1
|
Sarkar S, Kobayashi Y, Russnak T, Shen J, Nahass RG, Dougherty JP, Gélinas C. GS143, an inhibitor of E3 ligase β-TrCP, reverses HIV-1 latency without activating T cells via unconventional activation of NFκB. PLoS Pathog 2025; 21:e1013018. [PMID: 40168443 PMCID: PMC11999137 DOI: 10.1371/journal.ppat.1013018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 04/15/2025] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
HIV-1 persists indefinitely in individuals living with HIV-1 even after effective treatment with antiretroviral therapy (ART). Upon cessation of the therapy, latently infected memory CD4+ T cells allow for a rapid rebound of the virus. The development of latency reversing agents (LRAs) to activate latent virus promoting immune recognition and clearance of the infected cells is pivotal for the elimination of the latent arm of the infection. Success of this strategy requires the development of potent highly specific LRAs with fewer off-target effects. LRA activity displayed by proteasome inhibitors although not highly specific opens the possibility of exploiting the high degree of specificity of the ubiquitin-proteasome system to develop targeted LRAs. Here we demonstrate that a small molecule GS143, which inhibits β-TrCP, the substrate recognition subunit of the SCFβ-TrCP E3 ubiquitin protein ligases, exhibits potent LRA activity both in a primary cell model system of latency and cells from aviremic individuals with HIV-1 treated with ART. Furthermore, GS143 reactivates latent HIV-1 without activating T cells, a desirable attribute for LRAs of clinical use. We showed that GS143 acts in a complementary fashion with at least two other classes of LRAs, thereby representing novel drug combinations for targeting HIV-1 latency. Finally, our results suggest that GS143 triggers a novel signaling pathway to reactivate latent HIV-1 that leads to the unconventional activation of NFκB p65, by initiating the noncanonical signaling via NIK, followed by activation of IKK leading to phosphorylation of p65 on S536 and its nuclear translocation. Moreover, we show that β-catenin inhibitors suppress reactivation HIV-1 by GS143, suggesting that β-catenin supports NF-κB output indirectly. Overall, our results suggest that the β-TrCP E3 ligase inhibitor GS143 represents a new type of LRA.
Collapse
Affiliation(s)
- Srijata Sarkar
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, United States of America
| | - Yoshifumi Kobayashi
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Timothy Russnak
- Graduate Program in Molecular Genetics and Microbiology, Rutgers School of Graduate Studies, Piscataway, New Jersey, United States of America
| | - Jing Shen
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, United States of America
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Ronald G. Nahass
- IDCare, Hillsborough, New Jersey, United States of America
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Joseph P. Dougherty
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Céline Gélinas
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, United States of America
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, United States of America
| |
Collapse
|
2
|
Giansanti M, Ottone T, Travaglini S, Voso MT, Graziani G, Faraoni I. Combination Treatment of Resistant Acute Promyelocytic Leukemia Cells with Arsenic Trioxide and Anti-Apoptotic Gene Inhibitors. Pharmaceuticals (Basel) 2024; 17:1529. [PMID: 39598439 PMCID: PMC11597735 DOI: 10.3390/ph17111529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/02/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Arsenic trioxide (ATO) is an anticancer agent for treating acute promyelocytic leukemia (APL). However, 5-10% of patients fail to respond, developing relapsed/refractory disease. The aim of this study was to identify potential new therapeutic approaches for ATO-unresponsive APL by targeting the anti-apoptotic genes that contribute to drug resistance. METHODS RNA expression of dysregulated genes involved in the apoptotic pathway was analyzed by comparing ATO-resistant APL cell clones generated in our lab with the corresponding sensitive clones, at basal levels and after 48 h of treatment with ATO. RESULTS ATO-resistant APL cells showed upregulation of APAF1, BCL2, BIRC3, and NOL3 genes, while CD70 and IL10 genes were downregulated, compared to ATO-sensitive cells. Treatment with ATO strongly increased the expression of the anti-apoptotic genes BIRC3, NOL3, and BCL2A1 and significantly downregulated BCL2 in ATO-sensitive clones. Although all these genes can be relevant to ATO-resistance, we selected BCL2 and BIRC3 as druggable targets. A direct correlation between BCL2 expression and the sensitivity to the BCL2 inhibitor venetoclax was observed, indicating BCL2 as predictive biomarker of the response. Moreover, the combination of venetoclax with ATO exerted synergistic cytotoxic effects, thus reverting the resistance to ATO. APL treatment with SMAC mimetics such as LCL161 and xevinapant (inhibitors of BIRC3) was not as effective as the BCL2 inhibitor as a monotherapy but exerted synergistic effects in combination with ATO in cells with low BIRC expression. CONCLUSIONS This study demonstrates the therapeutic potential of venetoclax in combination with ATO in vitro and strongly encourages further investigation of relapsed/refractory APL with high BCL2 expression.
Collapse
Affiliation(s)
- Manuela Giansanti
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy (M.T.V.)
- Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, 00179 Rome, Italy
| | - Serena Travaglini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy (M.T.V.)
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy (M.T.V.)
- Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, 00179 Rome, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Isabella Faraoni
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
3
|
Porras MÁG, Assié A, Tietjen M, Violette M, Kleiner M, Gruber-Vodicka H, Dubilier N, Leisch N. An intranuclear bacterial parasite of deep-sea mussels expresses apoptosis inhibitors acquired from its host. Nat Microbiol 2024; 9:2877-2891. [PMID: 39242818 PMCID: PMC11521996 DOI: 10.1038/s41564-024-01808-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/13/2024] [Indexed: 09/09/2024]
Abstract
A limited number of bacteria are able to colonize the nuclei of eukaryotes. 'Candidatus Endonucleobacter' infects the nuclei of deep-sea mussels, where it replicates to ≥80,000 bacteria per nucleus and causes nuclei to swell to 50 times their original size. How these parasites are able to replicate and avoid apoptosis is not known. Dual RNA-sequencing transcriptomes of infected nuclei isolated using laser-capture microdissection revealed that 'Candidatus Endonucleobacter' does not obtain most of its nutrition from nuclear DNA or RNA. Instead, 'Candidatus Endonucleobacter' upregulates genes for importing and digesting sugars, lipids, amino acids and possibly mucin from its host. It likely prevents apoptosis of host cells by upregulating 7-13 inhibitors of apoptosis, proteins not previously seen in bacteria. Comparative phylogenetic analyses revealed that 'Ca. Endonucleobacter' acquired inhibitors of apoptosis through horizontal gene transfer from their hosts. Horizontal gene transfer from eukaryotes to bacteria is assumed to be rare, but may be more common than currently recognized.
Collapse
Affiliation(s)
| | - Adrien Assié
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Målin Tietjen
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Marlene Violette
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Harald Gruber-Vodicka
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Nikolaus Leisch
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
4
|
Morparia S, Metha C, Suvarna V. Recent advancements of betulinic acid-based drug delivery systems for cancer therapy (2002-2023). Nat Prod Res 2024:1-21. [PMID: 39385745 DOI: 10.1080/14786419.2024.2412838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/14/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Betulinic acid, a compound classified as a pentacyclic triterpenoid, is found in abundance in a variety of medicinal plants and natural substances. Its broad spectrum of biological and medicinal properties, particularly its potent antitumor activity, has gained significant attention in recent years. The anticancer properties of betulinic acid are governed by mitochondrial signalling pathways and it exhibit selectivity for cancerous tissue, leaving non-cancerous cells and normal tissue unharmed. This characteristic is particularly valuable in chemo-resistant cases. Nevertheless, the medicinal potential of betulinic acid is hindered by its poor water solubility and short half-life, leading to sub-optimal effectiveness. This issue is being tackled by a variety of nano-sized drug delivery systems, such as polymeric nanoparticles, magnetic nanoparticles, polymeric conjugates, nanoemulsions, liposomes, nanosuspensions, carbon nanotubes, and cyclodextrin complexes. This article focuses on recent advances in nanoformulations that are tailored to the delivery of betulinic acid with enhanced effectiveness.
Collapse
Affiliation(s)
- Saurabh Morparia
- Department of Pharmaceutical Analysis & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Chaitanya Metha
- Department of Pharmaceutical Analysis & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Vasanti Suvarna
- Department of Pharmaceutical Analysis & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| |
Collapse
|
5
|
La Marca JE, Kelly GL, Strasser A, Diepstraten ST. Don't fear the reaper: The role of regulated cell death in tumorigenesis and BH3-mimetics for cancer therapy. Dev Cell 2024; 59:2532-2548. [PMID: 39378839 DOI: 10.1016/j.devcel.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 10/10/2024]
Abstract
From its earliest characterization, it has been recognized that there is a role for regulated (programmed) cell death in cancer. As our understanding of the different types of programmed cell death processes and their molecular control has advanced, so have the technologies that allow us to manipulate these processes to, for example, fight against cancer. In this review, we describe the roles of the different forms of regulated cell death in the development of cancer as well as their potential therapeutic exploitation. In that vein, we explore the development and use of BH3-mimetics, a unique class of drugs that can directly activate the apoptotic cell death machinery to treat cancer. Finally, we address key challenges that face the field to improve the use of these therapeutics and the efforts that are being undertaken to do so.
Collapse
Affiliation(s)
- John E La Marca
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Genome Engineering and Cancer Modelling Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia.
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Andreas Strasser
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Sarah T Diepstraten
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
6
|
Oztepe T, Sahin FI, Yilmaz AC, Baskin E, Haberal M, Terzi YK. Determination of the Frequency of BCL-2 Polymorphisms (c.-717C>A and c.*2364G>A) and LIF Polymorphism (c.*1414T>G) in Patients with Congenital Anomalies of the Kidney and Urinary Tract. Mol Syndromol 2024; 15:371-379. [PMID: 39359948 PMCID: PMC11444711 DOI: 10.1159/000538653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/31/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Congenital anomalies of the kidney and urinary tract (CAKUT) are characterized by several malformations. Its prevalence is 0.3-0.6% in live births. The B-cell lymphoma (BCL-2) gene regulates apoptosis, and the Leukemia Inhibitory Factor (LIF) gene plays a role in many biological processes, such as blastocyst growth and uterine preparation for implantation. In this study, two single nucleotide polymorphisms (SNPs) of the BCL-2 gene (rs2279115 and rs4987856) and one SNP of the LIF gene (rs929271) were investigated in CAKUT patients for the first time. Methods Hundred and twenty-nine CAKUT patients and 105 controls were enrolled in this study. We used polymerase chain reaction-restriction fragment length polymorphism for rs2279115 and rs929271 and SNaPshot for rs4987856. The χ2 test was used to compare discrete variables, and the independent sample t test was used to compare continuous variables. Results The allele frequencies for the rs2279115 and rs4987856 polymorphisms of BCL-2 and the rs929271 polymorphism of LIF were not significantly different between the patient and control groups (p = 0.162, p = 0.053, p = 0.635, respectively). However, the co-segregation analysis revealed a significant difference in the distribution of allele frequencies between the patient and control groups for two genetic variations: LIF rs929271 SNP and BCL-2 rs4987856 SNP (p = 0.034). The relative odds ratio was 2.444 (95% Confidence Interval (CI) 1.054-5.671). Conclusion This study, which is the first time in the literature, showed that changes in BCL-2 and LIF genes are associated with CAKUT disease.
Collapse
Affiliation(s)
- Tugce Oztepe
- Department of Medical Genetics, Baskent University, Ankara, Turkey
| | | | | | - Esra Baskin
- Department of Pediatric Nephrology, Baskent University, Ankara, Turkey
| | - Mehmet Haberal
- Division of Transplantation, Department of Surgery, Baskent University, Ankara, Turkey
| | | |
Collapse
|
7
|
Vimalkumar PS, Sivadas N, Murali VP, Sherin DR, Murali M, Joseph AG, Radhakrishnan KV, Maiti KK. Exploring apoptotic induction of malabaricone A in triple-negative breast cancer cells: an acylphenol phyto-entity isolated from the fruit rind of Myristica malabarica Lam. RSC Med Chem 2024:d4md00391h. [PMID: 39263684 PMCID: PMC11382570 DOI: 10.1039/d4md00391h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Myristica malabarica Lam., commonly known as Malabar nutmeg or false nutmeg, is used in traditional medicine and as a spice. Our exploration focuses on malabaricones, a distinct group of secondary metabolites isolated from the fruit rind of M. malabarica. We investigated the selective cytotoxicity of malabaricones against the triple-negative breast cancer (TNBC) cell line. In particular, malabaricone A (Mal-A) displays heightened toxicity towards TNBC cells (MDA-MB-231), with an IC50 of 8.81 ± 0.03 μM. In vitro fluorimetric assays confirmed the apoptotic capability of Mal-A and its capacity to induce nuclear fragmentation. Additionally, ultrasensitive surface-enhanced Raman spectroscopy confirms DNA fragmentation during cellular apoptosis. Cell cycle analysis indicates arrest during the sub-G0 phase by downregulating key regulatory proteins involved in cell cycle progression. Increased expression levels of caspase 3, 9, and 8 suggest involvement of both extrinsic and intrinsic apoptotic pathways. Finally, assessment of protein expression patterns within apoptotic pathways reveals upregulation of key apoptotic proteins like Fas/FasL, TNF/TNFR1, and p53, coupled with downregulation of several inhibitors of apoptosis proteins such as XIAP, cIAP-2, and Livin. These findings are further verified with in silico molecular docking. Mal-A reveals a strong affinity towards apoptotic proteins, including TNF, Fas, HTRA, Smac, and XIAP, with docking scores ranging from -5.1 to -7.2 kcal mol-1. Subsequently, molecular dynamics simulation confirms the binding stability. This conclusive in vitro evaluation validates Mal-A as a potent phyto-entity against TNBC. To the best of our knowledge, this study represents the first comprehensive anticancer evaluation of Mal-A in TNBC cells.
