(s)
- David X Zheng
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David J Bozym
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Giuseppe Tarantino
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ryan J Sullivan
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Russell W Jenkins
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
27
|
Weiss L, Schluck M, Classens R, de Jonge PKJD, van der Waart A, Nguyen KG, Nguyen TT, Zaharoff DA, Malmberg KJ, Dolstra H, Figdor CG, Sohlberg E, Hammink R. Interleukin-12 decorated nanosized semiflexible Immunofilaments enable directed targeting and augmented IFNγ responses of natural killer cells. Acta Biomater 2025; 191:386-397. [PMID: 39528061 DOI: 10.1016/j.actbio.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Immunotherapies are a powerful strategy to treat cancer by modulating the immune system to raise an anti-tumor immune response. A prime example of immunotherapies are cytokines - small immunomodulatory molecules that are widely used to stimulate immune cells. Undirected administration of cytokines, however, can cause severe side effects, preventing the use of potent cytokines, such as Interleukin (IL)-12, which induces IFNγ responses by cytotoxic effector lymphocytes, including NK cells. Biomaterials, like nanoparticles, can encapsulate IL-12 and accumulate at the tumor site to alleviate side effects. Yet, the released IL-12 might not be directly targeted to extracellular IL-12 receptors on the specific effector cells, thereby potentially compromising the cytokine's therapeutic efficacy. Here, we develop a polymer-based platform to target NK cells, which we call immunofilaments. Immunofilaments are nanosized linear polymers that present an anti-CD16 antibody and IL-12 effectively to NK cells and lead to synergistic NK cell activation as highlighted by an increase in TNFα and IFNγ production and upregulation of multiple activation markers, including CD25, CD69, and degranulation marker CD107a. NK cell proliferation is enhanced in the presence of both anti-CD16 antibody and IL-12 compared to giving IL-12 separately. Finally, we demonstrate that the IF platform is suitable for in vivo applications, as immunofilaments readily activate human NK cells upon administration to mice. STATEMENT OF SIGNIFICANCE: IL-12 is a potent cytokine that stimulates IFNγ responses in NK cells, which supports an anti-tumor immune response. Due to its high potency, the delivery of IL-12 needs to be highly controlled to prevent severe adverse side effects, which can be achieved by using biomaterials. This study shows that nanosized polymers termed Immunofilaments can be used to immobilize IL-12 and effectively target and activate NK cells by co-conjugation of anti-CD16 antibodies. This work is a prime example of careful engineering of innovative biomaterials to improve immunotherapy.
Collapse
Affiliation(s)
- Lea Weiss
- Department of Medical BioSciences, Radboudumc, Geert Grooteplein 26, Nijmegen, GA 6525, the Netherlands; Institute for Chemical Immunology, Nijmegen, GA 6525, the Netherlands; Division of Immunotherapy, Oncode Institute, Radboud University Medical Center, Nijmegen, GA 6525, Netherlands
| | - Marjolein Schluck
- Department of Medical BioSciences, Radboudumc, Geert Grooteplein 26, Nijmegen, GA 6525, the Netherlands; Division of Immunotherapy, Oncode Institute, Radboud University Medical Center, Nijmegen, GA 6525, Netherlands
| | - René Classens
- Department of Medical BioSciences, Radboudumc, Geert Grooteplein 26, Nijmegen, GA 6525, the Netherlands
| | - Paul K J D de Jonge
- Laboratory of Hematology, Department of Laboratory Medicine, Radboudumc, Geert Grooteplein Zuid 10, Nijmegen, GA 6525, USA
| | - Anniek van der Waart
- Laboratory of Hematology, Department of Laboratory Medicine, Radboudumc, Geert Grooteplein Zuid 10, Nijmegen, GA 6525, USA
| | - Khue G Nguyen
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill & North Carolina State University, Raleigh, NC, USA
| | - Tam T Nguyen
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill & North Carolina State University, Raleigh, NC, USA
| | - David A Zaharoff
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill & North Carolina State University, Raleigh, NC, USA
| | - Karl-Johan Malmberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; The Precision Immunotherapy Alliance, The University of Oslo, Oslo, Norway
| | - Harry Dolstra
- Laboratory of Hematology, Department of Laboratory Medicine, Radboudumc, Geert Grooteplein Zuid 10, Nijmegen, GA 6525, USA
| | - Carl G Figdor
- Department of Medical BioSciences, Radboudumc, Geert Grooteplein 26, Nijmegen, GA 6525, the Netherlands; Institute for Chemical Immunology, Nijmegen, GA 6525, the Netherlands; Division of Immunotherapy, Oncode Institute, Radboud University Medical Center, Nijmegen, GA 6525, Netherlands.
| | - Ebba Sohlberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Roel Hammink
- Department of Medical BioSciences, Radboudumc, Geert Grooteplein 26, Nijmegen, GA 6525, the Netherlands; Division of Immunotherapy, Oncode Institute, Radboud University Medical Center, Nijmegen, GA 6525, Netherlands.
