1
|
Qiao L, Zhuang Z, Wang Y, Xie K, Zhang X, Shen Y, Song J, Zhou S. Nocturnin promotes NADH and ATP production for juvenile hormone biosynthesis in adult insects. PEST MANAGEMENT SCIENCE 2025; 81:3103-3111. [PMID: 39865336 DOI: 10.1002/ps.8676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/12/2024] [Accepted: 01/09/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND Juvenile hormone (JH) is a key endocrine governing insect development, metamorphosis and reproduction. JH analogs have offered great potential for insect pest control. In adulthood, JH titer rapidly increases in the previtellogenic period and reaches a peak in the vitellogenic phase. However, the regulatory mechanisms of JH biosynthesis in corpora allata (CA) of adult insects remain largely unknown. RESULTS We observed that the mitochondrial abundance, as well as the levels of NADH (nicotinamide adenine dinucleotide, reduced form) and adenosine triphosphate (ATP), increased in the CA of previtellogenic adults, peaking during the vitellogenic stage. The transcripts of Nocturnin (Noct), which converts nicotinamide adenine dinucleotide phosphate (NADPH) to NADH for ATP production, were more abundant in the CA compared to those of other enzymes involved in conventional NADH-producing metabolic pathways. The developmental expression pattern of Noct was like that of ATP and NADH level. RNA interference-mediated knockdown of Noct caused a significant decrease of NADH and ATP contents, along with markedly reduced expression levels of 12 genes involved in JH biosynthesis pathway. Loss of Noct function resulted in remarkably reduced expression of vitellogenin, accompanied by arrested ovarian growth and oocyte maturation. CONCLUSION Our results demonstrated that Noct plays a crucial role in high levels of JH biosynthesis in adult insects via regulating NADH and ATP production. The findings reveal a previously unknown aspect of mitochondrial metabolism in JH biosynthesis and provide valuable information for developing pest control strategies targeting hormone pathways. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lintao Qiao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Zitong Zhuang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Yage Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Kairui Xie
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Xinyan Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Yifan Shen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Jiasheng Song
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Shutang Zhou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
2
|
Saeed S, la Cour Poulsen L, Visnovska T, Hoffmann A, Ghosh A, Wolfrum C, Rønningen T, Dahl MB, Wang J, Cayir A, Mala T, Kristinsson JA, Svanevik M, Hjelmesæth J, Hertel JK, Blüher M, Valderhaug TG, Böttcher Y. Chromatin landscape in paired human visceral and subcutaneous adipose tissue and its impact on clinical variables in obesity. EBioMedicine 2025; 114:105653. [PMID: 40118008 PMCID: PMC11976249 DOI: 10.1016/j.ebiom.2025.105653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND Obesity is a global health challenge and adipose tissue exhibits distinct depot-specific characteristics impacting differentially on the risk of metabolic comorbidities. METHODS Here, we integrate chromatin accessibility (ATAC-seq) and gene expression (RNA-seq) data from intra-individually paired human subcutaneous (SAT) and omental visceral adipose tissue (OVAT) samples to unveil depot-specific regulatory mechanisms. FINDINGS We identified twice as many depot-specific differentially accessible regions (DARs) in OVAT compared to SAT. SAT-specific regions showed enrichment for adipose tissue enhancers involving genes controlling extracellular matrix organization and metabolic processes. In contrast, OVAT-specific regions showed enrichment in promoters linked to genes associated with cardiomyopathies. Moreover, OVAT-specific regions were enriched for bivalent transcription start site and repressive chromatin states, suggesting a "lingering" regulatory state. Motif analysis identified CTCF and BACH1 as most significantly enriched motifs in SAT and OVAT-specific DARs, respectively. Distinct gene sets correlated with important clinical variables of obesity, fat distribution measures, as well as insulin, glucose, and lipid metabolism. INTERPRETATION We provide an integrated analysis of chromatin accessibility and transcriptional profiles in paired human SAT and OVAT samples, offering new insights into the regulatory landscape of adipose tissue and highlighting depot-specific mechanisms in obesity pathogenesis. FUNDING SS received EU-Scientia postdoctoral Fellowship and project funding from the European Union's Horizon 2020 Research and Innovation program under the Marie Skłodowska-Curie Grant, (agreement No. 801133). LlCP and TR were supported by Helse Sør-Øst grants to Y.B (ID 2017079, ID 278908). MB received funding from grants from the DFG (German Research Foundation)-Projekt number 209933838-SFB 1052 (project B1) and by Deutsches Zentrum für Diabetesforschung (DZD, Grant: 82DZD00601).
Collapse
Affiliation(s)
- Sadia Saeed
- Department of Clinical Molecular Biology, EpiGen, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | | | - Tina Visnovska
- EpiGen, Medical Division, Akershus University Hospital, Lørenskog, Norway.
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital, Leipzig, Germany.
| | - Adhideb Ghosh
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland.
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland.
| | - Torunn Rønningen
- Department of Clinical Molecular Biology, EpiGen, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; EpiGen, Medical Division, Akershus University Hospital, Lørenskog, Norway.
| | - Mai Britt Dahl
- Department of Clinical Molecular Biology, EpiGen, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Junbai Wang
- Department of Clinical Molecular Biology, EpiGen, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Akin Cayir
- EpiGen, Medical Division, Akershus University Hospital, Lørenskog, Norway.
| | - Tom Mala
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.
| | - Jon A Kristinsson
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.
| | - Marius Svanevik
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway.
| | - Jøran Hjelmesæth
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway.
| | - Jens Kristoffer Hertel
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway.
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital, Leipzig, Germany; Department of Medicine, University of Leipzig, Leipzig, Germany.
| | | | - Yvonne Böttcher
- Department of Clinical Molecular Biology, EpiGen, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; EpiGen, Medical Division, Akershus University Hospital, Lørenskog, Norway.
| |
Collapse
|
3
|
Yuan VG. Rhythms in Remodeling: Posttranslational Regulation of Bone by the Circadian Clock. Biomedicines 2025; 13:705. [PMID: 40149680 PMCID: PMC11940027 DOI: 10.3390/biomedicines13030705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
The circadian clock is a fundamental timekeeping system that regulates rhythmic biological processes in response to environmental light-dark cycles. In mammals, core clock genes (CLOCK, BMAL1, PER, and CRY) orchestrate these rhythms through transcriptional-translational feedback loops, influencing various physiological functions, including bone remodeling. Bone homeostasis relies on the coordinated activities of osteoblasts, osteoclasts, and osteocytes, with increasing evidence highlighting the role of circadian regulation in maintaining skeletal integrity. Disruptions in circadian rhythms are linked to bone disorders such as osteoporosis. Posttranslational modifications (PTMs), including phosphorylation, acetylation, and ubiquitination, serve as crucial regulators of both circadian mechanisms and bone metabolism. However, the specific role of PTMs in integrating circadian timing with bone remodeling remains underexplored. This review examines the intersection of circadian regulation and PTMs in bone biology, elucidating their impact on bone cell function and homeostasis. Understanding these interactions may uncover novel therapeutic targets for skeletal diseases associated with circadian disruptions.
Collapse
Affiliation(s)
- Vincent G Yuan
- Department of Otolaryngology-Head & Neck Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
4
|
Zhao H, Tu X. The potential key genes within focal adhesion that regulate mesenchymal stem cells osteogenesis or adipogenesis in microgravity related disuse osteoporosis: an integrated analysis. Front Endocrinol (Lausanne) 2025; 16:1469400. [PMID: 40130165 PMCID: PMC11930814 DOI: 10.3389/fendo.2025.1469400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 02/14/2025] [Indexed: 03/26/2025] Open
Abstract
This study aimed to identify key genes related to focal adhesions (FA) and cells involved in osteoblast (OS) and adipocyte (AD) differentiation in osteoporosis. A mouse model of disuse osteoporosis was made by hindlimbs unloading (HLU)/Tail - suspension. Micro - CT and histological analysis were done, and differentially expressed genes (DEGs) from GSE100930 were analyzed. Soft clustering on GSE80614 OS/AD samples found FA - related candidate genes. protein-protein interaction (PPI) network and cytoHubba's Degree algorithm identified key FA - genes, validated by quantitative polymerase chain reaction (qPCR). Key OS/AD - associated cells were identified by single - cell analysis. The mouse model showed decreased bone density, microstructure damage, increased marrow adiposity, and altered gene expression. Key FA - related genes for osteogenesis (ITGB3, LAMC1, COL6A3, ITGA8, PDGFRB) and adipogenesis (ITGB3, ITGA4, LAMB1, ITGA8, LAMA4) were found and validated. Key cells (chondrocyte, adipocyte, and osteoblast progenitors) are involved in specific pathways, with osteoblast progenitors having stronger interactions. Pseudotime analysis implies differentiation from chondrocyte progenitors to adipocyte, then osteoblast progenitors. This study provides new insights for disuse osteoporosis research.
Collapse
Affiliation(s)
| | - Xiaolin Tu
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Li S, Fu Y, Wang W, Qiu J, Huang Y, Li X, Yang K, Yu X, Ma Y, Zhang Y, Zhang M, Li J, Li WD. Olanzapine Induces Adipogenesis and Glucose Uptake by Activating Glycolysis and Synergizing with the PI3K-AKT Pathway. Curr Neuropharmacol 2025; 23:412-425. [PMID: 39150031 DOI: 10.2174/1570159x22666240815120547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Administration of olanzapine (OLA) is closely associated with obesity and glycolipid abnormalities in patients with schizophrenia (SCZ), although the exact molecular mechanisms remain elusive. OBJECTIVE We conducted comprehensive animal and molecular experiments to elucidate the mechanisms underlying OLA-induced weight gain. METHODS We investigated the mechanisms of OLA-induced adipogenesis and lipid storage by employing a real-time ATP production rate assay, glucose uptake test, and reactive oxygen species (ROS) detection in 3T3-L1 cells and AMSCs. Rodent models were treated with OLA using various intervention durations, dietary patterns (normal diets/western diets), and drug doses. We assessed body weight, epididymal and liver fat levels, and metabolic markers in both male and female mice. RESULTS OLA accelerates adipogenesis by directly activating glycolysis and its downstream PI3K signaling pathway in differentiated adipocytes. OLA promotes glucose uptake in differentiated 3T3-L1 preadipocytes. In mouse models with normal glycolipid metabolism, OLA administration failed to increase food intake and weight gain despite elevated GAPDH expression, a marker related to glycolysis and PI3K-AKT. This supports the notion that glycolysis plays a significant role in OLA-induced metabolic dysfunction. CONCLUSION OLA induces glycolysis and activates the downstream PI3K-AKT signaling pathway, thereby promoting adipogenesis.
Collapse
Affiliation(s)
- Shen Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
| | - Yun Fu
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, China
| | - Wanyao Wang
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jiali Qiu
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yepei Huang
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xuemin Li
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ke Yang
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xiawen Yu
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yanyan Ma
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
| | - Yuan Zhang
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Miaomiao Zhang
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jie Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
| | - Wei-Dong Li
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
6
|
Adhish M, Manjubala I. Integrative in-silico and in-vitro analysis of taurine and vitamin B12 in modulating PPARγ and Wnt signaling in hyperhomocysteinemia-induced osteoporosis. Biol Direct 2024; 19:141. [PMID: 39707534 DOI: 10.1186/s13062-024-00581-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) is a critical regulator of adipogenesis and bone metabolism, playing complex roles in osteoporosis. This study investigates the effects of taurine and homocysteine on PPARγ, focusing on their roles in osteoclastogenesis and bone health. In-silico analyses, including molecular docking and molecular dynamic simulations, revealed that both taurine and homocysteine bind competitively to the PPARγ ligand-binding domain, exhibiting distinctive antagonistic modes, including destabilization of PPARγ's key helices H3, H4/5, H11, and H12. In-vitro experiments further supported these results, demonstrating that taurine protects against oxidative damage, enhances bone mineralization, and reduces the expression levels of PPARγ, while also downregulating negative regulators of the Wnt signaling pathway, such as SOST and DKK1. Homocysteine, on the other hand, was observed to increase the expression of these regulators and impair bone formation. Vitamin B12 was included in the study due to its known role in mitigating hyperhomocysteinemia, a condition linked to impaired bone health and reduced taurine levels. While vitamin B12 alone demonstrated some beneficial effects, it did not achieve the same level of efficacy as taurine. However, a combination of taurine and vitamin B12 showed greater efficacy in ameliorating hyperhomocysteinemia-induced osteoporosis. Overall, this study highlights taurine's therapeutic potential in counteracting the adverse effects of hyperhomocysteinemia on bone health and underscores the need for further research into taurine's mechanisms in osteoporosis treatment.
