1
|
Inoue H, Tanimoto Y, Zheng D, Ban‐Furukawa E, Inoue M, Omori Y, Yamaguchi Y, Tachibana T, Aso H, Zhang W, Kage‐Nakadai E, Nishikawa Y, Wada T. An Atypical Kappa-Class Chaperone-Usher Fimbriae of a Human Enterotoxigenic Escherichia coli Strain Shows Multi-Host Adherence and Distinct Phylogenetic Feature. Microbiol Immunol 2025; 69:270-279. [PMID: 40023775 PMCID: PMC12050912 DOI: 10.1111/1348-0421.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/11/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025]
Abstract
The pathogenesis of enterotoxigenic Escherichia coli (ETEC) involves the colonization of hosts by colonization factors (CFs) and the secretion of enterotoxins. CFs, especially chaperone-usher fimbriae, mediate bacterial adhesion to host cells, with extensive genetic diversity observed among isolates. One ETEC strain, O169YN10, possessed a unique plasmid (pEntYN10) encoding three CFs, CS6, and two novel homologs of CS8 and F4 (CS6O169, CS8O169, and F4O169). In this study, F4O169 was found to play a major role in adhesion to multiple hosts, including human, bovine, and porcine epithelial cells, whereas the other two CSs were less functional. Inhibition assays using antibodies showed that FayG1, one of the two major paralogous adhesins of F4O169, directly contributes to human cell adhesion. Despite the established function of FayG1, the FayG2 protein was not detected under the in vitro conditions. Comparative genomics revealed that FayG1 and FayG2 share low homology with other E. coli strains isolated from hosts, suggesting sporadic emergence from an unknown origin.
Collapse
Affiliation(s)
- Hiharu Inoue
- Graduate School of Human Life and Ecology, Osaka Metropolitan UniversityOsakaJapan
| | - Yoshihiko Tanimoto
- Graduate School of Human Life and Ecology, Osaka Metropolitan UniversityOsakaJapan
- Institute for Life and Medical Sciences, Kyoto UniversityKyotoJapan
| | - Dongming Zheng
- Graduate School of Human Life Science, Osaka City UniversityOsakaJapan
| | | | - Miyoko Inoue
- Graduate School of Human Life Science, Osaka City UniversityOsakaJapan
| | - Yuko Omori
- Graduate School of Human Life Science, Osaka City UniversityOsakaJapan
| | | | - Taro Tachibana
- Graduate School of Engineering, Osaka Metropolitan UniversityOsakaJapan
| | - Hisashi Aso
- Cellar Biology Laboratory, Graduate School of Agricultural Science, Tohoku UniversitySendaiJapan
| | - Weiping Zhang
- Department of PathobiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Eriko Kage‐Nakadai
- Graduate School of Human Life and Ecology, Osaka Metropolitan UniversityOsakaJapan
- Institute for Life and Medical Sciences, Kyoto UniversityKyotoJapan
| | - Yoshikazu Nishikawa
- Graduate School of Human Life and Ecology, Osaka Metropolitan UniversityOsakaJapan
- Faculty of Human Sciences, Tezukayama Gakuin UniversityOsakaJapan
| | - Takayuki Wada
- Graduate School of Human Life and Ecology, Osaka Metropolitan UniversityOsakaJapan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan UniversityOsakaJapan
| |
Collapse
|
2
|
Kawahara K, Oki H, Iimori M, Muramoto R, Imai T, Gerle C, Shigematsu H, Matsuda S, Iida T, Nakamura S. High-resolution cryo-EM analysis visualizes hydrated type I and IV pilus structures from enterotoxigenic Escherichia coli. Structure 2025:S0969-2126(25)00107-8. [PMID: 40220752 DOI: 10.1016/j.str.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/18/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025]
Abstract
Pathogenic bacteria utilize a variety of pilus filaments to colonize intestinal epithelia, including those synthesized by the chaperone-usher or type IV pilus assembly pathway. Despite the importance of these filaments as potential drug and vaccine targets, their large size and dynamic nature make high-resolution structure determination challenging. Here, we used cryo-electron microscopy (cryo-EM) and whole-genome sequencing to determine the structures of type I and IV pili expressed in enterotoxigenic Escherichia coli. Well-defined cryo-EM maps at resolutions of 2.2 and 1.8 Å for type I and IV pilus, respectively, facilitated the de novo structural modeling for these filaments, revealing side-chain structures in detail. We resolved thousands of hydrated water molecules around and within the inner core of the filaments, which stabilize the otherwise metastable quaternary subunit assembly. The high-resolution structures offer novel insights into subunit-subunit interactions, and provide important clues to understand pilus assembly, stability, and flexibility.
Collapse
Affiliation(s)
- Kazuki Kawahara
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Hiroya Oki
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Minato Iimori
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryuki Muramoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoya Imai
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Christoph Gerle
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Hideki Shigematsu
- Structural Biology Division, Japan Synchrotron Radiation Research Institute, SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Shigeaki Matsuda
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan; Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tetsuya Iida
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan; Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shota Nakamura
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan; Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
3
|
Ghosh S, Wu CJ, Moller AG, Launay A, Hall LN, Hansen BT, Fischer ER, Youn JH, Khil PP, Dekker JP. Transcriptional diversification in a human-adapting zoonotic pathogen drives niche-specific evolution. Nat Commun 2025; 16:2067. [PMID: 40021638 PMCID: PMC11871327 DOI: 10.1038/s41467-025-57331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 02/14/2025] [Indexed: 03/03/2025] Open
Abstract
Bacterial pathogens can undergo striking adaptive evolutionary change in the context of infection, driven by selection forces associated with host defenses and antibiotic treatment. In this work, we analyze the transcriptional landscape associated with adaptation in an emerging zoonotic pathogen, Bordetella hinzii, as it evolved during a 45-month infection in an IL12Rβ1-deficient immunocompromised host. We find evidence of multiple niche-specific modifications in the intravascular and gastrointestinal compartments, involving the superoxide dismutase system, glutamate and ectoine metabolism, chaperone-mediated protein folding, pilus organization, and peptide transport. Individual blood lineages displayed modifications in glutathione, phenylacetate, and 3-phenylpropionate metabolism, iron cluster assembly, and electron transport, whereas individual gastrointestinal lineages demonstrated changes relating to gluconeogenesis, de novo pyrimidine synthesis, and transport of peptides and phosphate ions. Down regulation of the flagellar operon with corresponding loss of flagellar structures occurred in multiple lineages, suggesting an evolutionary tradeoff between motility and host immune evasion. Finally, methylome analysis demonstrates alteration of global genome methylation associated with loss of a Type III methyltransferase. Our findings reveal striking plasticity in how pathogen transcriptomes explore functional space as they evolve in the context of host infection, and demonstrate that such analysis may uncover phenotypic adaptations not apparent from genomic analysis alone.
Collapse
Affiliation(s)
- Soma Ghosh
- Bacterial Pathogenesis and Antimicrobial Resistance Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chao-Jung Wu
- Bacterial Pathogenesis and Antimicrobial Resistance Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110301, Taiwan
| | - Abraham G Moller
- Bacterial Pathogenesis and Antimicrobial Resistance Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrien Launay
- Bacterial Pathogenesis and Antimicrobial Resistance Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Endogenomiks, Zapopan, Jalisco, Mexico
| | - Laina N Hall
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- University of California Berkeley, Berkeley, CA, USA
| | - Bryan T Hansen
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Elizabeth R Fischer
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jung-Ho Youn
- National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Pavel P Khil
- Bacterial Pathogenesis and Antimicrobial Resistance Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - John P Dekker
- Bacterial Pathogenesis and Antimicrobial Resistance Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Smith OER, Bharat TAM. Architectural dissection of adhesive bacterial cell surface appendages from a "molecular machines" viewpoint. J Bacteriol 2024; 206:e0029024. [PMID: 39499080 PMCID: PMC7616799 DOI: 10.1128/jb.00290-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
The ability of bacteria to interact with and respond to their environment is crucial to their lifestyle and survival. Bacterial cells routinely need to engage with extracellular target molecules, in locations spatially separated from their cell surface. Engagement with distant targets allows bacteria to adhere to abiotic surfaces and host cells, sense harmful or friendly molecules in their vicinity, as well as establish symbiotic interactions with neighboring cells in multicellular communities such as biofilms. Binding to extracellular molecules also facilitates transmission of information back to the originating cell, allowing the cell to respond appropriately to external stimuli, which is critical throughout the bacterial life cycle. This requirement of bacteria to bind to spatially separated targets is fulfilled by a myriad of specialized cell surface molecules, which often have an extended, filamentous arrangement. In this review, we compare and contrast such molecules from diverse bacteria, which fulfil a range of binding functions critical for the cell. Our comparison shows that even though these extended molecules have vastly different sequence, biochemical and functional characteristics, they share common architectural principles that underpin bacterial adhesion in a variety of contexts. In this light, we can consider different bacterial adhesins under one umbrella, specifically from the point of view of a modular molecular machine, with each part fulfilling a distinct architectural role. Such a treatise provides an opportunity to discover fundamental molecular principles governing surface sensing, bacterial adhesion, and biofilm formation.
Collapse
Affiliation(s)
- Olivia E. R. Smith
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Tanmay A. M. Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
5
|
Hvorecny KL, Interlandi G, Veth TS, Aprikian P, Manchenko A, Tchesnokova VL, Dickinson MS, Quispe JD, Riley NM, Klevit RE, Magala P, Sokurenko EV, Kollman JM. Antibodies disrupt bacterial adhesion by ligand mimicry and allosteric interference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627246. [PMID: 39713463 PMCID: PMC11661100 DOI: 10.1101/2024.12.06.627246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
A critical step in infections is the attachment of many microorganisms to host cells using lectins that bind surface glycans, making lectins promising antimicrobial targets. Upon binding mannosylated glycans, FimH, the most studied lectin adhesin of type 1 fimbriae in E. coli, undergoes an allosteric transition from an inactive to an active conformation that can act as a catch-bond. Monoclonal antibodies that alter FimH glycan binding in various ways are available, but the mechanisms of these antibodies remain unclear. Here, we use cryoEM, mass spectrometry, binding assays, and molecular dynamics simulations to determine the structure-function relationships underlying antibody-FimH binding. Our study reveals four distinct antibody mechanisms of action: ligand mimicry by an N-linked, high-mannose glycan; stabilization of the ligand pocket in the inactive state; conformational trapping of the active and inactive states; and locking of the ligand pocket through long-range allosteric effects. These structures reveal multiple mechanisms of antibody responses to an allosteric protein and provide blueprints for new antimicrobial that target adhesins.
Collapse
Affiliation(s)
| | | | - Tim S. Veth
- Department of Chemistry, University of Washington, Seattle, WA
| | - Pavel Aprikian
- Department of Microbiology, University of Washington, Seattle, WA
| | - Anna Manchenko
- Department of Microbiology, University of Washington, Seattle, WA
| | | | | | - Joel D. Quispe
- Department of Biochemistry, University of Washington, Seattle, WA
| | | | - Rachel E. Klevit
- Department of Biochemistry, University of Washington, Seattle, WA
| | - Pearl Magala
- Department of Biochemistry, University of Washington, Seattle, WA
| | | | | |
Collapse
|
6
|
Chang C, Ramirez NA, Bhat AH, Nguyen MT, Kumari P, Ton-That H, Das A, Ton-That H. Biogenesis and Functionality of Sortase-Assembled Pili in Gram-Positive Bacteria. Annu Rev Microbiol 2024; 78:403-423. [PMID: 39141696 DOI: 10.1146/annurev-micro-112123-100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
A unique class of multimeric proteins made of covalently linked subunits known as pili, or fimbriae, are assembled and displayed on the gram-positive bacterial cell surface by a conserved transpeptidase enzyme named pilus-specific sortase. Sortase-assembled pili are produced by a wide range of gram-positive commensal and pathogenic bacteria inhabiting diverse niches such as the human oral cavity, gut, urogenital tract, and skin. These surface appendages serve many functions, including as molecular adhesins, immuno-modulators, and virulence determinants, that significantly contribute to both the commensal and pathogenic attributes of producer microbes. Intensive genetic, biochemical, physiological, and structural studies have been devoted to unveiling the assembly mechanism and functions, as well as the utility of these proteins in vaccine development and other biotechnological applications. We provide a comprehensive review of these topics and discuss the current status and future prospects of the field.
