1
|
Zarroug R, Moslah W, Srairi-Abid N, Artetxe B, Masip-Sánchez A, López X, Ayed B, Ribeiro N, Correia I, Corte-Real L, Pessoa JC. Synthesis, crystal structure, computational and solution studies of a new phosphotetradecavanadate salt. Assessment of its effect on U87 glioblastoma cells. J Inorg Biochem 2025; 269:112882. [PMID: 40080993 DOI: 10.1016/j.jinorgbio.2025.112882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
The new benzylammonium (C7H10N) salt of the phosphotetradecavanadate (PV14) anion PV14O429-, (C7H10N)6[H3PV14O42]∙7H2O (1), is synthesized under mild conditions and characterized by a combination of physicochemical techniques such as Fourier transform infrared spectroscopy, powder X-ray diffraction, elemental analyses and cyclic voltammetry. As evaluated by 51V NMR spectroscopy, at milimolar concentrations and pH ∼2.5 the PV14 anions decompose slowly, thus demonstrating kinetic stability, but at pH ∼7 this process takes place much faster. However, in the presence of human serum albumin, the 51V NMR peaks of PV14 anions broaden significantly and their decomposition becomes much slower, this being due to a direct interaction between both components. The structure of 1 is elucidated by single-crystal X-ray diffraction and reveals the presence of three-fold protonated, bicapped Keggin type [H3PV14O42]6- anions. The supramolecular interactions governing the crystal packing are further studied using the Hirshfeld surface analysis. Computational studies using density functional theory were effective in determining the electronic and protonation states of PV14 clusters, as well as the multi-electron redox behavior of compound 1 in acidic aqueous solutions. Molecular dynamics calculations confirm the high hydrophilicity and absence of aggregation between protonated PV14 anions in aqueous medium. Notably, this compound shows high inhibitory effect on the viability of the U87 glioblastoma cell line with IC50 values of 3.2 ± 0.6 μM and 1.10 ± 0.04 μM after 24 h and 72 h treatments. The mode of action of compound 1 is mediated by the pro-apoptotic process. These data provide evidence on the potential therapeutic use of PV14 compounds against glioblastoma.
Collapse
Affiliation(s)
- Rim Zarroug
- University of Monastir, Laboratory of Physico-Chemistry of Materials LR01ES19, Faculty of Sciences of Monastir, Tunisia; Department of Chemistry, Faculty of Sciences, University of Gabes, Tunisia
| | - Wassim Moslah
- Université Tunis El Manar, Institut Pasteur de Tunis, LR20IPT01 Biomolécules, Venins et Applications théranostiques (LBVAT), 1002 Tunis, Tunisia
| | - Najet Srairi-Abid
- Université Tunis El Manar, Institut Pasteur de Tunis, LR20IPT01 Biomolécules, Venins et Applications théranostiques (LBVAT), 1002 Tunis, Tunisia
| | - Beñat Artetxe
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48080 Bilbao, Spain
| | - Albert Masip-Sánchez
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, c/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Xavier López
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, c/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Brahim Ayed
- University of Monastir, Laboratory of Physico-Chemistry of Materials LR01ES19, Faculty of Sciences of Monastir, Tunisia
| | - Nádia Ribeiro
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Isabel Correia
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Leonor Corte-Real
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João Costa Pessoa
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
2
|
Kean HH, Fung A, Pramod RT, Chomik-Morales J, Kanwisher N, Fedorenko E. Intuitive physical reasoning is not mediated by linguistic nor exclusively domain-general abstract representations. Neuropsychologia 2025; 213:109125. [PMID: 40112908 DOI: 10.1016/j.neuropsychologia.2025.109125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
The ability to reason about the physical world is a critical tool in the human cognitive toolbox, but the nature of the representations that mediate physical reasoning remains debated. Here, we use fMRI to illuminate this question by investigating the relationship between the physical-reasoning system and two well-characterized systems: a) the domain-general Multiple Demand (MD) system, which supports abstract reasoning, including mathematical and logical reasoning, and b) the language system, which supports linguistic computations and has been hypothesized to mediate some forms of thought. We replicate prior findings of a network of frontal and parietal areas that are robustly engaged by physical reasoning and identify an additional physical-reasoning area in the left frontal cortex, which also houses components of the MD and language systems. Critically, direct comparisons with tasks that target the MD and the language systems reveal that the physical-reasoning system overlaps with the MD system, but is dissociable from it in fine-grained activation patterns, which replicates prior work. Moreover, the physical-reasoning system does not overlap with the language system. These results suggest that physical reasoning does not rely on linguistic representations, nor exclusively on the domain-general abstract reasoning that the MD system supports.
Collapse
Affiliation(s)
- Hope H Kean
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| | - Alexander Fung
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - R T Pramod
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Jessica Chomik-Morales
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Nancy Kanwisher
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Evelina Fedorenko
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| |
Collapse
|
3
|
Ferrucci L, Ceccarelli F, Londei F, Arena G, Elyasizad L, Nougaret S, Genovesio A. Reward monitoring in the frontopolar cortex of macaques. Sci Rep 2025; 15:16472. [PMID: 40355708 PMCID: PMC12069530 DOI: 10.1038/s41598-025-99019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/16/2025] [Indexed: 05/14/2025] Open
Abstract
Reward processing involves several prefrontal cortex areas, enabling individuals to learn from behavioral outcomes and shape decisions. However, the role of the frontopolar cortex (FPC) in these processes remains unclear due to limited single-neuron research. In this study, we recorded neural activity from the FPC of two macaques performing a fast-learning task, the object-in-place reward task, which examined how reward size affects learning. Results showed that FPC feedback monitoring activity extends to the value of specific choices. Moreover, once the association between scenes and reward had been learned, FPC neural activity before choice reflected the future animal's behavior to stay or to switch on their previous behavioral strategy, i.e., to choose the same target or the other one. These results suggest that FPC neurons integrated information for action monitoring and later reprocessed it to decide the best behavioral strategy to adopt, determining whether to maintain or change the action plan.
Collapse
Affiliation(s)
- Lorenzo Ferrucci
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Via Ramarini 32, 00015, Monterotondo Scalo, Rome, Italy
| | - Francesco Ceccarelli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Via Ramarini 32, 00015, Monterotondo Scalo, Rome, Italy
| | - Fabrizio Londei
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Behavioral Neuroscience PhD Program, Sapienza University, Rome, Italy
| | - Giulia Arena
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Via Ramarini 32, 00015, Monterotondo Scalo, Rome, Italy
- Behavioral Neuroscience PhD Program, Sapienza University, Rome, Italy
| | - Leyla Elyasizad
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Behavioral Neuroscience PhD Program, Sapienza University, Rome, Italy
| | - Simon Nougaret
- Institut de Neurosciences de La Timone, UMR 7289, Centre National de La Recherche Scientifique and Aix-Marseille Universite, Marseille, France.
| | - Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy.
| |
Collapse
|
4
|
Boschin EA, Ainsworth M, Galeazzi JM, Buckley MJ. Memories or decisions? Bridging accounts of frontopolar function. Neuropsychologia 2025; 211:109119. [PMID: 40058578 DOI: 10.1016/j.neuropsychologia.2025.109119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/25/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Frontopolar cortex (FPC), for a long time elusive to functional description, is now associated with a wide range of cognitive processes. Prominent accounts of FPC function emerged from studies of memory (e.g., episodic and prospective memory; EM and PM, respectively) and of executive function (e.g., planning, multi-tasking, relational reasoning, cognitive branching, etc). In recent years, FPC function has begun to be described within the context of value-based decision making in terms of monitoring the value of alternatives and optimizing cognitive resources to balance the explore/exploit dilemma in the face of volatile environments. In this perspective, we propose that the broad counterfactual inference and behavioural flexibility account can help re-interpret findings from EM and PM studies and offer an explanatory bridge between the memory and executive function accounts. More specifically, we propose that counterfactual value monitoring in FPC modulates the reallocation of cognitive resources between present and past information and contributes to efficient episodic and prospective retrieval by concurrently assessing the value of competing memories in relation to the decision at hand and proactively evaluating future potential scenarios to anticipate optimal engagement of intentions.
Collapse
Affiliation(s)
- Erica A Boschin
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, OX1 3SR, UK.
| | - Matthew Ainsworth
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, OX1 3SR, UK
| | - Juan M Galeazzi
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, OX1 3SR, UK
| | - Mark J Buckley
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, OX1 3SR, UK
| |
Collapse
|
5
|
Hosoda C, Ochiai R, Hosokawa K, Nakamura Y, Matsuhashi T, Okanoya K. The role of frontal pole cortex and personalized feedback in sustaining future-oriented healthy dietary behaviors. Sci Rep 2025; 15:15416. [PMID: 40316632 PMCID: PMC12048544 DOI: 10.1038/s41598-025-98655-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/14/2025] [Indexed: 05/04/2025] Open
Abstract
Lifestyle-related diseases remain a significant public health concern, highlighting the need to promote sustained health behaviors, particularly among young adults. The present study examines the role of the frontal pole cortex (FPC)-known for supporting persistence towards near-term goals-in promoting long-term health behavior change. Fifty participants were engaged over a 27-day period, during which they maintained daily food diaries. Participants were divided into two groups: one receiving Personalized Feedback (PF) tailored to individual dietary habits and another receiving Control Feedback (CF) involving general nutritional information. The PF group demonstrated higher engagement in diary completion, improved nutritional intake, and better mental health marked by a significant reduction in trait anxiety compared to the CF group. Notably, a distinct correlation between FPC structural features-cortical thickness, T1-weighted/T2-weighted ratio, and fractional anisotropy-and the frequency of diary loggings was observed exclusively in the CF group. This finding suggests that the structural prosperity of the FPC is associated with engagement levels without the modulation effects of personalized feedback. These outcomes highlight the potential of personalized feedback to utilize FPC-related mechanisms for enhancing long-term dietary habits, emphasizing the importance of considering neurobiological traits in health behavior interventions.
Collapse
Affiliation(s)
- Chihiro Hosoda
- Graduate School of Information Sciences, Tohoku University, 6-3-09 Aoba, Aramaki-aza Aoba-ku, Sendai, Miyagi, 980-8579, Japan.
- Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Miyagi, Japan.
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan.
| | - Ryuji Ochiai
- Human Health Care Products Research, Kao Corporation, Tokyo, Japan
| | - Kenchi Hosokawa
- Graduate School of Information Sciences, Tohoku University, 6-3-09 Aoba, Aramaki-aza Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Yuko Nakamura
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
| | - Takuto Matsuhashi
- Graduate School of Information Sciences, Tohoku University, 6-3-09 Aoba, Aramaki-aza Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Kazuo Okanoya
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| |
Collapse
|
6
|
Capkova L, Ainsworth M, Mansouri FA, Buckley MJ. Dissociating Frontal Lobe Lesion Induced Deficits in Rule Value Learning Using Reinforcement Learning Models and a WCST Analog. eNeuro 2025; 12:ENEURO.0117-25.2025. [PMID: 40393730 DOI: 10.1523/eneuro.0117-25.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 05/22/2025] Open
Abstract
Distinct frontal regions make dissociable contributions to rule-guided decision-making, including the ability to learn and exploit associations between abstract rules and reward value, maintain those rules in memory, and evaluate choice outcomes. Value-based learning can be quantified using reinforcement learning (RL) models predicting optimal trial-wise choices and estimating learning rates, which can then be related to the intact functioning of specific brain areas by combining a modeling approach with lesion-behavioral data. We applied a three-parameter feedback-dependent RL model to behavioral data obtained from macaques with circumscribed lesions to the principal sulcus (PS), anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), superior dorsolateral prefrontal cortex (sdlPFC), and frontopolar cortex (FPC) performing a Wisconsin card sorting task (WCST) analog. Our modeling-based approach identified distinct lesion effects on component cognitive mechanisms contributing to WCST performance. OFC lesions decreased the rate of rule value updating following both positive and negative feedback. In contrast, we found no deficit in rule value updating following PS lesions, which instead made monkeys less likely to repeat correct choices when rule values were well established, suggesting a crucial role of the PS in the working memory maintenance of rule representations. Finally, ACC lesions produced a specific deficit in learning from negative feedback, as well as impaired the ability to repeat choices following highly surprising reward, supporting a proposed role for ACC in flexibly switching between a trial-and-error mode and a working memory mode in response to increased error likelihood.
