1
|
Cui M, Zhou M, Zhou L, Zhou G, Liu Y. Tertiary lymphoid structures achieve 'cold' to 'hot' transition by remodeling the cold tumor microenvironment. Biochim Biophys Acta Rev Cancer 2025; 1880:189312. [PMID: 40189114 DOI: 10.1016/j.bbcan.2025.189312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/10/2025]
Abstract
Immune checkpoint blockade (ICB) therapies have demonstrated significant clinical efficacy in immune-infiltrated tumors such as melanoma and non-small cell lung cancer. However, "cold tumors"-including ovarian cancer, pancreatic cancer, and gliomas-exhibit insufficient immune infiltration, leading to poor therapeutic responses to ICBs and limited improvement in patient prognosis. Recent studies have shown that tumor-associated tertiary lymphoid structures (TLSs) can induce strong local immune responses within the tumor microenvironment (TME), serving as important biological markers for predicting ICB therapy efficacy. Notably, preclinical and clinical studies on cold tumors have confirmed that TLSs can potently enhance ICB efficacy through TME remodeling-a breakthrough that has attracted considerable attention. Here, we systematically examine the immunological profile of cold tumors and decipher the mechanistic basis for their impaired immune cell infiltration. We further delineate the distinctive features of tumor-associated TLSs in generating antitumor immunity and establish criteria for their identification. Significantly, we emphasize the unique capability of TLSs to reprogram the immunosuppressive tumor microenvironment characteristic of cold tumors. Based on these insights, we evaluate clinical evidence supporting TLS-mediated enhancement of ICB efficacy and discuss emerging strategies for exogenous TLSs induction.
Collapse
Affiliation(s)
- Mengke Cui
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road Changsha, 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China
| | - Mengfan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road Changsha, 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China
| | - Lu Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road Changsha, 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China
| | - Gan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road Changsha, 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China; National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, 110 Xiangya Road, Changsha, Hunan 410008, PR China.
| | - Yingzi Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road Changsha, 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China.
| |
Collapse
|
2
|
Akinwale O, Li Y, Liu P, Hu Z, Hou X, Jiang S, Lin DD, Pillai JJ, Lu H. Blood-oxygenation-level-dependent (BOLD) MRI responses to CO 2 and O 2 inhalation in brain gliomas. Magn Reson Imaging 2025; 119:110364. [PMID: 40023408 PMCID: PMC11994284 DOI: 10.1016/j.mri.2025.110364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/17/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
PURPOSE Cerebrovascular abnormalities are intricately involved in gliomas. While static cerebrovascular properties such as cerebral blood flow, volume, and permeability have been extensively studied, dynamic vascular parameters have not been fully understood. This study aimed to characterize the vascular responses to CO2 and O2 inhalation in brain gliomas. METHODS In 15 glioma patients, concomitant CO2 and O2 inhalation was applied while BOLD MR images were continuously acquired for nine minutes, resulting in the measurement of O2-reactivity, CO2-reactivity, and bolus arrival time (BAT). Vascular parameters were compared between the tumor regions and contralateral healthy tissue using Student t-tests. The dependence of vascular parameters on glioma grade, glioma subtypes, and molecular biomarkers were assessed using a multiple linear regression. RESULTS Visual inspection suggested that reliable O2-reactivity, CO2-reactivity, and BAT maps could be obtained in every patient. Compared to the contralateral healthy tissue, glioma regions on average revealed a diminished O2-reactivity (p < 0.001) and CO2-reactivity (p < 0.001), but a lengthened BAT (p < 0.001). Intra-tumoral heterogeneity in the vascular parameters between core and periphery was also observed. Astrocytomas had a lower CO2-reactivity (p = 0.014) and a longer BAT (p = 0.012) relative to oligodendrogliomas. Glioma grade had no association with O2-reactivity, CO2-reactivity, or BAT. Patients who lost ATRX expression had a lower CO2- and O2-reactivity (p = 0.005 and p = 0.035) compared to patients who retained ATRX expression. CONCLUSIONS Gliomas are associated with abnormal CO2- and O2-reactivity measured with MRI. These dynamic parameters may provide new insights into the vascular pathophysiology in gliomas.
Collapse
Affiliation(s)
- Oluwateniola Akinwale
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yang Li
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peiying Liu
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zhiyi Hu
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xirui Hou
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shanshan Jiang
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Doris D Lin
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jay J Pillai
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Neuroradiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Adnani L, Meehan B, Kim M, Choi D, Rudd CE, Riazalhosseini Y, Rak J. Immune cell infiltration into brain tumor microenvironment is mediated by Rab27-regulated vascular wall integrity. SCIENCE ADVANCES 2025; 11:eadr6940. [PMID: 40408475 PMCID: PMC12101492 DOI: 10.1126/sciadv.adr6940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 04/22/2025] [Indexed: 05/25/2025]
Abstract
Aggressive brain tumors often exhibit immunologically 'cold' microenvironment, where the vascular barrier impedes effective immunotherapy in poorly understood ways. Tumor vasculature also plays a pivotal role in immunoregulation and antitumor immunity. Here, we show that small GTPase Rab27 controls the vascular morphogenesis and permeability for blood content and immune effectors. Thus, in Rab27a/b double knock out (Rab27-dKO) mice, the brain vasculature is abnormally scarce, while the blood vessels become dysmorphic and hyperpermeable in the context of brain tumors, including syngeneic glioblastoma. These defects are reflected in rearrangements of endothelial cell subpopulations with underlying diminution of venous endothelial subtype along with changes in gene and protein expression. Notably, Rab27-dKO brain endothelial cells exhibit deficient tight junctions, whereby they enable large-scale extravasation of cytotoxic T cells into the tumor mass. We show that Rab27-regulated vascular T cell infiltration can be exploited to enhance adoptive T cell therapy in syngeneic brain tumors.
Collapse
Affiliation(s)
- Lata Adnani
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Brian Meehan
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Minjun Kim
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University. McGill University Department of Human Genetics, Montreal, QC, Canada
| | - Dongsic Choi
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam 31151, Republic of Korea
| | - Christopher E. Rudd
- Division of Immunology-Oncology Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada
- Département de Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Centre for Translational Research in Cancer, McGill University, Montreal, QC, Canada
| | - Yasser Riazalhosseini
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University. McGill University Department of Human Genetics, Montreal, QC, Canada
| | - Janusz Rak
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
4
|
Dixon L, Weld A, Bhagawati D, Patel N, Giannarou S, Grech-Sollars M, Lim A, Camp S. Intraoperative superb microvascular ultrasound imaging in glioma: novel quantitative analysis correlates with tumour grade. Acta Neurochir (Wien) 2025; 167:133. [PMID: 40327144 PMCID: PMC12055884 DOI: 10.1007/s00701-025-06535-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 04/21/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Accurate grading of gliomas is critical to guide therapy and predict prognosis. The presence of microvascular proliferation is a hallmark feature of high grade gliomas which to directly visualise traditionally requires targeted surgical biopsy of representative tissue. Superb microvascular imaging (SMI) is a novel high resolution Doppler ultrasound technique which can uniquely define the microvascular architecture of whole tumours. METHODS We examined both qualitative and quantitative vascular features of 32 gliomas captured with SMI, analysing flow signal density, vessel number, branching points, curvature, vessel angle deviation, fractal dimension, and entropy. RESULTS High-grade gliomas exhibit significantly greater vascular complexity and disorganisation, with increased fractal dimension and entropy, correlating with known histopathological markers of aggressive angiogenesis. The integrated ROC model achieved high accuracy (AUC = 0.95). CONCLUSIONS This study leveraged SMI to provide further insights into the microvascular architecture of gliomas which is not resolvable by magnetic resonance imaging. Applying novel quantitative analysis the study demonstrated that there are quantifiable differences in vascular morphology between high grade and low-grade gliomas. This unique in vivo imaging of glioma vascularity and quantification warrants further exploration as a potential new diagnostic and prognostic tool that may support glioma management, intraoperative decision-making and informing future prognosis.
Collapse
Affiliation(s)
- Luke Dixon
- Division of Surgery and Cancer, Imperial College London, London, UK.
- Radiology, Imperial College NHS Trust, London, UK.
| | - Alistair Weld
- Hamlyn Centre for Robotic Surgery, Department of Surgery and Cancer, Imperial College London, Exhibition Rd, London, SW7 2AZ, UK
| | - Dolin Bhagawati
- Division of Surgery and Cancer, Imperial College London, London, UK
- Neurosurgery, Imperial College NHS Trust, London, UK
| | - Neekhil Patel
- Division of Surgery and Cancer, Imperial College London, London, UK
- Neurosurgery, Imperial College NHS Trust, London, UK
| | - Stamatia Giannarou
- Hamlyn Centre for Robotic Surgery, Department of Surgery and Cancer, Imperial College London, Exhibition Rd, London, SW7 2AZ, UK
| | - Matthew Grech-Sollars
- Department of Computer Science, University College London, London, UK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Adrian Lim
- Radiology, Imperial College NHS Trust, London, UK
| | - Sophie Camp
- Division of Surgery and Cancer, Imperial College London, London, UK
- Neurosurgery, Imperial College NHS Trust, London, UK
| |
Collapse
|
5
|
Wang B, Li D, Ilnytskyy Y, Khachigian LM, Zhong N, Rodriguez-Juarez R, Kovalchuk I, Kovalchuk O. A Positive Feedback DNA-PK/MYT1L-CXCR1-ERK1/2 Proliferative Signaling Loop in Glioblastoma. Int J Mol Sci 2025; 26:4398. [PMID: 40362634 PMCID: PMC12072392 DOI: 10.3390/ijms26094398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/23/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Glioblastoma is the most common primary brain tumor in adults. Our previous studies revealed a functional interplay of myelin transcription factor 1-like (MYT1L) with the DNA-dependent protein kinase (DNA-PK) in the regulation of p21 transcription. However, the contributing role of this functional interplay in glioblastoma remains largely unknown. Here, we used cell lines with normal DNA-PK (HEK293 and M059K) or deficient DNA-PK (M059J) as a model system to demonstrate the importance of the DNA-PK-dependent activation of MYT1L in controlling the transcription of CXC chemokine receptor 1 (CXCR1) in a positive-feedback proliferative signaling loop in glioblastoma with numerous conventional techniques. In normal DNA-PK cells, MYT1L acted as an oncogene by promoting cell proliferation, inhibiting apoptosis, and shortening a cell cycle S phase. However, in DNA-PK-deficient cells, MYT1L functioned as a tumor suppressor by inhibiting cell proliferation and inducing a G1 arrest. The enforced expression of MYT1L promoted CXCR1 transcription in DNA-PK-normal cells but attenuated transcription in DNA-PK-deficient cells. Bioinformatics analysis predicted a MYT1L-binding sequence at the CXCR1 promoter. The functional dependence of MYT1L on DNA-PK in CXCR1 transcription was validated by luciferase assay. Although the expression of CXCR1 was lower in M059J cells as compared to M059K cells, it was higher than in normal brain tissue. The CXCR1 ligands interleukin 8 (IL-8) and GRO protein alpha (GROα) expressed in M059J and M059K cells may signal through the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway that can be blocked by CXCR1 siRNA. Our findings demonstrate the existence of a positive feedback DNA-PK/MYT1L-CXCR1-ERK1/2 proliferation loop in glioblastoma cells that may represent a pharmacological target loop for therapeutic intervention.
Collapse
Affiliation(s)
- Bo Wang
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (B.W.); (D.L.); (Y.I.); (N.Z.); (R.R.-J.)
| | - Dongping Li
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (B.W.); (D.L.); (Y.I.); (N.Z.); (R.R.-J.)
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (B.W.); (D.L.); (Y.I.); (N.Z.); (R.R.-J.)
| | - Levon M. Khachigian
- Vascular Biology and Translational Research, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Nuanying Zhong
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (B.W.); (D.L.); (Y.I.); (N.Z.); (R.R.-J.)
| | - Rocio Rodriguez-Juarez
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (B.W.); (D.L.); (Y.I.); (N.Z.); (R.R.-J.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (B.W.); (D.L.); (Y.I.); (N.Z.); (R.R.-J.)
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (B.W.); (D.L.); (Y.I.); (N.Z.); (R.R.-J.)
| |
Collapse
|
6
|
Vejzovic D, Kubin A, Fechter K, Karner C, Hartmann J, Ackerbauer T, Radović B, Ritter G, Üçal M, Ropele S, Ali KM, Mischkulnig M, Leoni M, Liegl-Atzwanger B, Wightman L, Rinner B. Glioblastoma targeting by water-soluble hypericin derivate HHL-PVP and photodynamic tumour killing. Biomed Pharmacother 2025; 186:118041. [PMID: 40228364 DOI: 10.1016/j.biopha.2025.118041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/12/2025] [Accepted: 04/03/2025] [Indexed: 04/16/2025] Open
Abstract
Hypericin, a tumour-selective photosensitizer, has shown potential in cancer therapy, but its poor water solubility has limited clinical use. To address this, we developed a water-soluble variant called high hypericin-loaded polyvinylpyrrolidone (HHL-PVP) to enhance hypericin's applicability, particularly for treating glioblastoma, a typically terminal disease. We tested HHL-PVP in both in vitro and in vivo models, first confirming its fluorescent properties in the lab and then assessing its efficacy in more complex animal models. Using subcutaneous and orthotopic tumour mouse models, we combined HHL-PVP administration with fluorescence-guided surgery and photodynamic therapy (PDT) to target residual tumour cells. Histological analysis of both healthy and tumour tissue showed HHL-PVP's over 97 % sensitivity and 100 % specificity in distinguishing tumour tissue. In subcutaneous glioblastoma models, significant tumour necrosis and remission occurred after HHL-PVP administration and a 20-minute white light application through the skin. These results highlight HHL-PVP's effectiveness in targeting and eradicating glioblastoma cells. Our findings provide strong evidence that HHL-PVP is a promising therapeutic option for glioblastoma, with its high sensitivity, specificity, and potential for tumour remission through PDT. This approach warrants further investigation in clinical trials and could improve outcomes for a disease that has been difficult to treat.