Collapse
Affiliation(s)
- Pothiyil S Vimalkumar
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram-695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Neethu Sivadas
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram-695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Vishnu Priya Murali
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram-695019 India
| | - Daisy R Sherin
- School of Digital Sciences, Kerala University of Digital Sciences, Innovation and Technology, Digital University Kerala Thiruvananthapuram-695317 India
| | - Madhukrishnan Murali
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram-695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Anuja Gracy Joseph
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram-695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Kokkuvayil Vasu Radhakrishnan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram-695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Kaustabh Kumar Maiti
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram-695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| |
Collapse
|
8
|
Saadh MJ, Ahmed HH, Singh A, Mustafa MA, Al Zuhairi RAH, Ghildiyal P, Jawad MJ, Alsaikhan F, Khalilollah S, Akhavan-Sigari R. Small molecule and big function: MicroRNA-mediated apoptosis in rheumatoid arthritis. Pathol Res Pract 2024; 261:155508. [PMID: 39116571 DOI: 10.1016/j.prp.2024.155508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune condition and chronic inflammatory disease, mostly affecting synovial joints. The complex pathogenesis of RA is supportive of high morbidity, disability, and mortality rates. Pathological changes a common characteristic in RA synovial tissue is attributed to the inadequacy of apoptotic pathways. In that regard, apoptotic pathways have been the center of attention in RA therapeutic approaches. As the regulators in the complex network of apoptosis, microRNAs (miRNAs) are found to be vital modulators in both intrinsic and extrinsic pathways through altering their regulatory genes. Indeed, miRNA, a member of the family of non-coding RNAs, are found to be an important player in not even apoptosis, but proliferation, gene expression, signaling pathways, and angiogenesis. Aberrant expression of miRNAs is implicated in attenuation and/or intensification of various apoptosis routes, resulting in culmination of human diseases including RA. Considering the need for more studies focused on the underlying mechanisms of RA in order to elevate the unsatisfactory clinical treatments, this study is aimed to delineate the importance of apoptosis in the pathophysiology of this disease. As well, this review is focused on the critical role of miRNAs in inducing or inhibiting apoptosis of RA-synovial fibroblasts and fibroblast-like synoviocytes and how this mechanism can be exerted for therapeutic purposes for RA.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | - Anamika Singh
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Mohammed Ahmed Mustafa
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh-247341, India; Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand- 831001, India.
| | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Poland
| |
Collapse
|
9
|
Liu FR, Wei XL, Feng WN, Zhao HY, Zhang Y, Wang ZQ, Zhang DS, Wang FH, Yang S, Pan W, Tian X, Men L, Wang H, Liang E, Wang C, Yang D, Zhai Y, Qiu MZ, Xu RH. Inhibitor of apoptosis proteins (IAP) inhibitor APG-1387 monotherapy or in combination with programmed cell death 1 (PD-1) inhibitor toripalimab in patients with advanced solid tumors: results from two phase I trials. ESMO Open 2024; 9:103651. [PMID: 39059062 PMCID: PMC11338093 DOI: 10.1016/j.esmoop.2024.103651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND APG-1387 is a novel second mitochondrial-derived activator of caspases mimetic, small-molecule inhibitor targeting inhibitor of apoptosis proteins. We report results from two phase I trials evaluating the tolerability, safety, and antitumor activity of APG-1387 monotherapy and APG-1387 plus toripalimab [a programmed cell death 1 (PD-1) inhibitor] for advanced solid tumors. PATIENTS AND METHODS Participants aged ≥18 years who had histologically confirmed advanced solid tumors with no appropriate standard of care (or refractory to standard care) were eligible. Patients received escalating intravenous doses of APG-1387 alone or combined with fixed-dose toripalimab (240 mg every 3 weeks) in a '3 + 3' design. Primary endpoints were dose-limiting toxicities (DLTs) and maximum tolerated dose (MTD) in the monotherapy trial, and recommended phase II dose (RP2D) in the combination therapy trial. Secondary endpoints included the pharmacokinetic and pharmacodynamic profiles and preliminary efficacy in both trials. RESULTS In the monotherapy trial, 28 subjects were enrolled and received ≥1 treatment cycle. No DLT was reported among the 28 subjects, and the MTD was not reached. One participant (3.6%) had a grade ≥3 treatment-related adverse event (TRAE) of alanine aminotransferase elevation. In efficacy analysis of 23 participants, none achieved an objective response, and the disease control rate was 21.7%. In the combination trial, 22 subjects were enrolled and included in all analyses. There was one DLT of grade 3 lipase elevation. The MTD was not reached. Four grade ≥3 TRAEs occurred in three participants (13.6%), with the most common being lipase elevation (n = 2). The RP2D was 45 mg weekly. The objective response rate was 13.6%, with complete response achieved in one subject, and the disease control rate was 54.5%. CONCLUSIONS APG-1387 45 mg weekly plus toripalimab was well tolerated and is recommended for further study, with preliminary clinical activity observed in study participants with advanced solid tumors.
Collapse
Affiliation(s)
- F-R Liu
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou
| | - X-L Wei
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou
| | - W-N Feng
- Department of Pulmonary Oncology, The First People's Hospital of Foshan, Foshan
| | - H-Y Zhao
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou
| | - Y Zhang
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou
| | - Z-Q Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou
| | - D-S Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou
| | - F-H Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou
| | - S Yang
- Department of Pulmonary Oncology, The First People's Hospital of Foshan, Foshan
| | - W Pan
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, China
| | - X Tian
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, China
| | - L Men
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, China
| | - H Wang
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, China
| | - E Liang
- Ascentage Pharma Group Inc., Rockville, USA
| | - C Wang
- Ascentage Pharma Group Inc., Rockville, USA
| | - D Yang
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, China; Department of Experimental Research, State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Y Zhai
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, China; Ascentage Pharma Group Inc., Rockville, USA.
| | - M-Z Qiu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou.
| | - R-H Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou.
| |
Collapse
|
10
|
Makinwa Y, Luo Y, Musich PR, Zou Y. Canonical and Noncanonical Functions of the BH3 Domain Protein Bid in Apoptosis, Oncogenesis, Cancer Therapeutics, and Aging. Cancers (Basel) 2024; 16:2199. [PMID: 38927905 PMCID: PMC11202167 DOI: 10.3390/cancers16122199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Effective cancer therapy with limited adverse effects is a major challenge in the medical field. This is especially complicated by the development of acquired chemoresistance. Understanding the mechanisms that underlie these processes remains a major effort in cancer research. In this review, we focus on the dual role that Bid protein plays in apoptotic cell death via the mitochondrial pathway, in oncogenesis and in cancer therapeutics. The BH3 domain in Bid and the anti-apoptotic mitochondrial proteins (Bcl-2, Bcl-XL, mitochondrial ATR) it associates with at the outer mitochondrial membrane provides us with a viable target in cancer therapy. We will discuss the roles of Bid, mitochondrial ATR, and other anti-apoptotic proteins in intrinsic apoptosis, exploring how their interaction sustains cellular viability despite the initiation of upstream death signals. The unexpected upregulation of this Bid protein in cancer cells can also be instrumental in explaining the mechanisms behind acquired chemoresistance. The stable protein associations at the mitochondria between tBid and anti-apoptotic mitochondrial ATR play a crucial role in maintaining the viability of cancer cells, suggesting a novel mechanism to induce cancer cell apoptosis by freeing tBid from the ATR associations at mitochondria.
Collapse
Affiliation(s)
- Yetunde Makinwa
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (Y.M.); (Y.L.)
| | - Yibo Luo
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (Y.M.); (Y.L.)
| | - Phillip R. Musich
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA;
| | - Yue Zou
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (Y.M.); (Y.L.)
| |
Collapse
|
11
|
Chen X, Che Z, Wu J, Zeng C, Yang XL, Zhang L, Lin Z. Sterigmatocystin induces autophagic and apoptotic cell death of liver cancer cells via downregulation of XIAP. Heliyon 2024; 10:e29567. [PMID: 38681656 PMCID: PMC11046247 DOI: 10.1016/j.heliyon.2024.e29567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024] Open
Abstract
XIAP, or the X-linked Inhibitor of Apoptosis Protein, is the most extensively studied member within the IAP gene family. It possesses the capability to impede apoptosis through direct inhibition of caspase activity. Various kinds of cancers overexpress XIAP to enable cancer cells to avoid apoptosis. Consequently, the inhibition of XIAP holds significant clinical implications for the development of anti-tumor medications and the treatment of cancer. In this study, sterigmatocystin, a natural compound obtained from the genus asperigillus, was demonstrated to be able to induce apoptotic and autophagic cell death in liver cancer cells. Mechanistically, sterigmatocystin induces apoptosis by downregulation of XIAP expression. Additionally, sterigmatocystin treatment induces cell cycle arrest, blocks cell proliferation, and slows down colony formation in liver cancer cells. Importantly, sterigmatocystin exhibits a remarkable therapeutic effect in a nude mice model. Our findings revealed a novel mechanism through which sterigmatocystin induces apoptotic and autophagic cell death of liver cancer cells by suppressing XIAP expression, this offers a promising therapeutic approach for treating liver cancer patients.
Collapse
Affiliation(s)
- Xu Chen
- Chongqing University Jiangjin Hospital, Chongqing, 402260, PR China
- School of Life Sciences, Chongqing University, Chongqing, 401331, PR China
| | - Zhengping Che
- School of Life Sciences, Chongqing University, Chongqing, 401331, PR China
| | - Jiajia Wu
- School of Life Sciences, Chongqing University, Chongqing, 401331, PR China
| | - Cheng Zeng
- School of Life Sciences, Chongqing University, Chongqing, 401331, PR China
| | - Xiao-long Yang
- The School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, PR China
| | - Lin Zhang
- Chongqing University Jiangjin Hospital, Chongqing, 402260, PR China
| | - Zhenghong Lin
- Chongqing University Jiangjin Hospital, Chongqing, 402260, PR China
- School of Life Sciences, Chongqing University, Chongqing, 401331, PR China
| |
Collapse
|
12
|
Hagi T, Vangveravong S, Takchi R, Gong Q, Goedegebuure SP, Tiriac H, Van Tine BA, Powell MA, Hawkins WG, Spitzer D. The novel drug candidate S2/IAPinh improves survival in models of pancreatic and ovarian cancer. Sci Rep 2024; 14:6373. [PMID: 38493257 PMCID: PMC10944456 DOI: 10.1038/s41598-024-56928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
Cancer selective apoptosis remains a therapeutic challenge and off-target toxicity has limited enthusiasm for this target clinically. Sigma-2 ligands (S2) have been shown to enhance the cancer selectivity of small molecule drug candidates by improving internalization. Here, we report the synthesis of a novel drug conjugate, which was created by linking a clinically underperforming SMAC mimetic (second mitochondria-derived activator of caspases; LCL161), an inhibitor (antagonist) of inhibitor of apoptosis proteins (IAPinh) with the sigma-2 ligand SW43, resulting in the new chemical entity S2/IAPinh. Drug potency was assessed via cell viability assays across several pancreatic and ovarian cancer cell lines in comparison with the individual components (S2 and IAPinh) as well as their equimolar mixtures (S2 + IAPinh) both in vitro and in preclinical models of pancreatic and ovarian cancer. Mechanistic studies of S2/IAPinh-mediated cell death were investigated in vitro and in vivo using syngeneic and xenograft mouse models of murine pancreatic and human ovarian cancer, respectively. S2/IAPinh demonstrated markedly improved pharmacological activity in cancer cell lines and primary organoid cultures when compared to the controls. In vivo testing demonstrated a marked reduction in tumor growth rates and increased survival rates when compared to the respective control groups. The predicted mechanism of action of S2/IAPinh was confirmed through assessment of apoptosis pathways and demonstrated strong target degradation (cellular inhibitor of apoptosis proteins-1 [cIAP-1]) and activation of caspases 3 and 8. Taken together, S2/IAPinh demonstrated efficacy in models of pancreatic and ovarian cancer, two challenging malignancies in need of novel treatment concepts. Our data support an in-depth investigation into utilizing S2/IAPinh for the treatment of cancer.
