1
|
Li Z, Zhang Z, Yu B. Correction to "Unlocking the Therapeutic Potential of Natural Products for Alzheimer's Disease". J Med Chem 2025; 68:9018-9024. [PMID: 40214661 DOI: 10.1021/acs.jmedchem.5c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
|
2
|
Wu Y, Chen M, Chen H, Pan L, Zhao J, Sun S, Zhang N, Xu J. CAPN1 Promotes Pseudomonas aeruginosa-Induced Infection by Interacting with TFEB and Inhibiting Autophagy. J Innate Immun 2025; 17:176-197. [PMID: 40081346 PMCID: PMC11906175 DOI: 10.1159/000543244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 12/16/2024] [Indexed: 03/16/2025] Open
Abstract
INTRODUCTION Autophagy-lysosome pathways play a crucial role in the intracellular killing of pathogenic microorganisms. This study aimed to explore the mechanism by which acute lung injury (ALI) of Pseudomonas aeruginosa affects the autophagy-lysosome pathway. METHODS ALI mouse models were induced by lipopolysaccharide and P. aeruginosa strain K (PAK). Lung tissue sections were stained with hematoxylin-eosin for observation. Flow cytometry was used to analyze bacteria and inflammatory cell infiltration. ELISA was performed to measure inflammatory factor levels. Transmission electron microscopy evaluated autolysosome quantity. Western blot detected levels of related proteins. Immunofluorescence evaluated LC3 expression, and the localization of TFEB in cells was observed. Co-immunoprecipitation and pull-down experiments confirmed the interaction between CAPN1 and TFEB. qRT-PCR measured capn1 and tfeb expression. RESULTS Mouse experiments revealed that PAK infection led to the suppression of autolysosomes in mouse lung tissue, along with increased CAPN1 expression and decreased TFEB in the lung tissue of PAK-induced pneumonia mice. CAPN1-deficient mice could reverse the impact of PAK infection on autolysosomes in mouse lung tissue. These findings were further verified by cell experiments. At a mechanistic level, CAPN1 can interact with TFEB after PAK infection and prevent its entry into the nucleus, thereby inhibiting the autophagolysosomal pathway. CONCLUSION CAPN1 promotes PAK-induced ALI by inhibiting the autophagy-lysosome pathway by targeting TFEB. INTRODUCTION Autophagy-lysosome pathways play a crucial role in the intracellular killing of pathogenic microorganisms. This study aimed to explore the mechanism by which acute lung injury (ALI) of Pseudomonas aeruginosa affects the autophagy-lysosome pathway. METHODS ALI mouse models were induced by lipopolysaccharide and P. aeruginosa strain K (PAK). Lung tissue sections were stained with hematoxylin-eosin for observation. Flow cytometry was used to analyze bacteria and inflammatory cell infiltration. ELISA was performed to measure inflammatory factor levels. Transmission electron microscopy evaluated autolysosome quantity. Western blot detected levels of related proteins. Immunofluorescence evaluated LC3 expression, and the localization of TFEB in cells was observed. Co-immunoprecipitation and pull-down experiments confirmed the interaction between CAPN1 and TFEB. qRT-PCR measured capn1 and tfeb expression. RESULTS Mouse experiments revealed that PAK infection led to the suppression of autolysosomes in mouse lung tissue, along with increased CAPN1 expression and decreased TFEB in the lung tissue of PAK-induced pneumonia mice. CAPN1-deficient mice could reverse the impact of PAK infection on autolysosomes in mouse lung tissue. These findings were further verified by cell experiments. At a mechanistic level, CAPN1 can interact with TFEB after PAK infection and prevent its entry into the nucleus, thereby inhibiting the autophagolysosomal pathway. CONCLUSION CAPN1 promotes PAK-induced ALI by inhibiting the autophagy-lysosome pathway by targeting TFEB.
Collapse
Affiliation(s)
- Yueming Wu
- Department of Critical Care Medicine, The Six Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Miaomiao Chen
- Department of Critical Care Medicine, The Six Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Hua Chen
- Department of Critical Care Medicine, The Six Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Liuhua Pan
- Department of Critical Care Medicine, The Six Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Jing Zhao
- Department of Critical Care Medicine, The Six Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Shunnan Sun
- Department of Critical Care Medicine, The Six Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Ning Zhang
- Department of Emergency Medicine, The Six Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Junlong Xu
- Department of Critical Care Medicine, The Six Affiliated Hospital of Wenzhou Medical University, Lishui, China
| |
Collapse
|
3
|
Li Z, Zhang Z, Yu B. Unlocking the Therapeutic Potential of Natural Products for Alzheimer's Disease. J Med Chem 2025; 68:2377-2402. [PMID: 39865664 DOI: 10.1021/acs.jmedchem.4c03049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition marked by memory loss and cognitive decline. With current treatments offering limited effectiveness, researchers are turning to natural products that can target various aspects of AD pathology. Clinically approved natural products, such as galantamine and huperzine A, have shown success in AD treatments. Furthermore, compounds such as epigallocatechin gallate, quercetin, and resveratrol are in clinical trials. This Perspective examines nearly 100 natural compounds with promising neuroprotective effects in preclinical and clinical studies. These compounds exhibit diverse pharmacological actions that help to prevent neurodegeneration while improving cognitive functions. Their unique structures further enhance their biological activities, making them promising candidates for drug discovery. This Perspective stresses the importance of further clinical research to maximize the medical benefits of these compounds and highlights their potential as innovative remedies for AD. Continued exploration of these compounds is crucial to fully leverage their capabilities in combating AD.
Collapse
Affiliation(s)
- Zhonghua Li
- Academy of Chinese Medical Sciences, Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Bin Yu
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450000, China
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Chen Y, Yi H, Liao S, He J, Zhou Y, Lei Y. LC3B: A microtubule-associated protein influences disease progression and prognosis. Cytokine Growth Factor Rev 2025; 81:16-26. [PMID: 39701849 DOI: 10.1016/j.cytogfr.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024]
Abstract
Microtubule-associated protein 1 light chain 3B (MAP1LC3B, also known as LC3B) is a mammalian homolog of the autophagy-related protein 8 (ATG8) family. It plays a crucial role in cellular autophagy and is involved in several vital biological processes, including apoptosis and differentiation. Additionally, LC3B regulates immune responses. Due to its close association with malignant tumors and neurodegenerative diseases, and its potential as a prognostic indicator and therapeutic target, LC3B has become a significant research focus. This article aims to provide a comprehensive and systematic understanding of LC3B's role and mechanisms in autophagy, its impact on apoptosis and the underlying mechanisms, its regulation of cellular differentiation and transdifferentiation, its modulation of immune and inflammatory responses, the influence of upstream regulatory factors on LC3B's function, and its relevance to disease diagnosis, treatment, and prognosis. The goal is to establish a solid foundation for understanding LC3B's role in cellular processes and its regulatory mechanisms.
Collapse
Affiliation(s)
- Yan Chen
- Department of Blood Transfusion, The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University/Hunan Cancer Hospital, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Shan Liao
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Junyu He
- Department of Clinical Laboratory, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan 410007, China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China.
| | - Yan Lei
- Department of Blood Transfusion, The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University/Hunan Cancer Hospital, Changsha, Hunan 410013, China.
| |
Collapse
|
5
|
Wang L, Hou J, Xu H, Cai Q, Tian L, Li X, Zhang J, Yang H. Angong Niuhuang Pill pretreatment alleviates cerebral ischemia-reperfusion injury by inhibiting excessive autophagy through the SIRT1-H4K16ac axis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119214. [PMID: 39643020 DOI: 10.1016/j.jep.2024.119214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cerebral ischemia-reperfusion injury (CIRI) is an important pathological process in stroke treatment. Angong Niuhuang Pill (ANP), originating from Wenbing Tiaobian, has been shown to have neuroprotective effects, but its mechanism in alleviating CIRI remains unclear. AIM OF THE STUDY This study aimed to elucidate the mechanism by which ANP alleviates CIRI using acetylomics and proteomics. MATERIALS AND METHODS The CIRI model was established using middle cerebral artery occlusion (MCAO). Neurological deficit scoring, TTC staining, regional cerebral blood flow (rCBF) measurement, and TUNEL staining were used to assess the neuroprotective effects of ANP pretreatment on CIRI. Acetylomics and proteomics analyses were performed to identify the potential mechanisms by which ANP reduces CIRI. Finally, the role of SIRT1-H4K16ac-mediated autophagy in the neuroprotective effects of ANP was validated by using a SIRT1 inhibitor, EX527. RESULTS ANP pretreatment markedly lowered neurological deficit scores and cerebral infarct volumes, increased rCBF, and reduced apoptosis. Acetylomics and proteomics results suggested that ANP regulated autophagy at the transcriptional level by modulating H4K16ac. Immunofluorescence and Western blot analyses confirmed that ANP promoted the accumulation of sirtuin 1 (SIRT1). Specifically, ANP pretreatment reduced H4K16ac levels, decreased LC3B-II/I ratios, upregulated SQSTM1/p62, and suppressed the expression of ATG5 and ATG7. The ability of EX527 to counteract these effects underscored the importance of the SIRT1-H4K16ac pathway in mediating the protective action of ANP against CIRI. CONCLUSIONS ANP provides neuroprotection by modulating the SIRT1-H4K16ac pathway, thereby preventing the excessive autophagy triggered by CIRI.
Collapse
Affiliation(s)
- Lihan Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jingyi Hou
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - He Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Qingqing Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Liangliang Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xueli Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jingjing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hongjun Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
6
|
Sun L, Lv S, Song T. Monitoring Autophagy with GFP-LC3 Reporter. Methods Mol Biol 2025; 2879:51-61. [PMID: 37889422 DOI: 10.1007/7651_2023_501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Autophagy is a key process that maintains cellular homeostasis. Autophagy contributes to various physiological and pathophysiological processes. Development of methodologies for autophagy detection has greatly facilitated the research on autophagy. Among these methodologies, GFP-LC3 reporter has been popularly used in the literature. In this chapter, we will detail step-by-step the GFP-LC3 reporter protocol we have adapted in our lab. This protocol begins with the generation of lentivirus expressing GFP-LC3. Then, the cells are transduced with titrated virus. After selecting the positive cells, single colonies are isolated, characterized, validated, and used in further study.
Collapse
Affiliation(s)
- Lidong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Suli Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tanjing Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Berger MMJ, Garcia V, Lacrampe N, Rubio B, Decros G, Pétriacq P, Flandin A, Cassan C, Hilbert-Masson G, Colombié S, Atanassova R, Gallusci P. Grapevine cell response to carbon deficiency requires transcriptome and methylome reprogramming. HORTICULTURE RESEARCH 2025; 12:uhae277. [PMID: 39845645 PMCID: PMC11750959 DOI: 10.1093/hr/uhae277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/21/2024] [Indexed: 01/24/2025]
Abstract
Sugar limitation has dramatic consequences on plant cells, which include cell metabolism and transcriptional reprogramming, and the recycling of cellular components to maintain fundamental cell functions. There is however no description of the contribution of epigenetic regulations to the adaptation of plant cells to limited carbon availability. We investigated this question using nonphotosynthetic grapevine cells (Vitis vinifera, cv Cabernet Sauvignon) cultured in vitro with contrasted glucose concentrations. Sugar depletion in the culture medium led to a rapid cell growth arrest and a major metabolic shift that include the depletion in soluble sugar and total amino acids and modulation of the cell redox status. Consistently, flux modeling showed a dramatic slowdown of many pathways required for biomass accumulation such as cell wall and protein synthesis. Sugar depletion also resulted in a major transcriptional reprogramming, characterized by the induction of genes involved in photosynthesis, and the repression of those related to sucrose mobilization or cell cycle control. Similarly, the epigenetic landscape was deeply modified. Glucose-depleted cells showed a higher global DNA methylation level than those grown with glucose. Changes in DNA methylation mainly occurred at transposable elements, and at genes including some of those differentially expressed, consistent with an important role for methylation to the adaptation of cells to limited sugar availability. In addition, genes encoding histone modifiers were differentially expressed suggesting that additional epigenetic mechanisms may be at work in plant cells under carbon shortage.