Collapse
Affiliation(s)
- Djenana Vejzovic
- Division of Biomedical Research, Medical University of Graz, Graz, Austria
| | | | - Karoline Fechter
- Division of Biomedical Research, Medical University of Graz, Graz, Austria
| | - Christina Karner
- Division of Biomedical Research, Medical University of Graz, Graz, Austria
| | | | | | - Branislav Radović
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Gerald Ritter
- Division of Biomedical Research, Medical University of Graz, Graz, Austria
| | - Muammer Üçal
- Department of Neurosurgery, Research Unit for Experimental Neurotraumatology, Medical University of Graz, Graz, Austria; Department of Neurology, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Kariem Mahdy Ali
- Department of Neurosurgery, Research Unit for Experimental Neurotraumatology, Medical University of Graz, Graz, Austria
| | | | - Marlene Leoni
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | | | - Beate Rinner
- Division of Biomedical Research, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria.
| |
Collapse
|
7
|
Hoffmann G, Preibisch C, Günther M, Mahroo A, van Osch MJP, Václavů L, Metz M, Jung K, Zimmer C, Wiestler B, Kaczmarz S. Noninvasive blood-brain barrier integrity mapping in patients with high-grade glioma and metastasis by multi-echo time-encoded arterial spin labeling. Magn Reson Med 2025; 93:2086-2098. [PMID: 39777739 PMCID: PMC11893035 DOI: 10.1002/mrm.30415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE In brain tumors, disruption of the blood-brain barrier (BBB) indicates malignancy. Clinical assessment is qualitative; quantitative evaluation is feasible using the K2 leakage parameter from dynamic susceptibility contrast MRI. However, contrast agent-based techniques are limited in patients with renal dysfunction and insensitive to subtle impairments. Assessing water transport times across the BBB (Tex) by multi-echo arterial spin labeling promises to detect BBB impairments noninvasively and potentially more sensitively. We hypothesized that reduced Tex indicates impaired BBB. Furthermore, we assumed higher sensitivity for Tex than dynamic susceptibility contrast-based K2, because arterial spin labeling uses water as a freely diffusible tracer. METHODS We acquired 3T MRI data from 28 patients with intraparenchymal brain tumors (World Health Organization Grade 3 & 4 gliomas [n = 17] or metastases [n = 11]) and 17 age-matched healthy controls. The protocol included multi-echo and single-echo Hadamard-encoded arterial spin labeling, dynamic susceptibility contrast, and conventional clinical imaging. Tex was calculated using a T2-dependent multi-compartment model. Areas of contrast-enhancing tissue, edema, and normal-appearing tissue were automatically segmented, and parameter values were compared across volumes of interest and between patients and healthy controls. RESULTS Tex was significantly reduced (-20.3%) in contrast-enhancing tissue compared with normal-appearing gray matter and correlated well with |K2| (r = -0.347). Compared with healthy controls, Tex was significantly lower in tumor patients' normal-appearing gray matter (Tex,tumor = 0.141 ± 0.032 s vs. Tex,HC = 0.172 ± 0.036 s) and normal-appearing white matter (Tex,tumor = 0.116 ± 0.015 vs. Tex,HC = 0.127 ± 0.017 s), whereas |K2| did not differ significantly. Receiver operating characteristic analysis showed a larger area under the curve for Tex (0.784) than K2 (0.604). CONCLUSION Tex is sensitive to pathophysiologically impaired BBB. It agrees with contrast agent-based K2 in contrast-enhancing tissue and indicates sensitivity to subtle leakage.
Collapse
Affiliation(s)
- Gabriel Hoffmann
- School of Medicine and Health, Institute for Diagnostic and Interventional NeuroradiologyTechnical University of MunichMunichGermany
- School of Medicine and Health, TUM‐Neuroimaging CenterTechnical University of MunichMunichGermany
| | - Christine Preibisch
- School of Medicine and Health, Institute for Diagnostic and Interventional NeuroradiologyTechnical University of MunichMunichGermany
- School of Medicine and Health, TUM‐Neuroimaging CenterTechnical University of MunichMunichGermany
- School of Medicine and Health, Clinic of NeurologyTechnical University of MunichMunichGermany
| | - Matthias Günther
- Fraunhofer Institute for Digital Medicine MEVIS, MR PhysicsBremenGermany
- MR‐Imaging and SpectroscopyUniversity of BremenBremenGermany
- MediriHeidelbergGermany
| | - Amnah Mahroo
- Fraunhofer Institute for Digital Medicine MEVIS, MR PhysicsBremenGermany
| | - Matthias J. P. van Osch
- Department of Radiology, C.J. Gorter MRI CenterLeiden University Medical CenterLeidenThe Netherlands
- Leiden Institute of Brain and CognitionLeiden UniversityLeidenThe Netherlands
| | - Lena Václavů
- Department of Radiology, C.J. Gorter MRI CenterLeiden University Medical CenterLeidenThe Netherlands
| | - Marie‐Christin Metz
- School of Medicine and Health, Institute for Diagnostic and Interventional NeuroradiologyTechnical University of MunichMunichGermany
| | - Kirsten Jung
- School of Medicine and Health, Institute for Diagnostic and Interventional NeuroradiologyTechnical University of MunichMunichGermany
| | - Claus Zimmer
- School of Medicine and Health, Institute for Diagnostic and Interventional NeuroradiologyTechnical University of MunichMunichGermany
- School of Medicine and Health, TUM‐Neuroimaging CenterTechnical University of MunichMunichGermany
| | - Benedikt Wiestler
- School of Medicine and Health, Institute for Diagnostic and Interventional NeuroradiologyTechnical University of MunichMunichGermany
- TranslaTUMTechnical University of MunichMunichGermany
| | - Stephan Kaczmarz
- School of Medicine and Health, Institute for Diagnostic and Interventional NeuroradiologyTechnical University of MunichMunichGermany
- School of Medicine and Health, TUM‐Neuroimaging CenterTechnical University of MunichMunichGermany
- Philips GmbH Market DACHHamburgGermany
| |
Collapse
|
8
|
Bardhan M, Muneer MA, Khare A, Minesh Shah R, Kaur A, Vasipalli SS, Suresh V, Podder V, Ahluwalia M, Odia Y, Chen Z. Advances in stem cell-based therapeutic transfers for glioblastoma treatment. Expert Rev Neurother 2025:1-17. [PMID: 40245098 DOI: 10.1080/14737175.2025.2490543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/25/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025]
Abstract
INTRODUCTION Glioblastoma (GBM), a highly malignant brain tumor, has a poor prognosis despite standard treatments like surgery, chemotherapy, and radiation. Glioblastoma stem cells (GSCs) play a critical role in recurrence and therapy resistance. Stem cell-based therapies have emerged as innovative approaches, leveraging the tumor-targeting abilities of stem cells to deliver treatments directly to GBM. AREAS COVERED This review focuses on using intact stem cells or subtypes for GBM therapy, excluding antigenic characteristics. The stem cell-based therapies explored include neural, mesenchymal, glioblastoma, hematopoietic and adipose-derived stem cells that have been investigated in both clinical and preclinical settings. A systematic search in PubMed, EMBASE, ClinicalTrials.gov, and Scopus had identified research up until January 2024. Key mechanisms reviewed include immune modulation, angiogenesis inhibition, and apoptosis induction. Discussion of completed and ongoing trials include emphasis on safety, efficacy, challenges, and study design limitations. EXPERT OPINION Stem cell-based therapies hold promise for treating GBM by targeting GSCs and improving treatment outcomes. Despite some potential advantages, challenges such as tumorigenesis risks, delivery complexities, and sustained therapeutic effects persist. Future research should prioritize optimizing stem cell modifications, combining them with current treatments, and conducting large-scale trials to ensure safety and efficacy. Integrating stem cell therapies into GBM treatment could provide more effective and less invasive options for patients.
Collapse
Affiliation(s)
- Mainak Bardhan
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | | | - Abhinav Khare
- All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, India
| | | | - Anmol Kaur
- Lady Hardinge Medical College, New Delhi, India
| | - Sonit Sai Vasipalli
- Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Vinay Suresh
- King George's Medical University, Lucknow, India
| | - Vivek Podder
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Manmeet Ahluwalia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Yazmin Odia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Zhijian Chen
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| |
Collapse
|
9
|
Hu J, Sa X, Yang Y, Han Y, Wu J, Sun M, Shafi S, Ahmad N, Siraj S, Yang J, Zhou Y. Multi-transcriptomics reveals niche-specific expression programs and endothelial cells in glioblastoma. J Transl Med 2025; 23:444. [PMID: 40234880 PMCID: PMC11998397 DOI: 10.1186/s12967-025-06185-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 01/29/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a highly lethal malignant intracranial tumor, distinguished from low-grade glioma by histopathological hallmarks such as pseudopalisading cells around necrosis (PAN) and microvascular proliferation (MVP). To date the spatial organization of the molecular and cellular components of these specific histopathological features has not been fully elucidated. METHODS Here, using bulk RNA sequencing, spatial transcriptomic and single cell RNA sequencing (scRNA-seq) data of GBM patients, we identified niche-specific transcriptional programs and characterized the differences in molecular expression and cellular organization between PAN and MVP. RESULTS Notably, we discovered spatially distinct domains within the tumor core and identified niche-specific signatures: NDRG1 and EPAS1, specifically expressed in the PAN and MVP regions. The clustering results showed two distinct phenotypes of endothelial cells (ECs) were enriched in the MVP and PAN regions, respectively. PAN-associated endothelial cells exhibit copy number variations similar to those in GBM cells. Single cell trajectory analysis reveals a pseudotime trajectory, indicating the differentiation of glioblastoma stem cells (GSCs) toward ECs. CONCLUSIONS Necrosis cores which are surrounded by hypoxic and perivascular niches and microvascular proliferation area within the glioblastoma tumor microenvironment, have been considered as standardized morphological indicators of aggressive GBM. Our findings provide a cellular and molecular insights into GBM progression.
Collapse
Affiliation(s)
- Jiukun Hu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No.88, Suzhou, 215163, China
| | - Xiaohan Sa
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No.88, Suzhou, 215163, China
| | - Yue Yang
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No.88, Suzhou, 215163, China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Yuwen Han
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No.88, Suzhou, 215163, China
| | - Jie Wu
- Department of Neurosurgery, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Lijiang Road No. 1, Suzhou, 215153, China
| | - Minxuan Sun
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No.88, Suzhou, 215163, China
| | - Shaheryar Shafi
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No.88, Suzhou, 215163, China
| | - Nafees Ahmad
- Institute of Biomedical & Genetic Engineering, 24-Mauve Area G-9/1, Islamabad, 44000, Pakistan
| | - Sami Siraj
- Institute of Pharmaceutical Sciences, Khyber Medical University, F1 Phase-6 Rd, Phase 5 Hayatabad, Peshawar, Khyber Pakhtunkhwa, 25100, Pakistan
| | - Jiao Yang
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Lijiang Road No. 1, Suzhou, 215153, China.
| | - Yuanshuai Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No.88, Suzhou, 215163, China.
| |
Collapse
|
10
|
Varlamova EG. Roles of selenium-containing glutathione peroxidases and thioredoxin reductases in the regulation of processes associated with glioblastoma progression. Arch Biochem Biophys 2025; 766:110344. [PMID: 39956249 DOI: 10.1016/j.abb.2025.110344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
Glioblastoma remains the most common and aggressive primary tumor of the central nervous system in adults. Current treatment options include standard surgical resection combined with radiation/chemotherapy, but such protocol most likely only delays the inevitable. Therefore, the problem of finding therapeutic targets to prevent the occurrence and development of this severe oncological disease is currently acute. It is known that the functions of selenoproteins in the regulation of carcinogenesis processes are not unambiguous. Either they exhibit cytotoxic activity on cancer cells, or cytoprotective. A special place in the progression of oncological diseases of various etiologies is occupied by proteins of the thioredoxin and glutathione systems. These are two cellular antioxidant systems that regulate redox homeostasis, counteracting the increased production of reactive oxygen species in cells. The review reflects the latest data on the role of key enzymes of these redox systems in the regulation of processes associated with the progression of glioblastoma. A thorough consideration of these issues will expand fundamental knowledge about the functions of selenium-containing thioredoxin reductases and glutathione peroxidases in the therapy of glioblastomas and provide an understanding of the prospects for the treatment of this aggressive oncological disease.
Collapse
Affiliation(s)
- Elena G Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", St. Institutskaya 3, Pushchino, 142290, Russia.
| |
Collapse
|
11
|
Shintaku M, Hashiba T, Nonaka M, Asai A, Tsuta K. Adenoid glioblastoma: Stromal hypovascularity and secretion of chondromodulin-I by tumor cells. Neuropathology 2025; 45:153-160. [PMID: 39491322 DOI: 10.1111/neup.13010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 11/05/2024]
Abstract
The case of a 75-year-old man with a glioblastoma of the right frontal lobe showing features of adenoid glioblastoma is reported. The tumor consisted of two components: the adenoid component, in which large, cohesive, polygonal cells with vesicular nuclei and abundant basophilic cytoplasm showed nest-like, trabecular, or tubular growth on the myxoid matrix and formed a multinodular configuration; and the subsidiary component, in which short spindle cells showed compact fascicular growth. The features of ordinary glioblastoma were also found in a small area. Tumor cells were immunoreactive for S-100 protein, glial fibrillary acidic protein, and Olig2, and some tumor cells in the adenoid component showed immunoreactivity for cytokeratins and E-cadherin. A marked regional decrease in microvascular density, approaching almost complete absence of microvessels, was demonstrated in the adenoid component. In contrast, microvascular density was well preserved in the spindle cell component and the area of ordinary glioblastoma. Tumor cells in the adenoid component showed cytoplasmic expression of chondromodulin-I, one of the cytokines that strongly inhibit angiogenesis, whereas the expression of this protein was very weak or only faint in the spindle cell component and the area of ordinary glioblastoma. A marked regional decrease in microvascular density was associated with myxoid change of the stroma and considered to be caused by the secretion of chondromodulin-I by tumor cells. Stromal hypovascularity with myxoid change might play an important role in the morphogenesis of adenoid features.