Collapse
Affiliation(s)
- Chungyu Chang
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA;
| | - Nicholas A Ramirez
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Aadil H Bhat
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA;
| | - Minh T Nguyen
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA;
| | - Poonam Kumari
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA;
| | - HyLam Ton-That
- Department of Chemistry, University of California, Irvine, California, USA
| | - Asis Das
- Department of Medicine, Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Hung Ton-That
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA;
| |
Collapse
|
7
|
Friedrich LM, Hartke B, Lindhorst TK. Advancing Optoglycomics: Two Orthogonal Azobenzene Glycoside Antennas in One Glycocluster-Synthesis, Switching Cycles, Kinetics and Molecular Dynamics. Chemistry 2024; 30:e202402125. [PMID: 39037782 DOI: 10.1002/chem.202402125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Carbohydrate recognition is essential for numerous biological processes and is governed by various factors within the supramolecular environment of the cell. Photoswitchable glycoconjugates have proven as valuable tools for the investigation and modulation of carbohydrate recognition as they allow to control the relative orientation of sugar ligands by light. In order to advance the possibilities of such an "optoglycomics" approach for the glycosciences, we have synthesized a biantennary glycocluster in which two glycoazobenzene antennas are conjugated to the 3- and 6-position of a scaffold glycoside. Orthogonal isomerization of the photoswitchable units was made possible by the different conjugation of the azobenzene moieties via an oxygen and a sulfur atom, respectively, and the ortho-fluorination of one of the azobenzene units. This design enabled a switching cycle comprising the EE, EZ and the ZZ isomer. This is the first example of an orthogonally photoswitchable glycocluster. The full analysis of its photochromic properties included the investigation of the isolated glycoazobenzene antennas allowing the comparison of the intra- versus the intermolecular orthogonal photoswitching. The kinetics of the thermal relaxation were analyzed in detail. A molecular dynamics study shows that indeed, the relative orientation of the glycoantennas and the distances between the terminal sugar ligands significantly vary depending on the isomeric state, as intended.
Collapse
Affiliation(s)
- Leon M Friedrich
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3-4, 24118, Kiel, Germany
| | - Bernd Hartke
- Institute for Physical Chemistry, Christiana Albertina University of Kiel, Max-Eyth-Straße 2, 24118, Kiel, Germany
| | - Thisbe K Lindhorst
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3-4, 24118, Kiel, Germany
| |
Collapse
|
8
|
Liu H, Fan S, Zhang X, Yuan Y, Zhong W, Wang L, Wang C, Zhou Z, Zhang S, Geng Y, Peng G, Wang Y, Zhang K, Yan Q, Luo Y, Shi K, Zhong Z. Antibiotic-resistant characteristics and horizontal gene transfer ability analysis of extended-spectrum β-lactamase-producing Escherichia coli isolated from giant pandas. Front Vet Sci 2024; 11:1394814. [PMID: 39132438 PMCID: PMC11310934 DOI: 10.3389/fvets.2024.1394814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/09/2024] [Indexed: 08/13/2024] Open
Abstract
Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (ESBL-EC) is regarded as one of the most important priority pathogens within the One Health interface. However, few studies have investigated the occurrence of ESBL-EC in giant pandas, along with their antibiotic-resistant characteristics and horizontal gene transfer abilities. In this study, we successfully identified 12 ESBL-EC strains (8.33%, 12/144) out of 144 E. coli strains which isolated from giant pandas. We further detected antibiotic resistance genes (ARGs), virulence-associated genes (VAGs) and mobile genetic elements (MGEs) among the 12 ESBL-EC strains, and the results showed that 13 ARGs and 11 VAGs were detected, of which bla CTX-M (100.00%, 12/12, with 5 variants observed) and papA (83.33%, 10/12) were the most prevalent, respectively. And ISEcp1 (66.67%, 8/12) and IS26 (66.67%, 8/12) were the predominant MGEs. Furthermore, horizontal gene transfer ability analysis of the 12 ESBL-EC showed that all bla CTX-M genes could be transferred by conjugative plasmids, indicating high horizontal gene transfer ability. In addition, ARGs of rmtB and sul2, VAGs of papA, fimC and ompT, MGEs of ISEcp1 and IS26 were all found to be co-transferred with bla CTX-M. Phylogenetic analysis clustered these ESBL-EC strains into group B2 (75.00%, 9/12), D (16.67%, 2/12), and B1 (8.33%, 1/12), and 10 sequence types (STs) were identified among 12 ESBL-EC (including ST48, ST127, ST206, ST354, ST648, ST1706, and four new STs). Our present study showed that ESBL-EC strains from captive giant pandas are reservoirs of ARGs, VAGs and MGEs that can co-transfer with bla CTX-M via plasmids. Transmissible ESBL-EC strains with high diversity of resistance and virulence elements are a potential threat to humans, animals and surrounding environment.
Collapse
Affiliation(s)
- Haifeng Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Siping Fan
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | | | - Yu Yuan
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Wenhao Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Liqin Wang
- The Chengdu Zoo, Institute of Wild Animals, Chengdu, China
| | - Chengdong Wang
- China Conservation and Research Centre for the Giant Panda, Key Laboratory of SFGA on the Giant-Panda, Ya'an, Sichuan, China
| | - Ziyao Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Shaqiu Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Guangneng Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Ya Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Kun Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Yan Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Keyun Shi
- Jiangsu Yixing People’s Hospital, Yixing, China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| |
Collapse
|
9
|
Guo X, Yu H, Xiong J, Dai Q, Li Y, Zhang W, Liao X, He X, Zhou H, Zhang K. Pseudomonas aeruginosa two-component system LadS/PA0034 regulates macrophage phagocytosis via fimbrial protein cupA1. mBio 2024; 15:e0061624. [PMID: 38771052 PMCID: PMC11237798 DOI: 10.1128/mbio.00616-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/02/2024] [Indexed: 05/22/2024] Open
Abstract
Pseudomonas aeruginosa is one of the most common nosocomial pathogens worldwide, known for its virulence, drug resistance, and elaborate sensor-response network. The primary challenge encountered by pathogens during the initial stages of infection is the immune clearance arising from the host. The resident macrophages of barrier organs serve as the frontline defense against these pathogens. Central to our understanding is the mechanism by which bacteria modify their behavior to circumvent macrophage-mediated clearance, ensuring their persistence and colonization. To successfully evade macrophage-mediated phagocytosis, bacteria must possess an adaptive response mechanism. Two-component systems provide bacteria the agility to navigate diverse environmental challenges, translating external stimuli into cellular adaptive responses. Here, we report that the well-documented histidine kinase, LadS, coupled to a cognate two-component response regulator, PA0034, governs the expression of a vital adhesin called chaperone-usher pathway pilus cupA. The LadS/PA0034 system is susceptible to interference from the reactive oxygen species likely to be produced by macrophages and further lead to a poor adhesive phenotype with scantily cupA pilus, impairing the phagocytosis efficiency of macrophages during acute infection. This dynamic underscores the intriguing interplay: as macrophages deploy reactive oxygen species to combat bacterial invasion, the bacteria recalibrate their exterior to elude these defenses. IMPORTANCE The notoriety of Pseudomonas aeruginosa is underscored by its virulence, drug resistance, and elaborate sensor-response network. Yet, the mechanisms by which P. aeruginosa maneuvers to escape phagocytosis during acute infections remain elusive. This study pinpoints a two-component response regulator, PA0034, coupled with the histidine kinase LadS, and responds to macrophage-derived reactive oxygen species. The macrophage-derived reactive oxygen species can impair the LadS/PA0034 system, resulting in reduced expression of cupA pilus in the exterior of P. aeruginosa. Since the cupA pilus is an important adhesin of P. aeruginosa, its deficiency reduces bacterial adhesion and changes their behavior to adopt a planktonic lifestyle, subsequently inhibiting the phagocytosis of macrophages by interfering with bacterial adhesion. Briefly, reactive oxygen species may act as environmental cues for the LadS/PA0034 system. Upon recognition, P. aeruginosa may transition to a poorly adhesive state, efficiently avoiding engulfment by macrophages.
Collapse
Affiliation(s)
- Xiaolong Guo
- Clinical Medical Research Center, The Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hua Yu
- Clinical Medical Research Center, The Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Junzhi Xiong
- Clinical Medical Research Center, The Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qian Dai
- Clinical Medical Research Center, The Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuanyuan Li
- Clinical Medical Research Center, The Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Wei Zhang
- Clinical Medical Research Center, The Xinqiao Hospital, Army Medical University, Chongqing, China
- Department of orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiping Liao
- Clinical Medical Research Center, The Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiaomei He
- Clinical Medical Research Center, The Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hongli Zhou
- Clinical Medical Research Center, The Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Kebin Zhang
- Clinical Medical Research Center, The Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
10
|
Inoue H, Toriyama K, Takahira N, Murakami S, Miyamoto H, Suzuki T, Shiraishi A. Association between Moraxella keratitis and advanced glycation end products. Sci Rep 2024; 14:8024. [PMID: 38580798 PMCID: PMC10997605 DOI: 10.1038/s41598-024-58659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/02/2024] [Indexed: 04/07/2024] Open
Abstract
Diabetes mellitus is recognized as a major predisposing factor for Moraxella keratitis. However, how diabetes mellitus contributes to Moraxella keratitis remains unclear. In this study, we examined Moraxella keratitis; based on the findings, we investigated the impact of advanced glycation end products (AGEs) deposition in the cornea of individuals with diabetic mellitus on the adhesion of Moraxella isolates to the cornea. A retrospective analysis of 27 culture-proven cases of Moraxella keratitis at Ehime University Hospital (March 2006 to February 2022) was performed. Moraxella isolates were identified using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Among the patients, 30.4% had diabetes mellitus and 22.2% had the predominant ocular condition of using steroid eye drops. The species identified were Moraxella nonliquefaciens in 59.3% and Moraxella lacunata in 40.7% of patients. To investigate the underlying mechanisms, we assessed the effects of M. nonliquefaciens adherence to simian virus 40-immortalized human corneal epithelial cells (HCECs) with or without AGEs. The results demonstrated the number of M. nonliquefaciens adhering to HCECs was significantly increased by adding AGEs compared with that in controls (p < 0.01). Furthermore, in the corneas of streptozotocin-induced diabetic C57BL/6 mice treated with or without pyridoxamine, an AGE inhibitor, the number of M. nonliquefaciens adhering to the corneas of diabetic mice was significantly reduced by pyridoxamine treatment (p < 0.05). In conclusion, the development of Moraxella keratitis may be significantly influenced by the deposition of AGEs on the corneal epithelium of patients with diabetes mellitus.