Collapse
Affiliation(s)
- Takaomi Hagi
- Department of Surgery, Washington University School of Medicine, S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Suwanna Vangveravong
- Department of Surgery, Washington University School of Medicine, S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Rony Takchi
- Department of Surgery, Washington University School of Medicine, S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Qingqing Gong
- Department of Surgery, Washington University School of Medicine, S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, S. Euclid Avenue, St. Louis, MO, 63110, USA
- Alvin J. Siteman Cancer Center, Barnes-Jewish Hospital, and Washington University School of Medicine, St. Louis, MO, USA
| | - Herve Tiriac
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California San Diego, San Diego, CA, USA, San Diego, USA
| | - Brian A Van Tine
- Alvin J. Siteman Cancer Center, Barnes-Jewish Hospital, and Washington University School of Medicine, St. Louis, MO, USA
- Division of Medical Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew A Powell
- Alvin J. Siteman Cancer Center, Barnes-Jewish Hospital, and Washington University School of Medicine, St. Louis, MO, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - William G Hawkins
- Department of Surgery, Washington University School of Medicine, S. Euclid Avenue, St. Louis, MO, 63110, USA.
- Alvin J. Siteman Cancer Center, Barnes-Jewish Hospital, and Washington University School of Medicine, St. Louis, MO, USA.
| | - Dirk Spitzer
- Department of Surgery, Washington University School of Medicine, S. Euclid Avenue, St. Louis, MO, 63110, USA.
- Alvin J. Siteman Cancer Center, Barnes-Jewish Hospital, and Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
13
|
Guo Y, Li X, Xie Y, Wang Y. What influences the activity of Degrader-Antibody conjugates (DACs). Eur J Med Chem 2024; 268:116216. [PMID: 38387330 DOI: 10.1016/j.ejmech.2024.116216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
The targeted protein degradation (TPD) technology employing proteolysis-targeting chimeras (PROTACs) has been widely applied in drug chemistry and chemical biology for the treatment of cancer and other diseases. PROTACs have demonstrated significant advantages in targeting undruggable targets and overcoming drug resistance. However, despite the efficient degradation of targeted proteins achieved by PROTACs, they still face challenges related to selectivity between normal and cancer cells, as well as issues with poor membrane permeability due to their substantial molecular weight. Additionally, the noteworthy toxicity resulting from off-target effects also needs to be addressed. To solve these issues, Degrader-Antibody Conjugates (DACs) have been developed, leveraging the targeting and internalization capabilities of antibodies. In this review, we elucidates the characteristics and distinctions between DACs, and traditional Antibody-drug conjugates (ADCs). Meanwhile, we emphasizes the significance of DACs in facilitating the delivery of PROTACs and delves into the impact of various components on DAC activity. These components include antibody targets, drug-antibody ratio (DAR), linker types, PROTACs targets, PROTACs connections, and E3 ligase ligands. The review also explores the suitability of different targets (antibody targets or PROTACs targets) for DACs, providing insights to guide the design of PROTACs better suited for antibody conjugation.
Collapse
Affiliation(s)
- Yaolin Guo
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China
| | - Xiaoxue Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang Xie
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
14
|
Liu SS, Jiang TX, Bu F, Zhao JL, Wang GF, Yang GH, Kong JY, Qie YF, Wen P, Fan LB, Li NN, Gao N, Qiu XB. Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy. Nat Commun 2024; 15:891. [PMID: 38291026 PMCID: PMC10827748 DOI: 10.1038/s41467-024-45222-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
Procaspase 9 is the initiator caspase for apoptosis, but how its levels and activities are maintained remains unclear. The gigantic Inhibitor-of-Apoptosis Protein BIRC6/BRUCE/Apollon inhibits both apoptosis and autophagy by promoting ubiquitylation of proapoptotic factors and the key autophagic protein LC3, respectively. Here we show that BIRC6 forms an anti-parallel U-shaped dimer with multiple previously unannotated domains, including a ubiquitin-like domain, and the proapoptotic factor Smac/DIABLO binds BIRC6 in the central cavity. Notably, Smac outcompetes the effector caspase 3 and the pro-apoptotic protease HtrA2, but not procaspase 9, for binding BIRC6 in cells. BIRC6 also binds LC3 through its LC3-interacting region, probably following dimer disruption of this BIRC6 region. Mutation at LC3 ubiquitylation site promotes autophagy and autophagic degradation of BIRC6. Moreover, induction of autophagy promotes autophagic degradation of BIRC6 and caspase 9, but not of other effector caspases. These results are important to understand how the balance between apoptosis and autophagy is regulated under pathophysiological conditions.
Collapse
Affiliation(s)
- Shuo-Shuo Liu
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Tian-Xia Jiang
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Fan Bu
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Ji-Lan Zhao
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Guang-Fei Wang
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Guo-Heng Yang
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Jie-Yan Kong
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Yun-Fan Qie
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Pei Wen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
- College of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Li-Bin Fan
- College of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Ning-Ning Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Xiao-Bo Qiu
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
15
|
Newell S, van der Watt PJ, Leaner VD. Therapeutic targeting of nuclear export and import receptors in cancer and their potential in combination chemotherapy. IUBMB Life 2024; 76:4-25. [PMID: 37623925 PMCID: PMC10952567 DOI: 10.1002/iub.2773] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/03/2023] [Indexed: 08/26/2023]
Abstract
Systemic modalities are crucial in the management of disseminated malignancies and liquid tumours. However, patient responses and tolerability to treatment are generally poor and those that enter remission often return with refractory disease. Combination therapies provide a methodology to overcome chemoresistance mechanisms and address dose-limiting toxicities. A deeper understanding of tumorigenic processes at the molecular level has brought a targeted therapy approach to the forefront of cancer research, and novel cancer biomarkers are being identified at a rapid rate, with some showing potential therapeutic benefits. The Karyopherin superfamily of proteins is soluble receptors that mediate nucleocytoplasmic shuttling of proteins and RNAs, and recently, nuclear transport receptors have been recognized as novel anticancer targets. Inhibitors against nuclear export have been approved for clinical use against certain cancer types, whereas inhibitors against nuclear import are in preclinical stages of investigation. Mechanistically, targeting nucleocytoplasmic shuttling has shown to abrogate oncogenic signalling and restore tumour suppressor functions through nuclear sequestration of relevant proteins and mRNAs. Hence, nuclear transport inhibitors display broad spectrum anticancer activity and harbour potential to engage in synergistic interactions with a wide array of cytotoxic agents and other targeted agents. This review is focussed on the most researched nuclear transport receptors in the context of cancer, XPO1 and KPNB1, and highlights how inhibitors targeting these receptors can enhance the therapeutic efficacy of standard of care therapies and novel targeted agents in a combination therapy approach. Furthermore, an updated review on the therapeutic targeting of lesser characterized karyopherin proteins is provided and resistance to clinically approved nuclear export inhibitors is discussed.
Collapse
Affiliation(s)
- Stella Newell
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Pauline J. van der Watt
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Diseases and Molecular Medicine, University of Cape TownCape TownSouth Africa
| | - Virna D. Leaner
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- UCT/SAMRC Gynaecological Cancer Research CentreUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
16
|
Kikuchi S, Sugama Y, Takada K, Kamihara Y, Wada A, Arihara Y, Nakamura H, Sato T. Simultaneous XIAP and cIAP1/2 inhibition by a dimeric SMAC mimetic AZD5582 induces apoptosis in multiple myeloma. J Pharmacol Sci 2024; 154:30-36. [PMID: 38081681 DOI: 10.1016/j.jphs.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/23/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Overexpression of inhibitor of apoptosis (IAP) proteins is associated with poor prognosis. In multiple myeloma (MM), the IAP inhibitors (IAPi), LCL161, have been evaluated in preclinical and clinical settings but are not fully effective. Among IAPs, XIAP has the strongest anti-apoptotic function with direct binding activity to caspases and cIAP1 and cIAP2 are positive regulator of NF-κB signaling. Prior IAPi such as LCL161 has high affinity to cIAP1 and cIAP2 resulting in inferior inhibiting activity against XIAP. A novel dimeric IAPi, AZD5582 (C58H78N8O8), have high binding potency to XIAP with EC50 dose of 15 nM, enabling to simultaneous inhibit XIAP and cIAP1/2. AZD5582 monotherapy showed cell growth inhibition for all MM cell lines, MM1S, RPMI8226, U266 and KMS-5 and induced apoptosis. AZD5582 further showed anti-proliferation effect under the IL-6 additional condition and inhibited JAK-STAT signaling triggered by IL-6. AZD5582 combined with carfilzomib therapy showed a synergistic effect. Enhanced apoptosis was also observed in combination therapy. Synergistic effect was further observed with other conventional therapeutics. Simultaneous XIAP and cIAP1/2 inhibition by the dimeric IAPi AZD5582 is promising. This study provides a rationale of AZD5582 as a new treatment strategy in monotherapy and in combination therapy.
Collapse
Affiliation(s)
- Shohei Kikuchi
- Department of Hematology, Toyama University Hospital, Toyama, Japan
| | - Yusuke Sugama
- Department of Hematology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kohichi Takada
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yusuke Kamihara
- Department of Hematology, Toyama University Hospital, Toyama, Japan
| | - Akinori Wada
- Department of Hematology, Toyama University Hospital, Toyama, Japan
| | - Yohei Arihara
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hajime Nakamura
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsutomu Sato
- Department of Hematology, Toyama University Hospital, Toyama, Japan.
| |
Collapse
|
17
|
Cui Q, Huang C, Liu JY, Zhang JT. Small Molecule Inhibitors Targeting the "Undruggable" Survivin: The Past, Present, and Future from a Medicinal Chemist's Perspective. J Med Chem 2023; 66:16515-16545. [PMID: 38092421 PMCID: PMC11588358 DOI: 10.1021/acs.jmedchem.3c01130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Survivin, a homodimeric protein and a member of the IAP family, plays a vital function in cell survival and cycle progression by interacting with various proteins and complexes. Its expression is upregulated in cancers but not detectable in normal tissues. Thus, it has been regarded and validated as an ideal cancer target. However, survivin is "undruggable" due to its lack of enzymatic activities or active sites for small molecules to bind/inhibit. Academic and industrial laboratories have explored different strategies to overcome this hurdle over the past two decades, with some compounds advanced into clinical testing. These strategies include inhibiting survivin expression, its interaction with binding partners and homodimerization. Here, we provide comprehensive analyses of these strategies and perspective on different small molecule survivin inhibitors to help drug discovery targeting "undruggable" proteins in general and survivin specifically with a true survivin inhibitor that will prevail in the foreseeable future.
Collapse
Affiliation(s)
- Qingbin Cui
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Caoqinglong Huang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Jing-Yuan Liu
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Jian-Ting Zhang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| |
Collapse
|
18
|
Zhang Y, Huang Q, Xu Q, Jia C, Xia Y. Pimavanserin tartrate induces apoptosis and cytoprotective autophagy and synergizes with chemotherapy on triple negative breast cancer. Biomed Pharmacother 2023; 168:115665. [PMID: 37832400 DOI: 10.1016/j.biopha.2023.115665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Triple negative breast cancer (TNBC) poses a significant clinical challenge due to its lack of targeted therapy options and the frequent development of chemotherapy resistance. Metastasis remains a primary cause of mortality in late-stage TNBC patients, underscoring the urgent need for alternative treatments. Repurposing existing drugs offers a promising strategy for the discovery of novel therapies. In this study, we investigated the potential of pimavanserin tartrate (PVT) as a treatment for TNBC. While previous studies have highlighted PVT's anticancer effects in various cancer types, its activity in TNBC remains unclear. Our investigation aimed to elucidate the anticancer effects and underlying mechanisms of PVT in TNBC. We evaluated the impact of PVT and combination treatments involving PVT on TNBC cell viability, apoptosis, autophagy, and associated signaling pathways. Our findings revealed that PVT may induce mitochondria-dependent intrinsic apoptosis and caused cytoprotective autophagy via the PI3K/Akt/mTOR pathway in TNBC cells in vitro. Notably, our study demonstrated strong synergistic anti-TNBC effects when combining PVT with doxorubicin. We also found PVT showed some efficacies to inhibit TNBC tumor growth in vivo. These results provided valuable insights into the potential of PVT as an anti-TNBC therapeutic and a possible option for enhancing the sensitivity of TNBC cells to conventional chemotherapy drugs. Further studies are needed to determine the activity and mechanism of PVT in inhibiting TNBC.
