1
|
Poudineh M, Mohammadyari F, Parsamanesh N, Jamialahmadi T, Kesharwani P, Sahebkar A. Cell and gene therapeutic approaches in non-alcoholic fatty liver disease. Gene 2025; 956:149466. [PMID: 40189164 DOI: 10.1016/j.gene.2025.149466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/14/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) refers to a range of conditions marked by the buildup of triglycerides in liver cells, accompanied by inflammation, which contributes to liver damage, clinical symptoms, and histopathological alterations. Multiple molecular pathways contribute to NAFLD pathogenesis, including immune dysregulation, endoplasmic reticulum stress, and tissue injury. Both the innate and adaptive immune systems play crucial roles in disease progression, with intricate crosstalk between liver and immune cells driving NAFLD development. Among emerging therapeutic strategies, cell and gene-based therapies have shown promise. This study reviews the pathophysiological mechanisms of NAFLD and explores the therapeutic potential of cell-based interventions, highlighting their immunomodulatory effects, inhibition of hepatic stellate cells, promotion of hepatocyte regeneration, and potential for hepatocyte differentiation. Additionally, we examine gene delivery vectors designed to target NAFLD, focusing on their role in engineering hepatocytes through gene addition or editing to enhance therapeutic efficacy.
Collapse
Affiliation(s)
| | | | - Negin Parsamanesh
- Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Tananz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Centre for Research Impact and Outcome, Chitkara University, Rajpura 140417, Punjab, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Greco A, Frederix GWJ, Hooft L, Ten Ham RMT. A Systematic Review of Challenges and Opportunities in the Implementation of Managed Entry Agreements for Advanced Therapy Medicinal Products. Clin Ther 2025; 47:e16-e26. [PMID: 39706763 DOI: 10.1016/j.clinthera.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/18/2024] [Accepted: 11/18/2024] [Indexed: 12/23/2024]
Abstract
PURPOSE Managed Entry Agreements (MEAs) are agreements between firms and competent authorities for pricing and reimbursement, designed to enable coverage of new medicines while managing uncertainties around their financial impact or performance. Although these agreements can facilitate patient access, their complexity and costs seem to dampen enthusiasm for implementation. Nevertheless, MEAs remain a potential route, particularly for high-cost drugs with uncertain value claims. Given their pivotal role in bridging Advanced Therapy Medicinal Products (ATMPs) to patients, their foreseeable future implementation calls for a specific investigation of their associated challenges and opportunities. Therefore, this work aims to identify challenges and opportunities in implementing MEAs specifically for ATMPs. METHODS A systematic literature review was conducted on PubMed, MEDLINE, Scopus, and Google Scholar, based on the updated Preferred Reporting Items for Systematic Review and Meta-Analysis. This has been supplemented by a snowball search. Through the thematic content analysis, opportunities and challenges were identified and grouped into themes and subthemes. Afterward, the subgroup analysis was performed to investigate challenges and opportunities with outcome-based agreements (OBAs) versus financial-based agreements (FBAs), jurisdiction, and ATMP type. FINDINGS Of the 787 peer-reviewed articles, 42 met the inclusion criteria. Challenges and opportunities were clustered into the mentioned themes: evidence generation and data management, financial and reimbursement, administration and resources, negotiation, and governance, law, and regulations. Of note, no specific challenges or opportunities were found to be cell- or gene-therapy-specific, but certain challenges seem amplified for ATMPs. Several differences emerged per MEA type and jurisdiction. OBAs are described to reward innovative and effective treatments and boost research and development (R&D) returns. FBAs improve cost-effectiveness ratios but can negatively affect curative ATMP's revenues. Still, their versatility facilitates payer engagement in MEA combinations (eg, OBA with spread payments). The US decentralized health care system reported additional implementation challenges to OBAs. Each payer internally decides on reimbursement, and coordination among private payers is hindered by antitrust law. Yet, a new Cell and Gene Therapy Access model has been proposed. This would allow manufacturers to negotiate OBAs directly with the Centers for Medicare & Medicaid Services avoiding individual negotiation with each state. In Europe, there is an evident interest in implementing spread payments, yet accounting rules currently hamper their implementation. IMPLICATIONS This work offers insights into challenges and opportunities in MEAs implementation for ATMPs by investigating differences in MEA types and jurisdictions. Our findings provide significant insights that may help move successful MEA implementation forward, improving patient access to ATMPs.
Collapse
Affiliation(s)
- Andrea Greco
- Department of Epidemiology & Health Economics, Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Geert W J Frederix
- Department of Epidemiology & Health Economics, Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Lotty Hooft
- Department of Epidemiology & Health Economics, Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands; Cochrane Netherlands, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Renske M T Ten Ham
- Department of Epidemiology & Health Economics, Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Yang Y, Bian L, Cheng Y, Xu Y, Shao H, Rao J, Ge S, Gong J, Jiang M, Zheng X, Liu L, Ma S, Liu X, Cheng T, Gao C. The Role and Challenges of Investigator-Initiated Trials in the Cell and Gene Therapy Products Boom in Mainland China. Clin Transl Sci 2025; 18:e70148. [PMID: 39936621 PMCID: PMC11815567 DOI: 10.1111/cts.70148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
As cutting-edge technologies in biomedicine, cell and gene therapy (CGT) products demonstrate immense potential in treating cancer, rare diseases, and genetic disorders, thereby driving the importance of clinical research in this area. This study analyzes the growth trends and key characteristics of 1033 Investigator-Initiated Trials (IITs) conducted by mainland Chinese institutions in the CGT field. The results show that IITs have played a positive role in the early proof-of-concept of CGT products, helping to obtain preliminary safety and efficacy data, and exploring the combination of CGT products with other therapies. Additionally, this study discusses the regional distribution, therapeutic areas, and challenges faced by IITs in the development of CGT products in China. Based on these findings, policy suggestions are proposed to optimize the regulation of IITs in mainland China, such as improving regulatory frameworks and enhancing technical guidance. It is hoped that these measures will further improve the efficiency and quality of IITs, fully utilize the large patient base and abundant clinical resources, and support the development of high-quality CGT products in mainland China.
Collapse
Affiliation(s)
- Yifan Yang
- Changping LaboratoryBeijingChina
- China Pharmaceutical UniversityNanjingChina
| | | | - Yuan Cheng
- Changping LaboratoryBeijingChina
- Beijing Advanced and Innovative Medical Device Industrialization AllianceBeijingChina
| | - Yan Xu
- Peking University Third HospitalBeijingChina
| | - Hui Shao
- Changping LaboratoryBeijingChina
| | - Jian Rao
- Changping LaboratoryBeijingChina
| | | | | | | | | | - Lijun Liu
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical SciencesTianjinChina
| | - Shihui Ma
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical SciencesTianjinChina
| | - Xuan Liu
- Tsinghua Changgung HospitalBeijingChina
| | - Tao Cheng
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical SciencesTianjinChina
| | | |
Collapse
|
4
|
Nonaka CKV, Costa-Ferro ZSM, Arraes ACP, Weber TL, de Aragão França LS, Silva KN, Souza BSDF. Validation of an automated quality control method to test sterility of two advanced therapy medicinal products: Mesenchymal stromal cells and their extracellular vesicles. Hematol Transfus Cell Ther 2025; 47:103727. [PMID: 39863436 PMCID: PMC12011113 DOI: 10.1016/j.htct.2024.09.2486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 05/22/2024] [Accepted: 09/27/2024] [Indexed: 01/27/2025] Open
Abstract
Mesenchymal stromal cells are multipotent cells present in various tissues that are widely studied for relevant therapeutic potential due to their paracrine immunomodulatory and tissue regenerating properties. Many mesenchymal stromal cell-based products are under investigation for the treatment of different clinical conditions. Recently, the therapeutic potential of the extracellular vesicles released by these cells has been under focus, with emphasis on clinical translation. Sterility testing during manufacture and before the final release of the advanced therapy medicinal products to markets is a critical quality control measure. Therefore, analytical methods for sterility testing in addition to complying with pharmacopeial standards must validate the adequacy of each product and evaluate matrix interference. Here, an automated system for sterility control of reagents used in the bioprocessing of mesenchymal stromal cells and their extracellular vesicles was validated. Reagents (culture media, antibiotics, and excipients in the final product) were inoculated with 10 or 50 colony forming units of microorganisms in BACTEC™ Peds Plus™ T/F aerobic/anaerobic bottles. Under aerobic conditions (BACTEC™ Peds Plus™ T/F aerobic bottles), microbial growth was detected within an acceptable incubation time according to regulatory guidelines. The results of this study corroborate other studies that use automated sterility testing as an alternative to the manual USP<71> compendial method to detect microorganisms close to the limit of detection within an acceptable incubation time.
Collapse
Affiliation(s)
| | | | | | | | | | - Katia Nunes Silva
- Hospital São Rafael, Salvador, Bahia, Brazil; Instituto D'Or de Pesquisa e Ensino (IDOR), Salvador, Bahia, Brazil
| | - Bruno Solano de Freitas Souza
- Hospital São Rafael, Salvador, Bahia, Brazil; Instituto D'Or de Pesquisa e Ensino (IDOR), Salvador, Bahia, Brazil; Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil.
| |
Collapse
|
5
|
Gryguc A, Maciulaitis J, Mickevicius L, Laurinavicius A, Sutkeviciene N, Grigaleviciute R, Zigmantaite V, Maciulaitis R, Bumblyte IA. Prevention of Transition from Acute Kidney Injury to Chronic Kidney Disease Using Clinical-Grade Perinatal Stem Cells in Non-Clinical Study. Int J Mol Sci 2024; 25:9647. [PMID: 39273595 PMCID: PMC11394957 DOI: 10.3390/ijms25179647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Acute kidney injury (AKI) is widely recognized as a precursor to the onset or rapid progression of chronic kidney disease (CKD). However, there is currently no effective treatment available for AKI, underscoring the urgent need for the development of new strategies to improve kidney function. Human placental mesenchymal stromal cells (hpMSCs) were isolated from donor placentas, cultured, and characterized with regard to yield, viability, flow cytometry, and potency. To mimic AKI and its progression to CKD in a rat model, a dedicated sensitive non-clinical bilateral kidney ischemia-reperfusion injury (IRI) model was utilized. The experimental group received 3 × 105 hpMSCs into each kidney, while the control group received IRI and saline and the untreated group received IRI only. Urine, serum, and kidney tissue samples were collected over a period of 28 days. The hpMSCs exhibited consistent yields, viability, and expression of mesenchymal lineage markers, and were also shown to suppress T cell proliferation in a dose-dependent manner. To ensure optimal donor selection, manufacturing optimization, and rigorous quality control, the rigorous Good Manufacturing Practice (GMP) conditions were utilized. The results indicated that hpMSCs increased rat survival rates and improved kidney function by decreasing serum creatinine, urea, potassium, and fractionated potassium levels. Furthermore, the study demonstrated that hpMSCs can prevent the initial stages of kidney structural fibrosis and improve kidney function in the early stages by mitigating late interstitial fibrosis and tubular atrophy. Additionally, a robust manufacturing process with consistent technical parameters was established.
Collapse
Affiliation(s)
- Agne Gryguc
- Department of Nephrology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Hospital of Lithuanian University of Health Science, 50161 Kaunas, Lithuania
| | - Justinas Maciulaitis
- Institute of Cardiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Lukas Mickevicius
- Department of Urology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Arvydas Laurinavicius
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| | - Neringa Sutkeviciene
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Ramune Grigaleviciute
- Biological Research Center, Veterinary Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Vilma Zigmantaite
- Biological Research Center, Veterinary Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Romaldas Maciulaitis
- Department of Nephrology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Inga Arune Bumblyte
- Department of Nephrology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Hospital of Lithuanian University of Health Science, 50161 Kaunas, Lithuania
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| |
Collapse
|
6
|
Deng J, Zhao Z, Yeo XY, Yang C, Yang J, Ferhan AR, Jin B, Oh C, Jung S, Suresh S, Cho NJ. Plant-Based Shape Memory Cryogel for Hemorrhage Control. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311684. [PMID: 39011812 DOI: 10.1002/adma.202311684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 06/24/2024] [Indexed: 07/17/2024]
Abstract
The escalating global demand for sustainable manufacturing, motivated by concerns over energy conservation and carbon footprints, encounters challenges due to insufficient renewable materials and arduous fabrication procedures to fulfill specific requirements in medical and healthcare systems. Here, biosafe pollen cryogel is engineered as effective hemostats without additional harmful crosslinkers to treat deep noncompressible wounds. A straightforward and low-energy approach is involved in forming stable macroporous cryogel, benefiting from the unique micro-hierarchical structures and chemical components of non-allergenic plant pollen. It is demonstrated that the pollen cryogel exhibits rapid water/blood-triggered shape-memory properties within 2 s. Owing to their inherent nano/micro hierarchical structure and abundant chemical functional groups on the pollen surface, the pollen cryogel shows effective hemostatic performance in a mouse liver penetration model, which is easily removed after usage. Overall, the self-crosslinking pollen cryogel in this work pioneers a framework of potential clinical applications for the first-hand treatment on deep noncompressible wounds.
