1
|
Vivekanandan K, Kumar PV, Jaysree R, Rajeshwari T. Exploring molecular mechanisms of drug resistance in bacteria and progressions in CRISPR/Cas9-based genome expurgation solutions. Glob Med Genet 2025; 12:100042. [PMID: 40051841 PMCID: PMC11883354 DOI: 10.1016/j.gmg.2025.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 03/09/2025] Open
Abstract
Antibiotic resistance in bacteria is a critical global health challenge, driven by molecular mechanisms such as genetic mutations, efflux pumps, enzymatic degradation of antibiotics, target site modifications, and biofilm formation. Horizontal gene transfer (HGT) further accelerates the spread of resistance genes across bacterial populations. These mechanisms contribute to the emergence of multidrug-resistant (MDR) strains, rendering conventional antibiotics ineffective. Recent advancements in CRISPR/Cas9-based genome editing offer innovative solutions to combat drug resistance. CRISPR/Cas9 enables precise targeting of resistance genes, facilitating their deletion or inactivation, and provides a potential method to eliminate resistance-carrying plasmids. Furthermore, phage-delivered CRISPR systems show promise in selectively killing resistant bacteria while leaving susceptible strains unaffected. Despite challenges such as efficient delivery, off-target effects, and potential bacterial resistance to CRISPR itself, ongoing research and technological innovations hold promise for using CRISPR-based antimicrobials to reverse bacterial drug resistance and develop more effective therapies. These abstract highlights the molecular mechanisms underlying bacterial drug resistance and explores how CRISPR/Cas9 technology could revolutionize treatment strategies against resistant pathogens.
Collapse
Affiliation(s)
- K.E. Vivekanandan
- Department of Microbiology, PSG College of Arts and Science, Civil Aerodrome Post, Avinashi Road, Coimbatore, Tamil Nadu 641014, India
| | - P. Vinoth Kumar
- Department of Microbiology, Shri Nehru Maha Vidyalaya, Shri Gambhirmal Bafna Nagar, Malumachampatti, Coimbatore 641050, India
| | - R.C. Jaysree
- Department of Biotechnology, Nehru Arts and Science College, Thirumalayampalayam, Coimbatore 641105, India
| | - T. Rajeshwari
- Department of Biotechnology, Dhanalakshmi Srinivasan College of Arts and Science for Women, Thuraiyur, Perambalur, Tamilnadu 621212, India
| |
Collapse
|
2
|
Yang QE, Gao JT, Zhou SG, Walsh TR. Cutting-edge tools for unveiling the dynamics of plasmid-host interactions. Trends Microbiol 2025; 33:496-509. [PMID: 39843314 DOI: 10.1016/j.tim.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025]
Abstract
The plasmid-mediated transfer of antibiotic resistance genes (ARGs) in complex microbiomes presents a significant global health challenge. This review examines recent technological advancements that have enabled us to move beyond the limitations of culture-dependent detection of conjugation and have enhanced our ability to track and understand the movement of ARGs in real-world scenarios. We critically assess the applications of single-cell sequencing, fluorescence-based techniques and advanced high-throughput chromatin conformation capture (Hi-C) approaches in elucidating plasmid-host interactions at unprecedented resolution. We also evaluate emerging techniques such as CRISPR-based phage engineering and discuss their potential for developing targeted strategies to curb ARG dissemination. Emerging data derived from these technologies have challenged our previous paradigms on plasmid-host compatibility and an awareness of an emerging uncharted realm for ARGs.
Collapse
Affiliation(s)
- Qiu E Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiang Tao Gao
- Key BioAI Synthetica Lab for Natural Product Drug Discovery, National and Local United Engineering Laboratory of Natural Biotoxin, College of Bee and Biomedical Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shun Gui Zhou
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Timothy R Walsh
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford OX1 3RE, UK.
| |
Collapse
|
3
|
Xue W, Hong J, Zhao R, Yao H, Zhang Y, Dai Z, Wang T. Spatial entropy drives the maintenance and dissemination of transferable plasmids. Mol Syst Biol 2025:10.1038/s44320-025-00110-8. [PMID: 40301564 DOI: 10.1038/s44320-025-00110-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/31/2025] [Accepted: 04/11/2025] [Indexed: 05/01/2025] Open
Abstract
The dissemination of transferable plasmids, a major type of mobile genetic elements (MGEs), is one main driver of antibiotic resistance outbreaks. While the plasmid persistence condition in well-mixed environments has been extensively studied, most microbiota in nature are spatially heterogeneous. However, our knowledge regarding how spatial landscape shapes plasmid maintenance and dissemination remains limited. Here we establish a theoretical framework describing plasmid spread over a metacommunity of multiple patches. By analyzing the gene flow dynamics on randomly generated landscapes, we show that plasmid survival and dispersal are dictated by a simple feature of the landscape, spatial entropy. Reducing entropy speeds up plasmid range expansion and allows the global maintenance of many plasmids that are predicted to be lost by classic theories. The entropy's effects are experimentally validated in E. coli metacommunities transferring a conjugative plasmid. We further examine a vast collection of prokaryotic genomes and show that prokaryotes from low-entropy environments indeed carry more abundant MGEs and antibiotic resistance genes. Our work provides critical insights into the management and control of antimicrobial resistance.
Collapse
Affiliation(s)
- Wenzhi Xue
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Juken Hong
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Runmeng Zhao
- School of Mathematics, Jilin University, Changchun, 130012, China
| | - Huaxiong Yao
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yi Zhang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhuojun Dai
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Teng Wang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Good BH, Bhatt AS, McDonald MJ. Unraveling the tempo and mode of horizontal gene transfer in bacteria. Trends Microbiol 2025:S0966-842X(25)00100-3. [PMID: 40274494 DOI: 10.1016/j.tim.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/26/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025]
Abstract
Research on horizontal gene transfer (HGT) has surged over the past two decades, revealing its critical role in accelerating evolutionary rates, facilitating adaptive innovations, and shaping pangenomes. Recent experimental and theoretical results have shown how HGT shapes the flow of genetic information within and between populations, expanding the range of possibilities for microbial evolution. These advances set the stage for a new wave of research seeking to predict how HGT shapes microbial evolution within natural communities, especially during rapid ecological shifts. In this article, we highlight these developments and outline promising research directions, emphasizing the necessity of quantifying the rates of HGT within diverse ecological contexts.
Collapse
Affiliation(s)
- Benjamin H Good
- Department of Applied Physics, Stanford University, Stanford, CA, USA; Department of Biology, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
| | - Ami S Bhatt
- Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Michael J McDonald
- ARC Centre for the Mathematical Analysis of Cellular Systems, Melbourne, Victoria, Australia; School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
5
|
Gillett DL, Selinidis M, Seamons T, George D, Igwe AN, Del Valle I, Egbert RG, Hofmockel KS, Johnson AL, Matthews KRW, Masiello CA, Stadler LB, Chappell J, Silberg JJ. A roadmap to understanding and anticipating microbial gene transfer in soil communities. Microbiol Mol Biol Rev 2025:e0022524. [PMID: 40197024 DOI: 10.1128/mmbr.00225-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
SUMMARYEngineered microbes are being programmed using synthetic DNA for applications in soil to overcome global challenges related to climate change, energy, food security, and pollution. However, we cannot yet predict gene transfer processes in soil to assess the frequency of unintentional transfer of engineered DNA to environmental microbes when applying synthetic biology technologies at scale. This challenge exists because of the complex and heterogeneous characteristics of soils, which contribute to the fitness and transport of cells and the exchange of genetic material within communities. Here, we describe knowledge gaps about gene transfer across soil microbiomes. We propose strategies to improve our understanding of gene transfer across soil communities, highlight the need to benchmark the performance of biocontainment measures in situ, and discuss responsibly engaging community stakeholders. We highlight opportunities to address knowledge gaps, such as creating a set of soil standards for studying gene transfer across diverse soil types and measuring gene transfer host range across microbiomes using emerging technologies. By comparing gene transfer rates, host range, and persistence of engineered microbes across different soils, we posit that community-scale, environment-specific models can be built that anticipate biotechnology risks. Such studies will enable the design of safer biotechnologies that allow us to realize the benefits of synthetic biology and mitigate risks associated with the release of such technologies.
Collapse
Affiliation(s)
- David L Gillett
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Malyn Selinidis
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Travis Seamons
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Dalton George
- Department of Biosciences, Rice University, Houston, Texas, USA
- School for the Future of Innovation in Society, Arizona State University, Tempe, Arizona, USA
| | - Alexandria N Igwe
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Ilenne Del Valle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Robert G Egbert
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kirsten S Hofmockel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Alicia L Johnson
- Baker Institute for Public Policy, Rice University, Houston, Texas, USA
| | | | - Caroline A Masiello
- Department of Biosciences, Rice University, Houston, Texas, USA
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, Texas, USA
| | - Lauren B Stadler
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - James Chappell
- Department of Biosciences, Rice University, Houston, Texas, USA
| | | |
Collapse
|
6
|
Tsoi R, Son HI, Hamrick GS, Tang K, Bethke JH, Lu J, Maddamsetti R, You L. A predatory gene drive for targeted control of self-transmissible plasmids. SCIENCE ADVANCES 2025; 11:eads4735. [PMID: 40173243 PMCID: PMC11963995 DOI: 10.1126/sciadv.ads4735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/26/2025] [Indexed: 04/04/2025]
Abstract
Suppressing plasmid transfer in microbial communities has profound implications due to the role of horizontal gene transfer (HGT) in spreading and maintaining diverse functional traits such as metabolic functions, virulence factors, and antibiotic resistance. However, existing tools for inhibiting HGT are limited in their modes of delivery, efficacy, and scalability. Here, we present a versatile denial-of-spread (DoS) strategy to target and eliminate specific conjugative plasmids. Our strategy exploits retrotransfer, whereby an engineered DoS plasmid is introduced into host cells containing a target plasmid. Acting as a predatory gene drive, DoS propagates itself at the expense of the target plasmid, through competition or active elimination. Once the target plasmid is eradicated, DoS is removed via induced plasmid suicide, resulting in a community containing neither plasmid. The strategy is tunable and scalable for various conjugative plasmids, different mechanisms of plasmid inheritance interruption, and diverse environmental contexts. DoS represents a new tool for precise control of gene persistence in microbial communities.
Collapse
Affiliation(s)
- Ryan Tsoi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Hye-In Son
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Grayson S. Hamrick
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Katherine Tang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Jonathan H. Bethke
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Jia Lu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Rohan Maddamsetti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27708, USA
- Center for Quantitative Biodesign, Duke University, Durham, NC 27708, USA
| |
Collapse
|
7
|
Liu L, Zhang QH, Li MZ, Li RT, He Z, Dechesne A, Smets BF, Sheng GP. Single-cell analysis reveals antibiotic affects conjugative transfer by modulating bacterial growth rather than conjugation efficiency. ENVIRONMENT INTERNATIONAL 2025; 198:109385. [PMID: 40186988 DOI: 10.1016/j.envint.2025.109385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/22/2025] [Accepted: 03/14/2025] [Indexed: 04/07/2025]
Abstract
Antibiotic resistance genes (ARGs) pose a significant threat to human health and the environment. Quantifying the efficiency of horizontal gene transfer (HGT) is challenging due to diverse biological and environmental influences. Single-cell level approaches are well-suited for investigating conjugative transfer, given its reliance on cell-to-cell contact nature and its capacity to offer insights into population-level responses. This study introduces a self-developed system for automated time-lapse image acquisition and analysis. Using a custom dual-chamber microfluidic chip and Python-based image analysis pipeline, we dynamically quantify the ARGs conjugation efficiency at single-cell level. By combining experiments with individual-based modelling, we isolate the effects of subinhibitory antibiotic concentrations on conjugation efficiency from those related to bacterial growth dynamics. No significant variation in Escherichia coli conjugation efficiency was observed across kanamycin concentrations (0 to 50 mg l-1). Moreover, recipient cells with higher growth rates show a greater propensity for plasmid acquisition, suggesting the physiological state of cells pre-conjugation influences their susceptibility to gene transfer. Our methodology eliminates population growth bias, revealing the intrinsic nature of conjugation efficiency. This approach advances our understanding of the factors influencing HGT efficiency and holds promise for studying other microbial interactions. SYNOPSIS: This study employs single-cell analysis to reveal that subinhibitory concentrations of antibiotics affect the conjugative transfer of antibiotic resistance genes by modulating bacterial growth rate rather than conjugation efficiency.
