1
|
Li F, Lan Q, Wang Y, Xiong J, Xiao T, Gong S, Li Y, Wang S, Yao M, Lv L, Qin S, Xin W, Liu L, Zhang B, Zhao J. Single-cell analysis of proximal tubular cells with different DNA content reveals functional heterogeneity in the acute kidney injury to chronic kidney disease transition. Kidney Int 2025:S0085-2538(25)00332-1. [PMID: 40268163 DOI: 10.1016/j.kint.2025.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 04/25/2025]
Abstract
INTRODUCTION Proximal tubular epithelial cells with different DNA contents emerge after acute kidney injury (AKI). However, their heterogeneity and roles in the acute kidney injury-to-chronic kidney disease (AKI-to-CKD) transition remain incompletely understood. METHODS Proximal tubular epithelial cells with different DNA contents were isolated at days 3 and 14 post-AKI following ischemia reperfusion injury for single-cell RNA sequencing. RESULTS Here, we found that proximal tubular epithelial cells with different DNA contents have existing and distinct bulk transcriptome profiles, especially those cells over 4N (polyploid cells with more than four chromosome sets) with upregulated profibrotic signatures. Heterogeneity existed within four distinct functional clusters. In particular, the polyploid cells demonstrated a preferential enrichment within specific proinflammatory and profibrotic clusters post-AKI. Polyploid cells within these specific clusters displayed the profibrotic trajectory, accompanied by increased fibrosis-driving regulon activity and very strong cell-cell interactions. This suggests polyploidy cells have an intrinsic role in promoting the AKI-to-CKD transition. Furthermore, we identified that secreted phosphoprotein 1 (SPP1) as the pivotal hub of polyploid cells and may be involved in various profibrotic signaling pathways. Genetic knockdown of SPP1 in the proximal tubule in vivo dramatically ameliorated kidney fibrosis. CONCLUSIONS Overall, our findings reveal the heterogeneity of proximal tubular epithelial cells with different DNA contents and identify intrinsic factors of polyploid cells such as SPP1 expression in promoting kidney fibrosis. Our study provides novel insights into potential therapeutic target of preventing the AKI-to-CKD transition.
Collapse
Affiliation(s)
- Fugang Li
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qigang Lan
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yaqin Wang
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiachuan Xiong
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tangli Xiao
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuiqin Gong
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan Li
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shaobo Wang
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mengying Yao
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Liangjing Lv
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shaozong Qin
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wang Xin
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li Liu
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bo Zhang
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinghong Zhao
- Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
2
|
Giannuzzi F, Picerno A, Maiullari S, Montenegro F, Cicirelli A, Stasi A, De Palma G, Di Lorenzo VF, Pertosa GB, Pontrelli P, Rossini M, Gallo N, Salvatore L, Di Leo V, Errede M, Tamma R, Ribatti D, Gesualdo L, Sallustio F. Unveiling spontaneous renal tubule-like structures from human adult renal progenitor cell spheroids derived from urine. Stem Cells Transl Med 2025; 14:szaf002. [PMID: 40156847 PMCID: PMC11954590 DOI: 10.1093/stcltm/szaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/05/2025] [Indexed: 04/01/2025] Open
Abstract
The rapidly developing field of renal spheroids and organoids has emerged as a valuable tool for modeling nephrotoxicity, kidney disorders, and kidney development. However, existing studies have relied on intricate and sophisticated differentiation protocols to generate organoids and tubuloids, necessitating the external administration of multiple growth factors within precise timeframes. In our study, we demonstrated that human adult renal progenitor cells (ARPCs) isolated from the urine of both healthy subjects and patients can form spheroids that naturally generated very long tubule-like structures. Importantly, the generation of these tubule-like structures is driven solely by ARPCs, without the need for the external use of chemokines or growth factors to artificially induce this process. These tubule-like structures exhibit the expression of structural and functional renal tubule markers and bear, in some cases, striking structural similarities to various nephron regions, including the distal convoluted tubule, the loop of Henle, and proximal convoluted tubules. Furthermore, ARPC spheroids express markers typical of pluripotent cells, such as stage-specific embryonic antigen 4 (SSEA4), secrete elevated levels of renin, and exhibit angiogenic properties. Notably, ARPCs isolated from the urine of patients with IgA nephropathy form spheroids capable of recapitulating the characteristic IgA1 deposition observed in this disease. These findings represent significant advancements in the field, opening up new avenues for regenerative medicine in the study of kidney development, mechanisms underlying renal disorders, and the development of regenerative therapies for kidney-related ailments.
Collapse
Affiliation(s)
- Francesca Giannuzzi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Angela Picerno
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Silvia Maiullari
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Francesca Montenegro
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Antonella Cicirelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Alessandra Stasi
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Giuseppe De Palma
- Institutional BioBank, Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori “Giovanni Paolo II,”70124 Bari, Italia
| | | | - Giovanni Battista Pertosa
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Paola Pontrelli
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Michele Rossini
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
- Typeone Biomaterials Srl, 73021 Calimera, Lecce, Italy
| | - Luca Salvatore
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
- Typeone Biomaterials Srl, 73021 Calimera, Lecce, Italy
| | - Vincenzo Di Leo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Mariella Errede
- Department of Translational Biomedicine and Neuroscience “DiBraiN,” University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Roberto Tamma
- Department of Translational Biomedicine and Neuroscience “DiBraiN,” University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience “DiBraiN,” University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro,”70124 Bari, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro,”70124 Bari, Italy
| |
Collapse
|
3
|
Shi L, Zha H, Zhao J, An H, Huang H, Xia Y, Yan Z, Song Z, Zhu J. Caloric restriction exacerbates renal post-ischemic injury and fibrosis by modulating mTORC1 signaling and autophagy. Redox Biol 2025; 80:103500. [PMID: 39837191 PMCID: PMC11787690 DOI: 10.1016/j.redox.2025.103500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/23/2025] Open
Abstract
OBJECTIVE This study investigates the effects of caloric restriction (CR) on renal injury and fibrosis following ischemia-reperfusion injury (IRI), with a focus on the roles of the mechanistic/mammalian target of rapamycin complex 1 (mTORC1) signaling and autophagy. METHODS A mouse model of unilateral IRI with or without CR was used. Renal function was assessed through serum creatinine and blood urea nitrogen levels, while histological analysis and molecular assays evaluated tubular injury, fibrosis, mTORC1 signaling, and autophagy activation. Inducible renal tubule-specific Atg7 knockout mice and autophagy inhibitor 3-MA were used to elucidate autophagy's role in renal outcomes. RESULTS CR exacerbated renal dysfunction, tubular injury, and fibrosis in IRI mice, associated with suppressed mTORC1 signaling and enhanced autophagy. Rapamycin, an mTORC1 inhibitor, mimicked the effects of CR, further supporting the involvement of mTORC1-autophagy pathway. Tubule-specific Atg7 knockout and autophagy inhibitor 3-MA mitigated these effects, indicating a central role for autophagy in CR-induced renal damage. Glucose supplementation, but not branched-chain amino acids (BCAAs), alleviated CR-induced renal fibrosis and dysfunction by restoring mTORC1 activation. Finally, we identified leucyl-tRNA synthetase 1 (LARS1) as a key mediator of nutrient sensing and mTORC1 activation, demonstrating its glucose dependency under CR conditions. CONCLUSION Our study provides novel insights into the interplay between nutrient metabolism, mTORC1 signaling, and autophagy in IRI-induced renal damages, offering potential therapeutic targets for mitigating CR-associated complications after renal IRI.
Collapse
Affiliation(s)
- Lang Shi
- Department of Nephrology, The First Hospital of Lanzhou University, Lanzhou, 730000, China; The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Hongchu Zha
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, 443000, China
| | - Juan Zhao
- Department of Laboratory Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Haiqian An
- Department of Nephrology, The First Hospital of Lanzhou University, Lanzhou, 730000, China; The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Hua Huang
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, 443000, China
| | - Yao Xia
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, 443000, China
| | - Ziyu Yan
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, 443000, China
| | - Zhixia Song
- Department of Nephrology, The People's Hospital of Longhua, Shenzhen, 518109, China
| | - Jiefu Zhu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
4
|
Schenk H, Drummond IA. Kidney development, injury and regeneration-Zebrafish. Curr Top Dev Biol 2025; 163:307-321. [PMID: 40254347 DOI: 10.1016/bs.ctdb.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Acute kidney injury (AKI), acute kidney disease (AKD), and chronic kidney disease (CKD) affect millions worldwide, presenting an escalating health care and economic burden, while current treatments primarily focus on slowing further kidney function loss. Treatment failure can lead to end-stage kidney disease (ESKD), which necessitates kidney replacement therapies, including dialysis-which significantly reduces quality of life-or kidney transplantation. However, limited organ availability extends waiting times to up to 10-15 years in some European countries, such as the United Kingdom and Germany. The urgent need for regenerative therapies that promote kidney recovery and potentially enable the development of de novo human kidneys places the zebrafish as a powerful model organism for these studies. Zebrafish can regenerate kidney function after AKI by forming new nephrons that integrate into the existing tubular network. Using zebrafish to investigate kidney development and injury-induced regeneration allows for the discovery of key pathways involved in renal repair and development. Importantly, adult zebrafish possess a niche of kidney progenitor cells that facilitate regeneration after injury. This chapter provides an overview of kidney development and regeneration mechanisms, highlights current experimental approaches for modeling kidney injury, and explores potential translational implications for human kidney regenerative therapies.
Collapse
Affiliation(s)
- Heiko Schenk
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany; Mount Desert Island Biological Laboratory, Bar Harbor, ME, United States.
| | - Iain A Drummond
- Mount Desert Island Biological Laboratory, Bar Harbor, ME, United States
| |
Collapse
|
5
|
Carrillo-Muñoz AI, R-Jaimes SY, Hernández-Hernández GC, Castelán F. Neurotrophins and their receptors in the peripheral nervous system and non-nervous tissue of fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:38. [PMID: 39888528 PMCID: PMC11785713 DOI: 10.1007/s10695-025-01453-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Trophic factors, such as neurotrophins, are fundamental for cellular processes including differentiation, growth, survival, and regeneration. These molecules exhibit significant morphological and phylogenetic conservation throughout the animal kingdom, indicating conserved functions. In fish, the oldest and most diverse group of vertebrates, neurotrophins, and their receptors play pivotal roles not only within the central nervous system but also in various peripheral tissues. They are distributed in mechanosensory, muscle, skin, respiratory, circulatory, digestive, endocrine, urinary, reproductive, and immune systems, suggesting their involvement in the development and maintenance of all tissues/organs/systems. Despite this broad distribution, studies focusing on these molecules outside of the central nervous system have been limited to just 12 fish species. These investigations have revealed diverse expression patterns across different ages and tissues/organs/systems, expanding our comprehension of their functions beyond the central and peripheral nervous systems. Notably, BDNF and NT-3 are prominently expressed outside the central nervous system, particularly in mechanosensory and digestive tissues, whereas NGF is predominantly observed in mechanosensory and urinary systems. The expression and localization of neurotrophins and their receptors vary among organs, underscoring tissue-specific roles. Further research is imperative to decipher the precise functions and mechanisms of action of neurotrophins and their receptors in diverse fish tissues. Enhanced efforts are needed to include a broader range of fish species in these studies to advance our understanding of these agents in complex vertebrates, thereby shedding light on tissue development, regeneration, and maintenance, with potential implications for addressing organ-related issues.
Collapse
Affiliation(s)
- Aldo Isaac Carrillo-Muñoz
- Centro Tlaxcala de Biología de La Conducta, Universidad Autónoma de Tlaxcala, 90070, Tlaxcala, Mexico.
| | - Sharet Y R-Jaimes
- Facultad de Ciencias de La Salud, Universidad Autónoma de Tlaxcala, 90750, Zacatelco, Mexico
| | | | - Francisco Castelán
- Centro Tlaxcala de Biología de La Conducta, Universidad Autónoma de Tlaxcala, 90070, Tlaxcala, Mexico.