Collapse
Affiliation(s)
- Margot M J Berger
- Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Virginie Garcia
- Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Nathalie Lacrampe
- Plantes et Système de culture horticoles (PSH), INRAE, UMR Qualisud, Université Avignon, Avignon, France
| | - Bernadette Rubio
- Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Guillaume Decros
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882 Villenave d’Ornon, France
| | - Pierre Pétriacq
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882 Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d’Ornon, France
| | - Amélie Flandin
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882 Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d’Ornon, France
| | - Cédric Cassan
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882 Villenave d’Ornon, France
| | - Ghislaine Hilbert-Masson
- Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Sophie Colombié
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882 Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d’Ornon, France
| | - Rossitza Atanassova
- UMR CNRS 7267 EBI-Ecologie et Biologie des Interactions (EBI), Equipe Sucres et Echanges Végétaux-Environnement (SEVE), University of Poitiers, Poitiers, France
| | - Philippe Gallusci
- Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| |
Collapse
|
8
|
Gielecińska A, Kciuk M, Kontek R. The Impact of Calcium Overload on Cellular Processes: Exploring Calcicoptosis and Its Therapeutic Potential in Cancer. Int J Mol Sci 2024; 25:13727. [PMID: 39769488 PMCID: PMC11679949 DOI: 10.3390/ijms252413727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
The key role of calcium in various physiological and pathological processes includes its involvement in various forms of regulated cell death (RCD). The concept of 'calcicoptosis' has been introduced as a calcium-induced phenomenon associated with oxidative stress and cellular damage. However, its definition remains controversial within the research community, with some considering it a general form of calcium overload stress, while others view it as a tumor-specific calcium-induced cell death. This review examines 'calcicoptosis' in the context of established RCD mechanisms such as apoptosis, necroptosis, ferroptosis, and others. It further analyzes the intricate relationship between calcium dysregulation and oxidative stress, emphasizing that while calcium overload often triggers cell death, it may not represent an entirely new type of RCD but rather an extension of known pathways. The purpose of this paper is to discuss the implications of this perspective for cancer therapy focusing on calcium-based nanoparticles. By investigating the connections between calcium dynamics and cell death pathways, this review contributes to the advancement of our understanding of calcicoptosis and its possible therapeutic uses.
Collapse
Affiliation(s)
- Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (A.G.); (M.K.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, Matejki Street 21/23, 90-237 Lodz, Poland
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (A.G.); (M.K.)
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (A.G.); (M.K.)
| |
Collapse
|
9
|
He R, Liu Y, Fu W, He X, Liu S, Xiao D, Tao Y. Mechanisms and cross-talk of regulated cell death and their epigenetic modifications in tumor progression. Mol Cancer 2024; 23:267. [PMID: 39614268 PMCID: PMC11606237 DOI: 10.1186/s12943-024-02172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024] Open
Abstract
Cell death is a fundamental part of life for metazoans. To maintain the balance between cell proliferation and metabolism of human bodies, a certain number of cells need to be removed regularly. Hence, the mechanisms of cell death have been preserved during the evolution of multicellular organisms. Tumorigenesis is closely related with exceptional inhibition of cell death. Mutations or defects in cell death-related genes block the elimination of abnormal cells and enhance the resistance of malignant cells to chemotherapy. Therefore, the investigation of cell death mechanisms enables the development of drugs that directly induce tumor cell death. In the guidelines updated by the Cell Death Nomenclature Committee (NCCD) in 2018, cell death was classified into 12 types according to morphological, biochemical and functional classification, including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, PARP-1 parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence and mitotic catastrophe. The mechanistic relationships between epigenetic controls and cell death in cancer progression were previously unclear. In this review, we will summarize the mechanisms of cell death pathways and corresponding epigenetic regulations. Also, we will explore the extensive interactions between these pathways and discuss the mechanisms of cell death in epigenetics which bring benefits to tumor therapy.
Collapse
Affiliation(s)
- Ruimin He
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Yifan Liu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Weijie Fu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Xuan He
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China.
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China.
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Furong Laboratory, Xiangya School of Medicine, Central South University, Hunan, 410078, China.
| |
Collapse
|
10
|
Zhao Y, Klionsky DJ, Wang X, Huang Q, Deng Z, Xiang J. The Estrogen-Autophagy Axis: Insights into Cytoprotection and Therapeutic Potential in Cancer and Infection. Int J Mol Sci 2024; 25:12576. [PMID: 39684286 PMCID: PMC11641569 DOI: 10.3390/ijms252312576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
Macroautophagy, commonly referred to as autophagy, is an essential cytoprotective mechanism that plays a significant role in cellular homeostasis. It has emerged as a promising target for drug development aimed at treating various cancers and infectious diseases. However, the scientific community has yet to reach a consensus on the most effective approach to manipulating autophagy, with ongoing debates about whether its inhibition or stimulation is preferable for managing these complex conditions. One critical factor contributing to the variability in treatment responses for both cancers and infectious diseases is estrogen, a hormone known for its diverse biological effects. Given the strong correlations observed between estrogen signaling and autophagy, this review seeks to summarize the intricate molecular mechanisms that underlie the dual cytoprotective effects of estrogen signaling in conjunction with autophagy. We highlight recent findings from studies that involve various ligands, disease contexts, and cell types, including immune cells. Furthermore, we discuss several factors that regulate autophagy in the context of estrogen's influence. Ultimately, we propose a hypothetical model to elucidate the regulatory effects of the estrogen-autophagy axis on cell fate. Understanding these interactions is crucial for advancing our knowledge of related diseases and facilitating the development of innovative treatment strategies.
Collapse
Affiliation(s)
- Ying Zhao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (Y.Z.); (X.W.); (Q.H.); (Z.D.)
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Mary Sue Coleman Hall, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216, USA;
| | - Xin Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (Y.Z.); (X.W.); (Q.H.); (Z.D.)
| | - Qiaoying Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (Y.Z.); (X.W.); (Q.H.); (Z.D.)
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (Y.Z.); (X.W.); (Q.H.); (Z.D.)
| | - Jin Xiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (Y.Z.); (X.W.); (Q.H.); (Z.D.)
| |
Collapse
|
11
|
Chu Y, Yuan X, Tao Y, Yang B, Luo J. Autophagy in Muscle Regeneration: Mechanisms, Targets, and Therapeutic Perspective. Int J Mol Sci 2024; 25:11901. [PMID: 39595972 PMCID: PMC11593790 DOI: 10.3390/ijms252211901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Autophagy maintains the stability of eukaryotic cells by degrading unwanted components and recycling nutrients and plays a pivotal role in muscle regeneration by regulating the quiescence, activation, and differentiation of satellite cells. Effective muscle regeneration is vital for maintaining muscle health and homeostasis. However, under certain disease conditions, such as aging, muscle regeneration can fail due to dysfunctional satellite cells. Dysregulated autophagy may limit satellite cell self-renewal, hinder differentiation, and increase susceptibility to apoptosis, thereby impeding muscle regeneration. This review explores the critical role of autophagy in muscle regeneration, emphasizing its interplay with apoptosis and recent advances in autophagy research related to diseases characterized by impaired muscle regeneration. Additionally, we discuss new approaches involving autophagy regulation to promote macrophage polarization, enhancing muscle regeneration. We suggest that utilizing cell therapy and biomaterials to modulate autophagy could be a promising strategy for supporting muscle regeneration. We hope that this review will provide new insights into the treatment of muscle diseases and promote muscle regeneration.
Collapse
Affiliation(s)
- Yun Chu
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.C.); (Y.T.); (B.Y.)
| | - Xinrun Yuan
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Yiming Tao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.C.); (Y.T.); (B.Y.)
| | - Bin Yang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.C.); (Y.T.); (B.Y.)
| | - Jinlong Luo
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| |
Collapse
|
12
|
Luo X, Jian M, Wu P, Wu Y, Ma Y, Feng N, Lu M, Shi D, Liu R, Ding Y, Zhang W, Fan L, He X. STIM1 promotes cervical cancer progression through autophagy activation via TFEB nuclear translocation. Cell Signal 2024; 125:111500. [PMID: 39489201 DOI: 10.1016/j.cellsig.2024.111500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/13/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Autophagy plays an important role in maintaining the stability of intracellular environment, abnormal autophagy is associated with the occurrence and progression of cancer, the role of STIM1 in regulating cancer autophagy remains controversial, and its clinical relevance is unclear. Our study aimed to investigate the effect and mechanism of STIM1 on cervical cancer, thus to provide new molecular therapeutic targets for cervical cancer in clinic. METHODS We collected CIN III, FIGO IB and IIA fresh Specimens without chemotherapy from patients in Renmin Hospital of Hubei University of Medicine (n = 10). STIM1, TFEB and autophagy related proteins of different stage tissues were detected. In vitro, SKF96365 and AncoA4 were used to inhibit STIM1-administrated Ca2+ entry of SiHa cells, Cyclosporine A (calcineurin inhibitors) were used to inhibit CaN/TFEB pathway, Ad-mCherry-GFPLC3B was used to detect autophagy flux, shSTIM1 was used to knockdown STIM1 expression. RESULTS The expression levels of STIM1, TFEB and autophagy related proteins were positively correlated with the progression of cervical cancer. Inhibition of STIM1-mediated SOCE can decrease proliferation and migration, and promoted the apoptosis of cervical cancer cells. Knockdown STIM1 can inhibit autophagy and TFEB nuclear translocation. CONCLUSION STIM1 can promote autophagy and accelerate cervical cancer progression by increasing TFEB nuclear translocation of cervical cancer cells.
Collapse
Affiliation(s)
- Xi Luo
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China; Department of Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Mengchan Jian
- Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Ping Wu
- Department of Reproductive Medicine, Shenzhen Luohu People's Hospital, Shenzhen 518000, China
| | - Yahua Wu
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Yulan Ma
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Na Feng
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Min Lu
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Dandan Shi
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Rui Liu
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Yan Ding
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Wenjun Zhang
- Department of Ultrasound, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Li Fan
- Department of Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Xiju He
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China; Department of Ultrasound, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
13
|
Li W, Zhang H, Xu J, Maimaitijiang A, Su Z, Fan Z, Li J. The Biological Roles of ZKSCAN3 (ZNF306) in the Hallmarks of Cancer: From Mechanisms to Therapeutics. Int J Mol Sci 2024; 25:11532. [PMID: 39519085 PMCID: PMC11546961 DOI: 10.3390/ijms252111532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
ZKSCAN3 (also known as ZNF306) plays a pivotal role in the regulation of various cellular processes that are fundamental to the development of cancer. It has been widely acknowledged as a key contributor to cancer progression, with its overexpression consistently reported in a broad spectrum of malignancies. Importantly, clinical studies have demonstrated a significant association between elevated ZKSCAN3 levels and adverse prognosis, as well as resistance to therapeutic drugs. Specifically, ZKSCAN3 promotes tumor progression by enhancing multiple hallmark features of cancer and promoting the acquisition of cancer-specific phenotypes. These effects manifest as increased tumor cell proliferation, invasion, and metastasis, accompanied by inhibiting tumor cell apoptosis and modulating autophagy. Consequently, ZKSCAN3 emerges as a promising prognostic marker, and targeting its inhibition represents a potential strategy for anti-tumor therapy. In this review, we provide an updated perspective on the role of ZKSCAN3 in governing tumor characteristics and the underlying molecular mechanisms. Furthermore, we underscore the clinical relevance of ZKSCAN3 and its potential implications for tumor prognosis and therapeutic strategies.
Collapse
Affiliation(s)
- Wenfang Li
- School of Pharmaceutical Science, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Han Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Jianxiong Xu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Ayitila Maimaitijiang
- School of Pharmaceutical Science, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Zhengding Su
- School of Pharmaceutical Science, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Zhongxiong Fan
- School of Pharmaceutical Science, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
14
|
Shang J, Yan J, Lou H, Shou R, Zhan Y, Lu X, Fan X. Genome-wide DNA methylation sequencing reveals the involvement of ferroptosis in hepatotoxicity induced by dietary exposure to food-grade titanium dioxide. Part Fibre Toxicol 2024; 21:37. [PMID: 39294687 PMCID: PMC11409784 DOI: 10.1186/s12989-024-00598-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Following the announcement by the European Food Safety Authority that the food additive titanium dioxide (E 171) is unsafe for human consumption, and the subsequent ban by the European Commission, concerns have intensified over the potential risks E 171 poses to human vital organs. The liver is the main organ for food-grade nanoparticle metabolism. It is increasingly being found that epigenetic changes may play an important role in nanomaterial-induced hepatotoxicity. However, the profound effects of E 171 on the liver, especially at the epigenetic level, remain largely unknown. METHODS Mice were exposed orally to human-relevant doses of two types of E 171 mixed in diet for 28 and/or 84 days. Conventional toxicology and global DNA methylation analyses were performed to assess E 171-induced hepatotoxicity and epigenetic changes. Whole genome bisulfite sequencing and further ferroptosis protein detection were used to reveal E 171-induced changes in liver methylation profiles and toxic mechanisms. RESULTS Exposed to E 171 for 28 and/or 84 days resulted in reduced global DNA methylation and hydroxymethylation in the liver of mice. E 171 exposure for 84 days elicited inflammation and damage in the mouse liver, whereas 28-day exposure did not. Whole-genome DNA methylation sequencing disclosed substantial methylation alterations at the CG and non-CG sites of the liver DNA in mice exposed to E 171 for 84 days. Mechanistic analysis of the DNA methylation alterations indicated that ferroptosis contributed to the liver toxicity induced by E 171. E 171-induced DNA methylation changes triggered NCOA4-mediated ferritinophagy, attenuated the protein levels of GPX4, FTH1, and FTL in the liver, and thereby caused ferroptosis. CONCLUSIONS Long-term oral exposure to E 171 triggers hepatotoxicity and induces methylation changes in both CG and non-CG sites of liver DNA. These epigenetic alterations activate ferroptosis in the liver through NCOA4-mediated ferritinophagy, highlighting the role of DNA methylation and ferroptosis in the potential toxicity caused by E 171 in vivo.