Collapse
Affiliation(s)
- Li Liu
- School of Chemistry, Beihang University, 100191 Beijing, PR China.
| | - Qiang-Hong Zhang
- School of Chemistry, Beihang University, 100191 Beijing, PR China
| | - Meng-Zi Li
- School of Chemistry, Beihang University, 100191 Beijing, PR China
| | - Rui-Tong Li
- School of Chemistry, Beihang University, 100191 Beijing, PR China
| | - Zhiming He
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Arnaud Dechesne
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Barth F Smets
- Department of Biological and Chemical Engineering - Environmental Engineering, Aarhus University, 8000 Aarhus C, Denmark
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, 230026 Hefei, PR China
| |
Collapse
|
8
|
Karampatakis T, Tsergouli K, Behzadi P. Carbapenem-Resistant Pseudomonas aeruginosa's Resistome: Pan-Genomic Plasticity, the Impact of Transposable Elements and Jumping Genes. Antibiotics (Basel) 2025; 14:353. [PMID: 40298491 PMCID: PMC12024412 DOI: 10.3390/antibiotics14040353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Pseudomonas aeruginosa, a Gram-negative, motile bacterium, may cause significant infections in both community and hospital settings, leading to substantial morbidity and mortality. This opportunistic pathogen can thrive in various environments, making it a public health concern worldwide. P. aeruginosa's genomic pool is highly dynamic and diverse, with a pan-genome size ranging from 5.5 to 7.76 Mbp. This versatility arises from its ability to acquire genes through horizontal gene transfer (HGT) via different genetic elements (GEs), such as mobile genetic elements (MGEs). These MGEs, collectively known as the mobilome, facilitate the spread of genes encoding resistance to antimicrobials (ARGs), resistance to heavy metals (HMRGs), virulence (VGs), and metabolic functions (MGs). Of particular concern are the acquired carbapenemase genes (ACGs) and other β-lactamase genes, such as classes A, B [metallo-β-lactamases (MBLs)], and D carbapenemases, which can lead to increased antimicrobial resistance. This review emphasizes the importance of the mobilome in understanding antimicrobial resistance in P. aeruginosa.
Collapse
Affiliation(s)
- Theodoros Karampatakis
- Department of Clinical Microbiology, University Hospital Kerry, V92 NX94 Tralee, Ireland; (T.K.); (K.T.)
| | - Katerina Tsergouli
- Department of Clinical Microbiology, University Hospital Kerry, V92 NX94 Tralee, Ireland; (T.K.); (K.T.)
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran
| |
Collapse
|
9
|
Kalvapalle PB, Staubus A, Dysart MJ, Gambill L, Reyes Gamas K, Lu LC, Silberg JJ, Stadler LB, Chappell J. Information storage across a microbial community using universal RNA barcoding. Nat Biotechnol 2025:10.1038/s41587-025-02593-0. [PMID: 40102641 DOI: 10.1038/s41587-025-02593-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/14/2025] [Indexed: 03/20/2025]
Abstract
Gene transfer can be studied using genetically encoded reporters or metagenomic sequencing but these methods are limited by sensitivity when used to monitor the mobile DNA host range in microbial communities. To record information about gene transfer across a wastewater microbiome, a synthetic catalytic RNA was used to barcode a highly conserved segment of ribosomal RNA (rRNA). By writing information into rRNA using a ribozyme and reading out native and modified rRNA using amplicon sequencing, we find that microbial community members from 20 taxonomic orders participate in plasmid conjugation with an Escherichia coli donor strain and observe differences in 16S rRNA barcode signal across amplicon sequence variants. Multiplexed rRNA barcoding using plasmids with pBBR1 or ColE1 origins of replication reveals differences in host range. This autonomous RNA-addressable modification provides information about gene transfer without requiring translation and will enable microbiome engineering across diverse ecological settings and studies of environmental controls on gene transfer and cellular uptake of extracellular materials.
Collapse
Affiliation(s)
- Prashant B Kalvapalle
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, USA
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | - August Staubus
- Department of BioSciences, Rice University, Houston, TX, USA
- Biochemistry and Cell Biology Graduate Program, Rice University, Houston, TX, USA
| | - Matthew J Dysart
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, USA
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | - Lauren Gambill
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, USA
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Kiara Reyes Gamas
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, USA
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | - Li Chieh Lu
- Department of BioSciences, Rice University, Houston, TX, USA
- Biochemistry and Cell Biology Graduate Program, Rice University, Houston, TX, USA
| | - Jonathan J Silberg
- Department of BioSciences, Rice University, Houston, TX, USA.
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Lauren B Stadler
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA.
| | - James Chappell
- Department of BioSciences, Rice University, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
10
|
Li YQ, Zhang CM, Liu Y. Antihistamine drug loratadine at environmentally relevant concentrations promotes conjugative transfer of antibiotic resistance genes: Coeffect of oxidative stress and ion transport. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124430. [PMID: 39919578 DOI: 10.1016/j.jenvman.2025.124430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/20/2025] [Accepted: 02/01/2025] [Indexed: 02/09/2025]
Abstract
Due to the widespread use of loratadine (LOR) as an antihistamine, it is widely distributed in the environment as an emerging contaminant. However, its impact on the dissemination of antibiotic resistance genes (ARGs) remains unclear. This study investigated the effect of LOR on the conjugative transfer of ARGs and elucidated the potential mechanisms through transcriptome analysis. The results showed that LOR significantly promoted the frequency of conjugative transfer up to 1.5- to 8.6-fold higher compared with the control group. Exposure to LOR increased reactive oxidative species (ROS) and intracellular Ca2+ concentrations, leading to the upregulation of expression of genes related to transmembrane transport and SOS response. Meanwhile, it stimulated the increase of cell membrane permeability. Moreover, LOR exposure could enhance H+ efflux in donor bacteria, resulting in the decrease of intracellular pH and the elevation of transmembrane potential, which could induce the increase of ion transport, thereby promoting plasmid efflux from the cell membrane. Based on this, we inferred that LOR can induce an increase in ROS level and intracellular Ca2+ concentrations, and promoted the efflux of intracellular H+. This, in turn, triggered the intensification of various ion transport processes on the cell membrane, thereby increasing membrane permeability and accelerating plasmid efflux. Ultimately, the coeffect of oxidative stress response and ion transport promoted conjugative transfer. This study demonstrated that LOR significantly promotes plasmid-mediated conjugative transfer of ARGs, providing novel insights into the mechanisms underlying this process.
Collapse
Affiliation(s)
- Yong-Qiang Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Yi Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
11
|
Zhao W, Zhang B, Zheng S, Yan W, Yu X, Ye C. High temperatures promote antibiotic resistance genes conjugative transfer under residual chlorine: Mechanisms and risks. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136675. [PMID: 39603126 DOI: 10.1016/j.jhazmat.2024.136675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/16/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
The impact of residual chlorine on the dissemination of antibiotic resistance during the distribution and storage of water has become a critical concern. However, the influence of rising temperatures attributed to global warming on this process remains ambiguous, warranting further investigation. This study investigated the effects of different temperatures (17, 27, 37, and 42°C) on the conjugative transfer of antibiotic resistance genes (ARGs) under residual chlorine (0, 0.1, 0.3, and 0.5 mg/L). The results indicated that high temperatures significantly increased the conjugative transfer frequency of ARGs in intra-species under residual chlorine. Compared to 17°C, the transfer frequencies at 27°C, 37°C, and 42°C increased by 1.07-2.43, 1.20-4.80, and 1.24-2.82 times, respectively. The promoting effect of high temperatures was mainly due to the generation of reactive oxygen species, the triggered SOS response, and the formation of pilus channels. Transcriptomic analysis demonstrated that higher temperature stimulates the electron transport chain, thereby enhancing ATP production and facilitating the processes of conjugative, as confirmed by inhibitor validation. Additionally, rising temperatures similarly promoted the frequency of conjugative transfer in inter-species and communities under residual chlorine. These further highlighted the risk of antibiotic resistance spread in extreme and prolonged high-temperature events. The increased risk of antibiotic resistance in the process of drinking water transmission under the background of climate warming is emphasized.
Collapse
Affiliation(s)
- Wenya Zhao
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen 361102, China
| | - Binghuang Zhang
- College of the Energy, Xiamen University, Xiamen 361102, China
| | - Shikan Zheng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen 361102, China
| | - Wanli Yan
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen 361102, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen 361102, China
| | - Chengsong Ye
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen 361102, China.
| |
Collapse
|
12
|
Bustamante M, Mei S, Daras IM, van Doorn G, Falcao Salles J, de Vos MG. An eco-evolutionary perspective on antimicrobial resistance in the context of One Health. iScience 2025; 28:111534. [PMID: 39801834 PMCID: PMC11719859 DOI: 10.1016/j.isci.2024.111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
The One Health approach musters growing concerns about antimicrobial resistance due to the increased use of antibiotics in healthcare and agriculture, with all of its consequences for human, livestock, and environmental health. In this perspective, we explore the current knowledge on how interactions at different levels of biological organization, from genetic to ecological interactions, affect the evolution of antimicrobial resistance. We discuss their role in different contexts, from natural systems with weak selection, to human-influenced environments that impose a strong pressure toward antimicrobial resistance evolution. We emphasize the need for an eco-evolutionary approach within the One Health framework and highlight the importance of horizontal gene transfer and microbiome interactions for increased understanding of the emergence and spread of antimicrobial resistance.
Collapse
Affiliation(s)
| | - Siyu Mei
- University of Groningen – GELIFES, Groningen, the Netherlands
| | - Ines M. Daras
- University of Groningen – GELIFES, Groningen, the Netherlands
| | - G.S. van Doorn
- University of Groningen – GELIFES, Groningen, the Netherlands
| | | | | |
Collapse
|
13
|
Yuan S, Jin G, Cui R, Wang X, Wang M, Chen Z. Transmission and control strategies of antimicrobial resistance from the environment to the clinic: A holistic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177461. [PMID: 39542270 DOI: 10.1016/j.scitotenv.2024.177461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/12/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
The environment serves as a significant reservoir of antimicrobial resistance (AMR) microbes and genes and is increasingly recognized as key source of clinical AMR. Modern human activities impose an additional burden on environmental AMR, promoting its transmission to clinical setting and posing a serious threat to human health and welfare. Therefore, a comprehensive review of AMR transmission from the environment to the clinic, along with proposed effective control strategies, is crucial. This review systematically summarized current research on the transmission of environmental AMR to clinical settings. Furthermore, the transmission pathways, horizontal gene transfer (HGT) mechanisms, as well as the influential drivers including triple planetary crisis that may facilitate AMR transfer from environmental species to clinical pathogens are highlighted. In response to the growing trend of AMR transmission, we propose insightful mitigation strategies under the One Health framework, integrating advanced surveillance and tracking technologies, interdisciplinary knowledge, multisectoral interventions, alongside multiple antimicrobial use and stewardship approaches to tacking development and spread of AMR.
