1
|
Wollweber F, Xu J, Ponce-Toledo RI, Marxer F, Rodrigues-Oliveira T, Pössnecker A, Luo ZH, Malit JJL, Kokhanovska A, Wieczorek M, Schleper C, Pilhofer M. Microtubules in Asgard archaea. Cell 2025:S0092-8674(25)00254-5. [PMID: 40120574 DOI: 10.1016/j.cell.2025.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 01/27/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025]
Abstract
Microtubules are a hallmark of eukaryotes. Archaeal and bacterial homologs of tubulins typically form homopolymers and non-tubular superstructures. The origin of heterodimeric tubulins assembling into microtubules remains unclear. Here, we report the discovery of microtubule-forming tubulins in Asgard archaea, the closest known relatives of eukaryotes. These Asgard tubulins (AtubA/B) are closely related to eukaryotic α/β-tubulins and the enigmatic bacterial tubulins BtubA/B. Proteomics of Candidatus Lokiarchaeum ossiferum showed that AtubA/B were highly expressed. Cryoelectron microscopy structures demonstrate that AtubA/B form eukaryote-like heterodimers, which assembled into 5-protofilament bona fide microtubules in vitro. The additional paralog AtubB2 lacks a nucleotide-binding site and competitively displaced AtubB. These AtubA/B2 heterodimers polymerized into 7-protofilament non-canonical microtubules. In a sub-population of Ca. Lokiarchaeum ossiferum cells, cryo-tomography revealed tubular structures, while expansion microscopy identified AtubA/B cytoskeletal assemblies. Our findings suggest a pre-eukaryotic origin of microtubules and provide a framework for understanding the fundamental principles of microtubule assembly.
Collapse
Affiliation(s)
- Florian Wollweber
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Jingwei Xu
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Rafael I Ponce-Toledo
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Florina Marxer
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Thiago Rodrigues-Oliveira
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Anja Pössnecker
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Zhen-Hao Luo
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Jessie James Limlingan Malit
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Anastasiia Kokhanovska
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Michal Wieczorek
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Christa Schleper
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Martin Pilhofer
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland.
| |
Collapse
|
2
|
Yu W, Jin K, Xu X, Liu Y, Li J, Du G, Chen J, Lv X, Liu L. Engineering microbial cell factories by multiplexed spatiotemporal control of cellular metabolism: Advances, challenges, and future perspectives. Biotechnol Adv 2025; 79:108497. [PMID: 39645209 DOI: 10.1016/j.biotechadv.2024.108497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Generally, the metabolism in microbial organism is an intricate, spatiotemporal process that emerges from gene regulatory networks, which affects the efficiency of product biosynthesis. With the coming age of synthetic biology, spatiotemporal control systems have been explored as versatile strategies to promote product biosynthesis at both spatial and temporal levels. Meanwhile, the designer synthetic compartments provide new and promising approaches to engineerable spatiotemporal control systems to construct high-performance microbial cell factories. In this article, we comprehensively summarize recent developments in spatiotemporal control systems for tailoring advanced cell factories, and illustrate how to apply spatiotemporal control systems in different microbial species with desired applications. Future challenges of spatiotemporal control systems and perspectives are also discussed.
Collapse
Affiliation(s)
- Wenwen Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ke Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China.
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Milferstaedt SWL, Joest M, Bohlender LL, Hoernstein SNW, Özdemir B, Decker EL, van der Does C, Reski R. Differential GTP-dependent in-vitro polymerization of recombinant Physcomitrella FtsZ proteins. Sci Rep 2025; 15:3095. [PMID: 39856123 PMCID: PMC11760385 DOI: 10.1038/s41598-024-85077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Bacterial cell division and plant chloroplast division require selfassembling Filamentous temperature-sensitive Z (FtsZ) proteins. FtsZ proteins are GTPases sharing structural and biochemical similarities with eukaryotic tubulin. In the moss Physcomitrella, the morphology of the FtsZ polymer networks varies between the different FtsZ isoforms. The underlying mechanism and foundation of the distinct networks is unknown. Here, we investigated the interaction of Physcomitrella FtsZ2-1 with FtsZ1 isoforms via co-immunoprecipitation and mass spectrometry, and found protein-protein interaction in vivo. We tagged FtsZ1-2 and FtsZ2-1 with different fluorophores and expressed both in E. coli, which led to the formation of defined structures within the cells and to an influence on bacterial cell division and morphology. Furthermore, we have optimized the purification protocols for FtsZ1-2 and FtsZ2-1 expressed in E. coli and characterized their GTPase activity and polymerization in vitro. Both FtsZ isoforms showed GTPase activity. Stoichiometric mixing of both proteins led to a significantly increased GTPase activity, indicating a synergistic interaction between them. In light scattering assays, we observed GTP-dependent assembly of FtsZ1-2 and of FtsZ2-1 in a protein concentration dependent manner. Stoichiometric mixing of both proteins resulted in significantly faster polymerization, again indicating a synergistic interaction between them. Under the same conditions used for GTPase and light scattering assays both FtsZ isoforms formed filaments in a GTP-dependent manner as visualized by transmission electron microscopy (TEM). Taken together, our results reveal that Physcomitrella FtsZ1-2 and FtsZ2-1 are functionally different, can synergistically interact in vivo and in vitro, and differ in their properties from FtsZ proteins from bacteria, archaea and vascular plants.
Collapse
Affiliation(s)
- Stella W L Milferstaedt
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Centre for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Marie Joest
- Molecular Biology of Archaea, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine SGBM, University of Freiburg, Albertstraße 19A, 79104, Freiburg, Germany
| | - Lennard L Bohlender
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Sebastian N W Hoernstein
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Buğra Özdemir
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- , Euro-BioImaging Bio-Hub, EMBL, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Chris van der Does
- Molecular Biology of Archaea, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany.
- Cluster of Excellence livMatS @ FIT - Freiburg Centre for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany.
- Spemann Graduate School of Biology and Medicine SGBM, University of Freiburg, Albertstraße 19A, 79104, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, Schaenzlestr. 18, 79104, Freiburg, Germany.
| |
Collapse
|
4
|
Jacq M, Caccamo PD, Brun YV. Functional specialization of the subdomains of a bactofilin driving stalk morphogenesis in Asticcacaulis biprosthecum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628611. [PMID: 39763834 PMCID: PMC11702518 DOI: 10.1101/2024.12.16.628611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Bactofilins are a recently discovered class of cytoskeletal protein, widely implicated in subcellular organization and morphogenesis in bacteria and archaea. Several lines of evidence suggest that bactofilins polymerize into filaments using a central β-helical core domain, flanked by variable N- and C-terminal domains that may be important for scaffolding and other functions. However, a systematic exploration of the characteristics of these domains has yet to be performed. In Asticcacaulis biprosthecum, the bactofilin BacA serves as a topological organizer of stalk synthesis, localizing to the stalk base and coordinating the synthesis of these long, thin extensions of the cell envelope. The easily distinguishable phenotypes of wild-type A. biprosthecum stalks and ΔbacA "pseudostalks" make this an ideal system for investigating how mutations in BacA affect its functions in morphogenesis. Here, we redefine the core domain of A. biprosthecum BacA using various bioinformatics and biochemical approaches to precisely delimit the N- and C- terminal domains. We then show that loss of these terminal domains leads to cells with severe morphological abnormalities, typically presenting a pseudostalk phenotype. BacA mutants lacking the N- and C- terminal domains also exhibit localization defects, implying that the terminal domains of BacA may be involved in its subcellular positioning, whether through membrane interactions through the N-terminal domain or through interactions with the stalk-specific morphological regulator SpmX through the C-terminal domain. We further show that point mutations that render BacA defective for polymerization lead to stalk synthesis defects. Overall, our study suggests that BacA's polymerization, membrane association, and interactions with other morphological factors all play a crucial role in the protein's function as a morphogenic regulator. The specialization and modularity of the terminal domains may underlie the remarkable functional versatility of the bactofilins in different species.
Collapse
Affiliation(s)
- Maxime Jacq
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal (Québec) H3C 3J7, Canada
| | - Paul D. Caccamo
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Yves V. Brun
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal (Québec) H3C 3J7, Canada
- Department of Biology, Indiana University, 1001 E. 3 St, Bloomington, IN 47405, USA
| |
Collapse
|
5
|
Männik J, Kar P, Amarasinghe C, Amir A, Männik J. Determining the rate-limiting processes for cell division in Escherichia coli. Nat Commun 2024; 15:9948. [PMID: 39550358 PMCID: PMC11569214 DOI: 10.1038/s41467-024-54242-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 11/01/2024] [Indexed: 11/18/2024] Open
Abstract
A critical cell cycle checkpoint for most bacteria is the onset of constriction when the septal peptidoglycan synthesis starts. According to the current understanding, the arrival of FtsN to midcell triggers this checkpoint in Escherichia coli. Recent structural and in vitro data suggests that recruitment of FtsN to the Z-ring leads to a conformational switch in actin-like FtsA, which links FtsZ protofilaments to the cell membrane and acts as a hub for the late divisome proteins. Here, we investigate this putative pathway using in vivo measurements and stochastic cell cycle modeling at moderately fast growth rates. Quantitatively upregulating protein concentrations and determining the resulting division timings shows that FtsN and FtsA numbers are not rate-limiting for the division in E. coli. However, at higher overexpression levels, they affect divisions: FtsN by accelerating and FtsA by inhibiting them. At the same time, we find that the FtsZ numbers in the cell are one of the rate-limiting factors for cell divisions in E. coli. Altogether, these findings suggest that instead of FtsN, accumulation of FtsZ in the Z-ring is one of the main drivers of the onset of constriction in E. coli at faster growth rates.
Collapse
Affiliation(s)
- Jaana Männik
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA
| | - Prathitha Kar
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02134, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02134, USA
| | | | - Ariel Amir
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Jaan Männik
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
6
|
Chazapi I, Merhi T, Pasquier C, Diat O, Almunia C, Bauduin P. Controlling Protein Assembly with Superchaotropic Nano-Ions. Angew Chem Int Ed Engl 2024; 63:e202412588. [PMID: 39082437 DOI: 10.1002/anie.202412588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Indexed: 10/26/2024]
Abstract
In living systems, protein assemblies have essential functions, serving as structural supports, transport highways for molecular cargo, and containers of genetic material. The construction of protein assemblies, which involves control over space and time, remains a significant challenge in biotechnology. Here, we show that anionic boron clusters, 3,3'-commo-bis[closo-1,2-dicarba-3-cobaltadodecaborane] (COSAN-), and halogenated closo-dodecarboranes (B12X12 2-, X=H, Cl, or I), described as super-chaotropic nano-ions, induce the formation of 2D assemblies of model proteins, myoglobin, carbonic anhydrase, and trypsin inhibitor. We found that the nano-ion concentration reversibly controls the size of the protein assemblies. Furthermore, the secondary structures of the proteins are only slightly affected by assembly formation. For myoglobin, the formation of these assemblies even prevents temperature denaturation, highlighting a preservation effect of nano-ions. Our study reveals that inorganic boron-based nano-ions act as a reversible molecular glue for proteins, providing a potential starting point for the further development of controlled protein assemblies.