Collapse
Affiliation(s)
- Masayuki Shintaku
- Department of Pathology, Kansai Medical University Hospital, Hirakata, Japan
| | - Tetsuo Hashiba
- Department of Neurosurgery, Kansai Medical University Hospital, Hirakata, Japan
| | - Masahiro Nonaka
- Department of Neurosurgery, Kansai Medical University Hospital, Hirakata, Japan
| | - Akio Asai
- Department of Neurosurgery, Kansai Medical University Hospital, Hirakata, Japan
| | - Koji Tsuta
- Department of Pathology, Kansai Medical University Hospital, Hirakata, Japan
| |
Collapse
|
12
|
Deng Y, Feng J, Li J, Gong S, Sun S. LncRNA BDNF-AS binds to DNMT1 to suppress angiogenesis in glioma by promoting NEDD4L-mediated YAP1 ubiquitination. Mol Cell Biochem 2025:10.1007/s11010-025-05250-x. [PMID: 40119181 DOI: 10.1007/s11010-025-05250-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/08/2025] [Indexed: 03/24/2025]
Abstract
Glioma, a highly aggressive brain tumor, is characterized by high mortality and frequent recurrence rates. Angiogenesis is a critical hallmark of glioma progression. However, the regulatory role and underlying mechanism of lncRNA brain-derived neurotrophic factor-antisense (BDNF-AS) in glioma angiogenesis remain poorly understood and warrant further investigation. Malignant characteristics of glioma cells were evaluated using CCK-8, colony formation, scratch, transwell, flow cytometry, and tube formation assays. The expression levels of genes and proteins were detected by RT-qPCR, western blot, and IHC assays. The methylation level of NEDD4-like E3 ubiquitin protein ligase (NEDD4L) was determined using MSP. The interactions among molecules were validated using RIP, ChIP, and Co-IP. Our study revealed significantly downregulated BDNF-AS expression in glioma cells. BDNF-AS overexpression markedly attenuated the malignant characteristics of glioma cells, as evidenced by decreased viability, proliferation, migration, invasion, and angiogenesis, along with increased apoptosis. These tumor-suppressive effects were significantly abrogated by NEDD4L knockdown. Mechanistically, BDNF-AS could interact with DNA methyltransferase 1 (DNMT1) expression, leading to reduced NEDD4L promoter methylation and upregulation of NEDD4L expression. Additionally, NEDD4L-mediated promotion of YAP1 ubiquitination to decline YAP1 and VEGFA expression. Finally, BDNF-AS exerted potent anti-tumor effects by mediating NEDD4L/YAP1/VEGFA axis, as demonstrated by suppressed tumor growth in glioma-bearing mice and attenuated malignant features in glioma cells. BDNF-AS suppressed cell viability, proliferation, migration, and invasion, and promoted cell apoptosis of glioma cells, attenuated angiogenesis of human umbilical vein endothelial cells (HUVECs), and tumor growth via regulating NEDD4L/YAP1/VEGFA axis.
Collapse
Affiliation(s)
- Yongwen Deng
- Department of Neurosurgery, (Hunan Provincial People'S Hospital) the First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410008, Hunan Province, People's Republic of China
| | - Jixin Feng
- Department of Neurosurgery, (Hunan Provincial People'S Hospital) the First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410008, Hunan Province, People's Republic of China
| | - Jiangyang Li
- Department of Neurosurgery, (Hunan Provincial People'S Hospital) the First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410008, Hunan Province, People's Republic of China
| | - Shuhui Gong
- Department of Neurosurgery, (Hunan Provincial People'S Hospital) the First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410008, Hunan Province, People's Republic of China
| | - Shengli Sun
- Department of Neurosurgery, (Hunan Provincial People'S Hospital) the First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410008, Hunan Province, People's Republic of China.
| |
Collapse
|
13
|
Emir SM, Karaoğlan BS, Kaşmer R, Şirin HB, Sarıyıldız B, Karakaş N. Hunting glioblastoma recurrence: glioma stem cells as retrospective targets. Am J Physiol Cell Physiol 2025; 328:C1045-C1061. [PMID: 39818986 DOI: 10.1152/ajpcell.00344.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain malignancies in adults. Standard approaches, including surgical resection followed by adjuvant radio- and chemotherapy with temozolomide (TMZ), provide only transient control, as GBM frequently recurs due to its infiltrative nature and the presence of therapy-resistant subpopulations such as glioma stem cells (GSCs). GSCs, with their quiescent state and robust resistance mechanisms, evade conventional therapies, contributing significantly to relapse. Consequently, current treatment methods for GBM face significant limitations in effectively targeting GSCs. In this review, we emphasize the relationship between GBM recurrence and GSCs, discuss the current limitations, and provide future perspectives to overwhelm the challenges associated with targeting GSCs. Eliminating GSCs may suppress recurrence, achieve durable responses, and improve therapeutic outcomes for patients with GBM.
Collapse
Affiliation(s)
- Sümeyra Mengüç Emir
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Birnur Sinem Karaoğlan
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Ramazan Kaşmer
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Hilal Buse Şirin
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Batuhan Sarıyıldız
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Nihal Karakaş
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
- Department of Medical Biology, International School of Medicine, İstanbul Medipol University, Istanbul, Türkiye
| |
Collapse
|
14
|
Yang H, Xiang Y, Wang J, Ke Z, Zhou W, Yin X, Zhang M, Chen Z. Modulating the blood-brain barrier in CNS disorders: A review of the therapeutic implications of secreted protein acidic and rich in cysteine (SPARC). Int J Biol Macromol 2025; 288:138747. [PMID: 39674451 DOI: 10.1016/j.ijbiomac.2024.138747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Secreted protein acidic and rich in cysteine (SPARC), an essential stromal cell protein, plays a crucial role in angiogenesis and maintaining endothelial barrier function. This protein is expressed by diverse cell types, including endothelial cells, fibroblasts, and macrophages, with increased expression found in regions of tissues undergoing active remodeling, repair, and proliferation. The role of SPARC in non-neural tissues is of significant interest. In the central nervous system (CNS), SPARC is highly expressed in blood vessels during early development. It becomes down-regulated as the brain matures, a pattern consistent with its role in angiogenesis and blood-brain barrier (BBB) establishment. In this review, we explore the multifaceted roles of SPARC in regulating CNS disorders, particularly its action in angiogenesis, inflammatory responses, neural system development and repair, barrier establishment, maintenance of BBB function, and the pathogenesis of CNS disorders triggered by BBB dysfunction.
Collapse
Affiliation(s)
- Hui Yang
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Yuanyuan Xiang
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Jiaxuan Wang
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Zunliang Ke
- Department of Neurosurgery, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Weixin Zhou
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Xiaoping Yin
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Manqing Zhang
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332000, China.
| | - Zhiying Chen
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China.
| |
Collapse
|
15
|
Cirigliano SM, Fine HA. Bridging the gap between tumor and disease: Innovating cancer and glioma models. J Exp Med 2025; 222:e20220808. [PMID: 39626263 PMCID: PMC11614461 DOI: 10.1084/jem.20220808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/11/2024] Open
Abstract
Recent advances in cancer biology and therapeutics have underscored the importance of preclinical models in understanding and treating cancer. Nevertheless, current models often fail to capture the complexity and patient-specific nature of human tumors, particularly gliomas. This review examines the strengths and weaknesses of such models, highlighting the need for a new generation of models. Emphasizing the critical role of the tumor microenvironment, tumor, and patient heterogeneity, we propose integrating our advanced understanding of glioma biology with innovative bioengineering and AI technologies to create more clinically relevant, patient-specific models. These innovations are essential for improving therapeutic development and patient outcomes.
Collapse
Affiliation(s)
| | - Howard A. Fine
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
16
|
Taeb S, Rostamzadeh D, Amini SM, Rahmati M, Golshekan M, Abedinzade M, Ahmadi E, Neha S, Najafi M. Revolutionizing Cancer Treatment: Harnessing the Power of Mesenchymal Stem Cells for Precise Targeted Therapy in the Tumor Microenvironment. Curr Top Med Chem 2025; 25:243-262. [PMID: 38797895 DOI: 10.2174/0115680266299112240514103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024]
Abstract
In recent years, mesenchymal stem cells (MSCs) have emerged as promising anti-- cancer mediators with the potential to treat several cancers. MSCs have been modified to produce anti-proliferative, pro-apoptotic, and anti-angiogenic molecules that could be effective against a variety of malignancies. Additionally, customizing MSCs with cytokines that stimulate pro-tumorigenic immunity or using them as vehicles for traditional chemical molecules with anti-cancer characteristics. Even though the specific function of MSCs in tumors is still challenged, promising outcomes from preclinical investigations of MSC-based gene therapy for a variety of cancers inspire the beginning of clinical trials. In addition, the tumor microenvironment (TME) could have a substantial influence on normal tissue stem cells, which can affect the treatment outcomes. To overcome the complications of TME in cancer development, MSCs could provide some signs of hope for converting TME into unequivocal therapeutic tools. Hence, this review focuses on engineered MSCs (En-MSCs) as a promising approach to overcoming the complications of TME.
Collapse
Affiliation(s)
- Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Davoud Rostamzadeh
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, Connecticut, USA
| | - Seyed Mohammad Amini
- Radiation Biology Research center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rahmati
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mostafa Golshekan
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahmoud Abedinzade
- Department of Medical Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Elham Ahmadi
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, Connecticut, USA
| | - Singh Neha
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, Connecticut, USA
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
17
|
Salahlou R, Farajnia S, Alizadeh E, Dastmalchi S, Bargahi N, Rahbarnia L, Steyar SH. Design and in silico analysis of a novel peptide-based multiepitope vaccine against glioblastoma multiforme by targeting tumor-associated macrophage. Heliyon 2024; 10:e40774. [PMID: 39759328 PMCID: PMC11696665 DOI: 10.1016/j.heliyon.2024.e40774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 01/07/2025] Open
Abstract
CD204 is a distinct indicator for tumor-associated macrophages (TAMs) in glioma. Evidence indicates that CD204-positive TAMs are involved in the aggressive behavior of various types of cancers. This study was conducted to develop a new and effective peptide-based vaccine for GBM, specifically targeting CD204. Epitopes of the target protein were identified using NetMHCpan 4.1a, NetMHCIIpan-4.0, and ABCpred tools. Subsequently, the predicted epitopes were evaluated using bioinformatics tools to assess their antigenicity, non-allergenicity, immunogenicity, non-toxicity, and potential to stimulate the production of IL-4 and IFN-γ in HTL epitopes. Selected T-cell epitopes demonstrated a robust binding affinity with the particular HLA alleles. Finally, four HTL epitopes, three CTL epitopes, and two B-cell epitopes, jointed via linkers and adjuvant, were used for the final vaccine construct design. Analysis disclosed that the developed vaccine demonstrated robust antigenic properties while proving soluble, stable, non-toxic, and non-allergenic. Additionally, molecular docking studies and molecular dynamics simulations confirmed a robust correlation between the designed vaccine and TLR-2 and TLR-4 immune receptors. The molecular docking results demonstrated a strong interaction between the newly developed vaccine and TLR2 (-895.1 kcal/mol) and TLR4 (-881.0 kcal/mol) receptors. During the simulation, the vaccine-TLR2 and vaccine-TLR4 complexes exhibited binding energies of -113.41 and -106.61 kcal/mol, respectively. Analysis by different bioinformatic tools indicated the potential of the designed vaccine in immune stimulation and a significant elevation in IgG and IgM antibodies, T-helper cells, T-cytotoxic cells, INF-γ, IL-2, and IL-4. Research findings show that the newly designed multi-epitope vaccine is promising in providing long-term immunity against GBM and offers a promising therapeutic alternative.
Collapse
Affiliation(s)
- Reza Salahlou
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, P.O. Box 99138, Nicosia, North Cyprus, Mersin 10, Turkey
| | - Nasrin Bargahi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
18
|
Tünbekici S, Yuksel HC, Acar C, Sahin G, Orman S, Majidova N, Coskun A, Seyyar M, Dilek MS, Kara M, Dıslı AK, Demir T, Kolkıran N, Sahbazlar M, Demırcıler E, Kuş F, Aytac A, Menekse S, Yucel H, Biter S, Koseci T, Unsal A, Ozveren A, Sevınc A, Goker E, Gürsoy P. Regorafenib Treatment for Recurrent Glioblastoma Beyond Bevacizumab-Based Therapy: A Large, Multicenter, Real-Life Study. Cancers (Basel) 2024; 17:46. [PMID: 39796675 PMCID: PMC11718784 DOI: 10.3390/cancers17010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES In the REGOMA trial, regorafenib demonstrated an overall survival advantage over lomustine, and it has become a recommended treatment for recurrent glioblastoma in guidelines. This study aimed to evaluate the effectiveness and safety of regorafenib as a third-line treatment for patients with recurrent glioblastoma who progressed while taking bevacizumab-based therapy. METHODS This retrospective, multicenter study in Turkey included 65 patients treated between 2021 and 2023 across 19 oncology centers. The main inclusion criteria were histologically confirmed isocitrate dehydrogenase (IDH)-wildtype glioblastoma, progression after second-line bevacizumab-based treatment, and an Eastern Cooperative Oncology Group (ECOG) performance status score of ≤2. Patients received regorafenib 160 mg once daily for the first 3 weeks of each 4-week cycle. RESULTS The median age of the patients was 53 years (18-67 years), with a median progression-free survival of 2.5 months (95% Confidence Interval: 2.23-2.75) and a median overall survival of 4.1 months (95% CI: 3.52-4.68). The median overall survival was improved in patients who received subsequent therapy after regorafenib treatment compared with those who did not (p = 0.022). Progression-free survival was longer in patients with ECOG 0-1 than in those with ECOG 2 (p = 0.042). The safety profile was consistent with that of the REGOMA trial, with no drug-related deaths observed. CONCLUSIONS Regorafenib shows good efficacy and safety as a third-line treatment for recurrent glioblastoma after bevacizumab-based therapy. This study supports the use of regorafenib and emphasizes the need for further randomized studies to validate its role and optimize treatment strategies.