Collapse
Affiliation(s)
- J Deng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Centre for Cross Economy, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Z Zhao
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - X Y Yeo
- Department of Medical Science, College of Medicine, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - C Yang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - J Yang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - A R Ferhan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Centre for Cross Economy, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - B Jin
- Department of Medical Science, College of Medicine, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - C Oh
- Department of Medical Science, College of Medicine, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - S Jung
- Department of Medical Science, College of Medicine, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - S Suresh
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - N-J Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Centre for Cross Economy, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
7
|
Shi J, Chen X, Hu H, Ung COL. The evolving regulatory system of advanced therapy medicinal products in China: a documentary analysis using the World Health Organization Global Benchmarking Tool standards. Cytotherapy 2024; 26:954-966. [PMID: 38739075 DOI: 10.1016/j.jcyt.2024.04.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024]
Abstract
Advanced therapy medicinal products (ATMPs) are rapidly evolving to offer new treatment options. The scientific, technical, and clinical complexities subject drug regulatory authorizes to regulatory challenges. To advance the regulatory capacity for ATMPs, the National Medical Products Administration in China made changes to the drug regulatory system and developed regulatory science with the goal of addressing patient needs and encouraging innovation. This study aimed to systematically identify the regulatory evidence on ATMPs in China under the guidance of an overarching framework from the World Health Organization Global Benchmarking Tool. It was found that China's administrative authorities at all levels have issued a number of policy documents to promote the development of ATMPs, covering biopharmaceutical products research and development (n = 14), biopharmaceutical industry development (n = 9), high-quality development of medical institutions (n = 1), specific development plans/projects (n = 6) and specific regional development (n = 4). The legal and regulatory framework of ATMPs in China has been established and is subject to continuous adjustment in various aspects including regulations (n = 3), departmental rules or administrative normative documents (n = 22), and technical guidance (n = 15). As the regulatory reform continues, the drug review processes have been revised, and various technical standards have been launched, which aim to establish a regulatory approach that oversees the full life-cycle development of ATMPs in the country. The limited number of investigational new drug applications and approved ATMPs suggests a lag remains between the translation of advanced therapeutic technologies into clinically available medical products. To accelerate the translational research of ATMP in countries such as China, developing and adopting real-world evidence generated from clinical use in designated healthcare facilities to support scientific decision-making in ATMP regulation is warranted. The enhancement of regulatory capacity building and multi-stakeholder collaborations should also be encouraged to facilitate the timely evaluation of promising ATMPs to meet more patient needs.
Collapse
Affiliation(s)
- Junnan Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Xianwen Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Hao Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China; Centre for Pharmaceutical Regulatory Sciences, University of Macau, Taipa, Macao SAR, China; Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Carolina Oi Lam Ung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China; Centre for Pharmaceutical Regulatory Sciences, University of Macau, Taipa, Macao SAR, China; Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China.
| |
Collapse
|
8
|
Mukhopadhyay R, Chandel P, Prasad K, Chakraborty U. Machine learning aided single cell image analysis improves understanding of morphometric heterogeneity of human mesenchymal stem cells. Methods 2024; 225:62-73. [PMID: 38490594 DOI: 10.1016/j.ymeth.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024] Open
Abstract
The multipotent stem cells of our body have been largely harnessed in biotherapeutics. However, as they are derived from multiple anatomical sources, from different tissues, human mesenchymal stem cells (hMSCs) are a heterogeneous population showing ambiguity in their in vitro behavior. Intra-clonal population heterogeneity has also been identified and pre-clinical mechanistic studies suggest that these cumulatively depreciate the therapeutic effects of hMSC transplantation. Although various biomarkers identify these specific stem cell populations, recent artificial intelligence-based methods have capitalized on the cellular morphologies of hMSCs, opening a new approach to understand their attributes. A robust and rapid platform is required to accommodate and eliminate the heterogeneity observed in the cell population, to standardize the quality of hMSC therapeutics globally. Here, we report our primary findings of morphological heterogeneity observed within and across two sources of hMSCs namely, stem cells from human exfoliated deciduous teeth (SHEDs) and human Wharton jelly mesenchymal stem cells (hWJ MSCs), using real-time single-cell images generated on immunophenotyping by imaging flow cytometry (IFC). We used the ImageJ software for identification and comparison between the two types of hMSCs using statistically significant morphometric descriptors that are biologically relevant. To expand on these insights, we have further applied deep learning methods and successfully report the development of a Convolutional Neural Network-based image classifier. In our research, we introduced a machine learning methodology to streamline the entire procedure, utilizing convolutional neural networks and transfer learning for binary classification, achieving an accuracy rate of 97.54%. We have also critically discussed the challenges, comparisons between solutions and future directions of machine learning in hMSC classification in biotherapeutics.
Collapse
Affiliation(s)
- Risani Mukhopadhyay
- Manipal Institute of Regenerative Medicine, Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Pulkit Chandel
- Manipal School of Information Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Keerthana Prasad
- Manipal School of Information Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Uttara Chakraborty
- Manipal Institute of Regenerative Medicine, Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
9
|
Allahham N, Colic I, Rayner MLD, Gurnani P, Phillips JB, Rahim AA, Williams GR. Advanced Formulation Approaches for Emerging Therapeutic Technologies. Handb Exp Pharmacol 2024; 284:343-365. [PMID: 37733107 DOI: 10.1007/164_2023_695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
In addition to proteins, discussed in the Chapter "Advances in Vaccine Adjuvants: Nanomaterials and Small Molecules", there are a wide range of alternatives to small molecule active ingredients. Cells, extracellular vesicles, and nucleic acids in particular have attracted increasing research attention in recent years. There are now a number of products on the market based on these emerging technologies, the most famous of which are the mRNA-based vaccines against SARS-COV-2. These advanced therapeutic moieties are challenging to formulate however, and there remain significant challenges for their more widespread use. In this chapter, we consider the potential and bottlenecks for developing further medical products based on these systems. Cells, extracellular vesicles, and nucleic acids will be discussed in terms of their mechanism of action, the key requirements for translation, and how advanced formulation approaches can aid their future development. These points will be presented with selected examples from the literature, and with a focus on the formulations which have made the transition to clinical trials and clinical products.
Collapse
Affiliation(s)
- Nour Allahham
- UCL School of Pharmacy, University College London, London, UK
| | - Ines Colic
- UCL School of Pharmacy, University College London, London, UK
| | | | - Pratik Gurnani
- UCL School of Pharmacy, University College London, London, UK
| | | | - Ahad A Rahim
- UCL School of Pharmacy, University College London, London, UK
| | | |
Collapse
|
10
|
Diaz-Solano D, Sadri B, Peshkova M, Shpichka A, Smirnova O, Shams R, Timashev P, Vosough M. Advanced Therapeutic Medicinal Products in Bone and Cartilage Defects. Curr Rev Clin Exp Pharmacol 2024; 19:355-369. [PMID: 38275042 DOI: 10.2174/0127724328274436231207062008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 01/27/2024]
Abstract
The number of patients with functional loss of bone and cartilage tissue has shown an increasing trend. Insufficient or inappropriate conventional treatments applied for trauma, orthopedic diseases, or other bone and cartilage-related disorders can lead to bone and cartilage damage. This represents a worldwide public health issue and a significant economic burden. Advanced therapeutic medicinal products (ATMPs) proposed promising alternative therapeutic modalities by application of cell-based and tissue engineering approaches. Recently, several ATMPs have been developed to promote bone and cartilage tissue regeneration. Fifteen ATMPs, two related to bone and 13 related to cartilage, have received regulatory approval and marketing authorization. However, four ATMPs were withdrawn from the market for various reasons. However, ATMPs that are still on the market have demonstrated positive results, their broad application faced limitations. The development and standardization of methodologies will be a major challenge in the coming decades. Currently, the number of ATMPs in clinical trials using mesenchymal stromal cells or chondrocytes indicates a growing recognition that current ATMPs can be improved. Research on bone and cartilage tissue regeneration continues to expand. Cell-based therapies are likely to be clinically supported by the new ATMPs, innovative fabrication processes, and enhanced surgical approaches. In this study, we highlighted the available ATMPs that have been used in bone and cartilage defects and discussed their advantages and disadvantages in clinical applications.
Collapse
Affiliation(s)
- Dylana Diaz-Solano
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Bahareh Sadri
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maria Peshkova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Smirnova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Roshanak Shams
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
11
|
Kapoor KS, Harris K, Arian K, Ma L, Church KA, Kalluri R. Rapid and high yield isolation of extracellular vesicles with purity by application of size exclusion fast performance liquid chromatography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.12.561425. [PMID: 37904947 PMCID: PMC10614745 DOI: 10.1101/2023.10.12.561425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Extracellular Vesicles (EVs) have emerged as potential biomarkers for diagnosing a range of diseases without invasive procedures. Extracellular vesicles also offer an advantage compared to synthetic vesicles, for delivery of various drugs. However, limitations in segregating EVs from soluble proteins have led to inconsistent EV retrieval rates with low levels of purity. Here, we report a new high-yield (>95%) and rapid (<20 min) EV isolation method called S ize E xclusion - F ast P erformance L iquid C hromatography (SE-FPLC). We show SE-FPLC can effectively isolate EVs from multiple sources including EVs derived from human and mouse cells and serum. The results indicate that SE-FPLC can successfully remove highly abundant protein contaminants such as albumin and lipoprotein complexes, which can represent a major hurdle in large scale isolation of EVs for clinical translation. Additionally, the high-yield nature of SE- FPLC allows for easy industrial upscaling of extracellular vesicles production for various clinical utilities. Moreover, SE-FPLC enables analysis of very small volumes of blood for use in point-of-care diagnostics in the clinic. Collectively, SE-FPLC offers many advantages over current EV isolation methods and offers rapid clinical utility potential.
Collapse
|
12
|
Mendoza-Cerezo L, Rodríguez-Rego JM, Soriano-Carrera A, Marcos-Romero AC, Macías-García A. Fabrication and characterisation of bioglass and hydroxyapatite-filled scaffolds. J Mech Behav Biomed Mater 2023; 144:105937. [PMID: 37307642 DOI: 10.1016/j.jmbbm.2023.105937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023]
Abstract
Tissue engineering is a continuously evolving field. One of the main lines of research in this field focuses on the replacement of bone defects with materials designed to interact with the cells of a living organism in order to provide the body with a structure on which new tissues can easily grow. Among the most commonly used materials are bioglasses, which are frequently used due to their versatility and good properties. This article discusses the results of the production of an injectable paste of Bioglass® 45S5 and hydroxyapatite on a 3D printed porous structure by additive manufacturing, using a thermoplastic (PLA). The results were evaluated in a specific application of the paste, so the mechanical and bioactive properties were studied to show the multiple possibilities of using this combination for its application in regenerative medicine and more specifically in bone implants.
Collapse
Affiliation(s)
- Laura Mendoza-Cerezo
- Departamento de Expresión Gráfica, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Extremadura, Avenida de Elvas, s/n, 06006, Badajoz, España
| | - Jesús M Rodríguez-Rego
- Departamento de Expresión Gráfica, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Extremadura, Avenida de Elvas, s/n, 06006, Badajoz, España.
| | - Anabel Soriano-Carrera
- Departamento de Expresión Gráfica, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Extremadura, Avenida de Elvas, s/n, 06006, Badajoz, España
| | - Alfonso C Marcos-Romero
- Departamento de Expresión Gráfica, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Extremadura, Avenida de Elvas, s/n, 06006, Badajoz, España
| | - Antonio Macías-García
- Departamento de Ingeniería Mecánica, Energética y de Materiales, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Extremadura, Avenida de Elvas, s/n, 06006, Badajoz, España
| |
Collapse
|
13
|
Hawlina S, Zorec R, Chowdhury HH. Potential of Personalized Dendritic Cell-Based Immunohybridoma Vaccines to Treat Prostate Cancer. Life (Basel) 2023; 13:1498. [PMID: 37511873 PMCID: PMC10382052 DOI: 10.3390/life13071498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed cancer and the second most common cause of death due to cancer. About 30% of patients with PCa who have been castrated develop a castration-resistant form of the disease (CRPC), which is incurable. In the last decade, new treatments that control the disease have emerged, slowing progression and spread and prolonging survival while maintaining the quality of life. These include immunotherapies; however, we do not yet know the optimal combination and sequence of these therapies with the standard ones. All therapies are not always suitable for every patient due to co-morbidities or adverse effects of therapies or both, so there is an urgent need for further work on new therapeutic options. Advances in cancer immunotherapy with an immune checkpoint inhibition mechanism (e.g., ipilimumab, an anti-CTLA-4 inhibitor) have not shown a survival benefit in patients with CRPC. Other immunological approaches have also not given clear results, which has indirectly prevented breakthrough for this type of therapeutic strategy into clinical use. Currently, the only approved form of immunotherapy for patients with CRPC is a cell-based medicine, but it is only available to patients in some parts of the world. Based on what was gained from recently completed clinical research on immunotherapy with dendritic cell-based immunohybridomas, the aHyC dendritic cell vaccine for patients with CRPC, we highlight the current status and possible alternatives that should be considered in the future.