Collapse
Affiliation(s)
- Lucie Capkova
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, United Kingdom
| | - Matthew Ainsworth
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, United Kingdom
| | - Farshad A Mansouri
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
- ARC Centre of Excellence for Integrative Brain Function, Monash University, Melbourne, Victoria 3800, Australia
| | - Mark J Buckley
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, United Kingdom
| |
Collapse
|
7
|
Yin J, Xu H, Pan Y, Hu Y. Effects of different AI-driven Chatbot feedback on learning outcomes and brain activity. NPJ SCIENCE OF LEARNING 2025; 10:17. [PMID: 40234444 PMCID: PMC12000334 DOI: 10.1038/s41539-025-00311-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 03/25/2025] [Indexed: 04/17/2025]
Abstract
Artificial intelligence (AI) driven chatbots provide instant feedback to support learning. Yet, the impacts of different feedback types on behavior and brain activation remain underexplored. We investigated how metacognitive, affective, and neutral feedback from an educational chatbot affected learning outcomes and brain activity using functional near-infrared spectroscopy. Students receiving metacognitive feedback showed higher transfer scores, greater metacognitive sensitivity, and increased brain activation in the frontopolar area and middle temporal gyrus compared to other feedback types. Such activation correlated with metacognitive sensitivity. Students receiving affective feedback showed better retention scores than those receiving neutral feedback, along with higher activation in the supramarginal gyrus. Students receiving neutral feedback exhibited higher activation in the dorsolateral prefrontal cortex than other feedback types. The machine learning model identified key brain regions that predicted transfer scores. These findings underscore the potential of diverse feedback types in enhancing learning via human-chatbot interaction, and provide neurophysiological signatures.
Collapse
Affiliation(s)
- Jiaqi Yin
- Shanghai Institute of Artificial Intelligence for Education, East China Normal University, Shanghai, 200062, China
- School of Computer Science and Technology, East China Normal University, Shanghai, 200062, China
| | - Haoxin Xu
- Shanghai Institute of Artificial Intelligence for Education, East China Normal University, Shanghai, 200062, China
- School of Computer Science and Technology, East China Normal University, Shanghai, 200062, China
| | - Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yi Hu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
8
|
Mansouri FA, Kievit RA, Buckley MJ. Executive control fluctuations underlie behavioral variability in anthropoids. Trends Cogn Sci 2025; 29:331-343. [PMID: 39562262 DOI: 10.1016/j.tics.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024]
Abstract
In complex tasks requiring cognitive control, humans show trial-by-trial alterations in response time (RT), which are evident even when sensory-motor or other contextual aspects of the task remain stable. Exaggerated intra-individual RT variability is associated with brain injuries and frequently seen in aging and neuropsychological disorders. In this opinion, we discuss recent electrophysiology and imaging studies in humans and neurobiological studies in monkeys that indicate RT variability is linked with executive control fluctuation and that prefrontal cortical regions play essential, but dissociable, roles in such fluctuation of control and the resulting behavioral variability. We conclude by discussing emerging models proposing that both extremes of behavioral variability (significantly higher or lower) might reflect aberrant alterations in various aspects of decision-making processes.
Collapse
Affiliation(s)
- Farshad A Mansouri
- Department of Physiology, Biomedical Discovery Institute, Monash University, Melbourne, Australia.
| | - Rogier A Kievit
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Mark J Buckley
- Department of Experimental Psychology, Oxford University, Oxford, UK
| |
Collapse
|
9
|
Zhou X, Ghorbani F, Roessner V, Hommel B, Prochnow A, Beste C. Metacontrol instructions lead to adult-like event segmentation in adolescents. Dev Cogn Neurosci 2025; 72:101521. [PMID: 39892154 PMCID: PMC11833649 DOI: 10.1016/j.dcn.2025.101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/14/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025] Open
Abstract
Event segmentation, which involves dividing continuous information into meaningful units, changes as children develop into adolescents. Adolescents tend to segment events more coarsely than adults. This study explores whether adolescents could adjust their segmentation style to resemble that of adults when provided with explicit metacontrol-related instructions. We compared event segmentation in two adolescent groups and one adult group, while simultaneously recording EEG data. One adolescent group was instructed to perform segmentation as finely as possible, whereas the other adolescent group and adults received no specific instructions on segmentation granularity. EEG data were analyzed using multivariate pattern analysis and source reconstruction. The findings revealed that adolescents given fine-grained instructions adjusted their segmentation probability closer to adult levels, although they did not fully match adults in processing multiple simultaneous changes. Neurophysiological results indicated that adolescents with fine-grained instructions exhibited neural decoding performance more similar to adults. Increased activity in the inferior frontal gyrus in these adolescents compared to adults related to this. The results suggest that adolescents with fine-grained instructions demonstrated more persistent cognitive control and enhanced top-down attention than their peers and adults. The study shows that adolescent cognitive processes can be shifted toward adult-like performance through instructions.
Collapse
Affiliation(s)
- Xianzhen Zhou
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden 01307, Germany
| | - Foroogh Ghorbani
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden 01307, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden 01307, Germany; German Center for Child and Adolescent Health (DZKJ), Partner site Leipzig/Dresden, Dresden, Germany
| | - Bernhard Hommel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden 01307, Germany; School of Psychology, Shandong Normal University, Jinan, China
| | - Astrid Prochnow
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden 01307, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden 01307, Germany; German Center for Child and Adolescent Health (DZKJ), Partner site Leipzig/Dresden, Dresden, Germany; School of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
10
|
Adamczyk AK, Bramson B, Koch SBJ, Wyczesany M, van Peer JM, Roelofs K. Lateral frontopolar theta-band activity supports flexible switching between emotion regulation strategies. Sci Rep 2025; 15:10900. [PMID: 40157972 PMCID: PMC11954941 DOI: 10.1038/s41598-025-91177-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/18/2025] [Indexed: 04/01/2025] Open
Abstract
Flexible emotion regulation is essential for mental health and well-being. However, neurocognitive mechanisms supporting emotion regulation flexibility remain unclear. Lateral frontal pole (FPl) contributes to flexible behavior by monitoring the efficacy of alternative strategies. This preregistered study examines if FPl also supports flexible use of emotion regulation strategies. It focuses on pre-decision theta-band activity as a potential indicator of this adaptive process. Sixty-three participants performed an emotion regulation strategy-switching task, involving three phases: (1) implementing an instructed (reappraisal or distraction) strategy, (2) deciding whether to 'maintain' the current or 'switch' to the alternative strategy, and (3) implementing the chosen strategy. Results showed that switching is predicted by the reduced efficacy of an initial emotion regulation strategy (indexed with EMG corrugator activity) and is made in accordance with situational demands (stimulus reappraisal affordances). Critically, switching to an alternative emotion regulation strategy is associated with increased theta-band power in FPl around the time of the decision. These findings support the previously established role of FPl theta-band activity in monitoring counterfactual efficacy of alternative strategies. Crucially, they extend this notion to cognitive emotion regulation, thereby offering promising neural targets for stimulation-based therapies aimed at enhancing emotion regulation flexibility in affective psychopathologies.
Collapse
Affiliation(s)
- Agnieszka K Adamczyk
- Psychophysiology Laboratory, Institute of Psychology, Jagiellonian University, Krakow, Poland.
- Experimental Psychopathology and Treatment, Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands.
| | - Bob Bramson
- Experimental Psychopathology and Treatment, Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
- Affective Neuroscience, Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Saskia B J Koch
- Affective Neuroscience, Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Miroslaw Wyczesany
- Psychophysiology Laboratory, Institute of Psychology, Jagiellonian University, Krakow, Poland
| | - Jacobien M van Peer
- Experimental Psychopathology and Treatment, Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| | - Karin Roelofs
- Experimental Psychopathology and Treatment, Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
- Affective Neuroscience, Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Sazhin D, Dachs A, Smith DV. Meta-Analysis Reveals That Explore-Exploit Decisions are Dissociable by Activation in the Dorsal Lateral Prefrontal Cortex, Anterior Insula, and the Dorsal Anterior Cingulate Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.21.563317. [PMID: 37961286 PMCID: PMC10634720 DOI: 10.1101/2023.10.21.563317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Explore-exploit research faces challenges in generalizability due to a limited theoretical basis for exploration and exploitation. Neuroimaging can help identify whether explore-exploit decisions involve an opponent processing system to address this issue. Thus, we conducted a coordinate-based meta-analysis (N=23 studies) finding activation in the dorsal lateral prefrontal cortex, anterior insula, and anterior cingulate cortex during exploration versus exploitation, which provides some evidence for opponent processing. However, the conjunction of explore-exploit decisions was associated with activation in the dorsal anterior cingulate cortex and dorsal medial prefrontal cortex, suggesting that these brain regions do not engage in opponent processing. Furthermore, exploratory analyses revealed heterogeneity in brain responses between task types during exploration and exploitation respectively. Coupled with results suggesting that activation during exploration and exploitation decisions is generally more similar than it is different suggests that there remain significant challenges in characterizing explore-exploit decision making. Nonetheless, dorsal lateral prefrontal cortex, anterior insula, and dorsal anterior cingulate cortex activation differentiate explore and exploit decisions and identifying these responses can aid in targeted interventions aimed at manipulating these decisions.
Collapse
Affiliation(s)
- Daniel Sazhin
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Abraham Dachs
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - David V Smith
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| |
Collapse
|
12
|
Bogdanov M, Bustamante LA, Devine S, Sheldon S, Otto AR. Noninvasive Brain Stimulation over the Frontopolar Cortex Promotes Willingness to Exert Cognitive Effort in a Foraging-Like Sequential Choice Task. J Neurosci 2025; 45:e0647242024. [PMID: 39819513 PMCID: PMC11884395 DOI: 10.1523/jneurosci.0647-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/19/2025] Open
Abstract
Individuals avoid spending cognitive effort unless expected rewards offset the perceived costs. Recent work employing tasks that provide explicit information about demands and incentives suggests causal involvement of the frontopolar cortex (FPC) in effort-based decision-making. Using transcranial direct current stimulation (tDCS), we examined whether the FPC's role in motivating effort generalizes to sequential choice problems in which task demand and reward rates vary indirectly and as a function of experience. In a double-blind, within-subject design, 46 participants (36 female, 8 male, 1 "neither/other") received anodal (i.e., excitatory) or sham stimulation over the right FPC during an Effort Foraging Task, which required choosing between harvesting patches for successively decreasing resources or traveling to replenished patches by performing a cognitive task with environment-specific difficulty. As expected, participants exited patches later (i.e., exhibited lower exit thresholds) when traveling required greater (versus less) effort, indicating increased travel costs in high-effort environments. Under anodal tDCS, the difference in exit thresholds between environments was significantly smaller relative to sham. Finally, individual differences analyses hint that participants with lower self-reported motivation to exert effort exhibited greater travel cost reductions following tDCS. Together, these findings support the theorized causal role of the FPC in motivating cognitively effortful behavior, expand its role to more ecologically valid serial decisions, and highlight the potential for tDCS as a tool to increase motivation with potential clinical applications.
Collapse
Affiliation(s)
- Mario Bogdanov
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, Massachusetts 02478
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02115
| | - Laura A Bustamante
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Sean Devine
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Signy Sheldon
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - A Ross Otto
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| |
Collapse
|
13
|
Tian LY, Garzón KU, Rouse AG, Eldridge MAG, Schieber MH, Wang XJ, Tenenbaum JB, Freiwald WA. Neural representation of action symbols in primate frontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.03.641276. [PMID: 40093053 PMCID: PMC11908170 DOI: 10.1101/2025.03.03.641276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
At the core of intelligence is proficiency in solving new problems, including those that differ dramatically from problems seen before. Problem-solving, in turn, depends on goal-directed generation of novel thoughts and behaviors1, which has been proposed to rely on internal representations of discrete units, or symbols, and processes that can recombine them into a large set of possible composite representations1-11. Although this view has been influential in formulating cognitive-level explanations of behavior, definitive evidence for a neuronal substrate of symbols has remained elusive. Here, we identify a neural population encoding action symbols-internal, recombinable representations of discrete units of motor behavior-localized to a specific area of frontal cortex. In macaque monkeys performing a drawing-like task designed to assess recombination of learned action symbols into novel sequences, we found behavioral evidence for three critical features that indicate actions have an underlying symbolic representation: (i) invariance over low-level motor parameters; (ii) categorical structure, reflecting discrete classes of action; and (iii) recombination into novel sequences. In simultaneous neural recordings across motor, premotor, and prefrontal cortex, we found that planning-related population activity in ventral premotor cortex encodes actions in a manner that, like behavior, reflects motor invariance, categorical structure, and recombination, three properties indicating a symbolic representation. Activity in no other recorded area exhibited this combination of properties. These findings reveal a neural representation of action symbols localized to PMv, and therefore identify a putative neural substrate for symbolic cognitive operations.