Collapse
Affiliation(s)
- Salih Tünbekici
- Department of Medical Oncology, Ege University Medical Faculty, Izmir 35040, Turkey; (H.c.Y.); (C.A.); (G.S.); (P.G.)
| | - Haydar cagatay Yuksel
- Department of Medical Oncology, Ege University Medical Faculty, Izmir 35040, Turkey; (H.c.Y.); (C.A.); (G.S.); (P.G.)
| | - Caner Acar
- Department of Medical Oncology, Ege University Medical Faculty, Izmir 35040, Turkey; (H.c.Y.); (C.A.); (G.S.); (P.G.)
| | - Gökhan Sahin
- Department of Medical Oncology, Ege University Medical Faculty, Izmir 35040, Turkey; (H.c.Y.); (C.A.); (G.S.); (P.G.)
| | - Seval Orman
- Department of Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Cevizli, D-100 Güney Yanyol, Cevizli Mevkii No:47, Kartal, Istanbul 34865, Turkey;
| | - Nargiz Majidova
- Department of Medical Oncology, School of Medicine, Marmara University, Istanbul 34899, Turkey;
| | - Alper Coskun
- Department of Medical Oncology, Uludağ University, Bursa 16059, Turkey;
| | - Mustafa Seyyar
- Department of Medical Oncology, Gaziantep City Hospital, Gaziantep 27470, Turkey;
| | - Mehmet sıddık Dilek
- Medical Oncology, Medical School, Dicle University, Diyarbakir 21280, Turkey;
| | - Mahmut Kara
- Department of Medical Oncology, Yuzuncu Yil University Faculty of Medicine, Van 65090, Turkey;
| | - Ahmet Kursat Dıslı
- Department of Medical Oncology, Erciyes University Faculty of Medicine, Kayseri 38030, Turkey;
| | - Teyfik Demir
- Department of Medical Oncology, Ondokuz Mayis University Faculty of Medicine, Samsun 55270, Turkey;
| | - Nagihan Kolkıran
- Department of Medical Oncology, Celal Bayar University Faculty of Medicine, Manisa 45030, Turkey; (N.K.); (M.S.)
| | - Mustafa Sahbazlar
- Department of Medical Oncology, Celal Bayar University Faculty of Medicine, Manisa 45030, Turkey; (N.K.); (M.S.)
| | - Erkut Demırcıler
- Department of Medical Oncology, 9 Eylül University Faculty of Medicine, Izmir 35220, Turkey;
| | - Fatih Kuş
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara 06230, Turkey;
| | - Ali Aytac
- Department of Medical Oncology, Mehmet Akif İnan Training and Research Hospital, Sanlıurfa 63040, Turkey;
| | - Serkan Menekse
- Department of Medical Oncology, Manisa City Hospital, Manisa 45040, Turkey;
| | - Hakan Yucel
- Department of Medical Oncology, School of Medicine, Gaziantep University, Gaziantep 27580, Turkey;
| | - Sedat Biter
- Department of Medical Oncology, Cukurova University, Adana 01790, Turkey; (S.B.); (T.K.)
| | - Tolga Koseci
- Department of Medical Oncology, Cukurova University, Adana 01790, Turkey; (S.B.); (T.K.)
| | - Ahmet Unsal
- Department of Medical Oncology, Gumushane State Hospital, Gumushane 29000, Turkey;
| | - Ahmet Ozveren
- Medical Oncology, Department MD, İzmir Kent Hospital, Izmir 35620, Turkey;
| | - Alper Sevınc
- Medical Oncology, Medical Park Gaziantep Hospital, Gaziantep 27090, Turkey;
| | - Erdem Goker
- Department of Medical Oncology, Ege University Medical Faculty, Izmir 35040, Turkey; (H.c.Y.); (C.A.); (G.S.); (P.G.)
| | - Pınar Gürsoy
- Department of Medical Oncology, Ege University Medical Faculty, Izmir 35040, Turkey; (H.c.Y.); (C.A.); (G.S.); (P.G.)
| |
Collapse
|
19
|
Dixon L, Weld A, Bhagawati D, Patel N, Giannarou S, Grech-Sollars M, Lim A, Camp S. Intraoperative superb microvascular ultrasound imaging in glioma: novel quantitative analysis correlates with tumour grade. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.07.24318636. [PMID: 39677443 PMCID: PMC11643247 DOI: 10.1101/2024.12.07.24318636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Accurate grading of gliomas is critical to guide therapy and predict prognosis. The presence of microvascular proliferation is a hallmark feature of high grade gliomas which traditionally requires targeted surgical biopsy of representative tissue. Superb microvascular imaging (SMI) is a novel high resolution Doppler ultrasound technique which can uniquely define the microvascular architecture of whole tumours. We examined both qualitative and quantitative vascular features of gliomas captured with SMI, analysing flow signal density, vessel number, branching points, curvature, vessel angle deviation, fractal dimension, and entropy. Results indicate that high-grade gliomas exhibit significantly greater vascular complexity and disorganisation, with increased fractal dimension and entropy, correlating with known histopathological markers of aggressive angiogenesis. The integrated ROC model achieved high accuracy (AUC = 0.95), highlighting SMI's potential as a non-invasive diagnostic and prognostic tool. While further validation with larger datasets is required, this study opens avenues for SMI in glioma management, supporting intraoperative decision-making and informing future prognosis.
Collapse
|
20
|
Zimina TM, Sitkov NO, Gareev KG, Mikhailova NV, Combs SE, Shevtsov MA. Hybrid-integrated devices for mimicking malignant brain tumors ("tumor-on-a-chip") for in vitro development of targeted drug delivery and personalized therapy approaches. Front Med (Lausanne) 2024; 11:1452298. [PMID: 39629230 PMCID: PMC11611596 DOI: 10.3389/fmed.2024.1452298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/14/2024] [Indexed: 12/07/2024] Open
Abstract
Acute and requiring attention problem of oncotheranostics is a necessity for the urgent development of operative and precise diagnostics methods, followed by efficient therapy, to significantly reduce disability and mortality of citizens. A perspective way to achieve efficient personalized treatment is to use methods for operative evaluation of the individual drug load, properties of specific tumors and the effectiveness of selected therapy, and other actual features of pathology. Among the vast diversity of tumor types-brain tumors are the most invasive and malignant in humans with poor survival after diagnosis. Among brain tumors glioblastoma shows exceptionally high mortality. More studies are urgently needed to understand the risk factors and improve therapy approaches. One of the actively developing approaches is the tumor-on-a-chip (ToC) concept. This review examines the achievements of recent years in the field of ToC system developments. The basics of microfluidic chips technologies are considered in the context of their applications in solving oncological problems. Then the basic principles of tumors cultivation are considered to evaluate the main challengers in implementation of microfluidic devices, for growing cell cultures and possibilities of their treatment and observation. The main achievements in the culture types diversity approaches and their advantages are being analyzed. The modeling of angiogenesis and blood-brain barrier (BBB) on a chip, being a principally important elements of the life system, were considered in detail. The most interesting examples and achievements in the field of tumor-on-a-chip developments have been presented.
Collapse
Affiliation(s)
- Tatiana M. Zimina
- Department of Micro and Nanoelectronics, St. Petersburg Electrotechnical University “LETI” (ETU), Saint Petersburg, Russia
| | - Nikita O. Sitkov
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Kamil G. Gareev
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Natalia V. Mikhailova
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Stephanie E. Combs
- Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maxim A. Shevtsov
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg, Russia
- Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
21
|
Samsami Y, Akhlaghipour I, Taghehchian N, Palizkaran Yazdi M, Farrokhi S, Rahimi HR, Moghbeli M. MicroRNA-382 as a tumor suppressor during tumor progression. Bioorg Med Chem Lett 2024; 113:129967. [PMID: 39293533 DOI: 10.1016/j.bmcl.2024.129967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Despite the recent progresses in therapeutic and diagnostic methods, there is still a significantly high rate of mortality among cancer patients. One of the main reasons for the high mortality rate in cancer patients is late diagnosis, which leads to the failure of therapeutic strategies. Therefore, investigation of cancer biology can lead to the introduction of early diagnostic markers in these patients. MicroRNAs (miRNAs) play an important role in regulation of cellular processes associated with tumor progression. Due to the high stability of miRNAs in body fluids, these factors can be considered as the non-invasive tumor markers. Deregulation of miR-382 has been widely reported in different cancers. Therefore, in this review, we investigated the role of miR-382 during tumor development. It has shown that miR-382 has mainly a tumor suppressive, which inhibits the growth of tumor cells through the regulation of signaling pathways, RNA-binding proteins, and transcription factors. Therefore, miR-382 can be suggested as a diagnostic and therapeutic marker in cancer patients.
Collapse
Affiliation(s)
- Yalda Samsami
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Saba Farrokhi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
22
|
Chen J, Cui J, Jiao B, Zheng Z, Yu H, Wang H, Zhang G, Lai S, Gan Z, Yu Q. Biomimetic Nanosensitizer Potentiates Efficient Glioblastoma Gene-Radiotherapy through Synergistic Hypoxia Mitigation and PLK1 Silencing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58241-58261. [PMID: 39287499 DOI: 10.1021/acsami.4c11566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Postoperative radiotherapy currently stands as the cornerstone of glioblastoma (GBM) treatment. Nevertheless, low-dose radiotherapy has been proven ineffective for GBM, due to hypoxia in the GBM microenvironment, which renders the resistance to radiation-induced cell death. Moreover, the overexpression of the PLK1 gene in glioma cells enhances GBM proliferation, invasion, metastasis, and resistance to radiation. This study introduced a hybrid membrane-camouflaged biomimetic lipid nanosensitizer (CNL@miPA), which efficiently encapsulated gold nanoclusters (PA) and miR-593-5p by a chimeric membrane derived from lipids, cancer cells, and natural killer cells. CNL@miPA exhibited exceptional blood-brain barrier and tumor tissue penetration, effectively ameliorating hypoxia and synergizing with radiotherapy. By enabling prolonged miRNA circulation in the bloodstream and achieving high enrichment at the tumor site, CNL@miPA significantly suppressed tumor growth in combination treatment, thereby significantly extending the survival period of treated mice. Overall, the developed biomimetic nanosensitizer represented an efficient and multifunctional targeted delivery system, offering a novel strategy for gene-radiotherapy of GBM.
Collapse
Affiliation(s)
- Jiawei Chen
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiajunzi Cui
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Binbin Jiao
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China
| | - Ziyan Zheng
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haiwang Yu
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hanbing Wang
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guan Zhang
- Department of Urology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Shicong Lai
- Department of Urology, Peking University People's Hospital, Beijing 100044, China
- The Institute of Applied Lithotripsy Technology, Peking University, Beijing 100044, China
| | - Zhihua Gan
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qingsong Yu
- The State Key Laboratory of Organic-inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
23
|
Bux K, Asim I, Ismail Z, Hussain S, Herwig R. Structural and dynamical insights revealed the anti-glioblastoma potential of withanolides from Withania coagulans against vascular endothelial growth factor receptor (VEGFR). J Mol Model 2024; 30:383. [PMID: 39443392 DOI: 10.1007/s00894-024-06178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
CONTEXT Glioblastoma (GBM), well known as grade 4 tumors due to its progressive malignant features such as vascular proliferation and necrosis, is the most aggressive form of primary brain tumor found in adults. Mutations and amplifications in the vascular endothelial growth factor receptor (VEGFR) contribute to almost 25% of GBM tumors. And thus, VEGFR has been declared the primary target in glioblastoma therapeutic strategies. However, many studies have been previously reported that include GBM as global therapeutics challenge, but they lack the molecular level insights that could help in understanding the biological function of a therapeutically important protein playing a major role in the disease and design the best strategies to develop the potential drugs. METHODS Therefore, to the best of our knowledge, the present study is the first time of kind, which involves multi-in silico approaches to predict the inhibition potential of withanolides from Withania coagulan against VEGFR. The study is actually based on determining the mode of action of five isolates: withanolide J, withaperuvin, 27-hydroxywithanolide I, coagule E, and coagule E, along with their respective binding energies. Molecular docking simulations revealed primarily four ligands, withanolide J (- 7.33 kJ/mol), 27-withanolide (- 7.01 kJ/mol), ajugine, withaperuvin (- 6.89 kJ/mol), and ajugine E (- 6.39 kJ/mol), to have significant binding potencies against the protein. Ligand binding was found to enhance the confirmational stability of the protein revealed through RMSD analysis, and RMSF assessment revealed the protein residues especially from 900-1000 surrounding the binding of the protein. Structural and dynamics of the protein via dynamics cross-correlation movement (DCCM) and principal component analysis (PCA) in both the unbound form and complexed with most potent ligand, withanolide J, reveal the ligand binding affecting the entire conformational integrity of the protein stabilized by hydrogen bonds and electrostatic attractions. Free energy of binding estimations by means of molecular mechanics Poisson-Boltzmann surface area (MMPBSA) method further revealed the withanolide J to have maximum binding potency of the all ligands. Withanolide J in final was also found to have suitable molecular characterizations to cross the blood-brain barrier (BBB +) and reasonable human intestinal absorption ability determined by ADMET profiling via admetSAR tools.
Collapse
Affiliation(s)
- Khair Bux
- Faculty of Life Sciences, Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST) University, Karachi, Pakistan.
| | - Irsa Asim
- Faculty of Life Sciences, Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST) University, Karachi, Pakistan
| | - Zainab Ismail
- Faculty of Life Sciences, Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST) University, Karachi, Pakistan
| | - Samaha Hussain
- Faculty of Life Sciences, Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST) University, Karachi, Pakistan
| | - Ralf Herwig
- Laboratories PD Dr. R. Herwig, 80337, Munich, Germany
- Heimerer-College, 10000, Pristina, Kosovo
| |
Collapse
|
24
|
Bannykh KS, Fuentes-Fayos AC, Linesch PW, Breunig JJ, Bannykh SI. Laminin Beta 2 Is Localized at the Sites of Blood-Brain Barrier and Its Disruption Is Associated With Increased Vascular Permeability, Histochemical, and Transcriptomic Study. J Histochem Cytochem 2024; 72:641-667. [PMID: 39340425 PMCID: PMC11472343 DOI: 10.1369/00221554241281896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Heterotrimeric extracellular matrix proteins laminins are mostly deposited at basal membranes and are important in repair and neoplasia. Here, we localize laminin beta 2 (LAMB2) at the sites of blood-brain barrier (BBB). Microvasculature (MV) of normal brain is endowed with complete LAMB2 coverage. In contrast, its cognate protein laminin beta 1 (LAMB1) is absent in MV of normal brain but emerges at the sprouting tip of a growing vessels. Similarly, vascular proliferation in high-grade gliomas (HGG) is accompanied by marked overexpression of LAMB1, whereas LAMB2 shows deficient deposition. We find that many brain pathologies with presence of post-gadolinium enhancement (PGE) on magnetic resonance imaging (MRI) show disruption of LAMB2 vascular ensheathment. Inhibition of vascular endothelial growth factor signaling in HGG blocks angiogenesis, suppresses PGE in HGG, prevents expression of LAMB1, and restores LAMB2 vascular coverage. Analysis of single-cell RNA sequencing (scRNA-seq) databases shows that in quiescent brain LAMB2 is predominantly expressed by BBB-associated pericytes (PCs) and endothelial cells (ECs), whereas neither cell types produce LAMB1. In contrast, in HGG, both LAMB1 and 2 are overexpressed by endothelial precursor cells, a phenotypically unique immature group, specific to proliferating hyperplastic MV.