Collapse
Affiliation(s)
- Yiqian Zhang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qianrui Huang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qisi Xu
- School of Food and Bioengineering, Xihua University, Chengdu 610041, China
| | - Chengsen Jia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu 610041, China.
| |
Collapse
|
19
|
Cotino-Nájera S, Herrera LA, Domínguez-Gómez G, Díaz-Chávez J. Molecular mechanisms of resveratrol as chemo and radiosensitizer in cancer. Front Pharmacol 2023; 14:1287505. [PMID: 38026933 PMCID: PMC10667487 DOI: 10.3389/fphar.2023.1287505] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
One of the primary diseases that cause death worldwide is cancer. Cancer cells can be intrinsically resistant or acquire resistance to therapies and drugs used for cancer treatment through multiple mechanisms of action that favor cell survival and proliferation, becoming one of the leading causes of treatment failure against cancer. A promising strategy to overcome chemoresistance and radioresistance is the co-administration of anticancer agents and natural compounds with anticancer properties, such as the polyphenolic compound resveratrol (RSV). RSV has been reported to be able to sensitize cancer cells to chemotherapeutic agents and radiotherapy, promoting cancer cell death. This review describes the reported molecular mechanisms by which RSV sensitizes tumor cells to radiotherapy and chemotherapy treatment.
Collapse
Affiliation(s)
- Sandra Cotino-Nájera
- Laboratorio de Oncología Molecular, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Luis A. Herrera
- Laboratorio de Oncología Molecular, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
- Escuela de Medicina y Ciencias de la Salud-Tecnológico de Monterrey, México City, Mexico
| | - Guadalupe Domínguez-Gómez
- Subdirección de Investigación Clínica, Instituto Nacional de Cancerología (INCAN), Ciudad de México, Mexico
| | - José Díaz-Chávez
- Unidad de Investigación en Cáncer, Instituto de Investigaciones Biomédicas-Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| |
Collapse
|
20
|
Bui I, Baritaki S, Libra M, Zaravinos A, Bonavida B. Cancer Resistance Is Mediated by the Upregulation of Several Anti-Apoptotic Gene Products via the Inducible Nitric Oxide Synthase/Nitric Oxide Pathway: Therapeutic Implications. Antioxid Redox Signal 2023; 39:853-889. [PMID: 37466477 DOI: 10.1089/ars.2023.0250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Significance: Several therapeutic strategies for cancer treatments have been developed with time, and significant milestones have been achieved recently. However, with these novel therapies, not all cancer types respond and in the responding cancer types only a subset is affected. The failure to respond is principally the result that these cancers develop several mechanisms of resistance. Thus, a focus of current research investigations is to unravel the various mechanisms that regulate resistance and identify suitable targets for new therapeutics. Recent Advances: Hence, many human cancer types have been reported to overexpress the inducible nitric oxide synthase (iNOS) and it has been suggested that iNOS/nitric oxide (NO) plays a pivotal role in the regulation of resistance. We have postulated that iNOS overexpression or NO regulates the overexpression of pivotal anti-apoptotic gene products such as B-cell lymphoma 2 (Bcl-2), B-cell lymphoma extra large (Bcl-xL), myeloid cell leukemia-1 (Mcl-1), and survivin. In this report, we describe the various mechanisms, transcriptional, post-transcriptional, and post-translational, by which iNOS/NO regulates the expression of the above anti-apoptotic gene products. Critical Issues: The iNOS/NO-mediated regulation of the four gene products is not the same with both specific and overlapping pathways. Our findings are, in large part, validated by bioinformatic analyses demonstrating, in several cancers, several direct correlations between the expression of iNOS and each of the four examined anti-apoptotic gene products. Future Directions: We have proposed that targeting iNOS may be highly efficient since it will result in the underexpression of multiple anti-apoptotic proteins and shifting the balance toward the proapoptotic gene products and reversal of resistance. Antioxid. Redox Signal. 39, 853-889.
Collapse
Affiliation(s)
- Indy Bui
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Department of Surgery, School of Medicine, University of Crete, Heraklion, Greece
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Italian League Against Cancer, Catania, Italy
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
21
|
Abbasi Dezfouli S, Rajendran AP, Claerhout J, Uludag H. Designing Nanomedicines for Breast Cancer Therapy. Biomolecules 2023; 13:1559. [PMID: 37892241 PMCID: PMC10605068 DOI: 10.3390/biom13101559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
In 2020, breast cancer became the most diagnosed cancer worldwide. Conventional chemotherapies have major side effects due to their non-specific activities. Alternatively, short interfering RNA(siRNA)-carrying nanoparticles (NPs) have a high potential to overcome this non-specificity. Lipid-substituted polyethyleneimine (PEI) polymers (lipopolymers) have been reported as efficient non-viral carriers of siRNA. This study aims to engineer novel siRNA/lipopolymer nanocomplexes by incorporating anionic additives to obtain gene silencing through siRNA activity with minimal nonspecific toxicity. We first optimized our polyplexes in GFP+ MDA-MB-231 cells to effectively silence the GFP gene. Inclusion of phosphate buffer with pH 8.0 as complex preparation media and N-Lauroylsarcosine Sodium Salt as additive, achieved ~80% silencing with the least amount of undesired cytotoxicity, which was persistent for at least 6 days. The survivin gene was then selected as a target in MDA-MB-231 cells since there is no strong drug (i.e., small organic molecule) for inhibition of its oncogenic activity. The qRT-PCR, flow cytometry analysis and MTT assay revealed >80% silencing, ~95% cell uptake and >70% cell killing by the same formulation. We conclude that our lipopolymer can be further investigated as a lead non-viral carrier for breast cancer gene therapy.
Collapse
Affiliation(s)
- Saba Abbasi Dezfouli
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2V2, Canada;
| | - Amarnath P. Rajendran
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 2V2, Canada;
| | - Jillian Claerhout
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB T6G 2V2, Canada;
| | - Hasan Uludag
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2V2, Canada;
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 2V2, Canada;
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2V2, Canada
| |
Collapse
|
22
|
Ayoup MS, Wahby Y, Abdel-Hamid H, Abu-Serie MM, Ramadan S, Barakat A, Teleb M, Ismail MMF. Reinvestigation of Passerini and Ugi scaffolds as multistep apoptotic inducers via dual modulation of caspase 3/7 and P53-MDM2 signaling for halting breast cancer. RSC Adv 2023; 13:27722-27737. [PMID: 37736568 PMCID: PMC10509784 DOI: 10.1039/d3ra04029a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
Selective induction of breast cancer apoptosis is viewed as the mainstay of various ongoing oncology drug discovery programs. Passerini scaffolds have been recently exploited as selective apoptosis inducers via a caspase 3/7 dependent pathway. Herein, the optimized Passerini caspase activators were manipulated to synergistically induce P53-dependent apoptosis via modulating the closely related P53-MDM2 signaling axis. The adopted design rationale and synthetic routes relied on mimicking the general thematic features of lead MDM2 inhibitors incorporating multiple aromatic rings. Accordingly, the cyclization of representative Passerini derivatives and related Ugi compounds into the corresponding diphenylimidazolidine and spiro derivative was performed, resembling the nutlin-based and spiro MDM-2 inhibitors, respectively. The study was also extended to explore the apoptotic induction capacity of the scaffold after simplification and modifications. MTT assay on MCF-7 and MDA-MB231 breast cancer cells compared to normal fibroblasts (WI-38) revealed their promising cytotoxic activities. The flexible Ugi derivatives 3 and 4, cyclic analog 8, Passerini adduct 12, and the thiosemicarbazide derivative 17 were identified as the study hits regarding cytotoxic potency and selectivity, being over 10-folds more potent (IC50 = 0.065-0.096 μM) and safer (SI = 4.4-18.7) than doxorubicin (IC50 = 0.478 μM, SI = 0.569) on MCF-7 cells. They promoted apoptosis induction via caspase 3/7 activation (3.1-4.1 folds) and P53 induction (up to 4 folds). Further apoptosis studies revealed that these compounds enhanced gene expression of BAX by 2 folds and suppressed Bcl-2 expression by 4.29-7.75 folds in the treated MCF-7 cells. Docking simulations displayed their plausible binding modes with the molecular targets and highlighted their structural determinants of activities for further optimization studies. Finally, in silico prediction of the entire library was computationally performed, showing that most of them could be envisioned as drug-like candidates.
Collapse
Affiliation(s)
- Mohammed Salah Ayoup
- Chemistry Department, Faculty of Science, Alexandria University P. O. Box 426 Alexandria 21321 Egypt
| | - Yasmin Wahby
- Chemistry Department, Faculty of Science, Alexandria University P. O. Box 426 Alexandria 21321 Egypt
| | - Hamida Abdel-Hamid
- Chemistry Department, Faculty of Science, Alexandria University P. O. Box 426 Alexandria 21321 Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City) Egypt
| | - Sherif Ramadan
- Chemistry Department, Michigan State University East Lansing MI 48824 USA
- Department of Chemistry, Benha University Benha Egypt
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt
| | - Magda M F Ismail
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 11754 Egypt
| |
Collapse
|
23
|
Deng C, Li S, Liu Y, Bao W, Xu C, Zheng W, Wang M, Ma X. Split-Cas9-based targeted gene editing and nanobody-mediated proteolysis-targeting chimeras optogenetically coordinated regulation of Survivin to control the fate of cancer cells. Clin Transl Med 2023; 13:e1382. [PMID: 37620295 PMCID: PMC10449816 DOI: 10.1002/ctm2.1382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Precise regulation of partial critical proteins in cancer cells, such as anti-apoptotic proteins, is one of the crucial strategies for treating cancer and discovering related molecular mechanisms. Still, it is also challenging in actual research and practice. The widely used CRISPR/Cas9-based gene editing technology and proteolysis-targeting chimeras (PROTACs) have played an essential role in regulating gene expression and protein function in cells. However, the accuracy and controllability of their targeting remain necessary. METHODS Construction of UMUC-3-EGFP stable transgenic cell lines using the Sleeping Beauty system, Flow cytometry, quantitative real-time PCR, western blot, fluorescence microplate reader and fluorescence inverted microscope analysis of EGFP intensity. Characterization of Survivin inhibition was done by using Annexin V-FITC/PI apoptosis, calcein/PI/DAPI cell viability/cytotoxicity assay, cloning formation assay and scratch assay. The cell-derived xenograft (CDX) model was constructed to assess the in vivo effects of reducing Survivin expression. RESULTS Herein, we established a synergistic control platform that coordinated photoactivatable split-Cas9 targeted gene editing and light-induced protein degradation, on which the Survivin gene in the nucleus was controllably edited by blue light irradiation (named paCas9-Survivin) and simultaneously the Survivin protein in the cytoplasm was degraded precisely by a nanobody-mediated target (named paProtacL-Survivin). Meanwhile, in vitro experiments demonstrated that reducing Survivin expression could effectively promote apoptosis and decrease the proliferation and migration of bladder cancerous cells. Furthermore, the CDX model was constructed using UMUC-3 cell lines, results from animal studies indicated that both the paCas9-Survivin system and paProtacL-Survivin significantly inhibited tumour growth, with higher inhibition rates when combined. CONCLUSIONS In short, the coordinated regulatory strategies and combinable technology platforms offer clear advantages in controllability and targeting, as well as an excellent reference value and universal applicability in controlling the fate of cancer cells through multi-level regulation of key intracellular factors.
Collapse
Affiliation(s)
- Changping Deng
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiP. R. China
| | - Shihui Li
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiP. R. China
| | - Yuping Liu
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghaiP. R. China
| | - Wen Bao
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghaiP. R. China
| | - Chengnan Xu
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghaiP. R. China
| | - Wenyun Zheng
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghaiP. R. China
| | - Meiyan Wang
- Synthetic Biology and Biomedical Engineering LaboratoryBiomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory BiologyInstitute of BiomedicalSciences and School of Life SciencesEast China Normal UniversityShanghaiP. R. China
| | - Xingyuan Ma
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiP. R. China
| |
Collapse
|
24
|
Udompholkul P, Garza-Granados A, Alboreggia G, Baggio C, McGuire J, Pegan SD, Pellecchia M. Characterization of a Potent and Orally Bioavailable Lys-Covalent Inhibitor of Apoptosis Protein (IAP) Antagonist. J Med Chem 2023. [PMID: 37262387 DOI: 10.1021/acs.jmedchem.3c00467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We have recently reported on the use of aryl-fluorosulfates in designing water- and plasma-stable agents that covalently target Lys, Tyr, or His residues in the BIR3 domain of the inhibitor of the apoptosis protein (IAP) family. Here, we report further structural, cellular, and pharmacological characterizations of this agent, including the high-resolution structure of the complex between the Lys-covalent agent and its target, the BIR3 domain of X-linked IAP (XIAP). We also compared the cellular efficacy of the agent in two-dimensional (2D) and three-dimensional (3D) cell cultures, side by side with the clinical candidate reversible IAP inhibitor LCL161. Finally, in vivo pharmacokinetic studies indicated that the agent was long-lived and orally bioavailable. Collectively our data further corroborate that aryl-fluorosulfates, when incorporated correctly in a ligand, can result in Lys-covalent agents with pharmacodynamic and pharmacokinetic properties that warrant their use in the design of pharmacological probes or even therapeutics.