Collapse
Affiliation(s)
- Lucas Y Tian
- Laboratory of Neural Systems, The Rockefeller University, New York, NY, USA
- Center for Brains, Minds and Machines, MIT & Rockefeller University
| | - Kedar U Garzón
- Laboratory of Neural Systems, The Rockefeller University, New York, NY, USA
| | - Adam G Rouse
- Department of Neurosurgery, Department of Cell Biology & Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mark A G Eldridge
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Marc H Schieber
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY, USA
| | - Joshua B Tenenbaum
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Brains, Minds and Machines, MIT & Rockefeller University
| | - Winrich A Freiwald
- Laboratory of Neural Systems, The Rockefeller University, New York, NY, USA
- Center for Brains, Minds and Machines, MIT & Rockefeller University
| |
Collapse
|
14
|
Sazhin D, Dachs A, Smith DV. Meta-Analysis Reveals That Explore-Exploit Decisions Are Dissociable by Activation in the Dorsal Lateral Prefrontal Cortex, Anterior Insula, and Dorsal Anterior Cingulate Cortex. Eur J Neurosci 2025; 61:e70081. [PMID: 40125571 DOI: 10.1111/ejn.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/25/2025]
Abstract
Explore-exploit research faces challenges in generalizability due to a limited theoretical basis for exploration and exploitation. Neuroimaging can help identify whether explore-exploit decisions involve an opponent processing system to address this issue. Thus, we conducted a coordinate-based meta-analysis (N = 23 studies) finding activation in the dorsal lateral prefrontal cortex, anterior insula, and dorsal anterior cingulate cortex during exploration versus exploitation, which provides some evidence for opponent processing. However, the conjunction of explore-exploit decisions was associated with activation in the anterior cingulate cortex and dorsal medial prefrontal cortex, suggesting that these brain regions do not engage in opponent processing. Furthermore, exploratory analyses revealed heterogeneity in brain responses between task types during exploration and exploitation respectively. Coupled with results suggesting that activation during exploration and exploitation decisions is generally more similar than it is different suggests that there remain significant challenges in characterizing explore-exploit decision-making. Nonetheless, dorsal lateral prefrontal cortex, anterior insula, and dorsal anterior cingulate cortex activation differentiate explore and exploit decisions, and identifying these responses can aid in targeted interventions aimed at manipulating these decisions.
Collapse
Affiliation(s)
- Daniel Sazhin
- Department of Psychology & Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - Abraham Dachs
- Department of Psychology & Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| | - David V Smith
- Department of Psychology & Neuroscience, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Samandra R, Rosa MGP, Mansouri FA. How Do Common Marmosets Maintain the Balance Between Response Execution and Action Inhibition? Am J Primatol 2025; 87:e23717. [PMID: 39783787 PMCID: PMC11714342 DOI: 10.1002/ajp.23717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 10/29/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025]
Abstract
Socio-dynamic situations require a balance between response execution and action inhibition. Nonadaptive imbalance between response inhibition and execution exists in neurodevelopmental and neuropsychological disorders. To investigate the underlying neural mechanisms of cognitive control and the related deficits, comparative studies in human and nonhuman primates are crucial. Previous stop-signal tasks in humans and macaque monkeys have examined response execution (response time (RT) and accuracy in Go trials) and action inhibition (stop-signal reaction time (SSRT)). Even though marmosets are generally considered suitable translational animal models for research on social and cognitive deficits, their ability to inhibit behavior remains poorly characterized. We developed a marmoset stop-signal task, in which RT could be measured at millisecond resolution. All four marmosets performed many repeated Go trials with high accuracy (≥ 70%). Additionally, all marmosets successfully performed Stop trials. Using a performance-dependent tracking procedure, the accuracy in Stop trials was maintained around 50%, which enabled reliable SSRT estimates in marmosets for the first time. The mean SSRT values across sessions ranged between 677 and 1464 ms across the four marmosets. We also validated the suitability and practicality of this novel task for examining executive functions by testing the effects of a natural hormone, oxytocin, on response execution and action inhibition in marmosets. This marmoset model, for reliable (millisecond resolution) assessment of the balance between response execution and inhibition, will further facilitate studying the developmental alterations in inhibition ability and examining the effects of various contextual and environmental factors on marmosets' executive functions.
Collapse
Affiliation(s)
- Ranshikha Samandra
- Department of PhysiologyMonash Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Marcello G. P. Rosa
- Department of PhysiologyMonash Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Farshad A. Mansouri
- Department of PhysiologyMonash Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
16
|
Luo Y, Yu Q, Wu S, Luo YJ. Distinct neural bases of visual art- and music-induced aesthetic experiences. Neuroimage 2025; 305:120962. [PMID: 39638082 DOI: 10.1016/j.neuroimage.2024.120962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
Aesthetic experiences are characterized by a conscious, emotionally and hedonically rewarding perceptions of a stimulus's aesthetic qualities and are thought to arise from a unique combination of cognitive and affective processes. To pinpoint neural correlates of aesthetic experiences, in the present study, we performed a series of meta-analyses based on the existing functional Magnetic Resonance Imaging (fMRI) studies of art appreciation in visual art (34 experiments, 692 participants) and music (34 experiments, 718 participants). The Activation Likelihood Estimation (ALE) analyses showed that the frontal pole (FP), ventromedial prefrontal cortex (vmPFC), and inferior frontal gyrus (IFG) were commonly activated in visual-art-induced aesthetic experiences, whilst bilateral superior temporal gyrus (STG) and striatal areas were commonly activated in music appreciation. Additionally, task-independent Resting-state Functional Connectivity (RSFC), task-dependent Meta-analytical Connectivity Modelling (MACM) analyses, as well as Activation Network Modeling (ANM) further showed that visual art and music engaged quite distinct brain networks. Our findings support the domain-specific view of aesthetic appreciation and challenge the notion that there is a general "common neural currency" for aesthetic experiences across domains.
Collapse
Affiliation(s)
- Youjing Luo
- School of Psychology, Center for Brain Disorders and Cognitive Science, Shenzhen University, Shenzhen 518060, China; Department of Psychology, New York University, New York 10003, NY, USA; Department of Psychology, New York University Abu Dhabi, Abu Dhabi, UAE.
| | - Qianqian Yu
- School of Psychology, Center for Brain Disorders and Cognitive Science, Shenzhen University, Shenzhen 518060, China; Cognitive and Brain Function Laboratory, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, 518060, China
| | - Shuyi Wu
- School of Hotel and Tourism Management, The Hong Kong Polytechnic University, 17 Science Museum Road 818, TST East, Kowloon, Hong Kong SAR, PR China
| | - Yue-Jia Luo
- School of Psychology, Center for Brain Disorders and Cognitive Science, Shenzhen University, Shenzhen 518060, China; The State Key Lab of Cognitive and Learning, Faculty of Psychology, Beijing Normal University, Beijing 100875, China; Institute for Neuropsychological Rehabilitation, University of Health and Rehabilitation Sciences, Qingdao 266114, China.
| |
Collapse
|
17
|
Wang C, Yi X, Li H, Ke N, Lei Z, Fu G, Lin XA. Memory detection with concurrent behavioral, autonomic, and neuroimaging measures in a mock crime. Psychophysiology 2024; 61:e14701. [PMID: 39392401 DOI: 10.1111/psyp.14701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024]
Abstract
Concealed information test (CIT) has been utilized for long to perform single measurements. The combination of multiple measures outperforms single measures because of the diverse cognitive processes they reflect and the reduction in random errors facilitated by multiple measures. To further explore the performance of the CIT with multiple measurements, 57 participants were recruited and randomly assigned into guilty and innocent groups. Subsequently, simultaneously recorded reaction time (RT), skin conductance responses (SCRs), heart rate (HR), and neuroimaging data were collected from functional near-infrared spectroscopy (fNIRS) to detect participants' concealed information in a standard CIT. The results demonstrated that all indicators including RT (area under the curve (AUC) = 0.87), SCRs (AUC = 0.79), HR (AUC = 0.78), and fNIRS (channel 8, AUC = 0.85) could differentiate guilty and innocent groups. Importantly, the use of multiple indicators achieved higher detection efficiency (AUC = 0.96) compared to the use of any single indicator. These results illustrate the effectiveness and feasibility of integrating multiple indicators for concealed information detection in CIT.
Collapse
Affiliation(s)
- Chongxiang Wang
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, China
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
- Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Xingyu Yi
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
| | - Hongrui Li
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
| | - Ni Ke
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
| | - Zhili Lei
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
| | - Genyue Fu
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, China
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou, China
| | - Xiaohong Allison Lin
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, China
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
18
|
de la Cruz F, Schumann A, Rieger K, Güllmar D, Reichenbach JR, Bär KJ. White matter differences between younger and older adults revealed by fixel-based analysis. AGING BRAIN 2024; 6:100132. [PMID: 39650611 PMCID: PMC11625364 DOI: 10.1016/j.nbas.2024.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/11/2024] Open
Abstract
The process of healthy aging involves complex alterations in neural structures, with white matter (WM) changes significantly impacting cognitive and motor functions. Conventional methods such as diffusion tensor imaging provide valuable insights, but their limitations in capturing complex WM geometry advocate for more advanced approaches. In this study involving 120 healthy volunteers, we investigated whole-brain WM differences between young and old individuals using a novel technique called fixel-based analysis (FBA). This approach revealed that older adults exhibited reduced FBA-derived metrics in several WM tracts, with frontal areas particularly affected. Surprisingly, age-related differences in FBA-derived measures showed no significant correlation with risk factors such as alcohol consumption, exercise frequency, or pulse pressure but predicted cognitive performance. These findings emphasize FBA's potential in characterizing complex WM changes and the link between cognitive abilities and WM alterations in healthy aging. Overall, this study advances our understanding of age-related neurodegeneration, highlighting the importance of comprehensive assessments that integrate advanced neuroimaging techniques, cognitive evaluation, and demographic factors to gain insights into healthy aging.
Collapse
Affiliation(s)
- Feliberto de la Cruz
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Andy Schumann
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Katrin Rieger
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Daniel Güllmar
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Jürgen R. Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Karl-Jürgen Bär
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| |
Collapse
|
19
|
Zhao H, Zhang C, Tao R, Wang M, Yin Y, Xu S. Dyadic Similarity in Social Value Orientation Modulates Hyper-Brain Network Dynamics During Interpersonal Coordination: An fNIRS-Based Hyperscanning Study. Brain Topogr 2024; 38:15. [PMID: 39551818 DOI: 10.1007/s10548-024-01092-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
As the fundamental dispositional determinant of social motivation, social value orientation (SVO) may modulate individuals' response patterns in interpersonal coordination contexts. Adopting fNIRS-based hyperscanning approach, the present investigation uncovered the hyper-brain network topological dynamics underlying the effect of the dyadic similarity in the social value orientation on interpersonal coordination. Our findings indicated that the dyads in proself group exhibited the higher degree of competitive intensity during the competitive coordination block, and the dyads in the prosocial group exhibited a higher degree of cooperative coordination during the cooperative coordination block. Distinct hyper-brain functional connectivity patterns and network topological characteristics were identified during the competitive and cooperative coordination blocks in the proself and prosocial groups. The nodal-network global efficiency at the right frontopolar area further mediated the effect of the dyadic deviation in social value orientation similarity on effective adjustments after the negative feedback during the cooperative coordination block in the prosocial group. Our findings manifested distinct behavioral performances and hyper-brain functional connectivity patterns underlying the effect of the dyadic similarity in social value orientation on interpersonal coordination in the real-time mode.