Collapse
Affiliation(s)
- Hidenori Inoue
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Koji Toriyama
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Naoko Takahira
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Shinobu Murakami
- Clinical Laboratory Division, Ehime University Hospital, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Hitoshi Miyamoto
- Clinical Laboratory Division, Ehime University Hospital, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Takashi Suzuki
- Department of Ophthalmology, Toho University Graduate School of Medicine, 6-11-1, Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Atsushi Shiraishi
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
11
|
Brannon JR, Reasoner SA, Bermudez TA, Comer SL, Wiebe MA, Dunigan TL, Beebout CJ, Ross T, Bamidele A, Hadjifrangiskou M. Mapping niche-specific two-component system requirements in uropathogenic Escherichia coli. Microbiol Spectr 2024; 12:e0223623. [PMID: 38385738 PMCID: PMC10986536 DOI: 10.1128/spectrum.02236-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
Sensory systems allow pathogens to differentiate between different niches and respond to stimuli within them. A major mechanism through which bacteria sense and respond to stimuli in their surroundings is two-component systems (TCSs). TCSs allow for the detection of multiple stimuli to lead to a highly controlled and rapid change in gene expression. Here, we provide a comprehensive list of TCSs important for the pathogenesis of uropathogenic Escherichia coli (UPEC). UPEC accounts for >75% of urinary tract infections (UTIs) worldwide. UTIs are most prevalent among people assigned female at birth, with the vagina becoming colonized by UPEC in addition to the gut and the bladder. In the bladder, adherence to the urothelium triggers E. coli invasion of bladder cells and an intracellular pathogenic cascade. Intracellular E. coli are safely hidden from host neutrophils, competition from the microbiota, and antibiotics that kill extracellular E. coli. To survive in these intimately connected, yet physiologically diverse niches E. coli must rapidly coordinate metabolic and virulence systems in response to the distinct stimuli encountered in each environment. We hypothesized that specific TCSs allow UPEC to sense these diverse environments encountered during infection with built-in redundant safeguards. Here, we created a library of isogenic TCS deletion mutants that we leveraged to map distinct TCS contributions to infection. We identify-for the first time-a comprehensive panel of UPEC TCSs that are critical for infection of the genitourinary tract and report that the TCSs mediating colonization of the bladder, kidneys, or vagina are distinct.IMPORTANCEWhile two-component system (TCS) signaling has been investigated at depth in model strains of Escherichia coli, there have been no studies to elucidate-at a systems level-which TCSs are important during infection by pathogenic Escherichia coli. Here, we report the generation of a markerless TCS deletion library in a uropathogenic E. coli (UPEC) isolate that can be leveraged for dissecting the role of TCS signaling in different aspects of pathogenesis. We use this library to demonstrate, for the first time in UPEC, that niche-specific colonization is guided by distinct TCS groups.
Collapse
Affiliation(s)
- John R. Brannon
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Seth A. Reasoner
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tomas A. Bermudez
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sarah L. Comer
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michelle A. Wiebe
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Taryn L. Dunigan
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Connor J. Beebout
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tamia Ross
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Adebisi Bamidele
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
12
|
Ilsby CS, Hertz FB, Westh H, Monk J, Worning P, Johansen HK, Hansen KH, Pinholt M. Predicting the primary infection source of Escherichia coli bacteremia using virulence-associated genes. Eur J Clin Microbiol Infect Dis 2024; 43:641-648. [PMID: 38273191 DOI: 10.1007/s10096-024-04754-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
PURPOSE To investigate the role of E. coli virulence-associated genes (VAGs) in predicting urinary tract infection (UTI) as the source of bacteremia in two distinct hospital populations, one with a large general catchment area and one dominated by referrals. METHODS E. coli bacteremias identified at Department of Clinical Microbiology (DCM), Hvidovre Hospital and DCM, Rigshospitalet in the Capital Region of Denmark from October to December 2018. Using whole genome sequencing (WGS), we identified 358 VAGs from 224 E. coli bacteremia. For predictive analysis, VAGs were paired with clinical source of UTI from local bacteremia databases. RESULTS VAGs strongly predicting of UTI as primary infection source of bacteremia were primarily found within the pap gene family. papX (PPV 96%, sensitivity 54%) and papGII (PPV 93%, sensitivity 56%) were found highly predictive, but showed low sensitivities. The strength of VAG predictions of UTI as source varied significantly between the two hospital populations. VAGs had weaker predictions in the tertiary referral center (Rigshospitalet), a disparity likely stemming from differences in patient population and department specialization. CONCLUSION WGS data was used to predict the primary source of E. coli bacteremia and is an attempt on a new and different type of infection source identification. Genomic data showed potential to be utilized to predict the primary source of infection; however, discrepancy between the best performing profile of VAGs between acute care hospitals and tertiary hospitals makes it difficult to implement in clinical practice.
Collapse
Affiliation(s)
- Christian Schaadt Ilsby
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.
| | - Frederik Boetius Hertz
- Department of Clinical Microbiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Immunology & Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Westh
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Monk
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Peder Worning
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Hartung Hansen
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mette Pinholt
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
13
|
Böhning J, Tarafder AK, Bharat TA. The role of filamentous matrix molecules in shaping the architecture and emergent properties of bacterial biofilms. Biochem J 2024; 481:245-263. [PMID: 38358118 PMCID: PMC10903470 DOI: 10.1042/bcj20210301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Numerous bacteria naturally occur within spatially organised, multicellular communities called biofilms. Moreover, most bacterial infections proceed with biofilm formation, posing major challenges to human health. Within biofilms, bacterial cells are embedded in a primarily self-produced extracellular matrix, which is a defining feature of all biofilms. The biofilm matrix is a complex, viscous mixture primarily composed of polymeric substances such as polysaccharides, filamentous protein fibres, and extracellular DNA. The structured arrangement of the matrix bestows bacteria with beneficial emergent properties that are not displayed by planktonic cells, conferring protection against physical and chemical stresses, including antibiotic treatment. However, a lack of multi-scale information at the molecular level has prevented a better understanding of this matrix and its properties. Here, we review recent progress on the molecular characterisation of filamentous biofilm matrix components and their three-dimensional spatial organisation within biofilms.
Collapse
Affiliation(s)
- Jan Böhning
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Abul K. Tarafder
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Tanmay A.M. Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| |
Collapse
|
14
|
Fulton DA, Dura G, Peters DT. The polymer and materials science of the bacterial fimbriae Caf1. Biomater Sci 2023; 11:7229-7246. [PMID: 37791425 PMCID: PMC10628683 DOI: 10.1039/d3bm01075a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023]
Abstract
Fimbriae are long filamentous polymeric protein structures located upon the surface of bacteria. Often implicated in pathogenicity, the biosynthesis and function of fimbriae has been a productive topic of study for many decades. Evolutionary pressures have ensured that fimbriae possess unique structural and mechanical properties which are advantageous to bacteria. These properties are also difficult to engineer with well-known synthetic and natural fibres, and this has raised an intriguing question: can we exploit the unique properties of bacterial fimbriae in useful ways? Initial work has set out to explore this question by using Capsular antigen fragment 1 (Caf1), a fimbriae expressed naturally by Yersina pestis. These fibres have evolved to 'shield' the bacterium from the immune system of an infected host, and thus are rather bioinert in nature. Caf1 is, however, very amenable to structural mutagenesis which allows the incorporation of useful bioactive functions and the modulation of the fibre's mechanical properties. Its high-yielding recombinant synthesis also ensures plentiful quantities of polymer are available to drive development. These advantageous features make Caf1 an archetype for the development of new polymers and materials based upon bacterial fimbriae. Here, we cover recent advances in this new field, and look to future possibilities of this promising biopolymer.
Collapse
Affiliation(s)
- David A Fulton
- Chemistry-School of Natural Science and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.
| | - Gema Dura
- Chemistry-School of Natural Science and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.
- Departamento de Química Inorgánica Orgánica y Bioquímica Universidad de Castilla-La Mancha Facultad de Ciencias y Tecnologías Químicas-IRICAAvda, C. J. Cela, 10, Ciudad Real 13071, Spain
| | - Daniel T Peters
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
15
|
Leusmann S, Ménová P, Shanin E, Titz A, Rademacher C. Glycomimetics for the inhibition and modulation of lectins. Chem Soc Rev 2023; 52:3663-3740. [PMID: 37232696 PMCID: PMC10243309 DOI: 10.1039/d2cs00954d] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 05/27/2023]
Abstract
Carbohydrates are essential mediators of many processes in health and disease. They regulate self-/non-self- discrimination, are key elements of cellular communication, cancer, infection and inflammation, and determine protein folding, function and life-times. Moreover, they are integral to the cellular envelope for microorganisms and participate in biofilm formation. These diverse functions of carbohydrates are mediated by carbohydrate-binding proteins, lectins, and the more the knowledge about the biology of these proteins is advancing, the more interfering with carbohydrate recognition becomes a viable option for the development of novel therapeutics. In this respect, small molecules mimicking this recognition process become more and more available either as tools for fostering our basic understanding of glycobiology or as therapeutics. In this review, we outline the general design principles of glycomimetic inhibitors (Section 2). This section is then followed by highlighting three approaches to interfere with lectin function, i.e. with carbohydrate-derived glycomimetics (Section 3.1), novel glycomimetic scaffolds (Section 3.2) and allosteric modulators (Section 3.3). We summarize recent advances in design and application of glycomimetics for various classes of lectins of mammalian, viral and bacterial origin. Besides highlighting design principles in general, we showcase defined cases in which glycomimetics have been advanced to clinical trials or marketed. Additionally, emerging applications of glycomimetics for targeted protein degradation and targeted delivery purposes are reviewed in Section 4.
Collapse
Affiliation(s)
- Steffen Leusmann
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Petra Ménová
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Elena Shanin
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
16
|
Roske Y, Lindemann F, Diehl A, Cremer N, Higman VA, Schlegel B, Leidert M, Driller K, Turgay K, Schmieder P, Heinemann U, Oschkinat H. TapA acts as specific chaperone in TasA filament formation by strand complementation. Proc Natl Acad Sci U S A 2023; 120:e2217070120. [PMID: 37068239 PMCID: PMC10151520 DOI: 10.1073/pnas.2217070120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/08/2023] [Indexed: 04/19/2023] Open
Abstract
Studying mechanisms of bacterial biofilm generation is of vital importance to understanding bacterial cell-cell communication, multicellular cohabitation principles, and the higher resilience of microorganisms in a biofilm against antibiotics. Biofilms of the nonpathogenic, gram-positive soil bacterium Bacillus subtilis serve as a model system with biotechnological potential toward plant protection. Its major extracellular matrix protein components are TasA and TapA. The nature of TasA filaments has been of debate, and several forms, amyloidic and non-Thioflavin T-stainable have been observed. Here, we present the three-dimensional structure of TapA and uncover the mechanism of TapA-supported growth of nonamyloidic TasA filaments. By analytical ultracentrifugation and NMR, we demonstrate TapA-dependent acceleration of filament formation from solutions of folded TasA. Solid-state NMR revealed intercalation of the N-terminal TasA peptide segment into subsequent protomers to form a filament composed of β-sandwich subunits. The secondary structure around the intercalated N-terminal strand β0 is conserved between filamentous TasA and the Fim and Pap proteins, which form bacterial type I pili, demonstrating such construction principles in a gram-positive organism. Analogous to the chaperones of the chaperone-usher pathway, the role of TapA is in donating its N terminus to serve for TasA folding into an Ig domain-similar filament structure by donor-strand complementation. According to NMR and since the V-set Ig fold of TapA is already complete, its participation within a filament beyond initiation is unlikely. Intriguingly, the most conserved residues in TasA-like proteins (camelysines) of Bacillaceae are located within the protomer interface.
