1
|
Verhaar BJH, van der Linden EL, Hayfron-Benjamin CF, Owusu-Dabo E, Darko SN, Twumasi-Ankrah S, Henneman P, Beune E, Meeks KA, Nieuwdorp M, Herrema H, van den Born BJH, Agyemang C. Gut microbiota shift in Ghanaian individuals along the migration axis: the RODAM-Pros cohort. Gut Microbes 2025; 17:2471960. [PMID: 40188494 PMCID: PMC11980510 DOI: 10.1080/19490976.2025.2471960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/01/2024] [Accepted: 02/18/2025] [Indexed: 04/08/2025] Open
Abstract
Migration is associated with a substantial change in environmental exposures and health outcomes. We aimed to investigate the shift in gut microbiota composition and the associations with cardiometabolic outcomes in the RODAM-Pros cohort spanning multiple research sites across continents. We determined gut microbiota composition of 1,177 Ghanaian participants in rural Ghana, urban Ghana, and Amsterdam, the Netherlands, using 16S rRNA sequencing. We observed a clear gradient in gut microbiota composition and alpha and beta diversity from rural Ghana to urban Ghana, to Amsterdam. We used pairwise XGBoost machine learning classification models to identify which microbes were most distinct between locations in prevalence and abundance. The associations between these microbes and the locations could partly be explained by differences in confounders such as dietary intake. Groups of microbes that emerged or disappeared along the migration axis were associated with cardiometabolic outcomes, including higher body mass index, higher HbA1c and higher diastolic blood pressure. Concluding, we identified associations between a shift in gut microbiota composition and cardiometabolic risk along the migration axis, underscoring the relevance of gut health in the context of migration-associated adverse health outcomes.
Collapse
Affiliation(s)
- Barbara J. H. Verhaar
- Department of Public and Occupational Health, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands
| | - Eva L. van der Linden
- Department of Public and Occupational Health, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Public Health, Amsterdam UMC, Amsterdam, The Netherlands
| | - Charles F. Hayfron-Benjamin
- Department of Public and Occupational Health, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Physiology, University of Ghana Medical School, Accra, Ghana
| | - Ellis Owusu-Dabo
- School of Public Health, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Samuel N. Darko
- Department of Molecular Medicine, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Sampson Twumasi-Ankrah
- Department of Statistics and Actuarial Science, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Peter Henneman
- Department of Human Genetics, Reproduction & Development, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Erik Beune
- Department of Public and Occupational Health, Amsterdam UMC, Amsterdam, The Netherlands
| | - Karlijn A.C. Meeks
- Department of Public and Occupational Health, Amsterdam UMC, Amsterdam, The Netherlands
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Hilde Herrema
- Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Experimental Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Bert-Jan H. van den Born
- Department of Public and Occupational Health, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands
| | - Charles Agyemang
- Department of Public and Occupational Health, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Public Health, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Wang XN, Liu JQ, Ji WL, Huo ZL, Liu LF, Zheng JY. Characterization of trimethylamine metabolic pathways using pseudo-targeted metabolomics. J Pharm Biomed Anal 2025; 258:116737. [PMID: 39919464 DOI: 10.1016/j.jpba.2025.116737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/09/2025]
Abstract
Trimethylamine (TMA) metabolism comprises choline-containing compounds' metabolization, TMA production and trimethylamine N-oxide (TMAO) generation. However, the presence of numerous compounds in the carnitine and phosphatidylcholine (PC) pool compositions complicates profiling work significantly. This study is aimed at developing an efficient method for profiling TMA metabolic pathways, including quantifying known compounds and semi-quantifying the differential metabolites in the carnitine and PC pool compositions. Pseudo-targeted metabolomics is applicable for characterization. Firstly, multivariate statistics were performed to identify valuable metabolites (variable importance in the projection >1) from quality control biological samples. Given that TMA metabolism involved in host-gut microbiota interaction, co-metabolites were defined as the intersections of valuable metabolites from different biological samples (serum, liver, and intestinal contents) and further screened. Finally, alterations in TMA metabolism were observed in dextran sulfate sodium-induced colitis, with semi-quantitative analysis for excavated co-metabolites including 11 PCs, 6 lyso-phosphatidylcholines, and 2 acylcarnitines and quantitative analysis for 10 known metabolites. The findings revealed increased TMA production and accumulation of choline-containing compounds in the gut during ulcerative colitis exacerbation. Correspondingly, the circulating level of TMAO was elevated in the colitis group. A comprehensive understanding of TMA metabolism can contribute to disease differential diagnoses and potential mechanism studies.