Collapse
Affiliation(s)
- Ioanna Chazapi
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Bagnols-sur-Cèze, 30207, France
| | - Tania Merhi
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Bagnols-sur-Cèze, 30207, France
| | - Coralie Pasquier
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Bagnols-sur-Cèze, 30207, France
| | - Olivier Diat
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Bagnols-sur-Cèze, 30207, France
| | - Christine Almunia
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SPI-Li2D, Université Paris-Saclay, Bagnols-sur-Cèze, France
| | - Pierre Bauduin
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Bagnols-sur-Cèze, 30207, France
| |
Collapse
|
7
|
Pande V, Gayathri P. Improving Stability of Spiroplasma citri MreB5 Through Purification Optimization and Structural Insights. Bio Protoc 2024; 14:e5086. [PMID: 39512887 PMCID: PMC11540049 DOI: 10.21769/bioprotoc.5086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 11/15/2024] Open
Abstract
MreB is a prokaryotic actin homolog. It is essential for cell shape in the majority of rod-shaped cell-walled bacteria. Structural and functional characterization of MreB protein is important to understand the mechanism of ATP-dependent filament dynamics and membrane interaction. In vitro studies on MreBs have been limited due to the difficulty in purifying the homogenous monomeric protein. We have purified MreB from the cell-wall-less bacteria Spiroplasma citri, ScMreB5, using heterologous expression in Escherichia coli. This protocol provides a detailed description of purification condition optimization that led us to obtain high concentrations of stable ScMreB5. Additionally, we have provided a protocol for detecting the presence of monovalent ions in the ScMreB5 AMP-PNP-bound crystal structure. This protocol can be used to obtain a high yield of ScMreB5 for carrying out biochemical and reconstitution studies. The strategies used for ScMreB5 show how optimizing buffer components can enhance the yield and stability of purified protein. Key features • The protocol is a useful approach to standardize purification of nucleotide-dependent cytoskeletal filaments and other nucleotide-binding proteins. • The mechanistic basis of how different ions could stabilize a protein, and hence improve yield in purification, has been demonstrated. • The change in buffer conditions/salt enabled us to get sufficient yield for biochemical and structural characterization.
Collapse
Affiliation(s)
- Vani Pande
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Pananghat Gayathri
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
8
|
Sanchez-Fernandez A, Insua I, Montenegro J. Supramolecular fibrillation in coacervates and other confined systems towards biomimetic function. Commun Chem 2024; 7:223. [PMID: 39349583 PMCID: PMC11442845 DOI: 10.1038/s42004-024-01308-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
As in natural cytoskeletons, the cooperative assembly of fibrillar networks can be hosted inside compartments to engineer biomimetic functions, such as mechanical actuation, transport, and reaction templating. Coacervates impose an optimal liquid-liquid phase separation within the aqueous continuum, functioning as membrane-less compartments that can organise such self-assembling processes as well as the exchange of information with their environment. Furthermore, biological fibrillation can often be controlled or assisted by intracellular compartments. Thus, the reconstitution of analogues of natural filaments in simplified artificial compartments, such as coacervates, offer a suitable model to unravel, mimic, and potentially exploit cellular functions. This perspective summarises the latest developments towards assembling fibrillar networks under confinement inside coacervates and related compartments, including a selection of examples ranging from biological to fully synthetic monomers. Comparative analysis between coacervates, lipid vesicles, and droplet emulsions showcases the interplay between supramolecular fibres and the boundaries of the corresponding compartment. Combining inspiration from natural systems and the custom properties of tailored synthetic fibrillators, rational monomer and compartment design will contribute towards engineering increasingly complex and more realistic artificial protocells.
Collapse
Affiliation(s)
- Adrian Sanchez-Fernandez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Departamento de Enxeñaría Química, Universidade de Santaigo de Compostela, Santiago de Compostela, Spain
| | - Ignacio Insua
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
- Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
9
|
Velle KB, Swafford AJM, Garner E, Fritz-Laylin LK. Actin network evolution as a key driver of eukaryotic diversification. J Cell Sci 2024; 137:jcs261660. [PMID: 39120594 DOI: 10.1242/jcs.261660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Eukaryotic cells have been evolving for billions of years, giving rise to wildly diverse cell forms and functions. Despite their variability, all eukaryotic cells share key hallmarks, including membrane-bound organelles, heavily regulated cytoskeletal networks and complex signaling cascades. Because the actin cytoskeleton interfaces with each of these features, understanding how it evolved and diversified across eukaryotic phyla is essential to understanding the evolution and diversification of eukaryotic cells themselves. Here, we discuss what we know about the origin and diversity of actin networks in terms of their compositions, structures and regulation, and how actin evolution contributes to the diversity of eukaryotic form and function.
Collapse
Affiliation(s)
- Katrina B Velle
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | | | - Ethan Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
10
|
Zhao J, Han X. Investigation of artificial cells containing the Par system for bacterial plasmid segregation and inheritance mimicry. Nat Commun 2024; 15:4956. [PMID: 38858376 PMCID: PMC11164925 DOI: 10.1038/s41467-024-49412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 06/05/2024] [Indexed: 06/12/2024] Open
Abstract
A crucial step in life processes is the transfer of accurate and correct genetic material to offspring. During the construction of autonomous artificial cells, a very important step is the inheritance of genetic information in divided artificial cells. The ParMRC system, as one of the most representative systems for DNA segregation in bacteria, can be purified and reconstituted into GUVs to form artificial cells. In this study, we demonstrate that the eGFP gene is segregated into two poles by a ParM filament with ParR as the intermediate linker to bind ParM and parC-eGFP DNA in artificial cells. After the ParM filament splits, the cells are externally induced to divide into two daughter cells that contain parC-eGFP DNA by osmotic pressure and laser irradiation. Using a PURE system, we translate eGFP DNA into enhanced green fluorescent proteins in daughter cells, and bacterial plasmid segregation and inheritance are successfully mimicked in artificial cells. Our results could lead to the construction of more sophisticated artificial cells that can reproduce with genetic information.
Collapse
Affiliation(s)
- Jingjing Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
11
|
Lee C, Han SI, Na H, Kim Z, Ahn JW, Oh B, Kim HS. Comprehensive understanding of the mutant 'giant' Arthrospira platensis developed via ultraviolet mutagenesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1369976. [PMID: 38567133 PMCID: PMC10985164 DOI: 10.3389/fpls.2024.1369976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
Introduction Cyanobacteria are typically of a size that can be observed under a microscope. Here, we present cyanobacteria of a size that can be observed with the naked eye. Arthrospira platensis NCB002 strain showed differentiated morphological characteristics compared to previously reported Arthrospira spp. Methods Arthrospira platensis NCB002 was obtained by the UV irradiation of Arthrospira sp. NCB001, which was isolated from freshwater and owned by NCell Co., Ltd. A. platensis NIES-39 was obtained from the National Institute for Environmental Studies (Tsukuba, Japan). We used various analytical techniques to determine its overall characteristics. Results and discussion The draft genome of strain NCB002 consists of five contigs comprising 6,864,973 bp with a G+C content of 44.3 mol%. The strain NCB002 had an average length of 11.69 ± 1.35 mm and a maximum of 15.15 mm, which is 23.4-50.5 times longer than the length (0.3-0.5 mm) of previously known Arthrospira spp., allowing it to be harvested using a thin sieve. Transcriptome analysis revealed that these morphological differences resulted from changes in cell wall formation mechanisms and increased cell division. Our results show that NCB002 has outstanding industrial value and provides a comprehensive understanding of it.
Collapse
Affiliation(s)
- Changsu Lee
- Bio Division, NCell. Co., Ltd., Seoul, Republic of Korea
| | - Sang-Il Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Ho Na
- Bio Division, NCell. Co., Ltd., Seoul, Republic of Korea
| | - Zun Kim
- Bio Division, NCell. Co., Ltd., Seoul, Republic of Korea
| | - Joon Woo Ahn
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Byeolnim Oh
- Department of Electronic Engineering, Kwangwoon University, Seoul, Republic of Korea
| | - Hyun Soo Kim
- Department of Electronic Engineering, Kwangwoon University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Radler P, Loose M. A dynamic duo: Understanding the roles of FtsZ and FtsA for Escherichia coli cell division through in vitro approaches. Eur J Cell Biol 2024; 103:151380. [PMID: 38218128 DOI: 10.1016/j.ejcb.2023.151380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/15/2024] Open
Abstract
Bacteria divide by binary fission. The protein machine responsible for this process is the divisome, a transient assembly of more than 30 proteins in and on the surface of the cytoplasmic membrane. Together, they constrict the cell envelope and remodel the peptidoglycan layer to eventually split the cell into two. For Escherichia coli, most molecular players involved in this process have probably been identified, but obtaining the quantitative information needed for a mechanistic understanding can often not be achieved from experiments in vivo alone. Since the discovery of the Z-ring more than 30 years ago, in vitro reconstitution experiments have been crucial to shed light on molecular processes normally hidden in the complex environment of the living cell. In this review, we summarize how rebuilding the divisome from purified components - or at least parts of it - have been instrumental to obtain the detailed mechanistic understanding of the bacterial cell division machinery that we have today.
Collapse
Affiliation(s)
- Philipp Radler
- Institute for Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria; University of Vienna, Djerassiplatz 1, 1030 Wien, Austria.
| | - Martin Loose
- Institute for Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
13
|
Gupta R, Singh M, Pathania R. Chemical genetic approaches for the discovery of bacterial cell wall inhibitors. RSC Med Chem 2023; 14:2125-2154. [PMID: 37974958 PMCID: PMC10650376 DOI: 10.1039/d3md00143a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/10/2023] [Indexed: 11/19/2023] Open
Abstract
Antimicrobial resistance (AMR) in bacterial pathogens is a worldwide health issue. The innovation gap in discovering new antibiotics has remained a significant hurdle in combating the AMR problem. Currently, antibiotics target various vital components of the bacterial cell envelope, nucleic acid and protein biosynthesis machinery and metabolic pathways essential for bacterial survival. The critical role of the bacterial cell envelope in cell morphogenesis and integrity makes it an attractive drug target. While a significant number of in-clinic antibiotics target peptidoglycan biosynthesis, several components of the bacterial cell envelope have been overlooked. This review focuses on various antibacterial targets in the bacterial cell wall and the strategies employed to find their novel inhibitors. This review will further elaborate on combining forward and reverse chemical genetic approaches to discover antibacterials that target the bacterial cell envelope.