Collapse
Affiliation(s)
- Simon Hawlina
- Clinical Department of Urology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Surgery, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Helena H Chowdhury
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
14
|
Andrade AM, Teixeira VR, Pogue R, Figueiredo ACMG, Carvalho JL. A systematic review on the cost-effectiveness assessment of tisagenlecleucel for refractory or relapsing B-cell acute lymphoblastic leukemia (R/R B-ALL) treatment in children and young adults. Cytotherapy 2023:S1465-3249(23)00957-X. [PMID: 37341664 DOI: 10.1016/j.jcyt.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/02/2023] [Accepted: 05/26/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND AIMS The advanced therapy product tisagenlecleucel is a CD19-directed genetically modified autologous T-cell immunotherapy that has brought hope for children and young adults with relapsed/refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL). We sought to evaluate the cost-effectiveness of tisagenlecleucel compared with conventional salvage therapies in pediatric and young adult patients with R/R B-ALL. METHODS This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses parameters as registered in International Prospective Register of Systematic Reviews (CRD42021266998). Literature was searched using the MEDLINE databases via PubMed, EMBASE, Lilacs, the Cochrane Central Register of Controlled Trials and Web of Science in January 2022. Titles were screened independently by two reviewers. Articles deemed to meet the inclusion criteria were screened independently on abstract, and full texts were reviewed. RESULTS In total, 5627 publications were identified, from which six eligible studies were selected. The conventional therapies identified were blinatumomab (Blina), clofarabine monotherapy (Clo-M), clofarabine combined with cyclophosphamide and etoposide (Clo-C) and the combination of fludarabine, cytarabine and idarubicin (FLA-IDA). The discounted incremental cost-effectiveness ratio (ICER) per quality-adjusted life year (QALY) gained for tisagenlecleucel compared with Clo-C and Blina averages was $38 837 and $25 569, respectively. In relation to the cost of the drug, the average of tisagenlecleucel was approximately 4.3 times, 10.8 times or 4.7 times greater than the Clo-M, Clo-C and Blina, respectively. CONCLUSIONS This systematic review highlighted that tisagenlecleucel is a much more expensive therapy than conventional alternatives. However, tisagenlecleucel performed well on the ICER, not exceeding $100 000/QALY. It was also found that the advanced therapy product was more effective than the conventional small molecule and biological drugs, in terms of life years and QALY gained.
Collapse
Affiliation(s)
- Aurélio Matos Andrade
- Medical Sciences Program, University of Brasilia, Brasilia, Distrito Federal, Brazil; Program of Evidence for Health Policy and Technologies, Oswaldo Cruz Brasilia Foundation, Brasilia, Distrito Federal, Brazil; Interdisciplinary Biosciences Laboratory, Faculty of Medicine, University of Brasília, Brasília, Distrito Federal, Brazil
| | | | - Robert Pogue
- Genomic Sciences and Biotechnology Program, Catholic University of Brasília, Brasília, Brazil
| | | | - Juliana Lott Carvalho
- Medical Sciences Program, University of Brasilia, Brasilia, Distrito Federal, Brazil; Interdisciplinary Biosciences Laboratory, Faculty of Medicine, University of Brasília, Brasília, Distrito Federal, Brazil; Faculty of Medicine, University of Brasilia, Brasilia, Distrito Federal, Brazil.
| |
Collapse
|
15
|
de Kanter AFJ, Jongsma KR, Verhaar MC, Bredenoord AL. The Ethical Implications of Tissue Engineering for Regenerative Purposes: A Systematic Review. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:167-187. [PMID: 36112697 PMCID: PMC10122262 DOI: 10.1089/ten.teb.2022.0033] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022]
Abstract
Tissue Engineering (TE) is a branch of Regenerative Medicine (RM) that combines stem cells and biomaterial scaffolds to create living tissue constructs to restore patients' organs after injury or disease. Over the last decade, emerging technologies such as 3D bioprinting, biofabrication, supramolecular materials, induced pluripotent stem cells, and organoids have entered the field. While this rapidly evolving field is expected to have great therapeutic potential, its development from bench to bedside presents several ethical and societal challenges. To make sure TE will reach its ultimate goal of improving patient welfare, these challenges should be mapped out and evaluated. Therefore, we performed a systematic review of the ethical implications of the development and application of TE for regenerative purposes, as mentioned in the academic literature. A search query in PubMed, Embase, Scopus, and PhilPapers yielded 2451 unique articles. After systematic screening, 237 relevant ethical and biomedical articles published between 2008 and 2021 were included in our review. We identified a broad range of ethical implications that could be categorized under 10 themes. Seven themes trace the development from bench to bedside: (1) animal experimentation, (2) handling human tissue, (3) informed consent, (4) therapeutic potential, (5) risk and safety, (6) clinical translation, and (7) societal impact. Three themes represent ethical safeguards relevant to all developmental phases: (8) scientific integrity, (9) regulation, and (10) patient and public involvement. This review reveals that since 2008 a significant body of literature has emerged on how to design clinical trials for TE in a responsible manner. However, several topics remain in need of more attention. These include the acceptability of alternative translational pathways outside clinical trials, soft impacts on society and questions of ownership over engineered tissues. Overall, this overview of the ethical and societal implications of the field will help promote responsible development of new interventions in TE and RM. It can also serve as a valuable resource and educational tool for scientists, engineers, and clinicians in the field by providing an overview of the ethical considerations relevant to their work. Impact statement To our knowledge, this is the first time that the ethical implications of Tissue Engineering (TE) have been reviewed systematically. By gathering existing scholarly work and identifying knowledge gaps, this review facilitates further research into the ethical and societal implications of TE and Regenerative Medicine (RM) and other emerging biomedical technologies. Moreover, it will serve as a valuable resource and educational tool for scientists, engineers, and clinicians in the field by providing an overview of the ethical considerations relevant to their work. As such, our review may promote successful and responsible development of new strategies in TE and RM.
Collapse
Affiliation(s)
- Anne-Floor J. de Kanter
- Department of Medical Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Karin R. Jongsma
- Department of Medical Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annelien L. Bredenoord
- Department of Medical Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Erasmus School of Philosophy, Erasmus University Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
16
|
Im GI. Regenerative medicine for osteonecrosis of the femoral head : present and future. Bone Joint Res 2023; 12:5-8. [PMID: 36587245 PMCID: PMC9872044 DOI: 10.1302/2046-3758.121.bjr-2022-0057.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cite this article: Bone Joint Res 2023;12(1):5-8.
Collapse
Affiliation(s)
- Gun-Il Im
- Research Institute for Convergence Life Science, Dongguk University, Goyang, South Korea, Gun-Il Im. E-mail:
| |
Collapse
|
17
|
Van Acker SI, Van den Bogerd B, Haagdorens M, Koppen C, Pintelon I. Immunocytochemical characterization of ex vivo cultured conjunctival explants; marker validation for the identification of squamous epithelial cells and goblet cells. Front Med (Lausanne) 2023; 10:1024926. [PMID: 36923014 PMCID: PMC10008928 DOI: 10.3389/fmed.2023.1024926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Tissue-engineered products are at the cutting edge of innovation considering their potential to functionally and structurally repair various tissue defects when the body's own regenerative capacity is exhausted. At the ocular surface, the wound healing response to extensive conjunctival damage results in tissue repair with structural alterations or permanent scar formation rather than regeneration of the physiological conjunctiva. Conjunctival tissue engineering therefore represents a promising therapeutic option to reconstruct the ocular surface in severe cicatrizing pathologies. During the rapid race to be a pioneer, it seems that one of the fundamental steps of tissue engineering has been neglected; a proper cellular characterization of the tissue-engineered equivalents, both morphologically and functionally. Currently, no consensus has been reached on an identification strategy and/or markers for the characterization of cultured squamous epithelial and goblet cells. This study therefore evaluated the accuracy of promising markers to identify differentiated conjunctival-derived cells in human primary explant cultures through immunocytochemistry, including keratins (i.e., K7, K13, and K19) and mucins (i.e., MUC1, MUC5AC, and PAS-positivity). Comparison of the in vivo and in vitro cellular profiles revealed that the widely used goblet cell marker K7 does not function adequately in an in vitro setting. The other investigated markers offer a powerful tool to distinguish cultured squamous epithelial cells (i.e., MUC1 and K13), goblet cells (i.e., MUC5AC and PAS-staining), and conjunctival-derived cells in general (i.e., K19). In conclusion, this study emphasizes the power alongside potential pitfalls of conjunctival markers to assess the clinical safety and efficacy of conjunctival tissue-engineered products.
Collapse
Affiliation(s)
- Sara I Van Acker
- Antwerp Research Group for Ocular Science, Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Bert Van den Bogerd
- Antwerp Research Group for Ocular Science, Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Michel Haagdorens
- Antwerp Research Group for Ocular Science, Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Carina Koppen
- Antwerp Research Group for Ocular Science, Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.,Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
18
|
Torrents S, Grau-Vorster M, Vives J. Potency Assays: The 'Bugaboo' of Stem Cell Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1420:29-38. [PMID: 37258782 DOI: 10.1007/978-3-031-30040-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Substantially manipulated cell-based products for human use are considered medicines and therefore regulatory authorities require extensive characterisation in terms of identity, purity and potency. The latter critical quality attribute is probably the most challenging to identify and measure, requiring provision that potency assays should reflect the intended mechanism of action and demonstrate the drugs' biological effect. However, in most cases, the mechanisms involved are not fully understood, making the definition and validation of suitable potency tests difficult, a 'bugaboo' quest to be feared. Although it is evident that much work is still needed in the scientific arena, the present chapter focuses on strategies currently used by developers of cell- and gene-based therapies to demonstrate potency of innovative medicines, the regulatory framework and need for standardisation seeking to demystify critical factors to consider when designing a potency assay.
Collapse
Affiliation(s)
- Sílvia Torrents
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Barcelona, Spain
- Transfusion Medicine group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Grau-Vorster
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Barcelona, Spain
- Transfusion Medicine group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquim Vives
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Barcelona, Spain.
- Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
19
|
Torrents S, Grau-Vorster M, Vives J. Illustrative Potency Assay Examples from Approved Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1420:139-149. [PMID: 37258788 DOI: 10.1007/978-3-031-30040-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Advanced therapy medicinal products (ATMP) encompass a new type of drugs resulting from the manipulation of genes, cells, and tissues to generate innovative medicinal entities with tailored pharmaceutical activity. Definition of suitable potency tests for product release are challenging in this context, in which the active ingredient is composed of living cells and the mechanism of action often is poorly understood. In this chapter, we present and discuss actual potency assays used for the release of representative commercial ATMP from each category of products (namely, KYMRIAH® (tisagenlecleucel), Holoclar® (limbal epithelial stem cells), and PROCHYMAL®/RYONCIL™ (remestemcel-L)). We also examine concerns related to the biological relevance of selected potency assays and challenges ahead for harmonization and broader implementation in compliance with current quality standards and regulatory guidelines.
Collapse
Affiliation(s)
- Sílvia Torrents
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Barcelona, Spain
- Transfusion Medicine group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Grau-Vorster
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Barcelona, Spain
- Transfusion Medicine group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquim Vives
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Barcelona, Spain.
- Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
20
|
Burns JS. The Art of Stem Cell-Based Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1420:1-12. [PMID: 37258780 DOI: 10.1007/978-3-031-30040-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Potency assays represent crucial experiments at the hub of the comprehensive complexity surrounding cell therapy. Moreover, numerous factors beyond biological and scientific considerations are involved in achieving successful potency assays that fulfil regulatory authority approval for a new advanced therapy medicinal product. Though this can mean a frustratingly long period of discovery and development, progress in cell therapy is nowadays proceeding remarkably quickly, assisted by the potency assay rigorously placing emphasis on the need to critically analyse the key factor/s responsible for the therapeutic mechanism of action. History has shown that it can take many decades for there to be an improved understanding of a mechanism of action. Yet the chasing of precise targets has revolutionised medicine, with no clearer example than approaches to viral pandemics. The centuries involved in the eradication of smallpox have paved the way for an unprecedented pace of vaccine development for the Covid-19 pandemic. Such extraordinary accomplishments foster encouragement that similarly for stem cell-based therapy, our scientific knowledge will continue to improve apace. This chapter focuses on the art of experimentation and discovery, introducing potency assay requisites and numerous factors that can influence potency assay outcomes. A comprehensive understanding of potency assays and their development can hasten the provision of new cell therapies to help resolve burdensome diseases of unmet medical need.