Collapse
Affiliation(s)
- Hanxuan Zhao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), Shanghai International Studies University, Shanghai, China
- School of Business and Management, Shanghai International Studies University, 550 Dalian West Road, Shanghai, 200083, China
| | - Can Zhang
- School of Economics and Management, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ruiwen Tao
- School of Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Mingjing Wang
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), Shanghai International Studies University, Shanghai, China
- School of Business and Management, Shanghai International Studies University, 550 Dalian West Road, Shanghai, 200083, China
| | - Yuan Yin
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), Shanghai International Studies University, Shanghai, China
- School of Business and Management, Shanghai International Studies University, 550 Dalian West Road, Shanghai, 200083, China
| | - Sihua Xu
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), Shanghai International Studies University, Shanghai, China.
- School of Business and Management, Shanghai International Studies University, 550 Dalian West Road, Shanghai, 200083, China.
| |
Collapse
|
20
|
Toghi A, Chizari M, Khosrowabadi R. A causal role of the right dorsolateral prefrontal cortex in random exploration. Sci Rep 2024; 14:24796. [PMID: 39433838 PMCID: PMC11493979 DOI: 10.1038/s41598-024-76025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
Decision to explore new options with uncertain outcomes or exploit familiar options with known outcomes is a fundamental challenge that the brain faces in almost all real-life decisions. Previous studies have shown that humans use two main explorative strategies to negotiate this explore-exploit tradeoff. Exploring for the sake of information is called directed exploration, and exploration driven by behavioral variability is known as random exploration. While previous neuroimaging studies have shown different neural correlates for these explorative strategies, including right frontopolar cortex (FPC), right dorsolateral prefrontal cortex (DLPFC), and dorsal anterior cingulate cortex (dACC), there is still a lack of causal evidence for most of these brain regions. Here, we focused on the right DLPFC, which was previously supported to be involved in exploration. Using the continuous theta burst stimulation (cTBS) and Horizon task on twenty-five healthy right-handed adult participants, we showed that inhibiting rDLPFC did not change directed exploration but selectively reduced random exploration, by increasing reward sensitivity over the average reward of each option. This suggests a causal role for rDLPFC in random exploration, and further supports dissociable neural implementations for these two explorative strategies.
Collapse
Affiliation(s)
- Armin Toghi
- Institute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran
| | - Mojtaba Chizari
- Institute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
21
|
Wong RK, Selvanayagam J, Johnston K, Everling S. Functional specialization and distributed processing across marmoset lateral prefrontal subregions. Cereb Cortex 2024; 34:bhae407. [PMID: 39390711 PMCID: PMC11466848 DOI: 10.1093/cercor/bhae407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
A prominent aspect of primate lateral prefrontal cortex organization is its division into several cytoarchitecturally distinct subregions. Neurophysiological investigations in macaques have provided evidence for the functional specialization of these subregions, but an understanding of the relative representational topography of sensory, social, and cognitive processes within them remains elusive. One explanatory factor is that evidence for functional specialization has been compiled largely from a patchwork of findings across studies, in many animals, and with considerable variation in stimulus sets and tasks. Here, we addressed this by leveraging the common marmoset (Callithrix jacchus) to carry out large-scale neurophysiological mapping of the lateral prefrontal cortex using high-density microelectrode arrays, and a diverse suite of test stimuli including faces, marmoset calls, and spatial working memory task. Task-modulated units and units responsive to visual and auditory stimuli were distributed throughout the lateral prefrontal cortex, while those with saccade-related activity or face-selective responses were restricted to 8aV, 8aD, 10, 46 V, and 47. Neurons with contralateral visual receptive fields were limited to areas 8aV and 8aD. These data reveal a mixed pattern of functional specialization in the lateral prefrontal cortex, in which responses to some stimuli and tasks are distributed broadly across lateral prefrontal cortex subregions, while others are more limited in their representation.
Collapse
Affiliation(s)
- Raymond Ka Wong
- Graduate Program in Neuroscience, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada
| | - Janahan Selvanayagam
- Graduate Program in Neuroscience, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada
| | - Kevin Johnston
- Graduate Program in Neuroscience, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada
| | - Stefan Everling
- Graduate Program in Neuroscience, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada
| |
Collapse
|
22
|
Wang X, Lu K, He Y, Qiao X, Gao Z, Zhang Y, Hao N. Dynamic brain networks in spontaneous gestural communication. NPJ SCIENCE OF LEARNING 2024; 9:59. [PMID: 39353927 PMCID: PMC11445455 DOI: 10.1038/s41539-024-00274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/22/2024] [Indexed: 10/03/2024]
Abstract
Gestures accent and illustrate our communication. Although previous studies have uncovered the positive effects of gestures on communication, little is known about the specific cognitive functions of different types of gestures, or the instantaneous multi-brain dynamics. Here we used the fNIRS-based hyperscanning technique to track the brain activity of two communicators, examining regions such as the PFC and rTPJ, which are part of the mirroring and mentalizing systems. When participants collaboratively solved open-ended realistic problems, we characterised the dynamic multi-brain states linked with specific social behaviours. Results demonstrated that gestures are associated with enhanced team performance, and different gestures serve distinct cognitive functions: interactive gestures are accompanied by better team originality and a more efficient inter-brain network, while fluid gestures correlate with individual cognitive fluency and efficient intra-brain states. These findings reveal a close association between social behaviours and multi-brain networks, providing a new way to explore the brain-behaviour relationship.
Collapse
Affiliation(s)
- Xinyue Wang
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Kelong Lu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingyao He
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Xinuo Qiao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Zhenni Gao
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Yu Zhang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Ning Hao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.
- Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei, China.
| |
Collapse
|
23
|
Toffoli L, Zdorovtsova N, Epihova G, Duma GM, Cristaldi FDP, Pastore M, Astle DE, Mento G. Dynamic transient brain states in preschoolers mirror parental report of behavior and emotion regulation. Hum Brain Mapp 2024; 45:e70011. [PMID: 39327923 PMCID: PMC11427750 DOI: 10.1002/hbm.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/28/2024] Open
Abstract
The temporal dynamics of resting-state networks may represent an intrinsic functional repertoire supporting cognitive control performance across the lifespan. However, little is known about brain dynamics during the preschool period, which is a sensitive time window for cognitive control development. The fast timescale of synchronization and switching characterizing cortical network functional organization gives rise to quasi-stable patterns (i.e., brain states) that recur over time. These can be inferred at the whole-brain level using hidden Markov models (HMMs), an unsupervised machine learning technique that allows the identification of rapid oscillatory patterns at the macroscale of cortical networks. The present study used an HMM technique to investigate dynamic neural reconfigurations and their associations with behavioral (i.e., parental questionnaires) and cognitive (i.e., neuropsychological tests) measures in typically developing preschoolers (4-6 years old). We used high-density EEG to better capture the fast reconfiguration patterns of the HMM-derived metrics (i.e., switching rates, entropy rates, transition probabilities and fractional occupancies). Our results revealed that the HMM-derived metrics were reliable indices of individual neural variability and differed between boys and girls. However, only brain state transition patterns toward prefrontal and default-mode brain states, predicted differences on parental-report questionnaire scores. Overall, these findings support the importance of resting-state brain dynamics as functional scaffolds for behavior and cognition. Brain state transitions may be crucial markers of individual differences in cognitive control development in preschoolers.
Collapse
Affiliation(s)
- Lisa Toffoli
- NeuroDev Lab, Department of General PsychologyUniversity of PaduaPaduaItaly
| | | | - Gabriela Epihova
- MRC Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
| | - Gian Marco Duma
- Scientific Institute, IRCCS E. Medea, ConeglianoTrevisoItaly
| | | | - Massimiliano Pastore
- Department of Developmental Psychology and SocialisationUniversity of PaduaPaduaItaly
| | - Duncan E. Astle
- MRC Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
- Department of PsychiatryUniversity of CambridgeCambridgeUK
| | - Giovanni Mento
- NeuroDev Lab, Department of General PsychologyUniversity of PaduaPaduaItaly
- Scientific Institute, IRCCS E. Medea, ConeglianoTrevisoItaly
| |
Collapse
|
24
|
Feizpour A, Buckley MJ, Mundinano IC, Rosa MGP, Mansouri FA. The role of frontopolar cortex in adjusting the balance between response execution and action inhibition in anthropoids. Prog Neurobiol 2024; 241:102671. [PMID: 39369837 DOI: 10.1016/j.pneurobio.2024.102671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/25/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Executive control of behaviour entails keeping a fine balance between response execution and action inhibition. The most anterior part of the prefrontal cortex (frontopolar cortex) is highly developed in anthropoids; however, no previous study has examined its essential (indispensable) role in regulating the interplay between action execution and inhibition. In this cross-species study, we examine the performance of humans and macaque monkeys in the context of a stop-signal task and then assess the consequence of selective and bilateral damage to frontopolar cortex on monkeys' behaviour. Humans and monkeys showed significant within-session practice-related adjustments in both response execution (increase in response time (RT) and decrease in response variabilities) and action inhibition (enhanced inhibition). Furthermore, both species expressed context-dependent (post-error and post-stop) behavioral adjustments. In post-lesion testing, frontopolar-damaged monkeys had a longer RT and lower percentage of timeout trials, compared to their pre-lesion performance. The practice-related changes in mean RT and in RT variability were significantly heightened in frontopolar-damaged monkeys. They also showed attenuated post-error, but exaggerated post-stop, behavioural adjustments. Importantly, frontopolar damage had no significant effects on monkeys' inhibition ability. Our findings indicate that frontopolar cortex plays a critical role in allocation of control to response execution, but not action inhibition.
Collapse
Affiliation(s)
- Azadeh Feizpour
- Cognitive Neuroscience Laboratory, Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Mark J Buckley
- Department of Experimental Psychology, Oxford University, Oxford OX1 3UD, UK
| | - Inaki C Mundinano
- Cognitive Neuroscience Laboratory, Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia.
| | - Farshad Alizadeh Mansouri
- Cognitive Neuroscience Laboratory, Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia.
| |
Collapse
|
25
|
Dai M, Gao Y, Hu X, Fu G, Hu Z, Sai L. Preschoolers' deception related to prefrontal cortex activation: An fNIRS study. Neuroimage 2024; 298:120795. [PMID: 39153522 DOI: 10.1016/j.neuroimage.2024.120795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024] Open
Abstract
Deception is an essential part of children's moral development. Previous developmental studies have shown that children start to deceive at the age of 3 years, and as age increased to 5 years, almost all children were able to deceive for their own benefit. Although behavioral studies have indicated that the emergence and development of deception are related to cognitive abilities, their neural correlates remain poorly understood. Therefore, the present study examined the neural correlates underlying deception in preschool-aged children (N = 89, 44 % boys, age 3.13 to 5.96 years, Han Chinese) using functional near-infrared spectroscopy. A modified hide-and-seek paradigm was applied to elicit deceptive and truth-telling behaviors. The results showed that activation of bilateral dorsolateral prefrontal cortex was positively associated with the tendency to deceive an opponent in a competitive game in the 3-year-olds. In addition, 3-year-olds who showed a high tendency to deceive showed the same brain activation in the frontopolar area as 5-year-olds did when engaged in deception, whereas no such effect was found in 3-year-olds who never engaged in deception. These findings underscore the link between preschoolers' deception and prefrontal cortex function.