| |
Collapse
|
28
|
Ben-Baruch A. The Tumor Immune Environment: Advances in the Cancer Immunotherapy Era. Methods Mol Biol 2025; 2926:15-34. [PMID: 40266514 DOI: 10.1007/978-1-0716-4542-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
For over the last hundred years, the scientific community has demonstrated much interest in the roles of the immune system in regulating tumor progression. Extensive research that was performed in this context has revealed that mechanisms of acquired immunity can be highly potent in eradicating cancer cells, if given the right conditions to do so. Basic and clinical studies have paved the way toward the design of sophisticated modalities that improve the ability of T cells to efficiently recognize cancer antigens (when expressed by the tumor cells) and to expand thereafter; alongside developing procedures that prevent immune suppression caused by inhibitory immune checkpoints, these approaches offer cancer patients improved immunotherapies, which increase remission and prolong survival. The current chapter provides a summary of key aspects relevant to such immunotherapies, including the following: (1) cancer vaccines that enhance cancer antigen presentation; (2) adoptive cell transfer (ACT)-based therapies, like tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor expressing T cells (CAR-T cells); and (3) immune checkpoint blockades (ICBs) that downregulate the extent of immune suppression mediated by inhibitory immune checkpoint molecules, like cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1) and its ligands, primarily PD-L1 (and also PD-L2). These treatments have revolutionized the immunotherapy field, demonstrating the strong power of acquired immunity in preventing tumor growth and progression, giving much hope to cancer patients worldwide.
Collapse
Affiliation(s)
- Adit Ben-Baruch
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
29
|
Mukhopadhyay B, Singh S, Singh A. Utilizing nanomaterials for cancer treatment and diagnosis: an overview. DISCOVER NANO 2024; 19:215. [PMID: 39718700 DOI: 10.1186/s11671-024-04128-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/14/2024] [Indexed: 12/25/2024]
Abstract
Cancer is a deadly disease with complex pathophysiological nature and is the leading cause of death worldwide. Traditional diagnosis methods often detect cancer at a considerably critical stage and the conventional methods of treatment like chemotherapy, radiation therapy, targeted therapy, and immunotherapy have several limitations, multidrug resistance, cytotoxicity, and lack of specificity are a few examples. These pose substantial challenge for effective and favourable cancer treatment. The advent of nanotechnology has revolutionized the face of cancer diagnosis and treatment. Nanoparticles, which have a size range of 1-100 nm, are biocompatible and have special optical, magnetic, and electrical capabilities, less toxic, more stable, exhibit permeability and retention effect, and are used for precise targeting. There are several classes of nanoparticles each having their own sets of unique properties. NPs have played an important role in the drug delivery system, overcoming the multi-drug resistance, reducing the side-effects as seen in conventional therapeutic methods and hence able to solve the limitations of conventional methods of diagnosis and treatment. This review discusses the four major classes of nanoparticles (Lipid based NPs, Carbon NPs and Metallic NPs and Polymeric NPs): their discovery and introduction in medical field, unique properties and characteristics, advantages and disadvantages, sub-categories and characteristics of these categories, major area of application in Cancer diagnosis and treatment, and latest methodologies where these are used in cancer treatment.
Collapse
Affiliation(s)
- Bageesha Mukhopadhyay
- Department of Biomedical Engineering, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - Sudhakar Singh
- Department of Biomedical Engineering, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - Avtar Singh
- School of Electrical Engineering and Computing (SoEEC), Adama Science and Technology University (AS-TU), 1888, Adama, Ethiopia.
| |
Collapse
|
30
|
Dadwal S, Dhar S, Baghel K, Mishra A, Mehrotra S, Prajapati VK. From past to present: The evolution of immunotherapy and its modern modalities. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 144:1-32. [PMID: 39978965 DOI: 10.1016/bs.apcsb.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Immunotherapy is emerging as a novel and reliable therapeutic technique for treating diseases such as autoimmunity, HIV/AIDS, allergy and cancers. This approach works by modulating the patient's immune system, activating both the innate and humoral branches to combat life-threatening diseases. The foundation of immunotherapy began with the discovery and development of "serum therapy" by German physiologist Emil Von Behring who received the Nobel Prize in 1901 for his contributions to the treatment of diphtheria. Around the same time, Dr. William Coley expanded the field for cancer treatment by developing the first immune based cure for sarcomas using attenuated strains of bacteria injected directly into patient's tumours. As medical science advanced, a broader understanding of the immune system and its components led to the emergence of different immunotherapeutic techniques. These include adoptive cell transfer therapy, cytokine therapy, cancer vaccines, and antibody-drug conjugates. The chapter provides a comprehensive understanding of the history and the current techniques used in immunotherapy, detailing the principles behind their mechanisms and the types of diseases tackled by each immunotherapeutic technique. By examining the journey from early discoveries to modern advancements, the chapter highlights the transformative impact of immunotherapy on medical science and patient care.
Collapse
Affiliation(s)
- Surbhi Dadwal
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Sarthak Dhar
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Kirti Baghel
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
31
|
Wu R, Zeng M, Zhang Y, He J. LAG3 immune inhibitors: a novel strategy for melanoma treatment. Front Oncol 2024; 14:1514578. [PMID: 39743998 PMCID: PMC11688305 DOI: 10.3389/fonc.2024.1514578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/27/2024] [Indexed: 01/04/2025] Open
Abstract
Melanoma, a highly aggressive skin cancer, poses significant challenges in treatment, particularly for advanced or metastatic cases. While immunotherapy, especially immune checkpoint inhibitors (ICIs) targeting CTLA-4 and PD-1, has transformed melanoma management, many patients experience limited responses or develop resistance, highlighting the need for new therapeutic strategies. Lymphocyte activation gene 3 (LAG-3) has emerged as a promising target in cancer immunotherapy. LAG-3 inhibitors have shown potential in restoring T cell functions and enhancing anti-tumor immunity, particularly when used in combination with existing ICIs. This review discusses the latest advancements in LAG-3 inhibition for advanced melanoma, emphasizing its role in overcoming resistance and improving patient outcomes.