Collapse
Affiliation(s)
- Mazumder Adhish
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - I Manjubala
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
7
|
Kim HJ, Choi SA, Gu MS, Ko SY, Kwon JH, Han JY, Kim JH, Kim MG. Effects of Glucagon-Like Peptide-1 Receptor Agonist on Bone Mineral Density and Bone Turnover Markers: A Meta-Analysis. Diabetes Metab Res Rev 2024; 40:e3843. [PMID: 39311048 DOI: 10.1002/dmrr.3843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2024] [Accepted: 09/04/2024] [Indexed: 10/15/2024]
Abstract
AIMS Glucagon-like peptide-1 receptor agonist (GLP-1RA) may promote bone formation, but conversely, they could also weaken bones due to the reduction in mechanical load associated with weight loss. However, the clinical effects in humans have not been clearly demonstrated. This meta-analysis aimed to evaluate whether GLP-1RAs affect BMD and bone turnover markers. MATERIAL AND METHODS PubMed, Embase, and Scopus were searched on June 13, 2024. The eligibility criteria were: (1) human studies, (2) receiving a GLP-1RA for more than 4 weeks, (3) an untreated control group or a placebo group, (4) reporting of at least one BMD or bone turnover marker, and (5) an RCT design. The risk of bias was assessed using the Cochrane risk of bias 2 tool. Fixed- or random-effects meta-analysis was performed according to heterogeneity. RESULTS Seven studies were included in the meta-analysis. GLP-1RAs did not significantly change BMD in the femoral neck (mean difference [MD], 0.01 g/cm2; 95% CI, -0.01-0.04 g/cm2), in the total hip (MD, -0.01 g/cm2; 95% CI, -0.02-0.01 g/cm2), and in the lumbar spine (MD, 0 g/cm2; 95% CI, -0.02-0.02 g/cm2). C-terminal telopeptide of type 1 collagen (CTX), a bone resorption marker, significantly increased after GLP-1RA treatment (MD, 0.04 μg/L; 95% CI, 0.01-0.07 μg/L). GLP-1RAs did not significantly change bone formation markers such as procollagen type 1 N-terminal propeptide, bone-specific alkaline phosphatase, osteocalcin. CONCLUSIONS GLP-1RA did not affect BMD and bone formation markers. However, GLP-1RAs led to a significant increase in CTX.
Collapse
Affiliation(s)
- Hee-Ju Kim
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Seo-A Choi
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Min-Sun Gu
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Seo-Yeong Ko
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Jae-Hee Kwon
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Ja-Young Han
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Jae Hyun Kim
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Myeong Gyu Kim
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Lloyd EM, Crew RC, Haynes VR, White RB, Mark PJ, Jackaman C, Papadimitriou JM, Pinniger GJ, Murphy RM, Watt MJ, Grounds MD. Pilot investigations into the mechanistic basis for adverse effects of glucocorticoids in dysferlinopathy. Skelet Muscle 2024; 14:19. [PMID: 39123261 PMCID: PMC11312411 DOI: 10.1186/s13395-024-00350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Dysferlinopathies are a clinically heterogeneous group of muscular dystrophies caused by gene mutations resulting in deficiency of the membrane-associated protein dysferlin. They manifest post-growth and are characterised by muscle wasting (primarily in the limb and limb-gridle muscles), inflammation, and replacement of myofibres with adipose tissue. The precise pathomechanism for dysferlinopathy is currently unclear; as such there are no treatments currently available. Glucocorticoids (GCs) are widely used to reduce inflammation and treat muscular dystrophies, but when administered to patients with dysferlinopathy, they have unexpected adverse effects, with accelerated loss of muscle strength. METHODS To investigate the mechanistic basis for the adverse effects of GCs in dysferlinopathy, the potent GC dexamethasone (Dex) was administered for 4-5 weeks (0.5-0.75 µg/mL in drinking water) to dysferlin-deficient BLA/J and normal wild-type (WT) male mice, sampled at 5 (Study 1) or 10 months (Study 2) of age. A wide range of analyses were conducted. Metabolism- and immune-related gene expression was assessed in psoas muscles at both ages and in quadriceps at 10 months of age. For the 10-month-old mice, quadriceps and psoas muscle histology was assessed. Additionally, we investigated the impact of Dex on the predominantly slow and fast-twitch soleus and extensor digitorum longus (EDL) muscles (respectively) in terms of contractile function, myofibre-type composition, and levels of proteins related to contractile function and metabolism, plus glycogen. RESULTS At both ages, many complement-related genes were highly expressed in BLA/J muscles, and WT mice were generally more responsive to Dex than BLA/J. The effects of Dex on BLA/J mice included (i) increased expression of inflammasome-related genes in muscles (at 5 months) and (ii) exacerbated histopathology of quadriceps and psoas muscles at 10 months. A novel observation was pronounced staining for glycogen in many myofibres of the damaged quadriceps muscles, with large pale vacuolated myofibres, suggesting possible myofibre death by oncosis. CONCLUSION These pilot studies provide a new focus for further investigation into the adverse effects of GCs on dysferlinopathic muscles.
Collapse
Affiliation(s)
- Erin M Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Rachael C Crew
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
| | - Vanessa R Haynes
- Department of Anatomy and Physiology, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Robert B White
- MD Education Unit, UWA Medical School, The University of Western Australia, Perth, WA, Australia
| | - Peter J Mark
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Connie Jackaman
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - John M Papadimitriou
- Department of Pathology and Laboratory Medicine, UWA Medical School, The University of Western Australia, Perth, WA, Australia
| | - Gavin J Pinniger
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
9
|
Barbosa S, Pedrosa MB, Ferreira R, Moreira-Gonçalves D, Santos LL. The impact of chemotherapy on adipose tissue remodeling: The molecular players involved in this tissue wasting. Biochimie 2024; 223:1-12. [PMID: 38537739 DOI: 10.1016/j.biochi.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
The depletion of visceral and subcutaneous adipose tissue (AT) during chemotherapy significantly correlates with diminished overall survival and progression-free survival. Despite its clinical significance, the intricate molecular mechanisms governing this AT loss and its chemotherapy-triggered initiation remain poorly understood. Notably, the evaluation of AT remodeling in most clinical trials has predominantly relied on computerized tomography scans or bioimpedance, with molecular studies often conducted using animal or in vitro models. To address this knowledge gap, a comprehensive narrative review was conducted. The findings underscore that chemotherapy serves as a key factor in inducing AT loss, exacerbating cachexia, a paraneoplastic syndrome that significantly compromises patient quality of life and survival. The mechanism driving AT loss appears intricately linked to alterations in AT metabolic remodeling, marked by heightened lipolysis and fatty acid oxidation, coupled with diminished lipogenesis. However, adipocyte stem cells' lost ability to divide due to chemotherapy also appears to be at the root of the loss of AT. Notably, chemotherapy seems to deactivate the mitochondrial antioxidant system by reducing key regulatory enzymes responsible for neutralizing reactive oxygen species (ROS), thereby impeding lipogenesis. Despite FDG-PET evidence of AT browning, no molecular evidence of thermogenesis was reported. Prospective investigations unraveling the molecular mechanisms modulated in AT by chemotherapy, along with therapeutic strategies aimed at preventing AT loss, promise to refine treatment paradigms and enhance patient outcomes.
Collapse
Affiliation(s)
- Samuel Barbosa
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450, Porto, Portugal; Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (P.CCC), 4200-072, Porto, Portugal.
| | - Mafalda Barbosa Pedrosa
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450, Porto, Portugal; Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (P.CCC), 4200-072, Porto, Portugal; Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rita Ferreira
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Daniel Moreira-Gonçalves
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450, Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600, Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (P.CCC), 4200-072, Porto, Portugal
| |
Collapse
|
10
|
Di Maio G, Alessio N, Ambrosino A, Al Sammarraie SHA, Monda M, Di Bernardo G. Irisin influences the in vitro differentiation of human mesenchymal stromal cells, promoting a tendency toward beiging adipogenesis. J Cell Biochem 2024; 125:e30565. [PMID: 38591469 DOI: 10.1002/jcb.30565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/10/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
Mammals exhibit two distinct types of adipose depots: white adipose tissue (WAT) and brown adipose tissue (BAT). While WAT primarily functions as a site for energy storage, BAT serves as a thermogenic tissue that utilizes energy and glucose consumption to regulate core body temperature. Under specific stimuli such as exercise, cold exposure, and drug treatment, white adipocytes possess a remarkable ability to undergo transdifferentiation into brown-like cells known as beige adipocytes. This transformation process, known as the "browning of WAT," leads to the acquisition of new morphological and physiological characteristics by white adipocytes. We investigated the potential role of Irisin, a 12 kDa myokine that is secreted in mice and humans by skeletal muscle after physical activity, in inducing the browning process in mesenchymal stromal cells (MSCs). A subset of the MSCs possesses the remarkable capability to differentiate into different cell types such as adipocytes, osteocytes, and chondrocytes. Consequently, comprehending the effects of Irisin on MSC biology becomes a crucial factor in investigating antiobesity medications. In our study, the primary objective is to evaluate the impact of Irisin on various cell types engaged in distinct stages of the differentiation process, including stem cells, committed precursors, and preadipocytes. By analyzing the effects of Irisin on these specific cell populations, our aim is to gain a comprehensive understanding of its influence throughout the entire differentiation process, rather than solely concentrating on the final differentiated cells. This approach enables us to obtain insights into the broader effects of Irisin on the cellular dynamics and mechanisms involved in adipogenesis.
Collapse
Affiliation(s)
- Girolamo Di Maio
- Human Physiology and Unit of Dietetic and Sports Medicine Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Nicola Alessio
- Biotechnology and Molecular Biology Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Alessia Ambrosino
- Biotechnology and Molecular Biology Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Sura H A Al Sammarraie
- Biotechnology and Molecular Biology Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Marcellino Monda
- Human Physiology and Unit of Dietetic and Sports Medicine Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giovanni Di Bernardo
- Biotechnology and Molecular Biology Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Baek JG, Park DH, Vu NK, Muvva C, Hwang H, Song S, Lee HS, Kim TJ, Kwon HC, Park K, Kang KS, Kwon J. Glycolipids Derived from the Korean Endemic Plant Aruncus aethusifolius Inducing Glucose Uptake in Mouse Skeletal Muscle C2C12 Cells. PLANTS (BASEL, SWITZERLAND) 2024; 13:608. [PMID: 38475455 DOI: 10.3390/plants13050608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
Aruncus spp. has been used as a traditional folk medicine worldwide for its anti-inflammatory, hemostatic, and detoxifying properties. The well-known species A. dioicus var. kamtschaticus has long been used for multifunctional purposes in Eastern Asia. Recently, it was reported that its extract has antioxidant and anti-diabetic effects. In this respect, it is likely that other Aruncus spp. possess various biological activities; however, little research has been conducted thus far. The present study aims to biologically identify active compounds against diabetes in the Korean endemic plant A. aethusifolius and evaluate the underlying mechanisms. A. aethusifolius extract enhanced glucose uptake without toxicity to C2C12 cells. A bioassay-guided isolation of A. aethusifolius yielded two pure compounds, and their structures were characterized as glycolipid derivatives, gingerglycolipid A, and (2S)-3-linolenoylglycerol-O-β-d-galactopyranoside by an interpretation of nuclear magnetic resonance and high-resolution mass spectrometric data. Both compounds showed glucose uptake activity, and both compounds increased the phosphorylation levels of insulin receptor substrate 1 (IRS-1) and 5'-AMP-activated protein kinase (AMPK) and protein expression of peroxisome proliferator-activated receptor γ (PPARγ). Gingerglycolipid A docked computationally into the active site of IRS-1, AMPK1, AMPK2, and PPARγ (-5.8, -6.9, -6.8, and -6.8 kcal/mol).