Collapse
Affiliation(s)
- Meng Dai
- Department of Psychology, Hangzhou Normal University, Hangzhou, China; Zhejiang Philosophy and Social Science, Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou, China; Department of Psychology, National University of Singapore, Singapore
| | - Yu Gao
- Department of Psychology, Hangzhou Normal University, Hangzhou, China; Zhejiang Philosophy and Social Science, Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou, China
| | - Xintai Hu
- Department of Psychology, Hangzhou Normal University, Hangzhou, China; Zhejiang Philosophy and Social Science, Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou, China
| | - Genyue Fu
- Department of Psychology, Hangzhou Normal University, Hangzhou, China; Zhejiang Philosophy and Social Science, Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou, China
| | - Zhishan Hu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Liyang Sai
- Department of Psychology, Hangzhou Normal University, Hangzhou, China; Zhejiang Philosophy and Social Science, Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
26
|
Güldener L, Saravanakumar P, Happel MFK, Ohl FW, Vollmer M, Pollmann S. Differential patch-leaving behavior during probabilistic foraging in humans and gerbils. Commun Biol 2024; 7:1000. [PMID: 39147833 PMCID: PMC11327252 DOI: 10.1038/s42003-024-06683-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/06/2024] [Indexed: 08/17/2024] Open
Abstract
Foraging confronts animals, including humans, with the need to balance exploration and exploitation: exploiting a resource until it depletes and then deciding when to move to a new location for more resources. Research across various species has identified rules for when to leave a depleting patch, influenced by environmental factors like patch quality. Here we compare human and gerbil patch-leaving behavior through two analogous tasks: a visual search for humans and a physical foraging task for gerbils, both involving patches with randomly varying initial rewards that decreased exponentially. Patch-leaving decisions of humans but not gerbils follow an incremental mechanism based on reward encounters that is considered optimal for maximizing reward yields in variable foraging environments. The two species also differ in their giving-up times, and some human subjects tend to overharvest. However, gerbils and individual humans who do not overharvest are equally sensitive to declining collection rates in accordance with the marginal value theorem. Altogether this study introduces a paradigm for a between-species comparison on how to resolve the exploitation-exploration dilemma.
Collapse
Affiliation(s)
- Lasse Güldener
- Department of Experimental Psychology, Institute of Psychology, Otto-von-Guericke-University, 39106, Magdeburg, Germany.
| | - Parthiban Saravanakumar
- Department of Systems Physiology of Learning, Leibniz-Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Max F K Happel
- Department of Systems Physiology of Learning, Leibniz-Institute for Neurobiology, 39118, Magdeburg, Germany
- Center for Behavioral Brain Sciences, 39106, Magdeburg, Germany
- Medical School Berlin, Faculty for Medicine, 14197, Berlin, Germany
| | - Frank W Ohl
- Department of Systems Physiology of Learning, Leibniz-Institute for Neurobiology, 39118, Magdeburg, Germany
- Center for Behavioral Brain Sciences, 39106, Magdeburg, Germany
- Institute of Biology, Otto-von-Guericke-University, 39106, Magdeburg, Germany
| | - Maike Vollmer
- Department of Systems Physiology of Learning, Leibniz-Institute for Neurobiology, 39118, Magdeburg, Germany
- Department of Experimental Audiology, Otto-von-Guericke-University, 39120, Magdeburg, Germany
- University Clinic of Otolaryngology, Head and Neck Surgery, Otto-von-Guericke-University, 39120, Magdeburg, Germany
| | - Stefan Pollmann
- Department of Experimental Psychology, Institute of Psychology, Otto-von-Guericke-University, 39106, Magdeburg, Germany
- Center for Behavioral Brain Sciences, 39106, Magdeburg, Germany
| |
Collapse
|
27
|
Zhou X, Ghorbani F, Roessner V, Hommel B, Prochnow A, Beste C. The metacontrol of event segmentation-A neurophysiological and behavioral perspective. Hum Brain Mapp 2024; 45:e26727. [PMID: 39081074 PMCID: PMC11289429 DOI: 10.1002/hbm.26727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/27/2024] [Accepted: 05/06/2024] [Indexed: 08/03/2024] Open
Abstract
During our everyday life, the constant flow of information is divided into discrete events, a process conceptualized in Event Segmentation Theory (EST). How people perform event segmentation and the resulting granularity of encapsulated segments likely depends on their metacontrol style. Yet, the underlying neural mechanisms remain undetermined. The current study examines how the metacontrol style affects event segmentation through the analysis of EEG data using multivariate pattern analysis (MVPA) and source localization analysis. We instructed two groups of healthy participants to either segment a movie as fine-grained as possible (fine-grain group) or provided no such instruction (free-segmentation group). The fine-grain group showed more segments and a higher likelihood to set event boundaries upon scene changes, which supports the notion that cognitive control influences segmentation granularity. On a neural level, representational dynamics were decodable 400 ms prior to the decision to close a segment and open a new one, and especially fronto-polar regions (BA10) were associated with this representational dynamic. Groups differed in their use of this representational dynamics to guide behavior and there was a higher sensitivity to incoming information in the Fine-grain group. Moreover, a higher likelihood to set event boundaries was reflected by activity increases in the insular cortex suggesting an increased monitoring of potentially relevant upcoming events. The study connects the EST with the metacontrol framework and relates these to overarching neural concepts of prefrontal cortex function.
Collapse
Affiliation(s)
- Xianzhen Zhou
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU DresdenDresdenGermany
| | - Foroogh Ghorbani
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU DresdenDresdenGermany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU DresdenDresdenGermany
| | | | - Astrid Prochnow
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU DresdenDresdenGermany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU DresdenDresdenGermany
- School of PsychologyShandong Normal UniversityJinanChina
| |
Collapse
|
28
|
Espinoza Oyarce DA, Burns RA, Shaw ME, Butterworth P, Cherbuin N. Neural correlates of the revised reinforcement sensitivity theory: A cross-sectional structural neuroimaging study in middle-aged adults. Psychophysiology 2024; 61:e14574. [PMID: 38546153 DOI: 10.1111/psyp.14574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/12/2024] [Accepted: 03/13/2024] [Indexed: 07/07/2024]
Abstract
The revised reinforcement sensitivity theory (RST) proposes that neurobiological systems control behavior: the fight-flight-freeze (FFFS) for avoidance of threat; behavioral approach/activation (BAS) for approach to rewards; and behavioral inhibition (BIS) for conflict resolution when avoidance and approach are possible. Neuroimaging studies have confirmed some theoretical associations between brain structures and the BAS and BIS; however, little representative population data are available for the FFFS. We investigated the neural correlates of the revised RST in a sample of 404 middle-aged adults (Mage = 47.18 (SD = 1.38); 54.5% female). Participants underwent structural magnetic resonance imaging and completed health questionnaires and the BIS/BAS/FFFS scales. We used multiple regression analyses to investigate the association between scale scores and volumes of a priori theoretically linked regions of interest while controlling for sex, age, intracranial volume, and cardio-metabolic variables; and conducted exploratory analyses on cortical thickness. The BIS was negatively associated with hippocampus laterality. At standard significance levels, the fear component of the FFFS was positively associated with anterior cingulate cortex; the BAS was positively associated with bilateral caudate; and the BIS was positively associated with posterior cingulate cortex volume. Furthermore, these neurobiological systems showed distinct patterns of association with cortical thickness though future work is needed. Our results showed that the neurobiological systems of the revised RST characterized in rodents can also be identified in the human brain.
Collapse
Affiliation(s)
- Daniela A Espinoza Oyarce
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Richard A Burns
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Marnie E Shaw
- College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Peter Butterworth
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Nicolas Cherbuin
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
29
|
Manrique HM, Friston KJ, Walker MJ. 'Snakes and ladders' in paleoanthropology: From cognitive surprise to skillfulness a million years ago. Phys Life Rev 2024; 49:40-70. [PMID: 38513522 DOI: 10.1016/j.plrev.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 03/23/2024]
Abstract
A paradigmatic account may suffice to explain behavioral evolution in early Homo. We propose a parsimonious account that (1) could explain a particular, frequently-encountered, archeological outcome of behavior in early Homo - namely, the fashioning of a Paleolithic stone 'handaxe' - from a biological theoretic perspective informed by the free energy principle (FEP); and that (2) regards instances of the outcome as postdictive or retrodictive, circumstantial corroboration. Our proposal considers humankind evolving as a self-organizing biological ecosystem at a geological time-scale. We offer a narrative treatment of this self-organization in terms of the FEP. Specifically, we indicate how 'cognitive surprises' could underwrite an evolving propensity in early Homo to express sporadic unorthodox or anomalous behavior. This co-evolutionary propensity has left us a legacy of Paleolithic artifacts that is reminiscent of a 'snakes and ladders' board game of appearances, disappearances, and reappearances of particular archeological traces of Paleolithic behavior. When detected in the Early and Middle Pleistocene record, anthropologists and archeologists often imagine evidence of unusual or novel behavior in terms of early humankind ascending the rungs of a figurative phylogenetic 'ladder' - as if these corresponded to progressive evolution of cognitive abilities that enabled incremental achievements of increasingly innovative technical prowess, culminating in the cognitive ascendancy of Homo sapiens. The conjecture overlooks a plausible likelihood that behavior by an individual who was atypical among her conspecifics could have been disregarded in a community of Hominina (for definition see Appendix 1) that failed to recognize, imagine, or articulate potential advantages of adopting hitherto unorthodox behavior. Such failure, as well as diverse fortuitous demographic accidents, would cause exceptional personal behavior to be ignored and hence unremembered. It could disappear by a pitfall, down a 'snake', as it were, in the figurative evolutionary board game; thereby causing a discontinuity in the evolution of human behavior that presents like an evolutionary puzzle. The puzzle discomforts some paleoanthropologists trained in the natural and life sciences. They often dismiss it, explaining it away with such self-justifying conjectures as that, maybe, separate paleospecies of Homo differentially possessed different cognitive abilities, which, supposedly, could account for the presence or absence in the Pleistocene archeological record of traces of this or that behavioral outcome or skill. We argue that an alternative perspective - that inherits from the FEP and an individual's 'active inference' about its surroundings and of its own responses - affords a prosaic, deflationary, and parsimonious way to account for appearances, disappearances, and reappearances of particular behavioral outcomes and skills of early humankind.
Collapse
Affiliation(s)
- Héctor Marín Manrique
- Department of Psychology and Sociology, Universidad de Zaragoza, Ciudad Escolar, s/n, Teruel 44003, Spain
| | - Karl John Friston
- Imaging Neuroscience, Institute of Neurology, and The Wellcome Centre for Human Imaging, University College London, London WC1N 3AR, UK
| | - Michael John Walker
- Physical Anthropology, Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad de Murcia, Campus Universitario de Espinardo Edificio 20, Murcia 30100, Spain.
| |
Collapse
|
30
|
Güldener L, Pollmann S. Behavioral Bias for Exploration Is Associated with Enhanced Signaling in the Lateral and Medial Frontopolar Cortex. J Cogn Neurosci 2024; 36:1156-1171. [PMID: 38437186 DOI: 10.1162/jocn_a_02132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Should we keep doing what we know works for us, or should we risk trying something new as it could work even better? The exploration-exploitation dilemma is ubiquitous in daily life decision-making, and balancing between the two is crucial for adaptive behavior. Yet, we only have started to unravel the neurocognitive mechanisms that help us to find this balance in practice. Analyzing BOLD signals of healthy young adults during virtual foraging, we could show that a behavioral tendency for prolonged exploitation was associated with weakened signaling during exploration in central node points of the frontoparietal attention network, plus the frontopolar cortex. These results provide an important link between behavioral heuristics that we use to balance between exploitation and exploration and the brain function that supports shifts from one tendency to the other. Importantly, they stress that interindividual differences in behavioral strategies are reflected in differences in brain activity during exploration and should thus be more in the focus of basic research that aims at delineating general laws governing visual attention.