Collapse
Affiliation(s)
- Parima Udompholkul
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Ana Garza-Granados
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Giulia Alboreggia
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Carlo Baggio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Jack McGuire
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Scott D Pegan
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Maurizio Pellecchia
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
25
|
Ng YL, Bricelj A, Jansen JA, Murgai A, Peter K, Donovan KA, Gütschow M, Krönke J, Steinebach C, Sosič I. Heterobifunctional Ligase Recruiters Enable pan-Degradation of Inhibitor of Apoptosis Proteins. J Med Chem 2023; 66:4703-4733. [PMID: 36996313 PMCID: PMC10108347 DOI: 10.1021/acs.jmedchem.2c01817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Indexed: 04/01/2023]
Abstract
Proteolysis targeting chimeras (PROTACs) represent a new pharmacological modality to inactivate disease-causing proteins. PROTACs operate via recruiting E3 ubiquitin ligases, which enable the transfer of ubiquitin tags onto their target proteins, leading to proteasomal degradation. However, several E3 ligases are validated pharmacological targets themselves, of which inhibitor of apoptosis (IAP) proteins are considered druggable in cancer. Here, we report three series of heterobifunctional PROTACs, which consist of an IAP antagonist linked to either von Hippel-Lindau- or cereblon-recruiting ligands. Hijacking E3 ligases against each other led to potent, rapid, and preferential depletion of cellular IAPs. In addition, these compounds caused complete X-chromosome-linked IAP knockdown, which was rarely observed for monovalent and homobivalent IAP antagonists. In cellular assays, hit degrader 9 outperformed antagonists and showed potent inhibition of cancer cell viability. The hetero-PROTACs disclosed herein are valuable tools to facilitate studies of the biological roles of IAPs and will stimulate further efforts toward E3-targeting therapies.
Collapse
Affiliation(s)
- Yuen Lam
Dora Ng
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
| | - Aleša Bricelj
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia
| | - Jacqueline A. Jansen
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
| | - Arunima Murgai
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
- German
Cancer Consortium (DKTK) Partner Site Berlin and German Cancer Research
Center (DKFZ), D-69120 Heidelberg, Germany
| | - Kirsten Peter
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
| | - Katherine A. Donovan
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Michael Gütschow
- Phamaceutical
Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Jan Krönke
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
- German
Cancer Consortium (DKTK) Partner Site Berlin and German Cancer Research
Center (DKFZ), D-69120 Heidelberg, Germany
| | - Christian Steinebach
- Phamaceutical
Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Izidor Sosič
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
26
|
Li S, Zeng H, Fan J, Wang F, Xu C, Li Y, Tu J, Nephew KP, Long X. Glutamine metabolism in breast cancer and possible therapeutic targets. Biochem Pharmacol 2023; 210:115464. [PMID: 36849062 DOI: 10.1016/j.bcp.2023.115464] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Cancer is characterized by metabolic reprogramming, which is a hot topic in tumor treatment research. Cancer cells alter metabolic pathways to promote their growth, and the common purpose of these altered metabolic pathways is to adapt the metabolic state to the uncontrolled proliferation of cancer cells. Most cancer cells in a state of nonhypoxia will increase the uptake of glucose and produce lactate, called the Warburg effect. Increased glucose consumption is used as a carbon source to support cell proliferation, including nucleotide, lipid and protein synthesis. In the Warburg effect, pyruvate dehydrogenase activity decreases, thereby disrupting the TCA cycle. In addition to glucose, glutamine is also an important nutrient for the growth and proliferation of cancer cells, an important carbon bank and nitrogen bank for the growth and proliferation of cancer cells, providing ribose, nonessential amino acids, citrate, and glycerin necessary for cancer cell growth and proliferation and compensating for the reduction in oxidative phosphorylation pathways in cancer cells caused by the Warburg effect. In human plasma, glutamine is the most abundant amino acid. Normal cells produce glutamine via glutamine synthase (GLS), but the glutamine synthesized by tumor cells is insufficient to meet their high growth needs, resulting in a "glutamine-dependent phenomenon." Most cancers have an increased glutamine demand, including breast cancer. Metabolic reprogramming not only enables tumor cells to maintain the reduction-oxidation (redox) balance and commit resources to biosynthesis but also establishes heterogeneous metabolic phenotypes of tumor cells that are distinct from those of nontumor cells. Thus, targeting the metabolic differences between tumor and nontumor cells may be a promising and novel anticancer strategy. Glutamine metabolic compartments have emerged as promising candidates, especially in TNBC and drug-resistant breast cancer. In this review, the latest discoveries of breast cancer and glutamine metabolism are discussed, novel treatment methods based on amino acid transporters and glutaminase are discussed, and the relationship between glutamine metabolism and breast cancer metastasis, drug resistance, tumor immunity and ferroptosis are explained, which provides new ideas for the clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Shiqi Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Zeng
- Center of Clinical Laboratory, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Junli Fan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chen Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiancheng Tu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kenneth P Nephew
- Medical Sciences Program, Indiana University, Bloomington, IN, USA.
| | - Xinghua Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
27
|
Apoptosis or Antiapoptosis? Interrupted Regulated Cell Death of Host Cells by Ascovirus Infection In Vitro. mBio 2023; 14:e0311922. [PMID: 36744941 PMCID: PMC9973268 DOI: 10.1128/mbio.03119-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ascoviruses are insect-specific viruses thought to utilize the cellular apoptotic processes of host larvae to produce numerous virion-containing vesicles. In this study, we first determined the biochemical characteristics of ascovirus-infected, in vitro-cultured insect cells and the possible antiapoptotic capacity of ascovirus-infected insect cells. The results indicated that the ascovirus infection in the first 24 h was different from the infection from 48 h to the later infection stages. In the early infection stage, the Spodoptera exigua host cells had high membrane permeability and cleaved gasdermin D (GSDMD) but uncleaved Casp-6 (SeCasp-6). In contrast, the later infection stage had no such increased membrane permeability and had cleaved SeCasp-6. Four different chemicals were used to induce apoptosis at different stages of ascovirus infection: hydrogen peroxide (H2O2) and actinomycin D (ActD) had similar effects on the ascovirus-infected cells, whereas cMYC inhibitors and tumor necrosis factor alpha (TNF-α) plus SM-164 apoptosis inducers (T/S) had similar effects on infected cells. The former two inducers inhibited viral DNA replication in most situations, while the latter two inducers inhibited viral DNA replication in the early stage of infection but promoted viral DNA replication in the later infection stage. Furthermore, immunoblotting assays verified that T/S treatment could increase the expression levels of viral major capsid protein (MCP) and the host inhibitor of apoptosis protein (SeIAP). Coimmunoprecipitation assays revealed interaction between SeIAP and SeCasps, but this interaction was disturbed in ascovirus-infected cells. This study details the in vitro infection process of ascovirus, indicating the utilization of pyroptosis for antiapoptosis cytopathology. IMPORTANCE Clarifying the relationship between different types of viral infections and host regulation of cell death (RCD) can provide insights into the interaction between viruses and host cells. Ascoviruses are insect-specific viruses with apoptosis-utilizing-like infection cytopathology. However, RCD does not only include apoptosis, and while in our previous transmission electron microscopic observations, ascovirus-infected cells did not show typical apoptotic characteristics (unpublished data), in this study, they did show increased membrane permeability. These results indicate that the cytopathology of ascovirus infection is a complex process in which the virus manipulates host RCD. The RCD of insect cells is quite different from that of mammals, and studies on the former are many fewer than those on the latter, especially in the case of RCD in lepidopteran insects. Our results will lay a foundation for understanding the RCD of lepidopteran insects and its function in the process of insect virus infection.
Collapse
|
28
|
Abolfathi H, Arabi M, Sheikhpour M. A literature review of microRNA and gene signaling pathways involved in the apoptosis pathway of lung cancer. Respir Res 2023; 24:55. [PMID: 36800962 PMCID: PMC9938615 DOI: 10.1186/s12931-023-02366-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Lung cancer is one of the leading causes of death in the world and the deadliest of all cancers. Apoptosis is a key pathway in regulating the cell growth rate, proliferation, and occurrence of lung cancer. This process is controlled by many molecules, such as microRNAs and their target genes. Therefore, finding new medical approaches such as exploring diagnostic and prognostic biomarkers involved in apoptosis is needed for this disease. In the present study, we aimed to identify key microRNAs and their target genes that could be used in the prognosis and diagnosis of lung cancer. METHODS Signaling pathways, genes, and microRNAs involved in the apoptotic pathway were identified by bioinformatics analysis and recent clinical studies. Bioinformatics analysis was performed on databases including NCBI, TargetScan, UALCAN, UCSC, KEGG, miRPathDB, and Enrichr, and clinical studies were extracted from PubMed, web of science, and SCOPUS databases. RESULTS NF-κB, PI3K/AKT, and MAPK pathways play critical roles in the regulation of apoptosis. MiR-146b, 146a, 21, 23a, 135a, 30a, 202, and 181 were identified as the involved microRNAs in the apoptosis signaling pathway, and IRAK1, TRAF6, Bcl-2, PTEN, Akt, PIK3, KRAS, and MAPK1 were classified as the target genes of the mentioned microRNAs respectively. The essential roles of these signaling pathways and miRNAs/target genes were approved through both databases and clinical studies. Moreover, surviving, living, BRUCE, and XIAP was the main inhibitor of apoptosis which act by regulating the apoptosis-involved genes and miRNAs. CONCLUSION Identifying the abnormal expression and regulation of miRNAs and signaling pathways in apoptosis of lung cancer can represent a novel class of biomarkers that can facilitate the early diagnosis, personalized treatment, and prediction of drug response for lung cancer patients. Therefore, studying the mechanisms of apoptosis including signaling pathways, miRNAs/target genes, and the inhibitors of apoptosis are advantageous for finding the most practical approach and reducing the pathological demonstrations of lung cancer.
Collapse
Affiliation(s)
- Hanie Abolfathi
- grid.23856.3a0000 0004 1936 8390Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, Canada
| | - Mohadeseh Arabi
- grid.420169.80000 0000 9562 2611Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran. .,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
29
|
Ayoup MS, Mansour AF, Abdel-Hamid H, Abu-Serie MM, Mohyeldin SM, Teleb M. Nature-inspired new isoindole-based Passerini adducts as efficient tumor-selective apoptotic inducers via caspase-3/7 activation. Eur J Med Chem 2023; 245:114865. [DOI: 10.1016/j.ejmech.2022.114865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022]
|
30
|
Morelli MB, Nabissi M, Amantini C, Maggi F, Ricci-Vitiani L, Pallini R, Santoni G. TRPML2 Mucolipin Channels Drive the Response of Glioma Stem Cells to Temozolomide and Affect the Overall Survival in Glioblastoma Patients. Int J Mol Sci 2022; 23:ijms232315356. [PMID: 36499683 PMCID: PMC9738251 DOI: 10.3390/ijms232315356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The survival of patients with glioblastoma (GBM) is poor. The main cause is the presence of glioma stem cells (GSCs), exceptionally resistant to temozolomide (TMZ) treatment. This last may be related to the heterogeneous expression of ion channels, among them TRPML2. Its mRNA expression was evaluated in two different neural stem cell (NS/PC) lines and sixteen GBM stem-like cells by qRT-PCR. The response to TMZ was evaluated in undifferentiated or differentiated GSCs, and in TRPML2-induced or silenced GSCs. The relationship between TRPML2 expression and responsiveness to TMZ treatment was evaluated by MTT assay showing that increased TRPML2 mRNA levels are associated with resistance to TMZ. This research was deepened by qRT-PCR and western blot analysis. PI3K/AKT and JAK/STAT pathways as well as ABC and SLC drug transporters were involved. Finally, the relationship between TRPML2 expression and overall survival (OS) and progression-free survival (PFS) in patient-derived GSCs was evaluated by Kaplan-Meier analysis. The expression of TRPML2 mRNA correlates with worse OS and PFS in GBM patients. Thus, the expression of TRPML2 in GSCs influences the responsiveness to TMZ in vitro and affects OS and PFS in GBM patients.