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 90070, Tlaxcala, Mexico.
| |
Collapse
|
6
|
Luo Y, Liang H. Developmental-status-aware transcriptional decomposition establishes a cell state panorama of human cancers. Genome Med 2024; 16:124. [PMID: 39468667 PMCID: PMC11514945 DOI: 10.1186/s13073-024-01393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/03/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Cancer cells evolve under unique functional adaptations that unlock transcriptional programs embedded in adult stem and progenitor-like cells for progression, metastasis, and therapeutic resistance. However, it remains challenging to quantify the stemness-aware cell state of a tumor based on its gene expression profile. METHODS We develop a developmental-status-aware transcriptional decomposition strategy using single-cell RNA-sequencing-derived tissue-specific fetal and adult cell signatures as anchors. We apply our method to various biological contexts, including developing human organs, adult human tissues, experimentally induced differentiation cultures, and bulk human tumors, to benchmark its performance and to reveal novel biology of entangled developmental signaling in oncogenic processes. RESULTS Our strategy successfully captures complex dynamics in developmental tissue bulks, reveals remarkable cellular heterogeneity in adult tissues, and resolves the ambiguity of cell identities in in vitro transformations. Applying it to large patient cohorts of bulk RNA-seq, we identify clinically relevant cell-of-origin patterns and observe that decomposed fetal cell signals significantly increase in tumors versus normal tissues and metastases versus primary tumors. Across cancer types, the inferred fetal-state strength outperforms published stemness indices in predicting patient survival and confers substantially improved predictive power for therapeutic responses. CONCLUSIONS Our study not only provides a general approach to quantifying developmental-status-aware cell states of bulk samples but also constructs an information-rich, biologically interpretable, cell-state panorama of human cancers, enabling diverse translational applications.
Collapse
Affiliation(s)
- Yikai Luo
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Han Liang
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Song A, Wang M, Xie K, Lu J, Zhao B, Wu W, Qian C, Hong W, Gu L. Exosomal let-7b-5p deriving from parietal epithelial cells attenuate renal fibrosis through suppression of TGFβR1 and ARID3a in obstructive kidney disease. FASEB J 2024; 38:e70085. [PMID: 39352691 DOI: 10.1096/fj.202400802rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 11/13/2024]
Abstract
As renal progenitor cells, parietal epithelial cells (PECs) have demonstrated multilineage differentiation potential in response to kidney injury. However, the function of exosomes derived from PECs has not been extensively explored. Immunofluorescent staining of Claudin-1 was used to identify primary PECs isolated from mouse glomeruli. Transmission electron microscopy, nanoparticle tracking analysis, and western blotting were used to characterize the properties of PECs-derived exosomes (PEC-Exo). The therapeutic role of PEC-Exo in tubulointerstitial fibrosis was investigated in the unilateral ureteral obstruction (UUO) mouse model and TGF-β1-stimulated HK-2 cells. High-throughput miRNA sequencing was employed to profile PEC-Exo miRNAs. One of the most enriched miRNAs in PEC-Exo was knocked down by transfecting miRNA inhibitor, and then we investigated whether this candidate miRNA was involved in PEC-Exo-mediated tubular repair. The primary PECs expressed Claudin-1, PEC-Exo was homing to obstructed kidney, and TGF-β1 induced HK-2 cells. PEC-Exo significantly alleviated renal inflammation and ameliorated tubular fibrosis both in vivo and in vitro. Mechanistically, let-7b-5p, highly enriched in PEC-Exo, downregulated the protein levels of transforming growth factor beta receptor 1(TGFβR1) and AT-Rich Interaction Domain 3A(ARID3a) in tubular epithelial cells (TECs), leading to the inhibition of p21 and p27 to restoring cell cycle. Furthermore, administration of let-7b-5p agomir mitigated renal fibrosis in vivo. Our findings demonstrated that PEC-derived exosomes significantly repressed the expression of TGFβR1 and ARID3a by delivering let-7b-5p, thereby alleviating renal fibrosis. This study provides novel insights into the role of PEC-Exo in the repair of kidney injury and new ideas for renal fibrosis intervention.
Collapse
Affiliation(s)
- Ahui Song
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minzhou Wang
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kewei Xie
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayue Lu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingru Zhao
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wangshu Wu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Qian
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenkai Hong
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Leyi Gu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Montenegro F, Giannuzzi F, Picerno A, Cicirelli A, Stea ED, Di Leo V, Sallustio F. How Stem and Progenitor Cells Can Affect Renal Diseases. Cells 2024; 13:1460. [PMID: 39273032 PMCID: PMC11393889 DOI: 10.3390/cells13171460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Stem and progenitor cells have been observed to contribute to regenerative processes in acute renal failure and chronic kidney disease. Recent research has delved into the intricate mechanisms by which stem and progenitor cells exert their influence on kidney diseases. Understanding how these cells integrate with the existing renal architecture and their response to injury could pave the way for innovative treatment strategies aimed at promoting kidney repair and regeneration. Overall, the role of stem and progenitor cells in kidney diseases is multifaceted, with their ability to contribute to tissue regeneration, immune modulation, and the maintenance of renal homeostasis. Here, we review the studies that we have available today about the involvement of stem and progenitor cells both in regenerative therapies and in the causes of renal diseases, as well as in natural healing mechanisms, taking into account the main kidney disorders, such as IgA nephropathy, lupus nephritis, diabetic nephropathy, C3 glomerulopathy, focal segmental glomerulosclerosis, idiopathic membranous nephropathy, anti-glomerular basement membrane glomerulonephritis, and ANCA-associated crescentic glomerulonephritis. Moreover, based on the comprehensive data available in the framework of the specific kidney diseases on stem cells and renal progenitors, we hypothesize a possible role of adult renal progenitors in exacerbating or recovering the illness.
Collapse
Affiliation(s)
- Francesca Montenegro
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (F.M.); (F.G.); (A.P.); (A.C.); (V.D.L.)
| | - Francesca Giannuzzi
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (F.M.); (F.G.); (A.P.); (A.C.); (V.D.L.)
| | - Angela Picerno
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (F.M.); (F.G.); (A.P.); (A.C.); (V.D.L.)
| | - Antonella Cicirelli
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (F.M.); (F.G.); (A.P.); (A.C.); (V.D.L.)
| | - Emma Diletta Stea
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Vincenzo Di Leo
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (F.M.); (F.G.); (A.P.); (A.C.); (V.D.L.)
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy;
| |
Collapse
|
9
|
Xia Y, Coffman TM. Hold the salt for kidney regeneration. J Clin Invest 2024; 134:e181397. [PMID: 38828728 PMCID: PMC11142728 DOI: 10.1172/jci181397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
The macula densa (MD) is a distinct cluster of approximately 20 specialized kidney epithelial cells that constitute a key component of the juxtaglomerular apparatus. Unlike other renal tubular epithelial cell populations with functions relating to reclamation or secretion of electrolytes and solutes, the MD acts as a cell sensor, exerting homeostatic actions in response to sodium and chloride changes within the tubular fluid. Electrolyte flux through apical sodium transporters in MD cells triggers release of paracrine mediators, affecting blood pressure and glomerular hemodynamics. In this issue of the JCI, Gyarmati and authors explored a program of MD that resulted in activation of regeneration pathways. Notably, regeneration was triggered by feeding mice a low-salt diet. Furthermore, the MD cells showed neuron-like properties that may contribute to their regulation of glomerular structure and function. These findings suggest that dietary sodium restriction and/or targeting MD signaling might attenuate glomerular injury.
Collapse
Affiliation(s)
- Yun Xia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Thomas M. Coffman
- Cardiovascular and Metabolic Disorders Signature Research Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
10
|
Chambers BE, Weaver NE, Lara CM, Nguyen TK, Wingert RA. (Zebra)fishing for nephrogenesis genes. Tissue Barriers 2024; 12:2219605. [PMID: 37254823 PMCID: PMC11042071 DOI: 10.1080/21688370.2023.2219605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/14/2023] [Indexed: 06/01/2023] Open
Abstract
Kidney disease is a devastating condition affecting millions of people worldwide, where over 100,000 patients in the United States alone remain waiting for a lifesaving organ transplant. Concomitant with a surge in personalized medicine, single-gene mutations, and polygenic risk alleles have been brought to the forefront as core causes of a spectrum of renal disorders. With the increasing prevalence of kidney disease, it is imperative to make substantial strides in the field of kidney genetics. Nephrons, the core functional units of the kidney, are epithelial tubules that act as gatekeepers of body homeostasis by absorbing and secreting ions, water, and small molecules to filter the blood. Each nephron contains a series of proximal and distal segments with explicit metabolic functions. The embryonic zebrafish provides an ideal platform to systematically dissect the genetic cues governing kidney development. Here, we review the use of zebrafish to discover nephrogenesis genes.
Collapse
Affiliation(s)
- Brooke E. Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| | - Nicole E. Weaver
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| | - Caroline M. Lara
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| | - Thanh Khoa Nguyen
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana (IN), USA
| |
Collapse
|
11
|
Muramatsu B, Suzuki DG, Suzuki M, Higashiyama H. Gross anatomy of the Pacific hagfish, Eptatretus burgeri, with special reference to the coelomic viscera. Anat Rec (Hoboken) 2024; 307:155-171. [PMID: 36958942 DOI: 10.1002/ar.25208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
Hagfish (Myxinoidea) are a deep-sea taxon of cyclostomes, the extant jawless vertebrates. Many researchers have examined the anatomy and embryology of hagfish to shed light on the early evolution of vertebrates; however, the diversity within hagfish is often overlooked. Hagfish have three lineages, Myxininae, Eptatretinae, and Rubicundinae. Usually, textbook illustrations of hagfish anatomy reflect the morphology of the Myxininae lineage, especially Myxine glutinosa, with its single pair of external branchial pores. Here, we instead report the gross anatomy of an Eptatretinae, Eptatretus burgeri, which has six pairs of branchial pores, especially focusing on the coelomic organs. Dissections were performed on fixed and unfixed specimens to provide a guide for those doing organ- or tissue-specific molecular experiments. Our dissections revealed that the ventral aorta is Y-branched in E. burgeri, which differs from the unbranched morphology of Myxine. Otherwise, there were no differences in the morphology of the lingual apparatus or heart in the pharyngeal domain. The thyroid follicles were scattered around the ventral aorta, as has been reported for adult lampreys. The hepatobiliary system more closely resembled those of jawed vertebrates than those of adult lampreys, with the liver having two lobes and a bile duct connecting the gallbladder to each lobe. Overall, the visceral morphology of E. burgeri does not differ significantly from that of the known Myxine at the level of gross anatomy, although the branchial morphology is phylogenetically ancestral compared to Myxine.
Collapse
Affiliation(s)
- Banri Muramatsu
- Department of Biological Science, Graduate School of Science, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Daichi G Suzuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, 305-8572, Japan
| | - Masakazu Suzuki
- Department of Biological Science, Graduate School of Science, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Hiroki Higashiyama
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
12
|
Zhou D, Li D, Nie H, Duan J, Liu S, Wang Y, Zuo W. Generation of renal tubular organoids from adult SOX9 + kidney progenitor cells. LIFE MEDICINE 2023; 2:lnad047. [PMID: 39872058 PMCID: PMC11749593 DOI: 10.1093/lifemedi/lnad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 11/22/2023] [Indexed: 01/29/2025]
Abstract
The pathogenesis of several kidney diseases results in the eventual destruction of the renal tubular system, which can progress to end-stage renal disease. Previous studies have demonstrated the involvement of a population of SOX9-positive cells in kidney regeneration and repair process following kidney injury. However, the ability of these cells to autonomously generate kidney organoids has never been investigated. Here, we isolated SOX9+ kidney progenitor cells (KPCs) from both mice and humans and tested their differentiation potential in vitro. The data showed that the human SOX9+ KPC could self-assemble into organoids with kidney-like morphology. We also used single-cell RNA sequencing to characterize the organoid cell populations and identified four distinct types of renal tubular cells. Compared to the induced pluripotent stem cell-derived kidney organoids, KPC demonstrated more tubular differentiation potential but failed to differentiate into glomerular cells. KPC-derived organoid formation involved the expression of genes related to metanephric development and followed a similar mechanism to renal injury repair in acute kidney injury patients. Altogether, our study provided a potentially useful approach to generating kidney tubular organoids for future application.