Collapse
Affiliation(s)
- Shengyu Yuan
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Guomin Jin
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Rongxin Cui
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Xingshuo Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Meilun Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Zeyou Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China.
| |
Collapse
|
14
|
Sobhi M, Elsamahy T, Zakaria E, Gaballah MS, Zhu F, Hu X, Zhou C, Guo J, Huo S, Dong R. Characteristics, limitations and global regulations in the use of biogas digestate as fertilizer: A comprehensive overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177855. [PMID: 39631337 DOI: 10.1016/j.scitotenv.2024.177855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
The utilization of biogas digestate, the effluent of anaerobic digestion (AD), as an organic fertilizer offers promising advances for sustainable agriculture, but it also presents critical challenges that require careful regulatory oversight. This review explores the wide characteristics range of digestate, key limitations, and regulatory frameworks shaping the use of biogas digestate as fertilizer. While digestate is a rich source of essential macro and micronutrients required for promoting plants growth, its application risks leading to nutrient overload, contamination from heavy metals, pathogens, antibiotics, microplastics, and emerging contaminants. By exploring the current regulations managing the utilization of biogas digestate as fertilizer, the EU limits digestate application to 170 kg N/ha/year, with a higher allowance in the UK (up to 250 kg N/ha/year). In other major biogas-producing countries, there is no specific limit for digestate application, as it varies depending on individual cases. Heavy metals and pathogens are satisfactorily regulated in the policies of these countries. However, no specific limits exist for antibiotics and microplastics, despite their significant impact on human health and the environment. Moreover, regulations concerning other potential chemicals are limited. Expanding these regulations is recommended to mitigate associated health and environmental risks.
Collapse
Affiliation(s)
- Mostafa Sobhi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Agricultural and Biosystems Engineering Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Eman Zakaria
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, PR China
| | - Mohamed S Gaballah
- School of Engineering and Technology & Institute for Great Lakes Research, Central Michigan University, ET 140, Mt. Pleasant, MI 48859, USA
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, PR China
| | - Xinjuan Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jianbin Guo
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Renjie Dong
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| |
Collapse
|
15
|
Jaffer YD, Abdolahpur Monikh F, Uli K, Grossart HP. Tire wear particles enhance horizontal gene transfer of antibiotic resistance genes in aquatic ecosystems. ENVIRONMENTAL RESEARCH 2024; 263:120187. [PMID: 39426452 DOI: 10.1016/j.envres.2024.120187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/30/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Microplastics (MPs) have introduced new surfaces for biofilm development and gene exchange among bacteria. We investigated Tire Wear Particles (TWPs) for their involvement in horizontal gene transfer (HGT), particularly in relation to associated metals in the matrices of TWPs. We employed red-fluorescently tagged E. coli strain as a donor with green-fluorescently tagged, broad-host-range plasmid pKJK5, resistant to trimethoprim. As a recipient, we utilized Pseudomonas sp. and a natural lake microbial community. HGT activity on TWPs was determined and compared with that on polystyrene (PS) (with and without metals), and chitosan, which was used as a natural surface. Exposure to TWPs significantly enhanced HGT frequency of antibiotic resistance gene (ARG) from donor to recipient compared to PS and chitosan, and metals of TWPs further promoted HGT. HGT frequency on TWPs with Pseudomonas sp. was found to be 10-3 at 30 °C. in the lake community, it was similarly high already at 25 °C suggesting a higher permissiveness of the natural microbial community towards ARG at lower temperatures. This study sheds light on the potential impact of TWPs in promoting HGT, forming the basis for health risk assessments of TWPs and more generally of MP pollution in various aquatic ecosystems.
Collapse
Affiliation(s)
- Yousuf Dar Jaffer
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; ICAR-Central Soil Salinity Research Institute, Karnal, India
| | - Fazel Abdolahpur Monikh
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Department of Chemical Sciences, University of Padua, Padua, Italy; Institute for Nanomaterials, Advanced Technologies, and Innovation, Technical University of Liberec Bendlova 1409/7, 460 01, Liberec, Czech Republic
| | - Klümper Uli
- Institute for Hydrobiology, TU Dresden, Zellescher Weg 40, Dresden, 01217, Germany
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Institute for Biochemistry and Biology, Potsdam University, Potsdam, Germany.
| |
Collapse
|
16
|
Luo Y, Xu T, Li B, Liu F, Wu B, Dobson PS, Yin H, Chen Z, Qiu Y, Huang X. The effects of small plastic particles on antibiotic resistance gene transfer revealed by single cell and community level analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136271. [PMID: 39515144 DOI: 10.1016/j.jhazmat.2024.136271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/05/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Small plastic particles with sizes comparable to bacterial cells, widely exist in environment. However, their effects on antibiotic resistance gene (ARG) dissemination remain unclear. Using polystyrene (PS) particles (0.2 µm, 2 µm, 5 µm, 10 µm, 15 µm, 20 µm) as models, conjugative transfer of ARGs between the donor E. coli and different recipients (E. coli or sludge bacterial community) was investigated. Compared to the pure strain, the sludge bacterial community exposed to PS particles showed higher transfer frequencies (1.67 to 14.31 times the blank control). The transfer frequencies first decreased and then increased with particle size, and plastics similar in size to bacteria (e.g., 2 µm) appear to be a transitional zone with minimal impact on ARG transmission. Furthermore, using microfluidics, in-situ observation at single cell level found that 2 µm plastics can act as barriers between donor and recipient bacteria inhibiting growth, but conjugation events mostly occurred around them. Conversely, nanoplastics (e.g., 0.2 µm) and larger microplastics (e.g., 20 µm) significantly promote conjugation, mainly due to increased reactive oxygen species production and cell membrane permeability, or facilitating bacterial adhesion and biofilm formation, respectively. This study aids in assessing environmental risks of small plastic particles on ARG dissemination.
Collapse
Affiliation(s)
- Yuqiu Luo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tiansi Xu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Fan Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beibei Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Phil S Dobson
- School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
| | - Huabing Yin
- School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
| | - Zheng Chen
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Yong Qiu
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - Xia Huang
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Selinidis MA, Corliss AC, Chappell J, Silberg JJ. Ribozyme-Mediated Gene-Fragment Complementation for Nondestructive Reporting of DNA Transfer within Soil. ACS Synth Biol 2024; 13:3539-3547. [PMID: 39145471 DOI: 10.1021/acssynbio.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Enzymes that produce volatile metabolites can be coded into genetic circuits to report nondisruptively on microbial behaviors in hard-to-image soils. However, these enzyme reporters remain challenging to apply in gene transfer studies due to leaky off states that can lead to false positives. To overcome this problem, we designed a reporter that uses ribozyme-mediated gene-fragment complementation of a methyl halide transferase (MHT) to regulate the synthesis of methyl halide gases. We split the mht gene into two nonfunctional fragments and attached these to a pair of splicing ribozyme fragments. While the individual mht-ribozyme fragments did not produce methyl halides when transcribed alone in Escherichia coli, coexpression resulted in a spliced transcript that translated the MHT reporter. When cells containing one mht-ribozyme fragment transcribed from a mobile plasmid were mixed with cells that transcribed the second mht-ribozyme fragment, methyl halides were only detected following rare conjugation events. When conjugation was performed in soil, it led to a 16-fold increase in methyl halides in the soil headspace. These findings show how ribozyme-mediated gene-fragment complementation can achieve tight control of protein reporter production, a level of control that will be critical for monitoring the effects of soil conditions on gene transfer and the fidelity of biocontainment measures developed for environmental applications.
Collapse
Affiliation(s)
- Malyn A Selinidis
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
| | - Andrew C Corliss
- Department of Bioengineering, Rice University, MS-142, 6100 Main Street, Houston, Texas 77005, United States
| | - James Chappell
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, MS-142, 6100 Main Street, Houston, Texas 77005, United States
| | - Jonathan J Silberg
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, MS-142, 6100 Main Street, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, MS-362, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
18
|
Qiu T, Shen L, Guo Y, Gao M, Gao H, Li Y, Zhao G, Wang X. Impact of aeration rate on the transfer range of antibiotic-resistant plasmids during manure composting. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124851. [PMID: 39216666 DOI: 10.1016/j.envpol.2024.124851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Conjugative plasmids are important vectors of mobile antibiotic resvistance genes (ARGs), facilitating their horizontal transfer within the environment. While composting is recognized as an effective method to reduce antibiotics and ARGs in animal manure, its impact on the bacterial host communities containing antibiotic-resistant plasmids remains unclear. In this study, we investigated the permissiveness of bacterial community during composting when challenged with multidrug-resistant conjugative RP4 plasmids, employing Pseudomonas putida as the donor strain. Ultimately, this represents the first exploration of the effects of aeration rates on the range of RP4 plasmid transfer hosts. Transconjugants were analyzed through fluorescent reporter gene-based fluorescence-activated cell sorting and Illumina sequencing. Overall, aeration rates were found to influence various physicochemical parameters of compost, including temperature, pH, total organic matter, total nitrogen, and potassium. Regarding RP4 plasmid host bacteria, the dominant phylum was determined to shift from Bacteroidetes in the raw material to Proteobacteria in the compost. Notably, a moderate-intensity aeration rate (0.05 L/min/L) was found to be more effective in reducing the diversity and richness of the RP4 plasmid host bacterial community. Following composting, the total percentage of dominant transconjugant-related genera decreased by 66.15-76.62%. Ultimately, this study determined that the aeration rate negatively impacts RP4 plasmid host abundance primarily through alterations to the environmental factors during composting. In summary, these findings enhance our understanding of plasmid host bacterial communities under varying composting aeration rates and offer novel insights into preventing the dissemination of ARGs from animal manure to farmland.
Collapse
Affiliation(s)
- Tianlei Qiu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lei Shen
- College of Life Sciences, Langfang Normal University, Langfang, China
| | - Yajie Guo
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Min Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Haoze Gao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Ying Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Guozhu Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xuming Wang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| |
Collapse
|
19
|
Rodrigues SO, Santiago FR, Silva MS, Lima ASG, Godoy LE, De Waard M, Fouad D, Batiha GE, Santos TL, Pagnossa JP. Macrolide resistance outcomes after the Covid-19 pandemic: A one health approach investigation. Biomed Pharmacother 2024; 180:117437. [PMID: 39303450 DOI: 10.1016/j.biopha.2024.117437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
During the Covid-19 pandemic period, the indiscriminate use of macrolide-class antibiotics was frequent among the Brazilian population due to the lack of knowledge and information with a scientific basis. Thus, the class of drugs that includes azithromycin, clarithromycin, and erythromycin, which alter metabolic reactions in the body and act on the immune system, was widely used without medical prescription. Samples of bacterial strains from hospital environments were obtained during the most extensive spread of Covid-19 and studied in the present article, emphasizing the investigation for macrolide resistance genes (erm and msr) and bacteria of the genus Staphylococcus isolated from urinary tract infections. In addition, the physiological, genetic, immunological, and socio-epidemiological aspects were highlighted with a focus on the One Health approach and implications on the gut-brain axis in this integrative research, revealing that the inappropriate use of antibiotics directly affects entire communities, representing a significant concern for public and environmental health.
Collapse
Affiliation(s)
- Sarah O Rodrigues
- Department of Health and Biological Sciences, Pontifical Catholic University, Minas Gerais, Brazil.
| | - Felipe R Santiago
- Department of Health and Biological Sciences, Pontifical Catholic University, Minas Gerais, Brazil.
| | | | | | | | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, Saint-Egrève 38120, France; L'institut du thorax, INSERM, CNRS, UNIV NANTES, Nantes F-44007, France; Université de Nice Sophia-Antipolis, LabEx (Ion Channels, Science & Therapeutics), Valbonne F-06560, France.