Collapse
Affiliation(s)
- Katherine S. Bannykh
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Antonio C. Fuentes-Fayos
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Paul W. Linesch
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Joshua J. Breunig
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Center for Neural Sciences in Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Serguei I. Bannykh
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
25
|
Ghaedian T, Alipour A, Rakhsha A, Nasrollahi H, Saffarian A. Early Impact of Bevacizumab on the 99m Tc-HYNIC-PSMA-11 Uptake in a Case of Recurrent Glioblastoma Multiforme. Clin Nucl Med 2024; 49:e528-e529. [PMID: 39192507 DOI: 10.1097/rlu.0000000000005435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
ABSTRACT Glioblastoma multiforme (GBM) is a highly vascularized tumor with reported high prostate-specific membrane antigen (PSMA) expression. On the other hand, bevacizumab as an antiangiogenesis drug is increasingly used in the treatment of GBM recurrence. We present a case of GBM recurrence with significant reduction of 99m Tc-HYNIC-PSMA-11 uptake in her tumor 1 week after administration of 2 doses of bevacizumab with 2 weeks' interval. This case emphasizes the main mechanism of PSMA uptake in GBM secondary to angiogenesis and also implies a potential interaction of bevacizumab with PSMA uptake that should be especially considered during diagnostic and therapeutic application of PSMA radiotracers in GBM.
Collapse
Affiliation(s)
- Tahereh Ghaedian
- From the Nuclear Medicine Department, Namazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolmajid Alipour
- From the Nuclear Medicine Department, Namazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Rakhsha
- Department of Neurosurgery, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Nasrollahi
- Department of Radiooncology, Namazi Teaching Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arash Saffarian
- Department of Neurosurgery, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
26
|
Heinig S, Aigner T, Bloß HG, Grabenbauer GG. Spinal and cervical nodal metastases in a patient with glioblastoma. Strahlenther Onkol 2024; 200:838-843. [PMID: 38488900 DOI: 10.1007/s00066-024-02214-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/04/2024] [Indexed: 03/17/2024]
Abstract
This article presents the rare case of a 54-year-old gentleman with primary glioblastoma developing multiple extracranial metastases 7 months after diagnosis. Initially, the patient complained of progressive headaches, confusion, and weakness of the left arm. Magnetic resonance imaging of the brain showed a right temporoparietal tumor with substantial surrounding subcortical edema and midline shift to the left. Two consecutive craniotomies resulted in complete microsurgical resection of the lesion. Histology was consistent with a World Health Organization grade IV, IDH-wildtype glioblastoma. Further treatment was standard chemoradiation including intensity-modulated radiotherapy with oral temozolomide chemotherapy. Seven months after diagnosis, the cranial lesion progressed, and the patient developed painful metastases in multiple bones and suspicious right-sided cervical lymph nodes. Immunohistochemistry and molecular signature supported the case of a metastatic glioblastoma. Further treatment was palliative radiotherapy of the spinal lesions along with symptomatic pain management. Extracranial metastasis of glioblastoma is a rare complication of which only a few cases have been reported in the literature. Little is known about the precise mechanisms of tumor dissemination and the appropriate treatment.
Collapse
Affiliation(s)
- Silvio Heinig
- Department of Radiation Oncology, Coburg Cancer Center, Coburg, Germany
- University of Split School of Medicine, Split, Croatia
| | - Thomas Aigner
- Department of Molecular Pathology, Coburg Cancer Center, Coburg, Germany
| | - Heinz-Georg Bloß
- Department of Neurosurgery, Coburg Cancer Center, Lichtenfels, Germany
| | - Gerhard G Grabenbauer
- Department of Radiation Oncology, Coburg Cancer Center, Coburg, Germany.
- University of Split School of Medicine, Split, Croatia.
| |
Collapse
|
27
|
Pasqualetti F, Lombardi G, Gadducci G, Giannini N, Montemurro N, Feletti A, Zeppieri M, Somma T, Caffo M, Bertolotti C, Ius T. Brain Stem Glioma Recurrence: Exploring the Therapeutic Frontiers. J Pers Med 2024; 14:899. [PMID: 39338153 PMCID: PMC11433503 DOI: 10.3390/jpm14090899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Gliomas of the brainstem represent a small percentage of central nervous system gliomas in adults. Due to the proximity of the tumor to critical structures, radical surgery is highly challenging and limited to selected cases. In addition, postoperative treatments, which become exclusive to non-operable patients, do not guarantee satisfactory disease control, making the progression of the disease inevitable. Currently, there is a lack of therapeutic options to control tumor growth after the diagnosis of recurrence. The rarity of these tumors, their distinct behavioral characteristics, and the limited availability of tumor tissue necessary for the development of prognostic and predictive biomarkers contribute to the absence of a standardized approach for treating recurrent brainstem gliomas. A salvage radiotherapy (RT) retreatment could represent a promising approach for recurrent brainstem gliomas. However, to date, it has been mainly evaluated in pediatric cases, with few experiences available to assess the most appropriate RT dose, safety, and clinical responses in adult patients. This comprehensive review aims to identify instances of adult patients with recurrent brainstem gliomas subjected to a secondary course of RT, with a specific focus on the analysis of treatment-related toxicity and outcomes. Through this investigation, we endeavor to contribute valuable insights into the viability and efficacy of salvage RT retreatment in managing recurrent brainstem gliomas in the adult population.
Collapse
Affiliation(s)
- Francesco Pasqualetti
- Division of Radiation Oncology, Azienda Ospedaliero Universitaria Pisana, 56100 Pisa, Italy; (F.P.)
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Giovanni Gadducci
- Division of Radiation Oncology, Azienda Ospedaliero Universitaria Pisana, 56100 Pisa, Italy; (F.P.)
| | - Noemi Giannini
- Division of Radiation Oncology, Azienda Ospedaliero Universitaria Pisana, 56100 Pisa, Italy; (F.P.)
| | - Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliero Universitaria Pisana, 56100 Pisa, Italy
| | - Alberto Feletti
- Department of Neurosciences, Biomedicine, and Movement Sciences, Institute of Neurosurgery, University of Verona, 37126 Verona, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Piazzale S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Teresa Somma
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, 80134 Naples, Italy
| | - Maria Caffo
- Unit of Neurosurgery, Department of Biomorphology and Dental Science, and Morphofunctional Imaging, Università degli Studi di Messina, 98125 Messina, Italy
| | - Chiara Bertolotti
- Department of Neuroradiology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and NeuroScience Department, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| |
Collapse
|
28
|
Cheng J, Li M, Motta E, Barci D, Song W, Zhou D, Li G, Zhu S, Yang A, Vaillant BD, Imhof A, Forné I, Spiegl-Kreinecker S, Zhang N, Katayama H, Bhat KPL, Flüh C, Kälin RE, Glass R. Myeloid cells coordinately induce glioma cell-intrinsic and cell-extrinsic pathways for chemoresistance via GP130 signaling. Cell Rep Med 2024; 5:101658. [PMID: 39053460 PMCID: PMC11384956 DOI: 10.1016/j.xcrm.2024.101658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/10/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
The DNA damage response (DDR) and the blood-tumor barrier (BTB) restrict chemotherapeutic success for primary brain tumors like glioblastomas (GBMs). Coherently, GBMs almost invariably relapse with fatal outcomes. Here, we show that the interaction of GBM and myeloid cells simultaneously induces chemoresistance on the genetic and vascular levels by activating GP130 receptor signaling, which can be addressed therapeutically. We provide data from transcriptomic and immunohistochemical screens with human brain material and pharmacological experiments with a humanized organotypic GBM model, proteomics, transcriptomics, and cell-based assays and report that nanomolar concentrations of the signaling peptide humanin promote temozolomide (TMZ) resistance through DDR activation. GBM mouse models recapitulating intratumoral humanin release show accelerated BTB formation. GP130 blockade attenuates both DDR activity and BTB formation, resulting in improved preclinical chemotherapeutic efficacy. Altogether, we describe an overarching mechanism for TMZ resistance and outline a translatable strategy with predictive markers to improve chemotherapy for GBMs.
Collapse
Affiliation(s)
- Jiying Cheng
- Neurosurgical Research, University Hospital, LMU Munich, Munich, Germany; Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Min Li
- Neurosurgical Research, University Hospital, LMU Munich, Munich, Germany
| | - Edyta Motta
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch, Germany
| | - Deivi Barci
- Neurosurgical Research, University Hospital, LMU Munich, Munich, Germany
| | - Wangyang Song
- Neurosurgical Research, University Hospital, LMU Munich, Munich, Germany
| | - Ding Zhou
- Neurosurgical Research, University Hospital, LMU Munich, Munich, Germany
| | - Gen Li
- Neurosurgical Research, University Hospital, LMU Munich, Munich, Germany
| | - Sihan Zhu
- Neurosurgical Research, University Hospital, LMU Munich, Munich, Germany
| | - Anru Yang
- Neurosurgical Research, University Hospital, LMU Munich, Munich, Germany
| | - Brian D Vaillant
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Axel Imhof
- Protein Analysis Unit, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Martinsried, Germany
| | - Ignasi Forné
- Protein Analysis Unit, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Martinsried, Germany
| | - Sabine Spiegl-Kreinecker
- Department of Neurosurgery, Medical Faculty, Johannes Kepler University Linz, Linz, Austria; Clinical Research Institute for Neurosciences, Johannes Kepler University Linz, Linz, Austria
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Hiroshi Katayama
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Charlotte Flüh
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Roland E Kälin
- Neurosurgical Research, University Hospital, LMU Munich, Munich, Germany; Department of Neurosurgery, Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Rainer Glass
- Neurosurgical Research, University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and University Hospital Munich, Munich, Germany; Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
29
|
Meena D, Jha S. Autophagy in glioblastoma: A mechanistic perspective. Int J Cancer 2024; 155:605-617. [PMID: 38716809 DOI: 10.1002/ijc.34991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 06/20/2024]
Abstract
Glioblastoma (GBM) is one of the most lethal malignancies in humans. Even after surgical resection and aggressive radio- or chemotherapies, patients with GBM can survive for less than 14 months. Extreme inter-tumor and intra-tumor heterogeneity of GBM poses a challenge for resolving recalcitrant GBM pathophysiology. GBM tumor microenvironment (TME) exhibits diverse heterogeneity in cellular composition and processes contributing to tumor progression and therapeutic resistance. Autophagy is such a cellular process; that demonstrates a cell-specific and TME context-dependent role in GBM progression, leading to either the promotion or suppression of GBM progression. Autophagy can regulate GBM cell function directly via regulation of survival, migration, and invasion, or indirectly by affecting GBM TME composition such as immune cell population, tumor metabolism, and glioma stem cells. This review comprehensively investigates the role of autophagy in GBM pathophysiology.
Collapse
Affiliation(s)
- Durgesh Meena
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Sushmita Jha
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| |
Collapse
|
30
|
Zhao Y, Pan J, Han B, Hou W, Li B, Wang J, Wang G, He Y, Ma M, Zhou J, Yu C, Sun SK. Ultrahigh-Resolution Visualization of Vascular Heterogeneity in Brain Tumors via Magnetic Nanoparticles-Enhanced Susceptibility-Weighted Imaging. ACS NANO 2024; 18:21112-21124. [PMID: 39094075 DOI: 10.1021/acsnano.4c02611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The precise assessment of vascular heterogeneity in brain tumors is vital for diagnosing, grading, predicting progression, and guiding treatment decisions. However, currently, there is a significant shortage of high-resolution imaging approaches. Herein, we propose a contrast-enhanced susceptibility-weighted imaging (CE-SWI) utilizing the minimalist dextran-modified Fe3O4 nanoparticles (Dextran@Fe3O4 NPs) for ultrahigh-resolution mapping of vasculature in brain tumors. The Dextran@Fe3O4 NPs are prepared via a facile coprecipitation method under room temperature, and exhibit small hydrodynamic size (28 nm), good solubility, excellent biocompatibility, and high transverse relaxivity (r2*, 159.7 mM-1 s-1) under 9.4 T magnetic field. The Dextran@Fe3O4 NPs-enhanced SWI can increase the contrast-to-noise ratio (CNR) of cerebral vessels to 2.5 times that before injection and achieves ultrahigh-spatial-resolution visualization of microvessels as small as 0.1 mm in diameter. This advanced imaging capability not only allows for the detailed mapping of both enlarged peritumoral drainage vessels and the intratumoral microvessels, but also facilitates the sensitive imaging detection of vascular permeability deterioration in a C6 cells-bearing rat glioblastoma model. Our proposed Dextran@Fe3O4 NPs-enhanced SWI provides a powerful imaging technique with great clinical translation potential for the precise theranostics of brain tumors.
Collapse
Affiliation(s)
- Yujie Zhao
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Bing Han
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wenjing Hou
- Department of Diagnostic and Therapeutic Ultrasonography, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Bingjie Li
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jiaojiao Wang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Guohe Wang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300204, China
| | - Yujing He
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Min Ma
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Junzi Zhou
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300204, China
| |
Collapse
|
31
|
Pan X, Li X, Dong L, Liu T, Zhang M, Zhang L, Zhang X, Huang L, Shi W, Sun H, Fang Z, Sun J, Huang Y, Shao H, Wang Y, Yin M. Tumour vasculature at single-cell resolution. Nature 2024; 632:429-436. [PMID: 38987599 DOI: 10.1038/s41586-024-07698-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
Tumours can obtain nutrients and oxygen required to progress and metastasize through the blood supply1. Inducing angiogenesis involves the sprouting of established vessel beds and their maturation into an organized network2,3. Here we generate a comprehensive atlas of tumour vasculature at single-cell resolution, encompassing approximately 200,000 cells from 372 donors representing 31 cancer types. Trajectory inference suggested that tumour angiogenesis was initiated from venous endothelial cells and extended towards arterial endothelial cells. As neovascularization elongates (through angiogenic stages SI, SII and SIII), APLN+ tip cells at the SI stage (APLN+ TipSI) advanced to TipSIII cells with increased Notch signalling. Meanwhile, stalk cells, following tip cells, transitioned from high chemokine expression to elevated TEK (also known as Tie2) expression. Moreover, APLN+ TipSI cells not only were associated with disease progression and poor prognosis but also hold promise for predicting response to anti-VEGF therapy. Lymphatic endothelial cells demonstrated two distinct differentiation lineages: one responsible for lymphangiogenesis and the other involved in antigen presentation. In pericytes, endoplasmic reticulum stress was associated with the proangiogenic BASP1+ matrix-producing pericytes. Furthermore, intercellular communication analysis showed that neovascular endothelial cells could shape an immunosuppressive microenvironment conducive to angiogenesis. This study depicts the complexity of tumour vasculature and has potential clinical significance for anti-angiogenic therapy.