Collapse
Affiliation(s)
- Jong Gwon Baek
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
- Department of YM-KIST Bio-Health Convergence, Yonsei University, Wonju 26593, Republic of Korea
| | - Do Hwi Park
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Ngoc Khanh Vu
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Charuvaka Muvva
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Hoseong Hwang
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Sungmin Song
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Hyeon-Seong Lee
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Tack-Joong Kim
- Department of YM-KIST Bio-Health Convergence, Yonsei University, Wonju 26593, Republic of Korea
| | - Hak Cheol Kwon
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
- Department of YM-KIST Bio-Health Convergence, Yonsei University, Wonju 26593, Republic of Korea
| | - Keunwan Park
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Jaeyoung Kwon
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Gangneung 25451, Republic of Korea
| |
Collapse
|
12
|
Wei X, Zhang Y, Wang Z, He Y, Ju S, Fu J. Bone marrow adipocytes is a new player in supporting myeloma cells proliferation and survival in myeloma microenvironment. Transl Oncol 2024; 40:101856. [PMID: 38134840 PMCID: PMC10776777 DOI: 10.1016/j.tranon.2023.101856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/09/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Multiple myeloma (MM) is a lethal B cell neoplasm characterized by clonal expansion of malignant plasma cells in the bone marrow and remains incurable due to disease relapse and drug resistance. Bone marrow adipocytes (BMAs) are emerging as playing active functions that can support myeloma cell growth and survival. The aim of this study is to investigate myeloma-mesenchymal stem cells (MSCs) interaction and the impact of such interactions on the pathogenesis of MM using in vitro co-culture assay. Here we provide evidence that MM cell up-regulated MSCs to express PPAR-γ and pushes MSCs differentiation toward adipocytes at the expense of osteoblasts in co-culture manner. The increased BMAs can effectively enhance MM cell to proliferation, migration, and chemoresistance via cell-cell contact and/or cytokines release regulated by PPAR-γ signal pathway. This effect was partially reversed in medium containing PPAR-γ antagonist G3335 and indicated that G3335 distorts the maturation of MSC-derived adipocytes and cytokines release by adipocytes through inhibition of PPAR-γ, a key transcriptional factor for the activation of adipogenesis, or cell to cell contact, or both. In meantime, we observed higher expression of adipocyte differentiation associated genes DLK1, DGAT1, FABP4, and FASN both in MSCs and MSC derived adipocytes, but the osteoblast differentiation-associated gene ALP was down regulated in MSCs. These finding mean that direct consequence of MM/MSC interaction that play a role in MM pathogenesis. Consistent with those in vitro results, our primary clinical observation also showed that bone marrow samples from MM patients had significantly higher bone adiposity in comparison with controls and the number of adipocytes decreased in those who were response to anti-MM therapy. Our finding suggested that BMAs may have an important contribution to MM progression, particularly in drugs resistant of MM cells, and plays an important contribution in MM bone disease and treatment failure, but more clinical studies are needed to confirm its role.
Collapse
Affiliation(s)
- Xiaoqian Wei
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China
| | - Yangmin Zhang
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China
| | - Ziyan Wang
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China
| | - Yuanning He
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China
| | - Songguang Ju
- Institute of Biotechnology, Soochow University, Suzhou 215007, PR China
| | - Jinxiang Fu
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China.
| |
Collapse
|
13
|
Chiang CH, Lin YH, Kao YC, Weng SC, Chen CM, Liou YM. Mechanistic study of the Aldo-keto reductase family 1 member A1 in regulating mesenchymal stem cell fate decision toward adipogenesis and osteogenesis. Life Sci 2024; 336:122336. [PMID: 38092142 DOI: 10.1016/j.lfs.2023.122336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
AIMS Akr1A1 is a glycolytic enzyme catalyzing the reduction of aldehyde to alcohol. This study aims to delineate the role of Akr1A1 in regulating the adipo-osteogenic lineage differentiation of mesenchymal stem cells (MSCs). MAIN METHODS MSCs derived from human bone marrow and Wharton Jelly together with gain- and loss-of-function analysis as well as supplementation with the S-Nitrosoglutathione reductase (GSNOR) inhibitor N6022 were used to study the function of Akr1A1 in controlling MSC lineage differentiation into osteoblasts and adipocytes. KEY FINDINGS Akr1A1 expression, PKM2 activity, and lactate production were found to be decreased in osteoblast-committed MSCs, but PGC-1α increased to induce mitochondrial oxidative phosphorylation. Increased Akr1A1 inhibited the SIRT1-dependent pathway for decreasing the expressions of PGC-1α and TAZ but increasing PPAR γ in adipocyte-committed MSCs, hence promoting glycolysis in adipogenesis. In contrast, Akr1A1 expression, PKM2 activity and lactate production were all increased in adipocyte-differentiated cells with decreased PGC-1α for switching energy utilization to glycolytic metabolism. Reduced Akr1A1 expression in osteoblast-committed cells relieves its inhibition of SIRT1-mediated activation of PGC-1α and TAZ for facilitating osteogenesis and mitochondrial metabolism. SIGNIFICANCE Several metabolism-involved regulators including Akr1A1, SIRT1, PPARγ, PGC-1α and TAZ were differentially expressed in osteoblast- and adipocyte-committed MSCs. More importantly, Akr1A1 was identified as a new key regulator for controlling the MSC lineage commitment in favor of adipogenesis but detrimental to osteogenesis. Such information should be useful to develop perspective new therapeutic agents to reverse the adipo-osteogenic differentiation of BMSCs, in a way to increase in osteogenesis but decrease in adipogenesis.
Collapse
Affiliation(s)
- Chen Hao Chiang
- Department of Orthopaedics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Yi-Hui Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Cuieh Kao
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Shuo-Chun Weng
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan; Institute of Clinical Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Center for Geriatrics and Gerontology, Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Ying-Ming Liou
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
14
|
Azuara-Alvarez LE, Díaz-Muñoz M, Báez Ruiz A, Saderi N, Ramírez-Plascencia OD, Cárdenas-Romero S, Flores-Sandoval O, Salgado-Delgado R. Visceral fat sympathectomy ameliorates systemic and local stress response related to chronic sleep restriction. Exp Biol Med (Maywood) 2023; 248:2381-2392. [PMID: 38143435 PMCID: PMC10903249 DOI: 10.1177/15353702231214267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/23/2023] [Indexed: 12/26/2023] Open
Abstract
Disturbance of sleep homeostasis encompasses health issues, including metabolic disorders like obesity, diabetes, and augmented stress vulnerability. Sleep and stress interact bidirectionally to influence the central nervous system and metabolism. Murine models demonstrate that decreased sleep time is associated with an increased systemic stress response, characterized by endocrinal imbalance, including the elevated activity of hypothalamic-pituitary-adrenal axis, augmented insulin, and reduced adiponectin, affecting peripheral organs physiology, mainly the white adipose tissue (WAT). Within peripheral organs, a local stress response can also be activated by promoting the formation of corticosterone. This local amplifying glucocorticoid signaling is favored through the activation of the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). In WAT, 11β-HSD1 activity is upregulated by the sympathetic nervous system, suggesting a link between sleep loss, augmented stress response, and a potential WAT metabolic disturbance. To gain more understanding about this relationship, metabolic and stress responses of WAT-sympathectomized rats were analyzed to identify the contribution of the autonomic nervous system to stress response-related metabolic disorders during chronic sleep restriction. Male Wistar rats under sleep restriction were allowed just 6 h of daily sleep over eight weeks. Results showed that rats under sleep restriction presented higher serum corticosterone, increased adipose tissue 11β-HSD1 activity, weight loss, decreased visceral fat, augmented adiponectin, lower leptin levels, glucose tolerance impairment, and mildly decreased daily body temperature. In contrast, sympathectomized rats under sleep restriction exhibited decreased stress response (lower serum corticosterone and 11β-HSD1 activity). In addition, they maintained weight loss, explained by a reduced visceral fat pad, leptin, and adiponectin, improved glucose management, and persisting decline in body temperature. These results suggest autonomic nervous system is partially responsible for the WAT-exacerbated stress response and its metabolic and physiological disturbances.
Collapse
Affiliation(s)
- Lucia E Azuara-Alvarez
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78295, México
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, Querétaro 76230, México
| | - Adrián Báez Ruiz
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78295, México
| | - Nadia Saderi
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78295, México
| | - Oscar Daniel Ramírez-Plascencia
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78295, México
- Neurology department, Beth Israel Deacones Medical Center/Harvard Medical School, Boston, MA 02215, USA
| | - Skarleth Cárdenas-Romero
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78295, México
- Neurology department, Beth Israel Deacones Medical Center/Harvard Medical School, Boston, MA 02215, USA
| | - Omar Flores-Sandoval
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78295, México
| | - Roberto Salgado-Delgado
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78295, México
| |
Collapse
|
15
|
Wan S, Xie J, Liang Y, Yu X. Pathological roles of bone marrow adipocyte-derived monocyte chemotactic protein-1 in type 2 diabetic mice. Cell Death Discov 2023; 9:412. [PMID: 37957155 PMCID: PMC10643445 DOI: 10.1038/s41420-023-01708-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) has become a prevalent public health concern, with beta-cell dysfunction involved in its pathogenesis. Bone marrow adipose tissue (BMAT) increases in both the quantity and area in individuals with T2DM along with heightened monocyte chemotactic protein-1 (MCP-1) secretion. This study aims to investigate the influence and underlying mechanisms of MCP-1 originating from bone marrow adipocytes (BMAs) on systemic glucose homeostasis in T2DM. Initially, a substantial decrease in the proliferation and glucose-stimulated insulin secretion (GSIS) of islet cells was observed. Moreover, a comparative analysis between the control (Ctrl) group and db/db mice revealed significant alterations in the gene expression profiles of whole bone marrow cells, with a noteworthy upregulation of Mcp-1. And the primary enriched pathways included chemokine signaling pathway and AGE-RAGE signaling pathway in diabetic complications. In addition, the level of MCP-1 was distinctly elevated in BMA-derived conditional media (CM), leading to a substantial inhibition of proliferation, GSIS and the protein level of phosphorylated Akt (p-Akt) in Min6 cells. After blocking MCP-1 pathway, we observed a restoration of p-Akt and the proliferation of islet cells, resulting in a marked improvement in disordered glucose homeostasis. In summary, there is an accumulation of BMAs in T2DM, which secrete excessive MCP-1, exacerbating the abnormal accumulation of BMAs in the bone marrow cavity through paracrine signaling. The upregulated MCP-1, in turn, worsens glucose metabolism disorder by inhibiting the proliferation and insulin secretion of islet cells through an endocrine pathway. Inhibiting MCP-1 signaling can partially restore the proliferation and insulin secretion of islet cells, ultimately ameliorating glucose metabolism disorder. It's worth noting that to delve deeper into the impact of MCP-1 derived from BMAs on islet cells and its potential mechanisms, it is imperative to develop genetically engineered mice with conditional Mcp-1 knockout from BMAs.
Collapse
Affiliation(s)
- Shan Wan
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jinwei Xie
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Liang
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Liu J, Li X, Wang H, Ren Y, Li Y, Guo F. Bavachinin selectively modulates PPAR γ and maintains bone homeostasis in Type 2 Diabetes. Phytother Res 2023; 37:4457-4472. [PMID: 37308719 DOI: 10.1002/ptr.7912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023]
Abstract
Full peroxisome proliferator-activated receptor (PPAR) γ agonists, Thiazolidinediones (TZDs), effectively prevent the process of Type 2 Diabetes Mellitus (T2DM), but their side effects have curtailed use in the clinic, including weight gain and bone loss. Here, we identified that a selective PPAR γ modulator, Bavachinin (BVC), isolated from the seeds of Psoralea Corylifolia L., could potently regulate bone homeostasis. MC3T3-E1 pre-osteoblast cells and C3H10T1/2 mesenchymal stem cells were assessed for osteogenic differentiation activities, and receptor activator of NF-κB ligand (RANKL)-induced RAW 264.7 cells were assessed osteoclasts formation. Leptin receptor-deficient mice and diet-induced obesity mice were applied to evaluate the effect of BVC on bone homeostasis in vivo. Compared to full PPAR γ agonist rosiglitazone, BVC significantly increased the osteogenesis differentiation activities under normal and high glucose conditions in MC3T3-E1 cells. Moreover, BVC could alleviate osteoclast differentiation in RANKL-induced RAW 264.7 cells. In vivo, synthesized BVC prodrug (BN) has been applied to improve water solubility, increase the extent of oral absorption of BVC and prolong its residence time in blood circulation. BN could prevent weight gain, ameliorate lipid metabolism disorders, improve insulin sensitivity, and maintain bone mass and bone biomechanical properties. BVC, a unique PPAR γ selective modulator, could maintain bone homeostasis, and its prodrug (BN) exhibits insulin sensitizer activity while circumventing the side effects of the TZDs, including bone loss and undesirable weight gain.