Collapse
Affiliation(s)
- Jiaxin Shang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun Yan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - He Lou
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rongshang Shou
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingqi Zhan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China.
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China.
- The Joint-Laboratory of Clinical Multi-Omics Research between Zhejiang University and Ningbo Municipal Hospital of TCM, Ningbo Municipal Hospital of TCM, Ningbo, 315010, China.
| |
Collapse
|
15
|
Satarker S, Wilson J, Kolathur KK, Mudgal J, Lewis SA, Arora D, Nampoothiri M. Spermidine as an epigenetic regulator of autophagy in neurodegenerative disorders. Eur J Pharmacol 2024; 979:176823. [PMID: 39032763 DOI: 10.1016/j.ejphar.2024.176823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Autophagy is an abnormal protein degradation and recycling process that is impaired in various neurological diseases like Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease. Spermidine is a natural polyamine found in various plant- and meat-based diets that can induce autophagy, and is decreased in various neurodegenerative diseases. It acts on epigenetic enzymes like E1A-binding protein p300, HAT enzymes like Iki3p and Sas3p, and α-tubulin acetyltransferase 1 that modulate autophagy. Histone modifications like acetylation, phosphorylation, and methylation could influence autophagy. Autophagy is epigenetically regulated in various neurodegenerative disorders with many epigenetic enzymes and miRNAs. Polyamine regulation plays an essential role in the disease pathogenesis of AD and PD. Therefore, in this review, we discuss various enzymes and miRNAs involved in the epigenetic regulation of autophagy in neurodegenerative disorders and the role of spermidine as an autophagy enhancer. The alterations in spermidine-mediated regulation of Beclin-1, LC3-II, and p62 genes in AD and other PD-associated enzymes could impact the process of autophagy in these neurodegenerative diseases. With the ever-growing data and such promising effects of spermidine in autophagy, we feel it could be a promising target in this area and worth further detailed studies.
Collapse
Affiliation(s)
- Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Joel Wilson
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kiran Kumar Kolathur
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Devinder Arora
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
16
|
Wu N, Zheng W, Zhou Y, Tian Y, Tang M, Feng X, Ashrafizadeh M, Wang Y, Niu X, Tambuwala M, Wang L, Tergaonkar V, Sethi G, Klionsky D, Huang L, Gu M. Autophagy in aging-related diseases and cancer: Principles, regulatory mechanisms and therapeutic potential. Ageing Res Rev 2024; 100:102428. [PMID: 39038742 DOI: 10.1016/j.arr.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Macroautophagy/autophagy is primarily accountable for the degradation of damaged organelles and toxic macromolecules in the cells. Regarding the essential function of autophagy for preserving cellular homeostasis, changes in, or dysfunction of, autophagy flux can lead to disease development. In the current paper, the complicated function of autophagy in aging-associated pathologies and cancer is evaluated, highlighting the underlying molecular mechanisms that can affect longevity and disease pathogenesis. As a natural biological process, a reduction in autophagy is observed with aging, resulting in an accumulation of cell damage and the development of different diseases, including neurological disorders, cardiovascular diseases, and cancer. The MTOR, AMPK, and ATG proteins demonstrate changes during aging, and they are promising therapeutic targets. Insulin/IGF1, TOR, PKA, AKT/PKB, caloric restriction and mitochondrial respiration are vital for lifespan regulation and can modulate or have an interaction with autophagy. The specific types of autophagy, such as mitophagy that degrades mitochondria, can regulate aging by affecting these organelles and eliminating those mitochondria with genomic mutations. Autophagy and its specific types contribute to the regulation of carcinogenesis and they are able to dually enhance or decrease cancer progression. Cancer hallmarks, including proliferation, metastasis, therapy resistance and immune reactions, are tightly regulated by autophagy, supporting the conclusion that autophagy is a promising target in cancer therapy.
Collapse
Affiliation(s)
- Na Wu
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yundong Zhou
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Yu Tian
- School of Public Health, Benedictine University, No.5700 College Road, Lisle, IL 60532, USA; Research Center, the Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing 401120, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | - Daniel Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Li Huang
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China.
| | - Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
17
|
Oh SY, Kim J, Lee KY, Lee HJ, Kwon TG, Kim JW, Lee ST, Kim DG, Choi SY, Hong SH. Chromatin remodeling-driven autophagy activation induces cisplatin resistance in oral squamous cell carcinoma. Cell Death Dis 2024; 15:589. [PMID: 39138148 PMCID: PMC11322550 DOI: 10.1038/s41419-024-06975-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
It is still challenging to predict the efficacy of cisplatin-based therapy, particularly in relation to the activation of macroautophagy/autophagy in oral squamous cell carcinoma (OSCC). We studied the effect of selected chromatin remodeling genes on the cisplatin resistance and their interplay with autophagy in 3-dimensional tumor model and xenografts. We analyzed gene expression patterns in the cisplatin-sensitive UMSCC1, and a paired cisplatin-resistant UM-Cis cells. Many histone protein gene clusters involved in nucleosome assembly showed significant difference of expression. Gain- and loss-of-function analyses revealed an inverse correlation between cisplatin resistance and HIST1H3D expression, while a positive correlation was observed with HIST3H2A or HIST3H2B expression. In UM-Cis, HIST3H2A- and HIST3H2B-mediated chromatin remodeling upregulates autophagy status, which results in cisplatin resistance. Additionally, knockdown of HIST3H2A or HIST3H2B downregulated autophagy-activating genes via chromatin compaction of their promoter regions. MiTF, one of the key autophagy regulators upregulated in UM-Cis, negatively regulated transcription of HIST1H3D, suggesting an interplay between chromatin remodeling-dependent cisplatin resistance and autophagy. On comparing the staining intensity between cisplatin-sensitive and -insensitive tissues from OSCC patients, protein expression pattern of the selected histone protein genes were matched with the in vitro data. By examining the relationship between autophagy and chromatin remodeling genes, we identified a set of candidate genes with potential use as markers predicting chemoresistance in OSCC biopsy samples.
Collapse
Affiliation(s)
- Su Young Oh
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Jinkyung Kim
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Kah Young Lee
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Heon-Jin Lee
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Tae-Geon Kwon
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Jin-Wook Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Sung-Tak Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Dae-Geon Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - So-Young Choi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, South Korea.
| | - Su-Hyung Hong
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
18
|
Arias C, Álvarez-Indo J, Cifuentes M, Morselli E, Kerr B, Burgos PV. Enhancing adipose tissue functionality in obesity: senotherapeutics, autophagy and cellular senescence as a target. Biol Res 2024; 57:51. [PMID: 39118171 PMCID: PMC11312694 DOI: 10.1186/s40659-024-00531-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Obesity, a global health crisis, disrupts multiple systemic processes, contributing to a cascade of metabolic dysfunctions by promoting the pathological expansion of visceral adipose tissue (VAT). This expansion is characterized by impaired differentiation of pre-adipocytes and an increase in senescent cells, leading to a pro-inflammatory state and exacerbated oxidative stress. Particularly, the senescence-associated secretory phenotype (SASP) and adipose tissue hypoxia further impair cellular function, promoting chronic disease development. This review delves into the potential of autophagy modulation and the therapeutic application of senolytics and senomorphics as novel strategies to mitigate adipose tissue senescence. By exploring the intricate mechanisms underlying adipocyte dysfunction and the emerging role of natural compounds in senescence modulation, we underscore the promising horizon of senotherapeutics in restoring adipose health. This approach not only offers a pathway to combat the metabolic complications of obesity, but also opens new avenues for enhancing life quality and managing the global burden of obesity-related conditions. Our analysis aims to bridge the gap between current scientific progress and clinical application, offering new perspectives on preventing and treating obesity-induced adipose dysfunction.
Collapse
Affiliation(s)
- Consuelo Arias
- Escuela de Kinesiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, 7500922, Chile.
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
| | - Javiera Álvarez-Indo
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Mariana Cifuentes
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Bredford Kerr
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Patricia V Burgos
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
- Centro Basal Ciencia & Vida, Universidad San Sebastián, Santiago, Chile.
| |
Collapse
|
19
|
Ren H, Ou Q, Pu Q, Lou Y, Yang X, Han Y, Liu S. Comprehensive Review on Bimolecular Fluorescence Complementation and Its Application in Deciphering Protein-Protein Interactions in Cell Signaling Pathways. Biomolecules 2024; 14:859. [PMID: 39062573 PMCID: PMC11274695 DOI: 10.3390/biom14070859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Signaling pathways are responsible for transmitting information between cells and regulating cell growth, differentiation, and death. Proteins in cells form complexes by interacting with each other through specific structural domains, playing a crucial role in various biological functions and cell signaling pathways. Protein-protein interactions (PPIs) within cell signaling pathways are essential for signal transmission and regulation. The spatiotemporal features of PPIs in signaling pathways are crucial for comprehending the regulatory mechanisms of signal transduction. Bimolecular fluorescence complementation (BiFC) is one kind of imaging tool for the direct visualization of PPIs in living cells and has been widely utilized to uncover novel PPIs in various organisms. BiFC demonstrates significant potential for application in various areas of biological research, drug development, disease diagnosis and treatment, and other related fields. This review systematically summarizes and analyzes the technical advancement of BiFC and its utilization in elucidating PPIs within established cell signaling pathways, including TOR, PI3K/Akt, Wnt/β-catenin, NF-κB, and MAPK. Additionally, it explores the application of this technology in revealing PPIs within the plant hormone signaling pathways of ethylene, auxin, Gibberellin, and abscisic acid. Using BiFC in conjunction with CRISPR-Cas9, live-cell imaging, and ultra-high-resolution microscopy will enhance our comprehension of PPIs in cell signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (H.R.); (Q.O.); (Q.P.); (Y.L.); (X.Y.); (Y.H.)
| |
Collapse
|
20
|
Huang L, Guo H. Acetylation modification in the regulation of macroautophagy. ADVANCED BIOTECHNOLOGY 2024; 2:19. [PMID: 39883319 PMCID: PMC11740868 DOI: 10.1007/s44307-024-00027-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 01/31/2025]
Abstract
Macroautophagy, commonly referred to as autophagy, is an evolutionarily conserved cellular process that plays a crucial role in maintaining cellular homeostasis. It orchestrates the delivery of dysfunctional or surplus cellular materials to the vacuole or lysosome for degradation and recycling, particularly during adverse conditions. Over the past few decades, research has unveiled intricate regulatory mechanisms governing autophagy through various post-translational modifications (PTMs). Among these PTMs, acetylation modification has emerged as a focal point in yeast and animal studies. It plays a pivotal role in autophagy by directly targeting core components within the central machinery of autophagy, including autophagy initiation, nucleation, phagophore expansion, and autophagosome maturation. Additionally, acetylation modulates autophagy at the transcriptional level by modifying histones and transcription factors. Despite its well-established significance in yeast and mammals, the role of acetylation in plant autophagy remains largely unexplored, and the precise regulatory mechanisms remain enigmatic. In this comprehensive review, we summarize the current understanding of the function and underlying mechanisms of acetylation in regulating autophagy across yeast, mammals, and plants. We particularly highlight recent advances in deciphering the impact of acetylation on plant autophagy. These insights not only provide valuable guidance but also inspire further scientific inquiries into the intricate role of acetylation in plant autophagy.