Collapse
Affiliation(s)
- Maria Beatrice Morelli
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
- Correspondence: (M.B.M.); (G.S.); Tel.: +39-0737403312 (M.B.M.); +39-0737403319 (G.S.)
| | - Massimo Nabissi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Federica Maggi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Lucia Ricci-Vitiani
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Roberto Pallini
- Institute of Neurosurgery, Gemelli University Polyclinic Foundation, Scientific Hospitalization and Care Institute (IRCCS), 00168 Rome, Italy
- Institute of Neurosurgery, School of Medicine, Catholic University, 00168 Rome, Italy
| | - Giorgio Santoni
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
- Correspondence: (M.B.M.); (G.S.); Tel.: +39-0737403312 (M.B.M.); +39-0737403319 (G.S.)
| |
Collapse
|
31
|
OSW-1 induces apoptosis and cyto-protective autophagy, and synergizes with chemotherapy on triple negative breast cancer metastasis. Cell Oncol (Dordr) 2022; 45:1255-1275. [PMID: 36155886 DOI: 10.1007/s13402-022-00716-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer. As yet, chemotherapy with drugs such as doxorubicin is the main treatment strategy. However, drug resistance and dose-dependent toxicities restrict their clinical use. Natural products are major sources of anti-tumor drugs. OSW-1 is a natural compound with strong anti-cancer effects in several types of cancer, but its effects on the efficacy of chemotherapy in TNBC and its underlying mechanism remain unclear. METHODS The inhibitory activities of OSW-1 and its combination with several chemotherapy drugs were tested using in vitro assays and in vivo subcutaneous and metastatic mouse TNBC models. The effects of the mono- and combination treatments on TNBC cell viability, apoptosis, autophagy and related signaling pathways were assessed using MTT, flow cytometry, RNA sequencing and immunology-based assays. In addition, the in vivo inhibitory effects of OSW-1 and (combined) chemotherapies were evaluated in subcutaneous and metastatic mouse tumor models. RESULTS We found that OSW-1 induces Ca2+-dependent mitochondria-dependent intrinsic apoptosis and cyto-protective autophagy through the PI3K-Akt-mTOR pathway in TNBC cells in vitro. We also found that OSW-1 and doxorubicin exhibited strong synergistic anti-TNBC capabilities both in vivo and in vitro. Combination treatment strongly inhibited spontaneous and experimental lung metastases in 4T1 mouse models. In addition, the combination strategy of OSW-1 + Carboplatin + Docetaxel showed an excellent anti-metastatic effect in vivo. CONCLUSIONS Our data revealed the mode of action and molecular mechanism underlying the effect of OSW-1 against TNBC, and provided a useful guidance for improving the sensitivity of TNBC cells to conventional chemotherapeutic drugs, which warrants further investigation.
Collapse
|
32
|
In vitro biochemical assessment of mixture effects of two endocrine disruptors on INS-1 cells. Sci Rep 2022; 12:20102. [PMID: 36418342 PMCID: PMC9684134 DOI: 10.1038/s41598-022-20655-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
4-tert-Octylphenol (4-tOP) is a component of non-ionic surfactants alkylphenol polyethoxylates while triclosan (TCS) is an antibacterial present in personal care products. Both compounds can co-exist in environmental matrices such as soil and water. The mixture effects of these micropollutants in vitro remains unknown. INS-1 cells were exposed to 20 µM or 30 µM 4-tOP and 8 µM or 12.5 µM TCS as well as equimolar mixture of the chemicals (Mix) in total concentration of 12.5 µM or 25 µM for 48 h. Mitochondrial related parameters were investigated using high content analytical techniques. The cytotoxicity of the chemicals (IC50) varied according to TCS > Mix > 4-tOP. Increased glucose uptake and loss of mitochondrial membrane potential were recorded in TCS and Mix treated cells. Fold values of glucose-galactose assay varied according to dinitrophenol > TCS > 4-tOP > Mix in decreasing order of mitochondrial toxicity. The loss of the intracellular Ca2+ influx by all the test substances and Mix was not substantial whereas glibenclamide and diazoxide increased the intracellular Ca2+ influx when compared with the Blank. The recorded increase in Ca2+ influx by diazoxide which contrasted with its primary role of inhibiting insulin secretion need be re-investigated. It is concluded that the toxic effects of TCS and Mix but not 4-tOP on INS-1 cells was mitochondria-mediated.
Collapse
|
33
|
Human Cytomegalovirus and Human Herpesvirus 6 Coinfection of Dermal Fibroblasts Enhances the Pro-Inflammatory Pathway Predisposing to Fibrosis: The Possible Impact on Systemic Sclerosis. Microorganisms 2022; 10:microorganisms10081600. [PMID: 36014018 PMCID: PMC9415275 DOI: 10.3390/microorganisms10081600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Systemic sclerosis (SSc) is a severe autoimmune disease likely triggered by genetic and environmental factors, including viral infections. Human cytomegalovirus (HCMV) and human herpesvirus 6A species (HHV-6A) have been associated with SSc, based on in vivo and in vitro evidence, but the data are still inconclusive. Furthermore, despite both viruses being highly prevalent in humans and able to exacerbate each other’s effects, no data are available on their joint effects. Hence, we aimed to study their simultaneous impact on the expression of cell factors correlated with fibrosis and apoptosis in in vitro coinfected fibroblasts, representing the main target cell type in SSc. The results, obtained by a microarray detecting 84 fibrosis/apoptosis-associated factors, indicated that coinfected cells underwent higher and more sustained expression of fibrosis-associated parameters compared with single-infected cells. Thus, the data, for the first time, suggest that HCMV and HHV-6A may cooperate in inducing alterations potentially leading to cell fibrosis, thus further supporting their joint role in SSc. However, further work is required to definitively answer whether β-herpesviruses are causally linked to the disease and to enable the possible use of targeted antiviral treatments to improve clinical outcomes.
Collapse
|
34
|
In silico insight of cell-death-related proteins in photosynthetic cyanobacteria. Arch Microbiol 2022; 204:511. [PMID: 35864385 DOI: 10.1007/s00203-022-03130-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/02/2022]
Abstract
Cyanobacteria are a large group of ubiquitously found photosynthetic prokaryotes that are constantly exposed to different kinds of stressors of varying intensities and seem to overcome these in a precise and regulated manner. However, a high dose and duration of given stress induce cell death in a few select cyanobacteria, mainly to protect other cells (altruism). Despite the recent findings for the presence of biochemical and molecular hallmarks of cell death in cyanobacteria, it is yet a sketchily understood phenomenon. Regulation of metacaspase-like genes during Programmed Cell Death suggests it to be a genetically controlled mechanism like other eukaryotes. In addition to providing a comprehensive understanding of the current status of cell death in cyanobacteria, this review has used in silico analyses to directly compare the existence of some important molecular players operating in the intrinsic and extrinsic apoptotic pathways. Phylogenetic trees for all sequences indicate a cluster with a common ancestry and also a divergence from sequences of eukaryotic origin. To the best of our knowledge, such a comparison (except for orthocaspases) has not been attempted earlier and hopes to encourage workers in the field to investigate this altruistic phenomenon in detail.
Collapse
|
35
|
Bansal A, Saleh-E-In MM, Kar P, Roy A, Sharma NR. Synthesis of Carvacrol Derivatives as Potential New Anticancer Agent against Lung Cancer. Molecules 2022; 27:molecules27144597. [PMID: 35889476 PMCID: PMC9323284 DOI: 10.3390/molecules27144597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 02/01/2023] Open
Abstract
Lung cancer remains a major public health concern among all cancer diseases due to the toxicity and side-effects of the available commercially synthesized drugs. Natural product-derived synthesized anticancer drugs are now of promising interest to fight against cancer death. Carvacrol is a major component of most essential oil-bearing plants with potential pharmacological activity, especially against various cancer cell lines. Among the other organometallic compounds, copper complexes have been reported to be effective anticancer agents against various cancer cell lines, especially lung and leukemia cancers, due to the nontoxic nature of copper in normal cells since it is an endogenic metal. In this study, we synthesized three carvacrol derivatives, i.e., carvacrol aldehyde, Schiff base, and copper–Schiff base complex, through an established synthesis protocol and characterized the synthesized product using various spectroscopic techniques. The synthesized derivatives were evaluated for in vitro cytotoxic activity against different cancer cell lines, including human lung cancer (A549) and human fibroblast (BALB-3T3). Our findings showed that the copper–Schiff base complex derived from carvacrol inhibited the proliferation and migration of the A549 cell lines in a dose-dependent manner. This activity might be due to the inhibition of cell proliferation and migration at the G2/M cell-cycle phase, as well as apoptosis, possibly through the activation of the mitochondrial apoptotic pathway. To our knowledge, this is the first report on the activity of the copper–Schiff base complex of carvacrol against A549 cell lines. Our result highlights that a new synthesized copper complex from carvacrol could be a novel potential drug in the treatment of lung cancer.
Collapse
Affiliation(s)
- Anu Bansal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Md. Moshfekus Saleh-E-In
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chunchon 200701, Korea;
| | - Pallab Kar
- B.S. Diagnostic and Pathology Laboratory, Siliguri 734001, India;
| | - Ayan Roy
- Mailman School of Public Health, Columbia University, New York, NY 10032, USA;
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
- Correspondence: ; Tel.: +91-828-3921-144
| |
Collapse
|
36
|
Peery R, Cui Q, Kyei-Baffour K, Josephraj S, Huang C, Dong Z, Dai M, Zhang JT, Liu JY. A novel survivin dimerization inhibitor without a labile hydrazone linker induces spontaneous apoptosis and synergizes with docetaxel in prostate cancer cells. Bioorg Med Chem 2022; 65:116761. [PMID: 35504208 PMCID: PMC9148172 DOI: 10.1016/j.bmc.2022.116761] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 12/16/2022]
Abstract
Survivin, a member of the inhibitor of apoptosis protein family, exists as a homodimer and is aberrantly upregulated in a wide spectrum of cancers. It was thought to be an ideal target due to its lack of expression in most adult normal tissues and importance in cancer cell survival. However, it has been challenging to target survivin due to its "undruggable" nature. We previously attempted to target its dimerization domain with a hypothesis that inhibiting survivin dimerization would promote its degradation in proteasome, which led to identification of a lead small-molecule inhibitor, LQZ-7F. LQZ-7F consists of a flat tetracyclic aromatic core with labile hydrazone linking a 1,2,5-oxadiazole moiety. In this study, we tested the hypothesis that LQZ-7F could be developed as a prodrug because the labile hydrazone linker could be hydrolyzed, releasing the tetracyclic aromatic core. To this end, we synthesized the tetracyclic aromatic core (LQZ-7F1) using reported procedure and tested LQZ-7F1 for its biological activities. Here we show that LQZ-7F1 has a significantly improved potency with submicromolar IC50's and induces spontaneous apoptosis in prostate cancer cells. It also more effectively inhibits survivin dimerization and induces survivin degradation in a proteasome-dependent manner than LQZ-7F. We also show that the combination of LQZ-7F1 and docetaxel have strong synergism in inhibiting prostate cancer cell survival. Together, we conclude that the hydrazone linker with the oxadiazole tail is dispensable for survivin inhibition and the survivin dimerization inhibitor, LQZ-7F, may be developed as a prodrug for prostate cancer treatment and to overcome docetaxel resistance.
Collapse
Affiliation(s)
- Robert Peery
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Qingbin Cui
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Kwaku Kyei-Baffour
- Department of Chemistry, Purdue University, West Lafayette, IN, United States
| | - Sophia Josephraj
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Caoqinglong Huang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Zizheng Dong
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Mingji Dai
- Department of Chemistry, Purdue University, West Lafayette, IN, United States, Corresponding authors at: Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, United States (M. Dai). Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave., Toledo, OH 43614, United States (J.-T. Zhang). Department of Medicine, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave., Toledo, OH 43614, United States (J.-Y. Liu). (M. Dai), (J.-T. Zhang), (J.-Y. Liu)
| | - Jian-Ting Zhang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States, Corresponding authors at: Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, United States (M. Dai). Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave., Toledo, OH 43614, United States (J.-T. Zhang). Department of Medicine, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave., Toledo, OH 43614, United States (J.-Y. Liu). (M. Dai), (J.-T. Zhang), (J.-Y. Liu)
| | - Jing-Yuan Liu
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States, Corresponding authors at: Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, United States (M. Dai). Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave., Toledo, OH 43614, United States (J.-T. Zhang). Department of Medicine, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave., Toledo, OH 43614, United States (J.-Y. Liu). (M. Dai), (J.-T. Zhang), (J.-Y. Liu)
| |
Collapse
|
37
|
Wang D, Xu M, Li F, Gao Y, Sun H. Target Identification-Based Analysis of Mechanism of Betulinic Acid-Induced Cells Apoptosis of Cervical Cancer SiHa. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221115528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is the fourth most common female malignancy with high morbidity and mortality, which urgently needs novel anti-cancer drugs. Accumulating investigations have focused on the antitumor activity of betulinic acid (BA), which is a natural compound with low toxicity and high efficiency. Although the effect of BA on SiHa cells is obvious, the specific mechanism is seldom studied. Target identification is an important part of research on the internal mechanism of action. In this current study, an integrated method based on literature collection, target prediction, enrichment analysis, network analysis, and western blotting experiments was performed to identify the potential key targets of BA-induced apoptosis. Then, combined with the identified potential key targets, the specific mechanism of BA-induced cervical cancer SiHa cells apoptosis was elucidated. Our present study demonstrated that BA significantly reduces the viability of cervical cancer SiHa cells in a dose- and time-dependent manner. In addition, 8 potential key targets (AKT1, CASP8, LMNA, TNF, BCL2, CASP3, PARP1, and XIAP) were obtained through our integrated target identification method. Meanwhile, western blotting showed that within a certain concentration range, the expression of cleaved-caspase 3, cleaved-PARP, and cytochrome c increased with the BA concentration, while XIAP was almost unchanged. Therefore, the effect of BA on cervical cancer is noticeable. BA-induced SiHa cells apoptosis is a multi-molecule coordinated process. In this process, BA is not only a participant in either the extrinsic or intrinsic pathways, but also a regulator of apoptosis effector molecules of the CASP3/PARP1 axis.
