1
|
Verdu Schlie A, Leitch A, Arismendi MI, Stok C, Castro Leal A, Parry DA, Marcondes Lerario A, Harley ME, Lucheze B, Carroll PL, Musialik KI, Auer JMT, Martin CA, Gerasimavicius L, Quigley AJ, de Menezes Correia-Deur JE, Marsh JA, Reijns MAM, Lampe AK, Jackson AP, Jorge AAL, Tamayo-Orrego L. CDK4 loss-of-function mutations cause microcephaly and short stature. Genes Dev 2025; 39:634-651. [PMID: 40210435 PMCID: PMC7617628 DOI: 10.1101/gad.352311.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/06/2025] [Indexed: 04/12/2025]
Abstract
Cell number is a major determinant of organism size in mammals. In humans, gene mutations in cell cycle components result in restricted growth through reduced cell numbers. Here we identified biallelic mutations in CDK4 as a cause of microcephaly and short stature. CDK4 encodes a key cell cycle kinase that associates with D-type cyclins during G1 of the cell cycle to promote S-phase entry and cell proliferation through retinoblastoma (RB) phosphorylation. CDK4 and CDK6 are believed to be functionally redundant and are targeted jointly by chemotherapeutic CDK4/6 inhibitors. Using molecular and cell biology approaches, we show that functional CDK4 protein is not detectable in cells with CDK4 mutations. Cells display impaired RB phosphorylation in G1, leading to G1/S-phase transition defects and reduced cell proliferation, consistent with complete loss of cellular CDK4 enzymatic activity. Together, these findings demonstrate that CDK4 is itself required for cell proliferation, human growth, and brain size determination during development.
Collapse
Affiliation(s)
- Aitana Verdu Schlie
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Andrea Leitch
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Maria Izabel Arismendi
- Genetic Endocrinology Unit (LIM25), Endocrinology Division, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo 01246-903, Brazil
| | - Colin Stok
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Andrea Castro Leal
- Department of Integrated Health, State University of Para, Santarem 68010-200, Brazil
| | - David A Parry
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Antonio Marcondes Lerario
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Margaret E Harley
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Bruna Lucheze
- Genetic Endocrinology Unit (LIM25), Endocrinology Division, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo 01246-903, Brazil
| | - Paula L Carroll
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Kamila I Musialik
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Julia M T Auer
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Carol-Anne Martin
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Lukas Gerasimavicius
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Alan J Quigley
- Paediatric Imaging Department, Royal Hospital for Children and Young People, Edinburgh EH16 4TJ, United Kingdom
| | - Joya Emilie de Menezes Correia-Deur
- Genetic Endocrinology Unit (LIM25), Endocrinology Division, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo 01246-903, Brazil
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Martin A M Reijns
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Anne K Lampe
- South East of Scotland Clinical Genetics Service, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Andrew P Jackson
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom;
| | - Alexander A L Jorge
- Genetic Endocrinology Unit (LIM25), Endocrinology Division, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo 01246-903, Brazil;
| | - Lukas Tamayo-Orrego
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
2
|
Krivy J, Misuth S, Puchovska M, Sykorova S, Vavrincova-Yaghi D, Vavrinec P. O6-methylguanine-DNA methyltransferase inhibition leads to cellular senescence and vascular smooth muscle dysfunction. Biomed Pharmacother 2025; 187:118103. [PMID: 40300394 DOI: 10.1016/j.biopha.2025.118103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/09/2025] [Accepted: 04/24/2025] [Indexed: 05/01/2025] Open
Abstract
Inhibiting O6-methylguanine-DNA methyltransferase (MGMT) is crucial for overcoming chemoresistance to alkylating agents, though its use is limited by myelosuppression. Beyond bone marrow, other adverse effects were not studied. Given chemotherapy-induced senescence in healthy tissues, e.g., cardiovascular damage, we investigated the impact of the MGMT inhibitor O6-benzylguanine (BG) on aortic vascular smooth muscle cells (VSMCs) and aorta. Starting on day 3 of BG incubation, VSMCs exhibited altered morphology, reduced growth, increased SAβGal activity and elevated senescence markers p27 or γH2A.X. BG activated senescence-related pathways, including Erk1/2, p38α, Akt and mTORC1; induced BCl2, MnSOD and CDK1; and decreased αSMA and skp2 levels. These changes suggest BG-induced γH2A.X, p38 and Akt activation, resulting in G2/M cell cycle arrest via pCDK1. Functionally, BG impaired the vascular reactivity of aortic rings to phenylephrine, isoprenaline and sodium nitrite. In rats, systemic BG administration similarly reduced the response to sodium nitrite but left phenylephrine and isoprenaline responses unchanged. Our findings highlight BG's potential adverse effects on vascular smooth muscle, marked by senescence activation and reduced vascular reactivity. These results emphasise the need for caution in the clinical use of MGMT inhibitors. Furthermore, we present the model of senescence in primary VSMCs characterised by the expression of several senescence markers and G2/M checkpoint arrest.
Collapse
Affiliation(s)
- Jakub Krivy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
| | - Svetozar Misuth
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
| | - Marina Puchovska
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
| | - Sona Sykorova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
| | - Diana Vavrincova-Yaghi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
| | - Peter Vavrinec
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic.
| |
Collapse
|
3
|
García-Vázquez N, González-Robles TJ, Lane E, Spasskaya D, Zhang Q, Kerzhnerman MA, Jeong Y, Collu M, Simoneschi D, Ruggles KV, Róna G, Kaisari S, Pagano M. Stabilization of GTSE1 by cyclin D1-CDK4/6-mediated phosphorylation promotes cell proliferation with implications for cancer prognosis. eLife 2025; 13:RP101075. [PMID: 40272409 PMCID: PMC12021411 DOI: 10.7554/elife.101075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
In healthy cells, cyclin D1 is expressed during the G1 phase of the cell cycle, where it activates CDK4 and CDK6. Its dysregulation is a well-established oncogenic driver in numerous human cancers. The cancer-related function of cyclin D1 has been primarily studied by focusing on the phosphorylation of the retinoblastoma (RB) gene product. Here, using an integrative approach combining bioinformatic analyses and biochemical experiments, we show that GTSE1 (G-Two and S phases expressed protein 1), a protein positively regulating cell cycle progression, is a previously unrecognized substrate of cyclin D1-CDK4/6 in tumor cells overexpressing cyclin D1 during G1 and subsequent phases. The phosphorylation of GTSE1 mediated by cyclin D1-CDK4/6 inhibits GTSE1 degradation, leading to high levels of GTSE1 across all cell cycle phases. Functionally, the phosphorylation of GTSE1 promotes cellular proliferation and is associated with poor prognosis within a pan-cancer cohort. Our findings provide insights into cyclin D1's role in cell cycle control and oncogenesis beyond RB phosphorylation.
Collapse
Affiliation(s)
- Nelson García-Vázquez
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
| | - Tania J González-Robles
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
- Department of Medicine, New York University Grossman School of MedicineNew YorkUnited States
- Howard Hughes Medical Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Ethan Lane
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
| | - Daria Spasskaya
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
| | - Qingyue Zhang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
| | - Marc A Kerzhnerman
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
| | - YeonTae Jeong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
| | - Marta Collu
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
| | - Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
| | - Kelly V Ruggles
- Department of Medicine, New York University Grossman School of MedicineNew YorkUnited States
| | - Gergely Róna
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
- Howard Hughes Medical Institute, New York University Grossman School of MedicineNew YorkUnited States
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural SciencesBudapestHungary
| | - Sharon Kaisari
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
- Howard Hughes Medical Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
- Howard Hughes Medical Institute, New York University Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
4
|
Pallavi R, Soni BL, Jha GK, Sanyal S, Fatima A, Kaliki S. Tumor heterogeneity in retinoblastoma: a literature review. Cancer Metastasis Rev 2025; 44:46. [PMID: 40259075 PMCID: PMC12011974 DOI: 10.1007/s10555-025-10263-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/06/2025] [Indexed: 04/23/2025]
Abstract
Tumor heterogeneity, characterized by the presence of diverse cell populations within a tumor, is a key feature of the complex nature of cancer. This diversity arises from the emergence of cells with varying genomic, epigenetic, transcriptomic, and phenotypic profiles over the course of the disease. Host factors and the tumor microenvironment play crucial roles in driving both inter-patient and intra-patient heterogeneity. These diverse cell populations can exhibit different behaviors, such as varying rates of proliferation, responses to treatment, and potential for metastasis. Both inter-patient heterogeneity and intra-patient heterogeneity pose significant challenges to cancer therapeutics and management. In retinoblastoma, while heterogeneity at the clinical presentation level has been recognized for some time, recent attention has shifted towards understanding the underlying cellular heterogeneity. This review primarily focuses on retinoblastoma heterogeneity and its implications for therapeutic strategies and disease management, emphasizing the need for further research and exploration in this complex and challenging area.
Collapse
Affiliation(s)
- Rani Pallavi
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India.
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India.
| | - Bihari Lal Soni
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Gaurab Kumar Jha
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Shalini Sanyal
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Azima Fatima
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Swathi Kaliki
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India.
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India.
| |
Collapse
|
5
|
McLaren S, Harvey NT, Wood BA, Mesbah Ardakani N. Actinic keratosis with severe dysplasia and Bowen disease represent distinct pathways of intraepidermal squamous neoplasia: an immunohistochemical study. Pathology 2025; 57:305-310. [PMID: 39755532 DOI: 10.1016/j.pathol.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 01/06/2025]
Abstract
Intraepidermal squamous neoplasia is a precursor to invasive cutaneous squamous cell carcinoma. The most common type of intraepidermal squamous neoplasia is actinic keratosis (AK), although there is compelling clinicopathological evidence of a second distinct pattern of squamous dysplasia termed Bowen disease (BD). The distinction between these pathways of dysplasia has been inconsistently delineated in the literature. To further investigate the biological differences between AK and BD, a cohort of cases of intraepidermal squamous dysplasia including AK with mild/moderate dysplasia (n=26), AK with severe dysplasia (n=21) and BD (n=47) was prospectively collected. Immunohistochemistry was utilised to assess the protein expression of major tumour suppressor genes including p16, RB-1 and p53. Most cases of BD showed complete loss of RB-1 (∼80%), strong and diffuse positive staining for p16 (∼80%) and mutant pattern (diffusely positive or completely negative) of p53 (∼79%). However, lesions of AK showed loss of RB-1 in only 6%, strong and diffuse positive staining for p16 in 4% and mutant pattern of p53 in 85% of case (p<0.001). The statistically significant difference in RB-1 and p16 expressions between AK and BD confirms that the two morphologically distinct types of intraepidermal squamous neoplasia differ in protein expression of major tumour suppressor genes and provide evidence that they represent two distinct genomic pathways of squamous neoplasia. Recognition of clinical and genomic differences between different pathways of squamous neoplasia could potentially have an important role in predicting the biological behaviour and treatment of advanced tumours arising from these precursor lesions.
Collapse
Affiliation(s)
- Sally McLaren
- Department of Anatomical Pathology, PathWest Laboratory Medicine, QEII Medical Centre, Perth, WA, Australia
| | - Nathan Tobias Harvey
- Department of Anatomical Pathology, PathWest Laboratory Medicine, QEII Medical Centre, Perth, WA, Australia; School of Pathology and Laboratory Medicine, University of Western Australia, Perth, WA, Australia
| | - Benjamin Andrew Wood
- Department of Anatomical Pathology, PathWest Laboratory Medicine, QEII Medical Centre, Perth, WA, Australia; School of Pathology and Laboratory Medicine, University of Western Australia, Perth, WA, Australia
| | - Nima Mesbah Ardakani
- Department of Anatomical Pathology, PathWest Laboratory Medicine, QEII Medical Centre, Perth, WA, Australia; School of Medicine, Notre Dame University, Fremantle, WA, Australia.
| |
Collapse
|
6
|
Wan L, Zhang H, Liu J, He Q, Zhao J, Pan C, Zheng K, Tang Y. Lactylation and human disease. Expert Rev Mol Med 2025; 27:e10. [PMID: 39895568 DOI: 10.1017/erm.2025.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
BACKGROUND Lactylation, a new epigenetic modification, is an important way in which lactate exerts physiological functions. There is a close relationship between increased lactylations caused by lactate and glycolysis, which can interact and play a role in disease through lactate as an intermediate mediator. Current research on lactylations has focused on histone lactylation, but non-histone lactylation also has greater research potential. Due to the ubiquity of lactate modifications in mammalian cells, an increasing number of studies have found that lactate modifications play important roles in tumour cell metabolism, gene transcription and immunity. METHODS A systematic literature search was carried out using search key terms and synonyms. Full-paper screening was performed based on specific inclusion and exclusion criteria. RESULTS Many literatures have reported that the lactylation of protein plays an important role in human diseases and is involved in the occurrence and development of human diseases. CONCLUSIONS This article summary the correlation between lactylation and glycolysis, histones and non-histone proteins; the relationship between lactonation modifications and tumour development; and the current existence of lactylation-related inhibitors, with a view to provide new basic research ideas and clinical therapeutic tools for lactylation-related diseases.