Collapse
Affiliation(s)
- Jorge S Burns
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
21
|
Aguilera-Cobos L, Rosario-Lozano MP, Ponce-Polo A, Blasco-Amaro JA, Epstein D. Barriers for the evaluation of advanced therapy medicines and their translation to clinical practice: Umbrella review. Health Policy 2022; 126:1248-1255. [PMID: 36283859 DOI: 10.1016/j.healthpol.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/04/2022]
Abstract
Advanced therapy medicinal products (ATMPs) are a fast-growing field of medicine with wide potential application. Nevertheless, so far, only 19 have obtained European Union (EU) marketing authorisation and only 13 of these have translated successfully into clinical practice. This study conducts an umbrella review to identify the main barriers for the evaluation of ATMPs and their translation into clinical practice across the development lifecycle. 71 systematic reviews were included, of which 50 dealt primarily with effectiveness and safety, 13 with translation from pre-clinical to human subjects. Others dealt with economic issues and translation from health technology assessment to market access. The literature highlights the importance of synergistic research groups or networks that collaborate across the in-vitro science, preclinical and clinical investigation phases, and the role of private investor capital and public-private collaborations. Most ATMPs reviewed seem to have a favourable safety profile although considerable uncertainties remain. Randomised controlled trials are not always feasible in these patient groups. Greater sharing of data is recommended, both at preclinical and post-marketing real world evidence. There are considerable variations between EU countries in how they regulate hospital exemption for ATMPs, and this can lead to inequitable access for patients.
Collapse
Affiliation(s)
- Lorena Aguilera-Cobos
- MSc Genetics & Genomics, Health and Progress Foundation -Andalusian Health Technology Assessment Unit (AETSA), Spain; Department of Molecular Biology and Biochemistry, University of Málaga, Málaga, Spain
| | | | - Angela Ponce-Polo
- MSc Molecular Biology, Health and Progress Foundation - Andalusian Network for the Design & Translation of Advanced Therapies, Spain
| | - Juan Antonio Blasco-Amaro
- MPH Scientific Coordinator of Health Technology Assessment, Health and Progress Foundation -Andalusian Health Technology Assessment Unit (AETSA), Spain.
| | | |
Collapse
|
22
|
Gautam S, Xin D, Garcia AP, Spiesschaert B. Single-step rapid chromatographic purification and characterization of clinical stage oncolytic VSV-GP. Front Bioeng Biotechnol 2022; 10:992069. [PMID: 36394051 PMCID: PMC9649487 DOI: 10.3389/fbioe.2022.992069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/13/2022] [Indexed: 09/14/2023] Open
Abstract
Purification of viruses, especially for therapeutic purposes, is a tedious and challenging task. The challenges arise due to the size and surface complexity of the virus particles. VSV-GP is a promising oncolytic virus, which has been approved for phase I clinical trials by the Food and Drug Administration (FDA) of United States and Paul Ehrlich Institute (PEI) of Germany. The virus particles of VSV-GP are larger in size than vectors commonly used for gene therapy (e.g., adenovirus, adeno-associated virus, etc.). The current established proprietary clinical-grade manufacturing process for the purification of VSV-GP encompasses several chromatographic and non-chromatographic steps. In this study, we describe a new single-step purification process for the purification of VSV-GP virus, using cation exchange convective flow column with relatively higher yields. The purified virus was characterized for its quality attributes using TCID50 assay (for viral infectivity), host cell protein contaminant ELISA, SDS-PAGE, size exclusion chromatography (SEC), and cryo-electron microscopy. Furthermore, the purified viral therapeutic material was tested in vivo for its efficacy and safety. All these characterization methods demonstrated a therapeutic virus preparation of high purity and yield, which can be readily used for various studies.
Collapse
Affiliation(s)
- Saurabh Gautam
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
- ViraTherapeutics GmbH, Rum, Austria
| | - Dongyue Xin
- Boehringer Ingelheim Pharmaceutical, Inc., Ridgefield, CT, United States
| | - Alan Pardo Garcia
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
- ViraTherapeutics GmbH, Rum, Austria
| | - Bart Spiesschaert
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
- ViraTherapeutics GmbH, Rum, Austria
| |
Collapse
|
23
|
Rusconi G, Cusumano G, Mariotta L, Canevascini R, Gola M, Gornati R, Soldati G. Upgrading Monocytes Therapy for Critical Limb Ischemia Patient Treatment: Pre-Clinical and GMP-Validation Aspects. Int J Mol Sci 2022; 23:ijms232012669. [PMID: 36293525 PMCID: PMC9604444 DOI: 10.3390/ijms232012669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Advanced cell therapy medicinal products (ATMP) are at the forefront of a new range of biopharmaceuticals. The use of ATMP has evolved and increased in the last decades, representing a new approach to treating diseases that are not effectively managed with conventional treatments. The standard worldwide recognized for drug production is the Good Manufacturing Practices (GMP), widely used in the pharma production of synthesized drugs but applying also to ATMP. GMP guidelines are worldwide recognized standards to manufacture medicinal products to guarantee high quality, safety, and efficacy. In this report, we describe the pre-clinical and the GMP upgrade of peripheral blood mononuclear cell (PBMC) preparation, starting from peripheral blood and ending up with a GMP-grade clinical product ready to be used in patients with critical limb ischemia (CLI). We also evaluated production in hypoxic conditions to increase PBMC functional activity and angiogenic potential. Furthermore, we extensively analyzed the storage and transport conditions of the final product as required by the regulatory body for ATMPs. Altogether, results suggest that the whole manufacturing process can be performed for clinical application. Peripheral blood collected by a physician should be transported at room temperature, and PBMCs should be isolated in a clean room within 8 h of venipuncture. Frozen cells can be stored in nitrogen vapors and thawed for up to 12 months. PBMCs resuspended in 5% human albumin solution should be stored and transported at 4 °C before injection in patients within 24 h to thawing. Hypoxic conditioning of PBMCs should be implemented for clinical application, as it showed a significant enhancement of PBMC functional activity, in particular with increased adhesion, migration, and oxidative stress resistance. We demonstrated the feasibility and the quality of a GMP-enriched suspension of monocytes as an ATMP, tested in a clean room facility for all aspects related to production in respect of all the GMP criteria that allow its use as an ATMP. We think that these results could ease the way to the clinical application of ATMPs.
Collapse
Affiliation(s)
| | | | - Luca Mariotta
- Swiss Stem Cell Foundation, 6900 Lugano, Switzerland
| | - Reto Canevascini
- Department of Surgery, Service of Angiology, Lugano Regional Hospital, 6900 Lugano, Switzerland
| | - Mauro Gola
- Swiss Stem Cell Foundation, 6900 Lugano, Switzerland
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Gianni Soldati
- Swiss Stem Cell Foundation, 6900 Lugano, Switzerland
- Correspondence:
| |
Collapse
|
24
|
Monaco G, Qawasmi F, El Haj AJ, Forsyth NR, Stoddart MJ. Chondrogenic differentiation of human bone marrow MSCs in osteochondral implants under kinematic mechanical load is dependent on the underlying osteo component. Front Bioeng Biotechnol 2022; 10:998774. [PMID: 36329702 PMCID: PMC9622941 DOI: 10.3389/fbioe.2022.998774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/29/2022] [Indexed: 12/02/2022] Open
Abstract
Chondrogenic models utilizing human mesenchymal stromal cells (hMSCs) are often simplistic, with a single cell type and the absence of mechanical stimulation. Considering the articulating joint as an organ it would be beneficial to include more complex stimulation. Within this study we applied clinically relevant kinematic load to biphasic constructs. In each case, the upper layer consisted of fibrin embedded hMSCs retained within an elastomeric polyurethane (PU) scaffold. These were randomly assigned to five base scaffolds, a cell-free fibrin PU base, viable bone, decellularized bone, 3D printed calcium phosphate or clinically used cement. This allowed the study of cross talk between viable bone and chondrogenically differentiating MSCs, while controlling for the change in stiffness of the base material. Data obtained showed that the bulk stiffness of the construct was not the defining factor in the response obtained, with viable and decellularized bone producing similar results to the softer PU base. However, the stiff synthetic materials led to reduced chondrogenesis and increased calcification in the upper MSC seeded layer. This demonstrates that the underlying base material must be considered when driving chondrogenesis of human cells using a clinically relevant loading protocol. It also indicates that the material used for bony reconstruction of osteochondral defects may influence subsequent chondrogenic potential.
Collapse
Affiliation(s)
- Graziana Monaco
- AO Research Institute Davos, Davos, Switzerland
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, United Kingdom
| | - Feras Qawasmi
- AO Research Institute Davos, Davos, Switzerland
- Hadassah Medical Center, Jerusalem, Israel
| | - Alicia J. El Haj
- Healthcare Technology Institute, Institute of Translational Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Nicolas R. Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, United Kingdom
| | - Martin J. Stoddart
- AO Research Institute Davos, Davos, Switzerland
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, United Kingdom
- *Correspondence: Martin J. Stoddart,
| |
Collapse
|
25
|
Zhang J, Zhang T, Gao J. Biocompatible Iron Oxide Nanoparticles for Targeted Cancer Gene Therapy: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193323. [PMID: 36234452 PMCID: PMC9565336 DOI: 10.3390/nano12193323] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 05/14/2023]
Abstract
In recent years, gene therapy has made remarkable achievements in tumor treatment. In a successfully cancer gene therapy, a smart gene delivery system is necessary for both protecting the therapeutic genes in circulation and enabling high gene expression in tumor sites. Magnetic iron oxide nanoparticles (IONPs) have demonstrated their bright promise for highly efficient gene delivery target to tumor tissues, partly due to their good biocompatibility, magnetic responsiveness, and extensive functional surface modification. In this review, the latest progress in targeting cancer gene therapy is introduced, and the unique properties of IONPs contributing to the efficient delivery of therapeutic genes are summarized with detailed examples. Furthermore, the diagnosis potentials and synergistic tumor treatment capacity of IONPs are highlighted. In addition, aiming at potential risks during the gene delivery process, several strategies to improve the efficiency or reduce the potential risks of using IONPs for cancer gene therapy are introduced and addressed. The strategies and applications summarized in this review provide a general understanding for the potential applications of IONPs in cancer gene therapy.
Collapse
Affiliation(s)
- Jinsong Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: (T.Z.); (J.G.)
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Correspondence: (T.Z.); (J.G.)
| |
Collapse
|
26
|
Lopez-Navas L, Torrents S, Sánchez-Pernaute R, Vives J. Compliance in Non-Clinical Development of Cell-, Gene-, and Tissue-Based Medicines: Good Practice for Better Therapies. Stem Cells Transl Med 2022; 11:805-813. [PMID: 35830540 PMCID: PMC9397649 DOI: 10.1093/stcltm/szac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/20/2022] [Indexed: 11/14/2022] Open
Abstract
The development of cell-, gene- and tissue engineering (CGT)-based therapies must adhere to strict pharmaceutical quality management standards, as for any other biological or small-molecule drug. However, early developments often failed to fully comply with good laboratory practices (GLP) in non-clinical safety studies. Despite an upward trend of positive opinions in marketing authorization applications, evidence of adherence to the principles of GLP is not openly reported; therefore, their relative impact on the overall quality of the product development program is unknown. Herein we investigated the actual degree of GLP implementation and the underlying factors impeding full compliance in non-clinical developments of CGT-based marketed medicines in the EU and USA, including (i) the co-existence of diverse quality management systems of more strategic value for small organizations, particularly current Good Manufacturing Practices n(GMP); (ii) lack of regulatory pressure to pursue GLP certification; and (iii) the involvement of public institutions lacking a pharmaceutical mindset and resources. As a final reflection, we propose conformity to good research practice criteria not as a doctrinaire impediment to scientific work, but as a facilitator of efficient clinical translation of more effective and safer innovative therapies.