Collapse
Affiliation(s)
- Jingwen Liu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiaoye Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hong Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yan Ren
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
17
|
Zhang S, van de Peppel J, Koedam M, van Leeuwen JPTM, van der Eerden BCJ. Tensin-3 is involved in osteogenic versus adipogenic fate of human bone marrow stromal cells. Cell Mol Life Sci 2023; 80:277. [PMID: 37668682 PMCID: PMC10480249 DOI: 10.1007/s00018-023-04930-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/25/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND The tightly controlled balance between osteogenic and adipogenic differentiation of human bone marrow-derived stromal cells (BMSCs) is critical to maintain bone homeostasis. Age-related osteoporosis is characterized by low bone mass with excessive infiltration of adipose tissue in the bone marrow compartment. The shift of BMSC differentiation from osteoblasts to adipocytes could result in bone loss and adiposity. METHODS TNS3 gene expression during osteogenic and adipogenic differentiation of BMSCs was evaluated by qPCR and Western blot analyses. Lentiviral-mediated knockdown or overexpression of TNS3 was used to assess its function. The organization of cytoskeleton was examined by immunofluorescent staining at multiple time points. The role of TNS3 and its domain function in osteogenic differentiation were evaluated by ALP activity, calcium assay, and Alizarin Red S staining. The expression of Rho-GTP was determined using the RhoA pull-down activation assay. RESULTS Loss of TNS3 impaired osteogenic differentiation of BMSCs but promoted adipogenic differentiation. Conversely, TNS3 overexpression hampered adipogenesis while enhancing osteogenesis. The expression level of TNS3 determined cell shape and cytoskeletal reorganization during osteogenic differentiation. TNS3 truncation experiments revealed that for optimal osteogenesis to occur, all domains proved essential. Pull-down and immunocytochemical experiments suggested that TNS3 mediates osteogenic differentiation through RhoA. CONCLUSIONS Here, we identify TNS3 to be involved in BMSC fate decision. Our study links the domain structure in TNS3 to RhoA activity via actin dynamics and implicates an important role for TNS3 in regulating osteogenesis and adipogenesis from BMSCs. Furthermore, it supports the critical involvement of cytoskeletal reorganization in BMSC differentiation.
Collapse
Affiliation(s)
- Shuang Zhang
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Jeroen van de Peppel
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Marijke Koedam
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Johannes P T M van Leeuwen
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Bram C J van der Eerden
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015GD, Rotterdam, The Netherlands.
| |
Collapse
|
18
|
Zhong M, Wu Z, Chen Z, Ren Q, Zhou J. Advances in the interaction between endoplasmic reticulum stress and osteoporosis. Biomed Pharmacother 2023; 165:115134. [PMID: 37437374 DOI: 10.1016/j.biopha.2023.115134] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023] Open
Abstract
The endoplasmic reticulum (ER) is the main site for protein synthesis, folding, and secretion, and accumulation of the unfolded/misfolded proteins in the ER may induce ER stress. ER stress is an important participant in various intracellular signaling pathways. Prolonged- or high-intensity ER stress may induce cell apoptosis. Osteoporosis, characterized by imbalanced bone remodeling, is a global disease caused by many factors, such as ER stress. ER stress stimulates osteoblast apoptosis, increases bone loss, and promotes osteoporosis development. Many factors, such as the drug's adverse effects, metabolic disorders, calcium ion imbalance, bad habits, and aging, have been reported to activate ER stress, resulting in the pathological development of osteoporosis. Increasing evidence shows that ER stress regulates osteogenic differentiation, osteoblast activity, and osteoclast formation and function. Various therapeutic agents have been developed to counteract ER stress and thereby suppress osteoporosis development. Thus, inhibition of ER stress has become a potential target for the therapeutic management of osteoporosis. However, the in-depth understanding of ER stress in the pathogenesis of osteoporosis still needs more effort.
Collapse
Affiliation(s)
- Mingliang Zhong
- College of Rehabilitation, Gannan Medical University, Ganzhou 341000, China
| | - Zhenyu Wu
- First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Zhixi Chen
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Qun Ren
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China.
| |
Collapse
|
19
|
Jiao Y, Sun J, Li Y, Zhao J, Shen J. Association between Adiposity and Bone Mineral Density in Adults: Insights from a National Survey Analysis. Nutrients 2023; 15:3492. [PMID: 37571429 PMCID: PMC10420642 DOI: 10.3390/nu15153492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
Adiposity and bone mineral density (BMD) are closely associated. The aim of this research was to investigate the association between BMD and adiposity measures in adults, including gynoid percent fat (GPF), android percent fat (APF), total percent fat (TPF), visceral adipose tissue percent (VAT%), and total lean mass percent (TLM%). Participants (n = 11,615) aged 18 years and older were analyzed using data from the National Health and Nutrition Examination Survey (NHANES) spanning from 1999 to 2018. Associations between BMD and adiposity measures were investigated, and potential differences based on gender and age were explored. Significant negative associations were observed among TPF, APF, GPF, VAT%, and BMD in the fully adjusted models, while TLM% and BMD were positively associated. Stratifying by age and sex, TPF, GPF, and VAT% consistently demonstrated a negative correlation with BMD. In the young adult group, a TPF of 38.2% eliminated the negative correlation between BMD and TPF. Male BMD exhibited an inverted U-shaped relationship with APF, peaking at 35.6%, while a similar pattern was observed for the middle-aged group BMD and APF, with a peak at 31.7%. This large-sample research found a significant negative association between adiposity measures and BMD, providing valuable revelations regarding the intricate connection between adiposity and bone health.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China; (Y.J.); (J.Z.)
| | - Juan Sun
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China;
| | - Yuanmeng Li
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China;
| | - Junduo Zhao
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China; (Y.J.); (J.Z.)
| | - Jianxiong Shen
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China; (Y.J.); (J.Z.)
| |
Collapse
|
20
|
Zhong Y, Wang Y, Li X, Qin H, Yan S, Rao C, Fan D, Liu D, Deng F, Miao Y, Yang L, Huang K. PRMT4 Facilitates White Adipose Tissue Browning and Thermogenesis by Methylating PPARγ. Diabetes 2023; 72:1095-1111. [PMID: 37216643 PMCID: PMC10382653 DOI: 10.2337/db22-1016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
Obesity is a global health threat, and the induction of white adipose tissue (WAT) browning presents a promising therapeutic method for it. Recent publications revealed the essential role of protein arginine methyltransferase 4 (PRMT4) in lipid metabolism and adipogenesis, but its involvement in WAT browning has not been investigated. Our initial studies found that the expression of PRMT4 in adipocytes was upregulated in cold-induced WAT browning but downregulated in obesity. Besides, PRMT4 overexpression in inguinal adipose tissue accelerated WAT browning and thermogenesis to protect against high-fat diet-induced obesity and metabolic disruptions. Mechanistically, our work demonstrated that PRMT4 methylated peroxisome proliferator-activated receptor-γ (PPARγ) on Arg240 to enhance its interaction with the coactivator PR domain-containing protein 16 (PRDM16), leading to the increased expression of thermogenic genes. Taken together, our results uncover the essential role of the PRMT4/PPARγ/PRDM16 axis in the pathogenesis of WAT browning. ARTICLE HIGHLIGHTS Protein arginine methyltransferase 4 (PRMT4) expression was upregulated during cold exposure and negatively correlated with body mass of mice and humans. PRMT4 overexpression in inguinal white adipose tissue of mice improved high-fat diet-induced obesity and associated metabolic impairment due to enhanced heat production. PRMT4 methylated peroxisome proliferator-activated receptor-γ on Arg240 and facilitated the binding of the coactivator PR domain-containing protein 16 to initiate adipose tissue browning and thermogenesis. PRMT4-dependent methylation of peroxisome proliferator-activated receptor-γ on Arg240 is important in the process of inguinal white adipose tissue browning.
Collapse
Affiliation(s)
- Yi Zhong
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yilong Wang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoguang Li
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haojie Qin
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Yan
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Caijun Rao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Fan
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Duqiu Liu
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Liyuan Cardiovascular Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Deng
- Department of Urology, The Second Xiangya Hospital, Central South University, Hunan, China
| | - Yanli Miao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ling Yang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology,Wuhan, China
| |
Collapse
|
21
|
Kulshrestha S, Devkar R. Circadian control of Nocturnin and its regulatory role in health and disease. Chronobiol Int 2023; 40:970-981. [PMID: 37400970 DOI: 10.1080/07420528.2023.2231081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/01/2023] [Accepted: 06/24/2023] [Indexed: 07/05/2023]
Abstract
Circadian rhythms are generated by intrinsic 24-h oscillations that anticipate the extrinsic changes associated with solar day. A conserved transcriptional-translational feedback loop generates these molecular oscillations of clock genes at the organismal and the cellular levels. One of the recently discovered outputs of circadian clock is Nocturnin (Noct) or Ccrn4l. In mice, Noct mRNA is broadly expressed in cells throughout the body, with a particularly high-amplitude rhythm in liver. NOCT belongs to the EEP family of proteins with the closest similarity to the CCR4 family of deadenylases. Multiple studies have investigated the role of Nocturnin in development, adipogenesis, lipid metabolism, inflammation, osteogenesis, and obesity. Further, mice lacking Noct (Noct KO or Noct-/-) are protected from high-fat diet-induced obesity and hepatic steatosis. Recent studies had provided new insights by investigating various aspects of Nocturnin, ranging from its sub-cellular localization to identification of its target transcripts. However, a profound understanding of its molecular function remains elusive. This review article seeks to integrate the available literature into our current understanding of the functions of Nocturnin, their regulatory roles in key tissues and to throw light on the existing scientific lacunae.
Collapse
Affiliation(s)
- Shruti Kulshrestha
- Chronobiology and Molecular Endocrinology Lab, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Ranjitsinh Devkar
- Chronobiology and Molecular Endocrinology Lab, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
22
|
Lu P, Li X, Li B, Li X, Wang C, Liu Z, Ji Y, Wang X, Wen Z, Fan J, Yi C, Song M, Wang X. The mitochondrial-derived peptide MOTS-c suppresses ferroptosis and alleviates acute lung injury induced by myocardial ischemia reperfusion via PPARγ signaling pathway. Eur J Pharmacol 2023:175835. [PMID: 37290680 DOI: 10.1016/j.ejphar.2023.175835] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/10/2023]
Abstract
Acute lung injury (ALI) is a life-threatening complication of cardiac surgery that has a high rate of morbidity and mortality. Epithelial ferroptosis is believed to be involved in the pathogenesis of ALI. MOTS-c has been reported to play a role in regulating inflammation and sepsis-associated ALI. The purpose of this study is to observe the effect of MOTS-c on myocardial ischemia reperfusion (MIR)-induced ALI and ferroptosis. In humans, we used ELISA kits to investigate MOTS-c and malondialdehyde (MDA) levels in patients undergoing off-pump coronary artery bypass grafting (CABG). In vivo, we pretreated Sprague-Dawley rats with MOTS-c, Ferrostatin-1 and Fe-citrate(Ⅲ). We conducted Hematoxylin and Eosin (H&E) staining and detection of ferroptosis-related genes in MIR-induced ALI rats. In vitro, we evaluated the effect of MOTS-c on hypoxia regeneration (HR)-induced mouse lung epithelial-12 (MLE-12) ferroptosis and analyzed the expression of PPARγ through western blotting. We found that circulating MOTS-c levels were decreased in postoperative ALI patients after off-pump CABG, and that ferroptosis contributed to ALI induced by MIR in rats. MOTS-c suppressed ferroptosis and alleviated ALI induced by MIR, and the protective effect of MOTS-c- was dependent on PPARγ signaling pathway. Additionally, HR promoted ferroptosis in MLE-12 cells, and MOTS-c inhibited ferroptosis against HR through the PPARγ signaling pathway. These findings highlight the therapeutic potential of MOTS-c for improving postoperative ALI induced by cardiac surgery.