Collapse
Affiliation(s)
- Yvette Roske
- Structural Biology, Max Delbrück Center for Molecular Medicine, 13125Berlin, Germany
| | - Florian Lindemann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125Berlin, Germany
| | - Anne Diehl
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125Berlin, Germany
| | - Nils Cremer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125Berlin, Germany
| | - Victoria A. Higman
- Department for Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, LeicesterLE1 7HB, United Kingdom
| | - Brigitte Schlegel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125Berlin, Germany
| | - Martina Leidert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125Berlin, Germany
| | - Kristina Driller
- Max Planck Unit for the Science of Pathogens, 10117Berlin, Germany
- Institute of Microbiology, Leibniz Universität Hannover, 30419Hannover, Germany
| | - Kürşad Turgay
- Max Planck Unit for the Science of Pathogens, 10117Berlin, Germany
- Institute of Microbiology, Leibniz Universität Hannover, 30419Hannover, Germany
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125Berlin, Germany
| | - Udo Heinemann
- Structural Biology, Max Delbrück Center for Molecular Medicine, 13125Berlin, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195Berlin, Germany
| | - Hartmut Oschkinat
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125Berlin, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195Berlin, Germany
| |
Collapse
|
17
|
Böhning J, Dobbelstein AW, Sulkowski N, Eilers K, von Kügelgen A, Tarafder AK, Peak-Chew SY, Skehel M, Alva V, Filloux A, Bharat TAM. Architecture of the biofilm-associated archaic Chaperone-Usher pilus CupE from Pseudomonas aeruginosa. PLoS Pathog 2023; 19:e1011177. [PMID: 37058467 PMCID: PMC10104325 DOI: 10.1371/journal.ppat.1011177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/03/2023] [Indexed: 04/15/2023] Open
Abstract
Chaperone-Usher Pathway (CUP) pili are major adhesins in Gram-negative bacteria, mediating bacterial adherence to biotic and abiotic surfaces. While classical CUP pili have been extensively characterized, little is known about so-called archaic CUP pili, which are phylogenetically widespread and promote biofilm formation by several human pathogens. In this study, we present the electron cryomicroscopy structure of the archaic CupE pilus from the opportunistic human pathogen Pseudomonas aeruginosa. We show that CupE1 subunits within the pilus are arranged in a zigzag architecture, containing an N-terminal donor β-strand extending from each subunit into the next, where it is anchored by hydrophobic interactions, with comparatively weaker interactions at the rest of the inter-subunit interface. Imaging CupE pili on the surface of P. aeruginosa cells using electron cryotomography shows that CupE pili adopt variable curvatures in response to their environment, which might facilitate their role in promoting cellular attachment. Finally, bioinformatic analysis shows the widespread abundance of cupE genes in isolates of P. aeruginosa and the co-occurrence of cupE with other cup clusters, suggesting interdependence of cup pili in regulating bacterial adherence within biofilms. Taken together, our study provides insights into the architecture of archaic CUP pili, providing a structural basis for understanding their role in promoting cellular adhesion and biofilm formation in P. aeruginosa.
Collapse
Affiliation(s)
- Jan Böhning
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Adrian W. Dobbelstein
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Nina Sulkowski
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Kira Eilers
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Andriko von Kügelgen
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Abul K. Tarafder
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Sew-Yeu Peak-Chew
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Mark Skehel
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Alain Filloux
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Tanmay A. M. Bharat
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| |
Collapse
|
18
|
Nasi GI, Georgakopoulou KI, Theodoropoulou MK, Papandreou NC, Chrysina ED, Tsiolaki PL, Iconomidou VA. Bacterial Lectin FimH and Its Aggregation Hot-Spots: An Alternative Strategy against Uropathogenic Escherichia coli. Pharmaceutics 2023; 15:pharmaceutics15031018. [PMID: 36986878 PMCID: PMC10058141 DOI: 10.3390/pharmaceutics15031018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Type I fimbriae are the main adhesive organelles of uropathogenic Escherichia coli (UPEC), consisting of four different subunits. Their component with the most important role in establishing bacterial infections is the FimH adhesin located at the fimbrial tip. This two-domain protein mediates adhesion to host epithelial cells through interaction with terminal mannoses on epithelial glycoproteins. Here, we propose that the amyloidogenic potential of FimH can be exploited for the development of therapeutic agents against Urinary Tract Infections (UTIs). Aggregation-prone regions (APRs) were identified via computational methods, and peptide-analogues corresponding to FimH lectin domain APRs were chemically synthesized and studied with the aid of both biophysical experimental techniques and molecular dynamic simulations. Our findings indicate that these peptide-analogues offer a promising set of antimicrobial candidate molecules since they can either interfere with the folding process of FimH or compete for the mannose-binding pocket.
Collapse
Affiliation(s)
- Georgia I Nasi
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Konstantina I Georgakopoulou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Marilena K Theodoropoulou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Nikos C Papandreou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Evangelia D Chrysina
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Paraskevi L Tsiolaki
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Vassiliki A Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| |
Collapse
|
19
|
Sheikh A, Fleckenstein JM. Interactions of pathogenic Escherichia coli with CEACAMs. Front Immunol 2023; 14:1120331. [PMID: 36865539 PMCID: PMC9971599 DOI: 10.3389/fimmu.2023.1120331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
The pathogenic Escherichia coli can be parsed into specific variants (pathovars) depending on their phenotypic behavior and/or expression of specific virulence factors. These pathogens are built around chromosomally-encoded core attributes and through acquisition of specific virulence genes that direct their interaction with the host. Engagement of E. coli pathovars with CEACAMs is determined both by core elements common to all E. coli as well as extrachromosomally-encoded pathovar-specific virulence traits, which target amino terminal immunoglobulin variable-like (IgV) regions of CEACAMs. Emerging data suggests that engagement of CEACAMs does not unilaterally benefit the pathogen and that these interactions may also provide an avenue for pathogen elimination.
Collapse
Affiliation(s)
- Alaullah Sheikh
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - James M. Fleckenstein
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Infectious Diseases, Medicine Service, Veterans Affairs Saint Louis Health Care System, Saint Louis, MO, United States
| |
Collapse
|
20
|
Maciag JJ, Chantraine C, Mills KB, Yadav R, Yarawsky AE, Chaton CT, Vinod D, Fitzkee NC, Mathelié-Guinlet M, Dufrêne YF, Fey PD, Horswill AR, Herr AB. Mechanistic basis of staphylococcal interspecies competition for skin colonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525635. [PMID: 36747832 PMCID: PMC9900903 DOI: 10.1101/2023.01.26.525635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Staphylococci, whether beneficial commensals or pathogens, often colonize human skin, potentially leading to competition for the same niche. In this multidisciplinary study we investigate the structure, binding specificity, and mechanism of adhesion of the Aap lectin domain required for Staphylococcus epidermidis skin colonization and compare its characteristics to the lectin domain from the orthologous Staphylococcus aureus adhesin SasG. The Aap structure reveals a legume lectin-like fold with atypical architecture, showing specificity for N-acetyllactosamine and sialyllactosamine. Bacterial adhesion assays using human corneocytes confirmed the biological relevance of these Aap-glycan interactions. Single-cell force spectroscopy experiments measured individual binding events between Aap and corneocytes, revealing an extraordinarily tight adhesion force of nearly 900 nN and a high density of receptors at the corneocyte surface. The SasG lectin domain shares similar structural features, glycan specificity, and corneocyte adhesion behavior. We observe cross-inhibition of Aap-and SasG-mediated staphylococcal adhesion to corneocytes. Together, these data provide insights into staphylococcal interspecies competition for skin colonization and suggest potential avenues for inhibition of S. aureus colonization.
Collapse
Affiliation(s)
- Joseph J. Maciag
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Constance Chantraine
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Krista B. Mills
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Rahul Yadav
- Department of Chemistry, Mississippi State University, Mississippi State, MS
| | - Alexander E. Yarawsky
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Catherine T. Chaton
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Divya Vinod
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Medical Sciences Undergraduate Program, University of Cincinnati, Cincinnati, OH
| | - Nicholas C. Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, MS
| | - Marion Mathelié-Guinlet
- Institut de Chimie et Biologie des Membranes et des Nano-Objets, CNRS UMR 5248, University of Bordeaux, Pessac, France
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Paul D. Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Andrew B. Herr
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
21
|
Tamadonfar KO, Di Venanzio G, Pinkner JS, Dodson KW, Kalas V, Zimmerman MI, Bazan Villicana J, Bowman GR, Feldman MF, Hultgren SJ. Structure-function correlates of fibrinogen binding by Acinetobacter adhesins critical in catheter-associated urinary tract infections. Proc Natl Acad Sci U S A 2023; 120:e2212694120. [PMID: 36652481 PMCID: PMC9942807 DOI: 10.1073/pnas.2212694120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/17/2022] [Indexed: 01/19/2023] Open
Abstract
Multidrug-resistant Acinetobacter baumannii infections are an urgent clinical problem and can cause difficult-to-treat nosocomial infections. During such infections, like catheter-associated urinary tract infections (CAUTI), A. baumannii rely on adhesive, extracellular fibers, called chaperone-usher pathway (CUP) pili for critical binding interactions. The A. baumannii uropathogenic strain, UPAB1, and the pan-European subclone II isolate, ACICU, use the CUP pili Abp1 and Abp2 (previously termed Cup and Prp, respectively) in tandem to establish CAUTIs, specifically to facilitate bacterial adherence and biofilm formation on the implanted catheter. Abp1 and Abp2 pili are tipped with two domain tip adhesins, Abp1D and Abp2D, respectively. We discovered that both adhesins bind fibrinogen, a critical host wound response protein that is released into the bladder upon catheterization and is subsequently deposited on the catheter. The crystal structures of the Abp1D and Abp2D receptor-binding domains were determined and revealed that they both contain a large, distally oriented pocket, which mediates binding to fibrinogen and other glycoproteins. Genetic, biochemical, and biophysical studies revealed that interactions with host proteins are governed by several critical residues in and along the edge of the binding pocket, one of which regulates the structural stability of an anterior loop motif. K34, located outside of the pocket but interacting with the anterior loop, also regulates the binding affinity of the protein. This study illuminates the mechanistic basis of the critical fibrinogen-coated catheter colonization step in A. baumannii CAUTI pathogenesis.
Collapse
Affiliation(s)
- Kevin O. Tamadonfar
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St Louis, MO63110
| | - Gisela Di Venanzio
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO63110
| | - Jerome S. Pinkner
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St Louis, MO63110
| | - Karen W. Dodson
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St Louis, MO63110
| | - Vasilios Kalas
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St Louis, MO63110
- Department of Medicine, McGaw Medical Center of Northwestern University, Chicago, IL60611
| | - Maxwell I. Zimmerman
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO63110
| | - Jesus Bazan Villicana
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St Louis, MO63110
| | - Gregory R. Bowman
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University School of Medicine, St. Louis, MO63110
| | - Mario F. Feldman
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO63110
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St Louis, MO63110
| |
Collapse
|
22
|
Molecular Epidemiology of Plasmid-Mediated Types 1 and 3 Fimbriae Associated with Biofilm Formation in Multidrug Resistant Escherichia coli from Diseased Food Animals in Guangdong, China. Microbiol Spectr 2022; 10:e0250321. [PMID: 35969065 PMCID: PMC9603762 DOI: 10.1128/spectrum.02503-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Types 1 and 3 fimbriae in Enterobacteriaceae play versatile roles in bacterial physiology including attachment, invasion, cell motility as well as with biofilm formation and urinary tract infections. Herein, we investigated the prevalence and transmission of plasmid-mediated types 1 and 3 fimbriae from 1753 non-duplicate Enterobacteriaceae from diseased food Animals. We identified 123 (7.01%) strong biofilm producers and all was identified as E. coli. WGS analysis of 43 selected strong biofilm producers revealed that they harbored multiple ARGs, including ESBLs, PMQR and mcr-1. The gene clusters mrkABCDF and fimACDH encoding types 1 and 3 fimbriae, respectively, were identified among 43 (34.96%) and 7 (5.7%) of 123 strong biofilm isolates, respectively. These two operons were able to confer strong biofilm-forming ability to an E. coli weak-biofilm forming laboratory strain. Plasmid analysis revealed that mrk and fim operons were found to co-exist with ARGs and were primarily located on IncX1 and IncFII plasmids with similar backbones, respectively. mrkABCDF operons was present in all of 9457 Klebsiella pneumoniae using archived WGS data, and shared high homology to those on plasmids of 8 replicon types and chromosomes from 6 Enterobacteriaceae species from various origins and countries. In contrast, fimACDH operons was present in most of Enterobacter cloacae (62.15%), and shared high homology to those with only a small group of plasmids and Enterobacteriaceae species. This is the first comprehensive report of the prevalence, transmission and homology of plasmid-encoded type 1 and 3 fimbriae among the Enterobacteriaceae. Our findings indicated that plasmid-encoded mrkABCDF and fimACDH were major contributors to enhanced biofilm formation among E. coli and these two operons, in particular mrk could be as a potential anti-biofilm target. IMPORTANCE Biofilms allow bacteria to tolerate disinfectants and antimicrobials, as well as mammalian host defenses, and are therefore difficult to treat clinically. Most research concerning biofilm-related infections is typically focused on chromosomal biofilm-associated factors, including types 1 and 3 fimbriae of biofilm-forming Enterobacterium. However, the transmission and homology of the mobile types 1 and 3 fimbriae among Enterobacteriaceae is largely unknown. The findings revealed that the plasmid-encoded type 3 fimbriae encoded by mrkABCDF and type 1 fimbriae encoded by fimACDH were major contributors to enhancing biofilm formation among strong biofilm E. coli from diseased food producing animals. Additionally, mrk operon with high homology at an amino acid sequence was present both on plasmids of various replicon types and on chromosomes from diverse Enterobacteriaceae species from numerous origins and countries. These findings provide important information on the transmission of the mobile types 1 and 3 fimbriae among Enterobacteriaceae, indicating a potential antibiofilm target.