Collapse
Affiliation(s)
- Li Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Hongwei Guo
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
21
|
Nonoyama K, Matsuo Y, Sugita S, Eguchi Y, Denda Y, Murase H, Kato T, Imafuji H, Saito K, Morimoto M, Ogawa R, Takahashi H, Mitsui A, Kimura M, Takiguchi S. Expression of ZKSCAN3 protein suppresses proliferation, migration, and invasion of pancreatic cancer through autophagy. Cancer Sci 2024; 115:1964-1978. [PMID: 38671550 PMCID: PMC11145104 DOI: 10.1111/cas.16173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
Elevated autophagy activity enhances the malignancy of pancreatic cancer (PaCa), and autophagy is recognized as a novel therapeutic target. Zinc finger protein with KRAB and SCAN domains 3 (ZKSCAN3) is a transcription factor that suppresses autophagy, but its association with PaCa is unknown. We analyzed the function of ZKSCAN3 in PaCa and investigated whether autophagy regulation through ZKSCAN3 could become a new therapeutic target for PaCa. Using reverse transcription-quantitative polymerase chain reaction and western blotting, we observed that ZKSCAN3 expression was upregulated in several PaCa cell lines compared with normal pancreatic ductal epithelial cells. Additionally, comparing ZKSCAN3 expression with the prognosis of PaCa patients using web databases, we found that higher ZKSCAN3 expression in PaCa was associated with extended overall survival. Knocking down ZKSCAN3 promoted the proliferation of PaCa cells. Moreover, following ZKSCAN3 knockdown, PaCa cells exhibited significantly enhanced migratory and invasive properties. Conversely, overexpression of ZKSCAN3 significantly suppressed the proliferation, migration and invasion of PaCa cells. Additionally, the knockdown of ZKSCAN3 increased the expression of LC3-II, a marker of autophagy, whereas ZKSCAN3 overexpression decreased LC3-II expression. In a xenograft mouse model, tumors formed by MIA PaCa-2 cells in which ZKSCAN3 was knocked down significantly increased in size compared with the control group. In conclusion, ZKSCAN3 expression was upregulated in several pancreatic cancer cells. Additionally, it was revealed that ZKSCAN3 is negatively correlated with the malignancy of PaCa through autophagy. These results suggest that autophagy regulation via ZKSCAN3 may be a new therapeutic target for PaCa.
Collapse
Affiliation(s)
- Keisuke Nonoyama
- Department of Gastroenterological SurgeryNagoya City University Graduate School of Medical SciencesNagoyaAichiJapan
| | - Yoichi Matsuo
- Department of Gastroenterological SurgeryNagoya City University Graduate School of Medical SciencesNagoyaAichiJapan
| | - Saburo Sugita
- Department of Gastroenterological SurgeryNagoya City University Graduate School of Medical SciencesNagoyaAichiJapan
| | - Yuki Eguchi
- Department of Gastroenterological SurgeryNagoya City University Graduate School of Medical SciencesNagoyaAichiJapan
| | - Yuki Denda
- Department of Gastroenterological SurgeryNagoya City University Graduate School of Medical SciencesNagoyaAichiJapan
| | - Hiromichi Murase
- Department of Gastroenterological SurgeryNagoya City University Graduate School of Medical SciencesNagoyaAichiJapan
| | - Tomokatsu Kato
- Department of Gastroenterological SurgeryNagoya City University Graduate School of Medical SciencesNagoyaAichiJapan
| | - Hiroyuki Imafuji
- Department of Gastroenterological SurgeryNagoya City University Graduate School of Medical SciencesNagoyaAichiJapan
| | - Kenta Saito
- Department of Gastroenterological SurgeryNagoya City University Graduate School of Medical SciencesNagoyaAichiJapan
| | - Mamoru Morimoto
- Department of Gastroenterological SurgeryNagoya City University Graduate School of Medical SciencesNagoyaAichiJapan
| | - Ryo Ogawa
- Department of Gastroenterological SurgeryNagoya City University Graduate School of Medical SciencesNagoyaAichiJapan
| | - Hiroki Takahashi
- Department of Gastroenterological SurgeryNagoya City University Graduate School of Medical SciencesNagoyaAichiJapan
| | - Akira Mitsui
- Department of Gastroenterological SurgeryNagoya City University Graduate School of Medical SciencesNagoyaAichiJapan
| | - Masahiro Kimura
- Department of Gastroenterological SurgeryNagoya City University Graduate School of Medical SciencesNagoyaAichiJapan
| | - Shuji Takiguchi
- Department of Gastroenterological SurgeryNagoya City University Graduate School of Medical SciencesNagoyaAichiJapan
| |
Collapse
|
22
|
Zhang T, Zhu S, Huang GW. ALKBH5 suppresses autophagic flux via N6-methyladenosine demethylation of ZKSCAN3 mRNA in acute pancreatitis. World J Gastroenterol 2024; 30:1764-1776. [PMID: 38617741 PMCID: PMC11008368 DOI: 10.3748/wjg.v30.i12.1764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/03/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Increasing evidence has demonstrated that N6-methyladenosine (m6A) RNA modification plays an essential role in a wide range of pathological conditions. Impaired autophagy is a critical hallmark of acute pancreatitis (AP). AIM To explore the role of the m6A modification of ZKSCAN3 in the regulation of autophagy in AP. METHODS The AP mouse cell model was established by cerulein-treated mouse pancreatic acinar cells (MPC-83), and the results were confirmed by the levels of amylase and inflammatory factors. Autophagy activity was evaluated by specific identification of the autophagy-related microstructure and the expression of autophagy-related genes. ZKSCAN3 and ALKBH5 were knocked down to study the function in AP. A m6A RNA binding protein immunoprecipitation assay was used to study how the m6A modification of ZKSCAN3 mRNA is regulated by ALKBH. RESULTS The increased expression of amylase and inflammatory factors in the supernatant and the accumulation of autophagic vacuoles verified that the AP mouse cell model was established. The downregulation of LAMP2 and upregulation of LC3-II/I and SQSTM1 demonstrated that autophagy was impaired in AP. The expression of ZKSCAN3 was upregulated in AP. Inhibition of ZKSCAN3 increased the expression of LAMP2 and decreased the expression of the inflammatory factors, LC3-II/I and SQSTM1. Furthermore, ALKBH5 was upregulated in AP. Knockdown of ALKBH5 downregulated ZKSCAN3 expression and restored decreased autophagic flux in AP. Notably, the bioinformatic analysis revealed 23 potential m6A modification sites on ZKSCAN3 mRNA. The m6A modification of ZKSCAN3 mRNA was significantly decreased in AP. Knockdown of ALKBH5 increased the modification of ZKSCAN3 mRNA, which confirmed that ALKBH5 upregulated ZKSCAN3 expression in a m6A-dependent manner. CONCLUSION ALKBH5 inhibits autophagic flux through m6A demethylation of ZKSCAN3 mRNA in AP, thereby aggravating the severity of the disease.
Collapse
Affiliation(s)
- Tao Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410005, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, Hunan, China
| | - Shuai Zhu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410005, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, Hunan, China
| | - Geng-Wen Huang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410005, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, Hunan, China
| |
Collapse
|
23
|
Öz-Arslan D, Durer ZA, Kan B. G protein-coupled receptor-mediated autophagy in health and disease. Br J Pharmacol 2024. [PMID: 38501194 DOI: 10.1111/bph.16345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/05/2024] [Accepted: 01/27/2024] [Indexed: 03/20/2024] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest and most diverse superfamily of mammalian transmembrane proteins. These receptors are involved in a wide range of physiological functions and are targets for more than a third of available drugs in the market. Autophagy is a cellular process involved in degrading damaged proteins and organelles and in recycling cellular components. Deficiencies in autophagy are involved in a variety of pathological conditions. Both GPCRs and autophagy are essential in preserving homeostasis and cell survival. There is emerging evidence suggesting that GPCRs are direct regulators of autophagy. Additionally, autophagic machinery is involved in the regulation of GPCR signalling. The interplay between GPCR and autophagic signalling mechanisms significantly impacts on health and disease; however, there is still an incomplete understanding of the underlying mechanisms and therapeutic implications in different tissues and disease contexts. This review aims to discuss the interactions between GPCR and autophagy signalling. Studies on muscarinic receptors, beta-adrenoceptors, taste receptors, purinergic receptors and adhesion GPCRs are summarized, in relation to autophagy.
Collapse
Affiliation(s)
- Devrim Öz-Arslan
- Department of Biophysics, Acibadem MAA University, School of Medicine, Istanbul, Turkey
| | - Zeynep Aslıhan Durer
- Department of Biophysics, Acibadem MAA University, School of Medicine, Istanbul, Turkey
- Department of Biochemistry, Acibadem MAA University, School of Pharmacy, Istanbul, Turkey
| | - Beki Kan
- Department of Biophysics, Acibadem MAA University, School of Medicine, Istanbul, Turkey
| |
Collapse
|
24
|
Nakashima A, Furuta A, Yoshida-Kawaguchi M, Yamada K, Nunomura H, Morita K, Yasuda I, Yoneda S, Yamaki-Ushijima A, Shima T, Tsuda S. Immunological regulation and the role of autophagy in preeclampsia. Am J Reprod Immunol 2024; 91:e13835. [PMID: 38467995 DOI: 10.1111/aji.13835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
Autophagy is a bulk degradation system that maintains cellular homeostasis by producing energy and/or recycling excess proteins. During early placentation, extravillous trophoblasts invade the decidua and uterine myometrium, facing maternal immune cells, which participate in the immune suppression of paternal and fetal antigens. Regulatory T cells will likely increase in response to a specific antigen before and during early pregnancy. Insufficient expansion of antigen-specific Treg cells, which possess the same T cell receptor, is associated with the pathophysiology of preeclampsia, suggesting sterile systemic inflammation. Autophagy is involved in reducing inflammation through the degradation of inflammasomes and in the differentiation and function of regulatory T cells. Autophagy dysregulation induces protein aggregation in trophoblasts, resulting in placental dysfunction. In this review, we discuss the role of regulatory T cells in normal pregnancies. In addition, we discuss the association between autophagy and regulatory T cells in the development of preeclampsia based on reports on the role of autophagy in autoimmune diseases.
Collapse
Affiliation(s)
- Akitoshi Nakashima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Atsushi Furuta
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Mihoko Yoshida-Kawaguchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Kiyotaka Yamada
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Haruka Nunomura
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Keiko Morita
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Ippei Yasuda
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Satoshi Yoneda
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Akemi Yamaki-Ushijima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tomoko Shima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Sayaka Tsuda
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
25
|
Zhang R, Yang X, Shi X, Xing E, Wang L, Hao C, Zhang Z. Bortezomib modulated the autophagy-lysosomal pathway in a TFEB-dependent manner in multiple myeloma. Leuk Res 2024; 138:107455. [PMID: 38368721 DOI: 10.1016/j.leukres.2024.107455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
OBJECTIVE To explore the involvement of TFEB-mediated autophagy-lysosomal mechanisms in multiple myeloma (MM) during bortezomib treatment. METHODS MM cells were exposed to bortezomib or subjected to TFEB knockdown. CCK assay was used to assess the cell proliferation. Western blotting and fluorescent staining were conducted to examine autophagy and lysosomes. The TFEB expression pattern was analyzed, and whole transcriptome sequencing was carried out. Additionally, TFEB target genes were predicted using the GTRD(http://gtrd.biouml.org/) website, and pathway analysis was performed. RESULTS Bortezomib demonstrated a dose-dependent and time dependent inhibition of cell proliferation. In MM cells treated with bortezomib, LC3B, Beclin-1, TFEB, and Lamp1 exhibited upregulation in a time- and concentration-dependent manner. LysoTracker dye labeling showed an increase in lysosomes in the bortezomib-treated group. Moreover, bortezomib elevated the expression of lysosome-associated factor Lamp1. Bortezomib promoted the nuclear translocation of TFEB, leading to decreased cytoplasmic TFEB and increased nuclear TFEB. TFEB gene silencing reversed bortezomib's inhibitory effect on MM cell lines, significantly reducing autophagosome expression and lysosome numbers. Furthermore, bioinformatic analysis identified the MAPK pathway as a potential downstream target of TFEB. CONCLUSION Bortezomib effectively inhibits MM cell proliferation and induces autophagy, partly through TFEB-mediated mechanisms, with potential involvement of the MAPK pathway.