Collapse
Affiliation(s)
- Peng Lu
- Department of Cardiovascular Surgery, PR China
| | - Xiaopei Li
- Department of Cardiovascular Surgery, PR China
| | - Ben Li
- Department of Cardiovascular Surgery, PR China
| | - Xiangyu Li
- Department of Cardiovascular Surgery, PR China
| | - Chufan Wang
- Department of Cardiovascular Surgery, PR China
| | | | - Yumeng Ji
- Department of Cardiovascular Surgery, PR China
| | - Xufeng Wang
- Department of Cardiovascular Surgery, PR China
| | - Ziang Wen
- Department of Cardiovascular Surgery, PR China
| | - Jidan Fan
- Department of Cardiovascular Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, PR China
| | - Chenlong Yi
- Department of Cardiovascular Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Meijuan Song
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Xiaowei Wang
- Department of Cardiovascular Surgery, PR China; Department of Cardiovascular Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, PR China.
| |
Collapse
|
23
|
Zhang S, van de Peppel J, Koedam M, van Leeuwen JPTM, van der Eerden BCJ. HSPB7 oppositely regulates human mesenchymal stromal cell-derived osteogenesis and adipogenesis. Stem Cell Res Ther 2023; 14:126. [PMID: 37170285 PMCID: PMC10173662 DOI: 10.1186/s13287-023-03361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 05/02/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Recent evidence suggests that accumulation of marrow adipose tissue induced by aberrant lineage allocation of bone marrow-derived mesenchymal stromal cells (BMSCs) contributes to the pathophysiologic processes of osteoporosis. Although master regulators of lineage commitment have been well documented, molecular switches between osteogenesis and adipogenesis are largely unknown. METHODS HSPB7 gene expression during osteogenic and adipogenic differentiation of BMSCs was evaluated by qPCR and Western blot analyses. Lentiviral-mediated knockdown or overexpression of HSPB7 and its deletion constructs were used to assess its function. The organization of cytoskeleton was examined by immunofluorescent staining. ALP activity, calcium assay, Alizarin Red S staining and Oil Red O staining were performed in vitro during osteoblast or adipocyte differentiation. SB431542 and Activin A antibody were used to identify the mechanism of Activin A in the regulation of osteogenic differentiation in BMSCs. RESULTS In this study, we identified HSPB7 capable of oppositely regulating osteogenic and adipogenic differentiation of BMSCs. HSPB7 silencing promoted adipogenesis while reducing osteogenic differentiation and mineralization. Conversely, overexpression of HSPB7 strongly enhanced osteogenesis, but no effect was observed on adipogenic differentiation. Deletion of the N-terminal or C-terminal domain of HSPB7 led to decreased osteoblastic potency and mineralization. Mechanistically, our data showed that Activin A is a downstream target participating in HSPB7 knockdown-mediated osteogenic inhibition. CONCLUSIONS Our findings suggest that HSPB7 plays a positive role in driving osteoblastic differentiation, and with the capability in maintaining the osteo-adipogenesis balance. It holds great promise as a potential therapeutic target in the treatment of bone metabolic diseases.
Collapse
Affiliation(s)
- Shuang Zhang
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Docter Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Jeroen van de Peppel
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Docter Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Marijke Koedam
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Docter Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Johannes P T M van Leeuwen
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Docter Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Bram C J van der Eerden
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Docter Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
24
|
Ye M, Fan Z, Xu Y, Luan K, Guo L, Zhang S, Luo Q. Exploring the association between fat-related traits in chickens and the RGS16 gene: insights from polymorphism and functional validation analysis. Front Vet Sci 2023; 10:1180797. [PMID: 37234072 PMCID: PMC10205986 DOI: 10.3389/fvets.2023.1180797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Excessive fat deposition in chickens can lead to reduced feed utilization and meat quality, resulting in significant economic losses for the broiler industry. Therefore, reducing fat deposition has become an important breeding objective in addition to achieving high broiler weight, growth rate, and feed conversion efficiency. In our previous studies, we observed high expression of Regulators of G Protein Signaling 16 Gene (RGS16) in high-fat individuals. This led us to speculate that RGS16 might be involved in the process of fat deposition in chickens. Methods Thus, we conducted a polymorphism and functional analysis of the RGS16 gene to investigate its association with fat-related phenotypic traits in chickens. Using a mixed linear model (MLM), this study explored the relationship between RGS16 gene polymorphisms and fat-related traits for the first time. We identified 30 SNPs of RGS16 in a population of Wens Sanhuang chickens, among which 8 SNPs were significantly associated with fat-related traits, including sebum thickness (ST), abdominal fat weight (AFW), and abdominal fat weight (AFR). Furthermore, our findings demonstrated that AFW, AFR, and ST showed significant associations with at least two or more out of the eight identified SNPs of RGS16. We also validated the role of RGS16 in ICP-1 cells through various experimental methods, including RT-qPCR, CCK- 8, EdU assays, and oil red O staining. Results Our functional validation experiments showed that RGS16 was highly expressed in the abdominal adipose tissue of high-fat chickens and played a critical role in the regulation of fat deposition by promoting preadipocyte differentiation and inhibiting their proliferation. Taken together, our findings suggest that RGS16 polymorphisms are associated with fat-related traits in chickens. Moreover, the ectopic expression of RGS16 could inhibit preadipocyte proliferation but promote preadipocyte differentiation. Discussion Based on our current findings, we propose that the RGS16 gene could serve as a powerful genetic marker for marker-assisted breeding of chicken fat-related traits.
Collapse
Affiliation(s)
- Mao Ye
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Zhexia Fan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Yuhang Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Kang Luan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Lijin Guo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Siyu Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Qingbin Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
25
|
Honzlová P, Semenovykh K, Sumová A. The Circadian Clock of Polarized Microglia and Its Interaction with Mouse Brain Oscillators. Cell Mol Neurobiol 2023; 43:1319-1333. [PMID: 35821305 PMCID: PMC11414434 DOI: 10.1007/s10571-022-01252-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022]
Abstract
The activity of the immune system is controlled by circadian clocks present in different immune cells. The brain-resident subtype of immune cells, microglia, exhibits a wide range of functional phenotypes depending on the signaling molecules in their microenvironment. The exact role of microglia in the hypothalamic suprachiasmatic nuclei (SCN), the central circadian clock, has not been known. Therefore, the aim of this study was to determine (1) whether microenvironment-induced changes in microglial polarization affect circadian clocks in these cells and (2) whether the presence of microglia contributes to SCN clock function. Microglial and SCN clocks were monitored using PER2-driven bioluminescence rhythms at the tissue and single-cell levels. We found that polarization of resting microglia to a pro-inflammatory (M1) or anti-inflammatory (M2) state significantly altered the period and amplitude of their molecular circadian clock; importantly, the parameters changed plastically with the repolarization of microglia. This effect was reflected in specific modulations of the expression profiles of individual clock genes in the polarized microglia. Depletion of microglia significantly reduced the amplitude of the SCN clock, and co-cultivation of the SCN explants with M2-polarized microglia specifically improved the amplitude of the SCN clock. These results demonstrate that the presence of M2-polarized microglia has beneficial effects on SCN clock function. Our results provide new insight into the mutual interaction between immune and circadian systems in the brain.
Collapse
Affiliation(s)
- Petra Honzlová
- Laboratory of Biological Rhythms, Institute of Physiology, The Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic.
- Faculty of Science, Charles University, Prague, Czech Republic.
| | - Kateryna Semenovykh
- Laboratory of Biological Rhythms, Institute of Physiology, The Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic
| | - Alena Sumová
- Laboratory of Biological Rhythms, Institute of Physiology, The Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic
| |
Collapse
|
26
|
Yue J, Sun C, Tang J, Zhang Q, Lou M, Sun H, Zhang L. Downregulation of miRNA-155-5p contributes to the adipogenic activity of 2-ethylhexyl diphenyl phosphate in 3T3-L1 preadipocytes. Toxicology 2023; 487:153452. [PMID: 36764644 DOI: 10.1016/j.tox.2023.153452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
2-Ethylhexyl diphenyl phosphate (EHDPP) is a commonly used organophosphorus flame retardant and food packaging material. Because of its high lipophilic and bioaccumulative properties, adipocytes are the primary target of EHDPP. However, the toxicity of EHDPP on preadipocytes and the potential mechanism have not been fully elucidated. MicroRNAs (miRNAs) are thought to be an important mediator that contribute to the toxicity of environmental contaminants. To identify the miRNAs specifically responsible for EHDPP exposure and their role in EGDPP's toxicity in preadipocytes, the adipogenic effects and miRNA expression profiling were performed on 3T3-L1 preadipocytes exposed to EHDPP. EHDPP at concentrations of 1-10 μM promoted adipocyte differentiation, as evidenced by lipid staining, triglyceride content, and expression of adipogenesis markers. MiRNA-seq analysis revealed that 7 differentially expressed miRNAs were recognized under EHDPP exposure, with miR-155-5p being the top down-regulated miRNA. Quantitative reverse transcription PCR (RT-qPCR) analysis showed that miR-155-5p level fell sharply during the first 2 days and continued to fall dose-dependently throughout the EHDPP exposure period. MiR-155-5p inhibition promotes adipocyte differentiation, whereas its overexpression counteracted EHDPP-induced adipogenesis. Luciferase reporter assay identified CCAAT/enhancer-binding protein beta (C/EBPβ) as a target of miR-155-5p in 3T3-L1 preadipocytes in response to EHDPP. Taken together, EHDPP exposure down-regulated miR-155-5p, which then increased C/EBPβ and peroxisome proliferator-activated receptor γ (PPARγ) expression and promoted adipogenesis in preadipocytes.
Collapse
Affiliation(s)
- Junjie Yue
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Caiting Sun
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jinyuan Tang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Qiyuan Zhang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Mengjie Lou
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lianying Zhang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
27
|
Structural Biology Inspired Development of a Series of Human Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) Ligands: From Agonist to Antagonist. Int J Mol Sci 2023; 24:ijms24043940. [PMID: 36835351 PMCID: PMC9960108 DOI: 10.3390/ijms24043940] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Recent progress in the structural and molecular pharmacological understanding of the nuclear receptor, peroxisome proliferator-activated receptor gamma (hPPARγ)-a transcription factor with pleiotropic effects on biological responses-has enabled the investigation of various graded hPPARγ ligands (full agonist, partial agonist, and antagonist). Such ligands are useful tools to investigate the functions of hPPARγ in detail and are also candidate drugs for the treatment of hPPARγ-mediated diseases, such as metabolic syndrome and cancer. This review summarizes our medicinal chemistry research on the design, synthesis, and pharmacological evaluation of a covalent-binding and non-covalent-binding hPPARγ antagonist, both of which have been created based on our working hypothesis of the helix 12 (H12) holding induction/inhibition concept. X-ray crystallographic analyses of our representative antagonists complexed with an hPPARγ ligand binding domain (LBD) indicated the unique binding modes of hPPARγ LBD, which are quite different from the binding modes observed for hPPARγ agonists and partial agonists.
Collapse
|
28
|
He Z, Li X, Zhang H, Liu X, Han S, Abdurahman A, Shen L, Du X, Li N, Yang X, Liu Q. A novel vanadium complex VO(p-dmada) inhibits neuroinflammation induced by lipopolysaccharide. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
29
|
Lipoxin and glycation in SREBP signaling: Insight into diabetic cardiomyopathy and associated lipotoxicity. Prostaglandins Other Lipid Mediat 2023; 164:106698. [PMID: 36379414 DOI: 10.1016/j.prostaglandins.2022.106698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
Abstract
Diabetes and cardiovascular diseases are the leading cause of morbidity and mortality worldwide. Diabetes increases cardiovascular risk through hyperglycemia and atherosclerosis. Chronic hyperglycemia accelerates glycation reaction, which forms advanced glycation end products (AGEs). Additionally, hyperglycemia with enhanced levels of cholesterol, native and oxidized low-density lipoproteins, free fatty acids, and oxidative stress induces lipotoxicity. Accelerated glycation and disturbed lipid metabolism are characteristic features of diabetic heart failure. SREBP signaling plays a significant role in lipid and glucose homeostasis. AGEs increase lipotoxicity in diabetic cardiomyopathy by inhibiting SREBP signaling. While anti-inflammatory lipid mediators, lipoxins resolve inflammation caused by lipotoxicity by upregulating the PPARγ expression and regulating CD36. PPARγ connects the bridge between glycation and lipoxin in SREBP signaling. A summary of treatment modalities against diabetic cardiomyopathy is given in brief. This review indicates the novel therapeutic approach in the crosstalk between glycation and lipoxin in SREBP signaling.
Collapse
|
30
|
Mesenchymal Stem Cells and Their Exocytotic Vesicles. Int J Mol Sci 2023; 24:ijms24032085. [PMID: 36768406 PMCID: PMC9916886 DOI: 10.3390/ijms24032085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Mesenchymal stem cells (MSCs), as a kind of pluripotent stem cells, have attracted much attention in orthopedic diseases, geriatric diseases, metabolic diseases, and sports functions due to their osteogenic potential, chondrogenic differentiation ability, and adipocyte differentiation. Anti-inflammation, anti-fibrosis, angiogenesis promotion, neurogenesis, immune regulation, and secreted growth factors, proteases, hormones, cytokines, and chemokines of MSCs have been widely studied in liver and kidney diseases, cardiovascular and cerebrovascular diseases. In recent years, many studies have shown that the extracellular vesicles of MSCs have similar functions to MSCs transplantation in all the above aspects. Here we review the research progress of MSCs and their exocrine vesicles in recent years.