Collapse
|
23
|
Wang F, Cvirkaite-Krupovic V, Krupovic M, Egelman EH. Archaeal bundling pili of Pyrobaculum calidifontis reveal similarities between archaeal and bacterial biofilms. Proc Natl Acad Sci U S A 2022; 119:e2207037119. [PMID: 35727984 PMCID: PMC9245690 DOI: 10.1073/pnas.2207037119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
While biofilms formed by bacteria have received great attention due to their importance in pathogenesis, much less research has been focused on the biofilms formed by archaea. It has been known that extracellular filaments in archaea, such as type IV pili, hami, and cannulae, play a part in the formation of archaeal biofilms. We have used cryo-electron microscopy to determine the atomic structure of a previously uncharacterized class of archaeal surface filaments from hyperthermophilic Pyrobaculum calidifontis. These filaments, which we call archaeal bundling pili (ABP), assemble into highly ordered bipolar bundles. The bipolar nature of these bundles most likely arises from the association of filaments from at least two different cells. The component protein, AbpA, shows homology, both at the sequence and structural level, to the bacterial protein TasA, a major component of the extracellular matrix in bacterial biofilms, contributing to biofilm stability. We show that AbpA forms very stable filaments in a manner similar to the donor-strand exchange of bacterial TasA fibers and chaperone-usher pathway pili where a β-strand from one subunit is incorporated into a β-sheet of the next subunit. Our results reveal likely mechanistic similarities and evolutionary connection between bacterial and archaeal biofilms, and suggest that there could be many other archaeal surface filaments that are as yet uncharacterized.
Collapse
Affiliation(s)
- Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903
| | | | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, 75015 Paris, France
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903
| |
Collapse
|
24
|
Hancock SJ, Lo AW, Ve T, Day CJ, Tan L, Mendez AA, Phan MD, Nhu NTK, Peters KM, Richards AC, Fleming BA, Chang C, Ngu DHY, Forde BM, Haselhorst T, Goh KGK, Beatson SA, Jennings MP, Mulvey MA, Kobe B, Schembri MA. Ucl fimbriae regulation and glycan receptor specificity contribute to gut colonisation by extra-intestinal pathogenic Escherichia coli. PLoS Pathog 2022; 18:e1010582. [PMID: 35700218 PMCID: PMC9236248 DOI: 10.1371/journal.ppat.1010582] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 06/27/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
Extra-intestinal pathogenic Escherichia coli (ExPEC) belong to a critical priority group of antibiotic resistant pathogens. ExPEC establish gut reservoirs that seed infection of the urinary tract and bloodstream, but the mechanisms of gut colonisation remain to be properly understood. Ucl fimbriae are attachment organelles that facilitate ExPEC adherence. Here, we investigated cellular receptors for Ucl fimbriae and Ucl expression to define molecular mechanisms of Ucl-mediated ExPEC colonisation of the gut. We demonstrate differential expression of Ucl fimbriae in ExPEC sequence types associated with disseminated infection. Genome editing of strains from two common sequence types, F11 (ST127) and UTI89 (ST95), identified a single nucleotide polymorphism in the ucl promoter that changes fimbriae expression via activation by the global stress-response regulator OxyR, leading to altered gut colonisation. Structure-function analysis of the Ucl fimbriae tip-adhesin (UclD) identified high-affinity glycan receptor targets, with highest affinity for sialyllacto-N-fucopentose VI, a structure likely to be expressed on the gut epithelium. Comparison of the UclD adhesin to the homologous UcaD tip-adhesin from Proteus mirabilis revealed that although they possess a similar tertiary structure, apart from lacto-N-fucopentose VI that bound to both adhesins at low-micromolar affinity, they recognize different fucose- and glucose-containing oligosaccharides. Competitive surface plasmon resonance analysis together with co-structural investigation of UcaD in complex with monosaccharides revealed a broad-specificity glycan binding pocket shared between UcaD and UclD that could accommodate these interactions. Overall, our study describes a mechanism of adaptation that augments establishment of an ExPEC gut reservoir to seed disseminated infections, providing a pathway for the development of targeted anti-adhesion therapeutics. ExPEC infection of the urinary tract and bloodstream is frequently seeded from an intestinal reservoir, necessitating an understanding of the mechanisms that promote gut colonisation. Here we employed molecular and structural approaches to define the regulation and function of ExPEC Ucl fimbriae as a gut colonisation factor. We describe how mutations in the non-coding regulatory region of the ucl promoter cause increased Ucl fimbriae expression and promote enhanced gut colonisation via tuned induction by a global regulator that senses oxygen stress. We further define the glycan receptor targets of Ucl fimbriae and characterise the structural features of the Ucl adhesin that facilitate these interactions. These findings explain how ExPEC can adapt to survival in the gut to seed extra-intestinal infection.
Collapse
Affiliation(s)
- Steven J. Hancock
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Alvin W. Lo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Thomas Ve
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Glycomics, Griffith University Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Christopher J. Day
- Institute for Glycomics, Griffith University Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Lendl Tan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Alejandra A. Mendez
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Minh-Duy Phan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Nguyen Thi Khanh Nhu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Kate M. Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Amanda C. Richards
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Brittany A. Fleming
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Chyden Chang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Dalton H. Y. Ngu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Brian M. Forde
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Kelvin G. K. Goh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Scott A. Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael P. Jennings
- Institute for Glycomics, Griffith University Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Matthew A. Mulvey
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark A. Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
25
|
Filloux A. Bacterial protein secretion systems: Game of types. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35536734 DOI: 10.1099/mic.0.001193] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein trafficking across the bacterial envelope is a process that contributes to the organisation and integrity of the cell. It is the foundation for establishing contact and exchange between the environment and the cytosol. It helps cells to communicate with one another, whether they establish symbiotic or competitive behaviours. It is instrumental for pathogenesis and for bacteria to subvert the host immune response. Understanding the formation of envelope conduits and the manifold strategies employed for moving macromolecules across these channels is a fascinating playground. The diversity of the nanomachines involved in this process logically resulted in an attempt to classify them, which is where the protein secretion system types emerged. As our knowledge grew, so did the number of types, and their rightful nomenclature started to be questioned. While this may seem a semantic or philosophical issue, it also reflects scientific rigour when it comes to assimilating findings into textbooks and science history. Here I give an overview on bacterial protein secretion systems, their history, their nomenclature and why it can be misleading for newcomers in the field. Note that I do not try to suggest a new nomenclature. Instead, I explore the reasons why naming could have escaped our control and I try to reiterate basic concepts that underlie protein trafficking cross membranes.
Collapse
Affiliation(s)
- Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
26
|
Trivedi A, Gosai J, Nakane D, Shrivastava A. Design Principles of the Rotary Type 9 Secretion System. Front Microbiol 2022; 13:845563. [PMID: 35620107 PMCID: PMC9127263 DOI: 10.3389/fmicb.2022.845563] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 01/05/2023] Open
Abstract
The Fo ATP synthase, the bacterial flagellar motor, and the bacterial type 9 secretion system (T9SS) are the three known proton motive force driven biological rotary motors. In this review, we summarize the current information on the nuts and bolts of T9SS. Torque generation by T9SS, its role in gliding motility of bacteria, and the mechanism via which a T9SS-driven swarm shapes the microbiota are discussed. The knowledge gaps in our current understanding of the T9SS machinery are outlined.
Collapse
Affiliation(s)
- Abhishek Trivedi
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- Center for Biological Physics, Arizona State University, Tempe, AZ, United States
| | - Jitendrapuri Gosai
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- Center for Biological Physics, Arizona State University, Tempe, AZ, United States
| | - Daisuke Nakane
- Department of Engineering Science, The University of Electro-Communications, Tokyo, Japan
| | - Abhishek Shrivastava
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- Center for Biological Physics, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
27
|
Zhang Y, Tan P, Zhao Y, Ma X. Enterotoxigenic Escherichia coli: intestinal pathogenesis mechanisms and colonization resistance by gut microbiota. Gut Microbes 2022; 14:2055943. [PMID: 35358002 PMCID: PMC8973357 DOI: 10.1080/19490976.2022.2055943] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhea in children and travelers in developing countries. ETEC is characterized by the ability to produce major virulence factors including colonization factors (CFs) and enterotoxins, that bind to specific receptors on epithelial cells and induce diarrhea. The gut microbiota is a stable and sophisticated ecosystem that performs a range of beneficial functions for the host, including protection against pathogen colonization. Understanding the pathogenic mechanisms of ETEC and the interaction between the gut microbiota and ETEC represents not only a research need but also an opportunity and challenge to develop precautions for ETEC infection. Herein, this review focuses on recent discoveries about ETEC etiology, pathogenesis and clinical manifestation, and discusses the colonization resistances mediated by gut microbiota, as well as preventative strategies against ETEC with an aim to provide novel insights that can reduce the adverse effect on human health.