Collapse
Affiliation(s)
- Dewei Zhou
- Laboratory of Transplant Engineering and Transplant Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Dandan Li
- Department of Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Hao Nie
- Department of Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jun Duan
- Department of Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Sarah Liu
- Super Organ R&D Center, Regend Therapeutics, Shanghai 201210, China
| | - Yujia Wang
- Department of Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Super Organ R&D Center, Regend Therapeutics, Shanghai 201210, China
| | - Wei Zuo
- Laboratory of Transplant Engineering and Transplant Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Super Organ R&D Center, Regend Therapeutics, Shanghai 201210, China
| |
Collapse
|
13
|
Chevalier RL. Why is chronic kidney disease progressive? Evolutionary adaptations and maladaptations. Am J Physiol Renal Physiol 2023; 325:F595-F617. [PMID: 37675460 DOI: 10.1152/ajprenal.00134.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/08/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023] Open
Abstract
Despite significant advances in renal physiology, the global prevalence of chronic kidney disease (CKD) continues to increase. The emergence of multicellular organisms gave rise to increasing complexity of life resulting in trade-offs reflecting ancestral adaptations to changing environments. Three evolutionary traits shape CKD over the lifespan: 1) variation in nephron number at birth, 2) progressive nephron loss with aging, and 3) adaptive kidney growth in response to decreased nephron number. Although providing plasticity in adaptation to changing environments, the cell cycle must function within constraints dictated by available energy. Prioritized allocation of energy available through the placenta can restrict fetal nephrogenesis, a risk factor for CKD. Moreover, nephron loss with aging is a consequence of cell senescence, a pathway accelerated by adaptive nephron hypertrophy that maintains metabolic homeostasis at the expense of increased vulnerability to stressors. Driven by reproductive fitness, natural selection operates in early life but diminishes thereafter, leading to an exponential increase in CKD with aging, a product of antagonistic pleiotropy. A deeper understanding of the evolutionary constraints on the cell cycle may lead to manipulation of the balance between progenitor cell renewal and differentiation, regulation of cell senescence, and modulation of the balance between cell proliferation and hypertrophy. Application of an evolutionary perspective may enhance understanding of adaptation and maladaptation by nephrons in the progression of CKD, leading to new therapeutic advances.
Collapse
Affiliation(s)
- Robert L Chevalier
- Department of Pediatrics, The University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
14
|
Al-Marsoummi S, Mehus AA, Shrestha S, Rice R, Rossow B, Somji S, Garrett SH, Sens DA. Proteasomes Are Critical for Maintenance of CD133+CD24+ Kidney Progenitor Cells. Int J Mol Sci 2023; 24:13303. [PMID: 37686107 PMCID: PMC10487892 DOI: 10.3390/ijms241713303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Kidney progenitor cells, although rare and dispersed, play a key role in the repair of renal tubules after acute kidney damage. However, understanding these cells has been challenging due to the limited access to primary renal tissues and the absence of immortalized cells to model kidney progenitors. Previously, our laboratory utilized the renal proximal tubular epithelial cell line, RPTEC/TERT1, and the flow cytometry technique to sort and establish a kidney progenitor cell model called Human Renal Tubular Precursor TERT (HRTPT) which expresses CD133 and CD24 and exhibits the characteristics of kidney progenitors, such as self-renewal capacity and multi-potential differentiation. In addition, a separate cell line was established, named Human Renal Epithelial Cell 24 TERT (HREC24T), which lacks CD133 expression and shows no progenitor features. To further characterize HRTPT CD133+CD24+ progenitor cells, we performed proteomic profiling which showed high proteasomal expression in HRTPT kidney progenitor cells. RT-qPCR, Western blot, and flow cytometry analysis showed that HRTPT cells possess higher proteasomal expression and activity compared to HREC24T non-progenitor cells. Importantly, inhibition of the proteasomes with bortezomib reduced the expression of progenitor markers and obliterated the potential for self-renewal and differentiation of HRTPT progenitor cells. In conclusion, proteasomes are critical in preserving progenitor markers expression and self-renewal capacity in HRTPT kidney progenitors.
Collapse
Affiliation(s)
- Sarmad Al-Marsoummi
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Franzin R, Stasi A, De Palma G, Picerno A, Curci C, Sebastiano S, Campioni M, Cicirelli A, Rizzo A, Di Lorenzo VF, Pontrelli P, Pertosa GB, Castellano G, Gesualdo L, Sallustio F. Human Adult Renal Progenitor Cells Prevent Cisplatin-Nephrotoxicity by Inducing CYP1B1 Overexpression and miR-27b-3p Down-Regulation through Extracellular Vesicles. Cells 2023; 12:1655. [PMID: 37371125 DOI: 10.3390/cells12121655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Cisplatin is one of the most effective chemotherapeutic agents strongly associated with nephrotoxicity. Tubular adult renal progenitor cells (tARPC) can regenerate functional tubules and participate in the repair processes after cisplatin exposition. This study investigated the molecular mechanisms underlying the protective effect of tARPC on renal epithelium during cisplatin nephrotoxicity. By performing a whole-genome transcriptomic analysis, we found that tARPC, in presence of cisplatin, can strongly influence the gene expression of renal proximal tubular cell [RPTEC] by inducing overexpression of CYP1B1, a member of the cytochrome P450 superfamily capable of metabolizing cisplatin and of hypoxia/cancer-related lncRNAs as MIR210HG and LINC00511. Particularly, tARPC exerted renoprotection and regeneration effects via extracellular vesicles (EV) enriched with CYP1B1 and miR-27b-3p, a well-known CYP1B1 regulatory miRNA. The expression of CYP1B1 by tARPC was confirmed by analyzing biopsies of cisplatin-treated renal carcinoma patients that showed the colocalization of CYP1B1 with the tARPC marker CD133. CYP1B1 was also overexpressed in urinary EV purified from oncologic patients that presented nephrotoxicity episodes after cisplatin treatment. Interestingly CYP1B1 expression significantly correlated with creatinine and eGFR levels. Taken together, our results show that tARPC are able to counteract cisplatin-induced nephrotoxicity via CYP1B1 release through EV. These findings provide a promising therapeutic strategy for nephrotoxicity risk assessment that could be related to abundance of renal progenitors.
Collapse
Affiliation(s)
- Rossana Franzin
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, 70124 Bari, Italy
- MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Alessandra Stasi
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, 70124 Bari, Italy
- MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giuseppe De Palma
- Institutional BioBank, Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy
| | - Angela Picerno
- Department Interdisciplinary of Medicine (DIM), University of Bari, 70124 Bari, Italy
| | - Claudia Curci
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, 70124 Bari, Italy
| | - Serena Sebastiano
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, 70124 Bari, Italy
| | - Monica Campioni
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, 70124 Bari, Italy
| | - Antonella Cicirelli
- Department Interdisciplinary of Medicine (DIM), University of Bari, 70124 Bari, Italy
| | - Alessandro Rizzo
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico 'Don Tonino Bello', IRCCS Istituto Tumori 'Giovanni Paolo II', Viale Orazio Flacco 65, 70124 Bari, Italy
| | | | - Paola Pontrelli
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, 70124 Bari, Italy
| | - Giovanni Battista Pertosa
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, 70124 Bari, Italy
| | - Giuseppe Castellano
- Unit of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy
| | - Loreto Gesualdo
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, 70124 Bari, Italy
- MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Fabio Sallustio
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, 70124 Bari, Italy
- MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
16
|
Shrestha S, Haque ME, Ighofose E, Mcmahon M, Kalyan G, Guyer R, Kalonick M, Kochanowski J, Wegner K, Somji S, Sens DA, Garrett SH. Primary and Immortalized Cultures of Human Proximal Tubule Cells Possess Both Progenitor and Non-Progenitor Cells That Can Impact Experimental Results. J Pers Med 2023; 13:613. [PMID: 37108999 PMCID: PMC10146827 DOI: 10.3390/jpm13040613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 03/12/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Studies have reported the presence of renal proximal tubule specific progenitor cells which co-express PROM1 and CD24 markers on the cell surface. The RPTEC/TERT cell line is a telomerase-immortalized proximal tubule cell line that expresses two populations of cells, one co-expressing PROM1 and CD24 and another expressing only CD24, identical to primary cultures of human proximal tubule cells (HPT). The RPTEC/TERT cell line was used by the authors to generate two new cell lines, HRTPT co-expressing PROM1 and CD24 and HREC24T expressing only CD24. The HRTPT cell line has been shown to express properties expected of renal progenitor cells while HREC24T expresses none of these properties. The HPT cells were used in a previous study to determine the effects of elevated glucose concentrations on global gene expression. This study showed the alteration of expression of lysosomal and mTOR associated genes. In the present study, this gene set was used to determine if pure populations of cells expressing both PROM1 and CD24 had different patterns of expression than those expressing only CD24 when exposed to elevated glucose concentrations. In addition, experiments were performed to determine whether cross-talk might occur between the two cell lines based on their expression of PROM1 and CD24. It was shown that the expression of the mTOR and lysosomal genes was altered in expression between the HRTPT and HREC24T cell lines based on their PROM1 and CD24 expression. Using metallothionein (MT) expression as a marker demonstrated that both cell lines produced condition media that could alter the expression of the MT genes. It was also determined that PROM1 and CD24 co-expression was limited in renal cell carcinoma (RCC) cell lines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Scott H. Garrett
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, USA; (S.S.); (M.E.H.); (E.I.); (M.M.); (G.K.); (R.G.); (M.K.); (J.K.); (K.W.); (S.S.); (D.A.S.)
| |
Collapse
|
17
|
Nguyen TK, Petrikas M, Chambers BE, Wingert RA. Principles of Zebrafish Nephron Segment Development. J Dev Biol 2023; 11:jdb11010014. [PMID: 36976103 PMCID: PMC10052950 DOI: 10.3390/jdb11010014] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Nephrons are the functional units which comprise the kidney. Each nephron contains a number of physiologically unique populations of specialized epithelial cells that are organized into discrete domains known as segments. The principles of nephron segment development have been the subject of many studies in recent years. Understanding the mechanisms of nephrogenesis has enormous potential to expand our knowledge about the basis of congenital anomalies of the kidney and urinary tract (CAKUT), and to contribute to ongoing regenerative medicine efforts aimed at identifying renal repair mechanisms and generating replacement kidney tissue. The study of the zebrafish embryonic kidney, or pronephros, provides many opportunities to identify the genes and signaling pathways that control nephron segment development. Here, we describe recent advances of nephron segment patterning and differentiation in the zebrafish, with a focus on distal segment formation.
Collapse
Affiliation(s)
- Thanh Khoa Nguyen
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Madeline Petrikas
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Brooke E Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
18
|
Singhal S, Garrett SH, Somji S, Schaefer K, Bansal B, Gill JS, Singhal SK, Sens DA. Arsenite Exposure to Human RPCs (HRTPT) Produces a Reversible Epithelial Mesenchymal Transition (EMT): In-Vitro and In-Silico Study. Int J Mol Sci 2023; 24:5092. [PMID: 36982180 PMCID: PMC10048886 DOI: 10.3390/ijms24065092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
The human kidney is known to possess renal progenitor cells (RPCs) that can assist in the repair of acute tubular injury. The RPCs are sparsely located as single cells throughout the kidney. We recently generated an immortalized human renal progenitor cell line (HRTPT) that co-expresses PROM1/CD24 and expresses features expected on RPCs. This included the ability to form nephrospheres, differentiate on the surface of Matrigel, and undergo adipogenic, neurogenic, and osteogenic differentiation. These cells were used in the present study to determine how the cells would respond when exposed to nephrotoxin. Inorganic arsenite (iAs) was chosen as the nephrotoxin since the kidney is susceptible to this toxin and there is evidence of its involvement in renal disease. Gene expression profiles when the cells were exposed to iAs for 3, 8, and 10 passages (subcultured at 1:3 ratio) identified a shift from the control unexposed cells. The cells exposed to iAs for eight passages were then referred with growth media containing no iAs and within two passages the cells returned to an epithelial morphology with strong agreement in differential gene expression between control and cells recovered from iAs exposure. Results show within three serial passages of the cells exposed to iAs there was a shift in morphology from an epithelial to a mesenchymal phenotype. EMT was suggested based on an increase in known mesenchymal markers. We found RPCs can undergo EMT when exposed to a nephrotoxin and undergo MET when the agent is removed from the growth media.