Collapse
Affiliation(s)
- Rinki Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| | - Mangal Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| |
Collapse
|
14
|
Awal RP, Müller FD, Pfeiffer D, Monteil CL, Perrière G, Lefèvre CT, Schüler D. Experimental analysis of diverse actin-like proteins from various magnetotactic bacteria by functional expression in Magnetospirillum gryphiswaldense. mBio 2023; 14:e0164923. [PMID: 37823629 PMCID: PMC10653835 DOI: 10.1128/mbio.01649-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/29/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE To efficiently navigate within the geomagnetic field, magnetotactic bacteria (MTB) align their magnetosome organelles into chains, which are organized by the actin-like MamK protein. Although MamK is the most highly conserved magnetosome protein common to all MTB, its analysis has been confined to a small subgroup owing to the inaccessibility of most MTB. Our study takes advantage of a genetically tractable host where expression of diverse MamK orthologs together with a resurrected MamK LUCA and uncharacterized actin-like Mad28 proteins from deep-branching MTB resulted in gradual restoration of magnetosome chains in various mutants. Our results further indicate the existence of species-specific MamK interactors and shed light on the evolutionary relationships of one of the key proteins associated with bacterial magnetotaxis.
Collapse
Affiliation(s)
- Ram Prasad Awal
- Department of Microbiology, Universitat Bayreuth, Bayreuth, Germany
| | - Frank D. Müller
- Department of Microbiology, Universitat Bayreuth, Bayreuth, Germany
| | - Daniel Pfeiffer
- Department of Microbiology, Universitat Bayreuth, Bayreuth, Germany
| | - Caroline L. Monteil
- Aix-Marseille Université, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Guy Perrière
- Laboratoire de Biométrie et Biologie Evolutive, Université Claude Bernard-Lyon 1, Villeurbanne, France
| | - Christopher T. Lefèvre
- Aix-Marseille Université, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Dirk Schüler
- Department of Microbiology, Universitat Bayreuth, Bayreuth, Germany
| |
Collapse
|
15
|
Li Y, Li G, Deng X. A tightly controlled gene induction system that contributes to the study of lethal gene function in Streptococcus mutans. J Oral Microbiol 2023; 15:2253675. [PMID: 37691880 PMCID: PMC10486305 DOI: 10.1080/20002297.2023.2253675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023] Open
Abstract
Effective control of gene expression is crucial for understanding gene function in both eukaryotic and prokaryotic cells. While several inducible gene expression systems have been reported in Streptococcus mutans, a conditional pathogen that causes dental caries, the significant non-inducible basal expression in these systems seriously limits their utility, especially when studying lethal gene functions and molecular mechanisms. We introduce a tightly controlled xylose-inducible gene expression system, TC-Xyl, for Streptococcus mutans. Western blot results and fluorescence microscopy analysis indicate that TC-Xyl exhibits an extremely low non-inducible basal expression level and a sufficiently high expression level post-induction. Further, by constructing a mutation in which the only source FtsZ is under the control of TC-Xyl, we preliminarily explored the function of the ftsz gene. We found that FtsZ depletion is lethal to Streptococcus mutans, resulting in abnormal round cell shape and mini cell formation, suggesting FtsZ's role in maintaining cell shape stability.
Collapse
Affiliation(s)
- Yongliang Li
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, People’s Republic of China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, People’s Republic of China
| | - Guanwen Li
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, People’s Republic of China
| | - Xuliang Deng
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, People’s Republic of China
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, People’s Republic of China
| |
Collapse
|
16
|
Takahashi D, Miyata M, Fujiwara I. Assembly properties of Spiroplasma MreB involved in swimming motility. J Biol Chem 2023:104793. [PMID: 37150324 DOI: 10.1016/j.jbc.2023.104793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023] Open
Abstract
Bacterial actin MreB forms filaments formed of antiparallel double strand units. The wall-less helical bacterium Spiroplasma has five MreB homologs (MreB1-5), some of which are involved in an intra-cellular ribbon for driving the bacterium's swimming motility. Although the interaction between MreB units is important for understanding Spiroplasma swimming, the interaction modes of each ribbon component are unclear. Here, we examined the assembly properties of Spiroplasma eriocheiris MreB5 (SpeMreB5), one of the ribbon component proteins that forms sheets. Electron microscopy (EM) revealed that sheet formation was inhibited under acidic conditions and bundle structures were formed under acidic and neutral conditions with low ionic strength. We also used solution assays and identified four properties of SpeMreB5 bundles as follows: (I) bundle formation followed sheet formation; (II) electrostatic interactions were required for bundle formation; (III) the positively charged and unstructured C-terminal region contributed to promoting lateral interactions for bundle formation; and (IV) bundle formation required Mg2+ at neutral pH but was inhibited by divalent cations under acidic pH conditions. During these studies, we also characterized two aggregation modes of SpeMreB5 with distinct responses to ATP. These properties will shed light on SpeMreB5 assembly dynamics at the molecular level.
Collapse
Affiliation(s)
- Daichi Takahashi
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Makoto Miyata
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan; The OMU Advanced Research Center for Natural Science and Technology, Osaka Metropolitan University, Osaka, Japan
| | - Ikuko Fujiwara
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan; The OMU Advanced Research Center for Natural Science and Technology, Osaka Metropolitan University, Osaka, Japan; Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan.
| |
Collapse
|
17
|
Wagstaff JM, Planelles-Herrero VJ, Sharov G, Alnami A, Kozielski F, Derivery E, Löwe J. Diverse cytomotive actins and tubulins share a polymerization switch mechanism conferring robust dynamics. SCIENCE ADVANCES 2023; 9:eadf3021. [PMID: 36989372 PMCID: PMC10058229 DOI: 10.1126/sciadv.adf3021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Protein filaments are used in myriads of ways to organize other molecules within cells. Some filament-forming proteins couple the hydrolysis of nucleotides to their polymerization cycle, thus powering the movement of other molecules. These filaments are termed cytomotive. Only members of the actin and tubulin protein superfamilies are known to form cytomotive filaments. We examined the basis of cytomotivity via structural studies of the polymerization cycles of actin and tubulin homologs from across the tree of life. We analyzed published data and performed structural experiments designed to disentangle functional components of these complex filament systems. Our analysis demonstrates the existence of shared subunit polymerization switches among both cytomotive actins and tubulins, i.e., the conformation of subunits switches upon assembly into filaments. These cytomotive switches can explain filament robustness, by enabling the coupling of kinetic and structural polarities required for cytomotive behaviors and by ensuring that single cytomotive filaments do not fall apart.
Collapse
Affiliation(s)
- James Mark Wagstaff
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | - Grigory Sharov
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Aisha Alnami
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Frank Kozielski
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Emmanuel Derivery
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
18
|
Models versus pathogens: how conserved is the FtsZ in bacteria? Biosci Rep 2023; 43:232502. [PMID: 36695643 PMCID: PMC9939409 DOI: 10.1042/bsr20221664] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/10/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023] Open
Abstract
Combating anti-microbial resistance by developing alternative strategies is the need of the hour. Cell division, particularly FtsZ, is being extensively studied for its potential as an alternative target for anti-bacterial therapy. Bacillus subtilis and Escherichia coli are the two well-studied models for research on FtsZ, the leader protein of the cell division machinery. As representatives of gram-positive and gram-negative bacteria, respectively, these organisms have provided an extensive outlook into the process of cell division in rod-shaped bacteria. However, research on other shapes of bacteria, like cocci and ovococci, lags behind that of model rods. Even though most regions of FtsZ show sequence and structural conservation throughout bacteria, the differences in FtsZ functioning and interacting partners establish several different modes of division in different bacteria. In this review, we compare the features of FtsZ and cell division in the model rods B. subtilis and E. coli and the four pathogens: Staphylococcus aureus, Streptococcus pneumoniae, Mycobacterium tuberculosis, and Pseudomonas aeruginosa. Reviewing several recent articles on these pathogenic bacteria, we have highlighted the functioning of FtsZ, the unique roles of FtsZ-associated proteins, and the cell division processes in them. Further, we provide a detailed look at the anti-FtsZ compounds discovered and their target bacteria, emphasizing the need for elucidation of the anti-FtsZ mechanism of action in different bacteria. Current challenges and opportunities in the ongoing journey of identifying potent anti-FtsZ drugs have also been described.
Collapse
|
19
|
Purification and ATPase Activity Measurement of Spiroplasma MreB. Methods Mol Biol 2023; 2646:359-371. [PMID: 36842130 DOI: 10.1007/978-1-0716-3060-0_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Spiroplasma is a genus of wall-less helical bacteria with swimming motility unrelated to conventional types of bacterial motility machinery, such as flagella and pili. The swimming of Spiroplasma is suggested to be driven by five classes of MreB (MreB1-MreB5), which are members of the actin superfamily. In vitro studies of Spiroplasma MreBs have recently been conducted to evaluate their activities, such as ATPase, which is essential for the polymerization dynamics among classic actin superfamily proteins. In this chapter, we describe methods of purification and Pi release measurement of Spiroplasma MreBs using column chromatography and absorption spectroscopy with the molecular probe, 2-amino-6-mercapto-7-methylpurine riboside (MESG). Of note, the methods described here are applicable to other proteins that possess NTPase activity.