Collapse
Affiliation(s)
- Luis Lopez-Navas
- Andalusian Network for the Design and Translation of Advanced Therapies, Andalusian Health Ministry, Sevilla, Spain
| | | | - Rosario Sánchez-Pernaute
- Andalusian Network for the Design and Translation of Advanced Therapies, Andalusian Health Ministry, Sevilla, Spain
| | - Joaquim Vives
- Banc de Sang i Teixits, Barcelona, Spain.,Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
27
|
The Quality Management Ecosystem in Cell Therapy in Catalonia (Spain): An Opportunity for Integrating Standards and Streamlining Quality Compliance. Cells 2022; 11:cells11132112. [PMID: 35805196 PMCID: PMC9265754 DOI: 10.3390/cells11132112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/25/2022] [Accepted: 07/02/2022] [Indexed: 12/04/2022] Open
Abstract
Cell therapies are required to meet with compulsory regulations that co-exist with other optional standards and guidelines that together compose a complex quality management system. Indeed, reliable insights on the mechanisms of action and safety of novel cell-based therapies require adherence to solid quality management structures in all steps of the value chain, from early research and tissue procurement to clinical trials and biovigilance, thus guaranteeing reproducibility and solid foundations for better science and improved clinical practice. Herein we present the concept of the quality ecosystem as a tool to understand and assist all stakeholders involved in developing and structuring the integration of standards as novel developments are taking place. We conclude that the various quality management initiatives can all be thought about under the umbrella of an ecosystem.
Collapse
|
28
|
Polgárová K, Otáhal P, Šálek C, Pytlík R. Chimeric Antigen Receptor Based Cellular Therapy for Treatment Of T-Cell Malignancies. Front Oncol 2022; 12:876758. [PMID: 35600381 PMCID: PMC9121778 DOI: 10.3389/fonc.2022.876758] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
T-cell malignancies can be divided into precursor (T-acute lymphoblastic leukemia/lymphoblastic lymphoma, T-ALL/LBL) and mature T-cell neoplasms, which are comprised of 28 different entities. Most of these malignancies are aggressive with rather poor prognosis. Prognosis of relapsed/refractory (R/R) disease is especially dismal, with an expected survival only several months after progression. Targeted therapies, such as antiCD30 immunotoxin brentuximab vedotin, antiCD38 antibody daratumumab, and anti-CCR4 antibody mogamulizumab are effective only in subsets of patients with T-cell neoplasms. T-cells equipped with chimeric antigen receptor (CAR-Ts) are routinely used for treatment of R/R B-cell malignancies, however, there are specific obstacles for their use in T-cell leukemias and lymphomas which are fratricide killing, risk of transfection of malignant cells, and T-cell aplasia. The solution for these problems relies on target antigen selection, CRISPR/Cas9 or TALEN gene editing, posttranslational regulation of CAR-T surface antigen expression, and safety switches. Structural chromosomal changes and global changes in gene expression were observed with gene-edited products. We identified 49 studies of CAR-based therapies registered on www.clinicaltrials.gov. Most of them target CD30 or CD7 antigen. Results are available only for a minority of these studies. In general, clinical responses are above 50% but reported follow-up is very short. Specific toxicities of CAR-based therapies, namely cytokine release syndrome (CRS), seem to be connected with the antigen of interest and source of cells for manufacturing. CRS is more frequent in antiCD7 CAR-T cells than in antiCD30 cells, but it is mild in most patients. More severe CRS was observed after gene-edited allogeneic CAR-T cells. Immune effector cell associated neurotoxicity (ICANS) was mild and infrequent. Graft-versus-host disease (GvHD) after allogeneic CAR-T cells from previous hematopoietic stem cell donor was also observed. Most frequent toxicities, similarly to antiCD19 CAR-T cells, are cytopenias. CAR-based cellular therapy seems feasible and effective for T-cell malignancies, however, the optimal design of CAR-based products is still unknown and long-term follow-up is needed for evaluation of their true potential.
Collapse
Affiliation(s)
- Kamila Polgárová
- 1st Department of Medicine, First Faculty of Medicine, Charles University, Prague, Czechia
- 1 Department of Medicine, General University Hospital in Prague, Prague, Czechia
| | - Pavel Otáhal
- Department of Immunotherapy, Institute of Haematology and Blood Transfusion, Prague, Czechia
| | - Cyril Šálek
- Institute of Clinical and Experimental Hematology, First Faculty of Medicine, Charles University, Prague, Czechia
- Clinical Department, Institute of Haematology and Blood Transfusion, Prague, Czechia
| | - Robert Pytlík
- 1st Department of Medicine, First Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cell Therapy, Institute of Haematology and Blood Transfusion, Prague, Czechia
- *Correspondence: Robert Pytlík,
| |
Collapse
|
29
|
Muthu S, Jeyaraman M, Kotner MB, Jeyaraman N, Rajendran RL, Sharma S, Khanna M, Rajendran SNS, Oh JM, Gangadaran P, Ahn BC. Evolution of Mesenchymal Stem Cell Therapy as an Advanced Therapeutic Medicinal Product (ATMP)-An Indian Perspective. Bioengineering (Basel) 2022; 9:111. [PMID: 35324800 PMCID: PMC8945480 DOI: 10.3390/bioengineering9030111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/05/2023] Open
Abstract
Stem cells can be defined as the cells that have the capacity to both self-renew and give rise to differentiated cells. Under the right conditions and signals, depending on their origin and bio-plasticity, stem cells can differentiate into multiple cell lineages and develop into various mature cells. Stem cell therapy is a fast-developing branch of medicine that includes the most innovative regenerative therapies for the restoration of cell and tissue function in individuals with severe diseases. Stem cell research has resulted in the emergence of cell-based therapies for disorders that are resistant to conventional drugs and therapies, and they are considered under the category of an Advanced Therapeutic Medicinal Product (ATMP). The FDA and the European Medicines Agency (EMA) devised a new strategy in 2017 with the aim of unifying the standards for development of ATMPs such that it is easy to exchange information at the international level. In this review, we discuss the evolution of mesenchymal stem cell-based therapy as an ATMP in the global and Indian scenarios, along with the guidelines governing their usage and clinical application of these therapeutics.
Collapse
Affiliation(s)
- Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624001, India;
- Indian Stem Cell Study Group, Lucknow 226010, India; (M.B.K.); (N.J.); (M.K.)
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India
| | - Madhan Jeyaraman
- Indian Stem Cell Study Group, Lucknow 226010, India; (M.B.K.); (N.J.); (M.K.)
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India
- Department of Orthopaedics, Faculty of Medicine-Sri Lalithambigai Medical College and Hospital, Dr. MGR Educational and Research Institute University, Chennai 600095, India
| | - Moinuddin Basha Kotner
- Indian Stem Cell Study Group, Lucknow 226010, India; (M.B.K.); (N.J.); (M.K.)
- Fellow in Orthopaedic Rheumatology, Dr. Ram Manohar Lohiya National Law University, Lucknow 226012, India
| | - Naveen Jeyaraman
- Indian Stem Cell Study Group, Lucknow 226010, India; (M.B.K.); (N.J.); (M.K.)
- Fellow in Orthopaedic Rheumatology, Dr. Ram Manohar Lohiya National Law University, Lucknow 226012, India
- Fellow in Joint Replacement, Atlas Hospitals, The Tamil Nadu Dr. MGR Medical University, Tiruchirappalli 620002, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (R.L.R.); (J.M.O.)
| | - Shilpa Sharma
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Manish Khanna
- Indian Stem Cell Study Group, Lucknow 226010, India; (M.B.K.); (N.J.); (M.K.)
| | - Sree Naga Sowndary Rajendran
- Department of Medicine, Sri Venkateshwaraa Medical College Hospital and Research Centre, Puducherry 605107, India;
| | - Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (R.L.R.); (J.M.O.)
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (R.L.R.); (J.M.O.)
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (R.L.R.); (J.M.O.)
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
30
|
Hawlina S, Chowdhury HH, Smrkolj T, Zorec R. Dendritic cell-based vaccine prolongs survival and time to next therapy independently of the vaccine cell number. Biol Direct 2022; 17:5. [PMID: 35197090 PMCID: PMC8864901 DOI: 10.1186/s13062-022-00318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/15/2021] [Indexed: 11/10/2022] Open
Abstract
In 2009, new EU legislation regulating advanced therapy medicinal products (ATMPs), consisting of gene therapy, tissue engineering and cell-based medicines, was introduced. Although less than 20 ATMPs were authorized since that time, the awarding of the Nobel Prize for Physiology or Medicine in 2018 revived interest in developing new cancer immunotherapies involving significant manipulation of the patient's own immune cells, including lymphocytes and dendritic cells. The lymphocytes are mainly thought to directly affect tumour cells, dendritic cells are involved in indirect mechanisms by antigen presentation to other leukocytes orchestrating the immune response. It is the latter cells that are the focus of this brief review. Based on the recent results of our study treating patients with castration-resistant prostate cancer (CRPC) with an immunohybridoma cell construct (termed aHyC), produced by electrofusion of autologous tumour and dendritic cells, we compare their effectiveness with a matched documented control group of patients. The results revealed that cancer-specific survival and the time to next in-line therapy (TTNT) were both significantly prolonged versus controls. When patients were observed for longer periods since the time of diagnosis of CRPC, 20% of patients had not yet progressed to the next in-line therapy even though the time under observation was ~ 80 months. Interestingly, analysis of survival of patients revealed that the effectiveness of treatment was independent of the number of cells in the vaccine used for treatment. It is concluded that autologous dendritic cell-based immunotherapy is a new possibility to treat not only CRPC but also other solid tumours.
Collapse
Affiliation(s)
- Simon Hawlina
- Clinical Department of Urology, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia.,Department of Surgery, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Helena H Chowdhury
- Laboratory of Cell Engineering, Celica Biomedical, 1000, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000, Ljubljana, Slovenia
| | - Tomaž Smrkolj
- Clinical Department of Urology, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia.,Department of Surgery, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, 1000, Ljubljana, Slovenia. .,Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000, Ljubljana, Slovenia.
| |
Collapse
|
31
|
Alvites R, Branquinho M, Sousa AC, Lopes B, Sousa P, Maurício AC. Mesenchymal Stem/Stromal Cells and Their Paracrine Activity-Immunomodulation Mechanisms and How to Influence the Therapeutic Potential. Pharmaceutics 2022; 14:381. [PMID: 35214113 PMCID: PMC8875256 DOI: 10.3390/pharmaceutics14020381] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/07/2023] Open
Abstract
With high clinical interest to be applied in regenerative medicine, Mesenchymal Stem/Stromal Cells have been widely studied due to their multipotency, wide distribution, and relative ease of isolation and expansion in vitro. Their remarkable biological characteristics and high immunomodulatory influence have opened doors to the application of MSCs in many clinical settings. The therapeutic influence of these cells and the interaction with the immune system seems to occur both directly and through a paracrine route, with the production and secretion of soluble factors and extracellular vesicles. The complex mechanisms through which this influence takes place is not fully understood, but several functional manipulation techniques, such as cell engineering, priming, and preconditioning, have been developed. In this review, the knowledge about the immunoregulatory and immunomodulatory capacity of MSCs and their secretion products is revisited, with a special focus on the phenomena of migration and homing, direct cell action and paracrine activity. The techniques for homing improvement, cell modulation and conditioning prior to the application of paracrine factors were also explored. Finally, multiple assays where different approaches were applied with varying success were used as examples to justify their exploration.
Collapse
Affiliation(s)
- Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (R.A.); (M.B.); (A.C.S.); (B.L.); (P.S.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Mariana Branquinho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (R.A.); (M.B.); (A.C.S.); (B.L.); (P.S.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Ana C. Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (R.A.); (M.B.); (A.C.S.); (B.L.); (P.S.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (R.A.); (M.B.); (A.C.S.); (B.L.); (P.S.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Patrícia Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (R.A.); (M.B.); (A.C.S.); (B.L.); (P.S.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (R.A.); (M.B.); (A.C.S.); (B.L.); (P.S.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| |
Collapse
|
32
|
Gomes KLG, da Silva RE, Silva Junior JBD, Novaes MRCG. Comparison of new Brazilian legislation for the approval of advanced therapy medicinal products with existing systems in the USA, European Union and Japan. Cytotherapy 2022; 24:557-566. [DOI: 10.1016/j.jcyt.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 11/03/2022]
|
33
|
Koutsoumparis AE, Patsiarika A, Tsingotjidou A, Pappas I, Tsiftsoglou AS. Neural Differentiation of Human Dental Mesenchymal Stem Cells Induced by ATRA and UDP-4: A Comparative Study. Biomolecules 2022; 12:biom12020218. [PMID: 35204719 PMCID: PMC8961660 DOI: 10.3390/biom12020218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
Human mesenchymal stem cells (MSC) are multipotent stem cells, which are isolated from various sources. Currently, there is a worldwide interest for dental MSC to be used against neurodegenerative diseases, since they derive from the neural crest and express embryonic stem cell markers. This fact prompted us to explore their potential for neural trans-differentiation in culture. We employed all-trans-retinoic acid (ATRA) and 2-(3-ethylureido)-6-methylpyridine (UDP-4) to induce neural differentiation of human MSC from the dental apical papilla (SCAP). The SCAP were exposed to either agent separately and assessed for proliferation, viability, morphology, and gene expression of the following neural-specific markers: neuron-specific enolase (ENO2), neurofibromin 1 (NF1), choline acetyltransferase (CHAT), tyrosine hydroxylase (TH), and the vesicular GABA transporter (SLC32A1). They were also assessed for the expression of glial fibrillary acidic protein (GFAP) and neuronal nuclear antigen (NeuN) by immunofluorescence. ATRA or UDP-4 treatment inhibited the cell growth and promoted limited cell death, but to a different extent. The addition of the neuroprotective agent recombinant human erythropoietin-alpha (rhEPO-α) enhanced the UDP-4-inducing capacity for more than three weeks. ATRA or UDP-4 treatment significantly upregulated ENO2 and NF1 expression, indicating neuronal differentiation. Moreover, the ATRA treatment significantly induced the upregulation of the GABAergic-specific SLC32A1, while the UDP-4 treatment led to the significant upregulation of the adrenergic-specific TH. The UDP-4 treatment induced the expression of NeuN and GFAP after four and three weeks, respectively, while the ATRA-treatment did not. Our findings indicate that SCAP can be differentiated into neural-like cells after treatment with ATRA or UDP-4 by exhibiting a disparate pattern of differentiation. Therefore, UDP-4 is suggested here as a new potent neural-differentiation-inducing compound, which, when combined with rhEPO-α, could lay the foundation for robust stem-cell-based therapies of neurodegeneration.