Collapse
Affiliation(s)
- Sonalika Singhal
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Scott H. Garrett
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Seema Somji
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Kalli Schaefer
- Department of Biomedical Engineering, School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks, ND 58203, USA
| | - Benu Bansal
- Department of Biomedical Engineering, School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks, ND 58203, USA
| | - Jappreet Singh Gill
- Department of Biomedical Engineering, School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks, ND 58203, USA
| | - Sandeep K. Singhal
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
- Department of Biomedical Engineering, School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks, ND 58203, USA
| | - Donald A. Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|
19
|
Van Beusecum JP, Rianto F, Teakell J, Kon V, Sparks MA, Hoorn EJ, Kirabo A, Ramkumar N. Novel Concepts in Nephron Sodium Transport: A Physiological and Clinical Perspective. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:124-136. [PMID: 36868728 DOI: 10.1053/j.akdh.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 04/13/2023]
Abstract
The kidneys play a critical role in maintaining total body sodium (Na+) balance across a wide range of dietary intake, accomplished by a concerted effort involving multiple Na+ transporters along the nephron. Furthermore, nephron Na+ reabsorption and urinary Na+ excretion are closely linked to renal blood flow and glomerular filtration such that perturbations in either of them can modify Na+ transport along the nephron, ultimately resulting in hypertension and other Na+-retentive states. In this article, we provide a brief physiological overview of nephron Na+ transport and illustrate clinical syndromes and therapeutic agents that affect Na+ transporter function. We highlight recent advances in kidney Na+ transport, particularly the role of immune cells, lymphatics, and interstitial Na+ in regulating Na+ reabsorption, the emergence of potassium (K+) as a regulator of Na+ transport, and the evolution of the nephron to modulate Na+ transport.
Collapse
Affiliation(s)
- Justin P Van Beusecum
- Ralph H. Johnson VA Medical Center, Charleston, SC; Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - Fitra Rianto
- Division of Nephrology, Department of Medicine, Duke University School of Medicine and Renal Section, Durham VA Health Care System Durham, Durham, NC
| | - Jade Teakell
- Division of Renal Diseases and Hypertension, Department of Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX
| | - Valentina Kon
- Division of Nephrology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University School of Medicine and Renal Section, Durham VA Health Care System Durham, Durham, NC
| | - Ewout J Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Nirupama Ramkumar
- Division of Nephrology and Hypertension, Department of Medicine, University of Utah Health, Salt Lake City, UT.
| |
Collapse
|
20
|
Abstract
The ability of the adult zebrafish to replace damaged nephrons in the kidney depends on renal progenitor cells and renal interstitial cells working closely together.
Collapse
Affiliation(s)
- Hannah M Wesselman
- Department of Biological Sciences, University of Notre DameNotre DameUnited States
| | - Rebecca A Wingert
- Department of Biological Sciences, University of Notre DameNotre DameUnited States
| |
Collapse
|
21
|
Drummond BE, Ercanbrack WS, Wingert RA. Modeling Podocyte Ontogeny and Podocytopathies with the Zebrafish. J Dev Biol 2023; 11:9. [PMID: 36810461 PMCID: PMC9944608 DOI: 10.3390/jdb11010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Podocytes are exquisitely fashioned kidney cells that serve an essential role in the process of blood filtration. Congenital malformation or damage to podocytes has dire consequences and initiates a cascade of pathological changes leading to renal disease states known as podocytopathies. In addition, animal models have been integral to discovering the molecular pathways that direct the development of podocytes. In this review, we explore how researchers have used the zebrafish to illuminate new insights about the processes of podocyte ontogeny, model podocytopathies, and create opportunities to discover future therapies.
Collapse
Affiliation(s)
| | | | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
22
|
The "3Ds" of Growing Kidney Organoids: Advances in Nephron Development, Disease Modeling, and Drug Screening. Cells 2023; 12:cells12040549. [PMID: 36831216 PMCID: PMC9954122 DOI: 10.3390/cells12040549] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
A kidney organoid is a three-dimensional (3D) cellular aggregate grown from stem cells in vitro that undergoes self-organization, recapitulating aspects of normal renal development to produce nephron structures that resemble the native kidney organ. These miniature kidney-like structures can also be derived from primary patient cells and thus provide simplified context to observe how mutations in kidney-disease-associated genes affect organogenesis and physiological function. In the past several years, advances in kidney organoid technologies have achieved the formation of renal organoids with enhanced numbers of specialized cell types, less heterogeneity, and more architectural complexity. Microfluidic bioreactor culture devices, single-cell transcriptomics, and bioinformatic analyses have accelerated the development of more sophisticated renal organoids and tailored them to become increasingly amenable to high-throughput experimentation. However, many significant challenges remain in realizing the use of kidney organoids for renal replacement therapies. This review presents an overview of the renal organoid field and selected highlights of recent cutting-edge kidney organoid research with a focus on embryonic development, modeling renal disease, and personalized drug screening.
Collapse
|
23
|
Corkins ME, Achieng M, DeLay BD, Krneta-Stankic V, Cain MP, Walker BL, Chen J, Lindström NO, Miller RK. A comparative study of cellular diversity between the Xenopus pronephric and mouse metanephric nephron. Kidney Int 2023; 103:77-86. [PMID: 36055600 PMCID: PMC9822858 DOI: 10.1016/j.kint.2022.07.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/30/2022] [Accepted: 07/27/2022] [Indexed: 01/11/2023]
Abstract
The kidney is an essential organ that ensures bodily fluid homeostasis and removes soluble waste products from the organism. Nephrons, the functional units of the kidney, comprise a blood filter, the glomerulus or glomus, and an epithelial tubule that processes the filtrate from the blood or coelom and selectively reabsorbs solutes, such as sugars, proteins, ions, and water, leaving waste products to be eliminated in the urine. Genes coding for transporters are segmentally expressed, enabling the nephron to sequentially process the filtrate. The Xenopus embryonic kidney, the pronephros, which consists of a single large nephron, has served as a valuable model to identify genes involved in nephron formation and patterning. Therefore, the developmental patterning program that generates these segments is of great interest. Prior work has defined the gene expression profiles of Xenopus nephron segments via in situ hybridization strategies, but a comprehensive understanding of the cellular makeup of the pronephric kidney remains incomplete. Here, we carried out single-cell mRNA sequencing of the functional Xenopus pronephric nephron and evaluated its cellular composition through comparative analyses with previous Xenopus studies and single-cell mRNA sequencing of the adult mouse kidney. This study reconstructs the cellular makeup of the pronephric kidney and identifies conserved cells, segments, and associated gene expression profiles. Thus, our data highlight significant conservation in podocytes, proximal and distal tubule cells, and divergence in cellular composition underlying the capacity of each nephron to remove wastes in the form of urine, while emphasizing the Xenopus pronephros as a model for physiology and disease.
Collapse
Affiliation(s)
- Mark E Corkins
- Department of Pediatrics, Pediatric Research Center, McGovern Medical School, UTHealth Houston, Houston, Texas, USA.
| | - MaryAnne Achieng
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Bridget D DeLay
- Department of Pediatrics, Pediatric Research Center, McGovern Medical School, UTHealth Houston, Houston, Texas, USA
| | - Vanja Krneta-Stankic
- Department of Pediatrics, Pediatric Research Center, McGovern Medical School, UTHealth Houston, Houston, Texas, USA; Program in Genes and Development, MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Margo P Cain
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Brandy L Walker
- Department of Pediatrics, Pediatric Research Center, McGovern Medical School, UTHealth Houston, Houston, Texas, USA; Program in Genetics and Epigenetics, MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Jichao Chen
- Department of Pulmonary Medicine, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Program in Genetics and Epigenetics, MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Nils O Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Rachel K Miller
- Department of Pediatrics, Pediatric Research Center, McGovern Medical School, UTHealth Houston, Houston, Texas, USA; Program in Genetics and Epigenetics, MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA; Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Program in Biochemistry and Cell Biology, MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA.
| |
Collapse
|
24
|
Hypertension and renal disease programming: focus on the early postnatal period. Clin Sci (Lond) 2022; 136:1303-1339. [PMID: 36073779 DOI: 10.1042/cs20220293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
The developmental origin of hypertension and renal disease is a concept highly supported by strong evidence coming from both human and animal studies. During development there are periods in which the organs are more vulnerable to stressors. Such periods of susceptibility are also called 'sensitive windows of exposure'. It was shown that as earlier an adverse event occurs; the greater are the consequences for health impairment. However, evidence show that the postnatal period is also quite important for hypertension and renal disease programming, especially in rodents because they complete nephrogenesis postnatally, and it is also important during preterm human birth. Considering that the developing kidney is vulnerable to early-life stressors, renal programming is a key element in the developmental programming of hypertension and renal disease. The purpose of this review is to highlight the great number of studies, most of them performed in animal models, showing the broad range of stressors involved in hypertension and renal disease programming, with a particular focus on the stressors that occur during the early postnatal period. These stressors mainly include undernutrition or specific nutritional deficits, chronic behavioral stress, exposure to environmental chemicals, and pharmacological treatments that affect some important factors involved in renal physiology. We also discuss the common molecular mechanisms that are activated by the mentioned stressors and that promote the appearance of these adult diseases, with a brief description on some reprogramming strategies, which is a relatively new and promising field to treat or to prevent these diseases.
Collapse
|
25
|
Scattered Tubular Cells Markers in Macula Densa of Normal Human Adult Kidney. Int J Mol Sci 2022; 23:ijms231810504. [PMID: 36142420 PMCID: PMC9500602 DOI: 10.3390/ijms231810504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Abstract
Background: The scattered tubular cells (STCs) are a population of resident progenitor tubular cells with expansion, self-renewal and epithelial differentiation abilities. Although these cells are localized within the proximal (PTs) and distal (DTs) tubules in a normal adult kidney, their presence has never been demonstrated in human macula densa (MD). The purpose of the present study is to describe the presence of STCs in MD using specific markers such as prominin-1 (CD133), cytokeratin 7 (KRT7) and vimentin (VIM). Methods: We analyzed two sets of three consecutive serial sections for each sample. The first sections of each set were immunostained for nNOS to identify MD, the second sections were immune-stained for CD133 (specific STCs marker) while the third sections were analyzed for KRT7 (another STCs specific marker) and VIM (that stains the basal pole of the STCs) in the first and second sets, respectively, in order to study the co-expression of KRT7 and VIM with the CD133 marker. Results: CD133 was localized in some MD cells and in the adjacent DT cells. Moreover, CD133 was detected in the parietal epithelial cells of Bowman’s capsule and in some proximal tubules (PT). KRT7-positive cells were identified in MD and adjacent DT cells, while KRT7 positivity was mostly confined in both DT and collecting ducts (CD) in the other areas of the renal parenchyma. CD133 and KRT7 were co-expressed in some MD and adjacent DT cells. Some of the latter cells were positive both for CD133 and VIM. CD133 was always localized in the apical part of the cells, whereas the VIM expression was evident only in the cellular basal pole. Although some cells of MD expressed VIM or CD133, none of them co-expressed VIM and CD133. Conclusions: The presence of STCs was demonstrated in human adult MD, suggesting that this structure has expansion, self-renewal and epithelial differentiation abilities, similar to all other parts of renal tubules.