Collapse
Affiliation(s)
- Xin-Nan Wang
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China; Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Jian-Qun Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, No. 818 Xingwan Road, Nanchang, Jiangxi 330004, China
| | - Wen-Liang Ji
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Zong-Li Huo
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Li-Fang Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China.
| | - Jia-Yi Zheng
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China.
| |
Collapse
|
3
|
He L, Li X, Jiang S, Ou Y, Wang S, Shi N, Yang Z, Yuan JL, Silverman G, Niu H. The influence of the gut microbiota on B cells in autoimmune diseases. Mol Med 2025; 31:149. [PMID: 40264032 PMCID: PMC12016346 DOI: 10.1186/s10020-025-01195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/01/2025] [Indexed: 04/24/2025] Open
Abstract
Mounting evidence shows that gut microbiota communities and the human immune system coexist and influence each other, and there are a number of reports of a correlation between specific changes in gut microbiota and the occurrence of autoimmune diseases. B lymphocytes play a central role in the regulation of both gut microbiota communities and in autoimmune diseases. Here, we summarize evidence of the influence of gut microbiota-B cell pathways on autoimmune diseases and how B cells regulate microorganisms, which provides mechanistic insights with relevance for identification of potential therapeutic targets and related fields.
Collapse
Affiliation(s)
- Lun He
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education; Guangzhou Key Laboratory for Germ-free Animals and Microbiota Application, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xin Li
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education; Guangzhou Key Laboratory for Germ-free Animals and Microbiota Application, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shan Jiang
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education; Guangzhou Key Laboratory for Germ-free Animals and Microbiota Application, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yanhua Ou
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education; Guangzhou Key Laboratory for Germ-free Animals and Microbiota Application, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shanshan Wang
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education; Guangzhou Key Laboratory for Germ-free Animals and Microbiota Application, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Na Shi
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education; Guangzhou Key Laboratory for Germ-free Animals and Microbiota Application, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhongshan Yang
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Jia-Li Yuan
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China.
| | - Gregg Silverman
- Division of Rheumatology, New York University School of Medicine, New York, NY, 10016, USA.
| | - Haitao Niu
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education; Guangzhou Key Laboratory for Germ-free Animals and Microbiota Application, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China.
| |
Collapse
|
4
|
Cao BN, Zhang CY, Wang Z, Wang YX. Causal relationship between 412 gut microbiota, 1,400 blood metabolites, and diabetic nephropathy: a randomized Mendelian study. Front Endocrinol (Lausanne) 2025; 15:1450428. [PMID: 39897958 PMCID: PMC11782027 DOI: 10.3389/fendo.2024.1450428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/16/2024] [Indexed: 02/04/2025] Open
Abstract
Objective The aim of this study was to investigate the causal relationship between microbiota, diabetic nephropathy, and blood metabolites through a randomized Mendelian study. Methods In this study, we used 412 microbiota as exposures, 1,400 blood metabolites as intermediaries, and diabetic nephropathy as the outcome. We conducted a two-way Mendelian randomization (MR) analysis to explore the causal relationship between microbiota and diabetic nephropathy, followed by mediation analyses and two-step MR to identify potential blood metabolites. Results There is a causal relationship between microbiota and diabetic nephropathy. Specific bacteria and metabolites, such as Escherichia coli str. K-12 substr. MG1655, Listeria monocytogenes 10403S, g_Adlercreutzia, g_Haemophilus, g_Bacteroides, and Escherichia coli CFT073, and metabolites like pyrraline, glycocholenate sulfate, alpha-ketoglutarate, tetradecadienoate (14:2), Cys-gly oxidized, methylsuccinate, and various others, were identified. Escherichia coli str. K-12 substr. MG1655 is positively related to alpha-ketoglutarate levels, while alpha-ketoglutarate levels and Sphingomyelin (d18:1/18:1, d18:2/18:0) are negatively related. The bacterial microbiota involved in fatty acid oxidation is associated with diabetic kidney disease (DKD) progression, positively correlated with glycocholenate sulfate levels, and negatively correlated with the phosphate linoleyl-tetraenyl-glycerol (18:2 to 20:4) ratio. Additionally, Listeria monocytogenes 10403S is positively correlated with N-acetyl-isoputreanine and negatively correlated with X-12462. Anaerobic fermentation-related bacteria were positively related to N-acetylcarnitine and 5-acetylamino-6-formyluracil and negatively correlated with 5-acetamino-6-amino-3-methyluracil (X-24243). Escherichia coli CFT073 was positively associated with X-16580. Interactions between Bacillus species and metabolites such as d18:1/18:1, d18:2/18:0, 2-aminophenol sulfate, and cholate were negative when compared to tetradecadienoate (14:2). g_Adlercreutzia is positively correlated with N-delta-acetylornithine, methylsuccinate, and N-acetyl-isoputreanine but negatively correlated with N-acetylglucosamine and N-acetylgalactosamine. g_Haemophilus was positively associated with arachidoylcarnitine but negatively correlated with X-24531. The results were heterogeneous and multi-efficacious. Conclusions For the first time, MR analysis provides supportive evidence for a bidirectional causal relationship between microbiota and diabetic nephropathy and identifies specific genes associated with the disease. The results suggest that probiotic therapy may play a significant role in preventing diabetic nephropathy and improving the quality of life and survival rates of affected patients. Furthermore, this study provides additional evidence of a causal relationship between specific microbiota, diabetic nephropathy, and blood metabolites.