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, PO Box 22452, Riyadh 11495, Saudi Arabia.
| | - Gaber E Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Egypt.
| | - Tamara L Santos
- Department of Health and Biological Sciences, Pontifical Catholic University, Minas Gerais, Brazil.
| | - Jorge P Pagnossa
- Department of Health and Biological Sciences, Pontifical Catholic University, Minas Gerais, Brazil.
| |
Collapse
|
20
|
Alav I, Buckner MMC. Non-antibiotic compounds associated with humans and the environment can promote horizontal transfer of antimicrobial resistance genes. Crit Rev Microbiol 2024; 50:993-1010. [PMID: 37462915 PMCID: PMC11523920 DOI: 10.1080/1040841x.2023.2233603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/23/2023] [Accepted: 06/30/2023] [Indexed: 02/15/2024]
Abstract
Horizontal gene transfer plays a key role in the global dissemination of antimicrobial resistance (AMR). AMR genes are often carried on self-transmissible plasmids, which are shared amongst bacteria primarily by conjugation. Antibiotic use has been a well-established driver of the emergence and spread of AMR. However, the impact of commonly used non-antibiotic compounds and environmental pollutants on AMR spread has been largely overlooked. Recent studies found common prescription and over-the-counter drugs, artificial sweeteners, food preservatives, and environmental pollutants, can increase the conjugative transfer of AMR plasmids. The potential mechanisms by which these compounds promote plasmid transmission include increased membrane permeability, upregulation of plasmid transfer genes, formation of reactive oxygen species, and SOS response gene induction. Many questions remain around the impact of most non-antibiotic compounds on AMR plasmid conjugation in clinical isolates and the long-term impact on AMR dissemination. By elucidating the role of routinely used pharmaceuticals, food additives, and pollutants in the dissemination of AMR, action can be taken to mitigate their impact by closely monitoring use and disposal. This review will discuss recent progress on understanding the influence of non-antibiotic compounds on plasmid transmission, the mechanisms by which they promote transfer, and the level of risk they pose.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Michelle M. C. Buckner
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
21
|
Yao S, Yu J, Zhang T, Xie J, Yan C, Ni X, Guo B, Cui C. Comprehensive analysis of distribution characteristics and horizontal gene transfer elements of bla NDM-1-carrying bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173907. [PMID: 38906294 DOI: 10.1016/j.scitotenv.2024.173907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/08/2024] [Accepted: 06/08/2024] [Indexed: 06/23/2024]
Abstract
The worldwide dissemination of New Delhi metallo-β-lactamase-1 (NDM-1), which mediates resistance to almost all clinical β-lactam antibiotics, is a major public health problem. The global distribution, species, sources, and potential transfer risk of blaNDM-1-carrying bacteria are unclear. Results of a comprehensive analysis of literature in 2010-2022 showed that a total of 6002 blaNDM-1 carrying bacteria were widely distributed around 62 countries with a high trend in the coastal areas. Opportunistic pathogens or pathogens like Klebsiella sp., Escherichia sp., Acinetobacter sp. and Pseudomonas sp. were the four main species indicating the potential microbial risk. Source analysis showed that 86.45 % of target bacteria were isolated from the source of hospital (e.g., Hospital patients and wastewater) and little from surface water (5.07 %) and farms (3.98 %). A plasmid-encoded blaNDM-1Acinetobacter sp. with the resistance mechanisms of antibiotic efflux pump, antibiotic target change and antibiotic degradation was isolated from the wastewater of a typical tertiary hospital. Insertion sequences (IS3 and IS30) located in the adjacent 5 kbp of blaNDM-1-bleMBL gene cluster indicating the transposon-mediated horizontal gene transfer risk. These results showed that the worldwide spread of blaNDM-1-carrying bacteria and its potential horizontal gene transfer risk deserve good control.
Collapse
Affiliation(s)
- Shijie Yao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaqin Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tianyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianhao Xie
- Children's Hospital of Fudan University, Shanghai 200233, China
| | - Chicheng Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuan Ni
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bingbing Guo
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai environmental protection key laboratory on environmental standard and risk management of chemical pollutants, East China University of Science & Technology, Shanghai 200237, China.
| |
Collapse
|
22
|
Ma Y, Kan A, Johnson DR. Metabolic interactions control the transfer and spread of plasmid-encoded antibiotic resistance during surface-associated microbial growth. Cell Rep 2024; 43:114653. [PMID: 39213158 DOI: 10.1016/j.celrep.2024.114653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/12/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Surface-associated microbial systems are hotspots for the spread of plasmid-encoded antibiotic resistance, but how surface association affects plasmid transfer and proliferation remains unclear. Surface association enables prolonged spatial proximities between different populations, which promotes plasmid transfer between them. However, surface association also fosters strong metabolic interactions between different populations, which can direct their spatial self-organization with consequences for plasmid transfer and proliferation. Here, we hypothesize that metabolic interactions direct the spatial self-organization of different populations and, in turn, regulate the spread of plasmid-encoded antibiotic resistance. We show that resource competition causes populations to spatially segregate, which represses plasmid transfer. In contrast, resource cross-feeding causes populations to spatially intermix, which promotes plasmid transfer. We further show that the spatial positionings that emerge from metabolic interactions determine the proliferation of plasmid recipients. Our results demonstrate that metabolic interactions are important regulators of both the transfer and proliferation of plasmid-encoded antibiotic resistance.
Collapse
Affiliation(s)
- Yinyin Ma
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH), 8092 Zürich, Switzerland.
| | - Anton Kan
- Department of Materials, Swiss Federal Institute of Technology (ETH), 8093 Zürich, Switzerland
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
23
|
Li HZ, Li WJ, Wang ZJ, Chen QL, Staal Jensen MK, Qiao M, Cui L. Integrating Multiple Bacterial Phenotypes and Bayesian Network for Analyzing Health Risks of Pathogens in Plastisphere. Anal Chem 2024; 96:11374-11382. [PMID: 38949233 DOI: 10.1021/acs.analchem.4c01433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Plastic pollution represents a critical threat to soil ecosystems and even humans, as plastics can serve as a habitat for breeding and refuging pathogenic microorganisms against stresses. However, evaluating the health risk of plastispheres is difficult due to the lack of risk factors and quantification model. Here, DNA sequencing, single-cell Raman-D2O labeling, and transformation assay were used to quantify key risk factors of plastisphere, including pathogen abundance, phenotypic resistance to various stresses (antibiotic and pesticide), and ability to acquire antibiotic resistance genes. A Bayesian network model was newly introduced to integrate these three factors and infer their causal relationships. Using this model, the risk of pathogen in the plastisphere is found to be nearly 3 magnitudes higher than that in free-living state. Furthermore, this model exhibits robustness for risk prediction, even in the absence of one factor. Our framework offers a novel and practical approach to assessing the health risk of plastispheres, contributing to the management of plastic-related threats to human health.
Collapse
Affiliation(s)
- Hong-Zhe Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Wen-Jing Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Jian Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Qing-Lin Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Mia Kristine Staal Jensen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Min Qiao
- Research Center for Eco-Environmental Sciences Chinese Academy of Sciences, Beijing 100085, China
| | - Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
24
|
Shi J, Sun C, An T, Jiang C, Mei S, Lv B. Unraveling the effect of micro/nanoplastics on the occurrence and horizontal transfer of environmental antibiotic resistance genes: Advances, mechanisms and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174466. [PMID: 38964386 DOI: 10.1016/j.scitotenv.2024.174466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Microplastics can not only serve as vectors of antibiotic resistance genes (ARGs), but also they and even nanoplastics potentially affect the occurrence of ARGs in indigenous environmental microorganisms, which have aroused great concern for the development of antibiotic resistance. This article specifically reviews the effects of micro/nanoplastics (concentration, size, exposure time, chemical additives) and their interactions with other pollutants on environmental ARGs dissemination. The changes of horizontal genes transfer (HGT, i.e., conjugation, transformation and transduction) of ARGs caused by micro/nanoplastics were also summarized. Further, this review systematically sums up the mechanisms of micro/nanoplastics regulating HGT process of ARGs, including reactive oxygen species production, cell membrane permeability, transfer-related genes expression, extracellular polymeric substances production, and ARG donor-recipient adsorption/contaminants adsorption/biofilm formation. The underlying mechanisms in changes of bacterial communities induced by micro/nanoplastics were also discussed as it was an important factor for structuring the profile of ARGs in the actual environment, including causing environmental stress, providing carbon sources, forming biofilms, affecting pollutants distribution and environmental factors. This review contributes to a systematical understanding of the potential risks of antibiotic resistance dissemination caused by micro/nanoplastics and provokes thinking about perspectives for future research and the management of micro/nanoplastics and plastics.
Collapse
Affiliation(s)
- Jianhong Shi
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Chaoli Sun
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Tingxuan An
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Changhai Jiang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Shenglong Mei
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Baoyi Lv
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 201306, China.
| |
Collapse
|
25
|
Muñoz-Gutiérrez I, Cantu L, Shanahan J, Girguis M, de la Cruz M, Mota-Bravo L. Cryptic environmental conjugative plasmid recruits a novel hybrid transposon resulting in a new plasmid with higher dispersion potential. mSphere 2024; 9:e0025224. [PMID: 38771049 PMCID: PMC11332342 DOI: 10.1128/msphere.00252-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 05/22/2024] Open
Abstract
Cryptic conjugative plasmids lack antibiotic-resistance genes (ARGs). These plasmids can capture ARGs from the vast pool of the environmental metagenome, but the mechanism to recruit ARGs remains to be elucidated. To investigate the recruitment of ARGs by a cryptic plasmid, we sequenced and conducted mating experiments with Escherichia coli SW4848 (collected from a lake) that has a cryptic IncX (IncX4) plasmid and an IncF (IncFII/IncFIIB) plasmid with five genes that confer resistance to aminoglycosides (strA and strB), sulfonamides (sul2), tetracycline [tet(A)], and trimethoprim (dfrA5). In a conjugation experiment, a novel hybrid Tn21/Tn1721 transposon of 22,570 bp (designated Tn7714) carrying the five ARG mobilized spontaneously from the IncF plasmid to the cryptic IncX plasmid. The IncF plasmid was found to be conjugative when it was electroporated into E. coli DH10B (without the IncX plasmid). Two parallel conjugations with the IncF and the new IncX (carrying the novel Tn7714 transposon) plasmids in two separate E. coli DH10B as donors and E. coli J53 as the recipient revealed that the conjugation rate of the new IncX plasmid (with the novel Tn7714 transposon and five ARGs) is more than two orders of magnitude larger than the IncF plasmid. For the first time, this study shows experimental evidence that cryptic environmental plasmids can capture and transfer transposons with ARGs to other bacteria, creating novel multidrug-resistant conjugative plasmids with higher dispersion potential. IMPORTANCE Cryptic conjugative plasmids are extrachromosomal DNA molecules without antibiotic-resistance genes (ARGs). Environmental bacteria carrying cryptic plasmids with a high conjugation rate threaten public health because they can capture clinically relevant ARGs and rapidly spread them to pathogenic bacteria. However, the mechanism to recruit ARG by cryptic conjugative plasmids in environmental bacteria has not been observed experimentally. Here, we document the first translocation of a transposon with multiple clinically relevant ARGs to a cryptic environmental conjugative plasmid. The new multidrug-resistant conjugative plasmid has a conjugation rate that is two orders of magnitude higher than the original plasmid that carries the ARG (i.e., the new plasmid from the environment can spread ARG more than two orders of magnitude faster). Our work illustrates the importance of studying the mobilization of ARGs in environmental bacteria. It sheds light on how cryptic conjugative plasmids recruit ARGs, a phenomenon at the root of the antibiotic crisis.
Collapse
Affiliation(s)
- Iván Muñoz-Gutiérrez
- School of Biological Sciences, University of California, Irvine, California, USA
| | - Luis Cantu
- School of Biological Sciences, University of California, Irvine, California, USA
| | - Jack Shanahan
- School of Biological Sciences, University of California, Irvine, California, USA
| | - Miray Girguis
- School of Biological Sciences, University of California, Irvine, California, USA
| | - Marlene de la Cruz
- School of Biological Sciences, University of California, Irvine, California, USA
| | - Luis Mota-Bravo
- School of Biological Sciences, University of California, Irvine, California, USA
| |
Collapse
|
26
|
Moussa J, Gargallo-Viola D, Thomsen LE. A novel high-throughput screening method for identifying compounds that inhibit plasmid conjugation. MethodsX 2024; 12:102740. [PMID: 38737486 PMCID: PMC11087957 DOI: 10.1016/j.mex.2024.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024] Open
Abstract
Plasmid conjugation is an important contributing factor to the spread of antibiotic resistance among bacteria, posing a significant global health threat. Our method introduces an innovative high-throughput screening approach to identify compounds that inhibit or reduce conjugation, addressing the need for new strategies against the spread of antimicrobial resistance. Using Escherichia coli strains as donor and recipient, we screened 3500 compounds from a library provided by ABAC Therapeutics. Each 96 -well plate was loaded with 88 different compounds and bacterial cultures. Every plate also included negative and positive controls of conjugation. After an hour, cultures from wells were spotted on agar plates and assessed visually. Compounds that showed a visible effect on conjugation were retested. Six compounds targeting conjugation were found, showing promise for further analysis.