Collapse
|
26
|
Safi W, Marco A, Moya D, Prado P, Garreta E, Montserrat N. Assessing kidney development and disease using kidney organoids and CRISPR engineering. Front Cell Dev Biol 2022; 10:948395. [PMID: 36120564 PMCID: PMC9479189 DOI: 10.3389/fcell.2022.948395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022] Open
Abstract
The differentiation of human pluripotent stem cells (hPSCs) towards organoids is one of the biggest scientific advances in regenerative medicine. Kidney organoids have not only laid the groundwork for various organ-like tissue systems but also provided insights into kidney embryonic development. Thus, several protocols for the differentiation of renal progenitors or mature cell types have been established. Insights into the interplay of developmental pathways in nephrogenesis and determination of different cell fates have enabled the in vitro recapitulation of nephrogenesis. Here we first provide an overview of kidney morphogenesis and patterning in the mouse model in order to dissect signalling pathways that are key to define culture conditions sustaining renal differentiation from hPSCs. Secondly, we also highlight how genome editing approaches have provided insights on the specific role of different genes and molecular pathways during renal differentiation from hPSCs. Based on this knowledge we further review how CRISPR/Cas9 technology has enabled the recapitulation and correction of cellular phenotypes associated with human renal disease. Last, we also revise how the field has positively benefited from emerging technologies as single cell RNA sequencing and discuss current limitations on kidney organoid technology that will take advantage from bioengineering solutions to help standardizing the use of this model systems to study kidney development and disease.
Collapse
Affiliation(s)
- Wajima Safi
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
- *Correspondence: Wajima Safi, ; Elena Garreta, ; Nuria Montserrat,
| | - Andrés Marco
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
| | | | - Patricia Prado
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Elena Garreta
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
- *Correspondence: Wajima Safi, ; Elena Garreta, ; Nuria Montserrat,
| | - Nuria Montserrat
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- *Correspondence: Wajima Safi, ; Elena Garreta, ; Nuria Montserrat,
| |
Collapse
|
27
|
Picerno A, Giannuzzi F, Curci C, De Palma G, Di Chiano MG, Simone S, Franzin R, Gallone A, Di Lorenzo VF, Stasi A, Pertosa GB, Sabbà C, Gesualdo L, Sallustio F. The long non-coding RNA HOTAIR controls the self-renewal, cell senescence, and secretion of antiaging protein α-Klotho in human adult renal progenitor cells. Stem Cells 2022; 40:963-975. [PMID: 35922038 DOI: 10.1093/stmcls/sxac054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022]
Abstract
The long non-coding RNAs (lncRNA) play an important role in several biological processes including some renal diseases. Nevertheless, little is known on lncRNA that are expressed in healthy kidney and involved in renal cell homeostasis and development, and even less is known about lncRNA involved in the maintenance of human adult renal stem/progenitor cells (ARPCs) that have been shown to be very important for renal homeostasis and repair processes. Through a whole genome transcriptome screening, we found that the HOTAIR lncRNA is highly expressed in renal progenitors and potentially involved in cell cycle and senescence biological processes. By CRISPR/Cas9 genome editing, we generated HOTAIR knock-out ARPC lines and established a key role of this lncRNA in ARPC self-renewal properties by sustaining their proliferative capacity and limiting the apoptotic process. Intriguingly, the HOTAIR knock-out led to the ARPC senescence and to a significant decrease of the CD133 stem cell marker expression, that is an inverse marker of ARPC senescence and can regulate renal tubular repair after the damage. Furthermore, we found that ARPCs expressed high levels of the α-Klotho anti-aging protein and especially 2.6-fold higher levels compared to that secreted by renal proximal tubular cells (RPTECs). Finally, we showed that HOTAIR exerts its function through the epigenetic silencing of the cell cycle inhibitor p15 inducing the trimethylation of the histone H3K27. Altogether, these results shed new light on the mechanisms of regulation of these important renal cells and may support the future development of precision therapies for kidney diseases.
Collapse
Affiliation(s)
- Angela Picerno
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Francesca Giannuzzi
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Claudia Curci
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Giuseppe De Palma
- MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Maria Giovanna Di Chiano
- Institutional BioBank, Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italia
| | - Simona Simone
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari "Aldo Moro", 70124, Bari, Italy.,MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Anna Gallone
- MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy.,Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, 70124, Bari, Italy
| | | | - Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari "Aldo Moro", 70124, Bari, Italy.,MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giovanni Battista Pertosa
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari "Aldo Moro", 70124, Bari, Italy.,MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Carlo Sabbà
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari "Aldo Moro", 70124, Bari, Italy.,MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Fabio Sallustio
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124, Bari, Italy.,MIRROR-Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
28
|
Kawabe Y, Kamihira M. Novel cell lines derived from Chinese hamster kidney tissue. PLoS One 2022; 17:e0266061. [PMID: 35358245 PMCID: PMC8970510 DOI: 10.1371/journal.pone.0266061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/13/2022] [Indexed: 01/15/2023] Open
Abstract
Immortalized kidney cell lines are widely used in basic and applied research such as cell permeability tests and drug screening. Although many cell lines have been established from kidney tissues, the immortalization process has not been clarified in these cell lines. In this study, we analyzed the phenotypic changes that occurred during the immortalization of kidney cells derived from Chinese hamster tissue in terms of karyotype and gene expression profiles. In the newly established cell line, designated as CHK-Q, gene expression profiles at each stage of the immortalization process and during the adaptation to serum-free conditions were analyzed by DNA microarray. Renal stem cell markers CD24 and CD133 were expressed in CHK-Q cells, suggesting that CHK-Q cells were transformed from renal stem cells. Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis to identify the pathways of upregulated and downregulated genes revealed that the immortalization of CHK-Q cells was associated with increased fluctuations in the expression of specific proto-oncogenes. Karyotype analysis of spontaneously immortalized CHK-Q cells indicated that CHK-Q chromosomes had a typical modal number of 23 but possessed slight chromosomal abnormalities. In this study, we investigated the mechanism of cell environmental adaptation by analyzing gene expression behavior during the immortalization process and serum-free adaptation. CHK-Q cells are applicable to the fields of biotechnology and biomedical science by utilizing their characteristics as kidney-derived cells.
Collapse
Affiliation(s)
- Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
- Manufacturing Technology Association of Biologics, Kobe, Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
- Manufacturing Technology Association of Biologics, Kobe, Japan
- * E-mail:
| |
Collapse
|
29
|
Picerno A, Castellano G, Curci C, Kopaczka K, Stasi A, Pertosa GB, Sabbà C, Gesualdo L, Gramignoli R, Sallustio F. The Icarus Flight of Perinatal Stem and Renal Progenitor Cells Within Immune System. Front Immunol 2022; 13:840146. [PMID: 35355984 PMCID: PMC8959820 DOI: 10.3389/fimmu.2022.840146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/11/2022] [Indexed: 12/02/2022] Open
Abstract
Our immune system actively fights bacteria and viruses, and it must strike a delicate balance between over- and under-reaction, just like Daedalus and Icarus in Greek mythology, who could not escape their imprisonment by flying too high or too low. Both human amniotic epithelial and mesenchymal stromal cells and the conditioned medium generated from their culture exert multiple immunosuppressive activities. They have strong immunomodulatory properties that are influenced by the types and intensity of inflammatory stimuli present in the microenvironment. Notably, very recently, the immunomodulatory activity of human adult renal stem/progenitor cells (ARPCs) has been discovered. ARPCs cause a decrease in Tregs and CD3+ CD4- CD8- (DN) T cells in the early stages of inflammation, encouraging inflammation, and an increase in the late stages of inflammation, favoring inflammation quenching. If the inflammatory trigger continues, however, ARPCs cause a further increase in DN T cells to avoid the development of a harmful inflammatory state. As in the flight of Daedalus and Icarus, who could not fly too high or too low to not destroy their wings by the heat of the sun or the humidity of the sea, in response to an inflammatory environment, stem cells seem to behave by paying attention to regulating T cells in the balance between immune tolerance and autoimmunity. Recognizing the existence of both suppressive and stimulatory properties, and the mechanisms that underpin the duality of immune reaction, will aid in the development of active immunotherapeutic approaches that manipulate the immune system to achieve therapeutic benefit.
Collapse
Affiliation(s)
- Angela Picerno
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Renal Transplant Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Claudia Curci
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, Bari, Italy
| | - Katarzyna Kopaczka
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Battista Pertosa
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, Bari, Italy
| | - Carlo Sabbà
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, Bari, Italy
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Fabio Sallustio
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
30
|
Namestnikov M, Dekel B. Moving To A New Dimension: 3D Kidney Cultures For Kidney Regeneration. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Tajima K, Yagi H, Morisaku T, Nishi K, Kushige H, Kojima H, Higashi H, Kuroda K, Kitago M, Adachi S, Natsume T, Nishimura K, Oya M, Kitagawa Y. An organ-derived extracellular matrix triggers in situ kidney regeneration in a preclinical model. NPJ Regen Med 2022; 7:18. [PMID: 35228532 PMCID: PMC8885654 DOI: 10.1038/s41536-022-00213-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/07/2022] [Indexed: 01/20/2023] Open
Abstract
It has not been considered that nephrons regenerate in adult mammals. We present that an organ-derived extracellular matrix in situ induces nephron regeneration in a preclinical model. A porcine kidney-derived extracellular matrix was sutured onto the surface of partial nephrectomy (PN)-treated kidney. Twenty-eight days after implantation, glomeruli, vessels, and renal tubules, characteristic of nephrons, were histologically observed within the matrix. No fibrillogenesis was observed in the matrix nor the matrix-sutured kidney, although this occurred in a PN kidney without the matrix, indicating the structures were newly induced by the matrix. The expression of renal progenitor markers, including Sall1, Six2, and WT-1, within the matrix supported the induction of nephron regeneration by the matrix. Furthermore, active blood flow was observed inside the matrix using computed tomography. The matrix provides structural and functional foundations for the development of cell-free scaffolds with a remarkably low risk of immune rejection and cancerization.
Collapse
|
32
|
Zhang W, Gao C, Tsilosani A, Samarakoon R, Plews R, Higgins P. Potential renal stem/progenitor cells identified by in vivo lineage tracing. Am J Physiol Renal Physiol 2022; 322:F379-F391. [PMID: 35100814 PMCID: PMC8934668 DOI: 10.1152/ajprenal.00326.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian kidneys consist of more than 30 different types of cells. A challenging task is to identify and characterize the stem/progenitor subpopulations that establish the lineage relationships among these cellular elements during nephrogenesis in the embryonic and neonate kidneys and during tissue homeostasis and/or injury repair in the mature kidney. Moreover, the potential clinical utility of stem/progenitor cells holds promise for development of new regenerative medicine approaches for the treatment of renal diseases. Stem cells are defined by unlimited self-renewal capacity and pluripotentiality. Progenitor cells have pluripotentiality, but no or limited self-renewal potential. Cre-LoxP-based in vivo genetic lineage tracing is a powerful tool to identify the stem/progenitor cells in their native environment. Hypothetically, this technique enables investigators to accurately track the progeny of a single cell, or a group of cells. The Cre/loxP system has been widely employed to uncover the function of genes in various mammalian tissues and to identify stem/progenitor cells through in vivo lineage tracing analyses. In this review, we summarize the recent advances in the development and characterization of various Cre drivers, and their use in identifying potential renal stem/progenitor cells in both developing and mature mouse kidneys.
Collapse
Affiliation(s)
- Wenzheng Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Chao Gao
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Akaki Tsilosani
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Robert Plews
- Department of General Surgery, Albany Medical College, Albany, NY, United States
| | - Paul Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| |
Collapse
|
33
|
Molecular Mechanisms of Kidney Injury and Repair. Int J Mol Sci 2022; 23:ijms23031542. [PMID: 35163470 PMCID: PMC8835923 DOI: 10.3390/ijms23031542] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/17/2022] Open
Abstract
Chronic kidney disease (CKD) will become the fifth global cause of death by 2040, thus emphasizing the need to better understand the molecular mechanisms of damage and regeneration in the kidney. CKD predisposes to acute kidney injury (AKI) which, in turn, promotes CKD progression. This implies that CKD or the AKI-to-CKD transition are associated with dysfunctional kidney repair mechanisms. Current therapeutic options slow CKD progression but fail to treat or accelerate recovery from AKI and are unable to promote kidney regeneration. Unraveling the cellular and molecular mechanisms involved in kidney injury and repair, including the failure of this process, may provide novel biomarkers and therapeutic tools. We now review the contribution of different molecular and cellular events to the AKI-to-CKD transition, focusing on the role of macrophages in kidney injury, the different forms of regulated cell death and necroinflammation, cellular senescence and the senescence-associated secretory phenotype (SAPS), polyploidization, and podocyte injury and activation of parietal epithelial cells. Next, we discuss key contributors to repair of kidney injury and opportunities for their therapeutic manipulation, with a focus on resident renal progenitor cells, stem cells and their reparative secretome, certain macrophage subphenotypes within the M2 phenotype and senescent cell clearance.