Collapse
Affiliation(s)
- Renzheng Wu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuchen Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Jianping He
- Division of Abdominal Tumor Multimodality Treatment, Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Ahuja S, Zaheer S. The evolution of cancer immunotherapy: a comprehensive review of its history and current perspectives. KOREAN JOURNAL OF CLINICAL ONCOLOGY 2024; 20:51-73. [PMID: 39778508 PMCID: PMC11717579 DOI: 10.14216/kjco.24009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/24/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025]
Abstract
Cancer immunotherapy uses the body's immune system to combat cancer, marking a significant advancement in treatment. This review traces its evolution from the late 19th century to its current status. It began with William Coley's pioneering work using bacterial toxins to stimulate the immune system against cancer cells, establishing the foundational concept of immunotherapy. In the mid-20th century, cytokine therapies like interferons and interleukins emerged, demonstrating that altering the immune response could reduce tumors and highlighting the complex interplay between cancer and the immune system. The discovery of immune checkpoints, regulatory pathways that prevent autoimmunity but are exploited by cancer cells to evade detection, was a pivotal development. Another major breakthrough is CAR-T cell therapy, which involves modifying a patient's T cells to target cancer-specific antigens. This personalized treatment has shown remarkable success in certain blood cancers. Additionally, cancer vaccines aim to trigger immune responses against tumor-specific or associated antigens, and while challenging, ongoing research is improving their efficacy. The historical progression of cancer immunotherapy, from Coley's toxins to modern innovations like checkpoint inhibitors and CAR-T cell therapy, underscores its transformative impact on cancer treatment. As research delves deeper into the immune system's complexities, immunotherapy is poised to become even more crucial in oncology, offering renewed hope to patients globally.
Collapse
Affiliation(s)
- Sana Ahuja
- Department of Pathology, Safdarjung Hospital, Vardhman Mahavir Medical College, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Safdarjung Hospital, Vardhman Mahavir Medical College, New Delhi, India
| |
Collapse
|
33
|
Arjmand B, Alavi-Moghadam S, Khorsand G, Sarvari M, Arjmand R, Rezaei-Tavirani M, Rajaeinejad M, Mosaed R. Cell-Based Vaccines: Frontiers in Medical Technology for Cancer Treatment. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2024; 10:480-499. [DOI: 10.1007/s40883-024-00338-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/13/2024] [Accepted: 02/17/2024] [Indexed: 01/03/2025]
|
34
|
Chang Y, Chang M, Bao X, Dong C. Advancements in adoptive CAR immune cell immunotherapy synergistically combined with multimodal approaches for tumor treatment. Bioact Mater 2024; 42:379-403. [PMID: 39308543 PMCID: PMC11415837 DOI: 10.1016/j.bioactmat.2024.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
Adoptive immunotherapy, notably involving chimeric antigen receptor (CAR)-T cells, has obtained Food and Drug Administration (FDA) approval as a treatment for various hematological malignancies, demonstrating promising preclinical efficacy against cancers. However, the intricate and resource-intensive autologous cell processing, encompassing collection, expansion, engineering, isolation, and administration, hamper the efficacy of this therapeutic modality. Furthermore, conventional CAR T therapy is presently confined to addressing solid tumors due to impediments posed by physical barriers, the potential for cytokine release syndrome, and cellular exhaustion induced by the immunosuppressive and heterogeneous tumor microenvironment. Consequently, a strategic integration of adoptive immunotherapy with synergistic multimodal treatments, such as chemotherapy, radiotherapy, and vaccine therapy etc., emerges as a pivotal approach to surmount these inherent challenges. This collaborative strategy holds the key to addressing the limitations delineated above, thereby facilitating the realization of more precise personalized therapies characterized by heightened therapeutic efficacy. Such synergistic strategy not only serves to mitigate the constraints associated with adoptive immunotherapy but also fosters enhanced clinical applicability, thereby advancing the frontiers of therapeutic precision and effectiveness.
Collapse
Affiliation(s)
- Yun Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
| | - Mingyang Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
| | - Cheng Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
| |
Collapse
|
35
|
Plaugher DR, Childress AR, Gosser CM, Esoe DP, Naughton KJ, Hao Z, Brainson CF. Therapeutic potential of tumor-infiltrating lymphocytes in non-small cell lung cancer. Cancer Lett 2024; 605:217281. [PMID: 39369769 PMCID: PMC11560632 DOI: 10.1016/j.canlet.2024.217281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide, with poor outcomes even for those diagnosed at early stages. Current standard-of-care for most non-small cell lung cancer (NSCLC) patients involves an array of chemotherapy, radiotherapy, immunotherapy, targeted therapy, and surgical resection depending on the stage and location of the cancer. While patient outcomes have certainly improved, advances in highly personalized care remain limited. However, there is growing excitement around harnessing the power of tumor-infiltrating lymphocytes (TILs) through the use of adoptive cell transfer (ACT) therapy. These TILs are naturally occurring, may already recognize tumor-specific antigens, and can have direct anti-cancer effect. In this review, we highlight comparisons of various ACTs, including a brief TIL history, show current advances and successes of TIL therapy in NSCLC, discuss the potential roles for epigenetics in T cell expansion, and highlight challenges and future directions of the field to combat NSCLC in a personalized manner.