Collapse
Affiliation(s)
- Linlin Wan
- Department of Pathology, Suzhou Ninth Hospital Affiliated to Soochow University, Jiangsu, China
| | - HuiJuan Zhang
- Institute of Biomedical Engineering, Kunming medical university, Kunming, China
| | - Jialing Liu
- Department of Pathology, Suzhou Ninth Hospital Affiliated to Soochow University, Jiangsu, China
| | - Qian He
- Institute of Biomedical Engineering, Kunming medical university, Kunming, China
| | - Jiumei Zhao
- Laboratory medicine department, Chongqing Nanchuan District People's Hospital, Chongqing, China
| | - Chenglong Pan
- Institute of Biomedical Engineering, Kunming medical university, Kunming, China
| | - Kepu Zheng
- Institute of Biomedical Engineering, Kunming medical university, Kunming, China
| | - Yu Tang
- Institute of Biomedical Engineering, Kunming medical university, Kunming, China
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
7
|
García-Vázquez N, González-Robles TJ, Lane E, Spasskaya D, Zhang Q, Kerzhnerman M, Jeong Y, Collu M, Simoneschi D, Ruggles KV, Rona G, Kaisari S, Pagano M. Stabilization of GTSE1 by cyclin D1-CDK4/6-mediated phosphorylation promotes cell proliferation: relevance in cancer prognosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.26.600797. [PMID: 38979260 PMCID: PMC11230433 DOI: 10.1101/2024.06.26.600797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
In healthy cells, cyclin D1 is expressed during the G1 phase of the cell cycle, where it activates CDK4 and CDK6. Its dysregulation is a well-established oncogenic driver in numerous human cancers. The cancer-related function of cyclin D1 has been primarily studied by focusing on the phosphorylation of the retinoblastoma (RB) gene product. Here, using an integrative approach combining bioinformatic analyses and biochemical experiments, we show that GTSE1 (G-Two and S phases expressed protein 1), a protein positively regulating cell cycle progression, is a previously unrecognized substrate of cyclin D1-CDK4/6 in tumor cells overexpressing cyclin D1 during G1 and subsequent phases. The phosphorylation of GTSE1 mediated by cyclin D1-CDK4/6 inhibits GTSE1 degradation, leading to high levels of GTSE1 across all cell cycle phases. Functionally, the phosphorylation of GTSE1 promotes cellular proliferation and is associated with poor prognosis within a pan-cancer cohort. Our findings provide insights into cyclin D1's role in cell cycle control and oncogenesis beyond RB phosphorylation.
Collapse
Affiliation(s)
- Nelson García-Vázquez
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
| | - Tania J González-Robles
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYC, NY, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, NYC, NY, USA
| | - Ethan Lane
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
| | - Daria Spasskaya
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
| | - Qingyue Zhang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
| | - Marc Kerzhnerman
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
| | - YeonTae Jeong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
| | - Marta Collu
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
| | - Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
| | - Kelly V Ruggles
- Department of Medicine, New York University Grossman School of Medicine, NYC, NY, USA
| | - Gergely Rona
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, NYC, NY, USA
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Sharon Kaisari
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, NYC, NY, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, NYC, NY, USA
| |
Collapse
|
8
|
Liu Q, Jiang Z, Qiu M, Andersen ME, Crabbe MJC, Wang X, Zheng Y, Qu W. Subchronic Exposure to Low-Level Lanthanum, Cerium, and Yttrium Mixtures Altered Cell Cycle and Increased Oxidative Stress Pathways in Human LO-2 Hepatocytes but Did Not Cause Malignant Transformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22002-22013. [PMID: 39629941 DOI: 10.1021/acs.est.4c08150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Human exposures to rare earth elements are increasing with expanded use in aerospace, precision instruments, and new energy batteries, materials, and fertilizers. Individually these elements have low toxicity, although few investigations have examined the health effects of longer-term mixture exposures. We used the LO-2 cell line to examine the effects of graded exposures to lanthanum, cerium, and yttrium (LCY) mixtures at 1-, 100-, and 1000-fold their human background levels (0.31 μg/L La, 0.25 μg/L Ce, and 0.12 μg/L Y) on cell cycle, oxidative stress, and nuclear factor erythroid-2-related factor (NRF2) pathway biomarkers, assessing responses every 10 passages up to 100 passages. Cell migration, concanavalin A, malignant transformation, and tumorigenesis in nude mice were also examined. Mixed LCY exposures activated oxidative stress and the NRF2 pathway by the 30th passage and increased the proportion of cells in the S phase and cell cycle-specific biomarkers by the 40th passage. LCY exposures did not cause malignant transformation of hepatocytes or induced tumorigenesis in nude mice but enhanced cell proliferation, migration, and agglutination. Importantly, LCY mixtures with longer-term exposure activated the NRF2 pathway and altered the hepatocyte cell cycle at doses far below those used in previous toxicological studies. The consequences of LCY mixtures for public health merit further study.
Collapse
Affiliation(s)
- Qinxin Liu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Zhiqiang Jiang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Meiyue Qiu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Melvin E Andersen
- ScitoVation LLC. 6 Davis Drive, Suite 146, Research Triangle Park, North Carolina 27713, United States
| | - M James C Crabbe
- Wolfson College, Oxford University, Oxford, OX2 6UD, United Kingdom
| | - Xia Wang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University No.308 Ningxia Road, Qingdao 266071, China
| | - Weidong Qu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| |
Collapse
|
9
|
Liu B, Liu L, Liu Y. Targeting cell death mechanisms: the potential of autophagy and ferroptosis in hepatocellular carcinoma therapy. Front Immunol 2024; 15:1450487. [PMID: 39315094 PMCID: PMC11416969 DOI: 10.3389/fimmu.2024.1450487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Ferroptosis is a type of cell death that plays a remarkable role in the growth and advancement of malignancies including hepatocellular carcinoma (HCC). Non-coding RNAs (ncRNAs) have a considerable impact on HCC by functioning as either oncogenes or suppressors. Recent research has demonstrated that non-coding RNAs (ncRNAs) have the ability to control ferroptosis in HCC cells, hence impacting the advancement of tumors and the resistance of these cells to drugs. Autophagy is a mechanism that is conserved throughout evolution and plays a role in maintaining balance in the body under normal settings. Nevertheless, the occurrence of dysregulation of autophagy is evident in the progression of various human disorders, specifically cancer. Autophagy plays dual roles in cancer, potentially influencing both cell survival and cell death. HCC is a prevalent kind of liver cancer, and genetic mutations and changes in molecular pathways might worsen its advancement. The role of autophagy in HCC is a subject of debate, as it has the capacity to both repress and promote tumor growth. Autophagy activation can impact apoptosis, control proliferation and glucose metabolism, and facilitate tumor spread through EMT. Inhibiting autophagy can hinder the growth and spread of HCC and enhance the ability of tumor cells to respond to treatment. Autophagy in HCC is regulated by several signaling pathways, such as STAT3, Wnt, miRNAs, lncRNAs, and circRNAs. Utilizing anticancer drugs to target autophagy may have advantageous implications for the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Liu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Liu
- Day Surgery Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Lee M, Lee A, Choi BO, Park WC, Lee J, Kang J. p16 Immunohistochemical Patterns in Triple-Negative Breast Cancer: Clinical and Genomic Similarities of the p16 Diffuse Pattern to pRB Deficiency. Pathobiology 2024; 92:63-76. [PMID: 39245040 PMCID: PMC11965838 DOI: 10.1159/000541299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024] Open
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is associated with alterations in the retinoblastoma pathway. As a consequence of retinoblastoma protein (pRB) loss, compensatory upregulation of p16 occurs due to the loss of phosphorylated pRB-mediated negative feedback on p16 expression. The aim of this study is to investigate the clinicopathological and genomic characteristics associated with the diffuse pattern of p16 immunohistochemistry (IHC) in TNBC. METHODS The study analyzed surgically resected TNBC for whole-exome sequencing in 113 cases and for cDNA microarray in 144 cases. The p16 IHC results were classified into two patterns: diffuse and negative/mosaic. RESULTS In the entire cohort (n = 257), the diffuse pattern of p16 IHC was observed in 123 (47.9%) patients and the negative/mosaic pattern in 134 (52.1%). Biallelic RB1 inactivation was observed in 14.3% of patients with the diffuse pattern. The diffuse pattern of p16 IHC showed more frequent RB1 alterations and cell cycle progression signatures, a higher Ki-67 labeling index, more frequent chromosome segment copy number changes, a higher frequency of homologous recombination deficiency high, and immune-related signatures. PIK3CA mutations were more frequent in the negative/mosaic pattern. CCND1 amplification was identified in 5 cases, all with the negative/mosaic pattern. CONCLUSION In TNBC, the diffuse p16 pattern shows clinical and genomic similarities to pRB-deficient tumors, suggesting shared characteristics. This suggests that p16 IHC testing may provide new therapeutic approaches, underscoring its potential clinical importance. INTRODUCTION Triple-negative breast cancer (TNBC) is associated with alterations in the retinoblastoma pathway. As a consequence of retinoblastoma protein (pRB) loss, compensatory upregulation of p16 occurs due to the loss of phosphorylated pRB-mediated negative feedback on p16 expression. The aim of this study is to investigate the clinicopathological and genomic characteristics associated with the diffuse pattern of p16 immunohistochemistry (IHC) in TNBC. METHODS The study analyzed surgically resected TNBC for whole-exome sequencing in 113 cases and for cDNA microarray in 144 cases. The p16 IHC results were classified into two patterns: diffuse and negative/mosaic. RESULTS In the entire cohort (n = 257), the diffuse pattern of p16 IHC was observed in 123 (47.9%) patients and the negative/mosaic pattern in 134 (52.1%). Biallelic RB1 inactivation was observed in 14.3% of patients with the diffuse pattern. The diffuse pattern of p16 IHC showed more frequent RB1 alterations and cell cycle progression signatures, a higher Ki-67 labeling index, more frequent chromosome segment copy number changes, a higher frequency of homologous recombination deficiency high, and immune-related signatures. PIK3CA mutations were more frequent in the negative/mosaic pattern. CCND1 amplification was identified in 5 cases, all with the negative/mosaic pattern. CONCLUSION In TNBC, the diffuse p16 pattern shows clinical and genomic similarities to pRB-deficient tumors, suggesting shared characteristics. This suggests that p16 IHC testing may provide new therapeutic approaches, underscoring its potential clinical importance.
Collapse
Affiliation(s)
- Miseon Lee
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ahwon Lee
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung-Ock Choi
- Department of Radiation Oncology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Woo-Chan Park
- Division of Breast Surgery, Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jieun Lee
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jun Kang
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
11
|
Zuo WF, Pang Q, Zhu X, Yang QQ, Zhao Q, He G, Han B, Huang W. Heat shock proteins as hallmarks of cancer: insights from molecular mechanisms to therapeutic strategies. J Hematol Oncol 2024; 17:81. [PMID: 39232809 PMCID: PMC11375894 DOI: 10.1186/s13045-024-01601-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
Heat shock proteins are essential molecular chaperones that play crucial roles in stabilizing protein structures, facilitating the repair or degradation of damaged proteins, and maintaining proteostasis and cellular functions. Extensive research has demonstrated that heat shock proteins are highly expressed in cancers and closely associated with tumorigenesis and progression. The "Hallmarks of Cancer" are the core features of cancer biology that collectively define a series of functional characteristics acquired by cells as they transition from a normal state to a state of tumor growth, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, enabled replicative immortality, the induction of angiogenesis, and the activation of invasion and metastasis. The pivotal roles of heat shock proteins in modulating the hallmarks of cancer through the activation or inhibition of various signaling pathways has been well documented. Therefore, this review provides an overview of the roles of heat shock proteins in vital biological processes from the perspective of the hallmarks of cancer and summarizes the small-molecule inhibitors that target heat shock proteins to regulate various cancer hallmarks. Moreover, we further discuss combination therapy strategies involving heat shock proteins and promising dual-target inhibitors to highlight the potential of targeting heat shock proteins for cancer treatment. In summary, this review highlights how targeting heat shock proteins could regulate the hallmarks of cancer, which will provide valuable information to better elucidate and understand the roles of heat shock proteins in oncology and the mechanisms of cancer occurrence and development and aid in the development of more efficacious and less toxic novel anticancer agents.
Collapse
Affiliation(s)
- Wei-Fang Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiwen Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xinyu Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian-Qian Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian Zhao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gu He
- Department of Dermatology and Venereology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
12
|
Saner FA, Takahashi K, Budden T, Pandey A, Ariyaratne D, Zwimpfer TA, Meagher NS, Fereday S, Twomey L, Pishas KI, Hoang T, Bolithon A, Traficante N, Alsop K, Christie EL, Kang EY, Nelson GS, Ghatage P, Lee CH, Riggan MJ, Alsop J, Beckmann MW, Boros J, Brand AH, Brooks-Wilson A, Carney ME, Coulson P, Courtney-Brooks M, Cushing-Haugen KL, Cybulski C, El-Bahrawy MA, Elishaev E, Erber R, Gayther SA, Gentry-Maharaj A, Gilks CB, Harnett PR, Harris HR, Hartmann A, Hein A, Hendley J, Hernandez BY, Jakubowska A, Jimenez-Linan M, Jones ME, Kaufmann SH, Kennedy CJ, Kluz T, Koziak JM, Kristjansdottir B, Le ND, Lener M, Lester J, Lubiński J, Mateoiu C, Orsulic S, Ruebner M, Schoemaker MJ, Shah M, Sharma R, Sherman ME, Shvetsov YB, Soong TR, Steed H, Sukumvanich P, Talhouk A, Taylor SE, Vierkant RA, Wang C, Widschwendter M, Wilkens LR, Winham SJ, Anglesio MS, Berchuck A, Brenton JD, Campbell I, Cook LS, Doherty JA, Fasching PA, Fortner RT, Goodman MT, Gronwald J, Huntsman DG, Karlan BY, Kelemen LE, Menon U, Modugno F, Pharoah PD, Schildkraut JM, Sundfeldt K, Swerdlow AJ, Goode EL, DeFazio A, Köbel M, Ramus SJ, Bowtell DD, Garsed DW. Concurrent RB1 Loss and BRCA Deficiency Predicts Enhanced Immunologic Response and Long-term Survival in Tubo-ovarian High-grade Serous Carcinoma. Clin Cancer Res 2024; 30:3481-3498. [PMID: 38837893 PMCID: PMC11325151 DOI: 10.1158/1078-0432.ccr-23-3552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/08/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE The purpose of this study was to evaluate RB1 expression and survival across ovarian carcinoma histotypes and how co-occurrence of BRCA1 or BRCA2 (BRCA) alterations and RB1 loss influences survival in tubo-ovarian high-grade serous carcinoma (HGSC). EXPERIMENTAL DESIGN RB1 protein expression was classified by immunohistochemistry in ovarian carcinomas of 7,436 patients from the Ovarian Tumor Tissue Analysis consortium. We examined RB1 expression and germline BRCA status in a subset of 1,134 HGSC, and related genotype to overall survival (OS), tumor-infiltrating CD8+ lymphocytes, and transcriptomic subtypes. Using CRISPR-Cas9, we deleted RB1 in HGSC cells with and without BRCA1 alterations to model co-loss with treatment response. We performed whole-genome and transcriptome data analyses on 126 patients with primary HGSC to characterize tumors with concurrent BRCA deficiency and RB1 loss. RESULTS RB1 loss was associated with longer OS in HGSC but with poorer prognosis in endometrioid ovarian carcinoma. Patients with HGSC harboring both RB1 loss and pathogenic germline BRCA variants had superior OS compared with patients with either alteration alone, and their median OS was three times longer than those without pathogenic BRCA variants and retained RB1 expression (9.3 vs. 3.1 years). Enhanced sensitivity to cisplatin and paclitaxel was seen in BRCA1-altered cells with RB1 knockout. Combined RB1 loss and BRCA deficiency correlated with transcriptional markers of enhanced IFN response, cell-cycle deregulation, and reduced epithelial-mesenchymal transition. CD8+ lymphocytes were most prevalent in BRCA-deficient HGSC with co-loss of RB1. CONCLUSIONS Co-occurrence of RB1 loss and BRCA deficiency was associated with exceptionally long survival in patients with HGSC, potentially due to better treatment response and immune stimulation.