Collapse
Affiliation(s)
- Anastasios E. Koutsoumparis
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.E.K.); (A.P.)
| | - Anastasia Patsiarika
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.E.K.); (A.P.)
| | - Anastasia Tsingotjidou
- Laboratory of Anatomy, Histology and Embryology, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioannis Pappas
- Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece;
| | - Asterios S. Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.E.K.); (A.P.)
- Correspondence: ; Tel.: +30-2310997631
| |
Collapse
|
34
|
Silva Junior JB, Rodrigues E Silva AA, Melo FCC, Kumoto MC, Parca RM. Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular Consensus on genetically modified cells. Special Article: Advanced therapy medicinal products in Brazil: regulatory panorama. Hematol Transfus Cell Ther 2021; 43 Suppl 2:S68-S77. [PMID: 34794800 PMCID: PMC8606716 DOI: 10.1016/j.htct.2021.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022] Open
Abstract
Advanced therapy medicinal products, considered special medications, requires Anvisa approval for use and commercialization in Brazil. They include the advanced cellular therapy products, tissue engineering products and gene therapy products, which due to their complexity involve innovation and risks, optimized regulatory channels for their development and life cycle monitoring. The scientific elements and the compliance with applicable regulatory aspects are fundamental pillars for the advancement of clinical trials, the positive evidence of the benefit-risk profile and the definition of the critical quality attributes, from the perspective of making safe, effective and high-quality products available to the population. The approval models of these products in Brazil adapt to the specificities and characteristics of the technology and the patient target population, with accelerated regulatory analyses, use in emergency situations by risk controls and specific monitoring mechanisms, principally those related to rare diseases without other therapeutic alternatives. The opportune access to the advance therapy product with safety, efficacy and quality involves innovative normative elements that include the long-term follow-up of the safety and efficacy and of the adaptive pharmacovigilance requisites, as well as the traceability mechanisms for the start-off materials, products and patients.
Collapse
Affiliation(s)
- João Batista Silva Junior
- Faculdade de Ciências da Saúde da Universidade de Brasília (UnB), Brasília, DF, Brazil; Agência Nacional de Vigilância Sanitária (Anvisa), Brasília, DF, Brazil.
| | | | | | | | | |
Collapse
|
35
|
Monaco G, Ladner YD, El Haj AJ, Forsyth NR, Alini M, Stoddart MJ. Mesenchymal Stromal Cell Differentiation for Generating Cartilage and Bone-Like Tissues In Vitro. Cells 2021; 10:cells10082165. [PMID: 34440934 PMCID: PMC8391162 DOI: 10.3390/cells10082165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 01/22/2023] Open
Abstract
In the field of tissue engineering, progress has been made towards the development of new treatments for cartilage and bone defects. However, in vitro culture conditions for human bone marrow mesenchymal stromal cells (hBMSCs) have not yet been fully defined. To improve our understanding of cartilage and bone in vitro differentiation, we investigated the effect of culture conditions on hBMSC differentiation. We hypothesized that the use of two different culture media including specific growth factors, TGFβ1 or BMP2, as well as low (2% O2) or high (20% O2) oxygen tension, would improve the chondrogenic and osteogenic potential, respectively. Chondrogenic and osteogenic differentiation of hBMSCs isolated from multiple donors and expanded under the same conditions were directly compared. Chondrogenic groups showed a notable upregulation of chondrogenic markers compared with osteogenic groups. Greater sGAG production and deposition, and collagen type II and I accumulation occurred for chondrogenic groups. Chondrogenesis at 2% O2 significantly reduced ALP gene expression and reduced type I collagen deposition, producing a more stable and less hypertrophic chondrogenic phenotype. An O2 tension of 2% did not inhibit osteogenic differentiation at the protein level but reduced ALP and OC gene expression. An upregulation of ALP and OC occurred during osteogenesis in BMP2 containing media under 20% O2; BMP2 free osteogenic media downregulated ALP and also led to higher sGAG release. A higher mineralization was observed in the presence of BMP2 during osteogenesis. This study demonstrates how the modulation of O2 tension, combined with tissue-specific growth factors and media composition can be tailored in vitro to promote chondral or endochondral differentiation while using the same donor cell population.
Collapse
Affiliation(s)
- Graziana Monaco
- AO Research Institute Davos, Regenerative Orthopaedics Program, 7270 Davos Platz, Switzerland; (G.M.); (Y.D.L.); (M.A.)
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK;
| | - Yann D. Ladner
- AO Research Institute Davos, Regenerative Orthopaedics Program, 7270 Davos Platz, Switzerland; (G.M.); (Y.D.L.); (M.A.)
- Institute for Biomechanics, ETH Zurich, Lengghalde 5, CH-8008 Zurich, Switzerland
| | - Alicia J. El Haj
- Healthcare Technology Institute, Institute of Translational Medicine, University of Birmingham, Birmingham B15 2TT, UK;
| | - Nicholas R. Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK;
| | - Mauro Alini
- AO Research Institute Davos, Regenerative Orthopaedics Program, 7270 Davos Platz, Switzerland; (G.M.); (Y.D.L.); (M.A.)
| | - Martin J. Stoddart
- AO Research Institute Davos, Regenerative Orthopaedics Program, 7270 Davos Platz, Switzerland; (G.M.); (Y.D.L.); (M.A.)
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK;
- Correspondence:
| |
Collapse
|
36
|
Tsiftsoglou AS. Erythropoietin (EPO) as a Key Regulator of Erythropoiesis, Bone Remodeling and Endothelial Transdifferentiation of Multipotent Mesenchymal Stem Cells (MSCs): Implications in Regenerative Medicine. Cells 2021; 10:cells10082140. [PMID: 34440909 PMCID: PMC8391952 DOI: 10.3390/cells10082140] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Human erythropoietin (EPO) is an N-linked glycoprotein consisting of 166 aa that is produced in the kidney during the adult life and acts both as a peptide hormone and hematopoietic growth factor (HGF), stimulating bone marrow erythropoiesis. EPO production is activated by hypoxia and is regulated via an oxygen-sensitive feedback loop. EPO acts via its homodimeric erythropoietin receptor (EPO-R) that increases cell survival and drives the terminal erythroid maturation of progenitors BFU-Es and CFU-Es to billions of mature RBCs. This pathway involves the activation of multiple erythroid transcription factors, such as GATA1, FOG1, TAL-1, EKLF and BCL11A, and leads to the overexpression of genes encoding enzymes involved in heme biosynthesis and the production of hemoglobin. The detection of a heterodimeric complex of EPO-R (consisting of one EPO-R chain and the CSF2RB β-chain, CD131) in several tissues (brain, heart, skeletal muscle) explains the EPO pleotropic action as a protection factor for several cells, including the multipotent MSCs as well as cells modulating the innate and adaptive immunity arms. EPO induces the osteogenic and endothelial transdifferentiation of the multipotent MSCs via the activation of EPO-R signaling pathways, leading to bone remodeling, induction of angiogenesis and secretion of a large number of trophic factors (secretome). These diversely unique properties of EPO, taken together with its clinical use to treat anemias associated with chronic renal failure and other blood disorders, make it a valuable biologic agent in regenerative medicine for the treatment/cure of tissue de-regeneration disorders.
Collapse
Affiliation(s)
- Asterios S Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
37
|
García-González J, Marhuenda-Castillo S, Romero-Carretero S, Beltrán-García J. New era of personalized medicine: Advanced therapy medicinal products in Europe. World J Immunol 2021; 11:1-10. [DOI: 10.5411/wji.v11.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Advanced therapy medicinal products are human medical therapies based on genes, cells, or tissues, and due to their characteristics, they offer new innovative opportunities for the treatment of diseases and injuries, especially for diseases beyond the reach of traditional approaches. These therapies are at the forefront of innovation and have historically been very controversial, although in the last decade they have gained prominence while the number of new advanced therapies has increased every year. In this regard, despite the controversy they may generate, they are expected to dominate the market in the coming decades. Technologies based on advanced therapies are the present and future of medicine and bring us closer to the long-awaited precision medicine. Here we review the field as it stands today, with a focus on the molecular mechanisms that guided the different advanced therapies approved by the European Medicines Agency, their current status, and their legal approval.
Collapse
Affiliation(s)
| | | | | | - Jesús Beltrán-García
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia 46010, Spain
- Center for Biomedical Research in Rare Diseases Network (CIBERER), Carlos III Health Institute, Valencia 46010, Spain
- INCLIVA Institute of Sanitary Research, Valencia 46010, Spain
| |
Collapse
|
38
|
van Schalkwyk MCI, van der Stegen SJC, Bosshard-Carter L, Graves H, Papa S, Parente-Pereira AC, Farzaneh F, Fisher CD, Hope A, Adami A, Maher J. Development and Validation of a Good Manufacturing Process for IL-4-Driven Expansion of Chimeric Cytokine Receptor-Expressing CAR T-Cells. Cells 2021; 10:cells10071797. [PMID: 34359966 PMCID: PMC8307141 DOI: 10.3390/cells10071797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 12/22/2022] Open
Abstract
Adoptive cancer immunotherapy using chimeric antigen receptor (CAR) engineered T-cells holds great promise, although several obstacles hinder the efficient generation of cell products under good manufacturing practice (GMP). Patients are often immune compromised, rendering it challenging to produce sufficient numbers of gene-modified cells. Manufacturing protocols are labour intensive and frequently involve one or more open processing steps, leading to increased risk of contamination. We set out to develop a simplified process to generate autologous gamma retrovirus-transduced T-cells for clinical evaluation in patients with head and neck cancer. T-cells were engineered to co-express a panErbB-specific CAR (T1E28z) and a chimeric cytokine receptor (4αβ) that permits their selective expansion in response to interleukin (IL)-4. Using peripheral blood as starting material, sterile culture procedures were conducted in gas-permeable bags under static conditions. Pre-aliquoted medium and cytokines, bespoke connector devices and sterile welding/sealing were used to maximise the use of closed manufacturing steps. Reproducible IL-4-dependent expansion and enrichment of CAR-engineered T-cells under GMP was achieved, both from patients and healthy donors. We also describe the development and approach taken to validate a panel of monitoring and critical release assays, which provide objective data on cell product quality.
Collapse
Affiliation(s)
- May C. I. van Schalkwyk
- Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK; (M.C.I.v.S.); (S.J.C.v.d.S.); (L.B.-C.); (S.P.); (A.C.P.-P.); (A.A.)
| | - Sjoukje J. C. van der Stegen
- Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK; (M.C.I.v.S.); (S.J.C.v.d.S.); (L.B.-C.); (S.P.); (A.C.P.-P.); (A.A.)
| | - Leticia Bosshard-Carter
- Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK; (M.C.I.v.S.); (S.J.C.v.d.S.); (L.B.-C.); (S.P.); (A.C.P.-P.); (A.A.)
| | - Helen Graves
- Immune Monitoring Laboratory, Clinical Research Facility, NIHR Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, Great Maze Pond, London SE1 9RT, UK;
| | - Sophie Papa
- Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK; (M.C.I.v.S.); (S.J.C.v.d.S.); (L.B.-C.); (S.P.); (A.C.P.-P.); (A.A.)