Collapse
|
20
|
Santana-Molina C, del Saz-Navarro DM, Devos DP. Early origin and evolution of the FtsZ/tubulin protein family. Front Microbiol 2023; 13:1100249. [PMID: 36704558 PMCID: PMC9871819 DOI: 10.3389/fmicb.2022.1100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
The origin of the FtsZ/tubulin protein family was extremely relevant for life since these proteins are present in nearly all organisms, carrying out essential functions such as cell division or forming a major part of the cytoskeleton in eukaryotes. Therefore, investigating the early evolution of the FtsZ/tubulin protein family could reveal crucial aspects of the diversification of the three domains of life. In this study, we revisited the phylogenies of the FtsZ/tubulin protein family in an extensive prokaryotic diversity, focusing on the main evolutionary events that occurred during its evolution. We found evidence of its early origin in the last universal common ancestor since FtsZ was present in the last common ancestor of Bacteria and Archaea. In bacteria, ftsZ genes are genomically associated with the bacterial division gene cluster, while in archaea, ftsZ duplicated prior to archaeal diversification, and one of the copies is associated with protein biosynthesis genes. Archaea have expanded the FtsZ/tubulin protein family with sequences closely related to eukaryotic tubulins. In addition, we report novel CetZ-like groups in Halobacterota and Asgardarchaeota. Investigating the C-termini of prokaryotic paralogs basal to eukaryotic tubulins, we show that archaeal CetZ, as well as the plasmidic TubZ from Firmicutes, most likely originated from archaeal FtsZ. Finally, prokaryotic tubulins are restricted to Odinarchaeaota and Prosthecobacter species, and they seem to belong to different molecular systems. However, their phylogenies suggest that they are closely related to α/β-tubulins pointing to a potential ancestrality of these eukaryotic paralogs of tubulins.
Collapse
Affiliation(s)
- Carlos Santana-Molina
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide, Seville, Spain
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), University of Utrecht, Utrecht, Netherlands
| | - DMaría del Saz-Navarro
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide, Seville, Spain
| | - Damien P. Devos
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
21
|
Mysterious Asgard archaea microbes reveal their inner secrets. Nature 2023; 613:246-248. [PMID: 36544005 DOI: 10.1038/d41586-022-04450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
van Wolferen M, Pulschen AA, Baum B, Gribaldo S, Albers SV. The cell biology of archaea. Nat Microbiol 2022; 7:1744-1755. [PMID: 36253512 PMCID: PMC7613921 DOI: 10.1038/s41564-022-01215-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
The past decade has revealed the diversity and ubiquity of archaea in nature, with a growing number of studies highlighting their importance in ecology, biotechnology and even human health. Myriad lineages have been discovered, which expanded the phylogenetic breadth of archaea and revealed their central role in the evolutionary origins of eukaryotes. These discoveries, coupled with advances that enable the culturing and live imaging of archaeal cells under extreme environments, have underpinned a better understanding of their biology. In this Review we focus on the shape, internal organization and surface structures that are characteristic of archaeal cells as well as membrane remodelling, cell growth and division. We also highlight some of the technical challenges faced and discuss how new and improved technologies will help address many of the key unanswered questions.
Collapse
Affiliation(s)
- Marleen van Wolferen
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Buzz Baum
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Simonetta Gribaldo
- Evolutionary Biology of the Microbial Cell Unit, CNRS UMR2001, Department of Microbiology, Institute Pasteur, Paris, France.
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
23
|
Nierhaus T, McLaughlin SH, Bürmann F, Kureisaite-Ciziene D, Maslen SL, Skehel JM, Yu CWH, Freund SMV, Funke LFH, Chin JW, Löwe J. Bacterial divisome protein FtsA forms curved antiparallel double filaments when binding to FtsN. Nat Microbiol 2022; 7:1686-1701. [PMID: 36123441 PMCID: PMC7613929 DOI: 10.1038/s41564-022-01206-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/19/2022] [Indexed: 11/08/2022]
Abstract
During bacterial cell division, filaments of tubulin-like FtsZ form the Z-ring, which is the cytoplasmic scaffold for divisome assembly. In Escherichia coli, the actin homologue FtsA anchors the Z-ring to the membrane and recruits divisome components, including bitopic FtsN. FtsN regulates the periplasmic peptidoglycan synthase FtsWI. To characterize how FtsA regulates FtsN, we applied electron microscopy to show that E. coli FtsA forms antiparallel double filaments on lipid monolayers when bound to the cytoplasmic tail of FtsN. Using X-ray crystallography, we demonstrate that Vibrio maritimus FtsA crystallizes as an equivalent double filament. We identified an FtsA-FtsN interaction site in the IA-IC interdomain cleft of FtsA using X-ray crystallography and confirmed that FtsA forms double filaments in vivo by site-specific cysteine cross-linking. FtsA-FtsN double filaments reconstituted in or on liposomes prefer negative Gaussian curvature, like those of MreB, the actin-like protein of the elongasome. We propose that curved antiparallel FtsA double filaments together with treadmilling FtsZ filaments organize septal peptidoglycan synthesis in the division plane.
Collapse
Affiliation(s)
- Tim Nierhaus
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | - Sarah L Maslen
- MRC Laboratory of Molecular Biology, Cambridge, UK
- The Francis Crick Institute, London, UK
| | - J Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge, UK
- The Francis Crick Institute, London, UK
| | - Conny W H Yu
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Jason W Chin
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
24
|
Takahashi D, Fujiwara I, Sasajima Y, Narita A, Imada K, Miyata M. ATP-dependent polymerization dynamics of bacterial actin proteins involved in Spiroplasma swimming. Open Biol 2022; 12:220083. [PMID: 36285441 PMCID: PMC9597168 DOI: 10.1098/rsob.220083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MreB is a bacterial protein belonging to the actin superfamily. This protein polymerizes into an antiparallel double-stranded filament that determines cell shape by maintaining cell wall synthesis. Spiroplasma eriocheiris, a helical wall-less bacterium, has five MreB homologous (SpeMreB1-5) that probably contribute to swimming motility. Here, we investigated the structure, ATPase activity and polymerization dynamics of SpeMreB3 and SpeMreB5. SpeMreB3 polymerized into a double-stranded filament with possible antiparallel polarity, while SpeMreB5 formed sheets which contained the antiparallel filament, upon nucleotide binding. SpeMreB3 showed slow Pi release owing to the lack of an amino acid motif conserved in the catalytic centre of MreB family proteins. Our SpeMreB3 crystal structures and analyses of SpeMreB3 and SpeMreB5 variants showed that the amino acid motif probably plays a role in eliminating a nucleophilic water proton during ATP hydrolysis. Sedimentation assays suggest that SpeMreB3 has a lower polymerization activity than SpeMreB5, though their polymerization dynamics are qualitatively similar to those of other actin superfamily proteins, in which pre-ATP hydrolysis and post-Pi release states are unfavourable for them to remain as filaments.
Collapse
Affiliation(s)
- Daichi Takahashi
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan,Graduate School of Science, Osaka City University, Osaka, Japan
| | - Ikuko Fujiwara
- Graduate School of Science, Osaka City University, Osaka, Japan,The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Japan,Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Yuya Sasajima
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan,Graduate School of Science, Osaka City University, Osaka, Japan
| | - Akihiro Narita
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Katsumi Imada
- Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Makoto Miyata
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan,The OMU Advanced Research Center for Natural Science and Technology, Osaka Metropolitan University, Osaka, Japan,Graduate School of Science, Osaka City University, Osaka, Japan,The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Japan
| |
Collapse
|
25
|
Revealing bacterial cell biology using cryo-electron tomography. Curr Opin Struct Biol 2022; 75:102419. [PMID: 35820259 DOI: 10.1016/j.sbi.2022.102419] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022]
Abstract
Visualizing macromolecules inside bacteria at a high spatial resolution has remained a challenge owing to their small size and limited resolution of optical microscopy techniques. Recent advances in cryo-electron tomography (cryo-ET) imaging methods have revealed the spatial and temporal assemblies of many macromolecules involved in different cellular processes in bacteria at a resolution of a few nanometers in their native milieu. Specifically, the application of cryo-focused ion beam (cryo-FIB) milling to thin bacterial specimens makes them amenable for high-resolution cryo-ET data collection. In this review, we highlight recent research in three emerging areas of bacterial cell biology that have benefited from the cryo-FIB-ET technology - cytoskeletal filament assembly, intracellular organelles, and multicellularity.
Collapse
|
26
|
Lam NT, McCluskey JB, Glover DJ. Harnessing the Structural and Functional Diversity of Protein Filaments as Biomaterial Scaffolds. ACS APPLIED BIO MATERIALS 2022; 5:4668-4686. [PMID: 35766918 DOI: 10.1021/acsabm.2c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The natural ability of many proteins to polymerize into highly structured filaments has been harnessed as scaffolds to align functional molecules in a diverse range of biomaterials. Protein-engineering methodologies also enable the structural and physical properties of filaments to be tailored for specific biomaterial applications through genetic engineering or filaments built from the ground up using advances in the computational prediction of protein folding and assembly. Using these approaches, protein filament-based biomaterials have been engineered to accelerate enzymatic catalysis, provide routes for the biomineralization of inorganic materials, facilitate energy production and transfer, and provide support for mammalian cells for tissue engineering. In this review, we describe how the unique structural and functional diversity in natural and computationally designed protein filaments can be harnessed in biomaterials. In addition, we detail applications of these protein assemblies as material scaffolds with a particular emphasis on applications that exploit unique properties of specific filaments. Through the diversity of protein filaments, the biomaterial engineer's toolbox contains many modular protein filaments that will likely be incorporated as the main structural component of future biomaterials.
Collapse
Affiliation(s)
- Nga T Lam
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Joshua B McCluskey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Dominic J Glover
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
27
|
Metwally NH, Badawy MA, Okpy DS. Synthesis, biological evaluation of novel thiopyrano[2,3-d]thiazoles incorporating arylsulfonate moiety as potential inhibitors of tubulin polymerization, and molecular modeling studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
28
|
Ithurbide S, Gribaldo S, Albers SV, Pende N. Spotlight on FtsZ-based cell division in Archaea. Trends Microbiol 2022; 30:665-678. [PMID: 35246355 DOI: 10.1016/j.tim.2022.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022]
Abstract
Compared with the extensive knowledge on cell division in model eukaryotes and bacteria, little is known about how archaea divide. Interestingly, both endosomal sorting complex required for transport (ESCRT)-based and FtsZ-based cell division systems are found in members of the Archaea. In the past couple of years, several studies have started to shed light on FtsZ-based cell division processes in members of the Euryarchaeota. In this review we highlight recent findings in this emerging field of research. We present current knowledge of the cell division machinery of halophiles which relies on two FtsZ proteins, and we compare it with that of methanobacteria, which relies on only one FtsZ. Finally, we discuss how these differences relate to the distinct cell envelopes of these two archaeal model systems.
Collapse
Affiliation(s)
- Solenne Ithurbide
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Simonetta Gribaldo
- Evolutionary Biology of the Microbial Cell Unit, CNRS UMR2001, Department of Microbiology, Institut Pasteur, Paris, France.