Collapse
Affiliation(s)
- Flurina A.M. Saner
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Department of Obstetrics and Gynecology, Bern University Hospital and University of Bern, Bern, Switzerland.
| | - Kazuaki Takahashi
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan.
| | - Timothy Budden
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, Australia.
- Skin Cancer and Ageing Lab, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Manchester, United Kingdom.
| | - Ahwan Pandey
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| | | | | | - Nicola S. Meagher
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, Australia.
- The Daffodil Centre, The University of Sydney, A Joint Venture with Cancer Council New South Wales, Sydney, Australia.
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Laura Twomey
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| | - Kathleen I. Pishas
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Therese Hoang
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| | - Adelyn Bolithon
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, Australia.
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, Australia.
| | - Nadia Traficante
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | | | - Kathryn Alsop
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Elizabeth L. Christie
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Eun-Young Kang
- Department of Pathology and Laboratory Medicine, Foothills Medical Center, University of Calgary, Calgary, Canada.
| | - Gregg S. Nelson
- Division of Gynecologic Oncology, Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Prafull Ghatage
- Division of Gynecologic Oncology, Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Cheng-Han Lee
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada.
| | - Marjorie J. Riggan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina.
| | - Jennifer Alsop
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom.
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Jessica Boros
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, Australia.
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.
- The University of Sydney, Sydney, Australia.
| | - Alison H. Brand
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.
- The University of Sydney, Sydney, Australia.
| | | | - Michael E. Carney
- Department of Obstetrics and Gynecology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii.
| | - Penny Coulson
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom.
| | - Madeleine Courtney-Brooks
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Kara L. Cushing-Haugen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington.
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
| | - Mona A. El-Bahrawy
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London, United Kingdom.
| | - Esther Elishaev
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Ramona Erber
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Simon A. Gayther
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Aleksandra Gentry-Maharaj
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, United Kingdom.
- Department of Women’s Cancer, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, United Kingdom.
| | - C. Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
| | - Paul R. Harnett
- The University of Sydney, Sydney, Australia.
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, Australia.
| | - Holly R. Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington.
- Department of Epidemiology, University of Washington, Seattle, Washington.
| | - Arndt Hartmann
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Alexander Hein
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Joy Hendley
- Peter MacCallum Cancer Centre, Melbourne, Australia.
| | | | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland.
| | | | - Michael E. Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom.
| | - Scott H. Kaufmann
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Catherine J. Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, Australia.
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.
- The University of Sydney, Sydney, Australia.
| | - Tomasz Kluz
- Department of Gynecology and Obstetrics, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszów, Poland.
| | | | - Björg Kristjansdottir
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden.
| | - Nhu D. Le
- Cancer Control Research, BC Cancer Agency, Vancouver, Canada.
| | - Marcin Lener
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, Szczecin, Poland.
| | - Jenny Lester
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
| | | | - Sandra Orsulic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Minouk J. Schoemaker
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom.
| | - Mitul Shah
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom.
| | - Raghwa Sharma
- Tissue Pathology and Diagnostic Oncology, Westmead Hospital, Sydney, Australia.
| | - Mark E. Sherman
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida.
| | - Yurii B. Shvetsov
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland.
| | - T. Rinda Soong
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Helen Steed
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Canada.
- Section of Gynecologic Oncology Surgery, North Zone, Alberta Health Services, Edmonton, Canada.
| | - Paniti Sukumvanich
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Aline Talhouk
- British Columbia’s Gynecological Cancer Research Team (OVCARE), BC Cancer, and Vancouver General Hospital, University of British Columbia, Vancouver, Canada.
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada.
| | - Sarah E. Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Robert A. Vierkant
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, Minnesota.
| | - Chen Wang
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota.
| | | | - Lynne R. Wilkens
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland.
| | - Stacey J. Winham
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota.
| | - Michael S. Anglesio
- British Columbia’s Gynecological Cancer Research Team (OVCARE), BC Cancer, and Vancouver General Hospital, University of British Columbia, Vancouver, Canada.
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada.
| | - Andrew Berchuck
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina.
| | - James D. Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom.
| | - Ian Campbell
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Linda S. Cook
- Department of Epidemiology, School of Public Health, University of Colorado, Aurora, Colorado.
- Community Health Sciences, University of Calgary, Calgary, Canada.
| | - Jennifer A. Doherty
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.
| | - Renée T. Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway.
| | - Marc T. Goodman
- Cancer Prevention and Control Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
| | - David G. Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
- British Columbia’s Gynecological Cancer Research Team (OVCARE), BC Cancer, and Vancouver General Hospital, University of British Columbia, Vancouver, Canada.
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada.
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, Canada.
| | - Beth Y. Karlan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| | - Linda E. Kelemen
- Division of Acute Disease Epidemiology, South Carolina Department of Health & Environmental Control, Columbia, South Carolina.
| | - Usha Menon
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, United Kingdom.
| | - Francesmary Modugno
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania.
- Women’s Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, Pennsylvania.
| | - Paul D.P. Pharoah
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom.
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, California.
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom.
| | - Joellen M. Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia.
| | - Karin Sundfeldt
- Cancer Control Research, BC Cancer Agency, Vancouver, Canada.
| | - Anthony J. Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom.
- Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom.
| | - Ellen L. Goode
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota.
| | - Anna DeFazio
- The Daffodil Centre, The University of Sydney, A Joint Venture with Cancer Council New South Wales, Sydney, Australia.
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, Australia.
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.
- The University of Sydney, Sydney, Australia.
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, Foothills Medical Center, University of Calgary, Calgary, Canada.
| | - Susan J. Ramus
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, Australia.
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, Australia.
| | - David D.L. Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| | - Dale W. Garsed
- Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
13
|
Ma M, Zhu Y, Xiao C, Li R, Cao X, Kang R, Wang X, Li E. Novel insights into RB1 in prostate cancer lineage plasticity and drug resistance. TUMORI JOURNAL 2024; 110:252-263. [PMID: 38316605 DOI: 10.1177/03008916231225576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Prostate cancer is the second most common malignancy among men in the world, posing a serious threat to men's health and lives. RB1 is the first human tumor suppressor gene to be described, and it is closely associated with the development, progression, and suppression of a variety of tumors. It was found that the loss of RB1 is an early event in prostate cancer development and is closely related to prostate cancer development, progression and treatment resistance. This paper reviews the current status of research on the relationship between RB1 and prostate cancer from three aspects: RB1 and prostate cell lineage plasticity; biological behavior; and therapeutic resistance. Providing a novel perspective for developing new therapeutic strategies for RB1-loss prostate cancer.
Collapse
Affiliation(s)
- Min Ma
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yazhi Zhu
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Changkai Xiao
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruidong Li
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xingyu Cao
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ran Kang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaolan Wang
- Department of Reproductive Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ermao Li
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
14
|
Pesini C, Artal L, Paúl Bernal J, Sánchez Martinez D, Pardo J, Ramírez-Labrada A. In-depth analysis of the interplay between oncogenic mutations and NK cell-mediated cancer surveillance in solid tumors. Oncoimmunology 2024; 13:2379062. [PMID: 39036370 PMCID: PMC11259085 DOI: 10.1080/2162402x.2024.2379062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
Natural killer (NK) cells play a crucial role in antitumoral and antiviral responses. Yet, cancer cells can alter themselves or the microenvironment through the secretion of cytokines or other factors, hindering NK cell activation and promoting a less cytotoxic phenotype. These resistance mechanisms, often referred to as the "hallmarks of cancer" are significantly influenced by the activation of oncogenes, impacting most, if not all, of the described hallmarks. Along with oncogenes, other types of genes, the tumor suppressor genes are frequently mutated or modified during cancer. Traditionally, these genes have been associated with uncontrollable tumor growth and apoptosis resistance. Recent evidence suggests oncogenic mutations extend beyond modulating cell death/proliferation programs, influencing cancer immunosurveillance. While T cells have been more studied, the results obtained highlight NK cells as emerging key protagonists for enhancing tumor cell elimination by modulating oncogenic activity. A few recent studies highlight the crucial role of oncogenic mutations in NK cell-mediated cancer recognition, impacting angiogenesis, stress ligands, and signaling balance within the tumor microenvironment. This review will critically examine recent discoveries correlating oncogenic mutations to NK cell-mediated cancer immunosurveillance, a relatively underexplored area, particularly in the era dominated by immune checkpoint inhibitors and CAR-T cells. Building on these insights, we will explore opportunities to improve NK cell-based immunotherapies, which are increasingly recognized as promising alternatives for treating low-antigenic tumors, offering significant advantages in terms of safety and manufacturing suitability.
Collapse
Affiliation(s)
- Cecilia Pesini
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Laura Artal
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Institute of Carbochemistry (ICB-CSIC), Zaragoza, Spain
| | - Jorge Paúl Bernal
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Diego Sánchez Martinez
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Aragón I + D Foundation (ARAID), Government of Aragon, Zaragoza, Spain
| | - Julián Pardo
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Ariel Ramírez-Labrada
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
| |
Collapse
|
15
|
Yang C, Ma S, Zhang J, Han Y, Wan L, Zhou W, Dong X, Yang W, Chen Y, Gao L, Cui W, Jia L, Yang J, Wu C, Wang Q, Wang L. EHMT2-mediated transcriptional reprogramming drives neuroendocrine transformation in non-small cell lung cancer. Proc Natl Acad Sci U S A 2024; 121:e2317790121. [PMID: 38814866 PMCID: PMC11161775 DOI: 10.1073/pnas.2317790121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
The transformation of lung adenocarcinoma to small cell lung cancer (SCLC) is a recognized resistance mechanism and a hindrance to therapies using epidermal growth factor receptor tyrosine kinase inhibitors (TKIs). The paucity of pretranslational/posttranslational clinical samples limits the deeper understanding of resistance mechanisms and the exploration of effective therapeutic strategies. Here, we developed preclinical neuroendocrine (NE) transformation models. Next, we identified a transcriptional reprogramming mechanism that drives resistance to erlotinib in NE transformation cell lines and cell-derived xenograft mice. We observed the enhanced expression of genes involved in the EHMT2 and WNT/β-catenin pathways. In addition, we demonstrated that EHMT2 increases methylation of the SFRP1 promoter region to reduce SFRP1 expression, followed by activation of the WNT/β-catenin pathway and TKI-mediated NE transformation. Notably, the similar expression alterations of EHMT2 and SFRP1 were observed in transformed SCLC samples obtained from clinical patients. Importantly, suppression of EHMT2 with selective inhibitors restored the sensitivity of NE transformation cell lines to erlotinib and delayed resistance in cell-derived xenograft mice. We identify a transcriptional reprogramming process in NE transformation and provide a potential therapeutic target for overcoming resistance to erlotinib.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Shuxiang Ma
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou450008, China
| | - Jie Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Yuchen Han
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Li Wan
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Wenlong Zhou
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Xiaoyu Dong
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Weiming Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Yu Chen
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Lingyue Gao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Lina Jia
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou450008, China
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang110016, China
- Division of Drug Screening and Biology Evaluation, Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi117004, China
| |
Collapse
|
16
|
Li D, Zhang M, Liu J, Li Z, Ni B. Potential therapies for HCC involving targeting the ferroptosis pathway. Am J Cancer Res 2024; 14:1446-1465. [PMID: 38726269 PMCID: PMC11076240 DOI: 10.62347/sigp9279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/15/2024] [Indexed: 05/12/2024] Open
Abstract
Liver cancer ranks as the third leading cause of cancer-related mortality worldwide, predominantly in the form of hepatocellular carcinoma (HCC). Conventional detection and treatment approaches have proven inadequate for addressing the elevated incidence and mortality rates associated with HCC. However, a significant body of research suggests that combating HCC through the induction of ferroptosis is possible. Ferroptosis is a regulated cell death process characterized by elevated levels of reactive oxygen species (ROS) and lipid peroxide accumulation, both of which are dependent on iron levels. In recent years, there has been an increasing focus on investigating ferroptosis, revealing its potential as an inhibitory mechanism against various diseases, including tumors. Therefore, ferroptosis induction holds great promise for treating multiple types of cancers, including HCC. This article provides a review of the key mechanisms involved in ferroptosis and explores the potential application of multiple targets and pathways associated with ferroptosis in HCC treatment to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Denghui Li
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing 400038, China
| | - Mengjie Zhang
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing 400038, China
| | - Ju Liu
- Department of Foreign Languages, College of Basic Medical Sciences, Third Military Medical UniversityChongqing 400038, China
| | - Zhifang Li
- Department of Foreign Languages, College of Basic Medical Sciences, Third Military Medical UniversityChongqing 400038, China
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing 400038, China
| |
Collapse
|
17
|
Suleman M, Khattak A, Akbar F, Rizwan M, Tayyab M, Yousaf M, Khan A, Albekairi NA, Agouni A, Crovella S. Analysis of E2F1 single-nucleotide polymorphisms reveals deleterious non-synonymous substitutions that disrupt E2F1-RB protein interaction in cancer. Int J Biol Macromol 2024; 260:129559. [PMID: 38242392 DOI: 10.1016/j.ijbiomac.2024.129559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Cancer is a medical condition that is caused by the abnormal growth and division of cells, leading to the formation of tumors. The E2F1 and RB pathways are critical in regulating cell cycle, and their dysregulation can contribute to the development of cancer. In this study, we analyzed experimentally reported SNPs in E2F1 and assessed their effects on the binding affinity with RB. Out of 46, nine mutations were predicted as deleterious, and further analysis revealed four highly destabilizing mutations (L206W, R232C, I254T, A267T) that significantly altered the protein structure. Molecular docking of wild-type and mutant E2F1 with RB revealed a docking score of -242 kcal/mol for wild-type, while the mutant complexes had scores ranging from -217 to -220 kcal/mol. Molecular simulation analysis revealed variations in the dynamics features of both mutant and wild-type complexes due to the acquired mutations. Furthermore, the total binding free energy for the wild-type E2F1-RB complex was -64.89 kcal/mol, while those of the L206W, R232C, I254T, and A267T E2F1-RB mutants were -45.90 kcal/mol, -53.52 kcal/mol, -55.67 kcal/mol, and -61.22 kcal/mol, respectively. Our study is the first to extensively analyze E2F1 gene mutations and identifies candidate mutations for further validation and potential targeting for cancer therapeutics.