Collapse
|
31
|
Green GD, Jacewicz E, Santosa H, Arzbecker LJ, Fox RA. Evaluating Speaker-Listener Cognitive Effort in Speech Communication Through Brain-to-Brain Synchrony: A Pilot Functional Near-Infrared Spectroscopy Investigation. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:1339-1359. [PMID: 38535722 DOI: 10.1044/2024_jslhr-23-00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
PURPOSE We explore a new approach to the study of cognitive effort involved in listening to speech by measuring the brain activity in a listener in relation to the brain activity in a speaker. We hypothesize that the strength of this brain-to-brain synchrony (coupling) reflects the magnitude of cognitive effort involved in verbal communication and includes both listening effort and speaking effort. We investigate whether interbrain synchrony is greater in native-to-native versus native-to-nonnative communication using functional near-infrared spectroscopy (fNIRS). METHOD Two speakers participated, a native speaker of American English and a native speaker of Korean who spoke English as a second language. Each speaker was fitted with the fNIRS cap and told short stories. The native English speaker provided the English narratives, and the Korean speaker provided both the nonnative (accented) English and Korean narratives. In separate sessions, fNIRS data were obtained from seven English monolingual participants ages 20-24 years who listened to each speaker's stories. After listening to each story in native and nonnative English, they retold the content, and their transcripts and audio recordings were analyzed for comprehension and discourse fluency, measured in the number of hesitations and articulation rate. No story retellings were obtained for narratives in Korean (an incomprehensible language for English listeners). Utilizing fNIRS technique termed sequential scanning, we quantified the brain-to-brain synchronization in each speaker-listener dyad. RESULTS For native-to-native dyads, multiple brain regions associated with various linguistic and executive functions were activated. There was a weaker coupling for native-to-nonnative dyads, and only the brain regions associated with higher order cognitive processes and functions were synchronized. All listeners understood the content of all stories, but they hesitated significantly more when retelling stories told in accented English. The nonnative speaker hesitated significantly more often than the native speaker and had a significantly slower articulation rate. There was no brain-to-brain coupling during listening to Korean, indicating a break in communication when listeners failed to comprehend the speaker. CONCLUSIONS We found that effortful speech processing decreased interbrain synchrony and delayed comprehension processes. The obtained brain-based and behavioral patterns are consistent with our proposal that cognitive effort in verbal communication pertains to both the listener and the speaker and that brain-to-brain synchrony can be an indicator of differences in their cumulative communicative effort. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.25452142.
Collapse
Affiliation(s)
- Geoff D Green
- Department of Speech and Hearing Science, The Ohio State University, Columbus
| | - Ewa Jacewicz
- Department of Speech and Hearing Science, The Ohio State University, Columbus
| | | | - Lian J Arzbecker
- Department of Speech and Hearing Science, The Ohio State University, Columbus
| | - Robert A Fox
- Department of Speech and Hearing Science, The Ohio State University, Columbus
| |
Collapse
|
32
|
Hwang J, Liu C, Winesett SP, Chatterjee SA, Gruber AD, Swanson CW, Manini TM, Hass CJ, Seidler RD, Ferris DP, Roy A, Clark DJ. Prefrontal cortical activity during uneven terrain walking in younger and older adults. Front Aging Neurosci 2024; 16:1389488. [PMID: 38765771 PMCID: PMC11099210 DOI: 10.3389/fnagi.2024.1389488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction Walking in complex environments increases the cognitive demand of locomotor control; however, our understanding of the neural mechanisms contributing to walking on uneven terrain is limited. We used a novel method for altering terrain unevenness on a treadmill to investigate the association between terrain unevenness and cortical activity in the prefrontal cortex, a region known to be involved in various cognitive functions. Methods Prefrontal cortical activity was measured with functional near infrared spectroscopy while participants walked on a novel custom-made terrain treadmill surface across four different terrains: flat, low, medium, and high levels of unevenness. The assessments were conducted in younger adults, older adults with better mobility function and older adults with worse mobility function. Mobility function was assessed using the Short Physical Performance Battery. The primary hypothesis was that increasing the unevenness of the terrain would result in greater prefrontal cortical activation in all groups. Secondary hypotheses were that heightened prefrontal cortical activation would be observed in the older groups relative to the younger group, and that prefrontal cortical activation would plateau at higher levels of terrain unevenness for the older adults with worse mobility function, as predicted by the Compensation Related Utilization of Neural Circuits Hypothesis. Results The results revealed a significant main effect of terrain, indicating a significant increase in prefrontal cortical activation with increasing terrain unevenness during walking in all groups. A significant main effect of group revealed that prefrontal cortical activation was higher in older adults with better mobility function compared to younger adults and older adults with worse mobility function in all pooled terrains, but there was no significant difference in prefrontal cortical activation between older adults with worse mobility function and younger adults. Contrary to our hypothesis, the older group with better mobility function displayed a sustained increase in activation but the other groups did not, suggestive of neural compensation. Additional findings were that task-related increases in prefrontal cortical activation during walking were lateralized to the right hemisphere in older adults with better mobility function but were bilateral in older adults with worse mobility function and younger adults. Discussion These findings support that compared to walking on a flat surface, walking on uneven terrain surfaces increases demand on cognitive control resources as measured by prefrontal cortical activation.
Collapse
Affiliation(s)
- Jungyun Hwang
- Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Chang Liu
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Steven P. Winesett
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| | - Sudeshna A. Chatterjee
- Department of Physical Therapy and Rehabilitation Sciences, Drexel University, Philadelphia, PA, United States
| | - Anthony D. Gruber
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| | - Clayton W. Swanson
- Department of Neurology, University of Florida, Gainesville, FL, United States
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| | - Todd M. Manini
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, United States
| | - Chris J. Hass
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Rachael D. Seidler
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Daniel P. Ferris
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Arkaprava Roy
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - David J. Clark
- Department of Neurology, University of Florida, Gainesville, FL, United States
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| |
Collapse
|
33
|
Borot L, Ogden R, Bennett SJ. Prefrontal cortex activity and functional organisation in dual-task ocular pursuit is affected by concurrent upper limb movement. Sci Rep 2024; 14:9996. [PMID: 38693184 PMCID: PMC11063197 DOI: 10.1038/s41598-024-57012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/13/2024] [Indexed: 05/03/2024] Open
Abstract
Tracking a moving object with the eyes seems like a simple task but involves areas of prefrontal cortex (PFC) associated with attention, working memory and prediction. Increasing the demand on these processes with secondary tasks can affect eye movements and/or perceptual judgments. This is particularly evident in chronic or acute neurological conditions such as Alzheimer's disease or mild traumatic brain injury. Here, we combined near infrared spectroscopy and video-oculography to examine the effects of concurrent upper limb movement, which provides additional afference and efference that facilitates tracking of a moving object, in a novel dual-task pursuit protocol. We confirmed the expected effects on judgement accuracy in the primary and secondary tasks, as well as a reduction in eye velocity when the moving object was occluded. Although there was limited evidence of oculo-manual facilitation on behavioural measures, performing concurrent upper limb movement did result in lower activity in left medial PFC, as well as a change in PFC network organisation, which was shown by Graph analysis to be locally and globally more efficient. These findings extend upon previous work by showing how PFC is functionally organised to support eye-hand coordination when task demands more closely replicate daily activities.
Collapse
Affiliation(s)
- Lénaïc Borot
- School of Sport and Exercise Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, UK
| | - Ruth Ogden
- School of Psychology, Faculty of Health, Liverpool John Moores University, Liverpool, UK
| | - Simon J Bennett
- School of Sport and Exercise Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
34
|
Miyamoto K. Neural circuits for retrospective and prospective introspection for the past, present and future in macaque monkeys and humans. Neurosci Res 2024; 201:46-49. [PMID: 38460842 DOI: 10.1016/j.neures.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 03/11/2024]
Abstract
For animals, including humans, to have self-awareness, the ability to reflect on one's own perceptions and cognitions, which is known as metacognition, and an understanding of consistency of the self from the past to the present and into the future based on metacognition is essential. Through the mediation of self-consciousness, animals are thought to be able to proactively act to change their environment rather than passively responding to changes in their environment. However, it has not been known whether animals have self-awareness, and, if so, how it is implemented neurobiologically. In this review article, I introduce our studies examining the neural basis of metacognitive abilities for past, present, and future actions in macaque monkeys and humans, and explore the evolutionary origins of self-awareness.
Collapse
Affiliation(s)
- Kentaro Miyamoto
- Laboratory for Imagination and Executive Functions, RIKEN Center for Brain Science, Wako, Japan.
| |
Collapse
|
35
|
Leong C, Zhao Z, Yuan Z, Liu B. Distinct brain network organizations between club players and novices under different difficulty levels. Brain Behav 2024; 14:e3488. [PMID: 38641879 PMCID: PMC11031636 DOI: 10.1002/brb3.3488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/17/2024] [Accepted: 03/31/2024] [Indexed: 04/21/2024] Open
Abstract
SIGNIFICANT Chunk memory is one of the essential cognitive functions for high-expertise (HE) player to make efficient decisions. However, it remains unknown how the neural mechanisms of chunk memory processes mediate or alter chess players' performance when facing different opponents. AIM This study aimed at inspecting the significant brain networks associated with chunk memory, which would vary between club players and novices. APPROACH Functional networks and topological features of 20 club players (HE) and 20 novice players (LE) were compared at different levels of difficulty by means of functional near-infrared spectroscopy. RESULTS Behavioral performance indicated that the club player group was unaffected by differences in difficulty. Furthermore, the club player group demonstrated functional connectivity among the dorsolateral prefrontal cortex, the frontopolar cortex, the supramarginal gyrus, and the subcentral gyrus, as well as higher clustering coefficients and lower path lengths in the high-difficulty task. CONCLUSIONS The club player group illustrated significant frontal-parietal functional connectivity patterns and topological characteristics, suggesting enhanced chunking processes for improved chess performance.
Collapse
Affiliation(s)
- Chantat Leong
- Centre for Cognitive and Brain SciencesUniversity of MacauMacau SARChina
- Faculty of Health SciencesUniversity of MacauMacau SARChina
| | - Zhiying Zhao
- Centre for Cognitive and Brain SciencesUniversity of MacauMacau SARChina
| | - Zhen Yuan
- Centre for Cognitive and Brain SciencesUniversity of MacauMacau SARChina
- Faculty of Health SciencesUniversity of MacauMacau SARChina
| | - Bin Liu
- Department of EmergencyZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| |
Collapse
|
36
|
Aberg KC, Paz R. The neurobehavioral correlates of exploration without learning: Trading off value for explicit, prospective, and variable information gains. Cell Rep 2024; 43:113880. [PMID: 38416639 DOI: 10.1016/j.celrep.2024.113880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/10/2024] [Accepted: 02/13/2024] [Indexed: 03/01/2024] Open
Abstract
Exploration is typically motivated by gaining information, with previous research showing that potential information gains drive a "directed" type of exploration. Yet, this research usually studies exploration in the context of learning paradigms and does not directly manipulate multiple levels of information gain. Here, we present a task that isolates learning from decision-making and controls the magnitude of prospective information gains. As predicted, participants explore more with larger future information gains. Both value gains and information gains, at a trial-by-trial level, engage the ventromedial prefrontal cortex (vmPFC), the ventral striatum (VStr), the amygdala, the dorsal anterior cingulate cortex (dACC), and the anterior insula (aINS). Moreover, individual sensitivities to value gains and information gains modulate the vmPFC, dACC, and aINS, but the amygdala and VStr are modulated only by individual sensitivities to information gains. Overall, we identify the neural circuitry of information-based exploration and its relationship with inter-individual exploration biases.
Collapse
Affiliation(s)
- Kristoffer C Aberg
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Rony Paz
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
37
|
Mariani F, Calandri I, Dansilio S. Criminal behaviors: A theory of mind problem? APPLIED NEUROPSYCHOLOGY. ADULT 2024:1-10. [PMID: 38466873 DOI: 10.1080/23279095.2024.2326935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Theory of mind (ToM) has been addressed in relation to functional alterations of certain brain regions and their connections. The objective is to evaluate ToM in imprisoned criminal offenders and to analyze their relationship with the functions linked to the prefrontal cortex according to their expression in neuropsychological tests. The sample was composed of 52 subjects. 27 committed instrumental homicides and 25 crimes of sale and/or possession of narcotics. A control group was taken, 19 healthy subjects at liberty. The Faux-Pas (FP) and the Reading the Mind in the Eyes tests were used. A neuropsychological battery of executive functions and functions related to the frontal lobes and Hare's Psychopathy Checklist-Revised (PCL-R) was also applied. The criminal groups have comparable performances in all measures. The control group (in freedom) showed higher performance, with statistical significance, in the Faux-Pas test. Moderate negative correlations were found between the FP and the PCL-R. A distinction between affective and cognitive ToM could be affirmed, with people deprived of liberty presenting deficient functioning in the cognitive ToM test. This difference in performance could be linked to the disruptive event with the social norm and not so much with the violent homicide act itself.