Collapse
Affiliation(s)
- Jennifer Moussa
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | | | - Line Elnif Thomsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| |
Collapse
|
27
|
Ghaly TM, Gillings MR, Rajabal V, Paulsen IT, Tetu SG. Horizontal gene transfer in plant microbiomes: integrons as hotspots for cross-species gene exchange. Front Microbiol 2024; 15:1338026. [PMID: 38741746 PMCID: PMC11089894 DOI: 10.3389/fmicb.2024.1338026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Plant microbiomes play important roles in plant health and fitness. Bacterial horizontal gene transfer (HGT) can influence plant health outcomes, driving the spread of both plant growth-promoting and phytopathogenic traits. However, community dynamics, including the range of genetic elements and bacteria involved in this process are still poorly understood. Integrons are genetic elements recently shown to be abundant in plant microbiomes, and are associated with HGT across broad phylogenetic boundaries. They facilitate the spread of gene cassettes, small mobile elements that collectively confer a diverse suite of adaptive functions. Here, we analysed 5,565 plant-associated bacterial genomes to investigate the prevalence and functional diversity of integrons in this niche. We found that integrons are particularly abundant in the genomes of Pseudomonadales, Burkholderiales, and Xanthomonadales. In total, we detected nearly 9,000 gene cassettes, and found that many could be involved in plant growth promotion or phytopathogenicity, suggesting that integrons might play a role in bacterial mutualistic or pathogenic lifestyles. The rhizosphere was enriched in cassettes involved in the transport and metabolism of diverse substrates, suggesting that they may aid in adaptation to this environment, which is rich in root exudates. We also found that integrons facilitate cross-species HGT, which is particularly enhanced in the phyllosphere. This finding may provide an ideal opportunity to promote plant growth by fostering the spread of genes cassettes relevant to leaf health. Together, our findings suggest that integrons are important elements in plant microbiomes that drive HGT, and have the potential to facilitate plant host adaptation.
Collapse
Affiliation(s)
- Timothy M. Ghaly
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Vaheesan Rajabal
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW, Australia
| | - Ian T. Paulsen
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW, Australia
| | - Sasha G. Tetu
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW, Australia
| |
Collapse
|
28
|
Zorea A, Pellow D, Levin L, Pilosof S, Friedman J, Shamir R, Mizrahi I. Plasmids in the human gut reveal neutral dispersal and recombination that is overpowered by inflammatory diseases. Nat Commun 2024; 15:3147. [PMID: 38605009 PMCID: PMC11009399 DOI: 10.1038/s41467-024-47272-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Plasmids are pivotal in driving bacterial evolution through horizontal gene transfer. Here, we investigated 3467 human gut microbiome samples across continents and disease states, analyzing 11,086 plasmids. Our analyses reveal that plasmid dispersal is predominantly stochastic, indicating neutral processes as the primary driver of their wide distribution. We find that only 20-25% of plasmid DNA is being selected in various disease states, constraining its distribution across hosts. Selective pressures shape specific plasmid segments with distinct ecological functions, influenced by plasmid mobilization lifestyle, antibiotic usage, and inflammatory gut diseases. Notably, these elements are more commonly shared within groups of individuals with similar health conditions, such as Inflammatory Bowel Disease (IBD), regardless of geographic location across continents. These segments contain essential genes such as iron transport mechanisms- a distinctive gut signature of IBD that impacts the severity of inflammation. Our findings shed light on mechanisms driving plasmid dispersal and selection in the human gut, highlighting their role as carriers of vital gene pools impacting bacterial hosts and ecosystem dynamics.
Collapse
Affiliation(s)
- Alvah Zorea
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 8410501, Be'er Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501, Be'er Sheva, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, 8410501, Be'er Sheva, Israel
| | - David Pellow
- Blavatnik School of Computer Science, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Liron Levin
- Bioinformatics Core Facility, llse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 8410501, Be'er Sheva, Israel
| | - Shai Pilosof
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501, Be'er Sheva, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, 8410501, Be'er Sheva, Israel
| | - Jonathan Friedman
- Institute of Environmental Sciences, Hebrew University, Rehovot, Israel
| | - Ron Shamir
- Blavatnik School of Computer Science, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Itzhak Mizrahi
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 8410501, Be'er Sheva, Israel.
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501, Be'er Sheva, Israel.
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, 8410501, Be'er Sheva, Israel.
| |
Collapse
|
29
|
Liu F, Luo Y, Xu T, Lin H, Qiu Y, Li B. Current examining methods and mathematical models of horizontal transfer of antibiotic resistance genes in the environment. Front Microbiol 2024; 15:1371388. [PMID: 38638913 PMCID: PMC11025395 DOI: 10.3389/fmicb.2024.1371388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
The increasing prevalence of antibiotic resistance genes (ARGs) in the environment has garnered significant attention due to their health risk to human beings. Horizontal gene transfer (HGT) is considered as an important way for ARG dissemination. There are four general routes of HGT, including conjugation, transformation, transduction and vesiduction. Selection of appropriate examining methods is crucial for comprehensively understanding characteristics and mechanisms of different HGT ways. Moreover, combined with the results obtained from different experimental methods, mathematical models could be established and serve as a powerful tool for predicting ARG transfer dynamics and frequencies. However, current reviews of HGT for ARG spread mainly focus on its influencing factors and mechanisms, overlooking the important roles of examining methods and models. This review, therefore, delineated four pathways of HGT, summarized the strengths and limitations of current examining methods, and provided a comprehensive summing-up of mathematical models pertaining to three main HGT ways of conjugation, transformation and transduction. Finally, deficiencies in current studies were discussed, and proposed the future perspectives to better understand and assess the risks of ARG dissemination through HGT.
Collapse
Affiliation(s)
- Fan Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yuqiu Luo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Tiansi Xu
- School of Environment, Tsinghua University, Beijing, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yong Qiu
- School of Environment, Tsinghua University, Beijing, China
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
30
|
Ormsby MJ, Woodford L, Quilliam RS. Can plastic pollution drive the emergence and dissemination of novel zoonotic diseases? ENVIRONMENTAL RESEARCH 2024; 246:118172. [PMID: 38220083 DOI: 10.1016/j.envres.2024.118172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
As the volume of plastic in the environment increases, so too does human interactions with plastic pollution. Similarly, domestic, feral, and wild animals are increasingly interacting with plastic pollution, highlighting the potential for contamination of plastic wastes with animal faeces, urine, saliva, and blood. Substantial evidence indicates that once in the environment, plastics rapidly become colonised by microbial biofilm (the so-called 'plastisphere), which often includes potentially harmful microbial pathogens (including pathogens that are zoonotic in nature). Climate change, increased urbanisation, and the intensification of agriculture, mean that the three-way interactions between humans, animals, and plastic pollution are becoming more frequent, which is significant as almost 60% of emerging human infectious diseases during the last century have been zoonotic. Here, we critically review the potential for contaminated environmental plastics to facilitate the evolution of novel pathogenic strains of microorganisms, and the subsequent role of plastic pollution in the cyclical dissemination of zoonotic pathogens. As the interactions between humans, animals, and plastic pollution continues to grow, and the volume of plastics entering the environment increases, there is clearly an urgent need to better understand the role of plastic waste in facilitating zoonotic pathogen evolution and dissemination, and the effect this can have on environmental and human health.
Collapse
Affiliation(s)
- Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Luke Woodford
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
31
|
Zhang L, Yan C, Wen C. Vertical distribution characteristics and transport paths of antibiotic resistance genes in constructed wetland system. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133555. [PMID: 38262322 DOI: 10.1016/j.jhazmat.2024.133555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Although the migration and diffusion of antibiotic resistance genes (ARGs) in soil-plant systems have attracted much attention, the migration and diffusion characteristics between constructed wetlands and soil-plant systems differ greatly. Therefore, it is necessary to conduct research on vertical transmission and diffusion of ARGs in constructed wetlands. The vertical distribution and transmission of ARGs in constructed wetlands were explored via metagenomic analysis. The results showed that the proportion of multidrug ARGs was the largest, ranging from 24.2% to 47.5%. The shared characteristics of ARGs were similar to those of bacteria, and there were fewer unique ARGs and microbial species in mesophyll tissue. Sourcetracker analysis revealed that ARGs transfer between plants and atmosphere was bidirectional, but the diffusion of ARGs to atmosphere through plants was relatively weak. ARGs were mainly transmitted to atmosphere/surrounding environment through substrate and influent, and the contributions of substrate to ARGs in atmosphere/surrounding environment were 59.2% and 78.6%, respectively. ARGs involved in foliar attachment mainly originated from peripheral inputs. ARGs showed nonspecific selection for the host at phylum, class and order levels. These findings suggest that more attention should be given to the potential risks of ARGs in constructed wetlands, to formulate effective control and management strategies.
Collapse
Affiliation(s)
- Ling Zhang
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Materials Sciences and Engineering, Xinxiang Engineering Research Center for Wastewater Treatment Energy Saving and Emission Reduction, Henan Institute of Technology, Xinxiang 453003, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Ce Wen
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Surekha S, Lamiyan AK, Gupta V. Antibiotic Resistant Biofilms and the Quest for Novel Therapeutic Strategies. Indian J Microbiol 2024; 64:20-35. [PMID: 38468748 PMCID: PMC10924852 DOI: 10.1007/s12088-023-01138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/03/2023] [Indexed: 03/13/2024] Open
Abstract
Antimicrobial resistance (AMR) is one of the major leading causes of death around the globe. Present treatment pipelines are insufficient to overcome the critical situation. Prominent biofilm forming human pathogens which can thrive in infection sites using adaptive features results in biofilm persistence. Considering the present scenario, prudential investigations into the mechanisms of resistance target them to improve antibiotic efficacy is required. Regarding this, developing newer and effective treatment options using edge cutting technologies in medical research is the need of time. The reasons underlying the adaptive features in biofilm persistence have been centred on different metabolic and physiological aspects. The high tolerance levels against antibiotics direct researchers to search for novel bioactive molecules that can help combat the problem. In view of this, the present review outlines the focuses on an opportunity of different strategies which are in testing pipeline can thus be developed into products ready to use.