Collapse
Affiliation(s)
- Rongjuan Zhang
- Department of Internal Medicine, Hebei Medical University, Shijiazhaung 050000, China
| | - Xinhong Yang
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde 067000, China
| | - Xiaomin Shi
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde 067000, China
| | - Enhong Xing
- Department of central laboratory, The Affiliated Hospital of Chengde Medical College, Chengde 067000, China
| | - Lihong Wang
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde 067000, China
| | - Changlai Hao
- Department of Internal Medicine, Hebei Medical University, Shijiazhaung 050000, China; Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde 067000, China.
| | - Zhihua Zhang
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde 067000, China.
| |
Collapse
|
26
|
Jasim SA, Almajidi YQ, Al-Rashidi RR, Hjazi A, Ahmad I, Alawadi AHR, Alwaily ER, Alsaab HO, Haslany A, Hameed M. The interaction between lncRNAs and transcription factors regulating autophagy in human cancers: A comprehensive and therapeutical survey. Cell Biochem Funct 2024; 42:e3971. [PMID: 38509767 DOI: 10.1002/cbf.3971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024]
Abstract
Autophagy, as a highly conserved cellular process, participates in cellular homeostasis by degradation and recycling of damaged organelles and proteins. Besides, autophagy has been evidenced to play a dual role through cancer initiation and progression. In the early stage, it may have a tumor-suppressive function through inducing apoptosis and removing damaged cells and organelles. However, late stages promote tumor progression by maintaining stemness features and induction of chemoresistance. Therefore, identifying and targeting molecular mechanisms involved in autophagy is a potential therapeutic strategy for human cancers. Multiple transcription factors (TFs) are involved in the regulation of autophagy by modulating the expression of autophagy-related genes (ATGs). In addition, a wide array of long noncoding RNAs (lncRNAs), a group of regulatory ncRNAs, have been evidenced to regulate the function of these autophagy-related TFs through tumorigenesis. Subsequently, the lncRNAs/TFs/ATGs axis shows great potential as a therapeutic target for human cancers. Therefore, this review aimed to summarize new findings about the role of lncRNAs in regulating autophagy-related TFs with therapeutic perspectives.
Collapse
Affiliation(s)
| | - Yasir Qasim Almajidi
- Department of Pharmacy (Pharmaceutics), Baghdad College of Medical Sciences, Baghdad, Iraq
| | | | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hussien Radie Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Hashem O Alsaab
- Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Ali Haslany
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Mohamood Hameed
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
27
|
Liu TW, Zhao YM, Jin KY, Wang JX, Zhao XF. KAT8 is upregulated and recruited to the promoter of Atg8 by FOXO to induce H4 acetylation for autophagy under 20-hydroxyecdysone regulation. J Biol Chem 2024; 300:105704. [PMID: 38309506 PMCID: PMC10904276 DOI: 10.1016/j.jbc.2024.105704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 02/05/2024] Open
Abstract
Selective gene expression in cells in physiological or pathological conditions is important for the growth and development of organisms. Acetylation of histone H4 at K16 (H4K16ac) catalyzed by histone acetyltransferase 8 (KAT8) is known to promote gene transcription; however, the regulation of KAT8 transcription and the mechanism by which KAT8 acetylates H4K16ac to promote specific gene expression are unclear. Using the lepidopteran insect Helicoverpa armigera as a model, we reveal that the transcription factor FOXO promotes KAT8 expression and recruits KAT8 to the promoter region of autophagy-related gene 8 (Atg8) to increase H4 acetylation at that location, enabling Atg8 transcription under the steroid hormone 20-hydroxyecdysone (20E) regulation. H4K16ac levels are increased in the midgut during metamorphosis, which is consistent with the expression profiles of KAT8 and ATG8. Knockdown of Kat8 using RNA interference results in delayed pupation and repression of midgut autophagy and decreases H4K16ac levels. Overexpression of KAT8-GFP promotes autophagy and increases H4K16ac levels. FOXO, KAT8, and H4K16ac colocalized at the FOXO-binding region to promote Atg8 transcription under 20E regulation. Acetylated FOXO at K180 and K183 catalyzed by KAT8 promotes gene transcription for autophagy. 20E via FOXO promotes Kat8 transcription. Knockdown or overexpression of FOXO appeared to give similar results as knockdown or overexpression of KAT8. Therefore, FOXO upregulates KAT8 expression and recruits KAT8 to the promoter region of Atg8, where the KAT8 induces H4 acetylation to promote Atg8 transcription for autophagy under 20E regulation. This study reveals the mechanism that KAT8 promotes transcription of a specific gene.
Collapse
Affiliation(s)
- Tian-Wen Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yu-Meng Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Ke-Yan Jin
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.
| |
Collapse
|
28
|
Mathur A, Ritu, Chandra P, Das A. Autophagy: a necessary evil in cancer and inflammation. 3 Biotech 2024; 14:87. [PMID: 38390576 PMCID: PMC10879063 DOI: 10.1007/s13205-023-03864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/21/2023] [Indexed: 02/24/2024] Open
Abstract
Autophagy, a highly regulated cellular process, assumes a dual role in the context of cancer. On the one hand, it functions as a crucial homeostatic pathway, responsible for degrading malfunctioning molecules and organelles, thereby maintaining cellular health. On the other hand, its involvement in cancer development and regression is multifaceted, contingent upon a myriad of factors. This review meticulously examines the intricacies of autophagy, from its molecular machinery orchestrated by Autophagy-Related Genes (ATG) initially discovered in yeast to the various modes of autophagy operative within cells. Beyond its foundational role in cellular maintenance, autophagy reveals context-specific functions in processes like angiogenesis and inflammation. Our analysis delves into how autophagy-related factors directly impact inflammation, underscoring their profound implications for cancer dynamics. Additionally, we extend our inquiry to explore autophagy's associations with cardiovascular conditions, neurodegenerative disorders, and autoimmune diseases, illuminating the broader medical relevance of this process. Furthermore, this review elucidates how autophagy contributes to sustaining hallmark cancer features, including stem cell maintenance, proliferation, angiogenesis, metastasis, and metabolic reprogramming. Autophagy emerges as a pivotal process that necessitates careful consideration in cancer treatment strategies. To this end, we investigate innovative approaches, ranging from enzyme-based therapies to MTOR inhibitors, lysosomal blockers, and nanoparticle-enabled interventions, all aimed at optimizing cancer treatment outcomes by targeting autophagy pathways. In summary, this comprehensive review provides a nuanced perspective on the intricate and context-dependent role of autophagy in cancer biology. Our exploration not only deepens our understanding of this fundamental process but also highlights its potential as a therapeutic target. By unraveling the complex interplay between autophagy and cancer, we pave the way for more precise and effective cancer treatments, promising better outcomes for patients.
Collapse
Affiliation(s)
- Amit Mathur
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042 India
| | - Ritu
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042 India
| | - Prakash Chandra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042 India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042 India
| |
Collapse
|
29
|
Raha S, Paidi RK, Dutta D, Pahan K. Cinnamic acid, a natural plant compound, exhibits neuroprotection in a mouse model of Sandhoff disease via PPARα. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:17-32. [PMID: 38532783 PMCID: PMC10961485 DOI: 10.1515/nipt-2023-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
Tay-Sachs disease (TSD) and its severe form Sandhoff disease (SD) are autosomal recessive lysosomal storage metabolic disorders, which often result into excessive GM2 ganglioside accumulation predominantly in lysosomes of nerve cells. Although patients with these diseases appear normal at birth, the progressive accumulation of undegraded GM2 gangliosides in neurons leads to early death accompanied by manifestation of motor difficulties and gradual loss of behavioral skills. Unfortunately, there is still no effective treatment available for TSD/SD. The present study highlights the importance of cinnamic acid (CA), a naturally occurring aromatic fatty acid present in a number of plants, in inhibiting the disease process in a transgenic mouse model of SD. Oral administration of CA significantly attenuated glial activation and inflammation and reduced the accumulation of GM2 gangliosides/glycoconjugates in the cerebral cortex of Sandhoff mice. Besides, oral CA also improved behavioral performance and increased the survival of Sandhoff mice. While assessing the mechanism, we found that oral administration of CA increased the level of peroxisome proliferator-activated receptor α (PPARα) in the brain of Sandhoff mice and that oral CA remained unable to reduce glycoconjugates, improve behavior and increase survival in Sandhoff mice lacking PPARα. Our results indicate a beneficial function of CA that utilizes a PPARα-dependent mechanism to halt the progression of SD and thereby increase the longevity of Sandhoff mice.
Collapse
Affiliation(s)
- Sumita Raha
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Ramesh K. Paidi
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Debashis Dutta
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
30
|
Kim EB, Song JH, Le LNH, Kim H, Koh JW, Seo Y, Jeong HR, Kim HT, Ryu S. Characterization of exosomal microRNAs in preterm infants fed with breast milk and infant formula. Front Nutr 2024; 11:1339919. [PMID: 38304545 PMCID: PMC10830786 DOI: 10.3389/fnut.2024.1339919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
Breastfeeding not only reduces infection-related morbidity, but also increases growth of preterm infants. Advantages of breast milk (BM) for preterm infants are significant. They continue to be studied. However, because not all preterm infants can receive breastfeeding, bovine-based infant formula (IF) is used as an alternative, which may increase the risk of several preterm complications. Exosomes isolated from biofluids are emerging as biomarkers in research of various diseases. Here, we characterized miRNA contents of exosomes in urine and serum samples of preterm infants who were BM and IF fed and performed transcriptomic analysis of small RNA libraries. We identified significantly up-regulated 6 miRNAs and 10 miRNAs, respectively. Gene Ontology (GO) analysis revealed that target genes of these miRNAs might participate in neuronal development, immunity modulation, detoxification of reactive oxygen species, and transmembrane exchange. Our data suggest that exosome-based systemic screening for preterm infants with breastfeeding might be a screening tool for identifying target molecules involved in therapy for preterm infants in neonatal intensive care unit (NICU) and for future application as nutraceutical formulations or pharmaceuticals.
Collapse
Affiliation(s)
- Eun-Bit Kim
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Jun Hwan Song
- Soonchunhyang University Cheonan Hospital, College of Medicine, Soon-chunhyang University, Cheonan, Republic of Korea
| | - Linh Nguy-Hoang Le
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Ho Kim
- Soonchunhyang University Cheonan Hospital, College of Medicine, Soon-chunhyang University, Cheonan, Republic of Korea
| | - Ji Won Koh
- Soonchunhyang University Cheonan Hospital, College of Medicine, Soon-chunhyang University, Cheonan, Republic of Korea
| | - Yekyeng Seo
- Soonchunhyang University Cheonan Hospital, College of Medicine, Soon-chunhyang University, Cheonan, Republic of Korea
| | - Hwal Rim Jeong
- Department of Pediatrics, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hyun-Taek Kim
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Seongho Ryu
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
31
|
Baer SB, Dorn AD, Osborne DM. Sex differences in response to obesity and caloric restriction on cognition and hippocampal measures of autophagic-lysosomal transcripts and signaling pathways. BMC Neurosci 2024; 25:1. [PMID: 38166559 PMCID: PMC10759648 DOI: 10.1186/s12868-023-00840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/18/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Obesity rates in the U.S. continue to increase, with nearly 50% of the population being either obese or morbidly obese. Obesity, along with female sex, are leading risk factors for sporadic Alzheimer's Disease (AD) necessitating the need to better understand how these variables impact cellular function independent of age or genetic mutations. Animal and clinical studies both indicate that autophagy-lysosomal pathway (ALP) dysfunction is among the earliest known cellular systems to become perturbed in AD, preceding cognitive decline, yet little is known about how obesity and sex affects these cellular functions in the hippocampus, a brain region uniquely susceptible to the negative effects of obesity. We hypothesized that obesity would negatively affect key markers of ALP in the hippocampus, effects would vary based on sex, and that caloric restriction would counteract obesity effects. METHODS Female and male mice were placed on an obesogenic diet for 10 months, at which point half were switched to caloric restriction for three months, followed by cognitive testing in the Morris watermaze. Hippocampus was analyzed by western blot and qPCR. RESULTS Cognitive function in female mice responded differently to caloric restriction based on whether they were on a normal or obesogenic diet; male cognition was only mildly affected by caloric restriction and not obesity. Significant male-specific changes occurred in cellular markers of autophagy, including obesity increasing pAkt, Slc38a9, and Atg12, while caloric restriction reduced pRPS6 and increased Atg7. In contrast females experienced changes due to diet/caloric restriction predominately in lysosomal markers including increased TFE3, FLCN, FNIP2, and pAMPK. CONCLUSIONS Results support that hippocampal ALP is a target of obesity and that sex shapes molecular responses, while providing insight into how dietary manipulations affect learning and memory based on sex.