Collapse
Affiliation(s)
- Francesca Mariani
- Institute of Fundamentals in Psychology, Faculty of Psychology
- Department of Neuropsychology Clinical Hospital, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | | | - Sergio Dansilio
- Institute of Fundamentals in Psychology, Faculty of Psychology
- Department of Neuropsychology Clinical Hospital, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| |
Collapse
|
38
|
Behrendt MG, Clark C, Elliott M, Dauer J. Relation of life sciences students' metacognitive monitoring to neural activity during biology error detection. NPJ SCIENCE OF LEARNING 2024; 9:16. [PMID: 38438416 PMCID: PMC10912288 DOI: 10.1038/s41539-024-00231-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
Metacognitive calibration-the capacity to accurately self-assess one's performance-forms the basis for error detection and self-monitoring and is a potential catalyst for conceptual change. Limited brain imaging research on authentic learning tasks implicates the lateral prefrontal and anterior cingulate brain regions in expert scientific reasoning. This study aimed to determine how variation in undergraduate life sciences students' metacognitive calibration relates to their brain activity when evaluating the accuracy of biological models. Fifty undergraduate students enrolled in an introductory life sciences course completed a biology model error detection task during fMRI. Students with higher metacognitive calibration recruited lateral prefrontal regions linked in prior research to expert STEM reasoning to a greater extent than those with lower metacognitive calibration. Findings suggest that metacognition relates to important individual differences in undergraduate students' use of neural resources during an authentic educational task and underscore the importance of fostering metacognitive calibration in the classroom.
Collapse
Affiliation(s)
- Mei Grace Behrendt
- Department of Educational Psychology, University of Lincoln-Nebraska, Lincoln, NE, USA.
| | - Carrie Clark
- Department of Educational Psychology, University of Lincoln-Nebraska, Lincoln, NE, USA
| | - McKenna Elliott
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Joseph Dauer
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
39
|
Zhao Q, Zhao W, Lu C, Du H, Chi P. Interpersonal neural synchronization during social interactions in close relationships: A systematic review and meta-analysis of fNIRS hyperscanning studies. Neurosci Biobehav Rev 2024; 158:105565. [PMID: 38295965 DOI: 10.1016/j.neubiorev.2024.105565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
In recent years, researchers have used hyperscanning techniques to explore how brains interact during various human activities. These studies have revealed a phenomenon called interpersonal neural synchronization (INS), but little research has focused on the overall effect of INS in close relationships. To address this gap, this study aims to synthesize and analyze the existing literature on INS during social interactions in close relationships. We conducted a meta-analysis of 17 functional near-infrared spectroscopy (fNIRS) hyperscanning studies involving 1149 dyads participants, including romantic couples and parent-child dyads. The results revealed robust and consistent INS in the frontal, temporal, and parietal regions of the brain and found similar INS patterns in couples and parent-child studies, providing solid empirical evidence for the attachment theory. Moreover, the age of children and brain areas were significant predictors of the effect size in parent-child research. The developmental stage of children and the mismatched development of brain structures might be the crucial factors for the difference in neural performance in social and cognitive behaviors in parent-child dyads.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Psychology, Faculty of Social Sciences, University of Macau, Macau 999078, Macau Special Administrative Region of China; Center for Cognitive and Brain Sciences, University of Macau, Macau 999078, Macau Special Administrative Region of China
| | - Wan Zhao
- School of Psychology, Nanjing Normal University, Nanjing 210097, Jiangsu, China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Hongfei Du
- Department of Psychology, Beijing Normal University at Zhuhai, Zhuhai 519087, Guangdong, China; Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, China.
| | - Peilian Chi
- Department of Psychology, Faculty of Social Sciences, University of Macau, Macau 999078, Macau Special Administrative Region of China; Center for Cognitive and Brain Sciences, University of Macau, Macau 999078, Macau Special Administrative Region of China.
| |
Collapse
|
40
|
Nougaret S, Ferrucci L, Ceccarelli F, Sacchetti S, Benozzo D, Fascianelli V, Saunders RC, Renaud L, Genovesio A. Neurons in the monkey frontopolar cortex encode learning stage and goal during a fast learning task. PLoS Biol 2024; 22:e3002500. [PMID: 38363801 PMCID: PMC10903959 DOI: 10.1371/journal.pbio.3002500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 02/29/2024] [Accepted: 01/17/2024] [Indexed: 02/18/2024] Open
Abstract
The frontopolar cortex (FPC) is, to date, one of the least understood regions of the prefrontal cortex. The current understanding of its function suggests that it plays a role in the control of exploratory behaviors by coordinating the activities of other prefrontal cortex areas involved in decision-making and exploiting actions based on their outcomes. Based on this hypothesis, FPC would drive fast-learning processes through a valuation of the different alternatives. In our study, we used a modified version of a well-known paradigm, the object-in-place (OIP) task, to test this hypothesis in electrophysiology. This paradigm is designed to maximize learning, enabling monkeys to learn in one trial, which is an ability specifically impaired after a lesion of the FPC. We showed that FPC neurons presented an extremely specific pattern of activity by representing the learning stage, exploration versus exploitation, and the goal of the action. However, our results do not support the hypothesis that neurons in the frontal pole compute an evaluation of different alternatives. Indeed, the position of the chosen target was strongly encoded at its acquisition, but the position of the unchosen target was not. Once learned, this representation was also found at the problem presentation, suggesting a monitoring activity of the synthetic goal preceding its acquisition. Our results highlight important features of FPC neurons in fast-learning processes without confirming their role in the disengagement of cognitive control from the current goals.
Collapse
Affiliation(s)
- Simon Nougaret
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Ferrucci
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Francesco Ceccarelli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- PhD program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Stefano Sacchetti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Danilo Benozzo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Valeria Fascianelli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Richard C. Saunders
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, Maryland, United States of America
| | - Luc Renaud
- Institut de Neurosciences de la Timone, UMR7289, Centre National de la Recherche Scientifique and Aix-Marseille Université, Marseille, France
| | - Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
41
|
Rolls ET, Deco G, Huang CC, Feng J. The connectivity of the human frontal pole cortex, and a theory of its involvement in exploit versus explore. Cereb Cortex 2024; 34:bhad416. [PMID: 37991264 DOI: 10.1093/cercor/bhad416] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/23/2023] Open
Abstract
The frontal pole is implicated in humans in whether to exploit resources versus explore alternatives. Effective connectivity, functional connectivity, and tractography were measured between six human frontal pole regions and for comparison 13 dorsolateral and dorsal prefrontal cortex regions, and the 360 cortical regions in the Human Connectome Project Multi-modal-parcellation atlas in 171 HCP participants. The frontal pole regions have effective connectivity with Dorsolateral Prefrontal Cortex regions, the Dorsal Prefrontal Cortex, both implicated in working memory; and with the orbitofrontal and anterior cingulate cortex reward/non-reward system. There is also connectivity with temporal lobe, inferior parietal, and posterior cingulate regions. Given this new connectivity evidence, and evidence from activations and damage, it is proposed that the frontal pole cortex contains autoassociation attractor networks that are normally stable in a short-term memory state, and maintain stability in the other prefrontal networks during stable exploitation of goals and strategies. However, if an input from the orbitofrontal or anterior cingulate cortex that expected reward, non-reward, or punishment is received, this destabilizes the frontal pole and thereby other prefrontal networks to enable exploration of competing alternative goals and strategies. The frontal pole connectivity with reward systems may be key in exploit versus explore.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, United Kingdom
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain
- Brain and Cognition, Pompeu Fabra University, Barcelona 08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200602, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 200602, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| |
Collapse
|
42
|
Mahmoodi A, Harbison C, Bongioanni A, Emberton A, Roumazeilles L, Sallet J, Khalighinejad N, Rushworth MFS. A frontopolar-temporal circuit determines the impact of social information in macaque decision making. Neuron 2024; 112:84-92.e6. [PMID: 37863039 PMCID: PMC10914637 DOI: 10.1016/j.neuron.2023.09.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/06/2023] [Accepted: 09/26/2023] [Indexed: 10/22/2023]
Abstract
When choosing, primates are guided not only by personal experience of objects but also by social information such as others' attitudes toward the objects. Crucially, both sources of information-personal and socially derived-vary in reliability. To choose optimally, one must sometimes override choice guidance by personal experience and follow social cues instead, and sometimes one must do the opposite. The dorsomedial frontopolar cortex (dmFPC) tracks reliability of social information and determines whether it will be attended to guide behavior. To do this, dmFPC activity enters specific patterns of interaction with a region in the mid-superior temporal sulcus (mSTS). Reversible disruption of dmFPC activity with transcranial ultrasound stimulation (TUS) led macaques to fail to be guided by social information when it was reliable but to be more likely to use it when it was unreliable. By contrast, mSTS disruption uniformly downregulated the impact of social information on behavior.
Collapse
Affiliation(s)
- Ali Mahmoodi
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Caroline Harbison
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Alessandro Bongioanni
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK; Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France
| | - Andrew Emberton
- Department of Biomedical Services, University of Oxford, Oxford, UK
| | - Lea Roumazeilles
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Jerome Sallet
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK; Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France
| | - Nima Khalighinejad
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Matthew F S Rushworth
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Alizadeh Mansouri F, Buckley MJ, Tanaka K. Mapping causal links between prefrontal cortical regions and intra-individual behavioral variability. Nat Commun 2024; 15:140. [PMID: 38168052 PMCID: PMC10762061 DOI: 10.1038/s41467-023-44341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Intra-individual behavioral variability is significantly heightened by aging or neuropsychological disorders, however it is unknown which brain regions are causally linked to such variabilities. We examine response time (RT) variability in 21 macaque monkeys performing a rule-guided decision-making task. In monkeys with selective-bilateral lesions in the anterior cingulate cortex (ACC) or in the dorsolateral prefrontal cortex, cognitive flexibility is impaired, but the RT variability is significantly diminished. Bilateral lesions within the frontopolar cortex or within the mid-dorsolateral prefrontal cortex, has no significant effect on cognitive flexibility or RT variability. In monkeys with lesions in the posterior cingulate cortex, the RT variability significantly increases without any deficit in cognitive flexibility. The effect of lesions in the orbitofrontal cortex (OFC) is unique in that it leads to deficits in cognitive flexibility and a significant increase in RT variability. Our findings indicate remarkable dissociations in contribution of frontal cortical regions to behavioral variability. They suggest that the altered variability in OFC-lesioned monkeys is related to deficits in assessing and accumulating evidence to inform a rule-guided decision, whereas in ACC-lesioned monkeys it results from a non-adaptive decrease in decision threshold and consequently immature impulsive responses.
Collapse
Affiliation(s)
- Farshad Alizadeh Mansouri
- Cognitive Neuroscience Laboratory, Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
- RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.
| | - Mark J Buckley
- Department of Experimental Psychology, Oxford University, Oxford, OX1 3UD, UK
| | - Keiji Tanaka
- RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
44
|
Wulaer B, Holtz MA, Nagai J. Homeostasis to Allostasis: Prefrontal Astrocyte Roles in Cognitive Flexibility and Stress Biology. ADVANCES IN NEUROBIOLOGY 2024; 39:137-163. [PMID: 39190074 DOI: 10.1007/978-3-031-64839-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
In the intricate landscape of neurophysiology, astrocytes have been traditionally cast as homeostatic cells; however, their mechanistic involvement in allostasis-particularly how they modulate the adaptive response to stress and its accumulative impact that disrupts cognitive functions and precipitates psychiatric disorders-is now starting to be unraveled. Here, we address the gap by positing astrocytes as crucial allostatic players whose molecular adaptations underlie cognitive flexibility in stress-related neuropsychiatric conditions. We review how astrocytes, responding to stress mediators such as glucocorticoid and epinephrine/norepinephrine, undergo morphological and functional transformations that parallel the maladaptive changes. Our synthesis of recent findings reveals that these glial changes, especially in the metabolically demanding prefrontal cortex, may underlie some of the neuropsychiatric mechanisms characterized by the disruption of energy metabolism and astrocytic networks, compromised glutamate clearance, and diminished synaptic support. We argue that astrocytes extend beyond their homeostatic role, actively participating in the brain's allostatic response, especially by modulating energy substrates critical for cognitive functions.