Collapse
|
31
|
Effect of Dietary Geranylgeraniol and Green Tea Polyphenols on Glucose Homeostasis, Bone Turnover Biomarkers, and Bone Microstructure in Obese Mice. Int J Mol Sci 2023; 24:ijms24020979. [PMID: 36674494 PMCID: PMC9866936 DOI: 10.3390/ijms24020979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
Previously, we demonstrated that the administration of either geranylgeraniol (GGOH) or green tea polyphenols (GTP) improved bone health. This study examined the combined effects of GGOH and GTP on glucose homeostasis in addition to bone remodeling in obese mice. We hypothesized that GGOH and GTP would have an additive or synergistic effect on improving glucose homeostasis and bone remodeling possibly in part via suppression of proinflammatory cytokines. Forty-eight male C57BL/6J mice were assigned to a high-fat diet (control), HFD + 400 mg GGOH/kg diet (GG), HFD + 0.5% GTP water (TP), or HFD + GGOH + GTP (GGTP) diet for 14 weeks. Results demonstrated that GTP supplementation improved glucose tolerance in obese mice. Neither GGOH nor GTP affected pancreas insulin or bone formation procollagen type I intact N-terminal, bone volume at the lumbar vertebrae, or bone parameters at the trabecular bone and cortical bone of the femur. There was an interactive effect for serum bone resorption collagen type 1 cross-linked C-telopeptide concentrations, resulting in no-GGOH and no-GTP groups having the highest values. GGOH increased trabecular number and decreased trabecular separation at the lumbar vertebrae. GTP increased trabecular thickness at lumbar vertebrae. The GG group produced the greatest connectivity density and the lowest structure model index. Only GTP, not GGOH, decreased adipokines concentrations (resistin, leptin, monocyte chemoattractant protein-1, and interleukin-6). In an obese male mouse model, individual GGOH and GTP supplementation improved glucose homeostasis, serum CTX, and trabecular microstructure of LV-4. However, the combined GGOH and GTP supplementation compromises such osteoprotective effects on serum CTX and trabecular bone of obese mice.
Collapse
|
32
|
Chrononutrition-When We Eat Is of the Essence in Tackling Obesity. Nutrients 2022; 14:nu14235080. [PMID: 36501110 PMCID: PMC9739590 DOI: 10.3390/nu14235080] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity is a chronic and relapsing public health problem with an extensive list of associated comorbidities. The worldwide prevalence of obesity has nearly tripled over the last five decades and continues to pose a serious threat to wider society and the wellbeing of future generations. The pathogenesis of obesity is complex but diet plays a key role in the onset and progression of the disease. The human diet has changed drastically across the globe, with an estimate that approximately 72% of the calories consumed today come from foods that were not part of our ancestral diets and are not compatible with our metabolism. Additionally, multiple nutrient-independent factors, e.g., cost, accessibility, behaviours, culture, education, work commitments, knowledge and societal set-up, influence our food choices and eating patterns. Much research has been focused on 'what to eat' or 'how much to eat' to reduce the obesity burden, but increasingly evidence indicates that 'when to eat' is fundamental to human metabolism. Aligning feeding patterns to the 24-h circadian clock that regulates a wide range of physiological and behavioural processes has multiple health-promoting effects with anti-obesity being a major part. This article explores the current understanding of the interactions between the body clocks, bioactive dietary components and the less appreciated role of meal timings in energy homeostasis and obesity.
Collapse
|
33
|
Araújo IMD, Moreira MLM, Paula FJAD. Diabetes and bone. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:633-641. [PMID: 36382752 PMCID: PMC10118819 DOI: 10.20945/2359-3997000000552] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Globally, one in 11 adults has diabetes mellitus of which 90% have type 2 diabetes. The numbers for osteoporosis are no less staggering: 1 in 3 women has a fracture after menopause, and the same is true for 1 in 5 men after the age of 50 years. Aging is associated with several physiological changes that cause insulin resistance and impaired insulin secretion, which in turn lead to hyperglycemia. The negative balance between bone resorption and formation is a natural process that appears after the fourth decade of life and lasts for the following decades, eroding the bone structure and increasing the risk of fractures. Not incidentally, it has been acknowledged that diabetes mellitus, regardless of whether type 1 or 2, is associated with an increased risk of fracture. The nuances that differentiate bone damage in the two main forms of diabetes are part of the intrinsic heterogeneity of diabetes, which is enhanced when associated with a condition as complex as osteoporosis. This narrative review addresses the main parameters related to the increased risk of fractures in individuals with diabetes, and the mutual factors affecting the treatment of diabetes mellitus and osteoporosis.
Collapse
|
34
|
|
35
|
Sun J, Liu Q, He H, Jiang L, Lee KO, Li D, Ma J. Metformin treatment is associated with an increase in bone mineral density in type 2 diabetes mellitus patients in China: A retrospective single center study. DIABETES & METABOLISM 2022; 48:101350. [PMID: 35452818 DOI: 10.1016/j.diabet.2022.101350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022]
Abstract
AIMS To investigate the association between metformin and bone mineral density (BMD) in a large cohort of Chinese patients with type 2 diabetes mellitus (T2DM). METHODS A total of 11,458 T2DM patients aged ≥40 years were included. Information on demographic, anthropometric and clinical characteristics was collected from medical records. BMD at lumbar spine (LS), femoral neck (FN), and total hip(TH) was assessed by dual-energy X-ray absorptiometry. RESULTS Overall prevalence of osteopenia and osteoporosis was 37.4% and 10.3%, and was lower in patients on metformin (34.6% vs 38.3% and 7.1% vs 11.3%, both p < 0.001). Patients who had a lower BMI, older age, and lower estimated glomerular filtration rate (eGFR), had more osteoporosis, lower BMD (osteoporosis or osteopenia), and a lower T-score at LS, FN and TH. Metformin use and male sex was associated with a higher BMD. Metformin treatment was also independently associated with higher T-score at LS, FN and TH (β values of 0.120, 0.082 and 0.108; all p <0.001), and lower odds ratio of osteoporosis (OR = 0.779, 95%CI: 0.648-0.937, p = 0.008) or low BMD (OR = 0.834, 95%CI: 0.752 - 0.925, p = 0.001). However, when analyzed by sex, this association of a lower odds ratio for osteoporosis with metformin was only significant in women (OR= 0.775, 95% CI: 0.633-0.948; p = 0.013). CONCLUSIONS Metformin treatment was associated with a higher T-score and a lower odds ratio of osteopenia and osteoporosis, especially in the female population, independent of age, BMI, and eGFR.
Collapse
Affiliation(s)
- JunWei Sun
- Department of endocrinology, Jiangyin Fourth People's Hospital, Jiangyin, China
| | - Qi Liu
- Department of endocrinology, Yining People's Hospital, lli Kazakh Autonomous Prefecture, China
| | - Huan He
- Department of endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lanlan Jiang
- Department of endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Kok Onn Lee
- Kok Onn Lee, Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Dongmei Li
- Department of endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Jianhua Ma
- Department of endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
36
|
Tanaka M, Fujii S, Inoue H, Takahashi N, Ishimi Y, Uehara M. (S)-Equol Is More Effective than (R)-Equol in Inhibiting Osteoclast Formation and Enhancing Osteoclast Apoptosis, and Reduces Estrogen Deficiency-Induced Bone Loss in Mice. J Nutr 2022; 152:1831-1842. [PMID: 35675296 DOI: 10.1093/jn/nxac130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/27/2022] [Accepted: 06/01/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Equol, a metabolite of daidzein, binds to the estrogen receptor with greater affinity than daidzein and exhibits various biological properties. It exists as an enantiomer, either (S)-equol or (R)-equol. OBJECTIVES We have previously shown that the inhibitory effect of (S)-equol on bone fragility is stronger than that of racemic equol in ovariectomized (OVX) mice; however, the effect of (R)-equol has not been elucidated. The aim of this study was to compare the activities of equol enantiomers on bone metabolism in vitro and in vivo. METHODS Bone marrow cells (BMCs) and RAW 264.7 cells were treated with equol enantiomers. The number of osteoclasts and caspase-3/7 activity were measured. We examined the effect of equol enantiomers on osteoblast differentiation in MC3T3-E1 cells. In vivo, 8-wk-old female ddY mice were assigned to 4 groups: sham-operated (sham), OVX, OVX + 0.5 mg/d of (S)-equol (S-eq), and OVX + 0.5 mg/d of (R)-equol (R-eq). Four weeks after the intervention, femoral bone mineral density (BMD) and osteoclastic gene expression were analyzed, along with concentrations of equol enantiomers in the serum and tissues. RESULTS (S)-equol and (R)-equol inhibited osteoclast differentiation in BMCs (97% and 60%, P < 0.05) and RAW 264.7 cells (83% and 68%, P < 0.05). (S)-equol promoted apoptosis of mature osteoclasts by inducing caspase-3/7 activity (29%, P < 0.05) and enhanced osteoblast differentiation (29%, P < 0.05). In OVX mice, BMD was ameliorated in (S)-equol-treated mice (11%, P < 0.05), but not in (R)-equol-treated mice. The concentrations of (S)-equol were greater than those of (R)-equol in the serum, tibia, liver, and kidney (by 148%, 80%, 22%, and 139%, respectively). CONCLUSIONS These results suggest that (S)-equol is more effective than (R)-equol in inhibiting osteoclast formation and enhancing osteoclast apoptosis in vitro, supporting the beneficial effect of (S)-equol to reduce estrogen deficiency-induced bone loss in OVX mice.
Collapse
Affiliation(s)
- Miori Tanaka
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Shungo Fujii
- Department of Health and Nutrition, Faculty of Human Sciences, Hokkaido Bunkyo University, Eniwa, Japan
| | - Hirofumi Inoue
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Nobuyuki Takahashi
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yoshiko Ishimi
- Research Institute, Tokyo University of Agriculture, Tokyo, Japan
| | - Mariko Uehara
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
37
|
Skrlec I, Talapko J. Hepatitis B and circadian rhythm of the liver. World J Gastroenterol 2022; 28:3282-3296. [PMID: 36158265 PMCID: PMC9346465 DOI: 10.3748/wjg.v28.i27.3282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/15/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
The circadian rhythm in humans is determined by the central clock located in the hypothalamus's suprachiasmatic nucleus, and it synchronizes the peripheral clocks in other tissues. Circadian clock genes and clock-controlled genes exist in almost all cell types. They have an essential role in many physiological processes, including lipid metabolism in the liver, regulation of the immune system, and the severity of infections. In addition, circadian rhythm genes can stimulate the immune response of host cells to virus infection. Hepatitis B virus (HBV) infection is the leading cause of liver disease and liver cancer globally. HBV infection depends on the host cell, and hepatocyte circadian rhythm genes are associated with HBV replication, survival, and spread. The core circadian rhythm proteins, REV-ERB and brain and muscle ARNTL-like protein 1, have a crucial role in HBV replication in hepatocytes. In addition to influencing the virus's life cycle, the circadian rhythm also affects the pharmacokinetics and efficacy of antiviral vaccines. Therefore, it is vital to apply antiviral therapy at the appropriate time of day to reduce toxicity and improve the effectiveness of antiviral treatment. For these reasons, understanding the role of the circadian rhythm in the regulation of HBV infection and host responses to the virus provides us with a new perspective of the interplay of the circadian rhythm and anti-HBV therapy. Therefore, this review emphasizes the importance of the circadian rhythm in HBV infection and the optimization of antiviral treatment based on the circadian rhythm-dependent immune response.