- Guy’s and St Thomas’ NHS Foundation Trust, Department of Medical Oncology, Great Maze Pond, London SE1 9RT, UK
| | - Ana C. Parente-Pereira
- Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK; (M.C.I.v.S.); (S.J.C.v.d.S.); (L.B.-C.); (S.P.); (A.C.P.-P.); (A.A.)
| | - Farzin Farzaneh
- The Rayne Institute, School of Cancer and Pharmaceutical Sciences, King’s College London, London SE5 9NU, UK;
| | - Christopher D. Fisher
- Good Manufacturing Practice Unit, Clinical Research Facility, NIHR Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, Great Maze Pond, London SE1 9RT, UK; (C.D.F.); (A.H.)
| | - Andrew Hope
- Good Manufacturing Practice Unit, Clinical Research Facility, NIHR Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, Great Maze Pond, London SE1 9RT, UK; (C.D.F.); (A.H.)
| | - Antonella Adami
- Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK; (M.C.I.v.S.); (S.J.C.v.d.S.); (L.B.-C.); (S.P.); (A.C.P.-P.); (A.A.)
| | - John Maher
- Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK; (M.C.I.v.S.); (S.J.C.v.d.S.); (L.B.-C.); (S.P.); (A.C.P.-P.); (A.A.)
- Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne BN21 2UD, UK
- Department of Clinical Immunology and Allergy, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
- Leucid Bio Ltd., Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
- Correspondence: ; Tel.: +44-(0)207188-1468
| |
Collapse
|
39
|
Wongin S, Wangdee C, Nantavisai S, Banlunara W, Nakbunnum R, Waikakul S, Chotiyarnwong P, Roytrakul S, Viravaidya-Pasuwat K. Evaluation of osteochondral-like tissues using human freeze-dried cancellous bone and chondrocyte sheets to treat osteochondral defects in rabbits. Biomater Sci 2021; 9:4701-4716. [PMID: 34019604 DOI: 10.1039/d1bm00239b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human freeze-dried cancellous bone combined with human chondrocyte sheets have recently been used to construct an osteochondral-like tissue, which resembled a cartilage layer on a subchondral bone layer. Nevertheless, the efficacy of these human tissues in a xenogeneic model has been rarely reported. Therefore, this study aimed to evaluate the potential of human freeze-dried cancellous bones combined with human chondrocyte sheets for the treatment of osteochondral defects in rabbits. The key roles of the extracellular matrix (ECM) and released cytokines in these tissues in osteochondral repair were also assessed. Triple-layered chondrocyte sheets were constructed using a temperature-responsive culture surface. Then, they were placed onto cancellous bone to form chondrocyte sheet-cancellous bone tissues. The immunostaining of collagen type II (COL2) and the proteomic analysis of the human tissues were carried out before the transplantation. In our in vitro study, the triple-layered chondrocyte sheets adhered well on the cancellous bone, and the COL2 expression was apparent throughout the tissue structures. From the proteomic analysis results, it was found that the major function of the secreted proteins found in these tissues was protein binding. The distinct pathways were focal adhesion and the ECM-receptor interaction pathways. Among the highly expressed proteins, laminin-alpha 5 (LAMA5) and fibronectin (FN) not only played roles in the protein binding and ECM-receptor interaction, but also were involved in the cytokine-mediated signaling pathway. At 12 weeks after xenogeneic transplantation, compared to the control group, the defects treated with the chondrocyte sheets showed more hyaline-like cartilage tissue, as indicated by the abundance of safranin-O and COL2 with a partial collagen type I (COL1) expression. At 4, 8, and 12 weeks, compared to the defects treated with the cancellous bone, the staining of safranin-O and COL2 was more apparent in the defects treated with the chondrocyte sheet-cancellous bone tissues. Therefore, the human chondrocyte sheets and chondrocyte sheet-cancellous bone tissues provide a potential treatment for rabbit femoral condyle defect. LAMA5 and FN found in these human xenografts and their culture media might play key roles in the ECM-receptor interaction and might be involved in the cytokine-mediated signaling pathway during tissue repair.
Collapse
Affiliation(s)
- Sopita Wongin
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.
| | - Chalika Wangdee
- Department of Veterinary Surgery, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Sirirat Nantavisai
- Special Task Force for Activating Research (STAR) in Biology of Embryo and Stem Cell Research in Veterinary Science, Veterinary Stem Cells and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Rapeepat Nakbunnum
- Department of Orthopedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Saranatra Waikakul
- Department of Orthopedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Pojchong Chotiyarnwong
- Department of Orthopedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, 12120, Thailand.
| | - Kwanchanok Viravaidya-Pasuwat
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand. and Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.
| |
Collapse
|
40
|
García-Muñoz E, Vives J. Towards the standardization of methods of tissue processing for the isolation of mesenchymal stromal cells for clinical use. Cytotechnology 2021; 73:513-522. [PMID: 33994662 PMCID: PMC8109215 DOI: 10.1007/s10616-021-00474-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) are currently the most extensively studied type of adult stem cells in advanced stages of development in the field of regenerative medicine. The biological properties of MSCs have generated great hope for their therapeutic use in degenerative and autoimmune conditions that, at present, lack effective treatment options. Over the last decades, MSCs have been typically obtained from adult bone marrow, but the extraction process is highly invasive and the quality and numbers of isolated cells is drastically influenced by patient age, medication and associated comorbidities. Therefore, there is currently an open discussion on the convenience of allogeneic over autologous treatments, despite potential disadvantages such as rejection by the host. This shift to the allogeneic setting entails the need for high production of MSCs to ensure availability of sufficient cell numbers for transplantation, and therefore making the search for alternative tissue sources of highly proliferative MSC cultures with low levels of senescence occurrence, which is one of the greatest current challenges in the scale up of therapeutic cell bioprocessing. Herein we (i) present the main isolation protocols of MSCs from bone marrow, adipose tissue and Wharton’s jelly of the umbilical cord; and (ii) compare their qualities from a bioprocess standpoint, addressing both quality and regulatory aspects, in view of their anticipated clinical use.
Collapse
Affiliation(s)
- Elisabeth García-Muñoz
- Banc de Sang iTeixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain
| | - Joaquim Vives
- Banc de Sang iTeixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain.,Musculoskeletal Tissue Engineering Group, Vall D'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron 129-139, 08035 Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron 129-139, 08035 Barcelona, Spain
| |
Collapse
|
41
|
Advanced Therapy Medicinal Products for the Eye: Definitions and Regulatory Framework. Pharmaceutics 2021; 13:pharmaceutics13030347. [PMID: 33800934 PMCID: PMC8000705 DOI: 10.3390/pharmaceutics13030347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 01/12/2023] Open
Abstract
Advanced therapy medicinal products (ATMPs) are a group of innovative and complex biological products for human use that comprises somatic cell therapy medicinal products, tissue engineered products, gene therapy medicinal products, and the so-called combined ATMPs that consist of one of the previous three categories combined with one or more medical devices. During the last few years, the development of ATMPs for the treatment of eye diseases has become a fast-growing field as it offers the potential to find novel therapeutic approaches for treating pathologies that today have no cure or are just subjected to symptomatic treatments. Therefore, it is important for all professionals working in this field to be familiar with the regulatory principles associated with these types of innovative products. In this review, we outline the legal framework that regulates the development of ATMPs in the European Union and other international jurisdictions, and the criteria that each type of ATMP must meet to be classified as such. To illustrate each legal definition, ATMPs that have already completed the research and development stages and that are currently used for the treatment of eye diseases are presented as examples.
Collapse
|
42
|
Gastelurrutia P, Prat-Vidal C, Vives J, Coll R, Bayes-Genis A, Gálvez-Montón C. Transitioning From Preclinical Evidence to Advanced Therapy Medicinal Product: A Spanish Experience. Front Cardiovasc Med 2021; 8:604434. [PMID: 33614746 PMCID: PMC7890001 DOI: 10.3389/fcvm.2021.604434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022] Open
Abstract
A systematic and ordered product development program, in compliance with current quality and regulatory standards, increases the likelihood of yielding a successful advanced therapy medicinal product (ATMP) for clinical use as safe and effective therapy. As this is a novel field, little accurate information is available regarding the steps to be followed, and the information to be produced to support the development and use of an ATMP. Notably, successful clinical translation can be somewhat cumbersome for academic researchers. In this article, we have provided a summary of the available information, supported by our experience in Spain throughout the development of an ATMP for myocardial infarction, from the pre-clinical stage to phase I clinical trial approval.
Collapse
Affiliation(s)
- Paloma Gastelurrutia
- Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain.,Insuficiencia Cardíaca y Regeneración Cardíaca Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain.,Centro de Investigación Biomédica en Red Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Prat-Vidal
- Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain.,Insuficiencia Cardíaca y Regeneración Cardíaca Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain.,Centro de Investigación Biomédica en Red Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Joaquim Vives
- Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Barcelona, Spain.,Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ruth Coll
- Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Barcelona, Spain
| | - Antoni Bayes-Genis
- Insuficiencia Cardíaca y Regeneración Cardíaca Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain.,Centro de Investigación Biomédica en Red Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carolina Gálvez-Montón
- Insuficiencia Cardíaca y Regeneración Cardíaca Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain.,Centro de Investigación Biomédica en Red Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
43
|
Yu Y, Dai K, Gao Z, Tang W, Shen T, Yuan Y, Wang J, Liu C. Sulfated polysaccharide directs therapeutic angiogenesis via endogenous VEGF secretion of macrophages. SCIENCE ADVANCES 2021; 7:7/7/eabd8217. [PMID: 33568481 PMCID: PMC7875536 DOI: 10.1126/sciadv.abd8217] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/21/2020] [Indexed: 05/23/2023]
Abstract
Notwithstanding the remarkable progress in the clinical treatment of ischemic disease, proangiogenic drugs mostly suffer from their abnormal angiogenesis and potential cancer risk, and currently, no off-the-shelf biomaterials can efficiently induce angiogenesis. Here, we reported that a semisynthetic sulfated chitosan (SCS) readily engaged anti-inflammatory macrophages and increased its secretion of endogenous vascular endothelial growth factor (VEGF) to induce angiogenesis in ischemia via a VEGF-VEGFR2 signaling pathway. The depletion of host macrophages abrogated VEGF secretion and vascularization in implants, and the inhibition of VEGF or VEGFR2 signaling also disrupted the macrophage-associated angiogenesis. In addition, in a macrophage-inhibited mouse model, SCS efficiently helped to recover the endogenous levels of VEGF and the number of CD31hiEmcnhi vessels in ischemia. Thus, both sulfated group and pentasaccharide sequence in SCS played an important role in directing the therapeutic angiogenesis, indicating that this highly bioactive biomaterial can be harnessed to treat ischemic disease.
Collapse
Affiliation(s)
- Yuanman Yu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Kai Dai
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zehua Gao
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Wei Tang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Tong Shen
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jing Wang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China.
| |
Collapse
|
44
|
Monaco G, El Haj AJ, Alini M, Stoddart MJ. Ex Vivo Systems to Study Chondrogenic Differentiation and Cartilage Integration. J Funct Morphol Kinesiol 2021; 6:E6. [PMID: 33466400 PMCID: PMC7838775 DOI: 10.3390/jfmk6010006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Articular cartilage injury and repair is an issue of growing importance. Although common, defects of articular cartilage present a unique clinical challenge due to its poor self-healing capacity, which is largely due to its avascular nature. There is a critical need to better study and understand cellular healing mechanisms to achieve more effective therapies for cartilage regeneration. This article aims to describe the key features of cartilage which is being modelled using tissue engineered cartilage constructs and ex vivo systems. These models have been used to investigate chondrogenic differentiation and to study the mechanisms of cartilage integration into the surrounding tissue. The review highlights the key regeneration principles of articular cartilage repair in healthy and diseased joints. Using co-culture models and novel bioreactor designs, the basis of regeneration is aligned with recent efforts for optimal therapeutic interventions.
Collapse
Affiliation(s)
- Graziana Monaco
- AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos Platz, Switzerland; (G.M.); (M.A.)
- School of Pharmacy & Bioengineering Research, University of Keele, Keele ST5 5BG, UK;
| | - Alicia J. El Haj
- School of Pharmacy & Bioengineering Research, University of Keele, Keele ST5 5BG, UK;
- Healthcare Technology Institute, Translational Medicine, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TH, UK
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos Platz, Switzerland; (G.M.); (M.A.)
| | - Martin J. Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos Platz, Switzerland; (G.M.); (M.A.)