Collapse
Affiliation(s)
- Yucheng Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Ying Zhao
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China,CONTACT Xi Ma State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| |
Collapse
|
28
|
Zhang W, Zhang X, Su Q, Tang M, Zheng H, Zhou X. Genomic features underlying the evolutionary transitions of Apibacter to honey bee gut symbionts. INSECT SCIENCE 2022; 29:259-275. [PMID: 33811731 DOI: 10.1111/1744-7917.12912] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/20/2021] [Accepted: 02/21/2021] [Indexed: 05/16/2023]
Abstract
The gut bacteria of honey bee recognized as a mutualistic partner with the insect host might have originated from a free-living or parasitic lifestyle. However, little is known about the genomic features underlying this lifestyle transition. Here we compared the genomes of bee gut bacteria Apibacter with their close relatives living in different lifestyles. We found that despite general reduction in the Apibacter genome, genes involved in amino acid synthesis and monosaccharide detoxification were retained, which is putatively beneficial to the host. Interestingly, the microaerobic Apibacter species specifically acquired genes encoding for the nitrate respiration (NAR). These together with nitrate transporter and enzymatic cofactor synthesis genes were found clustered in the genomes. The NAR system is also conserved in the cohabitating bee gut microbe Snodgrassella, although with a different structure. This convergence suggests a key role of respiratory nitrate reduction for microaerophilic microbiomes to colonize bee gut epithelium. Genes involved in lipid, histidine degradation were found partially or completely lost in Apibacter. Particularly, genes encoding for the conversion to the toxic intermediates in phenylacetate degradation, as well as other potential virulence factors, are specifically lost in Apibacter group. Antibiotic resistance genes are only sporadically distributed among Apibacter species, but are prevalent in their relatives, which may be related to the remotely living feature and less exposure to antibiotics of their bee hosts. Collectively, this study advanced our knowledge of genomic features specialized to bee gut symbionts.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Qinzhi Su
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Min Tang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
29
|
Ho WC, Behringer MG, Miller SF, Gonzales J, Nguyen A, Allahwerdy M, Boyer GF, Lynch M. Evolutionary Dynamics of Asexual Hypermutators Adapting to a Novel Environment. Genome Biol Evol 2021; 13:evab257. [PMID: 34864972 PMCID: PMC8643662 DOI: 10.1093/gbe/evab257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2021] [Indexed: 12/24/2022] Open
Abstract
How microbes adapt to a novel environment is a central question in evolutionary biology. Although adaptive evolution must be fueled by beneficial mutations, whether higher mutation rates facilitate the rate of adaptive evolution remains unclear. To address this question, we cultured Escherichia coli hypermutating populations, in which a defective methyl-directed mismatch repair pathway causes a 140-fold increase in single-nucleotide mutation rates. In parallel with wild-type E. coli, populations were cultured in tubes containing Luria-Bertani broth, a complex medium known to promote the evolution of subpopulation structure. After 900 days of evolution, in three transfer schemes with different population-size bottlenecks, hypermutators always exhibited similar levels of improved fitness as controls. Fluctuation tests revealed that the mutation rates of hypermutator lines converged evolutionarily on those of wild-type populations, which may have contributed to the absence of fitness differences. Further genome-sequence analysis revealed that, although hypermutator populations have higher rates of genomic evolution, this largely reflects strong genetic linkage. Despite these linkage effects, the evolved population exhibits parallelism in fixed mutations, including those potentially related to biofilm formation, transcription regulation, and mutation-rate evolution. Together, these results are generally inconsistent with a hypothesized positive relationship between the mutation rate and the adaptive speed of evolution, and provide insight into how clonal adaptation occurs in novel environments.
Collapse
Affiliation(s)
- Wei-Chin Ho
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Megan G Behringer
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Samuel F Miller
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Jadon Gonzales
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Amber Nguyen
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Meriem Allahwerdy
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Gwyneth F Boyer
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Michael Lynch
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
30
|
Santos-Martin C, Wang G, Subedi P, Hor L, Totsika M, Paxman JJ, Heras B. Structural bioinformatic analysis of DsbA proteins and their pathogenicity associated substrates. Comput Struct Biotechnol J 2021; 19:4725-4737. [PMID: 34504665 PMCID: PMC8405906 DOI: 10.1016/j.csbj.2021.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 01/02/2023] Open
Abstract
The disulfide bond (DSB) forming system and in particular DsbA, is a key bacterial oxidative folding catalyst. Due to its role in promoting the correct assembly of a wide range of virulence factors required at different stages of the infection process, DsbA is a master virulence rheostat, making it an attractive target for the development of new virulence blockers. Although DSB systems have been extensively studied across different bacterial species, to date, little is known about how DsbA oxidoreductases are able to recognize and interact with such a wide range of substrates. This review summarizes the current knowledge on the DsbA enzymes, with special attention on their interaction with the partner oxidase DsbB and substrates associated with bacterial virulence. The structurally and functionally diverse set of bacterial proteins that rely on DsbA-mediated disulfide bond formation are summarized. Local sequence and secondary structure elements of these substrates are analyzed to identify common elements recognized by DsbA enzymes. This not only provides information on protein folding systems in bacteria but also offers tools for identifying new DsbA substrates and informs current efforts aimed at developing DsbA targeted anti-microbials.
Collapse
Affiliation(s)
- Carlos Santos-Martin
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Geqing Wang
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Pramod Subedi
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Lilian Hor
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Jason John Paxman
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| |
Collapse
|
31
|
Chatterjee S, Basak AJ, Nair AV, Duraivelan K, Samanta D. Immunoglobulin-fold containing bacterial adhesins: molecular and structural perspectives in host tissue colonization and infection. FEMS Microbiol Lett 2021; 368:6045506. [PMID: 33355339 DOI: 10.1093/femsle/fnaa220] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Immunoglobulin (Ig) domains are one of the most widespread protein domains encoded by the human genome and are present in a large array of proteins with diverse biological functions. These Ig domains possess a central structure, the immunoglobulin-fold, which is a sandwich of two β sheets, each made up of anti-parallel β strands, surrounding a central hydrophobic core. Apart from humans, proteins containing Ig-like domains are also distributed in a vast selection of organisms including vertebrates, invertebrates, plants, viruses and bacteria where they execute a wide array of discrete cellular functions. In this review, we have described the key structural deviations of bacterial Ig-folds when compared to the classical eukaryotic Ig-fold. Further, we have comprehensively grouped all the Ig-domain containing adhesins present in both Gram-negative and Gram-positive bacteria. Additionally, we describe the role of these particular adhesins in host tissue attachment, colonization and subsequent infection by both pathogenic and non-pathogenic Escherichia coli as well as other bacterial species. The structural properties of these Ig-domain containing adhesins, along with their interactions with specific Ig-like and non Ig-like binding partners present on the host cell surface have been discussed in detail.
Collapse
Affiliation(s)
- Shruti Chatterjee
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Aditya J Basak
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Asha V Nair
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Kheerthana Duraivelan
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| |
Collapse
|
32
|
Exploiting pilus-mediated bacteria-host interactions for health benefits. Mol Aspects Med 2021; 81:100998. [PMID: 34294411 DOI: 10.1016/j.mam.2021.100998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/30/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023]
Abstract
Surface pili (or fimbriae) are an important but conspicuous adaptation of several genera and species of Gram-negative and Gram-positive bacteria. These long and non-flagellar multi-subunit adhesins mediate the initial contact that a bacterium has with a host or environment, and thus have come to be regarded as a key colonization factor for virulence activity in pathogens or niche adaptation in commensals. Pili in pathogenic bacteria are well recognized for their roles in the adhesion to host cells, colonization of tissues, and establishment of infection. As an 'anti-adhesive' ploy, targeting pilus-mediated attachment for disruption has become a potentially effective alternative to using antibiotics. In this review, we give a description of the several structurally distinct bacterial pilus types thus far characterized, and as well offer details about the intricacy of their individual structure, assembly, and function. With a molecular understanding of pilus biogenesis and pilus-mediated host interactions also provided, we go on to describe some of the emerging new approaches and compounds that have been recently developed to prevent the adhesion, colonization, and infection of piliated bacterial pathogens.
Collapse
|
33
|
Li X, Zhou K, Wang J, Guo J, Cao Y, Ren J, Guan T, Sheng W, Zhang M, Yao Z, Wang Q. Diagnostic Value of the Fimbriae Distribution Pattern in Localization of Urinary Tract Infection. Front Med (Lausanne) 2021; 8:602691. [PMID: 34222269 PMCID: PMC8249706 DOI: 10.3389/fmed.2021.602691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 05/26/2021] [Indexed: 01/16/2023] Open
Abstract
Urinary tract infections (UTIs) are one of the most common infectious diseases. UTIs are mainly caused by uropathogenic Escherichia coli (UPEC), and are either upper or lower according to the infection site. Fimbriae are necessary for UPEC to adhere to the host uroepithelium, and are abundant and diverse in UPEC strains. Although great progress has been made in determining the roles of different types of fimbriae in UPEC colonization, the contributions of multiple fimbriae to site-specific attachment also need to be considered. Therefore, the distribution patterns of 22 fimbrial genes in 90 UPEC strains from patients diagnosed with upper or lower UTIs were analyzed using PCR. The distribution patterns correlated with the infection sites, an XGBoost model with a mean accuracy of 83.33% and a mean area under the curve (AUC) of the receiver operating characteristic (ROC) of 0.92 demonstrated that fimbrial gene distribution patterns could predict the localization of upper and lower UTIs.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Kaichen Zhou
- Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jingyu Wang
- Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jiahe Guo
- Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yang Cao
- Department of Clinical Laboratory, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jie Ren
- Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tao Guan
- China Unicom Software Research Institute, Xi'an, China
| | - Wenchao Sheng
- Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mingyao Zhang
- Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhi Yao
- Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Quan Wang
- Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
34
|
Becerra AM, Parra D, Trujillo CG, Azuero J, García S, Daza F, Plata M. Infección de vías urinarias no complicada en mujeres. UROLOGÍA COLOMBIANA 2021. [DOI: 10.1055/s-0040-1721323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
ResumenLa infección de vías urinarias (IVU) es una patología común, que afecta a gran parte de la población y que generalmente se resuelve con manejo antibiótico. Se compone de una amplia variedad de entidades clínicas que pueden variar desde una cistitis no complicada hasta un shock séptico de origen urinario. Los patógenos etiológicos de la IVU no complicada están ampliamente establecidos y se han mantenido de forma consistente a lo largo del tiempo, siendo la Escherichia coli el microorganismo más predominante. En la actualidad, la resistencia bacteriana a los antibióticos es de gran preocupación y por esa razón, se busca optimizar la terapia antimicrobiana con el fin de disminuir la estancia hospitalaria, la severidad clínica de la infección y los costos a los sistemas de salud. La presente revisión, tiene como objetivo servir como guía para la correcta definición, clasificación, diagnóstico, tratamiento y prevención de la IVU no complicada.
Collapse
Affiliation(s)
- Ana María Becerra
- Departamento de Urología, Hospital Universitario Fundación Santa Fe de Bogotá, Facultad de Medicina, Universidad de Los Andes, Bogotá, Colombia
| | - Daniel Parra
- Departamento de Urología, Hospital Universitario Fundación Santa Fe de Bogotá, Facultad de Medicina, Universidad de Los Andes, Bogotá, Colombia
| | - Carlos Gustavo Trujillo
- Departamento de Urología, Hospital Universitario Fundación Santa Fe de Bogotá, Facultad de Medicina, Universidad de Los Andes, Bogotá, Colombia
| | - Julián Azuero
- Departamento de Urología, Hospital Universitario Fundación Santa Fe de Bogotá, Facultad de Medicina, Universidad de Los Andes, Bogotá, Colombia
| | - Sandra García
- Departamento de Urología, Hospital Universitario Fundación Santa Fe de Bogotá, Facultad de Medicina, Universidad de Los Andes, Bogotá, Colombia
| | - Fabián Daza
- Departamento de Urología, Hospital Universitario Fundación Santa Fe de Bogotá, Facultad de Medicina, Universidad de Los Andes, Bogotá, Colombia
| | - Mauricio Plata
- Departamento de Urología, Hospital Universitario Fundación Santa Fe de Bogotá, Facultad de Medicina, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
35
|
Qiao J, Tan X, Ren H, Wu Z, Hu X, Wang X. Construction of an Escherichia coli Strain Lacking Fimbriae by Deleting 64 Genes and Its Application for Efficient Production of Poly(3-Hydroxybutyrate) and l-Threonine. Appl Environ Microbiol 2021; 87:e0038121. [PMID: 33863704 PMCID: PMC8174762 DOI: 10.1128/aem.00381-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/03/2021] [Indexed: 12/28/2022] Open
Abstract
Escherichia coli contains 12 chaperone-usher operons for biosynthesis and assembly of various fimbriae. In this study, each of the 12 operons was deleted in E. coli MG1655, and the resulting 12 deletion mutants all grew better than the wild type, especially in the nutrient-deficient M9 medium. When the plasmid pBHR68 containing the key genes for polyhydroxyalkanoate production was introduced into these 12 mutants, each mutant synthesized more polyhydroxyalkanoate than the wild-type control. These results indicate that the fimbria removal in E. coli benefits cell growth and polyhydroxyalkanoate production. Therefore, all 12 chaperone-usher operons, including 64 genes, were deleted in MG1655, resulting in the fimbria-lacking strain WQM026. WQM026 grew better than MG1655, and no fimbria structures were observed on the surface of WQM026 cells. Transcriptomic analysis showed that in WQM026 cells, the genes related to glucose consumption, glycolysis, flagellar synthesis, and biosynthetic pathways of some key amino acids were upregulated, while the tricarboxylic acid cycle-related genes were downregulated. When pBHR68 was introduced into WQM026, huge amounts of poly-3-hydroxybutyrate were produced; when the plasmid pFW01-thrA*BC-rhtC, containing the key genes for l-threonine biosynthesis and transport, was transferred into WQM026, more l-threonine was synthesized than with the control. These results suggest that this fimbria-lacking E. coli WQM026 is a good host for efficient production of polyhydroxyalkanoate and l-threonine and has the potential to be developed into a valuable chassis microorganism. IMPORTANCE In this study, we investigated the interaction between the biosynthesis and assembly of fimbriae and intracellular metabolic networks in E. coli. We found that eliminating fimbriae could effectively improve the production of polyhydroxyalkanoate and l-threonine in E. coli MG1655. These results contribute to understanding the necessity of fimbriae and the advantages of fimbria removal for industrial microorganisms. The knowledge gathered from this study may be applied to the development of superior chassis microorganisms.