Collapse
Affiliation(s)
- Daniel R Plaugher
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA.
| | - Avery R Childress
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Christian M Gosser
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Dave-Preston Esoe
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Kassandra J Naughton
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Zhonglin Hao
- Department of Internal Medicine - Medical Oncology, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Christine F Brainson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
36
|
Liu Z, Zhang W, Zhao H, Sun M, Zhao C, Ren J, Qu X. Light-Controlled Bioorthogonal Chemistry Altered Natural Killer Cell Activity for Boosted Adoptive Immunotherapy. Angew Chem Int Ed Engl 2024; 63:e202411905. [PMID: 39112373 DOI: 10.1002/anie.202411905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 10/15/2024]
Abstract
Natural killer (NK) cell-based immunotherapy has received much attention in recent years. However, its practical application is still suffering from the decreased function and inadequate infiltration of NK cells in the immunosuppressive microenvironment of solid tumors. Herein, we construct light-responsive porphyrin Fe array-armed NK cells (denoted as NK@p-Fe) for cell behavior modulation via bioorthogonal catalysis. By installing cholesterol-modified porphyrin Fe molecules on the NK cell surface, a catalytic array with light-harvesting capabilities is formed. This functionality transforms NK cells into cellular factories capable of catalyzing the production of active agents in a light-controlled manner. NK@p-Fe can generate the active antineoplastic drug doxorubicin through bioorthogonal reactions to enhance the cytotoxic function of NK cells. Beyond drug synthesis, NK@p-Fe can also bioorthogonally catalyze the production of the FDA-approved immune agonist imiquimod (IMQ). The activated immune agonist plays a dual role, inducing dendritic cell maturation for NK cell activation and reshaping the tumor immunosuppressive microenvironment for NK cell infiltration. This work represents a paradigm for the modulation of adoptive cell behaviors to boost cancer immunotherapy by bioorthogonal catalysis.
Collapse
Affiliation(s)
- Zhengwei Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wenting Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Huisi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Mengyu Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
37
|
Morel VJ, Rössler J, Bernasconi M. Targeted immunotherapy and nanomedicine for rhabdomyosarcoma: The way of the future. Med Res Rev 2024; 44:2730-2773. [PMID: 38885148 DOI: 10.1002/med.22059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024]
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood. Histology separates two main subtypes: embryonal RMS (eRMS; 60%-70%) and alveolar RMS (aRMS; 20%-30%). The aggressive aRMS carry one of two characteristic chromosomal translocations that result in the expression of a PAX3::FOXO1 or PAX7::FOXO1 fusion transcription factor; therefore, aRMS are now classified as fusion-positive (FP) RMS. Embryonal RMS have a better prognosis and are clinically indistinguishable from fusion-negative (FN) RMS. Next to histology and molecular characteristics, RMS risk groupings are now available defining low risk tumors with excellent outcomes and advanced stage disease with poor prognosis, with an overall survival of about only 20% despite intensified multimodal treatment. Therefore, development of novel effective targeted strategies to increase survival and to decrease long-term side effects is urgently needed. Recently, immunotherapies and nanomedicine have been emerging for potent and effective tumor treatments with minimal side effects, raising hopes for effective and safe cures for RMS patients. This review aims to describe the most relevant preclinical and clinical studies in immunotherapy and targeted nanomedicine performed so far in RMS and to provide an insight in future developments.
Collapse
Affiliation(s)
- Victoria Judith Morel
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Jochen Rössler
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Michele Bernasconi
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
38
|
Yagawa Y, Kobayashi Y, Fujita I, Watanabe M, Koido S, Sugiyama H, Tanigawa K. Peritoneal Dissemination and Malignant Ascites in Duodenal Cancer Successfully Treated With Adoptive Cell Therapy Using WT1- and MUC1-Pulsed Dendritic Cells and Activated T Cells With No Adverse Effects: A Case Report. Cureus 2024; 16:e74834. [PMID: 39737308 PMCID: PMC11684412 DOI: 10.7759/cureus.74834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2024] [Indexed: 01/01/2025] Open
Abstract
A satisfactory treatment for the dissemination of duodenal cancer has not yet been established. We describe a case of peritoneal dissemination and malignant ascites in duodenal cancer that was successfully treated with adoptive cell therapy with no adverse effects. A 72-year-old Japanese male patient with primary duodenal cancer with distal lymph node metastases received chemotherapy with S-1, an oral pyrimidine fluoride-derived agent, and oxaliplatin after gastrojejunal bypass, which resulted in tumor shrinkage; however, peritoneal dissemination developed. Despite the administration of a second-line chemotherapy regimen comprising irinotecan, peritoneal dissemination, malignant ascites, and cachexia continued to progress, ultimately resulting in the failure of chemotherapy. He then received adoptive cell therapy with Wilms' tumor 1 (WT1)- and mucin 1 (MUC1) peptide-pulsed dendritic cells (WT1/MUC1-DC) and CD3-activated T lymphocytes (CAT). Following the administration of this treatment eight times per week, the patient's symptoms and malignant ascites surrounding his cancer disappeared. He developed no adverse effects from this treatment and was able to resume his usual activities without any symptoms. He has continued this treatment every few months as maintenance therapy and has been free of relapse for 54 months. This case suggests a possible beneficial effect of adoptive cell therapy with WT1/MUC1-DC and CAT for peritoneal dissemination and malignant ascites in duodenal cancer.