Collapse
Affiliation(s)
- Bo-Ning Cao
- Endocrinology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Cai-Yan Zhang
- General Surgery Department, The General Hospital of The People's Liberation Army, Beijing, China
| | - Zhen Wang
- Endocrinology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yao-Xian Wang
- Endocrinology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Administrative Department, Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Chu C, Behera TR, Huang Y, Qiu W, Chen J, Shen Q. Research progress of gut microbiome and diabetic nephropathy. Front Med (Lausanne) 2024; 11:1490314. [PMID: 39735707 PMCID: PMC11671260 DOI: 10.3389/fmed.2024.1490314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/19/2024] [Indexed: 12/31/2024] Open
Abstract
Diabetic nephropathy is an important complication of diabetic microvascular injury, and it is also an important cause of end-stage renal disease. Its high prevalence and disability rate significantly impacts patients' quality of life while imposing substantial social and economic burdens. Gut microbiota affects host metabolism, multiple organ functions, and regulates host health throughout the life cycle. With the rapid development of technology, researchers have found that gut microbiota is closely related to the progression of diabetic kidney disease. This review explores the role of gut microbiome in diabetic nephropathy summarizing proposed mechanisms of progression and focusing on microbial metabolites, intestinal barrier disruption, inflammation, filtration barrier damage and renal fibrosis. This review also examines the mechanism and limitations of current treatments, including drugs, fecal microbiota transplantation, and lifestyle changes, offering new perspectives on prevention and treatment.
Collapse
Affiliation(s)
- Chenling Chu
- Department of Clinical Medicine, Hangzhou Normal University, Hangzhou, China
| | - Tapas Ranjan Behera
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, United States
| | - Ying Huang
- Department of Public Health and Preventive Medicine, Hangzhou Medical College, Hangzhou, China
| | - Wenhui Qiu
- Department of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Jiayi Chen
- Department of Clinical Medicine, Hangzhou Normal University, Hangzhou, China
| | - Quanquan Shen
- Department of Nephrology, Zhejiang Provincial People’s Hospital Bijie Hospital, Bijie, China
- Department of Nephrology, Urology & Nephrology Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
6
|
Peng S, Liu M, Zeng Y, Wang L, Man Y. Exploring the gut-inflammation connection: A Mendelian randomization study on gut microbiota, inflammatory factors, and uterine fibroids risk. Medicine (Baltimore) 2024; 103:e40514. [PMID: 39809194 PMCID: PMC11596598 DOI: 10.1097/md.0000000000040514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/25/2024] [Indexed: 01/16/2025] Open
Abstract
This study employs Mendelian randomization (MR) approach to investigate the potential causal association between genetic variants associated with gut microbiota, inflammatory factors, and the risk of uterine fibroids development. We extracted data on 211 types of gut microbiota, 91 inflammatory factors, and uterine fibroids occurrence from genome-wide association studies and applied the inverse-variance weighted (IVW) method for analysis. To further assess the robustness of our MR analysis, we conducted sensitivity tests including Cochrane's Q test, the MR-Egger intercept test, the MR-PRESSO global test, and a leave-one-out analysis. IVW analysis identified a potential causal association between 14 types of gut microbiota and 8 inflammatory factors with the risk of uterine fibroids. When using 91 inflammation-related proteins as the outcome variable, 13 proteins demonstrated a potential causal association with uterine fibroids risk (IVW, all P < .05). Additionally, the MR-Egger intercept and MR-PRESSO global tests indicated no evidence of horizontal pleiotropy (P > .05), and the leave-one-out analysis confirmed the robustness of the results. This MR approach suggests that specific gut microbiota and inflammatory factors may have a causal association with the development of uterine fibroids, shedding light on the pathogenesis of uterine fibroids and potentially identifying targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Shaoyi Peng
- Department of Cardiology, The First People’s Hospital of Jiande, Hangzhou, China
| | - Miao Liu
- Department of Cardiology, Center Hospital of Shandong First Medical University, Jinan, China