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| | - Nika Pende
- Evolutionary Biology of the Microbial Cell Unit, CNRS UMR2001, Department of Microbiology, Institut Pasteur, Paris, France
| |
Collapse
|
29
|
Ramos-León F, Ramamurthi K. Cytoskeletal proteins: Lessons learned from bacteria. Phys Biol 2022; 19. [PMID: 35081523 DOI: 10.1088/1478-3975/ac4ef0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/26/2022] [Indexed: 11/11/2022]
Abstract
Cytoskeletal proteins are classified as a group that is defined functionally, whose members are capable of polymerizing into higher order structures, either dynamically or statically, to perform structural roles during a variety of cellular processes. In eukaryotes, the most well-studied cytoskeletal proteins are actin, tubulin, and intermediate filaments, and are essential for cell shape and movement, chromosome segregation, and intracellular cargo transport. Prokaryotes often harbor homologs of these proteins, but in bacterial cells, these homologs are usually not employed in roles that can be strictly defined as "cytoskeletal". However, several bacteria encode other proteins capable of polymerizing which, although they do not appear to have a eukaryotic counterpart, nonetheless appear to perform a more traditional "cytoskeletal" function. In this review, we discuss recent reports that cover the structure and functions of prokaryotic proteins that are broadly termed as cytoskeletal, either by sequence homology or by function, to highlight how the enzymatic properties of traditionally studied cytoskeletal proteins may be used for other types of cellular functions; and to demonstrate how truly "cytoskeletal" functions may be performed by uniquely bacterial proteins that do not display homology to eukaryotic proteins.
Collapse
Affiliation(s)
- Félix Ramos-León
- National Institutes of Health, 37 Convent Dr., Bldg 37, Room 5132, Bethesda, Maryland, 20892, UNITED STATES
| | - Kumaran Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, 37 Convent Dr, Bldg 37, Room 5132, Bethesda, Maryland, 20892, UNITED STATES
| |
Collapse
|
30
|
Li X, Buda F, de Groot HJ, Sevink GJA. The role of chirality and plastic crystallinity in the optical and mechanical properties of chlorosomes. iScience 2022; 25:103618. [PMID: 35005556 PMCID: PMC8719020 DOI: 10.1016/j.isci.2021.103618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/15/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022] Open
Abstract
The most efficient light-harvesting antennae found in nature, chlorosomes, are molecular tubular aggregates (TMAs) assembled by pigments without protein scaffolds. Here, we discuss a classification of chlorosomes as a unique tubular plastic crystal and we attribute the robust energy transfer in chlorosomes to this unique nature. To systematically study the role of supramolecular tube chirality by molecular simulation, a role that has remained unresolved, we share a protocol for generating realistic tubes at atomic resolution. We find that both the optical and the mechanical behavior are strongly dependent on chirality. The optical-chirality relation enables a direct interpretation of experimental spectra in terms of overall tube chirality. The mechanical response shows that the overall chirality regulates the hardness of the tube and provides a new characteristic for relating chlorosomes to distinct chirality. Our protocol also applies to other TMA systems and will inspire other systematic studies beyond lattice models. Classifies chlorosomes in terms of a tubular plastic crystal phase Clarifies the unique strategy of chlorosomes for harvesting and transporting energy Presents a protocol for building atom-resolved helical tube structures Maps tube chirality directly to measurable optical and mechanical responses
Collapse
Affiliation(s)
- Xinmeng Li
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, South Holland, the Netherlands
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, P.O.Box 1033, Blindern, Oslo, 0315 Oslo, Norway
- Corresponding author
| | - Francesco Buda
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, South Holland, the Netherlands
| | - Huub J.M. de Groot
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, South Holland, the Netherlands
| | - G. J. Agur Sevink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, South Holland, the Netherlands
- Corresponding author
| |
Collapse
|
31
|
Gambelli L, Mesman R, Versantvoort W, Diebolder CA, Engel A, Evers W, Jetten MSM, Pabst M, Daum B, van Niftrik L. The Polygonal Cell Shape and Surface Protein Layer of Anaerobic Methane-Oxidizing Methylomirabilis lanthanidiphila Bacteria. Front Microbiol 2021; 12:766527. [PMID: 34925275 PMCID: PMC8671808 DOI: 10.3389/fmicb.2021.766527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/08/2021] [Indexed: 11/25/2022] Open
Abstract
Methylomirabilis bacteria perform anaerobic methane oxidation coupled to nitrite reduction via an intra-aerobic pathway, producing carbon dioxide and dinitrogen gas. These diderm bacteria possess an unusual polygonal cell shape with sharp ridges that run along the cell body. Previously, a putative surface protein layer (S-layer) was observed as the outermost cell layer of these bacteria. We hypothesized that this S-layer is the determining factor for their polygonal cell shape. Therefore, we enriched the S-layer from M. lanthanidiphila cells and through LC-MS/MS identified a 31 kDa candidate S-layer protein, mela_00855, which had no homology to any other known protein. Antibodies were generated against a synthesized peptide derived from the mela_00855 protein sequence and used in immunogold localization to verify its identity and location. Both on thin sections of M. lanthanidiphila cells and in negative-stained enriched S-layer patches, the immunogold localization identified mela_00855 as the S-layer protein. Using electron cryo-tomography and sub-tomogram averaging of S-layer patches, we observed that the S-layer has a hexagonal symmetry. Cryo-tomography of whole cells showed that the S-layer and the outer membrane, but not the peptidoglycan layer and the cytoplasmic membrane, exhibited the polygonal shape. Moreover, the S-layer consisted of multiple rigid sheets that partially overlapped, most likely giving rise to the unique polygonal cell shape. These characteristics make the S-layer of M. lanthanidiphila a distinctive and intriguing case to study.
Collapse
Affiliation(s)
- Lavinia Gambelli
- Department of Microbiology, Faculty of Science, Radboud University, Nijmegen, Netherlands.,Living Systems Institute, University of Exeter, Exeter, United Kingdom.,College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
| | - Rob Mesman
- Department of Microbiology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Wouter Versantvoort
- Department of Microbiology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Christoph A Diebolder
- Netherlands Centre for Electron Nanoscopy (NeCEN), Leiden University, Leiden, Netherlands
| | - Andreas Engel
- Department of Bionanoscience, Delft University of Technology, Delft, Netherlands
| | - Wiel Evers
- Department of Bionanoscience, Delft University of Technology, Delft, Netherlands.,Department of Chemical Engineering, Delft University of Technology, Delft, Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Bertram Daum
- Living Systems Institute, University of Exeter, Exeter, United Kingdom.,College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Laura van Niftrik
- Department of Microbiology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
32
|
Masson F, Pierrat X, Lemaitre B, Persat A. The wall-less bacterium Spiroplasma poulsonii builds a polymeric cytoskeleton composed of interacting MreB isoforms. iScience 2021; 24:103458. [PMID: 34888500 PMCID: PMC8634037 DOI: 10.1016/j.isci.2021.103458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 11/20/2022] Open
Abstract
A rigid cell wall defines the morphology of most bacteria. MreB, a bacterial homologue of actin, plays a major role in coordinating cell wall biogenesis and defining cell shape. Spiroplasma are wall-less bacteria that robustly grow with a characteristic helical shape. Paradoxal to their lack of cell wall, the Spiroplasma genome contains five homologs of MreB (SpMreBs). Here, we investigate the function of SpMreBs in forming a polymeric cytoskeleton. We found that, in vivo, Spiroplasma maintain a high concentration of all MreB isoforms. By leveraging a heterologous expression system that bypasses the poor genetic tractability of Spiroplasma, we found that SpMreBs produced polymeric filaments of various morphologies. We characterized an interaction network between isoforms that regulate filament formation and patterning. Therefore, our results support the hypothesis where combined SpMreB isoforms would form an inner polymeric cytoskeleton in vivo that shapes the cell in a wall-independent manner. The five Spiroplasma MreB isoforms are extremely abundant proteins in vivo Each isoform produces filaments when expressed in a heterologous system SpMreBs form an interaction network that regulates filament length and shape
Collapse
Affiliation(s)
- Florent Masson
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Corresponding author
| | - Xavier Pierrat
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Alexandre Persat
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Corresponding author
| |
Collapse
|
33
|
Zhu J, Avakyan N, Kakkis AA, Hoffnagle AM, Han K, Li Y, Zhang Z, Choi TS, Na Y, Yu CJ, Tezcan FA. Protein Assembly by Design. Chem Rev 2021; 121:13701-13796. [PMID: 34405992 PMCID: PMC9148388 DOI: 10.1021/acs.chemrev.1c00308] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are nature's primary building blocks for the construction of sophisticated molecular machines and dynamic materials, ranging from protein complexes such as photosystem II and nitrogenase that drive biogeochemical cycles to cytoskeletal assemblies and muscle fibers for motion. Such natural systems have inspired extensive efforts in the rational design of artificial protein assemblies in the last two decades. As molecular building blocks, proteins are highly complex, in terms of both their three-dimensional structures and chemical compositions. To enable control over the self-assembly of such complex molecules, scientists have devised many creative strategies by combining tools and principles of experimental and computational biophysics, supramolecular chemistry, inorganic chemistry, materials science, and polymer chemistry, among others. Owing to these innovative strategies, what started as a purely structure-building exercise two decades ago has, in short order, led to artificial protein assemblies with unprecedented structures and functions and protein-based materials with unusual properties. Our goal in this review is to give an overview of this exciting and highly interdisciplinary area of research, first outlining the design strategies and tools that have been devised for controlling protein self-assembly, then describing the diverse structures of artificial protein assemblies, and finally highlighting the emergent properties and functions of these assemblies.
Collapse
Affiliation(s)
| | | | - Albert A. Kakkis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Alexander M. Hoffnagle
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Kenneth Han
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Yiying Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Zhiyin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Tae Su Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Youjeong Na
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Chung-Jui Yu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
34
|
Abstract
Increasing efficiency is an important driving force behind cellular organization and often achieved through compartmentalization. Long recognized as a core principle of eukaryotic cell organization, its widespread occurrence in prokaryotes has only recently come to light. Despite the early discovery of a few microcompartments such as gas vesicles and carboxysomes, the vast majority of these structures in prokaryotes are less than 100 nm in diameter - too small for conventional light microscopy and electron microscopic thin sectioning. Consequently, these smaller-sized nanocompartments have therefore been discovered serendipitously and then through bioinformatics shown to be broadly distributed. Their small uniform size, robust self-assembly, high stability, excellent biocompatibility, and large cargo capacity make them excellent candidates for biotechnology applications. This review will highlight our current knowledge of nanocompartments, the prospects for applications as well as open question and challenges that need to be addressed to fully understand these important structures.