Collapse
Affiliation(s)
- Muhammad Suleman
- Laboratory of Animal Research Center (LARC) Qatar University, Doha, Qatar; Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.
| | - Aishma Khattak
- Department of Bioinformatics, Shaheed Benazir butto women university Peshawar, Pakistan
| | - Fazal Akbar
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.
| | - Muhammad Rizwan
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.
| | - Muhammad Tayyab
- Institute of Biotechnology and Genetic Engineering, the University of Agriculture Peshawar.
| | - Muhammad Yousaf
- Centre for Animal Sciences and Fisheries, University of Swat, Swat, Pakistan.
| | - Abbas Khan
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia.
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC) Qatar University, Doha, Qatar.
| |
Collapse
|
18
|
Liu J, Zhang W, Wang Z, Wang Y, Li T, Wang Y, Ding J, Ning B. Cathepsin V is correlated with the prognosis and tumor microenvironment in liver cancer. Mol Carcinog 2024; 63:400-416. [PMID: 38051285 DOI: 10.1002/mc.23660] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023]
Abstract
Recent studies have shown that high cell cycle activity negatively correlates with antitumor immunity in certain cancer types. However, a similar correlation has not been proven in liver cancer. We downloaded transcriptomic profiles of the cancer genome atlas-liver hepatocellular carcinoma (TCGA-LIHC) and assessed the cell cycle distribution of samples using single sample gene set enrichment analysis (ssGSEA), termed the cell cycle score (CCS). We obtained cell cycle-related differentially expressed prognostic genes and identified CENPA, CDC20, and CTSV using LASSO regression. We studied the effect of CTSV on clinical features and immune alterations in liver cancer based on TCGA-LIHC data. In vitro and in vivo experiments were performed to validate the role of CTSV in liver cancer using liver cancer cell lines and tissues. We found that the CCS closely correlated with the clinical features and prognosis of patients in TCGA-LIHC. Analysis of differentially expressed genes (DEGs), univariate Cox regression, and least absolute shrinkage and selection operator (LASSO) regression identified cathepsin V (CTSV) with prognostic significance in LIHC. Importantly, single-gene survival analysis of CTSV using microarray and sequencing data indicated that high levels of CTSV expression correlated with an unfavorable prognosis in various cancers. Gene set enrichment analysis revealed that high CTSV expression closely correlated with decreased expression of metabolic genes and increased expression of cell cycle genes. Furthermore, difference and correlation analyses of the relationship between CTSV expression and immune infiltrates, determined using CIBERSORT and TIMER algorithms, revealed that CTSV expression correlated with macrophages and CD4+ T cells. In vitro and in vivo experiments revealed that knockdown of CTSV inhibited liver cancer cells proliferation. Immunohistochemical staining showed that high CTSV expression correlated with macrophage infiltration in liver cancer tissues, predicted a poor prognosis, and is associated with the effectiveness of hepatocellular carcinoma treatment. In couclusion, CTSV is a novel cell cycle-associated gene with clinical significance in HCC.
Collapse
Affiliation(s)
- Junyu Liu
- Center for Translational Medicine, Clinical Cancer Institute, Naval Military Medical University, Shanghai, China
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Wen Zhang
- Center for Translational Medicine, Clinical Cancer Institute, Naval Military Medical University, Shanghai, China
| | - Zhijie Wang
- Center for Translational Medicine, Clinical Cancer Institute, Naval Military Medical University, Shanghai, China
| | - Yichuan Wang
- Center for Translational Medicine, Clinical Cancer Institute, Naval Military Medical University, Shanghai, China
| | - Tianxing Li
- Department of Gastroenterology, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Yaping Wang
- Center for Translational Medicine, Clinical Cancer Institute, Naval Military Medical University, Shanghai, China
| | - Jin Ding
- Center for Translational Medicine, Clinical Cancer Institute, Naval Military Medical University, Shanghai, China
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Beifang Ning
- Department of Gastroenterology, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
19
|
Papavassiliou KA, Sofianidi AA, Gogou VA, Anagnostopoulos N, Papavassiliou AG. P53 and Rb Aberrations in Small Cell Lung Cancer (SCLC): From Molecular Mechanisms to Therapeutic Modulation. Int J Mol Sci 2024; 25:2479. [PMID: 38473726 DOI: 10.3390/ijms25052479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The genes coding for the tumor suppressors p53 and retinoblastoma (Rb) are inactivated in the vast majority of small cell lung cancer (SCLC) tumors. Data support the notion that these two deleterious genetic events represent the initial steps in the development of SCLC, making them essential for a lung epithelial cell to progress toward the acquisition of a malignant phenotype. With the loss of TP53 and RB1, their broad tumor suppressive functions are eliminated and a normal cell is able to proliferate indefinitely, escape entering into cellular senescence, and evade death, no matter the damage it has experienced. Within this setting, lung epithelial cells accumulate further oncogenic mutations and are well on their way to becoming SCLC cells. Understanding the molecular mechanisms of these genetic lesions and their effects within lung epithelial cells is of paramount importance, in order to tackle this aggressive and deadly lung cancer. The present review summarizes the current knowledge on p53 and Rb aberrations, their biological significance, and their prospective therapeutic potential, highlighting completed and ongoing clinical trials with agents that target downstream pathways.
Collapse
Affiliation(s)
- Kostas A Papavassiliou
- First University Department of Respiratory Medicine, 'Sotiria' Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Amalia A Sofianidi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vassiliki A Gogou
- First University Department of Respiratory Medicine, 'Sotiria' Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nektarios Anagnostopoulos
- First University Department of Respiratory Medicine, 'Sotiria' Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
20
|
Li PC, Zhu YF, Cao WM, Li B. ER-positive and BRCA2-mutated breast cancer: a literature review. Eur J Med Res 2024; 29:30. [PMID: 38184581 PMCID: PMC10770892 DOI: 10.1186/s40001-023-01618-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/24/2023] [Indexed: 01/08/2024] Open
Abstract
BRCA2-mutated carriers have a high lifetime risk of breast cancer (BC), an early age of onset, and an increased risk of other cancers (including ovarian, pancreatic, and prostate cancer). Almost 70-80% of BRCA2-mutated BC are estrogen receptor (ER)-positive, which is a particular type of ER-positive BC that differs from sporadic ER-positive BC. This article reviews the clinicopathological features, treatment, and prognosis of ER-positive and BRCA2-mutated BC to provide a reference for clinical decision-making.
Collapse
Affiliation(s)
- Pu-Chun Li
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, 310022, China
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Yi-Fan Zhu
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, 310022, China
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Wen-Ming Cao
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China.
| | - Bei Li
- Department of Geriatric, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China.
| |
Collapse
|
21
|
van Driel M, Muñoz A, van Leeuwen JP. Overview of vitamin D actions in cancer. FELDMAN AND PIKE'S VITAMIN D 2024:679-718. [DOI: 10.1016/b978-0-323-91338-6.00034-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
22
|
Zhu S, Xu N, Zeng H. Molecular complexity of intraductal carcinoma of the prostate. Cancer Med 2024; 13:e6939. [PMID: 38379333 PMCID: PMC10879723 DOI: 10.1002/cam4.6939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 02/22/2024] Open
Abstract
Intraductal carcinoma of the prostate (IDC-P) is an aggressive subtype of prostate cancer characterized by the growth of tumor cells within the prostate ducts. It is often found alongside invasive carcinoma and is associated with poor prognosis. Understanding the molecular mechanisms driving IDC-P is crucial for improved diagnosis, prognosis, and treatment strategies. This review summarizes the molecular characteristics of IDC-P and their prognostic indications, comparing them to conventional prostate acinar adenocarcinoma, to gain insights into its unique behavior and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Sha Zhu
- Department of Urology, Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Nanwei Xu
- Department of Urology, Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
23
|
Gulati K, Manukonda R, Kairamkonda M, Kaliki S, Poluri KM. Serum Metabolomics of Retinoblastoma: Assessing the Differential Serum Metabolic Signatures of Unilateral and Bilateral Patients. ACS OMEGA 2023; 8:48233-48250. [PMID: 38144138 PMCID: PMC10733957 DOI: 10.1021/acsomega.3c07424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023]
Abstract
Retinoblastoma (Rb) is the most common pediatric eye cancer. To identify the biomarkers for early diagnosis and monitoring the progression of Rb in patients, mapping of the alterations in their metabolic profiles is essential. The present study aims at exploring the metabolic disparity in serum from Rb patients and controls using NMR-based metabolomics. A total of 72 metabolites, including carbohydrates, amino acids, and organic acids, were quantified in serum samples from 24 Rb patients and 26 controls. Distinct clusters of Rb patients and controls were obtained using the partial least-squares discriminant analysis (PLS-DA) model. Further, univariate and multivariate analyses of unilateral and bilateral Rb patients with respect to their age-matched controls depicted their distinct metabolic fingerprints. Metabolites including 2-phosphoglycerate, 4-aminobutyrate, proline, O-phosphocholine, O-phosphoethanolamine, and Sn-glycero-3-phosphocholine (Sn-GPC) showed significant perturbation in both unilateral and bilateral Rb patients. However, metabolic differences among the bilateral Rb cases were more pronounced than those in unilateral Rb cases with respect to controls. In addition to major discriminatory metabolites for Rb, unilateral and bilateral Rb cases showed specific metabolic changes, which might be the result of their differential genetic/somatic mutational backgrounds. This further suggests that the aberrant metabolic perturbation in bilateral patients signifies the severity of the disease in Rb patients. The present study demonstrated that identified serum metabolites have potential to serve as a noninvasive method for detection of Rb, discriminate bilateral from unilateral Rb patients, and aid in better understanding of the RB tumor biology.
Collapse
Affiliation(s)
- Khushboo Gulati
- The
Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad-500034, Telangana, India
- Brien
Holden Eye Research Center, L. V. Prasad
Eye Institute, Hyderabad-500034, Telangana, India
| | - Radhika Manukonda
- The
Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad-500034, Telangana, India
- Brien
Holden Eye Research Center, L. V. Prasad
Eye Institute, Hyderabad-500034, Telangana, India
| | - Manikyaprabhu Kairamkonda
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
| | - Swathi Kaliki
- The
Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad-500034, Telangana, India
| | - Krishna Mohan Poluri
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
- Centre
for Nanotechnology, Indian Institute of
Technology Roorkee, Roorkee-247667, Uttarakhand, India
| |
Collapse
|
24
|
Ma W, Ma B, Ma J, Zhu R. RB1 5́UTR contains an IRES related to cell cycle control and cancer progression. Gene 2023; 887:147724. [PMID: 37604323 DOI: 10.1016/j.gene.2023.147724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Retinoblastoma gene1 (RB1) is the first tumor suppressor gene that stands as the guardian of the gate of the G1 period and plays a central role in proliferation and differentiation. However, no reports focused on the possible internal ribosome entry site (IRES) function of the RB1 gene flanking sequence. In this study, we constructed a bicistronic reporter with the RB1 5'untranslated region (5́UTR) inserted between two reporter coding regions. We found RB1 5'UTR harbors an IRES and has higher activity in cancer cell lines than normal cells. Besides, RB1 IRES acquired the highest activity in the G0/G1 phase of the cell cycle, and the RB1 5'UTR mutation collected from retinoblastoma decreased IRES activity compared with RB1 5'UTR wild-type. These data indicated that RB1 IRES is a mechanism of stress regulation and is related to cell cycle control and cancer progression.