Collapse
Affiliation(s)
- Xu Pan
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xin Li
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, China
- Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Liang Dong
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Teng Liu
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, China
- Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Min Zhang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Lining Zhang
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, China
- Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Xiyuan Zhang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Lingjuan Huang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Wensheng Shi
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongyin Sun
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zhaoyu Fang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering at Central South University, Changsha, China
| | - Jie Sun
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, China
- Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Yaoxuan Huang
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, China
- Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Hua Shao
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, China
- Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Yeqi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Mingzhu Yin
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, China.
- Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Chongqing, China.
- School of Medicine, Chongqing University, Chongqing, China.
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
32
|
Su X, Wang Y, Chu H, Jiang L, Yan Y, Qiao X, Yu J, Guo K, Zong Y, Wan M. Low-rank prior-based Fast-RPCA for clutter filtering and noise suppression in non-contrast ultrasound microvascular imaging. ULTRASONICS 2024; 142:107379. [PMID: 38981172 DOI: 10.1016/j.ultras.2024.107379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024]
Abstract
Accurate and real-time separation of blood signal from clutter and noise signals is a critical step in clinical non-contrast ultrasound microvascular imaging. Despite the widespread adoption of singular value decomposition (SVD) and robust principal component analysis (RPCA) for clutter filtering and noise suppression, the SVD's sensitivity to threshold selection, along with the RPCA's limitations in undersampling conditions and heavy computational burden often result in suboptimal performance in complex clinical applications. To address those challenges, this study presents a novel low-rank prior-based fast RPCA (LP-fRPCA) approach to enhance the adaptability and robustness of clutter filtering and noise suppression with reduced computational cost. A low-rank prior constraint is integrated into the non-convex RPCA model to achieve a robust and efficient approximation of clutter subspace, while an accelerated alternating projection iterative algorithm is developed to improve convergence speed and computational efficiency. The performance of the LP-fRPCA method was evaluated against SVD with a tissue/blood threshold (SVD1), SVD with both tissue/blood and blood/noise thresholds (SVD2), and the classical RPCA based on the alternating direction method of multipliers algorithm through phantom and in vivo non-contrast experiments on rabbit kidneys. In the slow flow phantom experiment of 0.2 mm/s, LP-fRPCA achieved an average increase in contrast ratio (CR) of 10.68 dB, 9.37 dB, and 8.66 dB compared to SVD1, SVD2, and RPCA, respectively. In the in vivo rabbit kidney experiment, the power Doppler results demonstrate that the LP-fRPCA method achieved a superior balance in the trade-off between insufficient clutter filtering and excessive suppression of blood flow. Additionally, LP-fRPCA significantly reduced the runtime of RPCA by up to 94-fold. Consequently, the LP-fRPCA method promises to be a potential tool for clinical non-contrast ultrasound microvascular imaging.
Collapse
Affiliation(s)
- Xiao Su
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yueyuan Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hanbing Chu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Liyuan Jiang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yadi Yan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaoyang Qiao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jianjun Yu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kaitai Guo
- School of Electronic Engineering, Xidian University, Xi'an, 710071, China
| | - Yujin Zong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
33
|
Wälchli T, Ghobrial M, Schwab M, Takada S, Zhong H, Suntharalingham S, Vetiska S, Gonzalez DR, Wu R, Rehrauer H, Dinesh A, Yu K, Chen ELY, Bisschop J, Farnhammer F, Mansur A, Kalucka J, Tirosh I, Regli L, Schaller K, Frei K, Ketela T, Bernstein M, Kongkham P, Carmeliet P, Valiante T, Dirks PB, Suva ML, Zadeh G, Tabar V, Schlapbach R, Jackson HW, De Bock K, Fish JE, Monnier PP, Bader GD, Radovanovic I. Single-cell atlas of the human brain vasculature across development, adulthood and disease. Nature 2024; 632:603-613. [PMID: 38987604 PMCID: PMC11324530 DOI: 10.1038/s41586-024-07493-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/30/2024] [Indexed: 07/12/2024]
Abstract
A broad range of brain pathologies critically relies on the vasculature, and cerebrovascular disease is a leading cause of death worldwide. However, the cellular and molecular architecture of the human brain vasculature remains incompletely understood1. Here we performed single-cell RNA sequencing analysis of 606,380 freshly isolated endothelial cells, perivascular cells and other tissue-derived cells from 117 samples, from 68 human fetuses and adult patients to construct a molecular atlas of the developing fetal, adult control and diseased human brain vasculature. We identify extensive molecular heterogeneity of the vasculature of healthy fetal and adult human brains and across five vascular-dependent central nervous system (CNS) pathologies, including brain tumours and brain vascular malformations. We identify alteration of arteriovenous differentiation and reactivated fetal as well as conserved dysregulated genes and pathways in the diseased vasculature. Pathological endothelial cells display a loss of CNS-specific properties and reveal an upregulation of MHC class II molecules, indicating atypical features of CNS endothelial cells. Cell-cell interaction analyses predict substantial endothelial-to-perivascular cell ligand-receptor cross-talk, including immune-related and angiogenic pathways, thereby revealing a central role for the endothelium within brain neurovascular unit signalling networks. Our single-cell brain atlas provides insights into the molecular architecture and heterogeneity of the developing, adult/control and diseased human brain vasculature and serves as a powerful reference for future studies.
Collapse
Affiliation(s)
- Thomas Wälchli
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland.
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland.
| | - Moheb Ghobrial
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Laboratory of Exercise and Health, Institute of Exercise and Health, Department of Health Sciences and Technology; Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Marc Schwab
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Shigeki Takada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Hang Zhong
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Laboratory of Exercise and Health, Institute of Exercise and Health, Department of Health Sciences and Technology; Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Samuel Suntharalingham
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sandra Vetiska
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | - Ruilin Wu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Anuroopa Dinesh
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Ontario, Canada
| | - Kai Yu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Edward L Y Chen
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jeroen Bisschop
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Fiona Farnhammer
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ann Mansur
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Luca Regli
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Karl Schaller
- Department of Neurosurgery, University of Geneva Medical Center & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl Frei
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Troy Ketela
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Mark Bernstein
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Paul Kongkham
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters-Hamilton Centre for Neuro-Oncology Research, University Health Network, Toronto, Ontario, Canada
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB & Department of Oncology, KU Leuven, Leuven, Belgium
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Taufik Valiante
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, Division of Clinical and Computational Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering and Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Peter B Dirks
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Center, Departments of Surgery and Molecular Genetics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mario L Suva
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Hartland W Jackson
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Ontario Institute of Cancer Research, Toronto, Ontario, Canada
| | - Katrien De Bock
- Laboratory of Exercise and Health, Institute of Exercise and Health, Department of Health Sciences and Technology; Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Jason E Fish
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Philippe P Monnier
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Vision Division, Krembil Discovery Tower, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gary D Bader
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Ivan Radovanovic
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Amissah HA, Combs SE, Shevtsov M. Tumor Dormancy and Reactivation: The Role of Heat Shock Proteins. Cells 2024; 13:1087. [PMID: 38994941 PMCID: PMC11240553 DOI: 10.3390/cells13131087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Tumors are a heterogeneous group of cell masses originating in various organs or tissues. The cellular composition of the tumor cell mass interacts in an intricate manner, influenced by humoral, genetic, molecular, and tumor microenvironment cues that dictate tumor growth or suppression. As a result, tumors undergo a period of a dormant state before their clinically discernible stage, which surpasses the clinical dormancy threshold. Moreover, as a genetically imprinted strategy, early-seeder cells, a distinct population of tumor cells, break off to dock nearby or extravasate into blood vessels to secondary tissues, where they form disseminated solitary dormant tumor cells with reversible capacity. Among the various mechanisms underlying the dormant tumor mass and dormant tumor cell formation, heat shock proteins (HSPs) might play one of the most important roles in how the dormancy program plays out. It is known that numerous aberrant cellular processes, such as malignant transformation, cancer cell stemness, tumor invasion, metastasis, angiogenesis, and signaling pathway maintenance, are influenced by the HSPs. An accumulating body of knowledge suggests that HSPs may be involved in the angiogenic switch, immune editing, and extracellular matrix (ECM) remodeling cascades, crucial genetically imprinted strategies important to the tumor dormancy initiation and dormancy maintenance program. In this review, we highlight the biological events that orchestrate the dormancy state and the body of work that has been conducted on the dynamics of HSPs in a tumor mass, as well as tumor cell dormancy and reactivation. Additionally, we propose a conceptual framework that could possibly underlie dormant tumor reactivation in metastatic relapse.
Collapse
Affiliation(s)
- Haneef Ahmed Amissah
- Institute of Life Sciences and Biomedicine, Department of Medical Biology and Medical Biology, FEFU Campus, Far Eastern Federal University, 690922 Vladivostok, Russia;
- Diagnostics Laboratory Department, Trauma and Specialist Hospital, CE-122-2486, Central Region, Winneba P.O. Box 326, Ghana
| | - Stephanie E. Combs
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
| | - Maxim Shevtsov
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| |
Collapse
|
35
|
Ember K, Dallaire F, Plante A, Sheehy G, Guiot MC, Agarwal R, Yadav R, Douet A, Selb J, Tremblay JP, Dupuis A, Marple E, Urmey K, Rizea C, Harb A, McCarthy L, Schupper A, Umphlett M, Tsankova N, Leblond F, Hadjipanayis C, Petrecca K. In situ brain tumor detection using a Raman spectroscopy system-results of a multicenter study. Sci Rep 2024; 14:13309. [PMID: 38858389 PMCID: PMC11164901 DOI: 10.1038/s41598-024-62543-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
Safe and effective brain tumor surgery aims to remove tumor tissue, not non-tumoral brain. This is a challenge since tumor cells are often not visually distinguishable from peritumoral brain during surgery. To address this, we conducted a multicenter study testing whether the Sentry System could distinguish the three most common types of brain tumors from brain tissue in a label-free manner. The Sentry System is a new real time, in situ brain tumor detection device that merges Raman spectroscopy with machine learning tissue classifiers. Nine hundred and seventy-six in situ spectroscopy measurements and colocalized tissue specimens were acquired from 67 patients undergoing surgery for glioblastoma, brain metastases, or meningioma to assess tumor classification. The device achieved diagnostic accuracies of 91% for glioblastoma, 97% for brain metastases, and 96% for meningiomas. These data show that the Sentry System discriminated tumor containing tissue from non-tumoral brain in real time and prior to resection.
Collapse
Affiliation(s)
- Katherine Ember
- Polytechnique Montréal, Montreal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Frédérick Dallaire
- Polytechnique Montréal, Montreal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Arthur Plante
- Polytechnique Montréal, Montreal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Guillaume Sheehy
- Polytechnique Montréal, Montreal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Marie-Christine Guiot
- Division of Neuropathology, Department of Pathology, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Frédéric Leblond
- Polytechnique Montréal, Montreal, Canada.
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada.
- Institut du Cancer de Montréal, Montreal, Canada.
| | - Constantinos Hadjipanayis
- Mount Sinai Hospital, New York, NY, USA.
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Kevin Petrecca
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada.
| |
Collapse
|
36
|
Xing Z, Wang C, Yang W, She D, Yang X, Cao D. Predicting glioblastoma recurrence using multiparametric MR imaging of non-enhancing peritumoral regions at baseline. Heliyon 2024; 10:e30411. [PMID: 38711642 PMCID: PMC11070862 DOI: 10.1016/j.heliyon.2024.e30411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Background To assess the feasibility of multiparametric magnetic resonance imaging in predicting tumor recurrence in nonenhancing peritumoral regions in patients with glioblastoma at baseline. Methods Fifty-eight patients with recurrent glioblastoma underwent multiparametric magnetic resonance imaging, including T2-weighted fluid-attenuated inversion recovery, diffusion-weighted imaging, and dynamic susceptibility contrast perfusion-weighted imaging. Nonenhancing peritumoral regions with glioblastoma recurrence were identified by coregistering preoperative and post-recurrent magnetic resonance images. Regions of interest were placed in nonenhancing peritumoral regions with and without tumor recurrence to calculate the apparent diffusion coefficient value, and relative ratios of T2-weighted fluid-attenuated inversion recovery signal intensity, apparent diffusion coefficient, and cerebral blood volume values. Results Significant lower relative T2-weighted fluid-attenuated inversion recovery signal intensity, apparent diffusion coefficient, and relative apparent diffusion coefficient but higher relative cerebral blood volume values were found in the nonenhancing peritumoral regions with tumor recurrence than without recurrence (all P < 0.05). The threshold values ≥ 0.89 for relative cerebral blood volume provide the optimal performance for predicting the nonenhancing peritumoral regions with future tumor recurrence, with the sensitivity, specificity, and accuracy of 84.7%, 83.6%, and 85.8%, respectively. The combination of relative T2-weighted fluid-attenuated inversion recovery signal intensity, apparent diffusion coefficient, and relative cerebral blood volume can provide better predictive performance than relative cerebral blood volume (P = 0.015). Conclusion The combined use of T2-weighted fluid-attenuated inversion recovery, diffusion-weighted imaging, and dynamic susceptibility contrast perfusion-weighted imaging can effectively estimate the risk of future tumor recurrence at baseline.
Collapse
Affiliation(s)
- Zhen Xing
- Department of Radiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
| | - Cong Wang
- Department of Nuclear Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Wen Yang
- The Webb Schools, Claremont, CA, 91711, USA
| | - Dejun She
- Department of Radiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
| | - Xiefeng Yang
- Department of Radiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
| | - Dairong Cao
- Department of Radiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
- Department of Radiology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| |
Collapse
|
37
|
Spinelli C, Adnani L, Meehan B, Montermini L, Huang S, Kim M, Nishimura T, Croul SE, Nakano I, Riazalhosseini Y, Rak J. Mesenchymal glioma stem cells trigger vasectasia-distinct neovascularization process stimulated by extracellular vesicles carrying EGFR. Nat Commun 2024; 15:2865. [PMID: 38570528 PMCID: PMC10991552 DOI: 10.1038/s41467-024-46597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Targeting neovascularization in glioblastoma (GBM) is hampered by poor understanding of the underlying mechanisms and unclear linkages to tumour molecular landscapes. Here we report that different molecular subtypes of human glioma stem cells (GSC) trigger distinct endothelial responses involving either angiogenic or circumferential vascular growth (vasectasia). The latter process is selectively triggered by mesenchymal (but not proneural) GSCs and is mediated by a subset of extracellular vesicles (EVs) able to transfer EGFR/EGFRvIII transcript to endothelial cells. Inhibition of the expression and phosphorylation of EGFR in endothelial cells, either pharmacologically (Dacomitinib) or genetically (gene editing), abolishes their EV responses in vitro and disrupts vasectasia in vivo. Therapeutic inhibition of EGFR markedly extends anticancer effects of VEGF blockade in mice, coupled with abrogation of vasectasia and prolonged survival. Thus, vasectasia driven by intercellular transfer of oncogenic EGFR may represent a new therapeutic target in a subset of GBMs.