Collapse
Affiliation(s)
- Sadie B Baer
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, OR, USA
| | - Adrianah D Dorn
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, OR, USA
| | | |
Collapse
|
32
|
Dwivedi R, Baindara P. Differential Regulation of TFEB-Induced Autophagy during Mtb Infection and Starvation. Microorganisms 2023; 11:2944. [PMID: 38138088 PMCID: PMC10746089 DOI: 10.3390/microorganisms11122944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Through the promotion of phagolysosome formation, autophagy has emerged as a crucial mechanism to eradicate intracellular Mycobacterium tuberculosis (Mtb). A cell-autonomous host defense mechanism called lysosome biogenesis and autophagy transports cytoplasmic cargos and bacterial phagosomes to lysosomes for destruction during infection. Similar occurrences occurred in stressful or starvation circumstances and led to autophagy, which is harmful to the cell. It is interesting to note that under both hunger and infection states, the transcription factor EB (TFEB) acts as a master regulator of lysosomal activities and autophagy. This review highlighted recent research on the multitier regulation of TFEB-induced autophagy by a variety of host effectors and Mtb sulfolipid during Mtb infection and starvation. In general, the research presented here sheds light on how lysosome biogenesis and autophagy are differentially regulated by the TFEB during Mtb infection and starvation.
Collapse
Affiliation(s)
- Richa Dwivedi
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Piyush Baindara
- Radiation Oncology, NextGen Precision Health, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
33
|
Soni N, Nandi G, Chaudhary M, Bissa B. The role of ncRNA in the co-regulation of autophagy and exosome pathways during cancer progression. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119523. [PMID: 37348764 DOI: 10.1016/j.bbamcr.2023.119523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
Since its discovery a few decades ago, autophagy has been recognized as a crucial signaling pathway, linked to the recycling of cellular components in nutrient stress. Autophagy is a two-way sword, playing a dual role in tumorigenesis. In this catabolic process, dysfunctional organelles, biomolecules, and misfolded proteins are sequestered in the autophagosome and sent to the lysosome for degradation. Alongside, there are cellular messengers called exosomes, which are released from cells and are known to communicate and regulate metabolism in recipient cells. Multivesicular bodies (MVB) act as the intricate link between autophagy and exosome pathways. The continuous crosstalk between the two pathways is coordinated and regulated by multiple players among which ncRNA is the emerging candidates. The exosomes carry varied cargo of which non-coding RNA exerts an immediate regulatory effect on recipient cells. ncRNA is known to exhibit dual behavior in both promoting and inhibiting tumor growth. There is increasing evidence for the involvement of ncRNAs' in the regulation of different hallmarks of cancer. Different ncRNAs are involved in the co-regulation of autophagy and exosome pathways and therefore represent a superior therapeutic approach to target cancer chemoresistance. Here, we will discuss the ncRNA involved in regulating autophagy, and exosomes pathways and its relevance in cancer therapeutics.
Collapse
Affiliation(s)
- Naveen Soni
- Dept. of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Gargi Nandi
- Dept. of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Megha Chaudhary
- Dept. of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Bhawana Bissa
- Dept. of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India.
| |
Collapse
|
34
|
Xue S, Abdullahi R, Wu N, Zheng J, Su M, Xu M. Gut microecological regulation on bronchiolitis and asthma in children: A review. THE CLINICAL RESPIRATORY JOURNAL 2023; 17:975-985. [PMID: 37105551 PMCID: PMC10542989 DOI: 10.1111/crj.13622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/22/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023]
Abstract
INTRODUCTION Asthma and bronchiolitis in children are considered common clinical problems associated with gut microbiota. However, the exact relationship between gut microbiota and the above-mentioned diseases remains unclear. Here, we discussed recent advances in understanding the potential mechanism underlying immune regulation of gut microbiota on asthma and bronchiolitis in children as well as the role of the gut-lung axis. METHODS We retrieved and assessed all relevant original articles related to gut microbiota, airway inflammation-induced wheezing in children, and gut-lung axis studies from databases that have been published so far, including PubMed/MEDLINE, Scopus, Google Scholar, China National Knowledge Infrastructure (CNKI) and the Wanfang Database. RESULTS The infant period is critical for the development of gut microbiota, which can be influenced by gestational age, delivery mode, antibiotic exposure and feeding mode. The gut microbiota in children with asthma and bronchiolitis is significantly distinct from those in healthy subjects. Gut microbiota dysbiosis is implicated in asthma and bronchiolitis in children. The presence of intestinal disturbances in lung diseases highlights the importance of the gut-lung axis. CONCLUSION Gut microbiota dysbiosis potentially increases the risk of asthma and bronchiolitis in children. Moreover, a deeper understanding of the gut-lung axis with regard to the gut microbiota of children with respiratory diseases could contribute to clinical practice for pulmonary diseases.
Collapse
Affiliation(s)
- Sichen Xue
- Department of PediatricsThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
- Department of Pediatric Respiratory MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Rukkaiya Abdullahi
- Department of Pediatric Respiratory MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Naisheng Wu
- Department of PediatricsThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
| | - Jishan Zheng
- Department of PediatricsThe Ningbo Women and Children's HospitalNingboChina
| | - Miaoshang Su
- Department of Pediatric Respiratory MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Manhuan Xu
- College of Laboratory Medicine and Life ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| |
Collapse
|
35
|
Arias C, Salazar LA. Ethanolic Extract of Propolis Modulates Autophagy-Related microRNAs in Osteoarthritic Chondrocytes. Int J Mol Sci 2023; 24:14767. [PMID: 37834215 PMCID: PMC10573165 DOI: 10.3390/ijms241914767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Osteoarthritis is a multifactorial joint disease characterized by degeneration, and aging stands as a significant risk factor. Autophagy, a crucial cellular homeostasis mechanism, is influenced by aging and closely linked to cartilage health. This correlation between autophagy, cell death, and OA underscores its relevance in disease progression. MicroRNAs have emerged as autophagy regulators, with miRNA-based interventions showing promise in preclinical models. Remarkably, the ethanolic extract of propolis exhibits positive effects on autophagy-related proteins and healthy cartilage markers in an in vitro osteoarthritis model. The aim of this brief report was to evaluate through in silico analysis and postulate five microRNAs that could regulate autophagy proteins (AKT1, ATG5, and LC3) and assess whether the ethanolic extract of propolis could regulate the expression of these microRNAs. Among the examined miRNAs (miR-19a, miR-125b, miR-181a, miR-185, and miR-335), the ethanolic extract of propolis induced significant changes in four of them. Specifically, miR-125b responded to EEP by counteracting IL-1β-induced effects, while miR-181a, miR-185, and miR-335 exhibited distinct patterns of expression under EEP treatment. These findings unveil a potential link between miRNAs, EEP, and autophagy modulation in OA, offering promising therapeutic insights. Nevertheless, further validation and clinical translation are warranted to substantiate these promising observations.
Collapse
Affiliation(s)
- Consuelo Arias
- Escuela de Kinesiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago 8380000, Chile
| | - Luis A Salazar
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
36
|
Dong S, Dimopoulos G. Aedes aegypti Argonaute 2 controls arbovirus infection and host mortality. Nat Commun 2023; 14:5773. [PMID: 37723154 PMCID: PMC10507101 DOI: 10.1038/s41467-023-41370-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023] Open
Abstract
Ae. aegypti mosquitoes transmit some of the most important human viral diseases that are responsible for a significant public health burden worldwide. The small interfering RNA (siRNA) pathway is considered the major antiviral defense system in insects. Here we show that siRNA pathway disruption by CRISPR/Cas9-based Ago2 knockout impaired the mosquitoes' ability to degrade arbovirus RNA leading to hyper-infection accompanied by cell lysis and tissue damage. Ago2 disruption impaired DNA repair mechanisms and the autophagy pathway by altering histone abundance. This compromised DNA repair and removal of damaged cellular organelles and dysfunctional aggregates promoted mosquito death. We also report that hyper-infection of Ago2 knockout mosquitoes stimulated a broad-spectrum antiviral immunity, including apoptosis, which may counteract infection. Taken together, our studies reveal novel roles for Ago2 in protecting mosquitoes from arbovirus infection and associated death.
Collapse
Affiliation(s)
- Shengzhang Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA.
| |
Collapse
|
37
|
Chu T, Shang J, Jian H, Song C, Yang R, Bao D, Tan Q, Tang L. Potential Role of Lysine Acetylation and Autophagy in Brown Film Formation and Postripening of Lentinula edodes Mycelium. Microbiol Spectr 2023; 11:e0282322. [PMID: 37347174 PMCID: PMC10434168 DOI: 10.1128/spectrum.02823-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
Lentinula edodes is one of the most widely cultivated edible mushrooms in the world. When cultivated in sawdust, the surface mycelium of L. edodes needs a long postripening stage wherein it forms a brown film (BF) by secreting and accumulating pigments. BF formation is critical for the high quality and yield of fruiting bodies. Protein lysine acetylation (KAC) is an important post-translational modification that regulates growth and development. Previous studies have shown that deacetylase levels are significantly increased during BF formation in the postripening stage of L. edodes. The aim of this study was to assess the role of protein acetylation during BF formation. To this end, we compared the acetylome of L. edodes mycelia before and after BF formation using anti-acetyl antibody-based label-free quantitative proteomics. We identified 5,613 acetylation sites in 1,991 proteins, and quantitative information was available for 4,848 of these sites in 1,815 proteins. Comparative acetylome analysis showed that the modification of 699 sites increased and that of 562 sites decreased during BF formation. Bioinformatics analysis of the differentially acetylated proteins showed significant enrichment in the tricarboxylic acid (TCA) cycle and proteasome pathways. Furthermore, functional assays showed that BF formation is associated with significant changes in the activities of proteasome, citrate synthase, and isocitrate dehydrogenase. Consistent with this hypothesis, the lysine deacetylase inhibitor trichostatin (TSA) delayed autophagy and BF formation in L. edodes. Taken together, KAC and autophagy play important roles in the mycelial BF formation and postripening stage of L. edodes. IMPORTANCE Mycelial BF formation and postripening of L. edodes affects the quality and quantity of its edible fruiting bodies. In this study, we explored the role of protein KAC in this biological process, with the aim of optimizing the cultivation and yield of L. edodes.
Collapse
Affiliation(s)
- Ting Chu
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
- School of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Junjun Shang
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chunyan Song
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ruiheng Yang
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dapeng Bao
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qi Tan
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Lihua Tang
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
38
|
Mao M, Song S, Li X, Lu J, Li J, Zhao W, Liu H, Liu J, Zeng B. Advances in epigenetic modifications of autophagic process in pulmonary hypertension. Front Immunol 2023; 14:1206406. [PMID: 37398657 PMCID: PMC10313199 DOI: 10.3389/fimmu.2023.1206406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Pulmonary hypertension is characterized by pulmonary arterial remodeling that results in increased pulmonary vascular resistance, right ventricular failure, and premature death. It is a threat to public health globally. Autophagy, as a highly conserved self-digestion process, plays crucial roles with autophagy-related (ATG) proteins in various diseases. The components of autophagy in the cytoplasm have been studied for decades and multiple studies have provided evidence of the importance of autophagic dysfunction in pulmonary hypertension. The status of autophagy plays a dynamic suppressive or promotive role in different contexts and stages of pulmonary hypertension development. Although the components of autophagy have been well studied, the molecular basis for the epigenetic regulation of autophagy is less understood and has drawn increasing attention in recent years. Epigenetic mechanisms include histone modifications, chromatin modifications, DNA methylation, RNA alternative splicing, and non-coding RNAs, which control gene activity and the development of an organism. In this review, we summarize the current research progress on epigenetic modifications in the autophagic process, which have the potential to be crucial and powerful therapeutic targets against the autophagic process in pulmonary hypertension development.