Collapse
Affiliation(s)
- Wennan Ma
- Changzhou Capmus of Hohai University, Changzhou, Jiangsu Province 213022, PR China
| | - Bei Ma
- Changzhou Capmus of Hohai University, Changzhou, Jiangsu Province 213022, PR China
| | - Jing Ma
- Nanjing Kingsley Biotechnology Co., Ltd, Nanjing, Jiangsu Province 210000, PR China
| | - Ruiyu Zhu
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, PR China.
| |
Collapse
|
25
|
Saner FAM, Takahashi K, Budden T, Pandey A, Ariyaratne D, Zwimpfer TA, Meagher NS, Fereday S, Twomey L, Pishas KI, Hoang T, Bolithon A, Traficante N, Alsop K, Christie EL, Kang EY, Nelson GS, Ghatage P, Lee CH, Riggan MJ, Alsop J, Beckmann MW, Boros J, Brand AH, Brooks-Wilson A, Carney ME, Coulson P, Courtney-Brooks M, Cushing-Haugen KL, Cybulski C, El-Bahrawy MA, Elishaev E, Erber R, Gayther SA, Gentry-Maharaj A, Blake Gilks C, Harnett PR, Harris HR, Hartmann A, Hein A, Hendley J, Hernandez BY, Jakubowska A, Jimenez-Linan M, Jones ME, Kaufmann SH, Kennedy CJ, Kluz T, Koziak JM, Kristjansdottir B, Le ND, Lener M, Lester J, Lubiński J, Mateoiu C, Orsulic S, Ruebner M, Schoemaker MJ, Shah M, Sharma R, Sherman ME, Shvetsov YB, Singh N, Rinda Soong T, Steed H, Sukumvanich P, Talhouk A, Taylor SE, Vierkant RA, Wang C, Widschwendter M, Wilkens LR, Winham SJ, Anglesio MS, Berchuck A, Brenton JD, Campbell I, Cook LS, Doherty JA, Fasching PA, Fortner RT, Goodman MT, Gronwald J, Huntsman DG, Karlan BY, Kelemen LE, Menon U, Modugno F, Pharoah PD, Schildkraut JM, Sundfeldt K, Swerdlow AJ, Goode EL, DeFazio A, Köbel M, Ramus SJ, Bowtell DDL, Garsed DW. Concurrent RB1 loss and BRCA-deficiency predicts enhanced immunological response and long-term survival in tubo-ovarian high-grade serous carcinoma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.09.23298321. [PMID: 37986741 PMCID: PMC10659507 DOI: 10.1101/2023.11.09.23298321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background Somatic loss of the tumour suppressor RB1 is a common event in tubo-ovarian high-grade serous carcinoma (HGSC), which frequently co-occurs with alterations in homologous recombination DNA repair genes including BRCA1 and BRCA2 (BRCA). We examined whether tumour expression of RB1 was associated with survival across ovarian cancer histotypes (HGSC, endometrioid (ENOC), clear cell (CCOC), mucinous (MOC), low-grade serous carcinoma (LGSC)), and how co-occurrence of germline BRCA pathogenic variants and RB1 loss influences long-term survival in a large series of HGSC. Patients and methods RB1 protein expression patterns were classified by immunohistochemistry in epithelial ovarian carcinomas of 7436 patients from 20 studies participating in the Ovarian Tumor Tissue Analysis consortium and assessed for associations with overall survival (OS), accounting for patient age at diagnosis and FIGO stage. We examined RB1 expression and germline BRCA status in a subset of 1134 HGSC, and related genotype to survival, tumour infiltrating CD8+ lymphocyte counts and transcriptomic subtypes. Using CRISPR-Cas9, we deleted RB1 in HGSC cell lines with and without BRCA1 mutations to model co-loss with treatment response. We also performed genomic analyses on 126 primary HGSC to explore the molecular characteristics of concurrent homologous recombination deficiency and RB1 loss. Results RB1 protein loss was most frequent in HGSC (16.4%) and was highly correlated with RB1 mRNA expression. RB1 loss was associated with longer OS in HGSC (hazard ratio [HR] 0.74, 95% confidence interval [CI] 0.66-0.83, P = 6.8 ×10-7), but with poorer prognosis in ENOC (HR 2.17, 95% CI 1.17-4.03, P = 0.0140). Germline BRCA mutations and RB1 loss co-occurred in HGSC (P < 0.0001). Patients with both RB1 loss and germline BRCA mutations had a superior OS (HR 0.38, 95% CI 0.25-0.58, P = 5.2 ×10-6) compared to patients with either alteration alone, and their median OS was three times longer than non-carriers whose tumours retained RB1 expression (9.3 years vs. 3.1 years). Enhanced sensitivity to cisplatin (P < 0.01) and paclitaxel (P < 0.05) was seen in BRCA1 mutated cell lines with RB1 knockout. Among 126 patients with whole-genome and transcriptome sequence data, combined RB1 loss and genomic evidence of homologous recombination deficiency was correlated with transcriptional markers of enhanced interferon response, cell cycle deregulation, and reduced epithelial-mesenchymal transition in primary HGSC. CD8+ lymphocytes were most prevalent in BRCA-deficient HGSC with co-loss of RB1. Conclusions Co-occurrence of RB1 loss and BRCA mutation was associated with exceptionally long survival in patients with HGSC, potentially due to better treatment response and immune stimulation.
Collapse
Affiliation(s)
- Flurina A. M. Saner
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynecology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Kazuaki Takahashi
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Timothy Budden
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Skin Cancer and Ageing Lab, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Manchester, UK
| | - Ahwan Pandey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | | | - Nicola S. Meagher
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, New South Wales, Australia
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Laura Twomey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kathleen I. Pishas
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Therese Hoang
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Adelyn Bolithon
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia
| | - Nadia Traficante
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kathryn Alsop
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Elizabeth L. Christie
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Eun-Young Kang
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, AB, Canada
| | - Gregg S. Nelson
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Prafull Ghatage
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cheng-Han Lee
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Marjorie J. Riggan
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | - Jennifer Alsop
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Jessica Boros
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Alison H. Brand
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | | | - Michael E. Carney
- Department of Obstetrics and Gynecology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Penny Coulson
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Madeleine Courtney-Brooks
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kara L. Cushing-Haugen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Mona A. El-Bahrawy
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London, UK
| | - Esther Elishaev
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ramona Erber
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Simon A. Gayther
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Aleksandra Gentry-Maharaj
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, UK
- Department of Women’s Cancer, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, UK
| | - C. Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Paul R. Harnett
- The University of Sydney, Sydney, New South Wales, Australia
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, New South Wales, Australia
| | - Holly R. Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Arndt Hartmann
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Alexander Hein
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Joy Hendley
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - AOCS Group
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | | | - Michael E. Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Scott H. Kaufmann
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Catherine J. Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Tomasz Kluz
- Department of Gynecology and Obstetrics, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszów, Poland
| | | | - Björg Kristjansdottir
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Nhu D. Le
- Cancer Control Research, BC Cancer Agency, Vancouver, BC, Canada
| | - Marcin Lener
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jenny Lester
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | | | - Sandra Orsulic
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Minouk J. Schoemaker
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Raghwa Sharma
- Tissue Pathology and Diagnostic Oncology, Westmead Hospital, Sydney, New South Wales, Australia
| | - Mark E. Sherman
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | | | - Naveena Singh
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - T. Rinda Soong
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Helen Steed
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
- Section of Gynecologic Oncology Surgery, North Zone, Alberta Health Services, Edmonton, Alberta, Canada
| | - Paniti Sukumvanich
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aline Talhouk
- British Columbia’s Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, BC, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Sarah E. Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert A. Vierkant
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Chen Wang
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Stacey J. Winham
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - Michael S. Anglesio
- British Columbia’s Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, BC, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | - James D. Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ian Campbell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Linda S. Cook
- Epidemiology, School of Public Health, University of Colorado, Aurora, CO, USA
- Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Jennifer A. Doherty
- Huntsman Cancer Institute, Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Renée T. Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Marc T. Goodman
- Cancer Prevention and Control Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - David G. Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia’s Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, BC, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Beth Y. Karlan
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Linda E. Kelemen
- Division of Acute Disease Epidemiology, South Carolina Department of Health & Environmental Control, Columbia, SC, USA
| | - Usha Menon
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, UK
| | - Francesmary Modugno
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- Women’s Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, PA, USA
| | - Paul D.P. Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA, USA
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joellen M. Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karin Sundfeldt
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Anthony J. Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Ellen L. Goode
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Anna DeFazio
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, AB, Canada
| | - Susan J. Ramus
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia
| | - David D. L. Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Dale W. Garsed
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
26
|
Slovin SF, Knudsen K, Halabi S, de Leeuw R, Shafi A, Kang P, Wolf S, Luo B, Gopalan A, Curley T, Fleming M, Molina A, Fernandez C, Kelly K. Randomized Phase II Multicenter Trial of Abiraterone Acetate With or Without Cabazitaxel in the Treatment of Metastatic Castration-Resistant Prostate Cancer. J Clin Oncol 2023; 41:5015-5024. [PMID: 37582240 DOI: 10.1200/jco.22.02639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/14/2023] [Accepted: 06/23/2023] [Indexed: 08/17/2023] Open
Abstract
PURPOSE Improving clinical outcomes with novel drug combinations to treat metastatic castration-resistant prostate cancer (mCRPC) is challenging. Preclinical studies showed cabazitaxel had superior antitumor efficacy compared with docetaxel. Gene expression profiling revealed divergent effects of these taxanes in cycling cells. mCRPC are RB deficient rendering them hypersensitive to taxanes. These data suggested that upfront treatment with cabazitaxel with abiraterone may affect therapeutic response. We designed a phase II randomized noncomparative trial of abiraterone acetate/prednisone (AAP) or AAP and cabazitaxel (AAP + C) in men with mCRPC to address this hypothesis. METHODS This trial of 81 men with mCRPC determined the radiographic progression-free survival (rPFS), prostate-specific antigen (PSA) progression-free survival, overall objective response, and safety of AAP or AAP + C. Equally allocated patients received AAP followed by switching to cabazitaxel upon radiographic progression (arm 1) or upfront with AAP + C (arm 2). Patients were stratified into high-/low-risk groups by the Halabi nomogram. Real-time assessment of RB status and circulating tumor cell (CTC) analysis to correlate with clinical outcomes was exploratory. RESULTS Both treatment arms were well-tolerated. Median rPFS in AAP was 6.4 months (95% CI, 3.8 to 10.6) and median overall survival (OS) 18.3 months (95% CI, 14.4 to 37.6), respectively. Fifty-six percent of patients showed ≥50% decline in PSA. Median rPFS in AAP + C was 14.8 months (95% CI, 10.6 to 16.4), and median OS 24.5 months (95% CI, 20.4 to 35.0). There was a ≥50% decline in PSA in 92.1% of men. Neither RB expression in pretherapy tumor biopsy, CTC, or tissue explants identified those who may benefit from AAP + C. CONCLUSION AAP + C was safe with improved rPFS, OS duration, and a higher proportion of PSA declines. This suggests that AAP + C given earlier rather than sequentially may benefit some men. Further work is needed to identify this population.
Collapse
Affiliation(s)
- Susan F Slovin
- Genitourinary Oncology Service, Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Karen Knudsen
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | | | - Renee de Leeuw
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Ayesha Shafi
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Praneet Kang
- Genitourinary Oncology Service, Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Bin Luo
- Duke University Medical Center, Durham, NC
| | - Anuradha Gopalan
- Genitourinary Oncology Service, Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tracy Curley
- Genitourinary Oncology Service, Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mark Fleming
- Virginia Oncology Associates, US Oncology Research, Norfolk, VA
| | | | - Celina Fernandez
- Genitourinary Oncology Service, Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kevin Kelly
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
27
|
Cai Z, Shi Q, Li Y, Jin L, Li S, Wong LL, Wang J, Jiang X, Zhu M, Lin J, Wang Q, Yang W, Liu Y, Zhang J, Gong C, Yao H, Yao Y, Liu Q. LncRNA EILA promotes CDK4/6 inhibitor resistance in breast cancer by stabilizing cyclin E1 protein. SCIENCE ADVANCES 2023; 9:eadi3821. [PMID: 37801505 PMCID: PMC10558131 DOI: 10.1126/sciadv.adi3821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
CDK4/6 inhibitors (CDK4/6i) plus endocrine therapy are now standard first-line therapy for advanced HR+/HER2- breast cancer, but developing resistance is just a matter of time in these patients. Here, we report that a cyclin E1-interacting lncRNA (EILA) is up-regulated in CDK4/6i-resistant breast cancer cells and contributes to CDK4/6i resistance by stabilizing cyclin E1 protein. EILA overexpression correlates with accelerated cell cycle progression and poor prognosis in breast cancer. Silencing EILA reduces cyclin E1 protein and restores CDK4/6i sensitivity both in vitro and in vivo. Mechanistically, hairpin A of EILA binds to the carboxyl terminus of cyclin E1 protein and hinders its binding to FBXW7, thereby blocking its ubiquitination and degradation. EILA is transcriptionally regulated by CTCF/CDK8/TFII-I complexes and can be inhibited by CDK8 inhibitors. This study unveils the role of EILA in regulating cyclin E1 stability and CDK4/6i resistance, which may serve as a biomarker to predict therapy response and a potential therapeutic target to overcome resistance.