Collapse
Affiliation(s)
- Cristiana Spinelli
- McGill University, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Lata Adnani
- McGill University, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Brian Meehan
- McGill University, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Laura Montermini
- McGill University, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Minjun Kim
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Tamiko Nishimura
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Sidney E Croul
- Department of Pathology & Laboratory Medicine, Dalhousie University, Halifax, NS, Canada
| | - Ichiro Nakano
- Department of Neurosurgery, Hokuto Social Medical Corporation, Hokuto Hospital, Kisen-7-5 Inadacho, Obihiro, Hokkaido, 080-0833, Japan
| | | | - Janusz Rak
- McGill University, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
38
|
Zhang S, Chen D, Sun H, Kemp GJ, Chen Y, Tan Q, Yang Y, Gong Q, Yue Q. Whole brain morphologic features improve the predictive accuracy of IDH status and VEGF expression levels in gliomas. Cereb Cortex 2024; 34:bhae151. [PMID: 38642107 DOI: 10.1093/cercor/bhae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/14/2024] [Accepted: 03/23/2024] [Indexed: 04/22/2024] Open
Abstract
Glioma is a systemic disease that can induce micro and macro alternations of whole brain. Isocitrate dehydrogenase and vascular endothelial growth factor are proven prognostic markers and antiangiogenic therapy targets in glioma. The aim of this study was to determine the ability of whole brain morphologic features and radiomics to predict isocitrate dehydrogenase status and vascular endothelial growth factor expression levels. This study recruited 80 glioma patients with isocitrate dehydrogenase wildtype and high vascular endothelial growth factor expression levels, and 102 patients with isocitrate dehydrogenase mutation and low vascular endothelial growth factor expression levels. Virtual brain grafting, combined with Freesurfer, was used to compute morphologic features including cortical thickness, LGI, and subcortical volume in glioma patient. Radiomics features were extracted from multiregional tumor. Pycaret was used to construct the machine learning pipeline. Among the radiomics models, the whole tumor model achieved the best performance (accuracy 0.80, Area Under the Curve 0.86), while, after incorporating whole brain morphologic features, the model had a superior predictive performance (accuracy 0.82, Area Under the Curve 0.88). The features contributed most in predicting model including the right caudate volume, left middle temporal cortical thickness, first-order statistics, shape, and gray-level cooccurrence matrix. Pycaret, based on morphologic features, combined with radiomics, yielded highest accuracy in predicting isocitrate dehydrogenase mutation and vascular endothelial growth factor levels, indicating that morphologic abnormalities induced by glioma were associated with tumor biology.
Collapse
Affiliation(s)
- Simin Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Di Chen
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Huaiqiang Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 7ZX, United Kingdom
| | - Yinying Chen
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiaoyue Tan
- Division of Radiation Physics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuan Yang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Huaxi Glioma Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiyong Gong
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Sichuan 610041, China
| | - Qiang Yue
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
39
|
Zhang D, Cleveland AH, Krimitza E, Han K, Yi C, Stout AL, Zou W, Dorsey JF, Gong Y, Fan Y. Spatial analysis of tissue immunity and vascularity by light sheet fluorescence microscopy. Nat Protoc 2024; 19:1053-1082. [PMID: 38212641 DOI: 10.1038/s41596-023-00941-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/25/2023] [Indexed: 01/13/2024]
Abstract
The pathogenesis of cancer and cardiovascular diseases is subjected to spatiotemporal regulation by the tissue microenvironment. Multiplex visualization of the microenvironmental components, including immune cells, vasculature and tissue hypoxia, provides critical information underlying the disease progression and therapy resistance, which is often limited by imaging depth and resolution in large-volume tissues. To this end, light sheet fluorescence microscopy, following tissue clarification and immunostaining, may generate three-dimensional high-resolution images at a whole-organ level. Here we provide a detailed description of light sheet fluorescence microscopy imaging analysis of immune cell composition, vascularization, tissue perfusion and hypoxia in mouse normal brains and hearts, as well as brain tumors. We describe a procedure for visualizing tissue vascularization, perfusion and hypoxia with a transgenic vascular labeling system. We provide the procedures for tissue collection, tissue semi-clearing and immunostaining. We further describe standard methods for analyzing tissue immunity and vascularity. We anticipate that this method will facilitate the spatial illustration of structure and function of the tissue microenvironmental components in cancer and cardiovascular diseases. The procedure requires 1-2 weeks and can be performed by users with expertise in general molecular biology.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Abigail H Cleveland
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Elisavet Krimitza
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine Han
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Chenlong Yi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrea L Stout
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jay F Dorsey
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Yanqing Gong
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
40
|
Rosito M, Maqbool J, Reccagni A, Giampaoli O, Sciubba F, Antonangeli F, Scavizzi F, Raspa M, Cordella F, Tondo L, Di Angelantonio S, Trettel F, Miccheli A, D'Alessandro G, Limatola C. Antibiotics treatment promotes vasculogenesis in the brain of glioma-bearing mice. Cell Death Dis 2024; 15:210. [PMID: 38480690 PMCID: PMC10937980 DOI: 10.1038/s41419-024-06578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
In recent years, several studies described the close relationship between the composition of gut microbiota and brain functions, highlighting the importance of gut-derived metabolites in mediating neuronal and glial cells cross-talk in physiological and pathological condition. Gut dysbiosis may affects cerebral tumors growth and progression, but the specific metabolites involved in this modulation have not been identified yet. Using a syngeneic mouse model of glioma, we have investigated the role of dysbiosis induced by the administration of non-absorbable antibiotics on mouse metabolome and on tumor microenvironment. We report that antibiotics treatment induced: (1) alteration of the gut and brain metabolome profiles; (2) modeling of tumor microenvironment toward a pro-angiogenic phenotype in which microglia and glioma cells are actively involved; (3) increased glioma stemness; (4) trans-differentiation of glioma cells into endothelial precursor cells, thus increasing vasculogenesis. We propose glycine as a metabolite that, in ABX-induced dysbiosis, shapes brain microenvironment and contributes to glioma growth and progression.
Collapse
Affiliation(s)
- Maria Rosito
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
- Center for Life Nanoscience & Neuroscience Istituto Italiano di Tecnologia@Sapienza, Rome, Italy
| | - Javeria Maqbool
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Alice Reccagni
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Ottavia Giampaoli
- Department of Environmental Biology, Sapienza University, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University, Rome, Italy
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University, Rome, Italy
| | - Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| | | | | | - Federica Cordella
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
- Center for Life Nanoscience & Neuroscience Istituto Italiano di Tecnologia@Sapienza, Rome, Italy
| | - Lucrezia Tondo
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
- Center for Life Nanoscience & Neuroscience Istituto Italiano di Tecnologia@Sapienza, Rome, Italy
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
- Center for Life Nanoscience & Neuroscience Istituto Italiano di Tecnologia@Sapienza, Rome, Italy
| | - Flavia Trettel
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy.
| | - Alfredo Miccheli
- Department of Environmental Biology, Sapienza University, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University, Rome, Italy
| | - Giuseppina D'Alessandro
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
| | - Cristina Limatola
- IRCCS Neuromed, Pozzilli, IS, Italy.
- Department of Physiology and Pharmacology, Sapienza University, Laboratory Affiliated to Institute Pasteur Italia, Rome, Italy.
| |
Collapse
|
41
|
Tripathy DK, Panda LP, Biswal S, Barhwal K. Insights into the glioblastoma tumor microenvironment: current and emerging therapeutic approaches. Front Pharmacol 2024; 15:1355242. [PMID: 38523646 PMCID: PMC10957596 DOI: 10.3389/fphar.2024.1355242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/07/2024] [Indexed: 03/26/2024] Open
Abstract
Glioblastoma (GB) is an intrusive and recurrent primary brain tumor with low survivability. The heterogeneity of the tumor microenvironment plays a crucial role in the stemness and proliferation of GB. The tumor microenvironment induces tumor heterogeneity of cancer cells by facilitating clonal evolution and promoting multidrug resistance, leading to cancer cell progression and metastasis. It also plays an important role in angiogenesis to nourish the hypoxic tumor environment. There is a strong interaction of neoplastic cells with their surrounding microenvironment that comprise several immune and non-immune cellular components. The tumor microenvironment is a complex network of immune components like microglia, macrophages, T cells, B cells, natural killer (NK) cells, dendritic cells and myeloid-derived suppressor cells, and non-immune components such as extracellular matrix, endothelial cells, astrocytes and neurons. The prognosis of GB is thus challenging, making it a difficult target for therapeutic interventions. The current therapeutic approaches target these regulators of tumor micro-environment through both generalized and personalized approaches. The review provides a summary of important milestones in GB research, factors regulating tumor microenvironment and promoting angiogenesis and potential therapeutic agents widely used for the treatment of GB patients.
Collapse
Affiliation(s)
- Dev Kumar Tripathy
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| | - Lakshmi Priya Panda
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| | - Suryanarayan Biswal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Kalpana Barhwal
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| |
Collapse
|
42
|
Ceci C, Lacal PM, Barbaccia ML, Mercuri NB, Graziani G, Ledonne A. The VEGFs/VEGFRs system in Alzheimer's and Parkinson's diseases: Pathophysiological roles and therapeutic implications. Pharmacol Res 2024; 201:107101. [PMID: 38336311 DOI: 10.1016/j.phrs.2024.107101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
The vascular endothelial growth factors (VEGFs) and their cognate receptors (VEGFRs), besides their well-known involvement in physiological angiogenesis/lymphangiogenesis and in diseases associated to pathological vessel formation, play multifaceted functions in the central nervous system (CNS). In addition to shaping brain development, by controlling cerebral vasculogenesis and regulating neurogenesis as well as astrocyte differentiation, the VEGFs/VEGFRs axis exerts essential functions in the adult brain both in physiological and pathological contexts. In this article, after describing the physiological VEGFs/VEGFRs functions in the CNS, we focus on the VEGFs/VEGFRs involvement in neurodegenerative diseases by reviewing the current literature on the rather complex VEGFs/VEGFRs contribution to the pathogenic mechanisms of Alzheimer's (AD) and Parkinson's (PD) diseases. Thereafter, based on the outcome of VEGFs/VEGFRs targeting in animal models of AD and PD, we discuss the factual relevance of pharmacological VEGFs/VEGFRs modulation as a novel and potential disease-modifying approach for these neurodegenerative pathologies. Specific VEGFRs targeting, aimed at selective VEGFR-1 inhibition, while preserving VEGFR-2 signal transduction, appears as a promising strategy to hit the molecular mechanisms underlying AD pathology. Moreover, therapeutic VEGFs-based approaches can be proposed for PD treatment, with the aim of fine-tuning their brain levels to amplify neurotrophic/neuroprotective effects while limiting an excessive impact on vascular permeability.
Collapse
Affiliation(s)
- Claudia Ceci
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Maria Luisa Barbaccia
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Biagio Mercuri
- Neurology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; IRCCS Santa Lucia Foundation, Department of Experimental Neuroscience, Rome, Italy; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Grazia Graziani
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Ada Ledonne
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; IRCCS Santa Lucia Foundation, Department of Experimental Neuroscience, Rome, Italy; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
43
|
Luzzi S, Agosti A. Radiomics Multifactorial in Silico Model for Spatial Prediction of Glioblastoma Progression and Recurrence: A Proof-of-Concept. World Neurosurg 2024; 183:e677-e686. [PMID: 38184226 DOI: 10.1016/j.wneu.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/30/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
BACKGROUND Radiomics-based prediction of glioblastoma spatial progression and recurrence may improve personalized strategies. However, most prototypes are based on limited monofactorial Gompertzian models of tumor growth. The present study consists of a proof of concept on the accuracy of a radiomics multifactorial in silico model in predicting short-term spatial growth and recurrence of glioblastoma. METHODS A radiomics-based biomathematical multifactorial in silico model was developed using magnetic resonance imaging (MRI) data from a 53-year-old patient with newly diagnosed glioblastoma of the right supramarginal gyrus. Raw and optimized models were derived from the MRI at diagnosis and matched to the preoperative MRI obtained 28 days after diagnosis to test the accuracy in predicting the short-term spatial growth of the tumor. An additional optimized model was derived from the early postoperative MRI and matched to the MRI documenting tumor recurrence to test spatial accuracy in predicting the location of recurrence. The spatial prediction accuracy of the model was reported as an average Jaccard index. RESULTS Optimized models yielded an average Jaccard index of 0.69 and 0.26 for short-term tumor growth and long-term recurrence site, respectively. CONCLUSIONS The present radiomics-based multifactorial in silico model was feasible, reliable, and accurate for short-term spatial prediction of glioblastoma progression. The predictive value for the spatial location of recurrence was still low, and refinements in the description of tissue reorganization in the peritumoral and resected areas may be critical to optimize accuracy further.