Collapse
Affiliation(s)
- Yohsuke Yagawa
- Department of Immunotherapy, Bio-Thera Clinic, Tokyo, JPN
| | | | - Izumi Fujita
- Department of Surgery, Ebara Hospital, Tokyo, JPN
| | - Manabu Watanabe
- Department of Surgery, Toho University Ohashi Medical Center, Tokyo, JPN
| | - Shigeo Koido
- Internal Medicine, The Jikei University School of Medicine, Tokyo, JPN
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medcine, Osaka, JPN
| | | |
Collapse
|
39
|
Huang S, Chung JYF, Li C, Wu Y, Qiao G, To KF, Tang PMK. Cellular dynamics of tumor microenvironment driving immunotherapy resistance in non-small-cell lung carcinoma. Cancer Lett 2024; 604:217272. [PMID: 39326553 DOI: 10.1016/j.canlet.2024.217272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have profoundly reshaped the treatment paradigm for non-small cell lung cancer (NSCLC). Despite these advancements, primary and secondary resistance to ICIs remain prevalent challenges in managing advanced NSCLC. Recent studies have highlighted the significant role of the tumor microenvironment (TME) in modulating treatment responses. This review aims to comprehensively examine the interactive roles of immune/stromal cells-such as T cells, B cells, neutrophils, macrophages, and CAFs within the TME, elucidating how these diverse cellular interactions contribute to immunotherapy resistance. It focuses on the dynamic interactions among diverse cell types such as the varying states of T cells under the influence of TME constituents like immune cells and cancer-associated fibroblasts (CAFs). By exploring the mechanisms involved in the complex cellular interactions, we highlight novel therapeutic targets and strategies aimed at overcoming resistance, thereby enhancing the efficacy of ICIs in NSCLC. Our synthesis of recent research provides critical insights into the multifaceted mechanisms of resistance and paves the way for the development of more effective, personalized treatment approaches.
Collapse
Affiliation(s)
- Shujie Huang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jeff Yat-Fai Chung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chunjie Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Guibin Qiao
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong; Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
40
|
Bayati-Komitaki N, Ganduh SH, Alzaidy AH, Salavati-Niasari M. A comprehensive review of Co 3O 4 nanostructures in cancer: Synthesis, characterization, reactive oxygen species mechanisms, and therapeutic applications. Biomed Pharmacother 2024; 180:117457. [PMID: 39305816 DOI: 10.1016/j.biopha.2024.117457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 11/14/2024] Open
Abstract
Nanotechnology involves creating, analyzing, and using tiny materials. Cobalt oxide nanoparticles (Co3O4 NPs) have several medicinal uses due to their unique antifungal, antibacterial, antioxidant, anticancer, larvicidal, anticholinergic, antileishmanial, wound healing, and antidiabetic capabilities. Cobalt oxide nanoparticles (Co3O4 NPs) with attractive magnetic properties have found widespread use in biomedical applications, including magnetic resonance imaging, magnetic hyperthermia, and magnetic targeting. The high surface area of Co3O4 leads to unique electrical, optical, catalytic, and magnetic properties, which make it a promising candidate for biomedical bases. Additionally, cobalt nanoparticles with various oxidation states (i.e., Co2+, Co3+, and Co4+) are beneficial in numerous utilizations. Co3O4 nanoparticles as a catalyzer accelerate the conversion rate of hydrogen peroxide (H2O2) to harmful hydroxyl radicals (•OH), which destroy tumor cells. However, it is also possible to enhance the generation of reactive oxygen species (ROS) and successfully treat cancer by combining these nanoparticles with drugs or other nanoparticles. This review summarizes the past concepts and discusses the present state and development of using Co3O4 NPs in cancer treatments by ROS generation. This review emphasizes the advances and current patterns in ROS generation, remediation, and some different cancer treatments using Co3O4 nanoparticles in the human body. It also discusses synthesis techniques, structure, morphological, optical, and magnetic properties of Co3O4 NPs.
Collapse
Affiliation(s)
| | - Safaa H Ganduh
- Department of Chemistry Pharmaceutical, College of Pharmacy, University of Al-Qadisiyah, Diwaniyah, Iraq
| | - Asaad H Alzaidy
- Department of Laboratory and Clinical Science, College of Pharmacy, University of Al-Qadisiyah, Diwaniyah, Iraq
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box. 87317-51167, Kashan, Iran.
| |
Collapse
|
41
|
Zhang H, Grippin A, Sun M, Ma Y, Kim BYS, Teng L, Jiang W, Yang Z. New avenues for cancer immunotherapy: Cell-mediated drug delivery systems. J Control Release 2024; 375:712-732. [PMID: 39326499 DOI: 10.1016/j.jconrel.2024.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/15/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Cancer research has become increasingly complex over the past few decades as knowledge of the heterogeneity of cancer cells, their proliferative ability, and their tumor microenvironments has become available. Although conventional therapies remain the most compelling option for cancer treatment to date, immunotherapy is a promising way to harness natural immune defenses to target and kill cancer cells. Cell-mediated drug delivery systems (CDDSs) have been an active line of research for enhancing the therapeutic efficacy and specificity of cancer immunotherapy. These systems can be tailored to different types of immune cells, allowing immune evasion and accumulation in the tumor microenvironment. By enabling the targeted delivery of therapeutic agents such as immune stimulants, cytokines, antibodies, and antigens, CDDSs have improved the survival of some patients with cancer. This review summarizes the research status of CDDSs, with a focus on their underlying mechanisms of action, biology, and clinical applications. We also discuss opportunities and challenges for implementation of CDDSs into mainstream cancer immunotherapy.