Collapse
|
34
|
Agarwal S, Sudhini YR, Polat OK, Reiser J, Altintas MM. Renal cell markers: lighthouses for managing renal diseases. Am J Physiol Renal Physiol 2021; 321:F715-F739. [PMID: 34632812 DOI: 10.1152/ajprenal.00182.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Kidneys, one of the vital organs in our body, are responsible for maintaining whole body homeostasis. The complexity of renal function (e.g., filtration, reabsorption, fluid and electrolyte regulation, and urine production) demands diversity not only at the level of cell types but also in their overall distribution and structural framework within the kidney. To gain an in depth molecular-level understanding of the renal system, it is imperative to discern the components of kidney and the types of cells residing in each of the subregions. Recent developments in labeling, tracing, and imaging techniques have enabled us to mark, monitor, and identify these cells in vivo with high efficiency in a minimally invasive manner. In this review, we summarize different cell types, specific markers that are uniquely associated with those cell types, and their distribution in the kidney, which altogether make kidneys so special and different. Cellular sorting based on the presence of certain proteins on the cell surface allowed for the assignment of multiple markers for each cell type. However, different studies using different techniques have found contradictions in cell type-specific markers. Thus, the term "cell marker" might be imprecise and suboptimal, leading to uncertainty when interpreting the data. Therefore, we strongly believe that there is an unmet need to define the best cell markers for a cell type. Although the compendium of renal-selective marker proteins presented in this review is a resource that may be useful to researchers, we acknowledge that the list may not be necessarily exhaustive.
Collapse
Affiliation(s)
- Shivangi Agarwal
- Department of Internal Medicine, Rush University, Chicago, Illinois
| | | | - Onur K Polat
- Department of Internal Medicine, Rush University, Chicago, Illinois
| | - Jochen Reiser
- Department of Internal Medicine, Rush University, Chicago, Illinois
| | | |
Collapse
|
35
|
Shrestha S, Singhal S, Kalonick M, Guyer R, Volkert A, Somji S, Garrett SH, Sens DA, Singhal SK. Role of HRTPT in kidney proximal epithelial cell regeneration: Integrative differential expression and pathway analyses using microarray and scRNA-seq. J Cell Mol Med 2021; 25:10466-10479. [PMID: 34626063 PMCID: PMC8581341 DOI: 10.1111/jcmm.16976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/18/2021] [Accepted: 09/26/2021] [Indexed: 12/11/2022] Open
Abstract
Damage to proximal tubules due to exposure to toxicants can lead to conditions such as acute kidney injury (AKI), chronic kidney disease (CKD) and ultimately end‐stage renal failure (ESRF). Studies have shown that kidney proximal epithelial cells can regenerate particularly after acute injury. In the previous study, we utilized an immortalized in vitro model of human renal proximal tubule epithelial cells, RPTEC/TERT1, to isolate HRTPT cell line that co‐expresses stem cell markers CD133 and CD24, and HREC24T cell line that expresses only CD24. HRTPT cells showed most of the key characteristics of stem/progenitor cells; however, HREC24T cells did not show any of these characteristics. The goal of this study was to further characterize and understand the global gene expression differences, upregulated pathways and gene interaction using scRNA‐seq in HRTPT cells. Affymetrix microarray analysis identified common gene sets and pathways specific to HRTPT and HREC24T cells analysed using DAVID, Reactome and Ingenuity software. Gene sets of HRTPT cells, in comparison with publicly available data set for CD133+ infant kidney, urine‐derived renal progenitor cells and human kidney‐derived epithelial proximal tubule cells showed substantial similarity in organization and interactions of the apical membrane. Single‐cell analysis of HRTPT cells identified unique gene clusters associated with CD133 and the 92 common gene sets from three data sets. In conclusion, the gene expression analysis identified a unique gene set for HRTPT cells and narrowed the co‐expressed gene set compared with other human renal–derived cell lines expressing CD133, which may provide deeper understanding in their role as progenitor/stem cells that participate in renal repair.
Collapse
Affiliation(s)
- Swojani Shrestha
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Sonalika Singhal
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Matthew Kalonick
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Rachel Guyer
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Alexis Volkert
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Seema Somji
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Scott H Garrett
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Donald A Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Sandeep K Singhal
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,Department of Biomedical Engineering, School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
36
|
Pou Casellas C, Jansen K, Rookmaaker MB, Clevers H, Verhaar MC, Masereeuw R. Regulation of Solute Carriers OCT2 and OAT1/3 in the Kidney: A Phylogenetic, Ontogenetic and Cell Dynamic Perspective. Physiol Rev 2021; 102:993-1024. [PMID: 34486394 DOI: 10.1152/physrev.00009.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the course of more than 500 million years, the kidneys have undergone a remarkable evolution from primitive nephric tubes to intricate filtration-reabsorption systems that maintain homeostasis and remove metabolic end products from the body. The evolutionarily conserved solute carriers Organic Cation Transporter 2 (OCT2), and Organic Anion Transporters 1 and 3 (OAT1/3) coordinate the active secretion of a broad range of endogenous and exogenous substances, many of which accumulate in the blood of patients with kidney failure despite dialysis. Harnessing OCT2 and OAT1/3 through functional preservation or regeneration could alleviate the progression of kidney disease. Additionally, it would improve current in vitro test models that lose their expression in culture. With this review, we explore OCT2 and OAT1/3 regulation using different perspectives: phylogenetic, ontogenetic and cell dynamic. Our aim is to identify possible molecular targets to both help prevent or compensate for the loss of transport activity in patients with kidney disease, and to enable endogenous OCT2 and OAT1/3 induction in vitro in order to develop better models for drug development.
Collapse
Affiliation(s)
- Carla Pou Casellas
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands.,Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Katja Jansen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hans Clevers
- Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
37
|
Schumacher A, Rookmaaker MB, Joles JA, Kramann R, Nguyen TQ, van Griensven M, LaPointe VLS. Defining the variety of cell types in developing and adult human kidneys by single-cell RNA sequencing. NPJ Regen Med 2021; 6:45. [PMID: 34381054 PMCID: PMC8357940 DOI: 10.1038/s41536-021-00156-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/22/2021] [Indexed: 01/14/2023] Open
Abstract
The kidney is among the most complex organs in terms of the variety of cell types. The cellular complexity of human kidneys is not fully unraveled and this challenge is further complicated by the existence of multiple progenitor pools and differentiation pathways. Researchers disagree on the variety of renal cell types due to a lack of research providing a comprehensive picture and the challenge to translate findings between species. To find an answer to the number of human renal cell types, we discuss research that used single-cell RNA sequencing on developing and adult human kidney tissue and compares these findings to the literature of the pre-single-cell RNA sequencing era. We find that these publications show major steps towards the discovery of novel cell types and intermediate cell stages as well as complex molecular signatures and lineage pathways throughout development. The variety of cell types remains variable in the single-cell literature, which is due to the limitations of the technique. Nevertheless, our analysis approaches an accumulated number of 41 identified cell populations of renal lineage and 32 of non-renal lineage in the adult kidney, and there is certainly much more to discover. There is still a need for a consensus on a variety of definitions and standards in single-cell RNA sequencing research, such as the definition of what is a cell type. Nevertheless, this early-stage research already proves to be of significant impact for both clinical and regenerative medicine, and shows potential to enhance the generation of sophisticated in vitro kidney tissue.
Collapse
Affiliation(s)
- A Schumacher
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, The Netherlands
| | - M B Rookmaaker
- Department of Nephrology, University Medical Center, Utrecht, The Netherlands
| | - J A Joles
- Department of Nephrology, University Medical Center, Utrecht, The Netherlands
| | - R Kramann
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - T Q Nguyen
- Department of Pathology, University Medical Center, Utrecht, The Netherlands
| | - M van Griensven
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, The Netherlands
| | - V L S LaPointe
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
38
|
Li H, Kurtzeborn K, Kupari J, Gui Y, Siefker E, Lu B, Mätlik K, Olfat S, Montaño-Rodríguez AR, Huh SH, Costantini F, Andressoo JO, Kuure S. Postnatal prolongation of mammalian nephrogenesis by excess fetal GDNF. Development 2021; 148:268366. [PMID: 34032268 PMCID: PMC8180252 DOI: 10.1242/dev.197475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/26/2021] [Indexed: 01/21/2023]
Abstract
Nephron endowment, defined during the fetal period, dictates renal and related cardiovascular health throughout life. We show here that, despite its negative effects on kidney growth, genetic increase of GDNF prolongs the nephrogenic program beyond its normal cessation. Multi-stage mechanistic analysis revealed that excess GDNF maintains nephron progenitors and nephrogenesis through increased expression of its secreted targets and augmented WNT signaling, leading to a two-part effect on nephron progenitor maintenance. Abnormally high GDNF in embryonic kidneys upregulates its known targets but also Wnt9b and Axin2, with concomitant deceleration of nephron progenitor proliferation. Decline of GDNF levels in postnatal kidneys normalizes the ureteric bud and creates a permissive environment for continuation of the nephrogenic program, as demonstrated by morphologically and molecularly normal postnatal nephron progenitor self-renewal and differentiation. These results establish that excess GDNF has a bi-phasic effect on nephron progenitors in mice, which can faithfully respond to GDNF dosage manipulation during the fetal and postnatal period. Our results suggest that sensing the signaling activity level is an important mechanism through which GDNF and other molecules contribute to nephron progenitor lifespan specification. Summary: Dosage of neurotropic factor GDNF regulates nephron progenitors and in utero growth factor augmentation can extend postnatal lifespan and differentiation of nephron progenitors.
Collapse
Affiliation(s)
- Hao Li
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.,Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Kristen Kurtzeborn
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.,Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Jussi Kupari
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Yujuan Gui
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Edward Siefker
- Department of Developmental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Benson Lu
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Kärt Mätlik
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland.,Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Soophie Olfat
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland.,Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Ana R Montaño-Rodríguez
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland.,Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Sung-Ho Huh
- Department of Developmental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Franklin Costantini
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Jaan-Olle Andressoo
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland.,Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.,Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Satu Kuure
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.,GM-unit, Laboratory Animal Centre, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
39
|
Abouelkheir M, Shabaan DA, Shahien MA. Delayed blockage of prostaglandin EP 4 receptors can reduce dedifferentiation, epithelial-to-mesenchymal transition and fibrosis following acute kidney injury. Clin Exp Pharmacol Physiol 2021; 48:791-800. [PMID: 33634509 DOI: 10.1111/1440-1681.13478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 09/19/2020] [Accepted: 01/22/2021] [Indexed: 01/05/2023]
Abstract
Dedifferentiation of tubular epithelial cells is involved in both regeneration and fibrosis following acute kidney injury (AKI). Prostaglandin E2 receptor 4 (EP4 ) antagonist can inhibit the dedifferentiation of renal tubular cells. The present study investigated whether the time of blockage of EP4 receptors, using grapiprant, could affect the tubular regeneration or interstitial fibrosis in AKI. Cisplatin was used to induce AKI in 72 C57BL/6 adult female mice. Animals were assigned to four groups; control, cisplatin-treated, cisplatin-treated with early grapiprant intervention and cisplatin-treated with late grapiprant intervention. AKI was assessed by kidney function tests and histopathology. Fibrosis was evaluated by Masson's trichrome and alpha smooth muscle actin (α-SMA) expression. Markers of dedifferentiation, CD133, and epithelial to mesenchymal transition (EMT), vimentin were assessed. Early intervention with grapiprant significantly ameliorated AKI more efficiently than late intervention. However, even late intervention was useful in reducing the overall fibrosis as demonstrated by Masson's trichrome and α-SMA expression. In both grapiprant-treated groups, a parallel reduction of dedifferentiation (CD133) and EMT (vimentin) was evident. It seems that the progressive fibrotic changes that follow AKI could still be reduced possibly by targeting dedifferentiation and/or EMT.