Collapse
Affiliation(s)
- Jun Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Xin Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Hongyu Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Zheng Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu Province, China
| |
Collapse
|
36
|
Solovyova AS, Peters DT, Dura G, Waller H, Lakey JH, Fulton DA. Probing the oligomeric re-assembling of bacterial fimbriae in vitro: a small-angle X-ray scattering and analytical ultracentrifugation study. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:597-611. [PMID: 33948690 PMCID: PMC8190007 DOI: 10.1007/s00249-021-01543-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Capsular antigen fragment 1 (Caf1) is an oligomeric protein consisting of 15 kDa monomeric subunits that are non-covalently linked through exceptionally strong and kinetically inert interactions into a linear polymer chain. It has been shown that after its thermal depolymerisation into unfolded monomeric subunits, Caf1 is able to efficiently repolymerise in vitro to reform its polymeric structure. However, little is known about the nature of the repolymerisation process. An improved understanding of this process will lead to the development of methods to better control the lengths of the repolymerised species, and ultimately, to better design of the properties of Caf1-based materials. Here we utilize small-angle X-ray scattering to estimate the size of Caf1 polymers during the first 24 h of the re-polymerisation process. Analytical ultracentrifugation measurements were also used to investigate the process post-24 h, where the rate of repolymerisation becomes considerably slower. Results show that in vitro polymerisation proceeds in a linear manner with no evidence observed for the formation of a lateral polymer network or uncontrolled aggregates. The rate of Caf1 in vitro repolymerisation was found to be concentration-dependent. Importantly, the rate of polymer growth was found to be relatively fast over the first few hours, before continuing at a dramatically slower rate. This observation is not consistent with the previously proposed step-growth mechanism of in vitro polymerisation of Caf1, where a linear increase in polymer length would be expected with time. We speculate how our observations may support the idea that the polymerisation process may be occurring at the ends of the chains with monomers adding sequentially. Our findings will contribute towards the development of new biomaterials for 3D cell culture and bio-printing.
Collapse
Affiliation(s)
- Alexandra S Solovyova
- Proteome and Protein Analysis, Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK.
| | - Daniel T Peters
- Biosciences Institute, Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Gema Dura
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.,Departamento de Química Inorgánica, Orgánica y Bioquímica, Universidad de Castilla-La Mancha, Facultad de Ciencias yTecnologías Químicas-IRICA, Avda. C. J. Cela, 10, 13071, Ciudad Real, Spain
| | - Helen Waller
- Biosciences Institute, Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Jeremy H Lakey
- Biosciences Institute, Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| | - David A Fulton
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.
| |
Collapse
|
37
|
González-Montalvo MA, Tavares-Carreón F, González GM, Villanueva-Lozano H, García-Romero I, Zomosa-Signoret VC, Valvano MA, Andrade A. Defining chaperone-usher fimbriae repertoire in Serratia marcescens. Microb Pathog 2021; 154:104857. [PMID: 33762200 DOI: 10.1016/j.micpath.2021.104857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/12/2021] [Indexed: 11/28/2022]
Abstract
Chaperone-usher (CU) fimbriae are surface organelles particularly prevalent among the Enterobacteriaceae. Mainly associated to their adhesive properties, CU fimbriae play key roles in biofilm formation and host cell interactions. Little is known about the fimbriome composition of the opportunistic human pathogen Serratia marcescens. Here, by using a search based on consensus fimbrial usher protein (FUP) sequences, we identified 421 FUPs across 39 S. marcescens genomes. Further analysis of the FUP-containing loci allowed us to classify them into 20 conserved CU operons, 6 of which form the S. marcescens core CU fimbriome. A new systematic nomenclature is proposed according to FUP sequence phylogeny. We also established an in vivo transcriptional assay comparing CU promoter expression between an environmental and a clinical isolate of S. marcescens, which revealed that promoters from 3 core CU operons (referred as fgov, fpo, and fps) are predominantly expressed in the two strains and might represent key core adhesion appendages contributing to S. marcescens pathogenesis.
Collapse
Affiliation(s)
- Martín A González-Montalvo
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Microbiología, Monterrey, Nuevo León, 64460, Mexico
| | - Faviola Tavares-Carreón
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Nuevo León, 66455, Mexico
| | - Gloria M González
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Microbiología, Monterrey, Nuevo León, 64460, Mexico
| | - Hiram Villanueva-Lozano
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Microbiología, Monterrey, Nuevo León, 64460, Mexico
| | - Inmaculada García-Romero
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - Viviana C Zomosa-Signoret
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Bioquímica y Medicina Molecular, Monterrey, Nuevo León, 64460, Mexico
| | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - Angel Andrade
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Microbiología, Monterrey, Nuevo León, 64460, Mexico.
| |
Collapse
|
38
|
Hemmati F, Rezaee MA, Ebrahimzadeh S, Yousefi L, Nouri R, Kafil HS, Gholizadeh P. Novel Strategies to Combat Bacterial Biofilms. Mol Biotechnol 2021; 63:569-586. [PMID: 33914260 DOI: 10.1007/s12033-021-00325-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022]
Abstract
Biofilms are considered as a severe problem in the treatment of bacterial infections; their development causes some noticeable resistance to antibacterial agents. Biofilms are responsible for at least two-thirds of all infections, displaying promoted resistance to classical antibiotic treatments. Therefore, finding new alternative therapeutic approaches is essential for the treatment and inhibition of biofilm-related infections. Therefore, this review aims to describe the potential therapeutic strategies that can inhibit bacterial biofilm development; these include the usage of antiadhesion agents, AMPs, bacteriophages, QSIs, aptamers, NPs and PNAs, which can prevent or eradicate the formation of biofilms. These antibiofilm agents represent a promising therapeutic target in the treatment of biofilm infections and development of a strong capability to interfere with different phases of the biofilm development, including adherence, polysaccharide intercellular adhesion (PIA), quorum sensing molecules and cell-to-cell connection, bacterial aggregation, planktonic bacteria killing and host-immune response modulation. In addition, these components, in combination with antibiotics, can lead to the development of some kind of powerful combined therapy against bacterial biofilm-related infections.
Collapse
Affiliation(s)
- Fatemeh Hemmati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saba Ebrahimzadeh
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran
| | - Leila Yousefi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Nouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
39
|
Palmioli A, Sperandeo P, Bertuzzi S, Polissi A, Airoldi C. On-cell saturation transfer difference NMR for the identification of FimH ligands and inhibitors. Bioorg Chem 2021; 112:104876. [PMID: 33845337 DOI: 10.1016/j.bioorg.2021.104876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/14/2021] [Accepted: 03/25/2021] [Indexed: 12/23/2022]
Abstract
We describe the development of an on-cell NMR method for the rapid screening of FimH ligands and the structural identification of ligand binding epitopes. FimH is a mannose-binding bacterial adhesin expressed at the apical end of type 1 pili of uropathogenic bacterial strains and responsible for their d-mannose sensitive adhesion to host mammalian epithelial cells. Because of these properties, FimH is a key virulence factor and an attractive therapeutic target for urinary tract infection. We prepared synthetic d-mannose decorated dendrimers, we tested their ability to prevent the FimH-mediated yeast agglutination, and thus we used the compounds showing the best inhibitory activity as models of FimH multivalent ligands to set up our NMR methodology. Our experimental protocol, based on on-cell STD NMR techniques, is a suitable tool for the screening and the epitope mapping of FimH ligands aimed at the development of new antiadhesive and diagnostic tools against urinary tract infection pathogens. Notably, the study is carried out in a physiological environment, i.e. at the surface of living pathogen cells expressing FimH.
Collapse
Affiliation(s)
- Alessandro Palmioli
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy.
| | - Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti, 9/11/13, 20133 Milano, Italy
| | - Sara Bertuzzi
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy; Chemical Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC-bioGUNE), 48160 Derio, Spain
| | - Alessandra Polissi
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti, 9/11/13, 20133 Milano, Italy
| | - Cristina Airoldi
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy.
| |
Collapse
|
40
|
Computational prediction of secreted proteins in gram-negative bacteria. Comput Struct Biotechnol J 2021; 19:1806-1828. [PMID: 33897982 PMCID: PMC8047123 DOI: 10.1016/j.csbj.2021.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022] Open
Abstract
Gram-negative bacteria harness multiple protein secretion systems and secrete a large proportion of the proteome. Proteins can be exported to periplasmic space, integrated into membrane, transported into extracellular milieu, or translocated into cytoplasm of contacting cells. It is important for accurate, genome-wide annotation of the secreted proteins and their secretion pathways. In this review, we systematically classified the secreted proteins according to the types of secretion systems in Gram-negative bacteria, summarized the known features of these proteins, and reviewed the algorithms and tools for their prediction.
Collapse
|
41
|
Complete Whole Genome Sequences of Escherichia coli Surrogate Strains and Comparison of Sequence Methods with Application to the Food Industry. Microorganisms 2021; 9:microorganisms9030608. [PMID: 33809423 PMCID: PMC8001026 DOI: 10.3390/microorganisms9030608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 01/23/2023] Open
Abstract
In 2013, the U.S. Department of Agriculture Food Safety and Inspection Service (USDA-FSIS) began transitioning to whole genome sequencing (WGS) for foodborne disease outbreak- and recall-associated isolate identification of select bacterial species. While WGS offers greater precision, certain hurdles must be overcome before widespread application within the food industry is plausible. Challenges include diversity of sequencing platform outputs and lack of standardized bioinformatics workflows for data analyses. We sequenced DNA from USDA-FSIS approved, non-pathogenic E. coli surrogates and a derivative group of rifampicin-resistant mutants (rifR) via both Oxford Nanopore MinION and Illumina MiSeq platforms to generate and annotate complete genomes. Genome sequences from each clone were assembled separately so long-read, short-read, and combined sequence assemblies could be directly compared. The combined sequence data approach provides more accurate completed genomes. The genomes from these isolates were verified to lack functional key E. coli elements commonly associated with pathogenesis. Genetic alterations known to confer rifR were also identified. As the food industry adopts WGS within its food safety programs, these data provide completed genomes for commonly used surrogate strains, with a direct comparison of sequence platforms and assembly strategies relevant to research/testing workflows applicable for both processors and regulators.