Collapse
Affiliation(s)
- Ivana Skrlec
- Department of Biophysics, Biology, and Chemistry, Faculty of Dental Medicine and Health, J. J. Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Jasminka Talapko
- Department of Anatomy Histology, Embryology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health, Osijek 31000, Croatia
| |
Collapse
|
38
|
Chen Y, Jiang Z, Keohane A, Hu Y. In vitro and in vivo study of the pathogenic role of PPARα in experimental periodontitis. J Appl Oral Sci 2022; 30:e20220076. [PMID: 35830121 PMCID: PMC9275397 DOI: 10.1590/1678-7757-2022-0076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE The purpose of this study is to investigate the pathogenic role of PPARα in periodontal antigen treated gingival cells in vitro and in experimental periodontitis in vivo . METHODOLOGY Gingival fibroblasts, gingival epithelial cells and splenocytes were isolated from C57BL/6J wild type (WT) mice and treated with fixed P. gingivalis at for 48 hours. The mRNA levels of PPARs, TNFα, IL-1β and IL-10 were detected by Real-time quantitative PCR. Silk ligatures after being soaked in the P.gingivalis suspension were tied around both maxillary second molars of WT mice or PPARα knock-out (KO) mice for two weeks. PPARα agonist fenofibrate and vehicle control were injected into the different side of the palatal gingiva on days 3, 6, and 9. At day 14, bone resorption and gingival mRNA expression levels of PPARs, TNFα, IL-1β and IL-10 were measured by micro-computed tomography and RT-qPCR respectively. RESULTS P. gingivalis treatment downregulated the expression of PPARα, but not PPARβ or PPARγ, and increased the expression of TNF-α and IL-1β in Gingival fibroblasts, gingival epithelial cells and splenocytes from WT mice. Gingival mRNA levels of PPARα were significantly decreased in experimental periodontitis in WT mice. The bone loss of PPARα KO mice in experimental periodontitis was significantly higher than WT mice and was not reduced by fenofibrate treatment. Gingival TNFα protein expressions were significantly increased by P. gingivalis associated ligation and decreased by fenofibrate treatment in WT mice but not in PPARα KO mice. CONCLUSION This study suggests that PPARα plays an essential role in periodontitis.
Collapse
Affiliation(s)
- Ying Chen
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, United States
| | - Zheqing Jiang
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, United States
| | - Ana Keohane
- Boston University Henry M. Goldman School of Dental Medicine, Department of General Dentistry, Boston, United States
| | - Yang Hu
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, United States
| |
Collapse
|
39
|
Yoshizawa M, Aoyama T, Itoh T, Miyachi H. Arylalkynyl amide-type peroxisome proliferator-activated receptor γ (PPARγ)-selective antagonists covalently bind to the PPARγ ligand binding domain with a unique binding mode. Bioorg Med Chem Lett 2022; 64:128676. [PMID: 35301139 DOI: 10.1016/j.bmcl.2022.128676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 11/19/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) antagonists are drug candidates for the treatment of type 2 diabetes, obesity, and osteoporosis. Previously, we have designed and synthesized a series of substituted phenylalkynyl amide-type PPARγ antagonists. The representative compound, MMT-160, exhibited nanomolar-order PPARγ antagonistic activity. To understand the antagonistic mode of action of MMT-160, mass spectrometric and X-ray crystallographic analysis of MMT-160 in the presence of the PPARγ ligand binding domain (LBD) were performed. The mass spectrometry results clearly indicated that alkynyl amide-type PPARγ antagonists were covalently bound to the PPARγ LBD. The X-ray crystallographic analysis indicated that MMT-160 acted as a Michael acceptor and covalently bound to the PPARγ LBD via Cys285. In addition, MMT-160 bound to the PPARγ LBD with a binding mode that was different from the binding modes observed for PPARγ agonists and partial agonists.
Collapse
Affiliation(s)
- Mami Yoshizawa
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Tomomi Aoyama
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Toshimasa Itoh
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Hiroyuki Miyachi
- Lead Exploration Unit, Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
40
|
Kim S, Lee H, Kim JA, Park TH. Prevention of collagen hydrogel contraction using polydopamine-coating and alginate outer shell increases cell contractile force. BIOMATERIALS ADVANCES 2022; 136:212780. [PMID: 35929298 DOI: 10.1016/j.bioadv.2022.212780] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/07/2022] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
Collagen is the most abundant protein in the extracellular matrix of mammals and has a great effect on various cell behaviors including adhesion, differentiation, and migration. However, it is difficult to utilize collagen gel as a physical scaffold in vitro because of its severe contraction. Decrease in the overall hydrogel volume induces changes in cell distribution, and mass transfer within the gel. Uncontrolled mechanical and physiological factors in the fibrous matrix result in uncontrolled cell behaviors in the surrounding cells. In this study, two strategies were used to minimize the contraction of collagen gel. A disk-shaped frame made of polydopamine-coated polydimethylsiloxane (PDMS) prevented horizontal contraction at the edge of the hydrogel. The sequentially cross-linked collagen gel with alginate outer shell (CA-shell) structure inhibited the vertical gel contraction. The combined method synergistically prevented the hydrogel from shrinkage in long-term 3D cell culture. We observed the shift in balance of differentiation from adipogenesis to osteogenesis in mesenchymal stem cells under the environment where gel contraction was prevented, and confirmed that this phenomenon is closely associated with the mechanotransduction based on Yes-associated protein (YAP) localization. Development of this contraction inhibition platform made it possible to investigate the influence of regulation of cellular microenvironments. The physical properties of the hydrogel fabricated in this study were similar to that of pure collagen gel but completely changed the cell behavior within the gel by inhibition of gel contraction. The platform can be used to broaden our understanding of the fundamental mechanism underlying cell-matrix interactions and reproduce extracellular matrix in vivo.
Collapse
Affiliation(s)
- Seulha Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Haein Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Jeong Ah Kim
- Center for Scientific Instrumentation, Korea Basic Science Institute, Cheongju, Chungbuk 28119, Republic of Korea.
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; BioMAX/N-Bio Institute, Institute of BioEngineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
41
|
van Eenige R, In Het Panhuis W, Schönke M, Jouffe C, Devilee TH, Siebeler R, Streefland TCM, Sips HCM, Pronk ACM, Vorderman RHP, Mei H, van Klinken JB, van Weeghel M, Uhlenhaut NH, Kersten S, Rensen PCN, Kooijman S. Angiopoietin-like 4 governs diurnal lipoprotein lipase activity in brown adipose tissue. Mol Metab 2022; 60:101497. [PMID: 35413480 PMCID: PMC9048098 DOI: 10.1016/j.molmet.2022.101497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Brown adipose tissue (BAT) burns fatty acids (FAs) to produce heat, and shows diurnal oscillation in glucose and triglyceride (TG)-derived FA-uptake, peaking around wakening. Here we aimed to gain insight in the diurnal regulation of metabolic BAT activity. Methods RNA-sequencing, chromatin immunoprecipitation (ChIP)-sequencing, and lipidomics analyses were performed on BAT samples of wild type C57BL/6J mice collected at 3-hour intervals throughout the day. Knockout and overexpression models were used to study causal relationships in diurnal lipid handling by BAT. Results We identified pronounced enrichment of oscillating genes involved in extracellular lipolysis in BAT, accompanied by oscillations of FA and monoacylglycerol content. This coincided with peak lipoprotein lipase (Lpl) expression, and was predicted to be driven by peroxisome proliferator-activated receptor gamma (PPARγ) activity. ChIP-sequencing for PPARγ confirmed oscillation in binding of PPARγ to Lpl. Of the known LPL-modulators, angiopoietin-like 4 (Angptl4) showed the largest diurnal amplitude opposite to Lpl, and both Angptl4 knockout and overexpression attenuated oscillations of LPL activity and TG-derived FA-uptake by BAT. Conclusions Our findings highlight involvement of PPARγ and a crucial role of ANGPTL4 in mediating the diurnal oscillation of TG-derived FA-uptake by BAT, and imply that time of day is essential when targeting LPL activity in BAT to improve metabolic health. The transcriptome and lipidome of brown fat show clusters with distinct circadian phases. The peak in metabolic brown fat activity is defined by activation of lipolytic processes. PPARγ shows oscillating binding to lipolytic genes and may drive diurnal brown fat activity. Genetic modulation of the lipoprotein lipase inhibitor Angptl4 flattens rhythmic activity in brown fat. Time of day should be considered when studying the metabolic benefits of targeting brown fat.
Collapse
Affiliation(s)
- Robin van Eenige
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Wietse In Het Panhuis
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Milena Schönke
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Céline Jouffe
- Institute for Diabetes and Endocrinology (IDE), Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Munich, Germany
| | - Thomas H Devilee
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ricky Siebeler
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Trea C M Streefland
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Hetty C M Sips
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Amanda C M Pronk
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ruben H P Vorderman
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan Bert van Klinken
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Nina H Uhlenhaut
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands; Metabolic Programming, Technical University of Munich School of Life Sciences, Freising, Germany
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen, the Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander Kooijman
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
42
|
Cheng Q, Lu C, Qian R. The circadian clock regulates metabolic responses to physical exercise. Chronobiol Int 2022; 39:907-917. [PMID: 35282722 DOI: 10.1080/07420528.2022.2050384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It has been proposed for years that physical exercise ameliorates metabolic diseases. Optimal exercise timing in humans and mammals has indicated that circadian clocks play a vital role in exercise and body metabolism. Skeletal muscle metabolism exhibits a robust circadian rhythm under the control of the suprachiasmatic nucleus of the hypothalamus. Clock genes also control the development, differentiation, and function of skeletal muscles. In this review, we aimed to clarify the relationship between exercise, skeletal muscles, and the circadian clock. Health benefits can be attained by the scheduling of exercise at the best circadian time. Exercise therapy for metabolic diseases and cardiovascular health is a key adjuvant method. This review highlights the importance of exercise timing in maintaining healthy metabolism and circadian clocks.
Collapse
Affiliation(s)
- Qianyun Cheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chao Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ruizhe Qian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
43
|
Ebeling PR, Nguyen HH, Aleksova J, Vincent AJ, Wong P, Milat F. Secondary Osteoporosis. Endocr Rev 2022; 43:240-313. [PMID: 34476488 DOI: 10.1210/endrev/bnab028] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Osteoporosis is a global public health problem, with fractures contributing to significant morbidity and mortality. Although postmenopausal osteoporosis is most common, up to 30% of postmenopausal women, > 50% of premenopausal women, and between 50% and 80% of men have secondary osteoporosis. Exclusion of secondary causes is important, as treatment of such patients often commences by treating the underlying condition. These are varied but often neglected, ranging from endocrine to chronic inflammatory and genetic conditions. General screening is recommended for all patients with osteoporosis, with advanced investigations reserved for premenopausal women and men aged < 50 years, for older patients in whom classical risk factors for osteoporosis are absent, and for all patients with the lowest bone mass (Z-score ≤ -2). The response of secondary osteoporosis to conventional anti-osteoporosis therapy may be inadequate if the underlying condition is unrecognized and untreated. Bone densitometry, using dual-energy x-ray absorptiometry, may underestimate fracture risk in some chronic diseases, including glucocorticoid-induced osteoporosis, type 2 diabetes, and obesity, and may overestimate fracture risk in others (eg, Turner syndrome). FRAX and trabecular bone score may provide additional information regarding fracture risk in secondary osteoporosis, but their use is limited to adults aged ≥ 40 years and ≥ 50 years, respectively. In addition, FRAX requires adjustment in some chronic conditions, such as glucocorticoid use, type 2 diabetes, and HIV. In most conditions, evidence for antiresorptive or anabolic therapy is limited to increases in bone mass. Current osteoporosis management guidelines also neglect secondary osteoporosis and these existing evidence gaps are discussed.
Collapse
Affiliation(s)
- Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia
| | - Hanh H Nguyen
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Department of Endocrinology and Diabetes, Western Health, Victoria 3011, Australia
| | - Jasna Aleksova
- Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Amanda J Vincent
- Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Monash Centre for Health Research and Implementation, School of Public Health and Preventative Medicine, Monash University, Clayton, Victoria 3168, Australia
| | - Phillip Wong
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Frances Milat
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| |
Collapse
|
44
|
LncRNA NEAT1 controls the lineage fates of BMSCs during skeletal aging by impairing mitochondrial function and pluripotency maintenance. Cell Death Differ 2022; 29:351-365. [PMID: 34497381 PMCID: PMC8816946 DOI: 10.1038/s41418-021-00858-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023] Open
Abstract
Aged bone marrow mesenchymal stem cells (BMSCs) exhibit aberrant self-renewal and lineage specification, which contribute to imbalanced bone-fat and progressive bone loss. In addition to known master regulators of lineage commitment, it is crucial to identify pivotal switches governing the specific differentiation fate of aged BMSCs. Here, we profiled differences in epigenetic regulation between adipogenesis and osteogenesis and identified super-enhancer associated lncRNA nuclear-enriched abundant transcript 1 (NEAT1) as a key bone-fat switch in aged BMSCs. We validated that NEAT1 with high enhancer activity was transcriptionally activated by ATF2 and directed aged BMSCs to a greater propensity to differentiate toward adipocytes than osteoblasts by mediating mitochondrial function. Furthermore, we confirmed NEAT1 as a protein-binding scaffold in which phosphorylation modification of SOX2 Ser249/250 by CDK2 impaired SOX2/OCT4 complex stability and dysregulated downstream transcription networks of pluripotency maintenance. In addition, by sponging miR-27b-3p, NEAT1 upregulated BNIP3L, BMP2K, and PPARG expression to shape mitochondrial function and osteogenic/adipogenic differentiation commitment, respectively. In extracellular communication, NEAT1 promoted CSF1 secretion from aged BMSCs and then strengthened osteoclastic differentiation by extracellular vesicle delivery. Notably, Neat1 small interfering RNA delivery induced increased bone mass in aged mice and decreased fat accumulation in the bone marrow. These findings suggest that NEAT1 regulates the lineage fates of BMSCs by orchestrating mitochondrial function and pluripotency maintenance, and might be a potential therapeutic target for skeletal aging.