Collapse
Affiliation(s)
- Mohamed Abouelkheir
- Department of Pharmacology and Therapeutics, College of Medicine, Jouf University, Sakaka, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Dalia A Shabaan
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Awad Shahien
- Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
40
|
Shrestha S, Singhal S, Sens DA, Somji S, Davis BA, Guyer R, Breen S, Kalonick M, Garrett SH. Elevated glucose represses lysosomal and mTOR-related genes in renal epithelial cells composed of progenitor CD133+ cells. PLoS One 2021; 16:e0248241. [PMID: 33764985 PMCID: PMC7993790 DOI: 10.1371/journal.pone.0248241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 02/23/2021] [Indexed: 12/16/2022] Open
Abstract
Hyperglycemia is one of the major health concern in many parts of the world. One of the serious complications of high glucose levels is diabetic nephropathy. The preliminary microarray study performed on primary human renal tubular epithelial (hRTE) cells exposed to high glucose levels showed a significant downregulation of mTOR as well as its associated genes as well as lysosomal genes. Based on this preliminary data, the expression of various lysosomal genes as well as mTOR and its associated genes were analyzed in hRTE cells exposed to 5.5, 7.5, 11 and 16 mM glucose. The results validated the microarray analysis, which showed a significant decrease in the mRNA as well as protein expression of the selected genes as the concentration of glucose increased. Co-localization of lysosomal marker, LAMP1 with mTOR showed lower expression of mTOR as the glucose concentration increased, suggesting decrease in mTOR activity. Although the mechanism by which glucose affects the regulation of lysosomal genes is not well known, our results suggest that high levels of glucose may lead to decrease in mTOR expression causing the cells to enter an anabolic state with subsequent downregulation of lysosomal genes.
Collapse
Affiliation(s)
- Swojani Shrestha
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Sandeep Singhal
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Donald A. Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Seema Somji
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Bethany A. Davis
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Rachel Guyer
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Spencer Breen
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Matthew Kalonick
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Scott H. Garrett
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- * E-mail:
| |
Collapse
|
41
|
Troendle K, Rizzo L, Pichler R, Koch F, Itani A, Zengerle R, Lienkamp SS, Koltay P, Zimmermann S. Scalable fabrication of renal spheroids and nephron-like tubules by bioprinting and controlled self-assembly of epithelial cells. Biofabrication 2021; 13. [PMID: 33513594 DOI: 10.1088/1758-5090/abe185] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/29/2021] [Indexed: 12/11/2022]
Abstract
Scalable fabrication concepts of 3D kidney tissue models are required to enable their application in pharmaceutical high-throughput screenings. Yet the reconstruction of complex tissue structures remains technologically challenging. We present a novel concept reducing the fabrication demands, by using controlled cellular self-assembly to achieve higher tissue complexities from significantly simplified construct designs. We used drop-on-demand bioprinting to fabricate locally confined patterns of renal epithelial cells embedded in a hydrogel matrix. These patterns provide defined local cell densities (cell count variance < 11 %) with high viability (92 ± 2 %). Based on these patterns, controlled self-assembly leads to the formation of renal spheroids and nephron-like tubules with a predefined size and spatial localization. With this, we fabricated scalable arrays of hollow epithelial spheroids. The spheroid sizes correlated with the initial cell count per unit and could be stepwise adjusted, ranging from Ø = 84, 104, 120 to 131 µm in diameter (size variance < 9 %). Furthermore, we fabricated scalable line-shaped patterns, which self-assembled to hollow cellular tubules (Ø = 105 ± 22 µm). These showed a continuous lumen with prescribed orientation, lined by an epithelial monolayer with tight junctions. Additionally, upregulated expression of kidney-specific functional genes compared to 2D cell monolayers indicated increased tissue functionality, as revealed by mRNA sequencing. Furthermore, our concept enabled the fabrication of hybrid tubules, which consisted of arranged subsections of different cell types, combining murine and human epithelial cells. Finally, we integrated the self-assembled fabrication into a microfluidic chip and achieved fluidic access to the lumen at the terminal sites of the tubules. With this, we realized flow conditions with a wall shear stress of 0.05 ± 0.02 dyne/cm² driven by hydrostatic pressure for scalable dynamic culture towards a nephron-on-chip model.
Collapse
Affiliation(s)
- Kevin Troendle
- Department of Microsystems Engineering, Albert-Ludwigs-Universitat Freiburg, Fahnenbergplatz, Freiburg im Breisgau, 79085, GERMANY
| | - Ludovica Rizzo
- Institute of Anatomy and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Rämistrasse 71, Zurich, ZH, 8006, SWITZERLAND
| | - Roman Pichler
- Department of Nephrology, Universitätsklinikum Freiburg, Hugstetter Str. 55, Freiburg, 79106, GERMANY
| | - Fritz Koch
- Department of Microsystems Engineering, Albert-Ludwigs-Universitat Freiburg, Fahnenbergplatz, Freiburg im Breisgau, 79085, GERMANY
| | - Ahmad Itani
- Department of Microsystems Engineering, Albert-Ludwigs-Universitat Freiburg, Fahnenbergplatz, Freiburg im Breisgau, 79085, GERMANY
| | - Roland Zengerle
- Department of Microsystems Engineering, Albert-Ludwigs-Universitat Freiburg, Fahnenbergplatz, Freiburg im Breisgau, 79085, GERMANY
| | - Soeren S Lienkamp
- Institute of Anatomy and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Rämistrasse 71, Zurich, ZH, 8006, SWITZERLAND
| | - Peter Koltay
- Department of Microsystems Engineering, Albert-Ludwigs-Universitat Freiburg, Fahnenbergplatz, Freiburg im Breisgau, 79085, GERMANY
| | - Stefan Zimmermann
- Department of Microsystems Engineering, Albert-Ludwigs-Universitat Freiburg, Fahnenbergplatz, Freiburg im Breisgau, 79085, GERMANY
| |
Collapse
|
42
|
Chambers BE, Clark EG, Gatz AE, Wingert RA. Kctd15 regulates nephron segment development by repressing Tfap2a activity. Development 2020; 147:dev.191973. [PMID: 33028614 DOI: 10.1242/dev.191973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022]
Abstract
A functional vertebrate kidney relies on structural units called nephrons, which are epithelial tubules with a sequence of segments each expressing a distinct repertoire of solute transporters. The transcriptiona`l codes driving regional specification, solute transporter program activation and terminal differentiation of segment populations remain poorly understood. Here, we demonstrate that the KCTD15 paralogs kctd15a and kctd15b function in concert to restrict distal early (DE)/thick ascending limb (TAL) segment lineage assignment in the developing zebrafish pronephros by repressing Tfap2a activity. During renal ontogeny, expression of these factors colocalized with tfap2a in distal tubule precursors. kctd15a/b loss primed nephron cells to adopt distal fates by driving slc12a1, kcnj1a.1 and stc1 expression. These phenotypes were the result of Tfap2a hyperactivity, where kctd15a/b-deficient embryos exhibited increased abundance of this transcription factor. Interestingly, tfap2a reciprocally promoted kctd15a and kctd15b transcription, unveiling a circuit of autoregulation operating in nephron progenitors. Concomitant kctd15b knockdown with tfap2a overexpression further expanded the DE population. Our study reveals that a transcription factor-repressor feedback module employs tight regulation of Tfap2a and Kctd15 kinetics to control nephron segment fate choice and differentiation during kidney development.
Collapse
Affiliation(s)
- Brooke E Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Eleanor G Clark
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Allison E Gatz
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
43
|
Chambers JM, Wingert RA. Advances in understanding vertebrate nephrogenesis. Tissue Barriers 2020; 8:1832844. [PMID: 33092489 PMCID: PMC7714473 DOI: 10.1080/21688370.2020.1832844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023] Open
Abstract
The kidney is a complex organ that performs essential functions such as blood filtration and fluid homeostasis, among others. Recent years have heralded significant advancements in our knowledge of the mechanisms that control kidney formation. Here, we provide an overview of vertebrate renal development with a focus on nephrogenesis, the process of generating the epithelialized functional units of the kidney. These steps begin with intermediate mesoderm specification and proceed all the way to the terminally differentiated nephron cell, with many detailed stages in between. The establishment of nephron architecture with proper cellular barriers is vital throughout these processes. Continuously striving to gain further insights into nephrogenesis can ultimately lead to a better understanding and potential treatments for developmental maladies such as Congenital Anomalies of the Kidney and Urinary Tract (CAKUT).
Collapse
Affiliation(s)
- Joseph M. Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN, USA
| | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
44
|
Bradley JR, Wang J, Bardsley V, Broecker V, Thiru S, Pober JS, Al-Lamki RS. Signaling through tumor necrosis receptor 2 induces stem cell marker in CD133 + regenerating tubular epithelial cells in acute cell-mediated rejection of human renal allografts. Am J Transplant 2020; 20:2380-2391. [PMID: 32167668 DOI: 10.1111/ajt.15846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 01/25/2023]
Abstract
Tumor necrosis factor receptor 2 (TNFR2) is strongly upregulated on renal tubular epithelial cells by acute cell-mediated rejection (ACR. In human kidney organ culture, TNFR2 signaling both upregulates TNFR2 expression and promotes cell cycle entry of tubular epithelial cells. We find significantly more cells express CD133 mRNA and protein, a putative stem cell marker, in allograft biopsy samples with ACR compared to acute tubular injury without rejection or pretransplant "normal kidney" biopsy samples. Of CD133+ cells, ~85% are within injured tubules and ~15% are interstitial. Both populations express stem cell marker TRA-1-60 and TNFR2, but only tubular CD133+ cells express proximal tubular markers megalin and aquaporin-1. TNFR2+ CD133+ cells in tubules express proliferation marker phospho-histone H3S10 (pH3S10 ). Tubular epithelial cells in normal kidney organ cultures respond to TNFR2 signaling by expressing CD133 mRNA and protein, stem cell marker TRA-1-60, and pH3S10 within 3 hours of treatment. This rapid response time suggests that CD133+ cells in regenerating tubules of kidneys undergoing ACR represent proliferating tubular epithelial cells with TNFR2-induced stem cell markers rather than expansion of resident stem cells. Infiltrating host mononuclear cells are a likely source of TNF as these changes are absent in acute tubular injury .
Collapse
Affiliation(s)
- John R Bradley
- Department of Medicine, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Jun Wang
- Department of Medicine, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Victoria Bardsley
- Department of Histopathology, Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Verena Broecker
- Department of Clinical Pathology, Sahlgrenska University Hospital Gothenburg, Gothenburg, Sweden
| | - Sathia Thiru
- Department of Histopathology, Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jordan S Pober
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut
| | - Rafia S Al-Lamki
- Department of Medicine, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
45
|
Lumbers ER, Kandasamy Y, Delforce SJ, Boyce AC, Gibson KJ, Pringle KG. Programming of Renal Development and Chronic Disease in Adult Life. Front Physiol 2020; 11:757. [PMID: 32765290 PMCID: PMC7378775 DOI: 10.3389/fphys.2020.00757] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022] Open
Abstract
Chronic kidney disease (CKD) can have an insidious onset because there is a gradual decline in nephron number throughout life. There may be no overt symptoms of renal dysfunction until about two thirds or more of the nephrons have been destroyed and glomerular filtration rate (GFR) falls to below 25% of normal (often in mid-late life) (Martinez-Maldonaldo et al., 1992). Once End Stage Renal Disease (ESRD) has been reached, survival depends on renal replacement therapy (RRT). CKD causes hypertension and cardiovascular disease; and hypertension causes CKD. Albuminuria is also a risk factor for cardiovascular disease. The age of onset of CKD is partly determined during fetal life. This review describes the mechanisms underlying the development of CKD in adult life that results from abnormal renal development caused by an adverse intrauterine environment. The basis of this form of CKD is thought to be mainly due to a reduction in the number of nephrons formed in utero which impacts on the age dependent decline in glomerular function. Factors that affect the risk of reduced nephron formation during intrauterine life are discussed and include maternal nutrition (malnutrition and obesity, micronutrients), smoking and alcohol, use of drugs that block the maternal renin-angiotensin system, glucocorticoid excess and maternal renal dysfunction and prematurity. Since CKD, hypertension and cardiovascular disease add to the disease burden in the community we recommend that kidney size at birth should be recorded using ultrasound and those individuals who are born premature or who have small kidneys at this time should be monitored regularly by determining GFR and albumin:creatinine clearance ratio. Furthermore, public health measures aimed at limiting the prevalence of obesity and diabetes mellitus as well as providing advice on limiting the amount of protein ingested during a single meal, because they are all associated with increased glomerular hyperfiltration and subsequent glomerulosclerosis would be beneficial.