Collapse
|
35
|
Liu J, Tassinari M, Souza DP, Naskar S, Noel JK, Bohuszewicz O, Buck M, Williams TA, Baum B, Low HH. Bacterial Vipp1 and PspA are members of the ancient ESCRT-III membrane-remodeling superfamily. Cell 2021; 184:3660-3673.e18. [PMID: 34166615 PMCID: PMC8281802 DOI: 10.1016/j.cell.2021.05.041] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/24/2020] [Accepted: 05/25/2021] [Indexed: 12/31/2022]
Abstract
Membrane remodeling and repair are essential for all cells. Proteins that perform these functions include Vipp1/IM30 in photosynthetic plastids, PspA in bacteria, and ESCRT-III in eukaryotes. Here, using a combination of evolutionary and structural analyses, we show that these protein families are homologous and share a common ancient evolutionary origin that likely predates the last universal common ancestor. This homology is evident in cryo-electron microscopy structures of Vipp1 rings from the cyanobacterium Nostoc punctiforme presented over a range of symmetries. Each ring is assembled from rungs that stack and progressively tilt to form dome-shaped curvature. Assembly is facilitated by hinges in the Vipp1 monomer, similar to those in ESCRT-III proteins, which allow the formation of flexible polymers. Rings have an inner lumen that is able to bind and deform membranes. Collectively, these data suggest conserved mechanistic principles that underlie Vipp1, PspA, and ESCRT-III-dependent membrane remodeling across all domains of life.
Collapse
Affiliation(s)
- Jiwei Liu
- Department of Infectious Disease, Imperial College, London, UK
| | | | - Diorge P Souza
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK; Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Souvik Naskar
- Department of Infectious Disease, Imperial College, London, UK
| | - Jeffrey K Noel
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Martin Buck
- Department of Life Sciences, Imperial College, London, UK
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK; Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK; Institute for the Physics of Living Systems, University College London, London, UK.
| | - Harry H Low
- Department of Infectious Disease, Imperial College, London, UK.
| |
Collapse
|
36
|
Filić V, Mijanović L, Putar D, Talajić A, Ćetković H, Weber I. Regulation of the Actin Cytoskeleton via Rho GTPase Signalling in Dictyostelium and Mammalian Cells: A Parallel Slalom. Cells 2021; 10:1592. [PMID: 34202767 PMCID: PMC8305917 DOI: 10.3390/cells10071592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 01/15/2023] Open
Abstract
Both Dictyostelium amoebae and mammalian cells are endowed with an elaborate actin cytoskeleton that enables them to perform a multitude of tasks essential for survival. Although these organisms diverged more than a billion years ago, their cells share the capability of chemotactic migration, large-scale endocytosis, binary division effected by actomyosin contraction, and various types of adhesions to other cells and to the extracellular environment. The composition and dynamics of the transient actin-based structures that are engaged in these processes are also astonishingly similar in these evolutionary distant organisms. The question arises whether this remarkable resemblance in the cellular motility hardware is accompanied by a similar correspondence in matching software, the signalling networks that govern the assembly of the actin cytoskeleton. Small GTPases from the Rho family play pivotal roles in the control of the actin cytoskeleton dynamics. Indicatively, Dictyostelium matches mammals in the number of these proteins. We give an overview of the Rho signalling pathways that regulate the actin dynamics in Dictyostelium and compare them with similar signalling networks in mammals. We also provide a phylogeny of Rho GTPases in Amoebozoa, which shows a variability of the Rho inventories across different clades found also in Metazoa.
Collapse
Affiliation(s)
- Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| | | | | | | | | | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| |
Collapse
|
37
|
Rodríguez JM, Allende-Ballestero C, Cornelissen JJLM, Castón JR. Nanotechnological Applications Based on Bacterial Encapsulins. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1467. [PMID: 34206092 PMCID: PMC8229669 DOI: 10.3390/nano11061467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Encapsulins are proteinaceous nanocontainers, constructed by a single species of shell protein that self-assemble into 20-40 nm icosahedral particles. Encapsulins are structurally similar to the capsids of viruses of the HK97-like lineage, to which they are evolutionarily related. Nearly all these nanocontainers encase a single oligomeric protein that defines the physiological role of the complex, although a few encapsulate several activities within a single particle. Encapsulins are abundant in bacteria and archaea, in which they participate in regulation of oxidative stress, detoxification, and homeostasis of key chemical elements. These nanocontainers are physically robust, contain numerous pores that permit metabolite flux through the shell, and are very tolerant of genetic manipulation. There are natural mechanisms for efficient functionalization of the outer and inner shell surfaces, and for the in vivo and in vitro internalization of heterologous proteins. These characteristics render encapsulin an excellent platform for the development of biotechnological applications. Here we provide an overview of current knowledge of encapsulin systems, summarize the remarkable toolbox developed by researchers in this field, and discuss recent advances in the biomedical and bioengineering applications of encapsulins.
Collapse
Affiliation(s)
- Javier M. Rodríguez
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (J.M.R.); (C.A.-B.)
| | - Carolina Allende-Ballestero
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (J.M.R.); (C.A.-B.)
| | - Jeroen J. L. M. Cornelissen
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands;
| | - José R. Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (J.M.R.); (C.A.-B.)
- Nanobiotechnology Associated Unit CNB-CSIC-IMDEA, Campus Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
38
|
Mitura M, Lewicka E, Godziszewska J, Adamczyk M, Jagura-Burdzy G. Alpha-Helical Protein KfrC Acts as a Switch between the Lateral and Vertical Modes of Dissemination of Broad-Host-Range RA3 Plasmid from IncU (IncP-6) Incompatibility Group. Int J Mol Sci 2021; 22:4880. [PMID: 34063039 PMCID: PMC8124265 DOI: 10.3390/ijms22094880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 12/24/2022] Open
Abstract
KfrC proteins are encoded by the conjugative broad-host-range plasmids that also encode alpha-helical filament-forming KfrA proteins as exemplified by the RA3 plasmid from the IncU incompatibility group. The RA3 variants impaired in kfrA, kfrC, or both affected the host's growth and demonstrated the altered stability in a species-specific manner. In a search for partners of the alpha-helical KfrC protein, the host's membrane proteins and four RA3-encoded proteins were found, including the filamentous KfrA protein, segrosome protein KorB, and the T4SS proteins, the coupling protein VirD4 and ATPase VirB4. The C-terminal, 112-residue dimerization domain of KfrC was involved in the interactions with KorB, the master player of the active partition, and VirD4, a key component of the conjugative transfer process. In Pseudomonas putida, but not in Escherichia coli, the lack of KfrC decreased the stability but improved the transfer ability. We showed that KfrC and KfrA were involved in the plasmid maintenance and conjugative transfer and that KfrC may play a species-dependent role of a switch between vertical and horizontal modes of RA3 spreading.
Collapse
Affiliation(s)
- Monika Mitura
- Laboratory of DNA Segregation and Cell Cycle of Proteobacteria, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.M.); (E.L.); (J.G.)
| | - Ewa Lewicka
- Laboratory of DNA Segregation and Cell Cycle of Proteobacteria, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.M.); (E.L.); (J.G.)
| | - Jolanta Godziszewska
- Laboratory of DNA Segregation and Cell Cycle of Proteobacteria, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.M.); (E.L.); (J.G.)
| | - Malgorzata Adamczyk
- Faculty of Chemistry, Chair of Drug and Cosmetics Biotechnology, Warsaw University of Technology, 00-664 Warsaw, Poland;
| | - Grazyna Jagura-Burdzy
- Laboratory of DNA Segregation and Cell Cycle of Proteobacteria, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.M.); (E.L.); (J.G.)
| |
Collapse
|
39
|
Abstract
All living cells depend on the intricate organization of molecular components in space and time. Although this notion was historically based on eukaryotic cells, with their structured intracellular architecture and cellular morphologies, it is now recognized that prokaryotes (that is, bacteria and archaea) also possess complex structures. A cytoskeleton is a network of intracellular protein filaments that play a structural or mechanical role (such as scaffolding, pushing, or pulling) in the spatiotemporal organization of cellular processes. Polymerization of protein monomers in a roughly linear fashion into filaments represents an effective means to establish long-range spatial order by bridging the gap between nanometer-sized molecules and micron-sized cells. It is now evident that bacteria and archaea possess numerous kinds of cytoskeletal proteins, including prokaryotic homologues of the eukaryotic actins, tubulins, and intermediate filaments, as well as other types that have been found primarily or exclusively in prokaryotes (Table 1). Understanding the diverse functions and mechanisms of the rapidly growing universe of prokaryotic cytoskeletal proteins will not only advance prokaryotic cell biology and reveal evolutionary principles, but also open up new avenues for the development of anti-microbial agents, de novo protein design, and the construction of minimal and synthetic cells.
Collapse
Affiliation(s)
- Yue Liu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
40
|
Progress in the Chemistry of Cytochalasans. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2021; 114:1-134. [PMID: 33792860 DOI: 10.1007/978-3-030-59444-2_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cytochalasans are a group of fungal-derived natural products characterized by a perhydro-isoindolone core fused with a macrocyclic ring, and they exhibit a high structural diversity and a broad spectrum of bioactivities. Cytochalasans have attracted significant attention from the chemical and pharmacological communities and have been reviewed previously from various perspectives in recent years. However, continued interest in the cytochalasans and the number of laboratory investigations on these compounds are both growing rapidly. This contribution provides a general overview of the isolation, structural determination, biological activities, biosynthesis, and total synthesis of cytochalasans. In total, 477 cytochalasans are covered, including "merocytochalasans" that arise by the dimerization or polymerization of one or more cytochalasan molecules with one or more other natural product units. This contribution provides a comprehensive treatment of the cytochalasans, and it is hoped that it may stimulate further work on these interesting natural products.
Collapse
|
41
|
Tan MF, Zou G, Wei Y, Liu WQ, Li HQ, Hu Q, Zhang LS, Zhou R. Protein-protein interaction network and potential drug target candidates of Streptococcus suis. J Appl Microbiol 2021; 131:658-670. [PMID: 33249680 DOI: 10.1111/jam.14950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/15/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Abstract
AIMS This study aimed to explore potential drug targets of Streptococcus suis at the system level. METHODS AND RESULTS A homologous protein mapping method was used in the construction of a protein-protein interaction (PPI) network of S. suis, which presented 1147 non-redundant interaction pairs among 286 proteins. The parameters of PPI networks were calculated and showed scale-free network properties. In all, 41 possibly essential proteins identified from 47 highly connected proteins were selected as potential drug target candidates. Of these proteins, 30 were already regarded as drug targets in other bacterial species. Six transporters with high connections to other functional proteins were identified as probably not essential but important functional proteins. Afterward, the subnetwork centred with cell division protein FtsZ was used in confirming the PPI network through bacterial two-hybrid analysis. CONCLUSIONS The predicted PPI network covers 13·04% of the proteome in S. suis. The selected 41 potential drug target candidates are conserved between S. suis and several model bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY The predictions included proteins known to be drug targets, and a verifying experiment confirmed the reliability of predicted interactions. This work is the first to present systematic computational PPI data for S. suis and provides potential drug targets, which are valuable in exploring novel anti-streptococcus drugs.