Collapse
Affiliation(s)
- Min Mao
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- National Health Commission (NHC) Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shasha Song
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Xin Li
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- National Health Commission (NHC) Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jiayao Lu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Jie Li
- Marketing Department, Shenzhen Reyson Biotechnology Co., Ltd, Shenzhen, China
- Nanjing Evertop Electronics Ltd., Nanjing, China
| | - Weifang Zhao
- Quality Management Department International Registration, North China Pharmaceutical Co., Ltd. (NCPC), Hebei Huamin Pharmaceutical Co., Ltd., Shijiazhuang, China
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- National Health Commission (NHC) Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jingxin Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Bin Zeng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
39
|
Wu Z, Shi H, Li Y, Yan F, Sun Z, Lin C, Xu M, Lin F, Kou Y, Tao Z. Transcriptional Regulation of Autophagy-Related Genes by Sin3 Negatively Modulates Autophagy in Magnaporthe oryzae. Microbiol Spectr 2023; 11:e0017123. [PMID: 37191531 PMCID: PMC10269650 DOI: 10.1128/spectrum.00171-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/30/2023] [Indexed: 05/17/2023] Open
Abstract
Autophagy is a conserved degradation and recycling pathway in eukaryotes and is important for their normal growth and development. An appropriate status of autophagy is crucial for organisms which is tightly regulated both temporally and continuously. Transcriptional regulation of autophagy-related genes (ATGs) is an important layer in autophagy regulation. However, the transcriptional regulators and their mechanisms are still unclear, especially in fungal pathogens. Here, we identified Sin3, a component of the histone deacetylase complex, as a transcriptional repressor of ATGs and negative regulator of autophagy induction in the rice fungal pathogen Magnaporthe oryzae. A loss of SIN3 resulted in upregulated expression of ATGs and promoted autophagy with an increased number of autophagosomes under normal growth conditions. Furthermore, we found that Sin3 negatively regulated the transcription of ATG1, ATG13, and ATG17 through direct occupancy and changed levels of histone acetylation. Under nutrient-deficient conditions, the transcription of SIN3 was downregulated, and the reduced occupancy of Sin3 from those ATGs resulted in histone hyperacetylation and activated their transcription and in turn promoted autophagy. Thus, our study uncovers a new mechanism of Sin3 in modulating autophagy through transcriptional regulation. IMPORTANCE Autophagy is an evolutionarily conserved metabolic process and is required for the growth and pathogenicity of phytopathogenic fungi. The transcriptional regulators and precise mechanisms of regulating autophagy, as well as whether the induction or repression of ATGs is associated with autophagy level, are still poorly understood in M. oryzae. In this study, we revealed that Sin3 acts as a transcriptional repressor of ATGs to negatively regulate autophagy level in M. oryzae. Under the nutrient-rich conditions, Sin3 inhibits autophagy with a basal level through directly repressing the transcription of ATG1-ATG13-ATG17. Upon nutrient-deficient treatment, the transcriptional level of SIN3 would decrease and dissociation of Sin3 from those ATGs associates with histone hyperacetylation and activates their transcriptional expression and in turn contributes to autophagy induction. Our findings are important as we uncover a new mechanism of Sin3 for the first time to negatively modulate autophagy at the transcriptional level in M. oryzae.
Collapse
Affiliation(s)
- Zhongling Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Huanbin Shi
- State Key Lab of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Yuan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ziyue Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Chuyu Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Mengting Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fucheng Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yanjun Kou
- State Key Lab of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Zeng Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
40
|
Yu YS, Kim H, Kim KI, Baek SH. Epigenetic regulation of autophagy by histone-modifying enzymes under nutrient stress. Cell Death Differ 2023; 30:1430-1436. [PMID: 36997734 PMCID: PMC10244364 DOI: 10.1038/s41418-023-01154-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/01/2023] Open
Abstract
Autophagy is an evolutionarily conserved catabolic process that is induced in response to various stress factors in order to protect cells and maintain cellular homeostasis by degrading redundant components and dysfunctional organelles. Dysregulation of autophagy has been implicated in several conditions such as cancer, neurodegenerative diseases, and metabolic disorders. Although autophagy has been commonly considered as a cytoplasmic process, accumulating evidence has revealed that epigenetic regulation within the nucleus is also important for regulation of autophagy. In particular, when energy homeostasis is disrupted, for instance due to nutrient deprivation, cells increase autophagic activity at the transcriptional level, thereby also increasing the extent of overall autophagic flux. The transcription of genes associated with autophagy is strictly regulated by epigenetic factors through a network of histone-modifying enzymes along with histone modifications. A better understanding of the complex regulatory mechanisms of autophagy could reveal potential new therapeutic targets for autophagy-related diseases. In this review, we discuss the epigenetic regulation of autophagy in response to nutrient stress, focusing on histone-modifying enzymes and histone modifications.
Collapse
Affiliation(s)
- Young Suk Yu
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyunkyung Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| | - Keun Il Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
41
|
Metur SP, Lei Y, Zhang Z, Klionsky DJ. Regulation of autophagy gene expression and its implications in cancer. J Cell Sci 2023; 136:jcs260631. [PMID: 37199330 PMCID: PMC10214848 DOI: 10.1242/jcs.260631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023] Open
Abstract
Autophagy is a catabolic cellular process that targets and eliminates superfluous cytoplasmic components via lysosomal degradation. This evolutionarily conserved process is tightly regulated at multiple levels as it is critical for the maintenance of homeostasis. Research in the past decade has established that dysregulation of autophagy plays a major role in various diseases, such as cancer and neurodegeneration. However, modulation of autophagy as a therapeutic strategy requires identification of key players that can fine tune the induction of autophagy without complete abrogation. In this Review, we summarize the recent discoveries on the mechanism of regulation of ATG (autophagy related) gene expression at the level of transcription, post transcription and translation. Furthermore, we briefly discuss the role of aberrant expression of ATG genes in the context of cancer.
Collapse
Affiliation(s)
- Shree Padma Metur
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuchen Lei
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhihai Zhang
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
42
|
Sharma P, Kaushal N, Saleth LR, Ghavami S, Dhingra S, Kaur P. Oxidative stress-induced apoptosis and autophagy: Balancing the contrary forces in spermatogenesis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166742. [PMID: 37146914 DOI: 10.1016/j.bbadis.2023.166742] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Spermatogenesis is a complex process in the testis and is a cornerstone of male infertility. The abundance of unsaturated fatty acid and high cell division rate make male germs cells prone to DNA deterioration. ROS-mediated oxidative stress triggers DNA damage, autophagy, and apoptosis in male germ cells, which are critical causative factors that lead to male infertility. The complex connection and molecular crosstalk between apoptosis and autophagy is seen at multifaceted levels that interconnect the signaling pathways of these two processes. Multilevel interaction between apoptosis and autophagy is a seamless state of survival and death in response to various stressors. Interaction between multiple genes and proteins such as the mTor signaling pathway, Atg12 proteins, and the death adapter proteins, such as Beclin 1, p53, and Bcl-2 family proteins, validates such a link between these two phenomena. Testicular cells being epigenetically different from somatic cells, undergo numerous significant epigenetic transitions, and ROS modulates the epigenetic framework of mature sperm. Epigenetic deregulation of apoptosis and autophagy under oxidative stress conditions can cause sperm cell damage. The current review recapitulates the current role of prevailing stressors that generate oxidative stress leading to the induction of apoptosis and autophagy in the male reproductive system. Considering the pathophysiological consequences of ROS-mediated apoptosis and autophagy, a combinatorial approach, including apoptosis inhibition and autophagy activation, a therapeutic strategy to treat male idiopathic infertility. Understanding the crosslink between apoptosis and autophagy under stress conditions in male germ cells may play an essential role in developing therapeutic strategies to treat infertility.
Collapse
Affiliation(s)
- Parul Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab 147004, India
| | - Naveen Kaushal
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Leena Regi Saleth
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Research Institute of Hematology and Oncology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Parminder Kaur
- Department of Biotechnology, University Institute of Engineering & Technology, Panjab University, Chandigarh 160024, India.
| |
Collapse
|
43
|
Yuyuan L, Xiaoming Z, Lei Z, Tao G, Hongyun H, Yihao D. Downregulation of Histone H4 Lysine 16 Acetylation Ameliorates Autophagic Flux by Resuming Lysosomal Functions in Ischemic Neurons. ACS Chem Neurosci 2023; 14:1834-1844. [PMID: 37130066 DOI: 10.1021/acschemneuro.3c00049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Autophagic/lysosomal dysfunction was a critical pathogenesis of neuronal death after an ischemic stroke, but what drove the impairment of autophagic flux remained elusive. Studies indicated that histone H4 lysine 16 acetylation (H4K16ac) drastically modulated the autophagic/lysosomal signaling pathway. Herein, we investigated whether the autophagic/lysosomal dysfunction in neurons could be restored by altering H4K16ac levels after cerebral ischemia. The rat model of ischemic stroke and the cell ischemia model in HT22 neurons were prepared by middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation (OGD), respectively. The result showed that H4K16ac could be effectively reduced by intracerebroventricular administration with MG149 (a H4K16ac inhibitor) after an ischemic stroke. Moreover, attenuated H4K16ac greatly alleviated the autophagic/lysosomal dysfunction in penumbral neurons, as indicated by decreased autophagic substrates of LC3-II, insoluble SQSTM1, and ubiquitinated proteins, accompanied by increased lysosomal cathepsin D. Conversely, treatment with trichostatin A (TSA, a H4K16ac facilitator) aggravated the impairment of autophagic flux. This regulative machinery of H4K16ac on the autophagic/lysosomal signaling pathway was also manifested in the OGD model of HT22 neurons. Furthermore, H4K16ac attenuation-ameliorated autophagic flux significantly alleviated stroke brain injury, as reflected by decreased infarct size, neuron loss, and neurological deficits. Similarly, the H4K16ac inhibition-mitigated autophagic/lysosomal dysfunction markedly promoted neuron survival and cell viability in OGD HT22 neurons. However, H4K16ac downregulation-ameliorated autophagic flux in neurons and thereby induced neuroprotection could be greatly counteracted by the lysosomal inhibitor bafilomycin A1 (Baf-A1). Our data indicate that cerebral ischemia-elevated H4K16ac creates the autophagic/lysosomal dysfunction due to lysosomal inefficiency, suggesting that H4K16ac attenuation benefits poststroke neuroprotection by resuming lysosomal functions in neurons.
Collapse
Affiliation(s)
- Liu Yuyuan
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhao Xiaoming
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhang Lei
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Guo Tao
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - He Hongyun
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Deng Yihao
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
44
|
Ouyang X, Bakshi S, Benavides GA, Sun Z, Hernandez‐Moreno G, Collins HE, Kane MS, Litovsky S, Young ME, Chatham JC, Darley‐Usmar V, Wende AR, Zhang J. Cardiomyocyte ZKSCAN3 regulates remodeling following pressure-overload. Physiol Rep 2023; 11:e15686. [PMID: 37144628 PMCID: PMC10161215 DOI: 10.14814/phy2.15686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 05/06/2023] Open
Abstract
Autophagy is important for protein and organelle quality control. Growing evidence demonstrates that autophagy is tightly controlled by transcriptional mechanisms, including repression by zinc finger containing KRAB and SCAN domains 3 (ZKSCAN3). We hypothesize that cardiomyocyte-specific ZKSCAN3 knockout (Z3K) disrupts autophagy activation and repression balance and exacerbates cardiac pressure-overload-induced remodeling following transverse aortic constriction (TAC). Indeed, Z3K mice had an enhanced mortality compared to control (Con) mice following TAC. Z3K-TAC mice that survived exhibited a lower body weight compared to Z3K-Sham. Although both Con and Z3K mice exhibited cardiac hypertrophy after TAC, Z3K mice exhibited TAC-induced increase of left ventricular posterior wall thickness at end diastole (LVPWd). Conversely, Con-TAC mice exhibited decreases in PWT%, fractional shortening (FS%), and ejection fraction (EF%). Autophagy genes (Tfeb, Lc3b, and Ctsd) were decreased by the loss of ZKSCAN3. TAC suppressed Zkscan3, Tfeb, Lc3b, and Ctsd in Con mice, but not in Z3K. The Myh6/Myh7 ratio, which is related to cardiac remodeling, was decreased by the loss of ZKSCAN3. Although Ppargc1a mRNA and citrate synthase activities were decreased by TAC in both genotypes, mitochondrial electron transport chain activity did not change. Bi-variant analyses show that while in Con-Sham, the levels of autophagy and cardiac remodeling mRNAs form a strong correlation network, such was disrupted in Con-TAC, Z3K-Sham, and Z3K-TAC. Ppargc1a also forms different links in Con-sham, Con-TAC, Z3K-Sham, and Z3K-TAC. We conclude that ZKSCAN3 in cardiomyocytes reprograms autophagy and cardiac remodeling gene transcription, and their relationships with mitochondrial activities in response to TAC-induced pressure overload.