Collapse
Affiliation(s)
- Bolati Wulaer
- Laboratory for Glia-Neuron Circuit Dynamics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Mika A Holtz
- Laboratory for Glia-Neuron Circuit Dynamics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Jun Nagai
- Laboratory for Glia-Neuron Circuit Dynamics, RIKEN Center for Brain Science, Wako, Saitama, Japan.
| |
Collapse
|
45
|
Geissler CF, Schöpper LM, Engesser AF, Beste C, Münchau A, Frings C. Turning the Light Switch on Binding: Prefrontal Activity for Binding and Retrieval in Action Control. J Cogn Neurosci 2024; 36:95-106. [PMID: 37847814 DOI: 10.1162/jocn_a_02071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
According to action control theories, responding to a stimulus leads to the binding of response and stimulus features into a common representation, that is, an event file. Repeating any component of an event file retrieves all previously bound information, leading to performance costs for partial repetitions measured in so-called binding effects. Although otherwise robust and stable, binding effects are typically completely absent in "localization tasks," in which participants localize targets with spatially compatible responses. Yet, it is possible to observe binding effects in such when location features have to be translated into response features. We hypothesized that this modulation of binding effects is reflected in task involvement of the dorsolateral pFC (DLPFC). Participants localized targets with either direct (i.e., spatially compatible key) or translated (i.e., diagonally opposite to the spatially compatible key) responses. We measured DLPFC activity with functional near-infrared spectroscopy. On the behavioral level, we observed binding effects in the translated response condition, but not in the direct response condition. Importantly, prefrontal activity was also higher in the translated mapping condition. In addition, we found some evidence for the strength of the difference in binding effects in behavioral data being correlated with the corresponding effects in prefrontal activity. This suggests that activity in the DLPFC reflects the amount of executive control needed for translating location features into responses. More generally, binding effects seem to emerge only when the task at hand involves DLPFC recruitment.
Collapse
|
46
|
Özge A, Ghouri R, Öksüz N, Taşdelen B. Early intervention and adding effective doses of EGb761 like Ginkgo extract slow down dementia progression: insights to the neurovascular unit. Front Neurol 2023; 14:1240655. [PMID: 38156089 PMCID: PMC10754526 DOI: 10.3389/fneur.2023.1240655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Background Dementia is a progressive neurodegenerative disorder characterized by cognitive decline, memory impairment, and functional deterioration. Pharmacological interventions play a crucial role in managing dementia symptoms and potentially slowing down disease progression. Objectives This study aimed to investigate the impact of pharmacological interventions, including acetylcholinesterase inhibitors (AChEIs), memantine, and Gingko extract, on the progression of dementia, with a specific focus on mild cognitive impairment (MCI), Alzheimer's disease (AD), and non-Alzheimer dementias. Methods A total of 547 participants out of 3,547 cases in a specific dataset followed by the same author, including healthy controls, individuals with MCI, AD, and non-Alzheimer dementias, were included in this study. The follow-up duration was up to 211 months, allowing for a minimum 3 visits comprehensive assessment of disease progression. The treatment approaches included AChEIs, memantine, and combination therapy, with variations in the starting time for these treatments based on the dementia type. Results The use of AChEIs and memantine showed efficacy in improving cognitive function and overall function in individuals with MCI, AD, and non-AD dementias. Combination therapy EGb761 like Gingko extract with AChEIs and/or Memantine demonstrated a slower progression compared to AChEIs alone in individuals with prodromal dementia (MCI) and AD. The starting time for memantine and combination therapy was earlier in non-AD dementia cases compared to AD dementia cases and prodromal dementia. Conclusion Pharmacological interventions, particularly the use of AChEIs and memantine, can have a positive impact on cognitive function and overall function in individuals with dementia. The combination of AChEIs with EGb761 like Gingko extract may provide additional benefits in slowing down disease progression in AD cases. Early recognition and accurate classification of MCI subtypes are crucial, and the use of EGb761 like Gingko extract is recommended for symptomatic treatment. Future personalized risk predictions based on biomarker constellations may further enhance the multi-target treatment approaches of MCI and different dementia types.
Collapse
Affiliation(s)
- Aynur Özge
- Department of Neurology, School of Medicine, Mersin University, Mersin, Türkiye
| | - Reza Ghouri
- Department of Neurology, School of Medicine, Mersin University, Mersin, Türkiye
| | - Nevra Öksüz
- Department of Neurology, School of Medicine, Mersin University, Mersin, Türkiye
| | - Bahar Taşdelen
- Department of Biostatistics, School of Medicine, Mersin University, Mersin, Türkiye
| |
Collapse
|
47
|
Lingelbach K, Gado S, Wirzberger M, Vukelić M. Workload-dependent hemispheric asymmetries during the emotion-cognition interaction: a close-to-naturalistic fNIRS study. FRONTIERS IN NEUROERGONOMICS 2023; 4:1273810. [PMID: 38234490 PMCID: PMC10790862 DOI: 10.3389/fnrgo.2023.1273810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/23/2023] [Indexed: 01/19/2024]
Abstract
Introduction We investigated brain activation patterns of interacting emotional distractions and cognitive processes in a close-to-naturalistic functional near-infrared spectroscopy (fNIRS) study. Methods Eighteen participants engaged in a monitoring-control task, mimicking common air traffic controller requirements. The scenario entailed experiencing both low and high workload, while concurrently being exposed to emotional speech distractions of positive, negative, and neutral valence. Results Our investigation identified hemispheric asymmetries in prefrontal cortex (PFC) activity during the presentation of negative and positive emotional speech distractions at different workload levels. Thereby, in particular, activation in the left inferior frontal gyrus (IFG) and orbitofrontal cortex (OFC) seems to play a crucial role. Brain activation patterns revealed a cross-over interaction indicating workload-dependent left hemispheric inhibition processes during negative distractions and high workload. For positive emotional distractions under low workload, we observed left-hemispheric PFC recruitment potentially associated with speech-related processes. Furthermore, we found a workload-independent negativity bias for neutral distractions, showing brain activation patterns similar to those of negative distractions. Discussion In conclusion, lateralized hemispheric processing, regulating emotional speech distractions and integrating emotional and cognitive processes, is influenced by workload levels and stimulus characteristics. These findings advance our understanding of the factors modulating hemispheric asymmetries during the processing and inhibition of emotional distractions, as well as the interplay between emotion and cognition. Moreover, they emphasize the significance of exploring emotion-cognition interactions in more naturalistic settings to gain a deeper understanding of their implications in real-world application scenarios (e.g., working and learning environments).
Collapse
Affiliation(s)
- Katharina Lingelbach
- Applied Neurocognitive Systems, Fraunhofer Institute for Industrial Engineering IAO, Stuttgart, Germany
- Applied Neurocognitive Psychology, Carl von Ossietzky University, Oldenburg, Germany
| | - Sabrina Gado
- Experimental Clinical Psychology, Department of Psychology, University of Würzburg, Würzburg, Germany
| | - Maria Wirzberger
- Department of Teaching and Learning with Intelligent Systems, University of Stuttgart, Stuttgart, Germany
- LEAD Graduate School and Research Network, University of Tübingen, Tübingen, Germany
| | - Mathias Vukelić
- Applied Neurocognitive Systems, Fraunhofer Institute for Industrial Engineering IAO, Stuttgart, Germany
| |
Collapse
|
48
|
Bramson B, Toni I, Roelofs K. Emotion regulation from an action-control perspective. Neurosci Biobehav Rev 2023; 153:105397. [PMID: 37739325 DOI: 10.1016/j.neubiorev.2023.105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Despite increasing interest in emotional processes in cognitive science, theories on emotion regulation have remained rather isolated, predominantly focused on cognitive regulation strategies such as reappraisal. However, recent neurocognitive evidence suggests that early emotion regulation may involve sensorimotor control in addition to other emotion-regulation processes. We propose an action-oriented view of emotion regulation, in which feedforward predictions develop from action-selection mechanisms. Those can account for acute emotional-action control as well as more abstract instances of emotion regulation such as cognitive reappraisal. We argue the latter occurs in absence of overt motor output, yet in the presence of full-blown autonomic, visceral, and subjective changes. This provides an integrated framework with testable neuro-computational predictions and concrete starting points for intervention to improve emotion control in affective disorders.
Collapse
Affiliation(s)
- Bob Bramson
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6525 EN Nijmegen, the Netherlands; Behavioural Science Institute (BSI), Radboud University Nijmegen, 6525 HR Nijmegen, the Netherlands.
| | - Ivan Toni
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6525 EN Nijmegen, the Netherlands
| | - Karin Roelofs
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6525 EN Nijmegen, the Netherlands; Behavioural Science Institute (BSI), Radboud University Nijmegen, 6525 HR Nijmegen, the Netherlands
| |
Collapse
|
49
|
Yeung MK. Effects of age, gender, and education on task performance and prefrontal cortex processing during emotional and non-emotional verbal fluency tests. BRAIN AND LANGUAGE 2023; 245:105325. [PMID: 37748413 DOI: 10.1016/j.bandl.2023.105325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
The emotional semantic fluency test (SFT) is an emerging verbal fluency test that requires controlled access to emotional lexical information. Currently, how demographic variables influence neurocognitive processing during this test remains elusive. The present study compared the effects of age, gender, and education on task performance and prefrontal cortex (PFC) processing during the non-emotional and emotional SFTs. One-hundred and thirty-three Cantonese-speaking adults aged 18-79 performed the non-emotional and emotional SFTs while their PFC activation was measured using functional near-infrared spectroscopy. Results showed that more education predicted better non-emotional SFT performance, whereas younger age, being female, and more education predicted better emotional SFT performance. Only age significantly affected PFC activation during the SFTs, and the effect was comparable between the two SFTs. Thus, compared with its non-emotional analog, the emotional SFT is influenced by overlapping yet distinct demographic variables. There is a similar age-related reorganization of PFC function across SFT performances.
Collapse
Affiliation(s)
- Michael K Yeung
- Department of Psychology, The Education University of Hong Kong, Hong Kong, China; University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
50
|
Bramson B, Meijer S, van Nuland A, Toni I, Roelofs K. Anxious individuals shift emotion control from lateral frontal pole to dorsolateral prefrontal cortex. Nat Commun 2023; 14:4880. [PMID: 37573436 PMCID: PMC10423291 DOI: 10.1038/s41467-023-40666-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023] Open
Abstract
Anxious individuals consistently fail in controlling emotional behavior, leading to excessive avoidance, a trait that prevents learning through exposure. Although the origin of this failure is unclear, one candidate system involves control of emotional actions, coordinated through lateral frontopolar cortex (FPl) via amygdala and sensorimotor connections. Using structural, functional, and neurochemical evidence, we show how FPl-based emotional action control fails in highly-anxious individuals. Their FPl is overexcitable, as indexed by GABA/glutamate ratio at rest, and receives stronger amygdalofugal projections than non-anxious male participants. Yet, high-anxious individuals fail to recruit FPl during emotional action control, relying instead on dorsolateral and medial prefrontal areas. This functional anatomical shift is proportional to FPl excitability and amygdalofugal projections strength. The findings characterize circuit-level vulnerabilities in anxious individuals, showing that even mild emotional challenges can saturate FPl neural range, leading to a neural bottleneck in the control of emotional action tendencies.
Collapse
Affiliation(s)
- Bob Bramson
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6525 EN, Nijmegen, The Netherlands.
- Behavioral Science Institute (BSI), Radboud University Nijmegen, 6525 HR, Nijmegen, The Netherlands.
| | - Sjoerd Meijer
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6525 EN, Nijmegen, The Netherlands
| | - Annelies van Nuland
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6525 EN, Nijmegen, The Netherlands
| | - Ivan Toni
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6525 EN, Nijmegen, The Netherlands
| | - Karin Roelofs
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6525 EN, Nijmegen, The Netherlands
- Behavioral Science Institute (BSI), Radboud University Nijmegen, 6525 HR, Nijmegen, The Netherlands
| |
Collapse
|