Collapse
Affiliation(s)
- Saumya Surekha
- Department of Biochemistry, Panjab University, Chandigarh, India
| | | | - Varsha Gupta
- GMCH: Government Medical College and Hospital, Chandigarh, India
| |
Collapse
|
33
|
Røder HL, Christidi E, Amador CI, Music S, Olesen AK, Svensson B, Madsen JS, Herschend J, Kreft JU, Burmølle M. Flagellar interference with plasmid uptake in biofilms: a joint experimental and modeling study. Appl Environ Microbiol 2024; 90:e0151023. [PMID: 38095456 PMCID: PMC10807428 DOI: 10.1128/aem.01510-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/30/2023] [Indexed: 01/25/2024] Open
Abstract
Plasmid conjugation is a key facilitator of horizontal gene transfer (HGT), and plasmids encoding antibiotic resistance drive the increasing prevalence of antibiotic resistance. In natural, engineered, and clinical environments, bacteria often grow in protective biofilms. Therefore, a better understanding of plasmid transfer in biofilms is needed. Our aim was to investigate plasmid transfer in a biofilm-adapted wrinkly colony mutant of Xanthomonas retroflexus (XRw) with enhanced matrix production and reduced motility. We found that XRw biofilms had an increased uptake of the broad host-range IncP-1ϵ plasmid pKJK5 compared to the wild type (WT). Proteomics revealed fewer flagellar-associated proteins in XRw, suggesting that flagella were responsible for reducing plasmid uptake. This was confirmed by the higher plasmid uptake of non-flagellated fliM mutants of the X. retroflexus wrinkly mutant as well as the wild type. Moreover, testing several flagellar mutants of Pseudomonas putida suggested that the flagellar effect was more general. We identified seven mechanisms with the potential to explain the flagellar effect and simulated them in an individual-based model. Two mechanisms could thus be eliminated (increased distances between cells and increased lag times due to flagella). Another mechanism identified as viable in the modeling was eliminated by further experiments. The possibility of steric hindrance of pilus movement and binding by flagella, reducing the frequency of contact and thus plasmid uptake, proved viable, and the three other viable mechanisms had a reduced probability of plasmid transfer in common. Our findings highlight the important yet complex effects of flagella during bacterial conjugation in biofilms.IMPORTANCEBiofilms are the dominant form of microbial life and bacteria living in biofilms are markedly different from their planktonic counterparts, yet the impact of the biofilm lifestyle on horizontal gene transfer (HGT) is still poorly understood. Horizontal gene transfer by conjugative plasmids is a major driver in bacterial evolution and adaptation, as exemplified by the troubling spread of antibiotic resistance. To either limit or promote plasmid prevalence and dissemination, we need a better understanding of plasmid transfer between bacterial cells, especially in biofilms. Here, we identified a new factor impacting the transfer of plasmids, flagella, which are required for many types of bacterial motility. We show that their absence or altered activity can lead to enhanced plasmid uptake in two bacterial species, Xanthomonas retroflexus and Pseudomonas putida. Moreover, we demonstrate the utility of mathematical modeling to eliminate hypothetical mechanisms.
Collapse
Affiliation(s)
- Henriette Lyng Røder
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Eleni Christidi
- School of Biosciences & Institute of Microbiology and Infection & Centre for Computational Biology, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | - Samra Music
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Birte Svensson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Jakob Herschend
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jan-Ulrich Kreft
- School of Biosciences & Institute of Microbiology and Infection & Centre for Computational Biology, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Mette Burmølle
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Gan D, Lin Z, Zeng L, Deng H, Walsh TR, Zhou S, Yang QE. Housefly gut microbiomes as a reservoir and facilitator for the spread of antibiotic resistance. THE ISME JOURNAL 2024; 18:wrae128. [PMID: 39030691 PMCID: PMC11456846 DOI: 10.1093/ismejo/wrae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/23/2024] [Accepted: 07/18/2024] [Indexed: 07/21/2024]
Abstract
Arthropods, such as houseflies, play a significant role in the dissemination of antimicrobial resistance (AMR); however, their impact has often been overlooked in comparison to other AMR vectors. Understanding the contribution of arthropods to the spread of AMR is critical for implementing robust policies to mitigate the spread of AMR across One Health sectors, affecting animals and environmental habitats as well as humans. In this study, we investigated the in situ transfer of a gfp-labelled AMR plasmid (IncA/C carrying an mcr-8 gene, pA/C_MCR-8) in the gut microbiota of houseflies (Musca domestica) by applying single-cell sorting, 16S rRNA gene amplicon sequencing and whole-genome sequencing. Our findings demonstrate that the pA/C_MCR-8-positive Escherichia coli donor strain is capable of colonizing the gut microbiome of houseflies and persists in the housefly intestine for 5 days; however, no transfer was detectable above the detection threshold of 10-5 per cell. The conjugative plasmid pA/C_MCR-8 demonstrated a high transfer frequency ranging from 4.1 × 10-3 to 5.0 × 10-3 per cell in vitro and exhibited transfer across various bacterial phyla, primarily encompassing Pseudomonadota and Bacillota. Phylogenic analysis has revealed that Providencia stuartii, a human opportunistic pathogen, is a notable recipient of pA/C_MCR-8. The conjugation assays further revealed that newly formed P. stuartii transconjugants readily transfer pA/C_MCR-8 to other clinically relevant pathogens (e.g. Klebsiella pneumoniae). Our findings indicate the potential transfer of AMR plasmids from houseflies to human opportunistic pathogens and further support the adoption of a One Health approach in developing infection control policies that address AMR across clinical settings.
Collapse
Affiliation(s)
- Dehao Gan
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenyan Lin
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lingshuang Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Deng
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Timothy R Walsh
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiu E Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
35
|
Libante V, Dechêne-Tempier M, Leblond-Bourget N, Payot S. Detection and Quantification of Conjugative Transfer of Mobile Genetic Elements Carrying Antibiotic Resistance Genes. Methods Mol Biol 2024; 2815:79-91. [PMID: 38884912 DOI: 10.1007/978-1-0716-3898-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Multidrug resistance, due to acquired antimicrobial resistance genes, is increasingly reported in the zoonotic pathogen Streptococcus suis. Most of these resistance genes are carried by chromosomal Mobile Genetic Elements (MGEs), in particular, Integrative and Conjugative Elements (ICEs) and Integrative and Mobilizable Elements (IMEs). ICEs and IMEs frequently form tandems or nested composite elements, which make their identification difficult. To evaluate their mobility, it is necessary to (i) select the suitable donor-recipient pairs for mating assays, (ii) do PCR excision tests to confirm that the genetic element is able to excise from the chromosome as a circular intermediate, and (iii) evaluate the transfer of the genetic element by conjugation by doing mating assays. In addition to a dissemination of resistance genes between S. suis strains, MGEs can lead to a spreading of resistance genes in the environment and toward pathogenic bacteria. This propagation had to be considered in a One Health perspective.
Collapse
Affiliation(s)
| | - Manon Dechêne-Tempier
- Université de Lorraine, INRAE, DynAMic, Nancy, France
- Anses, Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, Ploufragan, France
| | | | - Sophie Payot
- Université de Lorraine, INRAE, DynAMic, Nancy, France.
| |
Collapse
|
36
|
Tamayo-Leiva J, Alcorta J, Sepúlveda F, Fuentes-Alburquenque S, Arroyo JI, González-Pastor JE, Díez B. Structure and dispersion of the conjugative mobilome in surface ocean bacterioplankton. ISME COMMUNICATIONS 2024; 4:ycae059. [PMID: 38770060 PMCID: PMC11104534 DOI: 10.1093/ismeco/ycae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024]
Abstract
Mobile genetic elements (MGEs), collectively referred to as the "mobilome", can have a significant impact on the fitness of microbial communities and therefore on ecological processes. Marine MGEs have mainly been associated with wide geographical and phylogenetic dispersal of adaptative traits. However, whether the structure of this mobilome exhibits deterministic patterns in the natural community is still an open question. The aim of this study was to characterize the structure of the conjugative mobilome in the ocean surface bacterioplankton by searching the publicly available marine metagenomes from the TARA Oceans survey, together with molecular markers, such as relaxases and type IV coupling proteins of the type IV secretion system (T4SS). The T4SS machinery was retrieved in more abundance than relaxases in the surface marine bacterioplankton. Moreover, among the identified MGEs, mobilizable elements were the most abundant, outnumbering self-conjugative sequences. Detection of a high number of incomplete T4SSs provides insight into possible strategies related to trans-acting activity between MGEs, and accessory functions of the T4SS (e.g. protein secretion), allowing the host to maintain a lower metabolic burden in the highly dynamic marine system. Additionally, the results demonstrate a wide geographical dispersion of MGEs throughout oceanic regions, while the Southern Ocean appears segregated from other regions. The marine mobilome also showed a high similarity of functions present in known plasmid databases. Moreover, cargo genes were mostly related to DNA processing, but scarcely associated with antibiotic resistance. Finally, within the MGEs, integrative and conjugative elements showed wider marine geographic dispersion than plasmids.
Collapse
Affiliation(s)
- Javier Tamayo-Leiva
- Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Center for Climate and Resilience Research (CR2), University of Chile, Santiago, Chile
| | - Jaime Alcorta
- Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CRG) , Santiago, Chile
| | - Felipe Sepúlveda
- Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CRG) , Santiago, Chile
| | - Sebastián Fuentes-Alburquenque
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O’Higgins, Santiago, Chile
- Departamento de Matemáticas y Ciencias de la Ingeniería, Facultad de Ingeniería, Ciencia y Tecnología, Universidad Bernardo O’Higgins, Santiago, Chile
| | - José Ignacio Arroyo
- Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- The Santa Fe Institute, Santa Fe, NM 87131, United States
- Centro de Modelamiento Matemático, Universidad de Chile, IRL 2807 CNRS Beauchef 851, Santiago, Chile
| | - José Eduardo González-Pastor
- Department of Molecular Evolution, Centro de Astrobiología (CAB), CSIC-INTA. Carretera de Ajalvir km 4, Torrejón de Ardoz 28850 Madrid, Spain
| | - Beatriz Díez
- Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Center for Climate and Resilience Research (CR2), University of Chile, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG) , Santiago, Chile
| |
Collapse
|
37
|
Yang QE, Ma X, Zeng L, Wang Q, Li M, Teng L, He M, Liu C, Zhao M, Wang M, Hui D, Madsen JS, Liao H, Walsh TR, Zhou S. Interphylum dissemination of NDM-5-positive plasmids in hospital wastewater from Fuzhou, China: a single-centre, culture-independent, plasmid transmission study. THE LANCET. MICROBE 2024; 5:e13-e23. [PMID: 38006896 DOI: 10.1016/s2666-5247(23)00227-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND The global spread of plasmid-borne carbapenem resistance is an ongoing public health challenge; however, the nature of such horizontal gene transfer events among complex bacterial communities remains poorly understood. We examined the in-situ transfer of the globally dominant New Delhi metallo-β-lactamase (NDM)-5-positive IncX3 plasmid (denoted pX3_NDM-5) in hospital wastewater to simulate a real-world, One Health antimicrobial resistance context. METHODS For this transmission study, we tagged pX3_NDM-5 with the green fluorescent protein gene, gfp, using a CRISPR-based method and transferred the plasmid to a donor Escherichia coli strain. Bacteria were extracted from a hospital wastewater treatment plant (Fujian Provincial Maternity and Children's Hospital, Fuzhou, China) as the bacterial recipient community. We mixed this recipient community with the E coli donor strain carrying the gfp-tagged plasmid, both with and without sodium hypochlorite (NaClO) as an environmental stressor, and conducted several culture-based and culture-independent conjugation assays. The conjugation events were observed microscopically and quantified by fluorescence-activated cell sorting. We analysed the taxonomic composition of the sorted transconjugal pool by 16S rRNA gene amplicon sequencing and assessed the stability of the plasmid in the isolated transconjugants and its ability to transfer back to E coli. FINDINGS We show that the plasmid pX3_NDM-5 has a broad host range and can transfer across various bacterial phyla, including between Gram-negative and Gram-positive bacteria. Although environmental stress with NaClO did not affect the overall plasmid transfer frequency, it reduced the breadth of the transconjugant pool. The taxonomic composition of the transconjugal pool was distinct from that of the recipient communities, and environmental stress modulated the permissiveness of some operational taxonomic units towards the acquisition of pX3_NDM-5. Notably, pX3_NDM-5 transconjugants included the Gram-positive pathogen Enterococcus faecalis, and the plasmid could subsequently be reconjugated back to E coli. These findings suggest that E faecalis could act as a natural shuttle vector for the wide dissemination of pX3_NDM-5 plasmids. INTERPRETATION Our culture-independent conjugation model simulates natural environmental conditions and challenges the established theory that Gram-negative and Gram-positive bacteria rarely exchange clinically important plasmids. The data show that plasmids disseminate more widely across genera and phyla than previously thought. These findings have substantial implications when considering the spread of antimicrobial resistance across One Health sectors. FUNDING The Laboratory of Lingnan Modern Agriculture Project, the National Natural Science Foundation of China, the Natural Science Foundation of Fujian Province of China, and the Outstanding Young Research Talents Program of Fujian Agriculture and Forestry University.