Collapse
Affiliation(s)
- Sabino Luzzi
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Abramo Agosti
- Department of Mathematics, University of Pavia, Pavia, Italy
| |
Collapse
|
44
|
Singh RR, Mondal I, Janjua T, Popat A, Kulshreshtha R. Engineered smart materials for RNA based molecular therapy to treat Glioblastoma. Bioact Mater 2024; 33:396-423. [PMID: 38059120 PMCID: PMC10696434 DOI: 10.1016/j.bioactmat.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/19/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive malignancy of the central nervous system (CNS) that remains incurable despite the multitude of improvements in cancer therapeutics. The conventional chemo and radiotherapy post-surgery have only been able to improve the prognosis slightly; however, the development of resistance and/or tumor recurrence is almost inevitable. There is a pressing need for adjuvant molecular therapies that can successfully and efficiently block tumor progression. During the last few decades, non-coding RNAs (ncRNAs) have emerged as key players in regulating various hallmarks of cancer including that of GBM. The levels of many ncRNAs are dysregulated in cancer, and ectopic modulation of their levels by delivering antagonists or overexpression constructs could serve as an attractive option for cancer therapy. The therapeutic potential of several types of ncRNAs, including miRNAs, lncRNAs, and circRNAs, has been validated in both in vitro and in vivo models of GBM. However, the delivery of these RNA-based therapeutics is highly challenging, especially to the tumors of the brain as the blood-brain barrier (BBB) poses as a major obstacle, among others. Also, since RNA is extremely fragile in nature, careful considerations must be met while designing a delivery agent. In this review we have shed light on how ncRNA therapy can overcome the limitations of its predecessor conventional therapy with an emphasis on smart nanomaterials that can aide in the safe and targeted delivery of nucleic acids to treat GBM. Additionally, critical gaps that currently exist for successful transition from viral to non-viral vector delivery systems have been identified. Finally, we have provided a perspective on the future directions, potential pathways, and target areas for achieving rapid clinical translation of, RNA-based macromolecular therapy to advance the effective treatment of GBM and other related diseases.
Collapse
Affiliation(s)
- Ravi Raj Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
- University of Queensland –IIT Delhi Academy of Research (UQIDAR)
| | - Indranil Mondal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Taskeen Janjua
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
45
|
Karami Fath M, Bagherzadeh Torbati SM, Saqagandomabadi V, Yousefi Afshar O, Khalilzad M, Abedi S, Moliani A, Daneshdoust D, Barati G. The therapeutic effect of MSCs and their extracellular vesicles on neuroblastoma. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 187:51-60. [PMID: 38373516 DOI: 10.1016/j.pbiomolbio.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/04/2023] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Neuroblastoma is a common inflammatory-related cancer during infancy. Standard treatment modalities including surgical interventions, high-dose chemotherapy, radiotherapy, and immunotherapy are not able to increase survival rate and reduce tumor relapse in high-risk patients. Mesenchymal stem cells (MSCs) are known for their tumor-targeting and immunomodulating properties. MSCs could be engineered to express anticancer agents (i.e., growth factors, cytokines, pro-apoptotic agents) or deliver oncolytic viruses in the tumor microenvironment. As many functions of MSCs are mediated through their secretome, researchers have tried to use extracellular vesicles (EVs) from MSCs for targeted therapy of neuroblastoma. Here, we reviewed the studies to figure out whether the use of MSCs could be worthwhile in neuroblastoma therapy or not. Native MSCs have shown a promoting or inhibiting role in cancers including neuroblastoma. Therefore, MSCs are proposed as a vehicle to deliver anticancer agents such as oncolytic viruses to the neuroblastoma tumor microenvironment. Although modified MSCs or their EVs have been shown to suppress the tumorigenesis of neuroblastoma, further pre-clinical and clinical studies are required to come to a conclusion.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Vahid Saqagandomabadi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | | | - Mohammad Khalilzad
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Abedi
- Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Afshin Moliani
- Isfahan Medical Students Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Danyal Daneshdoust
- Faculty of Medicine, Babol University of Medical Sciences, Mazandaran, Iran
| | | |
Collapse
|
46
|
Li X, Cheng Y, Han X, Cui B, Li J, Yang H, Xu G, Lin Q, Xiao X, Tang J, Lu J. Exploring the association of glioma tumor residuals from incongruent [ 18F]FET PET/MR imaging with tumor proliferation using a multiparametric MRI radiomics nomogram. Eur J Nucl Med Mol Imaging 2024; 51:779-796. [PMID: 37864593 DOI: 10.1007/s00259-023-06468-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
PURPOSE The study aimed to using multiparametric MRI radiomics to predict glioma tumor residuals (TRFET over MR) derived from incongruent [18F]fluoroethyl-L-tyrosine ([18F]FET) PET/MR imaging. METHODS One hundred ten patients with gliomas who underwent [18F]FET PET/MR scanning were retrospectively analyzed. The TRFET over MR was identified by the discrepancy-PET that the extent of resection (EOR) based on MRI subtracted the biological tumor volume on PET images. The MRI parameters and radiomics features were extracted based on EOR and selected by the least absolute shrinkage and selection operator to construct radiomics score (Rad-score). The correlation network analysis of all features was analyzed by Spearman's correlation tests. The methods for evaluating the clinical usefulness consisted of the receiver operating characteristic curve, the calibration curve, and decision curve analysis. RESULTS The Rad-score of the patients with the TRFET over MR was significantly higher than those with the non TRFET over MR (p < 0.001). The Rad-score was significantly correlated with the discrepancy-PET (r = 0.72, p < 0.001), Ki-67 level (r = 0.76, p < 0.001), and epidermal growth factor receptor (EGFR) of gliomas (r = 0.75, p < 0.001), respectively. Moreover, there was a difference of the correlation network analysis between the TRPET over MR group and non TRFET over MR group. The nomogram combing Rad-score and clinical features had the greatest performance in predicting TRFET over MR (AUC = 0.90/0.87, training/testing). There was a significant difference in prognosis (median OS, 17 m vs. 43 m) between patients with TRFET over MR and non TRFET over MR based on nomogram prediction (p < 0.001). CONCLUSION The nomogram based on MRI radiomics would predict gliomas tumor residuals caused by the absence of 18F-PET PET examination and adjust EOR to improve prognosis.
Collapse
Affiliation(s)
- Xiaoran Li
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Ye Cheng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xin Han
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Bixiao Cui
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Jing Li
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Hongwei Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Geng Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qingtang Lin
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xinru Xiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Tang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China.
| |
Collapse
|
47
|
Al-Gizawiy MM, Wujek RT, Alhajala HS, Cobb JM, Prah MA, Doan NB, Connelly JM, Chitambar CR, Schmainda KM. Potent in vivo efficacy of oral gallium maltolate in treatment-resistant glioblastoma. Front Oncol 2024; 13:1278157. [PMID: 38288102 PMCID: PMC10822938 DOI: 10.3389/fonc.2023.1278157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
Background Treatment-resistant glioblastoma (trGBM) is an aggressive brain tumor with a dismal prognosis, underscoring the need for better treatment options. Emerging data indicate that trGBM iron metabolism is an attractive therapeutic target. The novel iron mimetic, gallium maltolate (GaM), inhibits mitochondrial function via iron-dependent and -independent pathways. Methods In vitro irradiated adult GBM U-87 MG cells were tested for cell viability and allowed to reach confluence prior to stereotactic implantation into the right striatum of male and female athymic rats. Advanced MRI at 9.4T was carried out weekly starting two weeks after implantation. Daily oral GaM (50mg/kg) or vehicle were provided on tumor confirmation. Longitudinal MRI parameters were processed for enhancing tumor ROIs in OsiriX 8.5.1 (lite) with Imaging Biometrics Software (Imaging Biometrics LLC). Statistical analyses included Cox proportional hazards regression models, Kaplan-Meier survival plots, linear mixed model comparisons, and t-statistic for slopes comparison as indicator of tumor growth rate. Results In this study we demonstrate non-invasively, using longitudinal MRI surveillance, the potent antineoplastic effects of GaM in a novel rat xenograft model of trGBM, as evidenced by extended suppression of tumor growth (23.56 mm3/week untreated, 5.76 mm3/week treated, P < 0.001), a blunting of tumor perfusion, and a significant survival benefit (median overall survival: 30 days untreated, 56 days treated; P < 0.001). The therapeutic effect was confirmed histologically by the presence of abundant cytotoxic cellular swelling, a significant reduction in proliferation markers (P < 0.01), and vessel normalization characterized by prominent vessel pruning, loss of branching, and uniformity of vessel lumina. Xenograft tumors in the treatment group were further characterized by an absence of an invasive edge and a significant reduction in both, MIB-1% and mitotic index (P < 0.01 each). Transferrin receptor and ferroportin expression in GaM-treated tumors illustrated cellular iron deprivation. Additionally, treatment with GaM decreased the expression of pro-angiogenic markers (von Willebrand Factor and VEGF) and increased the expression of anti-angiogenic markers, such as Angiopoietin-2. Conclusion Monotherapy with the iron-mimetic GaM profoundly inhibits trGBM growth and significantly extends disease-specific survival in vivo.
Collapse
Affiliation(s)
- Mona M. Al-Gizawiy
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Robert T. Wujek
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Hisham S. Alhajala
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jonathan M. Cobb
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Melissa A. Prah
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ninh B. Doan
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jennifer M. Connelly
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Christopher R. Chitambar
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kathleen M. Schmainda
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
48
|
Shikalov A, Koman I, Kogan NM. Targeted Glioma Therapy-Clinical Trials and Future Directions. Pharmaceutics 2024; 16:100. [PMID: 38258110 PMCID: PMC10820492 DOI: 10.3390/pharmaceutics16010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of glioma, with a median survival of 14.6 months post-diagnosis. Understanding the molecular profile of such tumors allowed the development of specific targeted therapies toward GBM, with a major role attributed to tyrosine kinase receptor inhibitors and immune checkpoint inhibitors. Targeted therapeutics are drugs that work by specific binding to GBM-specific or overexpressed markers on the tumor cellular surface and therefore contain a recognition moiety linked to a cytotoxic agent, which produces an antiproliferative effect. In this review, we have summarized the available information on the targeted therapeutics used in clinical trials of GBM and summarized current obstacles and advances in targeted therapy concerning specific targets present in GBM tumor cells, outlined efficacy endpoints for major classes of investigational drugs, and discussed promising strategies towards an increase in drug efficacy in GBM.
Collapse
Affiliation(s)
| | | | - Natalya M. Kogan
- Department of Molecular Biology, Institute of Personalized and Translational Medicine, Ariel University, Ariel 40700, Israel; (A.S.); (I.K.)
| |
Collapse
|
49
|
Bennebroek CA, Schouten CR, Montauban-van Swijndregt MC, Saeed P, Porro GL, Pott JWR, Dittrich ATM, Oostenbrink R, Schouten-van Meeteren AY, de Jong MC, de Graaf P. Treatment evaluation by volumetric segmentation in pediatric optic pathway glioma: evaluation of the effect of bevacizumab on intra-tumor components. J Neurooncol 2024; 166:79-87. [PMID: 38150061 DOI: 10.1007/s11060-023-04516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023]
Abstract
PURPOSE Progressive pediatric optic pathway gliomas (OPGs) are treated by diverse systemic antitumor modalities. Refined insights on the course of intra-tumoral components are limited. METHODS We performed an exploratory study on the longitudinal volumetric course of different (intra-)tumor components by manual segmentation of MRI at the start and after 3, 6 and 12 months of bevacizumab (BVZ) treatment. RESULTS Thirty-one patients were treated with BVZ (median 12 months, range: 2-39 months). During treatment the total tumor volume decreased with median 19.9% (range: - 62.3 to + 29.7%; n = 30) within the first 3 months, decreased 19.0% (range: - 68.8 to + 96.1%; n = 28) between start and 6 months and 27.2% (range: -73.4 to + 36.0%; n = 21) between start and 12 months. Intra-tumoral cysts were present in 12 OPGs, all showed a decrease of volume during treatment. The relative contrast enhanced volume of NF1 associated OPG (n = 11) showed an significant reduction compared to OPG with a KIAA1549-BRAF fusion (p < 0.01). Three OPGs progressed during treatment, but were not preceded by an increase of relative contrast enhancement. CONCLUSION Treatment with BVZ of progressive pediatric OPGs leads to a decrease of both total tumor volume and cystic volume for the majority of OPGs with emphasis on the first three months. NF1 and KIAA1549-BRAF fusion related OPGs showed a different (early) treatment effect regarding the tumor enhancing component on MRI, which did not correlate with tumor volume changes. Future research is necessary to further evaluate these findings and its relevance to clinical outcome parameters.
Collapse
Affiliation(s)
- Carlien A Bennebroek
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1100DD, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, The Netherlands.
| | - Christiaan R Schouten
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Peerooz Saeed
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1100DD, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, The Netherlands
| | - Giorgio L Porro
- Department of Ophthalmology, Utrecht University Medical Center, Utrecht, The Netherlands
| | - Jan W R Pott
- Department of Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anne T M Dittrich
- Department of Pediatrics, Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Rianne Oostenbrink
- ENCORE-NF1 Center, Department of General Pediatrics, Erasmus MC, Rotterdam, The Netherlands
| | | | - Marcus C de Jong
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Pim de Graaf
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| |
Collapse
|
50
|
Di Ieva A, Al-Kadi OS. Computational Fractal-Based Analysis of Brain Tumor Microvascular Networks. ADVANCES IN NEUROBIOLOGY 2024; 36:525-544. [PMID: 38468051 DOI: 10.1007/978-3-031-47606-8_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Brain parenchyma microvasculature is set in disarray in the presence of tumors, and malignant brain tumors are among the most vascularized neoplasms in humans. As microvessels can be easily identified in histologic specimens, quantification of microvascularity can be used alone or in combination with other histological features to increase the understanding of the dynamic behavior, diagnosis, and prognosis of brain tumors. Different brain tumors, and even subtypes of the same tumor, show specific microvascular patterns, as a kind of "microvascular fingerprint," which is particular to each histotype. Reliable morphometric parameters are required for the qualitative and quantitative characterization of the neoplastic angioarchitecture, although the lack of standardization of a technique able to quantify the microvascular patterns in an objective way has limited the "morphometric approach" in neuro-oncology.In this chapter, we focus on the importance of computational-based morphometrics, for the objective description of tumoral microvascular fingerprinting. By also introducing the concept of "angio-space," which is the tumoral space occupied by the microvessels, we here present fractal analysis as the most reliable computational tool able to offer objective parameters for the description of the microvascular networks.The spectrum of different angioarchitectural configurations can be quantified by means of Euclidean and fractal-based parameters in a multiparametric analysis, aimed to offer surrogate biomarkers of cancer. Such parameters are here described from the methodological point of view (i.e., feature extraction) as well as from the clinical perspective (i.e., relation to underlying physiology), in order to offer new computational parameters to the clinicians with the final goal of improving diagnostic and prognostic power of patients affected by brain tumors.
Collapse
Affiliation(s)
- Antonio Di Ieva
- Computational NeuroSurgery (CNS) Lab & Macquarie Neurosurgery, Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Omar S Al-Kadi
- Artificial Intelligence Department, King Abdullah II School for Information Technology, University of Jordan, Amman, Jordan
| |
Collapse
|