- School of Pharmacy & Bioengineering Research, University of Keele, Keele ST5 5BG, UK;
| |
Collapse
|
45
|
Goula A, Gkioka V, Michalopoulos E, Katsimpoulas M, Noutsias M, Sarri EF, Stavropoulos C, Kostakis A. Advanced Therapy Medicinal Products Challenges and Perspectives in Regenerative Medicine. J Clin Med Res 2020; 12:780-786. [PMID: 33447311 PMCID: PMC7781285 DOI: 10.14740/jocmr3964] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/19/2020] [Indexed: 11/11/2022] Open
Abstract
Recently, the design and development of a modern health policy in the field of regenerative medicine leads to the formation of a new and integrated cognitive field, which requires systematic research and study in order to produce innovative answers and best practices. Advanced therapy medicinal products (ATMPs) is a new product category, which is at the heart of concern since it has to deal with diseases in which traditional medicine has proven to be ineffective so far. The aim of this review is to provide evidence for the state of the art ATMPs and their modern applications in the field of regenerative medicine. The ATMPs are characterized by a great heterogeneity and variation in methods of isolation, which cover the entire spectrum from a single intravenous injection to a surgical placement. Clinical development of ATMP encounters specific challenges due to the nature of the product and the limited availability of non-clinical data. The gold standard of a controlled, randomized, clinical trial may not be feasible or ethically justified for all indications, particularly in life-threatening diseases, where there is no satisfactory standard of care. Therefore, the European Commission (EC) took initiatives in order to set standards and operating rules concerning authorization and supervision of ATMPs and on pharmacovigilance in relation to them. The European Union (EU) Regulation 1394/2007 provides the possibility of exceptions. In particular, the “hospital exemption” allows for the administration of an ATMP without a license on certain conditions. Although the Regulation 1394/2007 has led to the commercial exploitation of ATMPs, the reality today, 11 years after its first implementation, is completely different. While the Committee for Advanced Therapies (CAT) has already registered 285 products as ATMPs, only 10 licenses were granted which only remained six (the rest related to products withdrawn). The key players in the development and delivery of ATMPs still remain the academic/research centers and small and medium-sized enterprises; while the involvement of pharmaceutical companies is focusing on recent developments in the treatment of oncological incidents with in vitro modified cytotoxic T lymphocytes, and chimeric antigen receptor (CAR)-T cells.
Collapse
Affiliation(s)
- Aspasia Goula
- Business Administration-Health and Welfare Management, University of West Attica, Egaleo, Greece
| | - Vasiliki Gkioka
- Biomedical Research Foundation Academy of Athens, 4th Soranou Efessiou Str., 11527 Athens, Greece
| | - Efstathios Michalopoulos
- Biomedical Research Foundation Academy of Athens, 4th Soranou Efessiou Str., 11527 Athens, Greece
| | - Michalis Katsimpoulas
- Biomedical Research Foundation Academy of Athens, 4th Soranou Efessiou Str., 11527 Athens, Greece
| | - Michel Noutsias
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, D-06120 Halle (Saale), Germany
| | - Eirini Faidra Sarri
- Biomedical Research Foundation Academy of Athens, 4th Soranou Efessiou Str., 11527 Athens, Greece
| | - Catherine Stavropoulos
- Biomedical Research Foundation Academy of Athens, 4th Soranou Efessiou Str., 11527 Athens, Greece
| | - Alkiviadis Kostakis
- Biomedical Research Foundation Academy of Athens, 4th Soranou Efessiou Str., 11527 Athens, Greece
| |
Collapse
|
46
|
Current Immunotherapy Approaches in Non-Hodgkin Lymphomas. Vaccines (Basel) 2020; 8:vaccines8040708. [PMID: 33260966 PMCID: PMC7768428 DOI: 10.3390/vaccines8040708] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
Non-Hodgkin lymphomas (NHLs) are lymphoid malignancies of B- or T-cell origin. Despite great advances in treatment options and significant improvement of survival parameters, a large part of NHL patients either present with a chemotherapy-refractory disease or experience lymphoma relapse. Chemotherapy-based salvage therapy of relapsed/refractory NHL is, however, capable of re-inducing long-term remissions only in a minority of patients. Immunotherapy-based approaches, including bispecific antibodies, immune checkpoint inhibitors and genetically engineered T-cells carrying chimeric antigen receptors, single-agent or in combination with therapeutic monoclonal antibodies, immunomodulatory agents, chemotherapy or targeted agents demonstrated unprecedented clinical activity in heavily-pretreated patients with NHL, including chemotherapy-refractory cases with complex karyotype changes and other adverse prognostic factors. In this review, we recapitulate currently used immunotherapy modalities in NHL and discuss future perspectives of combinatorial immunotherapy strategies, including patient-tailored approaches.
Collapse
|
47
|
Ilieva K, Borissov B, Toumi M. Gene therapy randomised clinical trials in Europe - a review paper of methodology and design. JOURNAL OF MARKET ACCESS & HEALTH POLICY 2020; 8:1847808. [PMID: 33312456 PMCID: PMC7717813 DOI: 10.1080/20016689.2020.1847808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/16/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Purpose: Gene therapy brings opportunities to discover cures for diseases for which there are no adequate treatments. As most gene therapies target rare diseases, several challenges are associated with their clinical development, such as limited population size, lack of established clinical pathways for development, and sometimes the absence of validated endpoints. The objective of this study was to systematically review and evaluate the methodology and design of European clinical trials (CTs) utilising gene therapy medicinal products (GTMPs). Methods: A systematic search of online CT databases was performed using keywords to identify CTs conducted with GTMPs in Europe, published from 1 January 1995 to 31 July 2019. Results: The search identified 1571 CTs, of which 199 were identified as published articles. A total of 159 CTs remained following the elimination of duplicated CTs, non-gene therapy trials, and those conducted outside Europe. Of these, only nine CTs were randomised, double-blind, with or without parallel groups, and placebo-controlled. Conclusions: The analysed randomised CTs were conducted in accordance with Good clinical practice with low risk of bias across domains. Only one CT was identified with some concerns of bias due to lack of information regarding the randomisation process and changes in protocol.
Collapse
Affiliation(s)
| | - Borislav Borissov
- Department of Health Technology Assessment, Faculty of Public Health, Medical University Sofia, Sofia, Bulgaria
| | - Mondher Toumi
- Public Health Department, Aix-Marseille University, Marseille, France
| |
Collapse
|
48
|
Apaydin EA, Richardson AS, Baxi S, Vockley J, Akinniranye O, Ross R, Larkin J, Motala A, Azhar G, Hempel S. An evidence map of randomised controlled trials evaluating genetic therapies. BMJ Evid Based Med 2020; 26:bmjebm-2020-111448. [PMID: 33172937 DOI: 10.1136/bmjebm-2020-111448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/18/2020] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Genetic therapies replace or inactivate disease-causing genes or introduce new or modified genes. These therapies have the potential to cure in a single application rather than treating symptoms through repeated administrations. This evidence map provides a broad overview of the genetic therapies that have been evaluated in randomised controlled trials (RCTs) for efficacy and safety. ELIGIBILITY CRITERIA Two independent reviewers screened publications using predetermined eligibility criteria. Study details and data on safety and efficacy were abstracted from included trials. Results were visualised in an evidence map. INFORMATION SOURCES We searched PubMed, EMBASE, Web of Science, ClinicalTrials.gov and grey literature to November 2018. RISK OF BIAS Only RCTs were included in this review to reduce the risk of selection bias in the evaluation of genetic therapy safety and efficacy. INCLUDED STUDIES We identified 119 RCTs evaluating genetic therapies for a variety of clinical conditions. SYNTHESIS OF RESULTS On average, samples included 107 participants (range: 1-1022), and were followed for 15 months (range: 0-124). Interventions using adenoviruses (40%) to treat cardiovascular diseases (29%) were the most common. DESCRIPTION OF THE EFFECT In RCTs reporting safety and efficacy outcomes, in the majority (60%) genetic therapies were associated with improved symptoms but in nearly half (45%) serious adverse event (SAEs) were also reported. Improvement was reported in trials treating cancer, cardiovascular, ocular and muscular diseases. However, only 19 trials reported symptom improvement for at least 1 year. STRENGTHS AND LIMITATIONS OF EVIDENCE This is the first comprehensive evidence map of RCTs evaluating the safety and efficacy of genetic therapies. Evidence for long-term effectiveness and safety is still sparse. This lack of evidence has implications for the use, ethics, pricing and logistics of genetic therapies. INTERPRETATION This evidence map provides a broad overview of research studies that allow strong evidence statements regarding the safety and efficacy of genetic therapies. Most interventions improve symptoms, but SAE are also common. More research is needed to evaluate genetic therapies with regard to the potential to cure diseases.
Collapse
Affiliation(s)
- Eric A Apaydin
- Southern California Evidence-based Practice Center, Health Care, RAND Corporation, Santa Monica, California, USA
- Center for the Study of Healthcare Innovation, Implementation and Policy, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andrea S Richardson
- Southern California Evidence-based Practice Center, Health Care, RAND Corporation, Pittsburgh, Pennsylvania, USA
| | - Sangita Baxi
- Southern California Evidence-based Practice Center, Health Care, RAND Corporation, Santa Monica, California, USA
| | - Jerry Vockley
- Division of Medical Genetics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Olamigoke Akinniranye
- Southern California Evidence-based Practice Center, Health Care, RAND Corporation, Santa Monica, California, USA
| | - Rachel Ross
- West Los Angeles Medical Center, Kaiser Foundation Hospitals, Los Angeles, California, USA
| | - Jody Larkin
- Southern California Evidence-based Practice Center, Health Care, RAND Corporation, Santa Monica, California, USA
| | - Aneesa Motala
- Southern California Evidence-based Practice Center, Health Care, RAND Corporation, Santa Monica, California, USA
| | - Gulrez Azhar
- Southern California Evidence-based Practice Center, Health Care, RAND Corporation, Santa Monica, California, USA
| | - Susanne Hempel
- Southern California Evidence-based Practice Center, Health Care, RAND Corporation, Santa Monica, California, USA
- Southern California Evidence Review Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
49
|
Wu W, Huo Y, Ding X, Zhou Y, Gu S, Gao Y. Identification of the risks in CAR T-cell therapy clinical trials in China: a Delphi study. Ther Adv Med Oncol 2020; 12:1758835920966574. [PMID: 33149770 PMCID: PMC7580145 DOI: 10.1177/1758835920966574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022] Open
Abstract
Aims: Within the past few years, there has been tremendous growth in clinical trials of chimeric antigen receptor (CAR) T-cell therapies. Unlike those of many small-molecule pharmaceuticals, CAR T-cell therapy clinical trials are fraught with risks due to the use of live cell products. The aim of this study is to reach a consensus with experts on the most relevant set of risks that practically occur in CAR T-cell therapy clinical trials. Methods: A Delphi method of consensus development was used to identify the risks in CAR T-cell therapy clinical trials, comprising three survey rounds. The expert panel consisted of principal investigators, clinical research physicians, members of institutional ethics committees, and Good Clinical Practice managers. Results: Of the 24 experts invited to participate in this Delphi study, 20 participants completed Round 1, Round 2, and Round 3. Finally, consensus (defined as >80% agreement) was achieved for 54 risks relating to CAR T-cell clinical trials. Effective interventions related to these risks are needed to ensure the proper protection of subject health and safety. Conclusion: The Delphi method was successful in gaining a consensus on risks relevant to CAR T-cell clinical trials in a geographically diverse expert association. It is hoped that this work can benefit future risk-based quality management in clinical trials and can potentially promote the better development of CAR T-cell therapy products.
Collapse
Affiliation(s)
- Weijia Wu
- Department of Clinical Pharmacy and Pharmaceutical Management, School of Pharmacy, Fudan University, Shanghai, China
| | - Yan Huo
- National Institution of Food and Drug Control, National Medical Products Administration, Beijing, China
| | - Xueying Ding
- Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee
| | - Yuhong Zhou
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shengying Gu
- Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Gao
- Department of Clinical Pharmacy and Pharmaceutical Management, School of Pharmacy, Fudan University, Pudong District, Shanghai, 200433, China
| |
Collapse
|
50
|
Coppens DG, Gardarsdottir H, Bruin MLD, Meij P, Gm Leufkens H, Hoekman J. Regulating advanced therapy medicinal products through the Hospital Exemption: an analysis of regulatory approaches in nine EU countries. Regen Med 2020; 15:2015-2028. [PMID: 33151792 DOI: 10.2217/rme-2020-0008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: To study regulatory approaches for the implementation and utilization of the Hospital Exemption (HE) in nine EU countries. Materials & methods: Using public regulatory documentation and interviews with authorities we characterized the national implementation process of the HE, including national implementation characteristics and two outcomes: national licensing provisions and the amount of license holders. Results: National licensing provisions vary substantially among selected countries as a result of different regulatory considerations that relate to unmet medical needs, benefit/risk balance, and innovation. The amount of license holders per country is moderate (0-11). Conclusion: The HE facilitates HE utilization in clinical practice in some countries, yet safeguarding of public health and incentivizing commercial development is challenging.
Collapse
Affiliation(s)
- Delphi Gm Coppens
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Helga Gardarsdottir
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Department of Clinical Pharmacy, Division Laboratories, Pharmacy & Biomedical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marie L De Bruin
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Copenhagen Centre for Regulatory Science, University of Copenhagen, Copenhagen, Denmark
| | - Pauline Meij
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hubert Gm Leufkens
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jarno Hoekman
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Innovation Studies Group, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|