Collapse
Affiliation(s)
- Zijie Cai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qianfeng Shi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yudong Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Liang Jin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shunying Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Lok Lam Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jingru Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xiaoting Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Mengdi Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jinna Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qi Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Wang Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yujie Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jun Zhang
- Department of Thyroid and Breast Surgery, Shenzhen Nanshan District Shekou People's Hospital, Shenzhen 518067, China
| | - Chang Gong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yandan Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
28
|
Witkiewicz AK, Schultz E, Wang J, Hamilton D, Levine E, O'Connor T, Knudsen ES. Determinants of response to CDK4/6 inhibitors in the real-world setting. NPJ Precis Oncol 2023; 7:90. [PMID: 37704753 PMCID: PMC10499925 DOI: 10.1038/s41698-023-00438-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023] Open
Abstract
Despite widespread use and a known mechanism of action for CDK4/6 inhibitors in combination with endocrine therapy, features of disease evolution and determinants of therapeutic response in the real-world setting remain unclear. Here, a cohort of patients treated with standard-of-care combination regimens was utilized to explore features of disease and determinants of progression-free survival (PFS) and overall survival (OS). In this cohort of 280 patients, >90% of patients were treated with palbociclib in combination with either an aromatase inhibitor (AI) or fulvestrant (FUL). Most of these patients had modified Scarff-Bloom-Richardson (SBR) scores, and ER, HER2, and PR immunohistochemistry. Both the SBR score and lack of PR expression were associated with shorter PFS in patients treated with AI combinations and remained significant in multivariate analyses (HR = 3.86, p = 0.008). Gene expression analyses indicated substantial changes in cell cycle and estrogen receptor signaling during the course of treatment. Furthermore, gene expression-based subtyping indicated that predominant subtypes changed with treatment and progression. The luminal B, HER2, and basal subtypes exhibited shorter PFS in CDK4/6 inhibitor combinations when assessed in the pretreatment biopsies; however, they were not associated with OS. Using unbiased approaches, cell cycle-associated gene sets were strongly associated with shorter PFS in pretreatment biopsies irrespective of endocrine therapy. Estrogen receptor signaling gene sets were associated with longer PFS particularly in the AI-treated cohort. Together, these data suggest that there are distinct pathological and biological features of HR+/HER2- breast cancer associated with response to CDK4/6 inhibitors. Clinical trial registration number: NCT04526587.
Collapse
Affiliation(s)
- Agnieszka K Witkiewicz
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA.
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA.
| | - Emily Schultz
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Jianxin Wang
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Deanna Hamilton
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Ellis Levine
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Tracey O'Connor
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Erik S Knudsen
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA.
| |
Collapse
|
29
|
Miron AI, Anghel AV, Barnonschi AA, Mitre R, Liscu HD, Găinariu E, Pătru R, Coniac S. Real-World Outcomes of CDK4/6 Inhibitors Treatment in Metastatic Breast Cancer in Romania. Diagnostics (Basel) 2023; 13:1938. [PMID: 37296790 PMCID: PMC10252356 DOI: 10.3390/diagnostics13111938] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The introduction in clinical practice of selective cyclin-dependent kinase (CDK) 4/6 inhibitors improves the outcome of patients with hormone receptor (HR)-positive human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer (mBC). In Romania, the three available CDK 4/6 inhibitors (Palbociclib, Ribociclib and Ademaciclib) have been approved by the National Agency for Medicines (ANM) in 2019, 2020 and 2021. We conducted a retrospective study from 2019 to 2022 on 107 patients with metastatic breast cancer HR+ that have been treated with CDK 4/6 inhibitors in addition to hormone therapy in the Oncology Department of Colțea Clinical Hospital in Bucharest. The purpose of this study is to calculate the median progression-free survival (PFS) and to compare it with the median PFS from other randomized clinical trials. A key difference from other studies is that our study evaluated both patients with non-visceral mBC and patients with visceral mBC, as these two groups often have different outcomes. A total of 79.4% were postmenopausal patients and 20.6% were premenopausal; 42.1% had different stages at the beginning of disease and 57.9% presented newly metastatic disease. Median PFS was 17 months, unlike randomized clinical trials which reported a median PFS of 25.3 months. The combination of CDK 4/6 inhibitors with endocrine therapy is the golden standard treatment in HR-positive, HER2-negative metastatic breast cancer, bringing a prolongation of survival for these patients. Our results show no major differences compared to randomized clinical trials, despite the smaller patient group. In order to have a picture of the efficacy of the treatment as close as possible to the real-world data, we believe that it would be very useful to have a collaboration between several oncology departments in different institutions to carry out a multi-center study on large groups of patients.
Collapse
Affiliation(s)
- Andreea-Iuliana Miron
- Department of Oncological Radiotherapy and Medical Imaging, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-I.M.)
- Department of Medical Oncology, Colțea Clinical Hospital, 030167 Bucharest, Romania
- Department of Radiotherapy, Colțea Clinical Hospital, 030167 Bucharest, Romania
| | - Alexandra-Valentina Anghel
- Department of Oncological Radiotherapy and Medical Imaging, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-I.M.)
| | - Andrei-Alexandru Barnonschi
- Department of Oncological Radiotherapy and Medical Imaging, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-I.M.)
| | - Ruxandra Mitre
- Department of Medical Oncology, Colțea Clinical Hospital, 030167 Bucharest, Romania
| | - Horia-Dan Liscu
- Department of Oncological Radiotherapy and Medical Imaging, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-I.M.)
- Department of Radiotherapy, Colțea Clinical Hospital, 030167 Bucharest, Romania
| | - Estera Găinariu
- Department of Medical Oncology, Colțea Clinical Hospital, 030167 Bucharest, Romania
| | - Raluca Pătru
- Department of Medical Oncology, Colțea Clinical Hospital, 030167 Bucharest, Romania
| | - Simona Coniac
- Department of Medical Oncology, Colțea Clinical Hospital, 030167 Bucharest, Romania
| |
Collapse
|
30
|
Iglesias P, Seoane M, Golán-Cancela I, Fraga M, Arce VM, Costoya JA. A New Opportunity for "Old" Molecules: Targeting PARP1 Activity through a Non-Enzymatic Mechanism. Int J Mol Sci 2023; 24:ijms24108849. [PMID: 37240195 DOI: 10.3390/ijms24108849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
In recent years, new therapies have been developed based on molecules that target molecular mechanisms involved in both the initiation and maintenance of the oncogenic process. Among these molecules are the poly(ADP-ribose) polymerase 1 (PARP1) inhibitors. PARP1 has emerged as a target with great therapeutic potential for some tumor types, drawing attention to this enzyme and resulting in many small molecule inhibitors of its enzymatic activity. Therefore, many PARP inhibitors are currently in clinical trials for the treatment of homologous recombination (HR)-deficient tumors, BRCA-related cancers, taking advantage of synthetic lethality. In addition, several novel cellular functions unrelated to its role in DNA repair have been described, including post-translational modification of transcription factors, or acting through protein-protein interactions as a co-activator or co-repressor of transcription. Previously, we reported that this enzyme may play a key role as a transcriptional co-activator of an important component of cell cycle regulation, the transcription factor E2F1. Here, we show that PARP inhibitors, which interfere with its activity in cell cycle regulation, perform this without affecting its enzymatic function.
Collapse
Affiliation(s)
- Pablo Iglesias
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxía, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CiMUS), Facultade de Medicina, Universidade de Santiago de Compostela and Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15782 Santiago de Compostela, Spain
| | - Marcos Seoane
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxía, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CiMUS), Facultade de Medicina, Universidade de Santiago de Compostela and Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15782 Santiago de Compostela, Spain
| | - Irene Golán-Cancela
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxía, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CiMUS), Facultade de Medicina, Universidade de Santiago de Compostela and Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15782 Santiago de Compostela, Spain
| | - Máximo Fraga
- Departamento de Anatomía Patolóxica e Ciencias Forenses, Universidade de Santiago de Compostela and Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15782 Santiago de Compostela, Spain
| | - Victor M Arce
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxía, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CiMUS), Facultade de Medicina, Universidade de Santiago de Compostela and Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15782 Santiago de Compostela, Spain
| | - Jose A Costoya
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxía, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CiMUS), Facultade de Medicina, Universidade de Santiago de Compostela and Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15782 Santiago de Compostela, Spain
| |
Collapse
|
31
|
Uchida C, Niida H, Sakai S, Iijima K, Kitagawa K, Ohhata T, Shiotani B, Kitagawa M. p130RB2 positively contributes to ATR activation in response to replication stress via the RPA32-ETAA1 axis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119484. [PMID: 37201767 DOI: 10.1016/j.bbamcr.2023.119484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 03/17/2023] [Accepted: 04/23/2023] [Indexed: 05/20/2023]
Abstract
Ataxia-telangiectasia mutated and Rad3-related (ATR) kinase is a crucial regulator of the cell cycle checkpoint and activated in response to DNA replication stress by two independent pathways via RPA32-ETAA1 and TopBP1. However, the precise activation mechanism of ATR by the RPA32-ETAA1 pathway remains unclear. Here, we show that p130RB2, a member of the retinoblastoma protein family, participates in the pathway under hydroxyurea-induced DNA replication stress. p130RB2 binds to ETAA1, but not TopBP1, and depletion of p130RB2 inhibits the RPA32-ETAA1 interaction under replication stress. Moreover, p130RB2 depletion reduces ATR activation accompanied by phosphorylation of its targets RPA32, Chk1, and ATR itself. It also causes improper re-progression of S phase with retaining single-stranded DNA after cancelation of the stress, which leads to an increase in the anaphase bridge phenotype and a decrease in cell survival. Importantly, restoration of p130RB2 rescued the disrupted phenotypes of p130RB2 knockdown cells. These results suggest positive involvement of p130RB2 in the RPA32-ETAA1-ATR axis and proper re-progression of the cell cycle to maintain genome integrity.
Collapse
Affiliation(s)
- Chiharu Uchida
- Advanced Research Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Hiroyuki Niida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Satoshi Sakai
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kenta Iijima
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kyoko Kitagawa
- Department of Environmental Health, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Tatsuya Ohhata
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Bunsyo Shiotani
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
32
|
Genomic landscape of Chinese patients with hepatocellular carcinoma using next-generation sequencing and its association with the prognosis. Ann Hepatol 2023; 28:100898. [PMID: 36634747 DOI: 10.1016/j.aohep.2023.100898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/28/2022] [Accepted: 12/14/2022] [Indexed: 01/14/2023]
Abstract
INTRODUCTION AND OBJECTIVES The occurrence of hepatocellular carcinoma (HCC) is not entirely clear at present. This study comprehensively described the landscape of genetic aberrations in Chinese HCC patients using next-generation sequencing (NGS) and investigated the association of genetic aberrations with clinicopathological characteristics and prognosis. MATERIALS AND METHODS The clinicopathological data of 78 HCC patients undergoing surgery were retrospectively analyzed. The genomic DNA extracted from tumor samples was detected using a NGS-based gene panel. RESULTS Mutations in TP53 (55%), TERT (37%), MUC16 (29%) and CTNNB1 (27%) were most common in HCC. The co-occurrences between frequently mutated genes occurring ≥10% were relatively common in HCC. Forty-eight (61.5%) cases harbored DNA damage repair gene mutations, mainly including PRKDC (11.5%), SLX4 (9.0%), ATM (7.7%), MSH6 (7.7%), and PTEN (6.4%), and 39 (50.0%) patients had at least one actionable mutation. FH amplification (odds ratio: 3.752, 95% confidence interval: 1.170-12.028, p=0.026) and RB1 mutations (odds ratio: 13.185, 95% confidence interval: 1.214-143.198, p=0.034) were identified as the independent risk factors for early postoperative recurrence in HCC. CONCLUSIONS Our study provides a novel insight into the genomic profiling of Chinese HCC patients. FH amplification and RB1 mutations may be associated with an increased risk of early postoperative recurrence in HCC.
Collapse
|
33
|
Nanomedicine-Based Gene Delivery for a Truncated Tumor Suppressor RB94 Promotes Lung Cancer Immunity. Cancers (Basel) 2022; 14:cancers14205092. [DOI: 10.3390/cancers14205092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Because lung cancer remains the most common and lethal of cancers, novel therapeutic approaches are urgently needed. RB94 is a truncated form of retinoblastoma tumor suppressor protein with elevated anti-tumor efficacy. Our investigational nanomedicine (termed scL-RB94) is a tumor-targeted liposomal formulation of a plasmid containing the gene encoding RB94. In this research, we studied anti-tumor and immune modulation activities of scL-RB94 nanocomplex in preclinical models of human non-small cell lung cancer (NSCLC). Systemic treatment with scL-RB94 of mice bearing human NSCLC tumors significantly inhibited tumor growth by lowering proliferation and increasing apoptosis of tumor cells in vivo. scL-RB94 treatment also boosted anti-tumor immune responses by upregulating immune recognition molecules and recruiting innate immune cells such as natural killer (NK) cells. Antibody-mediated depletion of NK cells blunted the anti-tumor activity of scL-RB94, suggesting that NK cells were crucial for the observed anti-tumor activity in these xenograft models. Treatment with scL-RB94 also altered the polarization of tumor-associated macrophages by reducing immune-suppressive M2 macrophages to lower immune suppression in the tumor microenvironment. Collectively, our data suggest that the efficacy of scL-RB94 against NSCLC is due to an induction of tumor cell death as well as enhancement of innate anti-tumor immunity.
Collapse
|
34
|
Cong T, Luo Y, Fu Y, Liu Y, Li Y, Li X. New perspectives on ferroptosis and its role in hepatocellular carcinoma. Chin Med J (Engl) 2022; 135:2157-2166. [PMID: 36525603 PMCID: PMC9771279 DOI: 10.1097/cm9.0000000000002327] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT For a long time, the morbidity and mortality rates of hepatocellular carcinoma (HCC) have remained high. Since the concept of ferroptosis was introduced in 2012, researchers' perspectives have shifted toward finding novel ferroptosis-related treatment strategies, especially for tumors that are resistant to apoptosis. In recent years, there have been an increasing number of studies on ferroptosis, and these studies have found that ferroptosis has great potential and promise for cancer treatment. Ferroptosis is a kind of regulated cell death (RCD); unlike apoptosis, ferroptosis is an iron-dependent type of RCD driven by lipid peroxidation. The whole process of ferroptosis mainly revolves around three pathways (system xc-/ glutathione peroxidase 4 [GPX4]), lipid peroxidation, and iron metabolism), which are also regulated by various metabolic factors. This review will attempt to analyze the relationship between the system xc-/GPX4 pathway, lipid peroxidation, iron metabolism, and ferroptosis from three aspects (triggering, execution, and regulation), and the regulatory factors for ferroptosis will be summarized. In this review, we will also illustrate the relationship between ferroptosis and tumors as well as its application in tumors from the perspective of HCC. Finally, we will summarize the current limitations and needs and provide perspectives related to the focus of development in the future.