Collapse
Affiliation(s)
- Huan Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Adam Grippin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Man Sun
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yifan Ma
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Zhaogang Yang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
42
|
Zhang S, Huang C, Li Y, Li Z, Zhu Y, Yang L, Hu H, Sun Q, Liu M, Cao S. Anti-cancer immune effect of human colorectal cancer neoantigen peptide based on MHC class I molecular affinity screening. Front Immunol 2024; 15:1473145. [PMID: 39559350 PMCID: PMC11570797 DOI: 10.3389/fimmu.2024.1473145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/16/2024] [Indexed: 11/20/2024] Open
Abstract
Background Tumor antigen peptide vaccines have shown remarkable efficacy, safety, and reliability in recent studies. However, the screening process for immunopotent antigenic peptides is cumbersome, limiting their widespread application. Identifying neoantigen peptides that can effectively trigger an immune response is crucial for personalized cancer treatment. Methods Whole exome sequencing was performed on patient-derived colon cancer cells to predict 9-amino-acid (9aa) neoantigen peptides. In vitro simulation of endogenous antigen presentation by antigen-presenting cells (dendritic cells) to CD8+ T cells was conducted, aiming to activate the CD8+ immune response to the predicted antigens. The immunological effects of each neoantigen were assessed using flow cytometry and ELISpot assays, while the relationship between neoantigen immunogenicity and MHC molecular affinity was examined. Results 1. Next-generation sequencing (NGS) predicted 9-amino acid (9aa) neoantigen peptides for subsequent immunological analysis.2. Higher mDC Levels in Experimental Group: CD11c+CD83+ mature dendritic cells (mDCs) were 96.6% in the experimental group, compared to 0.051% in the control group. CD80 fluorescence intensity was also significantly higher in the experimental group, confirming a greater mDC presence.3. Neoantigen Peptides Promote CD4+, CD8+ T, and NK Cell Proliferation: After 14 days, flow cytometry showed higher percentages of CD4+ T (37.41% vs 7.8%), CD8+ T (16.67% vs 14.63%), and NK cells (33.09% vs 7.81%) in the experimental group, indicating that the neoantigen peptides induced proliferation of CD4+, CD8+ T cells, and NK cells. 4. The results, analyzed using two-way ANOVA, showed that the standardized T-value for HLA molecular affinity variation in the 1-4 range (Group B) was significantly higher than for ≤1 (Group A, p < 0.0001) and >4 (Group C, p < 0.05). Regarding HLA-allele genotypes, HLA-Type 1 had a significantly higher standardized T-value than HLA-Type 2 (p < 0.05) and HLA-Type 3 (p < 0.0001). HLA-Type 1 was identified as the allele associated with the highest T-value. Conclusion 1. The most immunogenic neoantigens typically exhibit an MHC molecular affinity variation between 1 and 4, indicating that stronger immunogenicity correlates with higher MHC molecular affinity variation. 2. Each patient's HLA molecules were classified into Types 1, 2, and 3, with Type 1 showing the highest binding capacity for neoantigens. Our findings indicate that the most immunogenic neoantigens were associated with HLA Type 1. 3. Neoantigen peptides were shown to activate the proliferation of both CD8+ T-cells and induce proliferation of CD4+ T-cells and NK cells. 4. Variation in MHC molecular affinity and HLA neoantigen genotype are anticipated to serve as valuable variables for screening highly immunogenic neoantigens, facilitating more efficient preparation of effective polypeptide tumor vaccines.
Collapse
Affiliation(s)
- Siyu Zhang
- Department of Oncology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Changxin Huang
- Department of Oncology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yongqiang Li
- Department of Oncology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zhaoyang Li
- Department of Oncology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Ying Zhu
- Department of Clinical Hematology and Transfusion, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lili Yang
- Department of Oncology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Haokun Hu
- Department of Oncology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Quan Sun
- Department of Oncology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Mengmeng Liu
- Department of Psychiatry and Psychology, 155 Hospital of Kaifeng City, Kaifeng, China
| | - Songqiang Cao
- Department of Urology, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
43
|
Li J, Zhang Y, Fu T, Xing G, Cai H, Li K, Xu Y, Tong Y. Clinical advances and challenges associated with TCR-T cell therapy for cancer treatment. Front Immunol 2024; 15:1487782. [PMID: 39439803 PMCID: PMC11493697 DOI: 10.3389/fimmu.2024.1487782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Background T cell receptor (TCR)-T cell therapy is an innovative form of cancer immunotherapy that genetically modifies patients' T cells to target and destroy cancer cells. However, the current status of clinical trials of TCR-T cell therapy for the treatment of cancer remains unclear. This study aimed to comprehensively analyze the registration trials related to TCR-T cell therapy for the treatment of cancer. Methods A comprehensive search was conducted in the Trialtrove database for all clinical trials related to TCR-T cell therapy registered by August 1, 2024. Inclusion criteria focused on trials targeting TCR-T cell therapy for oncology, and excluded observational studies and incomplete data. Statistical analysis was performed on key trial characteristics, with between-group comparisons utilizing chi-square or Fisher's exact tests. Results Analysis of 174 eligible clinical trials revealed that TCR-T cell therapy exhibits significant efficacy across various tumor types, particularly in refractory hematologic malignancies and certain solid tumors. Additionally, combining TCR-T cell therapy with other immunotherapies enhanced these anti-tumor effects. Conclusion TCR-T cell therapy holds substantial promise for cancer treatment. Future research should focus on optimizing treatment protocols, enhancing efficacy, and minimizing prices to fully realize the potential of this therapy.
Collapse
Affiliation(s)
- Jianing Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yongsheng Zhang
- School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Harbin, China
| | - Tong Fu
- Brandeis University, Waltham, MA, United States
| | - Guoli Xing
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongbo Cai
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Kaiqing Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yutong Xu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Tong
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
44
|
Buzzai AC, Tüting T. TIL the end: Tracking T cell clonotype dynamics during adoptive cell therapy. Immunity 2024; 57:2260-2262. [PMID: 39383841 DOI: 10.1016/j.immuni.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024]
Abstract
Understanding the factors that lead to the therapeutic success of adoptive cell therapies using tumor-infiltrating lymphocytes (TIL-ACT) will improve current treatment protocols. In this issue of Immunity, Chiffelle et al. comprehensively compare the dynamics of CD8+ T cell clonotypes during the course of ACT between responding and non-responding patients.