Collapse
Affiliation(s)
- M-F Tan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, China.,Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - G Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, China
| | - Y Wei
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - W-Q Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, China
| | - H-Q Li
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Q Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, China
| | - L-S Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, China
| | - R Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, China.,International Research Center for Animal Disease (Ministry of Science & Technology of China), Wuhan, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
| |
Collapse
|
42
|
Schnaars V, Wöhlbrand L, Scheve S, Hinrichs C, Reinhardt R, Rabus R. Proteogenomic Insights into the Physiology of Marine, Sulfate-Reducing, Filamentous Desulfonema limicola and Desulfonema magnum. Microb Physiol 2021; 31:1-20. [PMID: 33611323 PMCID: PMC8315694 DOI: 10.1159/000513383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/19/2020] [Indexed: 11/19/2022]
Abstract
The genus Desulfonema belongs to the deltaproteobacterial family Desulfobacteraceae and comprises marine, sulfate-reducing bacteria that form filaments and move by gliding. This study reports on the complete, manually annotated genomes of Dn. limicola 5ac10T (6.91 Mbp; 6,207 CDS) and Dn. magnum 4be13T (8.03 Mbp; 9,970 CDS), integrated with substrate-specific proteome profiles (8 vs. 11). The richness in mobile genetic elements is shared with other Desulfobacteraceae members, corroborating horizontal gene transfer as major driver in shaping the genomes of this family. The catabolic networks of Dn. limicola and Dn. magnum have the following general characteristics: 98 versus 145 genes assigned (having genomic shares of 1.7 vs. 2.2%), 92.5 versus 89.7% proteomic coverage, and scattered gene clusters for substrate degradation and energy metabolism. The Dn. magnum typifying capacity for aromatic compound degradation (e.g., p-cresol, 3-phenylpropionate) requires 48 genes organized in operon-like structures (87.7% proteomic coverage; no homologs in Dn. limicola). The protein complements for aliphatic compound degradation, central pathways, and energy metabolism are highly similar between both genomes and were identified to a large extent (69-96%). The differential protein profiles revealed a high degree of substrate-specificity for peripheral reaction sequences (forming central intermediates), agreeing with the high number of sensory/regulatory proteins predicted for both strains. By contrast, central pathways and modules of the energy metabolism were constitutively formed under the tested substrate conditions. In accord with their natural habitats that are subject to fluctuating changes of physicochemical parameters, both Desulfonema strains are well equipped to cope with various stress conditions. Next to superoxide dismutase and catalase also desulfoferredoxin and rubredoxin oxidoreductase are formed to counter exposure to molecular oxygen. A variety of proteases and chaperones were detected that function in maintaining cellular homeostasis upon heat or cold shock. Furthermore, glycine betaine/proline betaine transport systems can respond to hyperosmotic stress. Gliding movement probably relies on twitching motility via type-IV pili or adventurous motility. Taken together, this proteogenomic study demonstrates the adaptability of Dn. limicola and Dn. magnum to its dynamic habitats by means of flexible catabolism and extensive stress response capacities.
Collapse
Affiliation(s)
- Vanessa Schnaars
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Sabine Scheve
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Christina Hinrichs
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Richard Reinhardt
- Max-Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany,
| |
Collapse
|
43
|
Fajardo-Cavazos P, Nicholson WL. Mechanotransduction in Prokaryotes: A Possible Mechanism of Spaceflight Adaptation. Life (Basel) 2021; 11:33. [PMID: 33430182 PMCID: PMC7825584 DOI: 10.3390/life11010033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023] Open
Abstract
Our understanding of the mechanisms of microgravity perception and response in prokaryotes (Bacteria and Archaea) lag behind those which have been elucidated in eukaryotic organisms. In this hypothesis paper, we: (i) review how eukaryotic cells sense and respond to microgravity using various pathways responsive to unloading of mechanical stress; (ii) we observe that prokaryotic cells possess many structures analogous to mechanosensitive structures in eukaryotes; (iii) we review current evidence indicating that prokaryotes also possess active mechanosensing and mechanotransduction mechanisms; and (iv) we propose a complete mechanotransduction model including mechanisms by which mechanical signals may be transduced to the gene expression apparatus through alterations in bacterial nucleoid architecture, DNA supercoiling, and epigenetic pathways.
Collapse
Affiliation(s)
| | - Wayne L. Nicholson
- Space Life Sciences Laboratory, Department of Microbiology and Cell Science, University of Florida, 505 Odyssey Way, Merritt Island, FL 32953, USA;
| |
Collapse
|
44
|
Abstract
Since their discovery more than 100 years ago, the viruses that infect bacteria (bacteriophages) have been widely studied as model systems. Largely overlooked, however, have been "jumbo phages," with genome sizes ranging from 200 to 500 kbp. Jumbo phages generally have large virions with complex structures and a broad host spectrum. While the majority of jumbo phage genes are poorly functionally characterized, recent work has discovered many unique biological features, including a conserved tubulin homolog that coordinates a proteinaceous nucleus-like compartment that houses and segregates phage DNA. The tubulin spindle displays dynamic instability and centers the phage nucleus within the bacterial host during phage infection for optimal reproduction. The shell provides robust physical protection for the enclosed phage genomes against attack from DNA-targeting bacterial immune systems, thereby endowing jumbo phages with broad resistance. In this review, we focus on the current knowledge of the cytoskeletal elements and the specialized nuclear compartment derived from jumbo phages, and we highlight their importance in facilitating spatial and temporal organization over the viral life cycle. Additionally, we discuss the evolutionary relationships between jumbo phages and eukaryotic viruses, as well as the therapeutic potential and drawbacks of jumbo phages as antimicrobial agents in phage therapy.
Collapse
|
45
|
Springstein BL, Nürnberg DJ, Weiss GL, Pilhofer M, Stucken K. Structural Determinants and Their Role in Cyanobacterial Morphogenesis. Life (Basel) 2020; 10:E355. [PMID: 33348886 PMCID: PMC7766704 DOI: 10.3390/life10120355] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
Cells have to erect and sustain an organized and dynamically adaptable structure for an efficient mode of operation that allows drastic morphological changes during cell growth and cell division. These manifold tasks are complied by the so-called cytoskeleton and its associated proteins. In bacteria, FtsZ and MreB, the bacterial homologs to tubulin and actin, respectively, as well as coiled-coil-rich proteins of intermediate filament (IF)-like function to fulfil these tasks. Despite generally being characterized as Gram-negative, cyanobacteria have a remarkably thick peptidoglycan layer and possess Gram-positive-specific cell division proteins such as SepF and DivIVA-like proteins, besides Gram-negative and cyanobacterial-specific cell division proteins like MinE, SepI, ZipN (Ftn2) and ZipS (Ftn6). The diversity of cellular morphologies and cell growth strategies in cyanobacteria could therefore be the result of additional unidentified structural determinants such as cytoskeletal proteins. In this article, we review the current advances in the understanding of the cyanobacterial cell shape, cell division and cell growth.
Collapse
Affiliation(s)
- Benjamin L. Springstein
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Dennis J. Nürnberg
- Department of Physics, Biophysics and Biochemistry of Photosynthetic Organisms, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Gregor L. Weiss
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zürich, 8092 Zürich, Switzerland; (G.L.W.); (M.P.)
| | - Martin Pilhofer
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zürich, 8092 Zürich, Switzerland; (G.L.W.); (M.P.)
| | - Karina Stucken
- Department of Food Engineering, Universidad de La Serena, La Serena 1720010, Chile;
| |
Collapse
|
46
|
Takahashi D, Fujiwara I, Miyata M. Phylogenetic origin and sequence features of MreB from the wall-less swimming bacteria Spiroplasma. Biochem Biophys Res Commun 2020; 533:638-644. [PMID: 33066960 DOI: 10.1016/j.bbrc.2020.09.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 01/01/2023]
Abstract
Spiroplasma are wall-less bacteria which belong to the phylum Tenericutes that evolved from Firmicutes including Bacillus subtilis. Spiroplasma swim by a mechanism unrelated to widespread bacterial motilities, such as flagellar motility, and caused by helicity switching with kinks traveling along the helical cell body. The swimming force is likely generated by five classes of bacterial actin homolog MreBs (SMreBs 1-5) involved in the helical bone structure. We analyzed sequences of SMreBs to clarify their phylogeny and sequence features. The maximum likelihood method based on around 5000 MreB sequences showed that the phylogenetic tree was divided into several radiations. SMreBs formed a clade adjacent to the radiation of MreBH, an MreB isoform of Firmicutes. Sequence comparisons of SMreBs and Bacillus MreBs were also performed to clarify the features of SMreB. Catalytic glutamic acid and threonine were substituted to aspartic acid and lysine, respectively, in SMreB3. In SMreBs 2 and 4, amino acids involved in inter- and intra-protofilament interactions were significantly different from those in Bacillus MreBs. A membrane-binding region was not identified in most SMreBs 1 and 4 unlike many walled-bacterial MreBs. SMreB5 had a significantly longer C-terminal region than the other MreBs, which possibly forms protein-protein interactions. These features may support the functions responsible for the unique mechanism of Spiroplasma swimming.