Collapse
Affiliation(s)
- Tianhao Cong
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yingen Luo
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Fu
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yu Liu
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yujie Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiao Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
35
|
Sanidas I, Lee H, Rumde PH, Boulay G, Morris R, Golczer G, Stanzione M, Hajizadeh S, Zhong J, Ryan MB, Corcoran RB, Drapkin BJ, Rivera MN, Dyson NJ, Lawrence MS. Chromatin-bound RB targets promoters, enhancers, and CTCF-bound loci and is redistributed by cell-cycle progression. Mol Cell 2022; 82:3333-3349.e9. [PMID: 35981542 PMCID: PMC9481721 DOI: 10.1016/j.molcel.2022.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/19/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023]
Abstract
The interaction of RB with chromatin is key to understanding its molecular functions. Here, for first time, we identify the full spectrum of chromatin-bound RB. Rather than exclusively binding promoters, as is often described, RB targets three fundamentally different types of loci (promoters, enhancers, and insulators), which are largely distinguishable by the mutually exclusive presence of E2F1, c-Jun, and CTCF. While E2F/DP facilitates RB association with promoters, AP-1 recruits RB to enhancers. Although phosphorylation in CDK sites is often portrayed as releasing RB from chromatin, we show that the cell cycle redistributes RB so that it enriches at promoters in G1 and at non-promoter sites in cycling cells. RB-bound promoters include the classic E2F-targets and are similar between lineages, but RB-bound enhancers associate with different categories of genes and vary between cell types. Thus, RB has a well-preserved role controlling E2F in G1, and it targets cell-type-specific enhancers and CTCF sites when cells enter S-phase.
Collapse
Affiliation(s)
- Ioannis Sanidas
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Hanjun Lee
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Purva H Rumde
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Gaylor Boulay
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Robert Morris
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Gabriel Golczer
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Marcelo Stanzione
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Soroush Hajizadeh
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Jun Zhong
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Meagan B Ryan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Ryan B Corcoran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Benjamin J Drapkin
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA; UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Miguel N Rivera
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA.
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
36
|
Yang B, Cai Y, Zhu P, Jiang Z, Ao J, Zhang Q, Yuan W, Peng Z, Chen J, Wen Y, Chen Y, Wang Y, Shi Y, Zhu X, Ye X, Li F, Zhuang J, Wu X, Li Y, Fan X. Transmembrane protein 121 as a novel inhibitor of cervical cancer metastasis. Exp Ther Med 2022; 24:572. [PMID: 35978921 PMCID: PMC9366253 DOI: 10.3892/etm.2022.11509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/06/2022] [Indexed: 12/24/2022] Open
Abstract
Transmembrane protein 121 (TMEM121) is isolated from the chicken heart using subtraction hybridisation. A previous study by the authors indicated that TMEM121 is highly expressed in adult mouse hearts and acts as an inhibitor of pathological cardiac hypertrophy. In the present study, the association between TMEM121 and cancer was investigated using bioinformatics tools, including Tumour Immune Estimation Resource (TIMER) 2.0, cBioPortal, LinkedOmics analysis, Kaplan-Meier plotter and UALCAN analysis. The expression, genetic variation, gene interaction network and co-expression pattern of TMEM121 in tumours were analysed. The results revealed that TMEM121 was expressed in various tumours and significantly downregulated in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) when compared with its expression in paracancerous tissues, whereas the methylation level of its promoter was increased in tumour tissues. Additionally, associations between TMEM121 and the PI3K/AKT signalling pathway, as well as the expression of cancer-related molecules, were detected. The aforementioned bioinformatics analysis suggests that TMEM121 may be involved in the development of cervical cancer. Therefore, gain-of-function and loss-of-function experiments in HeLa cells were conducted to verify the role of TMEM121 in cervical cancer. The assay using Cell Counting Kit-8 (CCK-8) revealed that the cell viability of HeLa cells with TMEM121 overexpression was significantly reduced. High TMEM121 expression inhibited HeLa cell migration, as indicated by the decrease in the cell scratch healing rate. The western blot assay revealed that TMEM121 overexpression downregulated the expression of B-cell lymphoma 2 (BCL-2), cyclin D1, cyclin E2 and phosphorylated (p)-AKT, while upregulating that of p27, E-cadherin and p-p38. When TMEM121 was knocked down, retinoblastoma protein (RB), p53, p27, E-cadherin, p-JNK and p-p38 were inhibited, but cyclin E1 was promoted. By combining bioinformatics and experimental biology in the present study, the results demonstrated for the first time, to the best of our knowledge, that TMEM121 may be a novel inhibitor of cervical cancer that is linked to multiple signalling pathways, paving the way for the development of novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Boyu Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Yi Cai
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, P.R. China
| | - Zhigang Jiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Jieyu Ao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Qing Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Wuzhou Yuan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Zhilin Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Jimei Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, P.R. China
| | - Yao Wen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Yu Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, P.R. China
| | - Yuequn Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Yan Shi
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, P.R. China
| | - Xiaolan Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, P.R. China
| | - Xiangli Ye
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Fang Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, P.R. China
| | - Xiushan Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Yongqing Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Xiongwei Fan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| |
Collapse
|
37
|
JIB-04, a Pan-Inhibitor of Histone Demethylases, Targets Histone-Lysine-Demethylase-Dependent AKT Pathway, Leading to Cell Cycle Arrest and Inhibition of Cancer Stem-Like Cell Properties in Hepatocellular Carcinoma Cells. Int J Mol Sci 2022; 23:ijms23147657. [PMID: 35887001 PMCID: PMC9322929 DOI: 10.3390/ijms23147657] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/22/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
JIB-04, a pan-histone lysine demethylase (KDM) inhibitor, targets drug-resistant cells, along with colorectal cancer stem cells (CSCs), which are crucial for cancer recurrence and metastasis. Despite the advances in CSC biology, the effect of JIB-04 on liver CSCs (LCSCs) and the malignancy of hepatocellular carcinoma (HCC) has not been elucidated yet. Here, we showed that JIB-04 targeted KDMs, leading to the growth inhibition and cell cycle arrest of HCC, and abolished the viability of LCSCs. JIB-04 significantly attenuated CSC tumorsphere formation, growth, relapse, migration, and invasion in vitro. Among KDMs, the deficiency of KDM4B, KDM4D, and KDM6B reduced the viability of the tumorspheres, suggesting their roles in the function of LCSCs. RNA sequencing revealed that JIB-04 affected various cancer-related pathways, especially the PI3K/AKT pathway, which is crucial for HCC malignancy and the maintenance of LCSCs. Our results revealed KDM6B-dependent AKT2 expression and the downregulation of E2F-regulated genes via JIB-04-induced inhibition of the AKT2/FOXO3a/p21/RB axis. A ChIP assay demonstrated JIB-04-induced reduction in H3K27me3 at the AKT2 promoter and the enrichment of KDM6B within this promoter. Overall, our results strongly suggest that the inhibitory effect of JIB-04 on HCC malignancy and the maintenance of LCSCs is mediated via targeting the KDM6B-AKT2 pathway, indicating the therapeutic potential of JIB-04.
Collapse
|
38
|
Guzmán-Arocho YD, Nishino M. The discordant biomarker dilemma: What are the diagnostic implications of oropharyngeal squamous cell carcinomas with discrepant p16 and HPV results? Cancer Cytopathol 2022; 130:844-848. [PMID: 35713385 DOI: 10.1002/cncy.22616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/06/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Yaileen D Guzmán-Arocho
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Michiya Nishino
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
39
|
Hereditary retinoblastoma iPSC model reveals aberrant spliceosome function driving bone malignancies. Proc Natl Acad Sci U S A 2022; 119:e2117857119. [PMID: 35412907 PMCID: PMC9169787 DOI: 10.1073/pnas.2117857119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rare human hereditary disorders provide unequivocal evidence of the role of gene mutations in human disease pathogenesis and offer powerful insights into their influence on human disease development. Using a hereditary retinoblastoma (RB) patient–derived induced pluripotent stem cell (iPSC) platform, we elucidate the role of pRB/E2F3a in regulating spliceosomal gene expression. Pharmacological inhibition of the spliceosome in RB1-mutant cells preferentially increases splicing abnormalities of genes involved in cancer-promoting signaling and impairs cell proliferation and tumorigenesis. Expression of pRB/E2F3a–regulated spliceosomal proteins is negatively associated with pRB expression and correlates with poor clinical outcomes of osteosarcoma (OS) patients. Our findings strongly indicate that the spliceosome is an “Achilles’ heel” of RB1-mutant OS. The RB1 gene is frequently mutated in human cancers but its role in tumorigenesis remains incompletely defined. Using an induced pluripotent stem cell (iPSC) model of hereditary retinoblastoma (RB), we report that the spliceosome is an up-regulated target responding to oncogenic stress in RB1-mutant cells. By investigating transcriptomes and genome occupancies in RB iPSC–derived osteoblasts (OBs), we discover that both E2F3a, which mediates spliceosomal gene expression, and pRB, which antagonizes E2F3a, coregulate more than one-third of spliceosomal genes by cobinding to their promoters or enhancers. Pharmacological inhibition of the spliceosome in RB1-mutant cells leads to global intron retention, decreased cell proliferation, and impaired tumorigenesis. Tumor specimen studies and genome-wide TCGA (The Cancer Genome Atlas) expression profile analyses support the clinical relevance of pRB and E2F3a in modulating spliceosomal gene expression in multiple cancer types including osteosarcoma (OS). High levels of pRB/E2F3a–regulated spliceosomal genes are associated with poor OS patient survival. Collectively, these findings reveal an undiscovered connection between pRB, E2F3a, the spliceosome, and tumorigenesis, pointing to the spliceosomal machinery as a potentially widespread therapeutic vulnerability of pRB-deficient cancers.
Collapse
|
40
|
Fu H, Wu ZX, Lei ZN, Teng QX, Yang Y, Ashby CR, Lei Y, Lian Y, Chen ZS. The Resistance of Cancer Cells to Palbociclib, a Cyclin-Dependent Kinase 4/6 Inhibitor, is Mediated by the ABCB1 Transporter. Front Pharmacol 2022; 13:861642. [PMID: 35350768 PMCID: PMC8957877 DOI: 10.3389/fphar.2022.861642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Palbociclib was approved by the United States Food and Drug Administration for use, in combination with letrozole, as a first-line treatment for estrogen receptor-positive/human epidermal growth factor receptor 2-negative (ER+/HER2-) postmenopausal metastatic breast cancer. However, recent studies show that palbociclib may be an inhibitor of the ABCB1 transporter, although this remains to be elucidated. Therefore, we conducted experiments to determine the interaction of palbociclib with the ABCB1 transporter. Our in vitro results indicated that the efficacy of palbociclib was significantly decreased in the ABCB1-overexpressing cell lines. Furthermore, the resistance of ABCB1-overexpressing cells to palbociclib was reversed by 3 μM of the ABCB1 inhibitor, verapamil. Moreover, the incubation of ABCB1-overexpressing KB-C2 and SW620/Ad300 cells with up to 5 μM of palbociclib for 72 h, significantly upregulated the protein expression of ABCB1. The incubation with 3 µM of palbociclib for 2h significantly increased the intracellular accumulation of [3H]-paclitaxel, a substrate of ABCB1, in ABCB1 overexpressing KB-C2 cells but not in the corresponding non-resistant parental KB-3-1 cell line. However, the incubation of KB-C2 cells with 3 μM of palbociclib for 72 h decreased the intracellular accumulation of [3H]-paclitaxel due to an increase in the expression of the ABCB1 protein. Palbociclib produced a concentration-dependent increase in the basal ATPase activity of the ABCB1 transporter (EC50 = 4.73 μM). Molecular docking data indicated that palbociclib had a high binding affinity for the ABCB1 transporter at the substrate binding site, suggesting that palbociclib may compete with other ABCB1 substrates for the substrate binding site of the ABCB1. Overall, our results indicate that palbociclib is a substrate for the ABCB1 transporter and that its in vitro anticancer efficacy is significantly decreased in cancer cells overexpressing the ABCB1.
Collapse
Affiliation(s)
- Han Fu
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,Guangdong Provincial Key Laboratory of Digestive Cancer Research, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Yixiong Lei
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Yuyin Lian
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| |
Collapse
|
41
|
Li X. Cyclin-Dependent Kinase 4 and 6 Inhibitors as Breast Cancer Therapy: Research Progress and Prospects. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02599-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
42
|
Montaser Kouhsari L, LeBoit PE, McCalmont TH, Hinds B, North JP. Histopathologic and Genetic Findings in Atypical Spindle Cell/Pleomorphic Lipomatous Tumors and Atypical Pleomorphic Fibromas. J Cutan Pathol 2022; 49:623-631. [PMID: 35332938 DOI: 10.1111/cup.14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 02/15/2022] [Accepted: 03/13/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Spindle cell lipomas, pleomorphic lipomas (SCL/PLs) and pleomorphic fibromas (PF) are tumors with loss of retinoblastoma (RB). The latest World Health Organization classification includes a category of atypical spindle cell/pleomorphic lipomatous tumors (ASPLT) that encompasses tumors in this spectrum that show atypical histopathologic features. We have observed PFs that show similar atypical features. METHODS Cases of SCL/PL and PF with atypical features were collected from tissue archives between 2010-2019. Genetic alterations were investigated using array comparative genomic hybridization (aCGH). RESULT Of 15 cases found, most tumors were dermal-based with fibrocytic or fibroadipocytic appearance and occasional lipoblasts. All cases had a high proliferation index with atypical mitotic figures in 71% of cases. Chromosome 13q loss was present in all cases with CGH data. Additional recurrent chromosomal losses included 17p, 16q, 17q, 20p, 4, and 10. No recurrence was found in limited follow up. CONCLUSIONS ASPLTs are characterized by loss of RB, prominent nuclear pleomorphism, mitotic activity including atypical mitotic figures, and genomic instability with multiple chromosomal aberrations. A similar group of tumors with these histopathologic features lacks lipomatous differentiation, and we propose the diagnosis of atypical PF as a fibromatous variant of ASPLT. Limited clinical follow up appears benign.