Collapse
|
45
|
Circulating cytokines present in multiple myeloma patients inhibit the osteoblastic differentiation of adipose stem cells. Leukemia 2022; 36:540-548. [PMID: 34556797 DOI: 10.1038/s41375-021-01428-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023]
Abstract
Myeloma is characterized by bone lesions, which are related to both an increased osteoclast activity and a defect in the differentiation of medullary mesenchymal stem cells (MSCs) into osteoblasts. Outside the medullary environment, adipocyte-derived MSCs (ASCs) could represent a source of functional osteoblasts. However, we recently found a defect in the osteoblastic differentiation of ASCs from myeloma patients (MM-ASCs). We examined the effects of plasma from myeloma patients at diagnosis (MM-plasmas) and in complete remission (CR-plasmas) and from healthy donors on the osteoblastic differentiation of healthy donor-derived ASCs (HD-ASCs). Osteoblastogenesis in HD-ASCs was suppressed by MM-plasmas. Seven cytokines (ANG1, ENA-78, EGF, PDGF-AA/AB/BB, and TARC) were increased in MM-plasmas and separately inhibited the osteoblastic differentiation of HD-ASCs. Comparison of MM-ASCs and HD-ASCs by RNA sequencing showed that two master genes characterizing adipocyte differentiation, CD36 and PPARγ, were upregulated in MM-ASCs as compared to HD-ASCs. Finally, we demonstrated a significant increase in CD36 and PPARγ expression in HD-ASCs in the presence of MM-plasmas or the seven cytokines individually, similarly as in MM-ASCs. We conclude that specific cytokines in MM-plasmas, besides the well-known DKK1, inhibit the osteoblastic differentiation of MM- and HD-ASCs with a skewing towards adipocyte differentiation.
Collapse
|
46
|
Zhang X, Li TY, Xiao HM, Ehrlich KC, Shen H, Deng HW, Ehrlich M. Epigenomic and Transcriptomic Prioritization of Candidate Obesity-Risk Regulatory GWAS SNPs. Int J Mol Sci 2022; 23:1271. [PMID: 35163195 PMCID: PMC8836216 DOI: 10.3390/ijms23031271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Concern about rising rates of obesity has prompted searches for obesity-related single nucleotide polymorphisms (SNPs) in genome-wide association studies (GWAS). Identifying plausible regulatory SNPs is very difficult partially because of linkage disequilibrium. We used an unusual epigenomic and transcriptomic analysis of obesity GWAS-derived SNPs in adipose versus heterologous tissues. From 50 GWAS and 121,064 expanded SNPs, we prioritized 47 potential causal regulatory SNPs (Tier-1 SNPs) for 14 gene loci. A detailed examination of seven loci revealed that four (CABLES1, PC, PEMT, and FAM13A) had Tier-1 SNPs positioned so that they could regulate use of alternative transcription start sites, resulting in different polypeptides being generated or different amounts of an intronic microRNA gene being expressed. HOXA11 and long noncoding RNA gene RP11-392O17.1 had Tier-1 SNPs in their 3' or promoter region, respectively, and strong preferences for expression in subcutaneous versus visceral adipose tissue. ZBED3-AS1 had two intragenic Tier-1 SNPs, each of which could contribute to mediating obesity risk through modulating long-distance chromatin interactions. Our approach not only revealed especially credible novel regulatory SNPs, but also helped evaluate previously highlighted obesity GWAS SNPs that were candidates for transcription regulation.
Collapse
Affiliation(s)
- Xiao Zhang
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
| | - Tian-Ying Li
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha 410013, China; (T.-Y.L.); (H.-M.X.)
| | - Hong-Mei Xiao
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha 410013, China; (T.-Y.L.); (H.-M.X.)
| | - Kenneth C. Ehrlich
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
| | - Melanie Ehrlich
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
- Tulane Cancer Center and Hayward Genetics Center, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
47
|
Rinonapoli G, Pace V, Ruggiero C, Ceccarini P, Bisaccia M, Meccariello L, Caraffa A. Obesity and Bone: A Complex Relationship. Int J Mol Sci 2021; 22:13662. [PMID: 34948466 PMCID: PMC8706946 DOI: 10.3390/ijms222413662] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/29/2022] Open
Abstract
There is a large literature on the relationship between obesity and bone. What we can conclude from this review is that the increase in body weight causes an increase in BMD, both for a mechanical effect and for the greater amount of estrogens present in the adipose tissue. Nevertheless, despite an apparent strengthening of the bone witnessed by the increased BMD, the risk of fracture is higher. The greater risk of fracture in the obese subject is due to various factors, which are carefully analyzed by the Authors. These factors can be divided into metabolic factors and increased risk of falls. Fractures have an atypical distribution in the obese, with a lower incidence of typical osteoporotic fractures, such as those of hip, spine and wrist, and an increase in fractures of the ankle, upper leg, and humerus. In children, the distribution is different, but it is not the same in obese and normal-weight children. Specifically, the fractures of the lower limb are much more frequent in obese children. Sarcopenic obesity plays an important role. The authors also review the available literature regarding the effects of high-fat diet, weight loss and bariatric surgery.
Collapse
Affiliation(s)
- Giuseppe Rinonapoli
- Orthopaedic and Traumatology Unit, Department of Medicine, University of Perugia, 06156 Perugia, Italy; (V.P.); (P.C.); (A.C.)
| | - Valerio Pace
- Orthopaedic and Traumatology Unit, Department of Medicine, University of Perugia, 06156 Perugia, Italy; (V.P.); (P.C.); (A.C.)
| | - Carmelinda Ruggiero
- Orthogeriatric Service, Geriatric Unit, Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, 06156 Perugia, Italy;
| | - Paolo Ceccarini
- Orthopaedic and Traumatology Unit, Department of Medicine, University of Perugia, 06156 Perugia, Italy; (V.P.); (P.C.); (A.C.)
| | - Michele Bisaccia
- Department of Orthopaedics and Traumatology, AORN San Pio “Gaetano Rummo Hospital”, Via R.Delcogliano, 82100 Benevento, Italy; (M.B.); (L.M.)
| | - Luigi Meccariello
- Department of Orthopaedics and Traumatology, AORN San Pio “Gaetano Rummo Hospital”, Via R.Delcogliano, 82100 Benevento, Italy; (M.B.); (L.M.)
| | - Auro Caraffa
- Orthopaedic and Traumatology Unit, Department of Medicine, University of Perugia, 06156 Perugia, Italy; (V.P.); (P.C.); (A.C.)
| |
Collapse
|
48
|
Hu X, Li B, Wu F, Liu X, Liu M, Wang C, Shi Y, Ye L. GPX7 Facilitates BMSCs Osteoblastogenesis via ER Stress and mTOR Pathway. J Cell Mol Med 2021; 25:10454-10465. [PMID: 34626080 PMCID: PMC8581313 DOI: 10.1111/jcmm.16974] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023] Open
Abstract
Emerging evidence indicates extensive oxidative stress is a consequence of obesity which impairs bone formation. Glutathione peroxidase 7 (GPX7) is a conserved endoplasmic reticulum (ER) retention protein, lacking of which causes accumulation of reactive oxygen species (ROS) and promotes adipogenesis. Since the imbalance between osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cell (BMSC) leads to severe bone diseases such as osteoporosis, it is critical to investigate the potential protective role of Gpx7 in osteogenesis. Here, we provide evidence that deficiency of Gpx7 reduces osteogenesis, but increases adipogenesis in both human BMSCs (hBMSCs) and mouse mesenchymal stem cell line. Interestingly, further studies indicate this defect can be alleviated by the ER stress antagonist, but not the ROS inhibitor, unveiling an unexpected finding that, unlike adipogenesis, lacking of Gpx7 inhibits osteogenesis mediating by induced ER stress instead of enhanced ROS. Furthermore, the mTOR signalling pathway is found down‐regulation during osteogenic differentiation in Gpx7‐deficient condition, which can be rescued by relief of ER stress. Taken together, for the first time we identify a novel function of Gpx7 in BMSCs’ osteogenic differentiation and indicate that Gpx7 may protect against osteoporotic deficits in humans through ER stress and mTOR pathway interplay.
Collapse
Affiliation(s)
- Xuchen Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Boer Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanzi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoyu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengyu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
49
|
Yang Z, Roth K, Agarwal M, Liu W, Petriello MC. The transcription factors CREBH, PPARa, and FOXO1 as critical hepatic mediators of diet-induced metabolic dysregulation. J Nutr Biochem 2021; 95:108633. [PMID: 33789150 PMCID: PMC8355060 DOI: 10.1016/j.jnutbio.2021.108633] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/31/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
The liver is a critical mediator of lipid and/or glucose homeostasis and is a primary organ involved in dynamic changes during feeding and fasting. Additionally, hepatic-centric pathways are prone to dysregulation during pathophysiological states including metabolic syndrome (MetS) and non-alcoholic fatty liver disease. Omics platforms and GWAS have elucidated genes related to increased risk of developing MetS and related disorders, but mutations in these metabolism-related genes are rare and cannot fully explain the increasing prevalence of MetS-related pathologies worldwide. Complex interactions between diet, lifestyle, environmental factors, and genetic predisposition jointly determine inter-individual variability of disease risk. Given the complexity of these interactions, researchers have focused on master regulators of metabolic responses incorporating and mediating the impact of multiple environmental cues. Transcription factors are DNA binding, terminal executors of signaling pathways that modulate the cellular responses to complex metabolic stimuli and are related to the control of hepatic lipid and glucose homeostasis. Among numerous hepatic transcription factors involved in regulating metabolism, three emerge as key players in transducing nutrient sensing, which are dysregulated in MetS-related perturbations in both clinical and preclinical studies: cAMP Responsive Element Binding Protein 3 Like 3 (CREB3L3), Peroxisome Proliferator Activated Receptor Alpha (PPAR), and Forkhead Box O1 (FOXO1). Additionally, these three transcription factors appear to be amenable to dietary and/or nutrient-based therapies, being potential targets of nutritional therapy. In this review we aim to describe the activation, regulation, and impact of these transcription factors in the context of metabolic homeostasis. We also summarize their perspectives in MetS and nutritional therapies.
Collapse
Affiliation(s)
- Zhao Yang
- Institute of Environmental Health Sciences (IEHS), Wayne State University, Detroit, MI, USA
| | - Katherine Roth
- Institute of Environmental Health Sciences (IEHS), Wayne State University, Detroit, MI, USA
| | - Manisha Agarwal
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Wanqing Liu
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA; Department of Pharmaceutical Sciences, College of Pharmacy, Wayne State University, Detroit, MI, USA
| | - Michael C Petriello
- Institute of Environmental Health Sciences (IEHS), Wayne State University, Detroit, MI, USA; Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
50
|
Miyachi H. Structural Biology-Based Exploration of Subtype-Selective Agonists for Peroxisome Proliferator-Activated Receptors. Int J Mol Sci 2021; 22:ijms22179223. [PMID: 34502131 PMCID: PMC8430769 DOI: 10.3390/ijms22179223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022] Open
Abstract
Progress in understanding peroxisome proliferator-activated receptor (PPAR) subtypes as nuclear receptors that have pleiotropic effects on biological responses has enabled the exploration of new subtype-selective PPAR ligands. Such ligands are useful chemical biology/pharmacological tools to investigate the functions of PPARs and are also candidate drugs for the treatment of PPAR-mediated diseases, such as metabolic syndrome, inflammation and cancer. This review summarizes our medicinal chemistry research of more than 20 years on the design, synthesis, and pharmacological evaluation of subtype-selective PPAR agonists, which has been based on two working hypotheses, the ligand superfamily concept and the helix 12 (H12) holding induction concept. X-ray crystallographic analyses of our agonists complexed with each PPAR subtype validate our working hypotheses.
Collapse
Affiliation(s)
- Hiroyuki Miyachi
- Lead Exploration Unit, Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|