Collapse
Affiliation(s)
- Anthony C Buzzai
- Laboratory of Experimental Dermatology, Department of Dermatology, University Hospital and Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany
| | - Thomas Tüting
- Laboratory of Experimental Dermatology, Department of Dermatology, University Hospital and Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany.
| |
Collapse
|
45
|
Aizaz M, Khan AS, Khan M, Musazade E, Yang G. Advancements in tumor-infiltrating lymphocytes: Historical insights, contemporary milestones, and future directions in oncology therapy. Crit Rev Oncol Hematol 2024; 202:104471. [PMID: 39117163 DOI: 10.1016/j.critrevonc.2024.104471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) are a subtype of immune cells that infiltrate and accumulate within tumors. Studies proved that TILs can be used as prognostic and predictive markers for cancer patients' responses to immunotherapy. This review explores the modern knowledge of TILs, the challenges and opportunities for utilizing TILs in cancer treatment, such as the rise of therapies under TIL circumstances, the identification of biomarkers for TIL activity, and methods used to isolate and expand TILs for therapeutic use. Ongoing clinical trials and promising results in different cancer types are highlighted, including melanoma, ovarian, and colorectal cancer. This also focuses on ongoing efforts to improve TIL-based therapies by identifying the specific subsets of TILs that are most effective in treating cancer and developing methods to increase the functionality and persistence of TILs in the tumor microenvironment. The article recapitulates the present state TILs therapy, ongoing research, and improvements to its potency.
Collapse
Affiliation(s)
- Muhammad Aizaz
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, China.
| | | | - Maria Khan
- Center of Biotechnology and Microbiology, University of Peshawar, Pakistan.
| | - Elshan Musazade
- College of Life Science, Jilin Agricultural University, Changchun, China.
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, China.
| |
Collapse
|
46
|
Phulari RGS, Solanki B. Immune checkpoint inhibitors: Utilizing patient's own immunity to treat oral cancer. J Oral Maxillofac Pathol 2024; 28:641-650. [PMID: 39949682 PMCID: PMC11819625 DOI: 10.4103/jomfp.jomfp_327_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 02/16/2025] Open
Abstract
Head and Neck squamous cell carcinoma is an immunosuppressive state. HNSCC evades immune responses through multiple resistance mechanisms. Because of better understanding of interaction between tumour microenvironment and immune regulators, there is increasing interest in role of immunotherapy as a treatment modality of HNSCC. Many clinical trials have been performed using checkpoint inhibitors, as monotherapies and combination therapies. Immune checkpoint molecule, programmed cell death 1 (PD-1) has shown promising results as a treatment of Recurrent and Metastatic HNSCC. This review discusses immune checkpoint molecules, their functional mechanisms, role of immunotherapy as a monotherapies and combination therapy for better treatment and prognosis of HNSCC patients.
Collapse
Affiliation(s)
- Rashmi GS Phulari
- Department of Oral and Maxillofacial Pathology and Microbiology, Manubhai Patel Dental College and Hospital and Oral Research Institute, Vishwajyoti Ashram, Near Vidyakunj School, Maunjmauda, Vadodara, Gujarat, India
| | - Bharvi Solanki
- Department of Oral and Maxillofacial Pathology and Microbiology, Manubhai Patel Dental College and Hospital and Oral Research Institute, Vishwajyoti Ashram, Near Vidyakunj School, Maunjmauda, Vadodara, Gujarat, India
| |
Collapse
|
47
|
Ghadrdoost Nakhchi B, Kosuru R, Chrzanowska M. Towards Targeting Endothelial Rap1B to Overcome Vascular Immunosuppression in Cancer. Int J Mol Sci 2024; 25:9853. [PMID: 39337337 PMCID: PMC11432579 DOI: 10.3390/ijms25189853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
The vascular endothelium, a specialized monolayer of endothelial cells (ECs), is crucial for maintaining vascular homeostasis by controlling the passage of substances and cells. In the tumor microenvironment, Vascular Endothelial Growth Factor A (VEGF-A) drives tumor angiogenesis, leading to endothelial anergy and vascular immunosuppression-a state where ECs resist cytotoxic CD8+ T cell infiltration, hindering immune surveillance. Immunotherapies have shown clinical promise. However, their effectiveness is significantly reduced by tumor EC anergy. Anti-angiogenic treatments aim to normalize tumor vessels and improve immune cell infiltration. Despite their potential, these therapies often cause significant systemic toxicities, necessitating new treatments. The small GTPase Rap1B emerges as a critical regulator of Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) signaling in ECs. Our studies using EC-specific Rap1B knockout mice show that the absence of Rap1B impairs tumor growth, alters vessel morphology, and increases CD8+ T cell infiltration and activation. This indicates that Rap1B mediates VEGF-A's immunosuppressive effects, making it a promising target for overcoming vascular immunosuppression in cancer. Rap1B shares structural and functional similarities with RAS oncogenes. We propose that targeting Rap1B could enhance therapies' efficacy while minimizing adverse effects by reversing endothelial anergy. We briefly discuss strategies successfully developed for targeting RAS as a model for developing anti-Rap1 therapies.
Collapse
Affiliation(s)
| | - Ramoji Kosuru
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA; (B.G.N.)
| | - Magdalena Chrzanowska
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA; (B.G.N.)