Collapse
Affiliation(s)
- Laleh Montaser Kouhsari
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| | - Philip E LeBoit
- Departments of Pathology and Dermatology, University of California San Francisco, San Francisco, California, United States
| | - Timothy H McCalmont
- Departments of Pathology and Dermatology, University of California San Francisco, San Francisco, California, United States
| | - Brian Hinds
- Department of Dermatology, University of California San Diego, San Diego, California, United States
| | - Jeffrey P North
- Departments of Pathology and Dermatology, University of California San Francisco, San Francisco, California, United States
| |
Collapse
|
43
|
Miller KJ, Asim M. Unravelling the Role of Kinases That Underpin Androgen Signalling in Prostate Cancer. Cells 2022; 11:cells11060952. [PMID: 35326402 PMCID: PMC8946764 DOI: 10.3390/cells11060952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
The androgen receptor (AR) signalling pathway is the key driver in most prostate cancers (PCa), and is underpinned by several kinases both upstream and downstream of the AR. Many popular therapies for PCa that target the AR directly, however, have been circumvented by AR mutation, such as androgen receptor variants. Some upstream kinases promote AR signalling, including those which phosphorylate the AR and others that are AR-regulated, and androgen regulated kinase that can also form feed-forward activation circuits to promotes AR function. All of these kinases represent potentially druggable targets for PCa. There has generally been a divide in reviews reporting on pathways upstream of the AR and those reporting on AR-regulated genes despite the overlap that constitutes the promotion of AR signalling and PCa progression. In this review, we aim to elucidate which kinases—both upstream and AR-regulated—may be therapeutic targets and require future investigation and ongoing trials in developing kinase inhibitors for PCa.
Collapse
|
44
|
Cetin B, Wabl CA, Gumusay O. CDK4/6 inhibitors: mechanisms of resistance and potential biomarkers of responsiveness in breast cancer. Future Oncol 2022; 18:1143-1157. [PMID: 35137602 DOI: 10.2217/fon-2021-0842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hormone receptor (HR)-positive, HER2-negative tumors represent the most common form of metastatic breast cancer (MBC), and endocrine therapy has been the mainstay treatment for several decades. Recently, a novel drug class called CDK4/6 inhibitors in combination with endocrine therapy have remarkably improved the outcome of patients with HR-positive, HER2-negative MBC by targeting the cell cycle machinery and overcoming aspects of endocrine resistance. Several potential cell-cycle-specific and nonspecific mechanisms of resistance to CDK4/6 inhibitors have been reported in recent studies. This review discusses potential resistance mechanisms to CDK4/6 inhibitors, the use of biomarkers to guide treatment for HR-positive, HER2-negative MBC and possible approaches to overcome resistance to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Bulent Cetin
- Department of Internal Medicine, Division of Medical Oncology, Suleyman Demirel University Faculty of Medicine, Isparta, 32260, Turkey
| | - Chiara A Wabl
- University of California, San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - Ozge Gumusay
- University of California Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94143, USA
| |
Collapse
|
45
|
Kuczler MD, Zieren RC, Dong L, de Reijke TM, Pienta KJ, Amend SR. Advancements in the identification of EV derived mRNA biomarkers for liquid biopsy of clear cell renal cell carcinomas. Urology 2022; 160:87-93. [PMID: 34793840 PMCID: PMC8882144 DOI: 10.1016/j.urology.2021.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To propose EV-derived mRNA as a potential diagnostic biomarker detecting the presence of clear cell renal cell carcinoma (ccRCC). There is currently no kidney cancer specific screening or diagnostic technology. Therefore, one-third of kidney cancer diagnoses occur after the cancer has metastasized and is past curative measures MATERIALS AND METHODS: Urine, plasma, normal tumor adjacent tissue, and tumor tissue was collected from a limited population of ccRCC patients. Extracellular vesicle (EV) isolation was performed on each sample, followed by mRNA extraction from isolated EVs. NanoString nCounter technology was utilized to count the mRNA transcripts present in matched plasma, urine, tumor tissue, and normal tumor adjacent tissue samples. RESULTS 770 mRNA transcripts related to gene's affecting cancer's progression and metastasis processes were evaluated. Four EV derived mRNA transcripts (ALOX5, RBL2, VEGFA, TLK2) were found specific to urine and tumor tissue samples. CONCLUSION Four candidate RCC-specific urine EV biomarkers were identified. However, due to the lack of a true negative control and urine collection techniques, further re-examination is necessary for validation. This study demonstrates the promise of defining disease-specific EV biomarkers in liquid biopsy patient samples.
Collapse
Affiliation(s)
- MD Kuczler
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine
| | - RC Zieren
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine,Department of Urology, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - L Dong
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine,Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine
| | - TM de Reijke
- Department of Urology, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - KJ Pienta
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine
| | - SR Amend
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine
| |
Collapse
|
46
|
Integrating CDK4/6 inhibitors in the treatment of patients with early breast cancer. Breast 2021; 62 Suppl 1:S70-S79. [PMID: 34930649 PMCID: PMC9097805 DOI: 10.1016/j.breast.2021.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/07/2021] [Accepted: 12/12/2021] [Indexed: 12/13/2022] Open
Abstract
CDK4/6 inhibitors have an established role in the treatment of hormone receptor positive HER2-negative advanced breast cancer. All studies conducted in metastatic breast cancer showed a benefit in delaying progression when added to standard endocrine therapy, regardless of therapy line, pretreatment, menopausal status, site of metastasis, CDK4/6 inhibitor used and associated endocrine therapy. A benefit in overall survival has also been demonstrated. In early breast cancer, only the MonarchE study has shown an improved invasive disease-free survival with abemaciclib taken for 2 years, whereas the Penelope-B did not meet the primary endpoint and the PALLAS study was terminated early for futility. Studies conducted in the neoadjuvant setting might help to explain the discordant results. CDK4/6 inhibitors increase PFS in advanced breast cancer in all subgroups. 2-years abemaciclib added to endocrine therapy improves invasive disease-free survival in high-risk breast cancer. Palbociclib did not improve invasive disease-free survival in early breast cancer.
Collapse
|
47
|
Jia M, Zhang H, Qin Q, Hou Y, Zhang X, Chen D, Zhang H, Chen Y. Ferroptosis as a new therapeutic opportunity for nonviral liver disease. Eur J Pharmacol 2021; 908:174319. [PMID: 34252441 DOI: 10.1016/j.ejphar.2021.174319] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/04/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022]
Abstract
Nonviral liver disease is a global public health problem due to its high mortality and morbidity. However, its underlying mechanism is unclear. Ferroptosis is a novel form of cell death that is involved in a variety of disease processes. Both abnormal iron metabolism (e.g., iron overload) and lipid peroxidation, which is induced by deletion of glutathione (GSH) or glutathione peroxidase 4 (GPX4), and the accumulation of polyunsaturated fatty acid-containing phospholipids (PUFA-PLs) trigger ferroptosis. Recently, ferroptosis has been involved in the pathological process of nonviral liver diseases [including alcohol-related liver disease (ALD); nonalcoholic fatty liver disease (NAFLD); hereditary hemochromatosis (HH); drug-, ischemia/reperfusion- or immune-induced liver injury; liver fibrosis; and liver cancer]. Hepatocyte ferroptosis is activated in ALD; NAFLD; HH; drug-, ischemia/reperfusion- or immune-induced liver injury; and liver fibrosis, whereas hepatic stellate cell and liver cancer cell ferroptosis are inhibited in liver fibrosis and liver cancer, respectively. Thus, ferroptosis is an ideal target for nonviral liver diseases. In the present review, we discuss the latest findings on ferroptosis and potential drugs targeting ferroptosis for nonviral liver diseases. This review will highlight further directions for the treatment and prevention of nonviral liver diseases.
Collapse
Affiliation(s)
- Min Jia
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Hongmei Zhang
- The First Affiliated Hospital of Xi'an Medical University, Xi'an Medical University, Xi'an, Shaanxi, 710077, China
| | - Qiaohong Qin
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Ying Hou
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xin Zhang
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Di Chen
- School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Hong Zhang
- Department of Infectious Diseases, Shaanxi Provincial People's Hospital (the Affiliated Hospital of Xi'an Medical University), Xi'an Medical University, Xi'an, Shaanxi, 710068, China.
| | - Yulong Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
48
|
Wu S, Li T, Liu W, Huang Y. Ferroptosis and Cancer: Complex Relationship and Potential Application of Exosomes. Front Cell Dev Biol 2021; 9:733751. [PMID: 34568341 PMCID: PMC8455874 DOI: 10.3389/fcell.2021.733751] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
Cell death induction has become popular as a novel cancer treatment. Ferroptosis, a newly discovered form of cell death, features regulated, iron-dependent accumulation of lipid hydroperoxides. Since this word “ferroptosis” was coined, numerous studies have examined the complex relationship between ferroptosis and cancer. Here, starting from the intrinsic hallmarks of cancer and cell death, we discuss the theoretical basis of cell death induction as a cancer treatment. We review various aspects of the relationship between ferroptosis and cancer, including the genetic basis, epigenetic modification, cancer stem cells, and the tumor microenvironment, to provide information and support for further research on ferroptosis. We also note that exosomes can be applied in ferroptosis-based therapy. These extracellular vesicles can deliver different molecules to modulate cancer cells and cell death pathways. Using exosomes to control ferroptosis occurring in targeted cells is promising for cancer therapy.
Collapse
Affiliation(s)
- Shuang Wu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Tianye Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
49
|
Ben-Salem S, Venkadakrishnan VB, Heemers HV. Novel insights in cell cycle dysregulation during prostate cancer progression. Endocr Relat Cancer 2021; 28:R141-R155. [PMID: 33830069 PMCID: PMC8496945 DOI: 10.1530/erc-20-0517] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/07/2021] [Indexed: 11/08/2022]
Abstract
Prostate cancer (CaP) remains the second leading cause of cancer deaths in Western men. These deaths occur because metastatic CaP acquires resistance to available treatments. The novel and functionally diverse treatment options that have been introduced in the clinic over the past decade each eventually induce resistance for which the molecular basis is diverse. Both initiation and progression of CaP have been associated with enhanced cell proliferation and cell cycle dysregulation. A better understanding of the specific pro-proliferative molecular shifts that control cell division and proliferation during CaP progression may ultimately overcome treatment resistance. Here, we examine literature for support of this possibility. We start by reviewing recently renewed insights in prostate cell types and their proliferative and oncogenic potential. We then provide an overview of the basic knowledge on the molecular machinery in charge of cell cycle progression and its regulation by well-recognized drivers of CaP progression such as androgen receptor and retinoblastoma protein. In this respect, we pay particular attention to interactions and reciprocal interplay between cell cycle regulators and androgen receptor. Somatic alterations that impact the cell cycle-associated and -regulated genes encoding p53, PTEN and MYC during progression from treatment-naïve, to castration-recurrent, and in some cases, neuroendocrine CaP are discussed. We considered also non-genomic events that impact cell cycle determinants, including transcriptional, epigenetic and micro-environmental switches that occur during CaP progression. Finally, we evaluate the therapeutic potential of cell cycle regulators and address challenges and limitations in the approaches modulating their action for CaP treatment.
Collapse
Affiliation(s)
- Salma Ben-Salem
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Hannelore V Heemers
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
50
|
Magnes T, Wagner S, Kiem D, Weiss L, Rinnerthaler G, Greil R, Melchardt T. Prognostic and Predictive Factors in Advanced Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2021; 22:4981. [PMID: 34067112 PMCID: PMC8125786 DOI: 10.3390/ijms22094981] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous disease arising from the mucosa of the upper aerodigestive tract. Despite multimodality treatments approximately half of all patients with locally advanced disease relapse and the prognosis of patients with recurrent or metastatic HNSCC is dismal. The introduction of checkpoint inhibitors improved the treatment options for these patients and pembrolizumab alone or in combination with a platinum and fluorouracil is now the standard of care for first-line therapy. However, approximately only one third of unselected patients respond to this combination and the response rate to checkpoint inhibitors alone is even lower. This shows that there is an urgent need to improve prognostication and prediction of treatment benefits in patients with HNSCC. In this review, we summarize the most relevant risk factors in the field and discuss their roles and limitations. The human papilloma virus (HPV) status for patients with oropharyngeal cancer and the combined positive score are the only biomarkers consistently used in clinical routine. Other factors, such as the tumor mutational burden and the immune microenvironment have been highly studied and are promising but need validation in prospective trials.
Collapse
Affiliation(s)
- Teresa Magnes
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (T.M.); (S.W.); (D.K.); (L.W.); (G.R.); (R.G.)
| | - Sandro Wagner
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (T.M.); (S.W.); (D.K.); (L.W.); (G.R.); (R.G.)
| | - Dominik Kiem
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (T.M.); (S.W.); (D.K.); (L.W.); (G.R.); (R.G.)
| | - Lukas Weiss
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (T.M.); (S.W.); (D.K.); (L.W.); (G.R.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
| | - Gabriel Rinnerthaler
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (T.M.); (S.W.); (D.K.); (L.W.); (G.R.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
| | - Richard Greil
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (T.M.); (S.W.); (D.K.); (L.W.); (G.R.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
| | - Thomas Melchardt
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (T.M.); (S.W.); (D.K.); (L.W.); (G.R.); (R.G.)
- Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
| |
Collapse
|