Collapse
|
42
|
Discovery of Bacterial Fimbria-Glycan Interactions Using Whole-Cell Recombinant Escherichia coli Expression. mBio 2021; 12:mBio.03664-20. [PMID: 33622724 PMCID: PMC8545135 DOI: 10.1128/mbio.03664-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chaperone-usher (CU) fimbriae are the most abundant Gram-negative bacterial fimbriae, with 38 distinct CU fimbria types described in Escherichia coli alone. Some E. coli CU fimbriae have been well characterized and bind to specific glycan targets to confer tissue tropism. For example, type 1 fimbriae bind to α-d-mannosylated glycoproteins such as uroplakins in the bladder via their tip-located FimH adhesin, leading to colonization and invasion of the bladder epithelium. Despite this, the receptor-binding affinity of many other E. coli CU fimbria types remains poorly characterized. Here, we used a recombinant E. coli strain expressing different CU fimbriae, in conjunction with glycan array analysis comprising >300 glycans, to dissect CU fimbria receptor specificity. We initially validated the approach by demonstrating the purified FimH lectin-binding domain and recombinant E. coli expressing type 1 fimbriae bound to a similar set of glycans. This technique was then used to map the glycan binding affinity of six additional CU fimbriae, namely, P, F1C, Yqi, Mat/Ecp, K88, and K99 fimbriae. The binding affinity was determined using whole-bacterial-cell surface plasmon resonance. This work describes new information in fimbrial specificity and a rapid and scalable system to define novel adhesin-glycan interactions that underpin bacterial colonization and disease.
Collapse
|
43
|
Amuc_1102 from Akkermansia muciniphila adopts an immunoglobulin-like fold related to archaeal type IV pilus. Biochem Biophys Res Commun 2021; 547:59-64. [PMID: 33592380 DOI: 10.1016/j.bbrc.2021.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 11/23/2022]
Abstract
Akkermansia muciniphila is a kind of beneficial microorganism colonized in the human gut. A. muciniphila is closely related to human intestinal health and has a good effect on diseases related to intestinal metabolism. The proteins encoded by the Amuc_1098-Amuc_1102 gene cluster, which are related to the formation and assembly of the pilus, are highly expressed in the membrane protein components of A. muciniphila. In this paper, we report the crystal structure of Amuc_1102 at a resolution of 1.75 Å, which adopts an immunoglobulin (Ig)-like fold. Amuc_1102 shares a similar fold to three archaeal proteins related to type IV pilus (T4P)-like structure, Pilin, FlaF, and FlaG, indicating a similar function. Amuc_1102 exists as a trimer both in the crystal structure and in solution, which differs from the assemblies of Pilin, FlaF, and FlaG. This study provides a structural basis for the elucidation of the T4P formation of A. muciniphila.
Collapse
|
44
|
Damalanka VC, Maddirala AR, Janetka JW. Novel approaches to glycomimetic design: development of small molecular weight lectin antagonists. Expert Opin Drug Discov 2021; 16:513-536. [PMID: 33337918 DOI: 10.1080/17460441.2021.1857721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: The direct binding of carbohydrates or those presented on glycoproteins or glycolipids to proteins is the primary effector of many biological responses. One class of carbohydrate-binding proteins, lectins are important in all forms of life. Their functions in animals include regulating cell adhesion, glycoprotein synthesis, metabolism, and mediating immune system response while in bacteria and viruses a lectin-mediated carbohydrate-protein interaction between host cells and the pathogen initiates pathogenesis of the infection.Areas covered: In this review, the authors outline the structural and functional pathogenesis of lectins from bacteria, amoeba, and humans. Mimics of a carbohydrate are referred to as glycomimetics, which are much smaller in molecular weight and are devised to mimic the key binding interactions of the carbohydrate while also allowing additional contacts with the lectin. This article emphasizes the various approaches used over the past 10-15 years in the rational design of glycomimetic ligands.Expert opinion: Medicinal chemistry efforts enabled by X-ray structural biology have identified small-molecule glycomimetic lectin antagonists that have entered or are nearing clinical trials. A common theme in these strategies is the use of biaryl ring systems to emulate the carbohydrate interactions with the lectin.
Collapse
Affiliation(s)
- Vishnu C Damalanka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis USA
| | - Amarendar Reddy Maddirala
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis USA
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis USA
| |
Collapse
|
45
|
Does targeting Arg98 of FimH lead to high affinity antagonists? Eur J Med Chem 2020; 211:113093. [PMID: 33340913 DOI: 10.1016/j.ejmech.2020.113093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/20/2020] [Accepted: 12/06/2020] [Indexed: 11/23/2022]
Abstract
Bacterial resistance has become an important challenge in the treatment of urinary tract infections. The underlying resistance mechanisms can most likely be circumvented with an antiadhesive approach, antagonizing the lectin FimH located at the tip of fimbriae of uropathogenic E. coli. Here we report on a novel series of FimH antagonists based on the 1-(α-d-mannopyranosyl)-4-phenyl-1,2,3-triazole scaffold, designed to incorporate carboxylic acid or ester functions to interact with FimH Arg98. The most potent representative of the series, ester 11e, displayed a Kd value of 7.6 nM for the lectin domain of FimH with a general conclusion that all esters outperform carboxylates in terms of affinity. Surprisingly, all compounds from this new series exhibited improved binding affinities also for the R98A mutant, indicating another possible interaction contributing to binding. Our study on 1-(α-d-mannopyranosyl)-4-phenyl-1,2,3-triazole-based FimH antagonists offers proof that targeting Arg98 side chain by a "chemical common sense", i.e. by introduction of the acidic moiety to form ionic bond with Arg98 is most likely unsuitable approach to boost FimH antagonists' potency.
Collapse
|
46
|
Dura G, Peters DT, Waller H, Yemm AI, Perkins ND, Ferreira AM, Crespo-Cuadrado M, Lakey JH, Fulton DA. A Thermally Reformable Protein Polymer. Chem 2020. [DOI: 10.1016/j.chempr.2020.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
He LH, Wang H, Liu Y, Kang M, Li T, Li CC, Tong AP, Zhu YB, Song YJ, Savarino SJ, Prouty MG, Xia D, Bao R. Chaperone-tip adhesin complex is vital for synergistic activation of CFA/I fimbriae biogenesis. PLoS Pathog 2020; 16:e1008848. [PMID: 33007034 PMCID: PMC7531860 DOI: 10.1371/journal.ppat.1008848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 07/30/2020] [Indexed: 02/05/2023] Open
Abstract
Colonization factor CFA/I defines the major adhesive fimbriae of enterotoxigenic Escherichia coli and mediates bacterial attachment to host intestinal epithelial cells. The CFA/I fimbria consists of a tip-localized minor adhesive subunit, CfaE, and thousands of copies of the major subunit CfaB polymerized into an ordered helical rod. Biosynthesis of CFA/I fimbriae requires the assistance of the periplasmic chaperone CfaA and outer membrane usher CfaC. Although the CfaE subunit is proposed to initiate the assembly of CFA/I fimbriae, how it performs this function remains elusive. Here, we report the establishment of an in vitro assay for CFA/I fimbria assembly and show that stabilized CfaA-CfaB and CfaA-CfaE binary complexes together with CfaC are sufficient to drive fimbria formation. The presence of both CfaA-CfaE and CfaC accelerates fimbria formation, while the absence of either component leads to linearized CfaB polymers in vitro. We further report the crystal structure of the stabilized CfaA-CfaE complex, revealing features unique for biogenesis of Class 5 fimbriae.
Collapse
Affiliation(s)
- Li-hui He
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Wang
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Yang Liu
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Mei Kang
- Department of Laboratory medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Li
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-cheng Li
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ai-ping Tong
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yi-bo Zhu
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ying-jie Song
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Stephen J. Savarino
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Michael G. Prouty
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Rui Bao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Chen Y, Wang J, Li X, Hu N, Voelcker NH, Xie X, Elnathan R. Emerging Roles of 1D Vertical Nanostructures in Orchestrating Immune Cell Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001668. [PMID: 32844502 PMCID: PMC7461044 DOI: 10.1002/adma.202001668] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/16/2020] [Indexed: 05/07/2023]
Abstract
Engineered nano-bio cellular interfaces driven by 1D vertical nanostructures (1D-VNS) are set to prompt radical progress in modulating cellular processes at the nanoscale. Here, tuneable cell-VNS interfacial interactions are probed and assessed, highlighting the use of 1D-VNS in immunomodulation, and intracellular delivery into immune cells-both crucial in fundamental and translational biomedical research. With programmable topography and adaptable surface functionalization, 1D-VNS provide unique biophysical and biochemical cues to orchestrate innate and adaptive immunity, both ex vivo and in vivo. The intimate nanoscale cell-VNS interface leads to membrane penetration and cellular deformation, facilitating efficient intracellular delivery of diverse bioactive cargoes into hard-to-transfect immune cells. The unsettled interfacial mechanisms reported to be involved in VNS-mediated intracellular delivery are discussed. By identifying up-to-date progress and fundamental challenges of current 1D-VNS technology in immune-cell manipulation, it is hoped that this report gives timely insights for further advances in developing 1D-VNS as a safe, universal, and highly scalable platform for cell engineering and enrichment in advanced cancer immunotherapy such as chimeric antigen receptor-T therapy.
Collapse
Affiliation(s)
- Yaping Chen
- Monash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication Facility151 Wellington RoadClayton3168Australia
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen UniversityGuangzhou510006China
| | - Xiangling Li
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510006China
| | - Ning Hu
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510006China
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication Facility151 Wellington RoadClayton3168Australia
- Department of Materials Science and EngineeringMonash University22 Alliance LaneClaytonVIC3168Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVIC3168Australia
- INM‐Leibniz Institute for New MaterialsCampus D2 2Saarbrücken66123Germany
| | - Xi Xie
- The First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen UniversityGuangzhou510006China
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510006China
| | - Roey Elnathan
- Monash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication Facility151 Wellington RoadClayton3168Australia
- Department of Materials Science and EngineeringMonash University22 Alliance LaneClaytonVIC3168Australia
| |
Collapse
|
49
|
Phillips AMF, Pombeiro AJL. Electrochemical asymmetric synthesis of biologically active substances. Org Biomol Chem 2020; 18:7026-7055. [PMID: 32909570 DOI: 10.1039/d0ob01425g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Electrically driven oxidation and reduction reactions are well-established methods for synthesis even in the chemical industry, but asymmetric versions are still few. The mild conditions used, atom efficiency and low cost make these reactions a very attractive alternative to other methods of synthesis. Very fine tuning can be achieved based on minute changes in potentials, allowing only one functional group in a molecule to react in the presence of several others, which is ideal for applications in total synthesis. In this review, the literature in the field of asymmetric synthesis of biologically active substances over the last 10 years is surveyed.
Collapse
Affiliation(s)
- Ana Maria Faisca Phillips
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.
| |
Collapse
|
50
|
Pandey NK, Verma G, Kushwaha GS, Suar M, Bhavesh NS. Crystal structure of the usher chaperone YadV reveals a monomer with the proline lock in closed conformation suggestive of an intermediate state. FEBS Lett 2020; 594:3057-3066. [DOI: 10.1002/1873-3468.13883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/15/2020] [Accepted: 07/02/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Nishant Kumar Pandey
- Transcription Regulation Group International Centre for Genetic Engineering and Biotechnology (ICGEB) New Delhi India
- School of Biotechnology Kalinga Institute of Industrial Technology (KIIT), (Deemed to be University) Bhubaneswar India
| | - Garima Verma
- Transcription Regulation Group International Centre for Genetic Engineering and Biotechnology (ICGEB) New Delhi India
| | - Gajraj Singh Kushwaha
- Transcription Regulation Group International Centre for Genetic Engineering and Biotechnology (ICGEB) New Delhi India
| | - Mrutyunjay Suar
- School of Biotechnology Kalinga Institute of Industrial Technology (KIIT), (Deemed to be University) Bhubaneswar India
| | - Neel Sarovar Bhavesh
- Transcription Regulation Group International Centre for Genetic Engineering and Biotechnology (ICGEB) New Delhi India
| |
Collapse
|