Collapse
Affiliation(s)
- Dan Wang
- Zhejiang Hospital, Hangzhou, China
| | - Mengjin Xu
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan Li
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Gao
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Sun
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
38
|
Zhang Z, Xiang S, Cui R, Peng H, Mridul R, Xiang M. ILP-2: A New Bane and Therapeutic Target for Human Cancers. Front Oncol 2022; 12:922596. [PMID: 35814477 PMCID: PMC9260022 DOI: 10.3389/fonc.2022.922596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
Inhibitor of apoptosis protein-related-like protein-2 (ILP-2), also known as BIRC-8, is a member of the inhibitor of apoptosis protein (IAPs) family, which mainly encodes the negative regulator of apoptosis. It is selectively overexpressed in a variety of human tumors and can help tumor cells evade apoptosis, promote tumor cell growth, increase tumor cell aggressiveness, and appears to be involved in tumor cell resistance to chemotherapeutic drugs. Several studies have shown that downregulation of ILP-2 expression increases apoptosis, inhibits metastasis, reduces cell growth potential, and sensitizes tumor cells to chemotherapeutic drugs. In addition, ILP-2 inhibits apoptosis in a unique manner; it does not directly inhibit the activity of caspases but induces apoptosis by cooperating with other apoptosis-related proteins. Here, we review the current understanding of the various roles of ILP-2 in the apoptotic cascade and explore the use of interfering ILP-2, and the combination of related anti-tumor agents, as a novel strategy for cancer therapy.
Collapse
Affiliation(s)
- Zhiliang Zhang
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, China
- The State Ethnic Committee's Key Laboratory of Clinical Engineering Laboratory of Xiangxi Miao Pediatric Tuina, Jishou University, Jishou, China
| | - Siqi Xiang
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, China
- The State Ethnic Committee's Key Laboratory of Clinical Engineering Laboratory of Xiangxi Miao Pediatric Tuina, Jishou University, Jishou, China
| | - Ruxia Cui
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, China
- The State Ethnic Committee's Key Laboratory of Clinical Engineering Laboratory of Xiangxi Miao Pediatric Tuina, Jishou University, Jishou, China
| | - Hang Peng
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, China
- The State Ethnic Committee's Key Laboratory of Clinical Engineering Laboratory of Xiangxi Miao Pediatric Tuina, Jishou University, Jishou, China
| | - Roy Mridul
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, China
- The State Ethnic Committee's Key Laboratory of Clinical Engineering Laboratory of Xiangxi Miao Pediatric Tuina, Jishou University, Jishou, China
| | - Mingjun Xiang
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, China
- The State Ethnic Committee's Key Laboratory of Clinical Engineering Laboratory of Xiangxi Miao Pediatric Tuina, Jishou University, Jishou, China
| |
Collapse
|
39
|
Schwalm MP, Berger LM, Meuter MN, Vasta JD, Corona CR, Röhm S, Berger BT, Farges F, Beinert SM, Preuss F, Morasch V, Rogov VV, Mathea S, Saxena K, Robers MB, Müller S, Knapp S. A Toolbox for the Generation of Chemical Probes for Baculovirus IAP Repeat Containing Proteins. Front Cell Dev Biol 2022; 10:886537. [PMID: 35721509 PMCID: PMC9204419 DOI: 10.3389/fcell.2022.886537] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/29/2022] [Indexed: 12/12/2022] Open
Abstract
E3 ligases constitute a large and diverse family of proteins that play a central role in regulating protein homeostasis by recruiting substrate proteins via recruitment domains to the proteasomal degradation machinery. Small molecules can either inhibit, modulate or hijack E3 function. The latter class of small molecules led to the development of selective protein degraders, such as PROTACs (PROteolysis TArgeting Chimeras), that recruit protein targets to the ubiquitin system leading to a new class of pharmacologically active drugs and to new therapeutic options. Recent efforts have focused on the E3 family of Baculovirus IAP Repeat (BIR) domains that comprise a structurally conserved but diverse 70 amino acid long protein interaction domain. In the human proteome, 16 BIR domains have been identified, among them promising drug targets such as the Inhibitors of Apoptosis (IAP) family, that typically contain three BIR domains (BIR1, BIR2, and BIR3). To date, this target area lacks assay tools that would allow comprehensive evaluation of inhibitor selectivity. As a consequence, the selectivity of current BIR domain targeting inhibitors is unknown. To this end, we developed assays that allow determination of inhibitor selectivity in vitro as well as in cellulo. Using this toolbox, we have characterized available BIR domain inhibitors. The characterized chemical starting points and selectivity data will be the basis for the generation of new chemical probes for IAP proteins with well-characterized mode of action and provide the basis for future drug discovery efforts and the development of PROTACs and molecular glues.
Collapse
Affiliation(s)
- Martin P Schwalm
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Lena M Berger
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Maximilian N Meuter
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | | | | | - Sandra Röhm
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Benedict-Tilman Berger
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Frederic Farges
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Sebastian M Beinert
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Franziska Preuss
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Viktoria Morasch
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Vladimir V Rogov
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Sebastian Mathea
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Krishna Saxena
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | | | - Susanne Müller
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Stefan Knapp
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
40
|
Wang C, Zhang Y, Shi L, Yang S, Chang J, Zhong Y, Li Q, Xing D. Recent advances in IAP-based PROTACs (SNIPERs) as potential therapeutic agents. J Enzyme Inhib Med Chem 2022; 37:1437-1453. [PMID: 35589670 PMCID: PMC9122363 DOI: 10.1080/14756366.2022.2074414] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Proteolytic targeting chimaeras (PROTACs) have been developed as an effective technology for targeted protein degradation. PROTACs are heterobifunctional molecules that can trigger the polyubiquitination of proteins of interest (POIs) by recruiting the ubiquitin-proteasome system, thereby inhibiting the intracellular level of POIs. To date, a variety of small-molecule PROTACs (CRBN, VHL, IAP, and MDM2-based PROTACs) have been developed. IAP-based PROTACs, also known as specific and nongenetic IAP-dependent protein erasers (SNIPERs), are used to degrade the target proteins closely related to diseases. Their structures consist of three parts, including target protein ligand, E3 ligase ligand, and the linker between them. So far, many SNIPERs have been extensively studied worldwide and have performed well in multiple diseases, especially cancer. In this review, we will present the most relevant advances in the field of SNIPERs and provide our perspective on the opportunities and challenges for SNIPERs to become therapeutic agents.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Lingyu Shi
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Shanbo Yang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Jing Chang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Yingjie Zhong
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Qian Li
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China.,School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
41
|
Singh V, Singh R, Mahdi AA, Tripathi AK. The bioengineered HALOA complex induces anoikis in chronic myeloid leukemia cells by targeting the BCR-ABL/Notch/Ikaros/Redox/Inflammation axis. J Med Life 2022; 15:606-616. [PMID: 35815090 PMCID: PMC9262277 DOI: 10.25122/jml-2021-0230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/03/2022] [Indexed: 11/19/2022] Open
Abstract
Blast crisis (BC) is an outcome that arises during the treatment process of chronic myeloid leukemia (CML), which is possibly attained by the dysregulation of the Notch and Ikaros signaling pathways, BCR-ABL translocation, redox, and inflammatory factors. This study demonstrated that biotherapeutic agents target aberrant molecular axis in CML-BC cells. The HALOA complex was synthesized by simple mixing of apo α-lactalbumin with oleic acid, which manages to inhibit BCR-ABL (b3a2 in K562 cells) translocation. It elevates the production of reactive oxygen species (ROS), reactive nitrogen species (RNS), and protein carbonyl, which induces DNA fragmentation in K562 cells but not in NIH cells. The complex manages to reduce the toxicity surrounding apoptotic cells by enhancing the production of superoxide dismutase (SOD) and the total antioxidant level. The HALOA complex increases leptin to maintain normoxic conditions, ultimately preventing angiogenesis. This complex downregulates the expression of IL-8 and MMP-9 and elevates the expression levels of Notch 4, Ikaros, and integrin alpha-D/CD-11d (tumor-suppressive), which conjointly prevents inflammation, metastasis, and epithelial-mesenchymal transition (EMT) in CML cells. Meanwhile, the complex downregulates Notch 1 and 2 (oncogenic), consequently inducing anoikis in CML cells. Overall, the HALOA complex shows credibility by targeting the combined molecular factors responsible for the pathogenesis of the disease and will also help to overcome MDR conditions in leukemia.
Collapse
Affiliation(s)
- Vivek Singh
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Ranjana Singh
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India,Corresponding Author: Ranjana Singh,Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India. E-mail:
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Anil Kumar Tripathi
- Department of Clinical Hematology, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
42
|
Sosič I, Bricelj A, Steinebach C. E3 ligase ligand chemistries: from building blocks to protein degraders. Chem Soc Rev 2022; 51:3487-3534. [PMID: 35393989 DOI: 10.1039/d2cs00148a] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, proteolysis-targeting chimeras (PROTACs), capable of achieving targeted protein degradation, have proven their great therapeutic potential and usefulness as molecular biology tools. These heterobifunctional compounds are comprised of a protein-targeting ligand, an appropriate linker, and a ligand binding to the E3 ligase of choice. A successful PROTAC induces the formation of a ternary complex, leading to the E3 ligase-mediated ubiquitination of the targeted protein and its proteasomal degradation. In over 20 years since the concept was first demonstrated, the field has grown substantially, mainly due to the advancements in the discovery of non-peptidic E3 ligase ligands. Development of small-molecule E3 binders with favourable physicochemical profiles aided the design of PROTACs, which are known for breaking the rules of established guidelines for discovering small molecules. Synthetic accessibility of the ligands and numerous successful applications led to the prevalent use of cereblon and von Hippel-Lindau as the hijacked E3 ligase. However, the pool of over 600 human E3 ligases is full of untapped potential, which is why expanding the artillery of E3 ligands could contribute to broadening the scope of targeted protein degradation. In this comprehensive review, we focus on the chemistry aspect of the PROTAC design process by providing an overview of liganded E3 ligases, their chemistries, appropriate derivatisation, and synthetic approaches towards their incorporation into heterobifunctional degraders. By covering syntheses of both established and underexploited E3 ligases, this review can serve as a chemistry blueprint for PROTAC researchers during their future ventures into the complex field of targeted protein degradation.