Collapse
Affiliation(s)
- Qiu E Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaodan Ma
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lingshuang Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qinqin Wang
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Minchun Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lin Teng
- Department of Veterinary Medicine, College of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Mingzhen He
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chen Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengshi Zhao
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengzhu Wang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Deng Hui
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jonas Stenløkke Madsen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Timothy R Walsh
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| |
Collapse
|
38
|
Tokuda M, Shintani M. Microbial evolution through horizontal gene transfer by mobile genetic elements. Microb Biotechnol 2024; 17:e14408. [PMID: 38226780 PMCID: PMC10832538 DOI: 10.1111/1751-7915.14408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024] Open
Abstract
Mobile genetic elements (MGEs) are crucial for horizontal gene transfer (HGT) in bacteria and facilitate their rapid evolution and adaptation. MGEs include plasmids, integrative and conjugative elements, transposons, insertion sequences and bacteriophages. Notably, the spread of antimicrobial resistance genes (ARGs), which poses a serious threat to public health, is primarily attributable to HGT through MGEs. This mini-review aims to provide an overview of the mechanisms by which MGEs mediate HGT in microbes. Specifically, the behaviour of conjugative plasmids in different environments and conditions was discussed, and recent methodologies for tracing the dynamics of MGEs were summarised. A comprehensive understanding of the mechanisms underlying HGT and the role of MGEs in bacterial evolution and adaptation is important to develop strategies to combat the spread of ARGs.
Collapse
Affiliation(s)
- Maho Tokuda
- Department of Environment and Energy Systems, Graduate School of Science and TechnologyShizuoka UniversityHamamatsuJapan
| | - Masaki Shintani
- Department of Environment and Energy Systems, Graduate School of Science and TechnologyShizuoka UniversityHamamatsuJapan
- Research Institute of Green Science and TechnologyShizuoka UniversityHamamatsuJapan
- Japan Collection of MicroorganismsRIKEN BioResource Research CenterIbarakiJapan
- Graduate School of Integrated Science and TechnologyShizuoka UniversityHamamatsuJapan
| |
Collapse
|
39
|
Kraychete GB, Bonelli RR, Picão RC. Green light for improving our understanding of AMR spread. THE LANCET. MICROBE 2024; 5:e2-e3. [PMID: 38006897 DOI: 10.1016/s2666-5247(23)00331-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/27/2023]
Affiliation(s)
- Gabriela B Kraychete
- Laboratório de Investigação em Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Raquel R Bonelli
- Laboratório de Investigação em Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Renata C Picão
- Laboratório de Investigação em Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|
40
|
Chen X, Wang X, Huang Y, Zhu Z, Li T, Cai Z, Li M, Gong H, Yan M. Combined effects of microplastics and antibiotic-resistant bacteria on Daphnia magna growth and expression of functional genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166880. [PMID: 37709097 DOI: 10.1016/j.scitotenv.2023.166880] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
Microplastics could act as vectors for the transport of harmful bacteria, such as pathogens and antibiotic resistance bacteria (ARB), but their combined effects have not been reported yet. Here, ARB Shigella flexneri with sulfonamides resistance and micro-polystyrene (micro-PS) were used to investigate their possible combined effects on the growth and expression of functional genes in Daphnia magna. Results showed that micro-PS colonized with S. flexneri were ingested by D. magna and blocked in their intestine after 24 h exposure. Changes were observed in the life history and morphology of D. magna, as well as the expression of functional genes in all treatments, but with no difference in the survival rate. We also determined the expression of six functional genes involved in energy and metabolism (arginine kinase, AK) and oxidative stress response (thioredoxin reductase, TRxR, catalase, CAT, and glutathione S-transferases, GSTs), as well as in growth, development and reproduction (vitellogenin, Vtg1 and ecdysone receptor, EcR). AK and Vtg1 did not show significant differences, however, EcR was down-regulated and the other three genes (TRxR, CAT, GSTs) were up-regulated in the combined-treated group. Antibiotic resistance gene (ARGs) sul1 was detected when exposed to micro-PS colonized with S. flexneri., suggesting that D. magna could acquire resistance genes through microplastic biofilms. These results indicated that MPs could act as a carrier of ARB to transfer ARGs into D. magna, and affect the life history, morphology, and the expression of related functional genes of D. magna, to adapt to the stress caused by MPs and ARB.
Collapse
Affiliation(s)
- Xiaofeng Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Xiaocui Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Yuanyin Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Ziying Zhu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Tianmu Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Zeming Cai
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Minqian Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Han Gong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| | - Muting Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| |
Collapse
|
41
|
Li XY, Wu WF, Wu CY, Hu Y, Xiang Q, Li G, Lin XY, Zhu YG. Seeds Act as Vectors for Antibiotic Resistance Gene Dissemination in a Soil-Plant Continuum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21358-21369. [PMID: 38078407 DOI: 10.1021/acs.est.3c05678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Though the evidence for antibiotic resistance spread via plant microbiome is mounting, studies regarding antibiotic resistome in the plant seed, a reproductive organ and important food resource, are still in their infancy. This study investigated the effects of long-term organic fertilization on seed bacterial endophytes, resistome, and their intergenerational transfer in the microcosm. A total of 99 antibiotic resistance genes (ARGs) and 26 mobile genetic elements (MGEs) were detected by high-throughput quantitative PCR. The amount of organic fertilizer applied was positively correlated to the number and relative abundance of seed-associated ARGs and MGEs. Moreover, the transmission of ARGs from the rhizosphere to the seed was mainly mediated by the shared bacteria and MGEs. Notably, the rhizosphere of progeny seedlings derived from seeds harboring abundant ARGs was found to have a higher relative abundance of ARGs. Using structural equation models, we further revealed that seed resistome and MGEs were key factors affecting the ARGs in the progeny rhizosphere, implying the seed was a potential resistome reservoir for rhizosphere soil. This study highlights the overlooked role of seed endophytes in the dissemination of resistome in the soil-plant continuum, and more attention should be paid to plant seeds as vectors of ARGs within the "One-Health" framework.
Collapse
Affiliation(s)
- Xin-Yuan Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Wei-Feng Wu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Chun-Yan Wu
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Yan Hu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Qian Xiang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xian-Yong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yong-Guan Zhu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
42
|
Guo Y, Wu C, Wang Z, Shi Y, Sun J. Co-occurrence of toxic metals, bacterial communities and metal resistance genes in coastal sediments from Bohai bay. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122666. [PMID: 37788796 DOI: 10.1016/j.envpol.2023.122666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
Sediment heavy metal contamination poses substantial risks to microbial community composition and functional gene distribution. Bohai Bay (BHB), the second-largest bay in the Bohai Sea, is subject to severe anthropogenic pollution. However, to date, there have been no studies conducted to evaluate the distribution of metal resistance genes (MRGs) and bacterial communities in the coastal sediments of BHB. In this study, we employed high-throughput sequencing based on 16S rRNA genes and real-time quantitative PCR (qPCR) to provide a comprehensive view of toxic metals, MRGs, and bacterial communities in BHB's coastal sediment samples across two seasons. We detected high levels of Cd in the summer samples and As in the autumn samples. The metal content in most autumn samples and all summer samples, based on ecological indices, indicated low ecological risk. Proteobacteria dominated all samples, followed by Desulfobacterota, Bacteroidota and Campilobacterota. Bacterial community variability was higher between autumn sampling sites but more stable in summer. We detected 9 MRG subtypes in all samples, with abundances ranging from 4.58 × 10-1 to 2.25 copies/16S rRNA copies. arsB exhibited the highest relative abundance, followed by acr3, czcA and arrA. The efflux mechanism is a common mechanism for sediment resistance to metal stress in Bohai Bay. Procrustes analysis indicated that bacterial community composition may be a determinant of MRGs composition in BHB sediments. Network analysis suggested that eight classes could be potential hosts for six MRGs. However, this type of correlation requires further validation. To summarize, our study offers preliminary insights into bacterial community and MRG distribution patterns in heavy metal-exposed sediments, laying the groundwork for understanding microbial community adaptations in multi-metal polluted environments and supporting ecological restoration efforts.
Collapse
Affiliation(s)
- Yiyan Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, 430074, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China; Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, 511462, China
| | - Chao Wu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Zhi Wang
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China; Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, 511462, China
| | - Yifeng Shi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, 430074, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China; Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, 511462, China
| | - Jun Sun
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, 430074, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China; Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, 511462, China.
| |
Collapse
|
43
|
Skoog EJ, Fournier GP, Bosak T. Assessing the Influence of HGT on the Evolution of Stress Responses in Microbial Communities from Shark Bay, Western Australia. Genes (Basel) 2023; 14:2168. [PMID: 38136990 PMCID: PMC10742547 DOI: 10.3390/genes14122168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Pustular microbial mats in Shark Bay, Western Australia, are modern analogs of microbial systems that colonized peritidal environments before the evolution of complex life. To understand how these microbial communities evolved to grow and metabolize in the presence of various environmental stresses, the horizontal gene transfer (HGT) detection tool, MetaCHIP, was used to identify the horizontal transfer of genes related to stress response in 83 metagenome-assembled genomes from a Shark Bay pustular mat. Subsequently, maximum-likelihood phylogenies were constructed using these genes and their most closely related homologs from other environments in order to determine the likelihood of these HGT events occurring within the pustular mat. Phylogenies of several stress-related genes-including those involved in response to osmotic stress, oxidative stress and arsenic toxicity-indicate a potentially long history of HGT events and are consistent with these transfers occurring outside of modern pustular mats. The phylogeny of a particular osmoprotectant transport gene reveals relatively recent adaptations and suggests interactions between Planctomycetota and Myxococcota within these pustular mats. Overall, HGT phylogenies support a potentially broad distribution in the relative timing of the HGT events of stress-related genes and demonstrate ongoing microbial adaptations and evolution in these pustular mat communities.
Collapse
Affiliation(s)
- Emilie J. Skoog
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (G.P.F.); (T.B.)
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
| | - Gregory P. Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (G.P.F.); (T.B.)
| | - Tanja Bosak
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (G.P.F.); (T.B.)
| |
Collapse
|
44
|
Jing K, Li Y, Yao C, Jiang C, Li J. Towards the fate of antibiotics and the development of related resistance genes in stream biofilms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165554. [PMID: 37454845 DOI: 10.1016/j.scitotenv.2023.165554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Antibiotics are ubiquitously found in natural surface waters and cause great harm to aquatic organisms. Stream biofilm is a complex and active community composed of algae, bacteria, fungi and other microorganisms, which mainly adheres to solid substances such as rocks and sediments. The durability and diverse structural and metabolic characteristics of biofilms make them a representative of microbial life in aquatic micrecosystems and can reflect major ecosystem processes. Microorganisms and extracellular polymeric substances in biofilms can adsorb and actively accumulate antibiotics. Therefore, biofilms are excellent biological indicators for detecting antibiotic in polluted aquatic environments, but the biotransformation potential of stream biofilms for antibiotics has not been fully explored in the aquatic environment. The characteristics of stream biofilm, such as high abundance and activity of bacterial community, wide contact area with pollutants, etc., which increases the opportunity of biotransformation of antibiotics in biofilm and contribute to bioremediation to improve ecosystem health. Recent studies have demonstrated that both exposure to high and sub-minimum inhibitory concentrations of antibiotics may drive the development of antibiotic resistance genes (ARGs) in natural stream biofilms, which are susceptible to the effects of antibiotic residues, microbial communities and mobile genetic elements, etc. On the basis of peer-reviewed papers, this review explores the distribution behavior of antibiotics in stream biofilms and the contribution of biofilms to the acquisition and spread of antibiotic resistance. Considering that antibiotics and ARGs alter the structure and ecological functions of natural microbial communities and pose a threat to river organisms and human health, our research findings provide comprehensive insights into the migration, transformation, and bioavailability of antibiotics in biofilms.