Collapse
Affiliation(s)
- Daichi Takahashi
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Ikuko Fujiwara
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, 558-8585, Japan; The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Makoto Miyata
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, 558-8585, Japan; The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Sumiyoshi-ku, Osaka, 558-8585, Japan.
| |
Collapse
|
47
|
Wylensek D, Hitch TCA, Riedel T, Afrizal A, Kumar N, Wortmann E, Liu T, Devendran S, Lesker TR, Hernández SB, Heine V, Buhl EM, M D'Agostino P, Cumbo F, Fischöder T, Wyschkon M, Looft T, Parreira VR, Abt B, Doden HL, Ly L, Alves JMP, Reichlin M, Flisikowski K, Suarez LN, Neumann AP, Suen G, de Wouters T, Rohn S, Lagkouvardos I, Allen-Vercoe E, Spröer C, Bunk B, Taverne-Thiele AJ, Giesbers M, Wells JM, Neuhaus K, Schnieke A, Cava F, Segata N, Elling L, Strowig T, Ridlon JM, Gulder TAM, Overmann J, Clavel T. A collection of bacterial isolates from the pig intestine reveals functional and taxonomic diversity. Nat Commun 2020; 11:6389. [PMID: 33319778 PMCID: PMC7738495 DOI: 10.1038/s41467-020-19929-w] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/02/2020] [Indexed: 02/08/2023] Open
Abstract
Our knowledge about the gut microbiota of pigs is still scarce, despite the importance of these animals for biomedical research and agriculture. Here, we present a collection of cultured bacteria from the pig gut, including 110 species across 40 families and nine phyla. We provide taxonomic descriptions for 22 novel species and 16 genera. Meta-analysis of 16S rRNA amplicon sequence data and metagenome-assembled genomes reveal prevalent and pig-specific species within Lactobacillus, Streptococcus, Clostridium, Desulfovibrio, Enterococcus, Fusobacterium, and several new genera described in this study. Potentially interesting functions discovered in these organisms include a fucosyltransferase encoded in the genome of the novel species Clostridium porci, and prevalent gene clusters for biosynthesis of sactipeptide-like peptides. Many strains deconjugate primary bile acids in in vitro assays, and a Clostridium scindens strain produces secondary bile acids via dehydroxylation. In addition, cells of the novel species Bullifex porci are coccoidal or spherical under the culture conditions tested, in contrast with the usual helical shape of other members of the family Spirochaetaceae. The strain collection, called ‘Pig intestinal bacterial collection’ (PiBAC), is publicly available at www.dsmz.de/pibac and opens new avenues for functional studies of the pig gut microbiota. The authors present a public collection of 117 bacterial isolates from the pig gut, including the description of 38 novel taxa. Interesting functions discovered in these organisms include a new fucosyltransferease and sactipeptide-like molecules encoded by biosynthetic gene clusters.
Collapse
Affiliation(s)
- David Wylensek
- Functional Microbiome Research Group, RWTH University Hospital, Aachen, Germany
| | - Thomas C A Hitch
- Functional Microbiome Research Group, RWTH University Hospital, Aachen, Germany
| | - Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Afrizal Afrizal
- Functional Microbiome Research Group, RWTH University Hospital, Aachen, Germany
| | - Neeraj Kumar
- Functional Microbiome Research Group, RWTH University Hospital, Aachen, Germany.,ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Esther Wortmann
- Functional Microbiome Research Group, RWTH University Hospital, Aachen, Germany
| | - Tianzhe Liu
- Chair of Technical Biochemistry, Technical University of Dresden, Dresden, Germany
| | - Saravanan Devendran
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Till R Lesker
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sara B Hernández
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Viktoria Heine
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Eva M Buhl
- Electron Microscopy Facility, Institute of Pathology, RWTH University Hospital, Aachen, Germany
| | - Paul M D'Agostino
- Chair of Technical Biochemistry, Technical University of Dresden, Dresden, Germany
| | - Fabio Cumbo
- Department CIBIO, University of Trento, Trento, Italy
| | - Thomas Fischöder
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Marzena Wyschkon
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Torey Looft
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Valeria R Parreira
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Birte Abt
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Heidi L Doden
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Lindsey Ly
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - João M P Alves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Krzysztof Flisikowski
- Chair of Livestock Biotechnology, Weihenstephan School of Life Science, Technical University of Munich, Freising, Germany
| | - Laura Navarro Suarez
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Hamburg, Germany
| | - Anthony P Neumann
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Sascha Rohn
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Hamburg, Germany.,Institute of Food Technolgy and Food Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Ilias Lagkouvardos
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany.,Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center of Marine Research, Heraklion, Greece
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Anja J Taverne-Thiele
- Host-Microbe Interactomics Group, Department of Animal Science, Wageningen University, Wageningen, The Netherlands
| | - Marcel Giesbers
- Electron Microscopy Center, Wageningen University, Wageningen, The Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Department of Animal Science, Wageningen University, Wageningen, The Netherlands
| | - Klaus Neuhaus
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Angelika Schnieke
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany.,Chair of Livestock Biotechnology, Weihenstephan School of Life Science, Technical University of Munich, Freising, Germany
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Hannover Medical School, Hannover, Germany
| | - Jason M Ridlon
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Tobias A M Gulder
- Chair of Technical Biochemistry, Technical University of Dresden, Dresden, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, RWTH University Hospital, Aachen, Germany.
| |
Collapse
|
48
|
Springstein BL, Nürnberg DJ, Woehle C, Weissenbach J, Theune ML, Helbig AO, Maldener I, Dagan T, Stucken K. Two novel heteropolymer-forming proteins maintain the multicellular shape of the cyanobacterium Anabaena sp. PCC 7120. FEBS J 2020; 288:3197-3216. [PMID: 33205554 DOI: 10.1111/febs.15630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/29/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022]
Abstract
Polymerizing and filament-forming proteins are instrumental for numerous cellular processes such as cell division and growth. Their function in stabilization and localization of protein complexes and replicons is achieved by a filamentous structure. Known filamentous proteins assemble into homopolymers consisting of single subunits - for example, MreB and FtsZ in bacteria - or heteropolymers that are composed of two subunits, for example, keratin and α/β tubulin in eukaryotes. Here, we describe two novel coiled-coil-rich proteins (CCRPs) in the filament-forming cyanobacterium Anabaena sp. PCC 7120 (hereafter Anabaena) that assemble into a heteropolymer and function in the maintenance of the Anabaena multicellular shape (termed trichome). The two CCRPs - Alr4504 and Alr4505 (named ZicK and ZacK) - are strictly interdependent for the assembly of protein filaments in vivo and polymerize nucleotide independently in vitro, similar to known intermediate filament (IF) proteins. A ΔzicKΔzacK double mutant is characterized by a zigzagged cell arrangement and hence a loss of the typical linear Anabaena trichome shape. ZicK and ZacK interact with themselves, with each other, with the elongasome protein MreB, the septal junction protein SepJ and the divisome associate septal protein SepI. Our results suggest that ZicK and ZacK function in cooperation with SepJ and MreB to stabilize the Anabaena trichome and are likely essential for the manifestation of the multicellular shape in Anabaena. Our study reveals the presence of filament-forming IF-like proteins whose function is achieved through the formation of heteropolymers in cyanobacteria.
Collapse
Affiliation(s)
| | | | | | | | - Marius L Theune
- Institute of General Microbiology, University of Kiel, Germany
| | - Andreas O Helbig
- AG Proteomics & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Germany
| | - Iris Maldener
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen/Organismic Interactions, University of Tübingen, Germany
| | - Tal Dagan
- Institute of General Microbiology, University of Kiel, Germany
| | - Karina Stucken
- Department of Food Engineering, University of La Serena, Chile
| |
Collapse
|
49
|
Zheng Y, Cheng F, Zheng B, Yu H. Enhancing single-cell hyaluronic acid biosynthesis by microbial morphology engineering. Synth Syst Biotechnol 2020; 5:316-323. [PMID: 33024847 PMCID: PMC7530263 DOI: 10.1016/j.synbio.2020.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Microbial morphology engineering is a novel approach for cell factory to improve the titer of target product in bio-manufacture. Hyaluronic acid (HA), a valuable glycosaminoglycan polymerized by HA synthase (HAS), a membrane protein, is particularly selected as the model product to improve its single-cell HA-producing capacity via morphology engineering. DivIVA and FtsZ, the cell-elongation and cell division related protein, respectively, were both down/up dual regulated in C. glutamicum via weak promoter substitution or plasmid overexpression. Different from the natural short-rod shape, varied morphologies of engineered cells, i.e. small-ellipsoid-like (DivIVA-reduced), bulb-like (DivIVA-enhanced), long-rod (FtsZ-reduced) and dumbbell-like (FtsZ-enhanced), were observed. Applying these morphology-changed cells as hosts for HA production, the reduced expression of both DivIVA and FtsZ seriously inhibited normal cell growth; meanwhile, overexpression of DivIVA didn't show morphology changes, but overexpression of FtsZ surprisingly change the cell-shape into long and thick rod with remarkably enlarged single-cell surface area (more than 5.2-fold-increase). And finally, the single-cell HA-producing capacity of the FtsZ-overexpressed C. glutamicum was immensely improved by 13.5-folds. Flow cytometry analyses verified that the single-cell HAS amount on membrane was enhanced by 2.1 folds. This work is pretty valuable for high titer synthesis of diverse metabolic products with microbial cell factory.
Collapse
Affiliation(s)
- Yukun Zheng
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing, 100084, PR China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Fangyu Cheng
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing, 100084, PR China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Bo Zheng
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing, 100084, PR China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Huimin Yu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing, 100084, PR China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
50
|
A bacterial cytolinker couples positioning of magnetic organelles to cell shape control. Proc Natl Acad Sci U S A 2020; 117:32086-32097. [PMID: 33257551 DOI: 10.1073/pnas.2014659117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Magnetotactic bacteria maneuver within the geomagnetic field by means of intracellular magnetic organelles, magnetosomes, which are aligned into a chain and positioned at midcell by a dedicated magnetosome-specific cytoskeleton, the "magnetoskeleton." However, how magnetosome chain organization and resulting magnetotaxis is linked to cell shape has remained elusive. Here, we describe the cytoskeletal determinant CcfM (curvature-inducing coiled-coil filament interacting with the magnetoskeleton), which links the magnetoskeleton to cell morphology regulation in Magnetospirillum gryphiswaldense Membrane-anchored CcfM localizes in a filamentous pattern along regions of inner positive-cell curvature by its coiled-coil motifs, and independent of the magnetoskeleton. CcfM overexpression causes additional circumferential localization patterns, associated with a dramatic increase in cell curvature, and magnetosome chain mislocalization or complete chain disruption. In contrast, deletion of ccfM results in decreased cell curvature, impaired cell division, and predominant formation of shorter, doubled chains of magnetosomes. Pleiotropic effects of CcfM on magnetosome chain organization and cell morphology are supported by the finding that CcfM interacts with the magnetoskeleton-related MamY and the actin-like MamK via distinct motifs, and with the cell shape-related cytoskeleton via MreB. We further demonstrate that CcfM promotes motility and magnetic alignment in structured environments, and thus likely confers a selective advantage in natural habitats of magnetotactic bacteria, such as aquatic sediments. Overall, we unravel the function of a prokaryotic cytoskeletal constituent that is widespread in magnetic and nonmagnetic spirilla-shaped Alphaproteobacteria.
Collapse
|