Collapse
Affiliation(s)
- Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Aleša Bricelj
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
43
|
Proteolysis-targeting chimeras: A promising technique in cancer therapy for gaining insights into tumor development. Cancer Lett 2022; 539:215716. [DOI: 10.1016/j.canlet.2022.215716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/10/2022] [Accepted: 04/26/2022] [Indexed: 12/15/2022]
|
44
|
Nakano N, Fukuda K, Tashiro E, Ishikawa H, Nagano W, Kawamoto R, Mori A, Watanabe M, Yamazaki R, Nakane T, Naito M, Okamoto I, Itoh S. Hybrid molecule between platanic acid and LCL-161 as a yes-associated protein (YAP) degrader. J Biochem 2022; 171:631-640. [PMID: 35211741 DOI: 10.1093/jb/mvac021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/19/2022] [Indexed: 11/13/2022] Open
Abstract
Dysregulated Yes-associated protein (YAP) is involved in several malignant cancers. However, discovering a druggable YAP inhibitor(s) is difficult because YAP itself does not have any enzymatic activity. In such cases, targeted protein degradation strategies based on hybrid molecules that bind to the target protein and an E3 ubiquitin ligase are useful for suppressing proteins that exhibit aberrant activation and/or excessive expression. Upon screening YAP-interacting small compounds, we identified HK13, a platanic acid, as a novel compound that interacts with YAP. Next, we synthesized hybrid compounds of platanic acid and LCL-161, which reportedly shows a high affinity to for cIAP, one of E3 ubiquitin ligases. Among these compounds, HK24 possessed the ability to inhibit the growth of YAP overexpressing NCI-H290 cells. This inhibitory activity may be mediated by YAP degradation, although HK24 exhibited weak YAP degradation. Furthermore, we confirmed involvement of proteasome pathway in HK24-dependent YAP degradation by culturing NCI-H290 cells in the presence of a proteasome inhibitor. Therefore, it is possible that platanic acid is a potential candidate for molecular medicine targeting YAP.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Mikihiko Naito
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan; Social Cooperation Program of Targeted Protein Degradation, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
45
|
Chen CW, Hsieh MJ, Ju PC, Hsieh YH, Su CW, Chen YL, Yang SF, Lin CW. Curcumin analog HO-3867 triggers apoptotic pathways through activating JNK1/2 signalling in human oral squamous cell carcinoma cells. J Cell Mol Med 2022; 26:2273-2284. [PMID: 35191177 PMCID: PMC8995445 DOI: 10.1111/jcmm.17248] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/19/2022] [Accepted: 02/08/2022] [Indexed: 12/11/2022] Open
Abstract
Human oral squamous cell carcinoma (OSCC) is the common head and neck malignancy in the world. While surgery, radiotherapy and chemotherapy are emerging as the standard treatment for OSCC patients, the outcome is limited to the recurrence and side effects. Therefore, patients with OSCC require alternative strategies for treatment. In this study, we aimed to explore the therapeutic effect and the mode of action of the novel curcumin analog, HO-3867, against human OSCC cells. We analysed the cytotoxicity of HO-3867 using MTT assay. In vitro mechanic studies were performed to determine whether MAPK pathway is involved in HO-3867 induced cell apoptosis. As the results, we found HO-3867 suppressed OSCC cells growth effectively. The flow cytometry data indicate that HO-3867 induce the sub-G1 phase. Moreover, we found that HO-3867 induced cell apoptosis by triggering formation of activated caspase 3, caspase 8, caspase 9 and PARP. After dissecting MAPK pathway, we found HO-3867 induced cell apoptosis via the c-Jun N-terminal kinase (JNK)1/2 pathway. Our results suggest that HO-3867 is an effective anticancer agent as its induction of cell apoptosis through JNK1/2 pathway in human oral cancer cells.
Collapse
Affiliation(s)
- Chi-Wei Chen
- Department of Life Science, College of Science and Engineering, National Dong Hwa University, Hualien, Taiwan
| | - Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan.,Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Po-Chung Ju
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Psychiatry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Wen Su
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yen-Lin Chen
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
46
|
Liu SH, Ku CY, Chiang MT. Polysaccharide-Rich Red Algae ( Gelidium amansii) Hot-Water Extracts Alleviate Abnormal Hepatic Lipid Metabolism without Suppression of Glucose Intolerance in a Streptozotocin/Nicotinamide-Induced Diabetic Rat Model. Molecules 2022; 27:1447. [PMID: 35209236 PMCID: PMC8875162 DOI: 10.3390/molecules27041447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
This study was designed to investigate the effects of polysaccharide-rich red algae (Gelidium amansii) hot-water extracts (GHE) on lipid and glucose metabolism in rats with streptozotocin (STZ)/nicotinamide (NA)-induced diabetes. Rats were divided into three groups: NC-normal control group), DM-diabetic group, and DG-diabetic group supplemented with GHE (5%). The experimental diet and drinking water were available ad libitum for 10 weeks. After the 10-week feeding duration, the body weight, liver weight, total adipose tissue weight, and hepatic TBARS and cholesterol levels were significantly increased, and hepatic glycogen content and adipose lipolysis rate were significantly decreased in the DM group, which could be effectively reversed by supplementation of GHE. However, GHE supplementation could not improve the glucose intolerance in DM rats. It was interesting to note that GHE supplementation could decrease the liver glucose-6-phosphotase activity, which was increased in DM rats. Taken together, these results suggested that GHE feeding may ameliorate abnormal hepatic lipid metabolism, but not glucose intolerance, in diabetic rats induced by STZ/NA.
Collapse
Affiliation(s)
- Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Pediatrics, College of Medicine, National Taiwan University Hospital, Taipei 10051, Taiwan
| | - Chia-Yu Ku
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Meng-Tsan Chiang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan;
| |
Collapse
|
47
|
Martinez-Banaclocha M. N-Acetyl-Cysteine: Modulating the Cysteine Redox Proteome in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11020416. [PMID: 35204298 PMCID: PMC8869501 DOI: 10.3390/antiox11020416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
In the last twenty years, significant progress in understanding the pathophysiology of age-associated neurodegenerative diseases has been made. However, the prevention and treatment of these diseases remain without clinically significant therapeutic advancement. While we still hope for some potential genetic therapeutic approaches, the current reality is far from substantial progress. With this state of the issue, emphasis should be placed on early diagnosis and prompt intervention in patients with increased risk of neurodegenerative diseases to slow down their progression, poor prognosis, and decreasing quality of life. Accordingly, it is urgent to implement interventions addressing the psychosocial and biochemical disturbances we know are central in managing the evolution of these disorders. Genomic and proteomic studies have shown the high molecular intricacy in neurodegenerative diseases, involving a broad spectrum of cellular pathways underlying disease progression. Recent investigations indicate that the dysregulation of the sensitive-cysteine proteome may be a concurrent pathogenic mechanism contributing to the pathophysiology of major neurodegenerative diseases, opening new therapeutic opportunities. Considering the incidence and prevalence of these disorders and their already significant burden in Western societies, they will become a real pandemic in the following decades. Therefore, we propose large-scale investigations, in selected groups of people over 40 years of age with decreased blood glutathione levels, comorbidities, and/or mild cognitive impairment, to evaluate supplementation of the diet with low doses of N-acetyl-cysteine, a promising and well-tolerated therapeutic agent suitable for long-term use.
Collapse
|
48
|
Ansari B, Aschner M, Hussain Y, Efferth T, Khan H. Suppression of colorectal carcinogenesis by naringin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153897. [PMID: 35026507 DOI: 10.1016/j.phymed.2021.153897] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Colorectal cancer is the third most malignant cancer worldwide. Despite novel treatment options, the incidence and mortality rates of colon cancer continue to increase in most countries, especially in US, European and Asian countries. Colorectal carcinogenesis is multifactorial, including dietary and genetic factors, as well as lacking physical activity. Vegetables and fruits contain high amounts of secondary metabolites, which might reduce the risk for colorectal carcinogenesis. Flavonoids are important bioactive polyphenolic compounds. There are more than 4,000 different flavonoids, including flavanones, flavonoids, isoflavonoids, flavones, and catechins in a large variety of plant. HYPOTHESIS Among various other flavonoids, naringin in Citrus fruits has been a subject of intense scrutiny for its activity against many types of cancer, including colorectal cancer. We hypothesize that naringin is capable to inhibit the growth of transformed colonocytes and to induce programmed cell death in colon cancer cells. RESULTS We comprehensively review the inhibitory effects of naringin on colorectal cancers and address the underlying mechanistic pathways such as NF-κB/IL-6/STAT3, PI3K/AKT/mTOR, apoptosis, NF-κB-COX-2-iNOS, and β-catenin pathways. CONCLUSION Naringin suppresses colorectal inflammation and carcinogenesis by various signaling pathways. Randomized clinical trials are needed to determine their effectiveness in combating colorectal cancer.
Collapse
Affiliation(s)
- Bushra Ansari
- Department of Pharmacy, Abdul Wali Khan University Mardan 23200, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Jiangsu, 221400, P R China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Staudinger Weg 5, 55128 Mainz, Germany
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan 23200, Pakistan
| |
Collapse
|
49
|
E3 ligases: a potential multi-drug target for different types of cancers and neurological disorders. Future Med Chem 2022; 14:187-201. [DOI: 10.4155/fmc-2021-0157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ubiquitylation is a posttranslational modification of proteins that is necessary for a variety of cellular processes. E1 ubiquitin activating enzyme, E2 ubiquitin conjugating enzyme, and E3 ubiquitin ligase are all involved in transferring ubiquitin to the target substrate to regulate cellular function. The objective of this review is to provide an overview of different aspects of E3 ubiquitin ligases that can lead to major biological system failure in several deadly diseases. The first part of this review covers the important characteristics of E3 ubiquitin ligases and their classification based on structural domains. Further, the authors provide some online resources that help researchers explore the data relevant to the enzyme. The following section delves into the involvement of E3 ubiquitin ligases in various diseases and biological processes, including different types of cancer and neurological disorders.
Collapse
|
50
|
Hsia TC, Peng SF, Chueh FS, Lu KW, Yang JL, Huang AC, Hsu FT, Wu RSC. Bisdemethoxycurcumin Induces Cell Apoptosis and Inhibits Human Brain Glioblastoma GBM 8401/ Luc2 Cell Xenograft Tumor in Subcutaneous Nude Mice In Vivo. Int J Mol Sci 2022; 23:ijms23010538. [PMID: 35008959 PMCID: PMC8745075 DOI: 10.3390/ijms23010538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 02/04/2023] Open
Abstract
Bisdemethoxycurcumin (BDMC) has biological activities, including anticancer effects in vitro; however, its anticancer effects in human glioblastoma (GBM) cells have not been examined yet. This study aimed to evaluate the tumor inhibitory effect and molecular mechanism of BDMC on human GBM 8401/luc2 cells in vitro and in vivo. In vitro studies have shown that BDMC significantly reduced cell viability and induced cell apoptosis in GBM 8401/luc2 cells. Furthermore, BDMC induced apoptosis via inhibited Bcl-2 (anti-apoptotic protein) and increased Bax (pro-apoptotic proteins) and cytochrome c release in GBM 8401/luc2 cells in vitro. Then, twelve BALB/c-nude mice were xenografted with human glioblastoma GBM 8401/luc2 cancer cells subcutaneously, and the xenograft nude mice were treated without and with BDMC (30 and 60 mg/kg of BDMC treatment) every 3 days. GBM 8401/luc2 cell xenografts experiment showed that the growth of the tumors was significantly suppressed by BDMC administration at both doses based on the reduction of tumor size and weights. BDMC did not change the body weight and the H&E histopathology analysis of liver samples, indicating that BDMC did not induce systemic toxicity. Meanwhile, treatment with BDMC up-regulated the expressions of BAX and cleaved caspase-3, while it down-regulated the protein expressions of Bcl-2 and XIAP in the tumor tissues compared with the control group. This study has demonstrated that BDMC presents potent anticancer activity on the human glioblastoma GBM 8401/luc2 cell xenograft model by inducing apoptosis and inhibiting tumor cell proliferation and shows the potential for further development to the anti-GBM cancer drug.
Collapse
Affiliation(s)
- Te-Chun Hsia
- Department of Respiratory Therapy, China Medical University, Taichung 406, Taiwan;
- Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Shu-Fen Peng
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan;
- Department of Biological Science and Technology, China Medical University, Taichung 406, Taiwan
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413, Taiwan;
| | - Kung-Wen Lu
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 406, Taiwan;
| | - Jiun-Long Yang
- Department of Nursing, St. Mary’s Junior College of Medicine, Nursing and Management, Yilan 266, Taiwan; (J.-L.Y.); (A.-C.H.)
| | - An-Cheng Huang
- Department of Nursing, St. Mary’s Junior College of Medicine, Nursing and Management, Yilan 266, Taiwan; (J.-L.Y.); (A.-C.H.)
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 406, Taiwan
- Correspondence: (F.-T.H.); (R.S.-C.W.); Tel.: +886-4-2205-3366 (ext. 2532) (F.-T.H.); +886-4-2205-2121 (ext. 5242) (R.S.-C.W.); Fax: +886-4-2205-3764 (F.-T.H.); +886-4-2205-2121 (ext. 5237) (R.S.-C.W.)
| | - Rick Sai-Chuen Wu
- Department of Anesthesiology, China Medical University Hospital, Taichung 404, Taiwan
- Department of Anesthesiology, China Medical University, Taichung 404, Taiwan
- Correspondence: (F.-T.H.); (R.S.-C.W.); Tel.: +886-4-2205-3366 (ext. 2532) (F.-T.H.); +886-4-2205-2121 (ext. 5242) (R.S.-C.W.); Fax: +886-4-2205-3764 (F.-T.H.); +886-4-2205-2121 (ext. 5237) (R.S.-C.W.)
| |
Collapse
|