Collapse
Affiliation(s)
- Ke Jing
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China
| | - Ying Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China.
| | - Chi Yao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China
| | - Chenxue Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China
| | - Jing Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China
| |
Collapse
|
45
|
Sun H, Li H, Zhang X, Liu Y, Chen H, Zheng L, Zhai Y, Zheng H. The honeybee gut resistome and its role in antibiotic resistance dissemination. Integr Zool 2023; 18:1014-1026. [PMID: 36892101 DOI: 10.1111/1749-4877.12714] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
There is now general concern about widespread antibiotic resistance, and growing evidence indicates that gut microbiota is critical in providing antibiotic resistance. Honeybee is an important pollinator; the incidence of antibiotic resistance genes in honeybee gut causes potential risks to not only its own health but also to public and animal health, for its potential disseminator role, thus receiving more attention from the public. Recent analysis results reveal that the gut of honeybee serves as a reservoir of antibiotic resistance genes, probably due to antibiotics application history in beekeeping and horizontal gene transfer from the highly polluted environment. These antibiotic resistance genes accumulate in the honeybee gut and could be transferred to the pathogen, even having the potential to spread during pollination, tending, social interactions, etc. Newly acquired resistance traits may cause fitness reduction in bacteria whereas facilitating adaptive evolution as well. This review outlines the current knowledge about the resistome in honeybee gut and emphasizes its role in antibiotic resistance dissemination.
Collapse
Affiliation(s)
- Huihui Sun
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Hu Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Hao Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| |
Collapse
|
46
|
Liu L, Zhang QH, Li RT. In Situ and Individual-Based Analysis of the Influence of Polystyrene Microplastics on Escherichia coli Conjugative Gene Transfer at the Single-Cell Level. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15936-15944. [PMID: 37801563 DOI: 10.1021/acs.est.3c05476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
The impact of microplastic particles of micro- and nanometer sizes on microbial horizontal gene transfer (HGT) remains a controversial topic. Existing studies rely on traditional approaches, which analyze population behavior, leading to conflicting conclusions and a limited understanding. The present study addressed these limitations by employing a novel microfluidic chamber system for in situ visualization and precise quantification of the effects of different concentrations of polystyrene (PS) microbeads on microbial HGT at the single-cell level. The statistical analysis indicated no significant difference in the division times of both the donor and recipient bacteria across different PS microbead concentrations. However, as the concentration of PS microbeads increased from 0 to 2000 mg L-1, the average conjugation frequency of Escherichia coli decreased from 0.028 ± 0.015 to 0.004 ± 0.003. Our observations from the microfluidic experiments revealed that 500 nm PS microbeads created a barrier effect on bacterial conjugative transfer. The presence of microbeads resulted in reduced contact and interaction between the donor and recipient strains, thereby causing a decrease in the conjugation transfer frequency. These findings were validated by an individual-based modeling framework parameterized by the data from the individual-level microfluidic experiments. Overall, this study offers a fresh perspective and strategy for investigating the risks associated with the dissemination of antibiotic resistance genes related to microplastics.
Collapse
Affiliation(s)
- Li Liu
- School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Qiang-Hong Zhang
- School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Rui-Tong Li
- School of Chemistry, Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
47
|
Shi J, Lv B, Wang B, Xie B. Insight into the responses of antibiotic resistance genes in microplastic biofilms to zinc oxide nanoparticles and zinc ions pressures in landfill leachate. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132096. [PMID: 37480611 DOI: 10.1016/j.jhazmat.2023.132096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Microplastic (MP) biofilms are hotspots of antibiotic resistance genes (ARGs) in landfill environment. MP biofilms in landfill leachate coexist with heavy metals and metallic nanoparticles (NPs) that considered to be the selective agents of ARGs. However, the effects of these selective pressures on ARGs in MP biofilms and their differences in MP-surrounding leachate have not been well understood. Herein, the changes of ARG abundances in MP biofilms and corresponding leachate under zinc oxide (ZnO) NPs and zinc ion (Zn2+) pressures were comparatively analyzed. The presence of ZnO NPs and Zn2+ promoted the enrichment of ARGs in MP biofilms, and the enrichment was more pronounced in ZnO NPs groups. ZnO NPs and especially Zn2+ mainly decreased the abundances of ARGs in leachate. The increase of integron abundances and reactive oxygen species production in MP biofilms implied the enhanced potential for horizontal transfer of ARGs under ZnO NPs and Zn2+ pressures. Meanwhile, the co-occurrence pattern between ARGs and bacterial genera in MP biofilms with more diverse potential ARG hosts was more complex than in leachate, and the enrichment of ARG-hosting bacteria in MP biofilms under ZnO NPs and Zn2+ pressures supported the enrichment of ARGs.
Collapse
Affiliation(s)
- Jianhong Shi
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Baoyi Lv
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Binghan Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China.
| |
Collapse
|
48
|
Kuznetsova MV, Pospelova JS, Maslennikova IL, Starčič Erjavec M. Dual-Species Biofilms: Biomass, Viable Cell Ratio/Cross-Species Interactions, Conjugative Transfer. Int J Mol Sci 2023; 24:14497. [PMID: 37833945 PMCID: PMC10572544 DOI: 10.3390/ijms241914497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Biofilms as a form of adaptation are beneficial for bacterial survival and may be hot spots for horizontal gene transfer, including conjugation. The aim of this research was to characterize the biofilm biomass, viable cell ratios and conjugative transfer of the pOX38 plasmid, an F-plasmid derivative, from the Escherichia coli N4i pOX38 strain (donor) into a uropathogenic E. coli DL82 strain (recipient) within dual-species biofilms with one of the following opportunistic pathogenic bacteria: Klebsiella pneumoniae, Enterococcus faecalis or Pseudomonas aeruginosa. Dual-species biofilms of E. coli with K. pneumoniae or P. aeruginosa but not E. faecalis were more massive and possessed more exopolysaccharide matrix compared to single-species biofilms of donor and recipient cells. Correlation between biofilm biomass and exopolysaccharide matrix was rs = 0.888 in dual-species biofilms. In dual-species biofilm with E. faecalis the proportion of E. coli was the highest, while in the biofilm with P. aeruginosa and K. pneumoniae, the E. coli was less abundant. The conjugative frequencies of plasmid transfer in dual-species biofilms of E. coli with E. faecalis and P. aeruginosa were reduced. A decrease in conjugative frequency was also observed when cell-free supernatants (CFSs) of E. faecalis and P. aeruginosa were added to the E. coli conjugation mixture. Further, the activity of the autoinducer AI-2 in the CFSs of the E. coli conjugation mixture was reduced when bacteria or CFSs of E. faecalis and P. aeruginosa were added to the E. coli conjugation mixture. Hence, the intercellular and interspecies interactions in dual-species biofilms depend on the partners involved.
Collapse
Affiliation(s)
- Marina V Kuznetsova
- Institute of Ecology and Genetics of Microorganisms Ural Branch Russian Academy of Sciences, 614081 Perm, Russia
| | | | - Irina L Maslennikova
- Institute of Ecology and Genetics of Microorganisms Ural Branch Russian Academy of Sciences, 614081 Perm, Russia
| | - Marjanca Starčič Erjavec
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
49
|
Loret S, Habib B, Romain P, Roba A, Reboul A. Prevention of horizontal transfer of laboratory plasmids to environmental bacteria: comparison of the effectiveness of a few disinfection approaches to degrade DNA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:89369-89380. [PMID: 37450185 DOI: 10.1007/s11356-023-28733-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
The routine work of any molecular biology laboratory includes the daily use of microorganisms, including strains of E. coli, transformed with a variety of plasmids expressing at least one antibiotic resistance gene (ARG). Therefore, to avoid the accidental release of ARGs into environmental water, methods for disinfection of liquid laboratory waste must be effective in destroying nucleic acids. In support of this recommendation, the origin of replication of Enterobacteriaceae plasmids has been detected in strains of non-Enterobacteriaceae bacteria isolated from wastewater from laboratories and research institutes, suggesting that interspecific transfer of laboratory plasmids had occurred. Using quantitative polymerase chain reaction, we determined the decimal reduction value (D value, expressed as concentration of disinfectant or length of physical treatment) of several decontamination methods for their DNA degradation effect on cultures of E. coli Top10 transformed with a kanamycin resistant plasmid (pET28A + or pEGFP-C2). The estimated D values were 0.7 M for sulfuric acid, 6.3% for a commercial P3 disinfectant, 25 min for steam sterilization at 121 °C, and 49 min for disinfection by UVC. A 20-min treatment of bacteria cultures with a final concentration of 1-10% sodium hypochlorite was found to be ineffective in completely destroying a bacteria plasmid gene marker (coding for the pBR322 origin of replication). Residual DNA from NaClO-treated cells was 60%, while it decreased under 10% using the commercial disinfectant P3 diluted at 5%. As the degradation was incomplete in both cases, we recommend avoiding discharge of disinfected liquid waste to wastewater (even after chemical neutralization) without additional plasmid destruction treatment, to prevent horizontal transfer of laboratory ARGs to environmental bacteria.
Collapse
Affiliation(s)
- Suzanne Loret
- Health and Safety Department, Namur Research Institute for Life Science (NARILIS), University of Namur (UNamur), Biosafety Office, Rue de Bruxelles 61, B 5000, Namur, Belgium.
| | - Boutaina Habib
- Science Faculty, University Mohammed V, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
| | - Pierre Romain
- Research Unit in Biology of Microorganisms (URBM), Namur Research Institute for Life Science (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, B 5000 , Namur, Belgium
| | - Agnès Roba
- Research Unit in Biology of Microorganisms (URBM), Namur Research Institute for Life Science (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, B 5000 , Namur, Belgium
| | - Angéline Reboul
- Research Unit in Biology of Microorganisms (URBM), Namur Research Institute for Life Science (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, B 5000 , Namur, Belgium
| |
Collapse
|
50
|
Tran NN, Morrisette T, Jorgensen SCJ, Orench-Benvenutti JM, Kebriaei R. Current therapies and challenges for the treatment of Staphylococcus aureus biofilm-related infections. Pharmacotherapy 2023; 43:816-832. [PMID: 37133439 DOI: 10.1002/phar.2806] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 05/04/2023]
Abstract
Staphylococcus aureus is a major cause of nosocomial and community-acquired infections and contributes to significant increase in morbidity and mortality especially when associated with medical devices and in biofilm form. Biofilm structure provides a pathway for the enrichment of resistant and persistent phenotypes of S. aureus leading to relapse and recurrence of infection. Minimal diffusion of antibiotics inside biofilm structure leads to heterogeneity and distinct physiological activity. Additionally, horizontal gene transfer between cells in proximity adds to the challenges associated with eradication of biofilms. This narrative review focuses on biofilm-associated infections caused by S. aureus, the impact of environmental conditions on biofilm formation, interactions inside biofilm communities, and the clinical challenges that they present. Conclusively, potential solutions, novel treatment strategies, combination therapies, and reported alternatives are discussed.
Collapse
Affiliation(s)
- Nikki N Tran
- Department of Pharmacy, The Ohio State University Wexner Medical Center - The James Cancer Hospital and Solove Research Institute, Columbus, Ohio, USA
| | - Taylor Morrisette
- Department of Clinical Pharmacy and Outcomes Sciences, Medical University of South Carolina College of Pharmacy, Charleston, South Carolina, USA
- Department of Pharmacy Services, Medical University of South Carolina Shawn Jenkins Children's Hospital, Charleston, South Carolina, USA
| | - Sarah C J Jorgensen
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - José M Orench-Benvenutti
- P3 Research Laboratory, Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Razieh Kebriaei
- P3 Research Laboratory, Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|