Collapse
Affiliation(s)
- Xiaosen Ouyang
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Sayan Bakshi
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Gloria A. Benavides
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Zhihuan Sun
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Gerardo Hernandez‐Moreno
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Present address:
Department of Materials Science and Engineering, Laboratory for Polymers & Healthcare Materials/DevicesThe University of Alabama at Birmingham (UAB)BirminghamALUSA
| | - Helen E. Collins
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Present address:
Division of Environmental Medicine, Center for Cardiometabolic ScienceThe University of LouisvilleLouisvilleKYUSA
| | - Mariame S. Kane
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Present address:
Birmingham VA Health Care System (BVACS)ALUSA
| | - Silvio Litovsky
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Martin E. Young
- Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - John C. Chatham
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Victor Darley‐Usmar
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Adam R. Wende
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jianhua Zhang
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Birmingham VA Medical CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
45
|
Wang L, O'Kane AM, Zhang Y, Ren J. Maternal obesity and offspring health: Adapting metabolic changes through autophagy and mitophagy. Obes Rev 2023:e13567. [PMID: 37055041 DOI: 10.1111/obr.13567] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/08/2022] [Accepted: 03/25/2023] [Indexed: 04/15/2023]
Abstract
Maternal obesity leads to obstetric complications and a high prevalence of metabolic anomalies in the offspring. Among various contributing factors for maternal obesity-evoked health sequelae, developmental programming is considered as one of the leading culprit factors for maternal obesity-associated chronic comorbidities. Although a unified theory is still lacking to systematically address multiple unfavorable postnatal health sequelae, a cadre of etiological machineries have been put forward, including lipotoxicity, inflammation, oxidative stress, autophagy/mitophagy defect, and cell death. Hereinto, autophagy and mitophagy play an essential housekeeping role in the clearance of long-lived, damaged, and unnecessary cell components to maintain and restore cellular homeostasis. Defective autophagy/mitophagy has been reported in maternal obesity and negatively impacts fetal development and postnatal health. This review will provide an update on metabolic disorders in fetal development and postnatal health issues evoked by maternal obesity and/or intrauterine overnutrition and discuss the possible contribution of autophagy/mitophagy in metabolic diseases. Moreover, relevant mechanisms and potential therapeutic strategies will be discussed in an effort to target autophagy/mitophagy and metabolic disturbances in maternal obesity.
Collapse
Affiliation(s)
- Litao Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Aislinn M O'Kane
- Department of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Yingmei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| |
Collapse
|
46
|
González-Rodríguez P, Füllgrabe J, Joseph B. The hunger strikes back: an epigenetic memory for autophagy. Cell Death Differ 2023:10.1038/s41418-023-01159-4. [PMID: 37031275 DOI: 10.1038/s41418-023-01159-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
Historical and demographical human cohorts of populations exposed to famine, as well as animal studies, revealed that exposure to food deprivation is associated to lasting health-related effects for the exposed individuals, as well as transgenerational effects in their offspring that affect their diseases' risk and overall longevity. Autophagy, an evolutionary conserved catabolic process, serves as cellular response to cope with nutrient starvation, allowing the mobilization of an internal source of stored nutrients and the production of energy. We review the evidence obtained in multiple model organisms that support the idea that autophagy induction, including through dietary regimes based on reduced food intake, is in fact associated to improved health span and extended lifespan. Thereafter, we expose autophagy-induced chromatin remodeling, such as DNA methylation and histone posttranslational modifications that are known heritable epigenetic marks, as a plausible mechanism for transgenerational epigenetic inheritance of hunger.
Collapse
Affiliation(s)
- Patricia González-Rodríguez
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jens Füllgrabe
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
47
|
Elsasser S, Elia LP, Morimoto RI, Powers ET, Finley D, Costa B, Budron M, Tokuno Z, Wang S, Iyer RG, Barth B, Mockler E, Finkbeiner S, Gestwicki JE, Richardson RAK, Stoeger T, Tan EP, Xiao Q, Cole CM, Massey LA, Garza D, Kelly JW, Rainbolt TK, Chou CC, Masto VB, Frydman J, Nixon RA. A Comprehensive Enumeration of the Human Proteostasis Network. 2. Components of the Autophagy-Lysosome Pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533675. [PMID: 36993380 PMCID: PMC10055369 DOI: 10.1101/2023.03.22.533675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The condition of having a healthy, functional proteome is known as protein homeostasis, or proteostasis. Establishing and maintaining proteostasis is the province of the proteostasis network, approximately 2,700 components that regulate protein synthesis, folding, localization, and degradation. The proteostasis network is a fundamental entity in biology that is essential for cellular health and has direct relevance to many diseases of protein conformation. However, it is not well defined or annotated, which hinders its functional characterization in health and disease. In this series of manuscripts, we aim to operationally define the human proteostasis network by providing a comprehensive, annotated list of its components. We provided in a previous manuscript a list of chaperones and folding enzymes as well as the components that make up the machineries for protein synthesis, protein trafficking into and out of organelles, and organelle-specific degradation pathways. Here, we provide a curated list of 838 unique high-confidence components of the autophagy-lysosome pathway, one of the two major protein degradation systems in human cells.
Collapse
Affiliation(s)
- Suzanne Elsasser
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Lisa P Elia
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA
- The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Richard I Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL, USA
| | - Evan T Powers
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA USA
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Beatrice Costa
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA
- The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Maher Budron
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA
- The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Zachary Tokuno
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA
- The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Shijie Wang
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA
- The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Rajshri G Iyer
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA
- The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Bianca Barth
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA
- The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Eric Mockler
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA
- The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Steve Finkbeiner
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA
- The J. David Gladstone Institutes, San Francisco, CA, USA
- Departments of Neurology and Physiology, UCSF, San Francisco, CA, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, CA, USA
| | - Reese A K Richardson
- Center for Genetic Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Institute on Complex Systems (NICO), Northwestern University, Evanston, IL, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL USA
| | - Thomas Stoeger
- Center for Genetic Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Institute on Complex Systems (NICO), Northwestern University, Evanston, IL, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL USA
| | - Ee Phie Tan
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA USA
| | - Qiang Xiao
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA USA
| | - Christian M Cole
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA USA
| | - Lynée A Massey
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA USA
| | - Dan Garza
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA USA
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - T Kelly Rainbolt
- Department of Biology and Genetics, Stanford University, Stanford, CA, USA
| | - Ching-Chieh Chou
- Department of Biology and Genetics, Stanford University, Stanford, CA, USA
| | - Vincent B Masto
- Department of Biology and Genetics, Stanford University, Stanford, CA, USA
| | - Judith Frydman
- Department of Biology and Genetics, Stanford University, Stanford, CA, USA
| | - Ralph A Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA
- Department of Psychiatry, New York University Langone Health, New York, NY, USA
- Department of Cell Biology, New York University Langone Health, New York, NY, USA
- NYU Neuroscience Institute, New York University Langone Health, New York, NY, USA
| |
Collapse
|
48
|
Kakoty V, Kc S, Kumari S, Yang CH, Dubey SK, Sahebkar A, Kesharwani P, Taliyan R. Brain insulin resistance linked Alzheimer's and Parkinson's disease pathology: An undying implication of epigenetic and autophagy modulation. Inflammopharmacology 2023; 31:699-716. [PMID: 36952096 DOI: 10.1007/s10787-023-01187-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/25/2023] [Indexed: 03/24/2023]
Abstract
In metabolic syndrome, dysregulated signalling activity of the insulin receptor pathway in the brain due to persistent insulin resistance (IR) condition in the periphery may lead to brain IR (BIR) development. BIR causes an upsurge in the activity of glycogen synthase kinase-3 beta, increased amyloid beta (Aβ) accumulation, hyperphosphorylation of tau, aggravated formation of Aβ oligomers and simultaneously neurofibrillary tangle formation, all of which are believed to be direct contributors in Alzheimer's Disease (AD) pathology. Likewise, for Parkinson's Disease (PD), BIR is associated with alpha-synuclein alterations, dopamine loss in brain areas which ultimately succumbs towards the appearance of classical motor symptoms corresponding to the typical PD phenotype. Modulation of the autophagy process for clearing misfolded proteins and alteration in histone proteins to alleviate disease progression in BIR-linked AD and PD have recently evolved as a research hotspot, as the majority of the autophagy-related proteins are believed to be regulated by histone posttranslational modifications. Hence, this review will provide a timely update on the possible mechanism(s) converging towards BIR induce AD and PD. Further, emphasis on the potential epigenetic regulation of autophagy that can be effectively targeted for devising a complete therapeutic cure for BIR-induced AD and PD will also be reviewed.
Collapse
Affiliation(s)
- Violina Kakoty
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India, Jalandhar-Delhi G.T Road, Phagwara
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Sarathlal Kc
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani, Rajasthan, India
- Department of Non-Communicable Disease, Translational Health Science and Technology Institute, Faridabad, India
| | - Shobha Kumari
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Chih-Hao Yang
- Department of Pharmacology, Taipei Medical University, Taipei, Taiwan
| | - Sunil Kumar Dubey
- Medical Research, R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani, Rajasthan, India.
| |
Collapse
|
49
|
Song T, Lv S, Ma X, Zhao X, Fan L, Zou Q, Li N, Yan Y, Zhang W, Sun L. TRIM28 represses renal cell carcinoma cell proliferation by inhibiting TFE3/KDM6A-regulated autophagy. J Biol Chem 2023; 299:104621. [PMID: 36935008 PMCID: PMC10141522 DOI: 10.1016/j.jbc.2023.104621] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Autophagy plays a pivotal role in physiology and pathophysiology, including cancer. Mechanisms of autophagy dysregulation in cancer remain elusive. Loss-of-function of TRIM28, a multi-function protein, is seen in familial kidney malignancy, but the mechanism by which TRIM28 contributes to the etiology of kidney malignancy is unclear. In this study, we show TRIM28 retards kidney cancer cell proliferation through inhibiting autophagy. Mechanistically, we find TRIM28 promotes ubiquitination and proteasome-mediated degradation of transcription factor TFE3, which is critical for autophagic gene expression. Genetic activation of TFE3 due to gene fusion is known to cause human kidney malignancy, but whether and how transcription activation by TFE3 involves chromatin changes is unclear. Here, we find another mode of TFE3 activation in human renal carcinoma. We find that TFE3 is constitutively localized to the cell nucleus in human and mouse kidney cancer, where it increases autophagic gene expression and promotes cell autophagy as well as proliferation. We further uncover that TFE3 interacts with and recruits histone H3K27 demethylase KDM6A for autophagic gene upregulation. We reveal that KDM6A contributes to expression of TFE3 target genes through increasing H3K4me3 rather than demethylating H3K27. Collectively, in this study, we identify a functional TRIM28-TFE3-KDM6A signal axis which plays a critical role in kidney cancer cell autophagy and proliferation.
Collapse
Affiliation(s)
- Tanjing Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology,13 Hangkong Road, Wuhan, China 430030; Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Suli Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology,13 Hangkong Road, Wuhan, China 430030
| | - Xianyun Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology,13 Hangkong Road, Wuhan, China 430030
| | - Xuefeng Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology,13 Hangkong Road, Wuhan, China 430030
| | - Li Fan
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan,China
| | - Qingli Zou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology,13 Hangkong Road, Wuhan, China 430030
| | - Neng Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology,13 Hangkong Road, Wuhan, China 430030
| | - Yingying Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology,13 Hangkong Road, Wuhan, China 430030
| | - Wen Zhang
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan,China
| | - Lidong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology,13 Hangkong Road, Wuhan, China 430030; Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
50
|
Liu S, Pan Y, Li T, Zou M, Liu W, Li Q, Wan H, Peng J, Hao L. The Role of Regulated Programmed Cell Death in Osteoarthritis: From Pathogenesis to Therapy. Int J Mol Sci 2023; 24:5364. [PMID: 36982438 PMCID: PMC10049357 DOI: 10.3390/ijms24065364] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Osteoarthritis (OA) is a worldwide chronic disease that can cause severe inflammation to damage the surrounding tissue and cartilage. There are many different factors that can lead to osteoarthritis, but abnormally progressed programmed cell death is one of the most important risk factors that can induce osteoarthritis. Prior studies have demonstrated that programmed cell death, including apoptosis, pyroptosis, necroptosis, ferroptosis, autophagy, and cuproptosis, has a great connection with osteoarthritis. In this paper, we review the role of different types of programmed cell death in the generation and development of OA and how the different signal pathways modulate the different cell death to regulate the development of OA. Additionally, this review provides new insights into the radical treatment of osteoarthritis rather than conservative treatment, such as anti-inflammation drugs or surgical operation.
Collapse
Affiliation(s)
- Suqing Liu
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- Queen Marry College, Nanchang University, Nanchang 330006, China
| | - Yurong Pan
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- Queen Marry College, Nanchang University, Nanchang 330006, China
| | - Ting Li
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Mi Zou
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Wenji Liu
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Qingqing Li
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Huan Wan
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Jie Peng
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Liang Hao
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|