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
48
|
Cuomo RG, Zhang Z, Yamada K, Krosky AJ, Shi J, Kohli RM, Parker JB. Expression and purification of cell-penetrating Cas9 and Cas12a enzymes for peptide-assisted genome editing. Methods Enzymol 2024; 705:25-49. [PMID: 39389665 DOI: 10.1016/bs.mie.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Recent advances in CRISPR-Cas genomic editors have shifted us ever closer to achieving the ultimate therapeutic goal of accomplishing any edit in any cell. However, delivery of this editing machinery to primary cells with high efficiency while avoiding cellular toxicity remains a formidable challenge. Peptide-Assisted Genome Editing (PAGE) provides a simple, modular, and rapid approach for the protein-based delivery of CRISPR-Cas proteins or ribonucleoprotein complexes into primary cells with high efficiency and minimal cytotoxicity. In this chapter, we detail an expression and purification protocol to obtain highly pure Cas9-T6N and opCas12a-T8N PAGE genomic editors. The robustness of this protocol allows for consistent preparations of the purified editors that can be reliably used for the editing of primary and immortalized cells.
Collapse
Affiliation(s)
- Rosella G Cuomo
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Zhen Zhang
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Keisuke Yamada
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, United States
| | - Alexander J Krosky
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Junwei Shi
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States; Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, United States; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, United States.
| | - Rahul M Kohli
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, United States.
| | - Jared B Parker
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
49
|
Saleh HA, Mitwasi N, R Loureiro L, Kegler A, Soto KEG, Hoffmann L, Crespo E, Arndt C, Bergmann R, Bachmann M, Feldmann A. RevCAR-expressing immune effector cells for targeting of Fn14-positive glioblastoma. Cancer Gene Ther 2024; 31:1323-1334. [PMID: 38582787 PMCID: PMC11405279 DOI: 10.1038/s41417-024-00766-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/08/2024]
Abstract
In recent studies, we have established the unique adapter chimeric antigen receptor (CAR) platform RevCAR which uses, as an extracellular CAR domain, a peptide epitope instead of an antibody domain. RevCAR adapters (termed RevCAR target modules, RevTMs) are bispecific antibodies that enable the reversible ON/OFF switch of the RevCAR system, improving the safety compared to conventional CARs. Here, we describe for the first time its use for retargeting of both T and NK-92 cells. In addition, we describe the development and preclinical validation of a novel RevTM for targeting of the fibroblast growth factor-inducible 14 (Fn14) surface receptor which is overexpressed on Glioblastoma (GBM) cells, and therefore serves as a promising target for the treatment of GBM. The novel RevTM efficiently redirects RevCAR modified T and NK-92 cells and leads to the killing of GBM cells both in vitro and in vivo. Tumor cell killing is associated with increased IL-2, TNF-α and/or IFN-γ secretion. Hence, these findings give an insight into the complementary potential of both RevCAR T and NK-92 systems as a safe and specific immunotherapeutic approach against GBM.
Collapse
Affiliation(s)
- Haidy A Saleh
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Bautzner Landstraße 400, D-01328, Dresden, Germany
| | - Nicola Mitwasi
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Bautzner Landstraße 400, D-01328, Dresden, Germany
| | - Liliana R Loureiro
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Bautzner Landstraße 400, D-01328, Dresden, Germany
| | - Alexandra Kegler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Bautzner Landstraße 400, D-01328, Dresden, Germany
| | - Karla Elizabeth González Soto
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Bautzner Landstraße 400, D-01328, Dresden, Germany
| | - Lydia Hoffmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Bautzner Landstraße 400, D-01328, Dresden, Germany
| | - Eugenia Crespo
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Bautzner Landstraße 400, D-01328, Dresden, Germany
| | - Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Bautzner Landstraße 400, D-01328, Dresden, Germany
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307, Dresden, Germany
| | - Ralf Bergmann
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Bautzner Landstraße 400, D-01328, Dresden, Germany.
- National Center for Tumor Diseases Dresden (NCT/UCC), Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany.
| | - Anja Feldmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radioimmunology, Bautzner Landstraße 400, D-01328, Dresden, Germany.
- National Center for Tumor Diseases Dresden (NCT/UCC), Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany.
| |
Collapse
|
50
|
Chavan DD, Bhosale RR, Thorat VM, Shete AS, Patil SJ, Tiwari DD. Recent Advances in the Development and Utilization of Nanoparticles for the Management of Malignant Solid Tumors. Cureus 2024; 16:e70312. [PMID: 39469411 PMCID: PMC11513206 DOI: 10.7759/cureus.70312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
The purpose of nanotechnology-based drug delivery systems or novel drug delivery systems is to improve the effectiveness of therapy, and their promising properties have led to their increasing significance in the management of cancer. The researchers have primarily focused on designing novel nanocarriers, like nanoparticles (NPs), that can effectively deliver drugs to target cells and respond specifically to conditions particular to cancer. Whether passive or active targeting, these nanocarriers can deliver therapeutic cargoes to the tumor site to release the drug from the drug delivery systems. The purpose of this study is to provide recent scientific literature and key findings to researchers as well as the scientific community from the medical and pharmaceutical domains by reporting current advancements in the development of NPs for the treatment of different malignant solid tumors, such as colorectal, pancreatic, prostate, and cervical cancer.
Collapse
Affiliation(s)
- Dhanashri D Chavan
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Malkapur, IND
| | - Rohit R Bhosale
- Department of Pharmaceutics, Krishna Foundation's Jaywant Institute of Pharmacy, Wathar, IND
| | - Vandana M Thorat
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Malkapur, IND
| | - Amol S Shete
- Department of Pharmaceutics, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to be University), Malkapur, IND
| | - Sarika J Patil
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Malkapur, IND
| | - Devkumar D Tiwari
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Malkapur, IND
| |
Collapse
|