Collapse
Affiliation(s)
- Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Yoga Kandasamy
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,Department of Neonatology, Townsville University Hospital, Douglas, QLD, Australia
| | - Sarah J Delforce
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Amanda C Boyce
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Karen J Gibson
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| |
Collapse
|
46
|
Khoshdel Rad N, Aghdami N, Moghadasali R. Cellular and Molecular Mechanisms of Kidney Development: From the Embryo to the Kidney Organoid. Front Cell Dev Biol 2020; 8:183. [PMID: 32266264 PMCID: PMC7105577 DOI: 10.3389/fcell.2020.00183] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/04/2020] [Indexed: 12/27/2022] Open
Abstract
Development of the metanephric kidney is strongly dependent on complex signaling pathways and cell-cell communication between at least four major progenitor cell populations (ureteric bud, nephron, stromal, and endothelial progenitors) in the nephrogenic zone. In recent years, the improvement of human-PSC-derived kidney organoids has opened new avenues of research on kidney development, physiology, and diseases. Moreover, the kidney organoids provide a three-dimensional (3D) in vitro model for the study of cell-cell and cell-matrix interactions in the developing kidney. In vitro re-creation of a higher-order and vascularized kidney with all of its complexity is a challenging issue; however, some progress has been made in the past decade. This review focuses on major signaling pathways and transcription factors that have been identified which coordinate cell fate determination required for kidney development. We discuss how an extensive knowledge of these complex biological mechanisms translated into the dish, thus allowed the establishment of 3D human-PSC-derived kidney organoids.
Collapse
Affiliation(s)
- Niloofar Khoshdel Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
47
|
Wu D, Bai J, Cui S, Fu B, Yin Z, Cai G, Chen X. Renal progenitor cells modulated by angiotensin II receptor blocker (ARB) medication and differentiation towards podocytes in anti-thy1.1 nephritis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:355. [PMID: 32355799 PMCID: PMC7186716 DOI: 10.21037/atm.2020.02.58] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background Mesangial proliferative glomerulonephritis (MsPGN) is an epidemic disease with increasing occurrence. As important as mesangial cells, podocytes are key innate cells for MsPGN prognosis and recovery. Renal progenitor cells, located at the urinary pole (UP) of Bowman’s capsule (BC), could alleviate kidney injury through their capacity to differentiate into podocytes. Methods Seventy-two male rats were categorized randomly into the sham (n=24), untreated Thy-1 (n=24) and losartan-treated (n=24) groups. We administered vehicle or losartan (50 mg/kg by gavage) daily to treat rats with anti-thy1.1 nephritis, an ideal model to simulate human MsPGN. Two weeks after the intravenous injection of antibody, urinary protein and blood samples were analyzed, pathological changes were examined, the number of podocytes was determined, and renal progenitor cells were studied. Results Anti-thy1.1 nephritis was significantly alleviated after losartan treatment, as reported previously and as expected. Compared with the untreated Thy-1 group, the number of podocytes in the losartan group increased, and the area of renal progenitor cells significantly increased. The protein expression of components of the p-ERK pathway was determined during the development of renal progenitor cells differentiating into podocytes. Conclusions The data in this paper show the direct glomerular cell action of angiotensin II receptor blocker (ARB) treatment in improving outcomes in anti-thy1.1 nephritis. The positive effects of ARB medication on anti-thy1.1 nephritis were due to an increase in the number of renal epithelial progenitor cells (defined as PECs that expressed only stem cell markers without podocyte proteins).
Collapse
Affiliation(s)
- Di Wu
- Medical School of Chinese PLA, Beijing 100853, China.,Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Jiuxu Bai
- Medical School of Chinese PLA, Beijing 100853, China.,Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Shaoyuan Cui
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Bo Fu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Zhiwei Yin
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Guangyan Cai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Xiangmei Chen
- Medical School of Chinese PLA, Beijing 100853, China.,Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| |
Collapse
|
48
|
Andrianova NV, Buyan MI, Zorova LD, Pevzner IB, Popkov VA, Babenko VA, Silachev DN, Plotnikov EY, Zorov DB. Kidney Cells Regeneration: Dedifferentiation of Tubular Epithelium, Resident Stem Cells and Possible Niches for Renal Progenitors. Int J Mol Sci 2019; 20:ijms20246326. [PMID: 31847447 PMCID: PMC6941132 DOI: 10.3390/ijms20246326] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022] Open
Abstract
A kidney is an organ with relatively low basal cellular regenerative potential. However, renal cells have a pronounced ability to proliferate after injury, which undermines that the kidney cells are able to regenerate under induced conditions. The majority of studies explain yielded regeneration either by the dedifferentiation of the mature tubular epithelium or by the presence of a resident pool of progenitor cells in the kidney tissue. Whether cells responsible for the regeneration of the kidney initially have progenitor properties or if they obtain a “progenitor phenotype” during dedifferentiation after an injury, still stays the open question. The major stumbling block in resolving the issue is the lack of specific methods for distinguishing between dedifferentiated cells and resident progenitor cells. Transgenic animals, single-cell transcriptomics, and other recent approaches could be powerful tools to solve this problem. This review examines the main mechanisms of kidney regeneration: dedifferentiation of epithelial cells and activation of progenitor cells with special attention to potential niches of kidney progenitor cells. We attempted to give a detailed description of the most controversial topics in this field and ways to resolve these issues.
Collapse
Affiliation(s)
- Nadezda V. Andrianova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Marina I. Buyan
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Ljubava D. Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Irina B. Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Vasily A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Valentina A. Babenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Denis N. Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, 119991 Moscow, Russia
- Correspondence: (E.Y.P.); (D.B.Z.); Tel.: +7-495-939-5944 (E.Y.P.)
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
- Correspondence: (E.Y.P.); (D.B.Z.); Tel.: +7-495-939-5944 (E.Y.P.)
| |
Collapse
|
49
|
Blackburn ATM, Bekheirnia N, Uma VC, Corkins ME, Xu Y, Rosenfeld JA, Bainbridge MN, Yang Y, Liu P, Madan-Khetarpal S, Delgado MR, Hudgins L, Krantz I, Rodriguez-Buritica D, Wheeler PG, Al-Gazali L, Mohamed Saeed Mohamed Al Shamsi A, Gomez-Ospina N, Chao HT, Mirzaa GM, Scheuerle AE, Kukolich MK, Scaglia F, Eng C, Willsey HR, Braun MC, Lamb DJ, Miller RK, Bekheirnia MR. DYRK1A-related intellectual disability: a syndrome associated with congenital anomalies of the kidney and urinary tract. Genet Med 2019; 21:2755-2764. [PMID: 31263215 PMCID: PMC6895419 DOI: 10.1038/s41436-019-0576-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Haploinsufficiency of DYRK1A causes a recognizable clinical syndrome. The goal of this paper is to investigate congenital anomalies of the kidney and urinary tract (CAKUT) and genital defects (GD) in patients with DYRK1A variants. METHODS A large database of clinical exome sequencing (ES) was queried for de novo DYRK1A variants and CAKUT/GD phenotypes were characterized. Xenopus laevis (frog) was chosen as a model organism to assess Dyrk1a's role in renal development. RESULTS Phenotypic details and variants of 19 patients were compiled after an initial observation that one patient with a de novo pathogenic variant in DYRK1A had GD. CAKUT/GD data were available from 15 patients, 11 of whom presented with CAKUT/GD. Studies in Xenopus embryos demonstrated that knockdown of Dyrk1a, which is expressed in forming nephrons, disrupts the development of segments of embryonic nephrons, which ultimately give rise to the entire genitourinary (GU) tract. These defects could be rescued by coinjecting wild-type human DYRK1A RNA, but not with DYRK1AR205* or DYRK1AL245R RNA. CONCLUSION Evidence supports routine GU screening of all individuals with de novo DYRK1A pathogenic variants to ensure optimized clinical management. Collectively, the reported clinical data and loss-of-function studies in Xenopus substantiate a novel role for DYRK1A in GU development.
Collapse
Affiliation(s)
- Alexandria T M Blackburn
- Department of Pediatrics, Pediatric Research Center, University of Texas Health Science Center, McGovern Medical School, Houston, TX, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center University of Texas Health Science Center Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Nasim Bekheirnia
- Renal Section, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
| | | | - Mark E Corkins
- Department of Pediatrics, Pediatric Research Center, University of Texas Health Science Center, McGovern Medical School, Houston, TX, USA
| | - Yuxiao Xu
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Matthew N Bainbridge
- Codified Genomics, LLC, Houston, TX, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Pengfei Liu
- Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Suneeta Madan-Khetarpal
- Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mauricio R Delgado
- Department of neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Louanne Hudgins
- Department of Pediatrics, Division of Medical Genetics, Stanford University, Stanford, CA, USA
| | - Ian Krantz
- Division of Human Genetics, The Children's Hospital of Philadelphia and the Department of Pediatrics, Perelman School of medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - David Rodriguez-Buritica
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Lihadh Al-Gazali
- College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | | | - Natalia Gomez-Ospina
- Department of Pediatrics, Division of Medical Genetics, Stanford University, Stanford, CA, USA
| | - Hsiao-Tuan Chao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- McNair Medical Institute at The Robert and Janice McNair Foundation, Houston, TX, USA
| | - Ghayda M Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Angela E Scheuerle
- Department of Pediatrics (Genetics and Metabolism), The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mary K Kukolich
- Clinical Genetics, Cook Children's Medical Center, Fort Worth, TX, USA
| | - Fernando Scaglia
- Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, ShaTin, Hong Kong SAR
| | - Christine Eng
- Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Helen Rankin Willsey
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Michael C Braun
- Renal Section, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
| | - Dolores J Lamb
- Department of Urology and Center for Reproductive Genomics, Weill Cornell Medicine, New York, NY, USA
| | - Rachel K Miller
- Department of Pediatrics, Pediatric Research Center, University of Texas Health Science Center, McGovern Medical School, Houston, TX, USA.
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center University of Texas Health Science Center Graduate School of Biomedical Sciences, Houston, TX, USA.
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Program in Biochemistry and Cell Biology, The University of Texas MD Anderson Cancer Center University of Texas Health Science Center Graduate School of Biomedical Sciences, Houston, TX, USA.
| | - Mir Reza Bekheirnia
- Renal Section, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Texas Children's Hospital, Houston, TX, USA.
- Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
50
|
Molecular Mechanisms of the Acute Kidney Injury to Chronic Kidney Disease Transition: An Updated View. Int J Mol Sci 2019; 20:ijms20194941. [PMID: 31590461 PMCID: PMC6801733 DOI: 10.3390/ijms20194941] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 02/08/2023] Open
Abstract
Increasing evidence has demonstrated the bidirectional link between acute kidney injury (AKI) and chronic kidney disease (CKD) such that, in the clinical setting, the new concept of a unified syndrome has been proposed. The pathophysiological reasons, along with the cellular and molecular mechanisms, behind the ability of a single, acute, apparently self-limiting event to drive chronic kidney disease progression are yet to be explained. This acute injury could promote progression to chronic disease through different pathways involving the endothelium, the inflammatory response and the development of fibrosis. The interplay among endothelial cells, macrophages and other immune cells, pericytes and fibroblasts often converge in the tubular epithelial cells that play a central role. Recent evidence has strengthened this concept by demonstrating that injured tubules respond to acute tubular necrosis through two main mechanisms: The polyploidization of tubular cells and the proliferation of a small population of self-renewing renal progenitors. This alternative pathophysiological interpretation could better characterize functional recovery after AKI.
Collapse
|