| | - Yuhao Zeng
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lei Wang
- Department of Cardiology, Center Hospital of Shandong First Medical University, Jinan, China
| | - Yilong Man
- Department of Cardiology, Center Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
7
|
Ağagündüz D, Yilmaz B, Cemali Ö, Šimat V, Akkus G, Kulawik P, Ozogul F. Impact of dairy food products on type 2 diabetes: Gut-pancreas axis for lower glucose level. Trends Food Sci Technol 2024; 153:104741. [DOI: 10.1016/j.tifs.2024.104741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Kammoun S, Rekik M, Dlensi A, Aloulou S, Smaoui W, Sellami S, Trigui K, Gargouri R, Chaari I, Sellami H, Elatoui D, Khemakhem N, Hadrich I, Neji S, Abdelmoula B, Bouayed Abdelmoula N. The gut-eye axis: the retinal/ocular degenerative diseases and the emergent therapeutic strategies. Front Cell Neurosci 2024; 18:1468187. [PMID: 39391760 PMCID: PMC11464360 DOI: 10.3389/fncel.2024.1468187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
The interplay between human microbiota and various physiological systems has garnered significant attention in recent years. The gut microbiota plays a critical role in maintaining physiological homeostasis and influences various aspects of human health, particularly via the gut brain axis. Since 2017, the challenging concept of the gut-retina axis has emerged thanks to a network analysis emphasizing the potential role of the gut microbiota disruption in the development of the age-related macular degeneration and further retinal damages. Many other ocular disorders have been linked to the dysbiosis of the gut microbiota, including uveitis and glaucoma. It has been shown that age related macular degeneration can be prevented or reversed using a diet that induces changes in the gut microbiota. The potential link between the gut microbiota as well as others types of microbiota such as the ocular surface microbiota and the development/progression of age related as well as inherited retinal degenerations and other degenerative eye diseases, has recently been broadened. Therefore, the pathogenesis of several eye diseases has recently been associated with a larger perception called the gut eye axis. This mini-review examines the potential mechanisms underlying the gut eye axis and suggests implications for the management of eye diseases. By understanding the modulation of the gut microbiota and its impact on eye disease, this mini-review provides insight into potential therapeutic interventions and avenues for future research.
Collapse
Affiliation(s)
- Sonda Kammoun
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
- Ophthalmology Department, Faculty of Medicine, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Mona Rekik
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
- Ophthalmology Department, Faculty of Medicine, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Aryj Dlensi
- Ophthalmology Department, Faculty of Medicine, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Samir Aloulou
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
- Medical Carcinology Department, Faculty of Medicine, Mohamed Ben Sassi University Hospital of Gabes, University of Sfax, Sfax, Tunisia
| | - Walid Smaoui
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
- Urology Department, Faculty of Medicine, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Sahla Sellami
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
| | - Khaled Trigui
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
| | - Rahma Gargouri
- Drosophila Research Unit UR22ES03 FMS, University of Sfax, Sfax, Tunisia
| | - Imen Chaari
- Drosophila Research Unit UR22ES03 FMS, University of Sfax, Sfax, Tunisia
| | - Hayet Sellami
- Drosophila Research Unit UR22ES03 FMS, University of Sfax, Sfax, Tunisia
- Parasitology and Mycology Department, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Dhawia Elatoui
- Drosophila Research Unit UR22ES03 FMS, University of Sfax, Sfax, Tunisia
| | - Nahed Khemakhem
- Fungal and Parasitic Molecular Biology Laboratory LR05ES11 FMS, University of Sfax, Sfax, Tunisia
| | - Ines Hadrich
- Fungal and Parasitic Molecular Biology Laboratory LR05ES11 FMS, University of Sfax, Sfax, Tunisia
| | - Sourour Neji
- Parasitology and Mycology Department, Faculty of Medicine, University of Sfax, Sfax, Tunisia
- Fungal and Parasitic Molecular Biology Laboratory LR05ES11 FMS, University of Sfax, Sfax, Tunisia
| | - Balkiss Abdelmoula
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
| | - Nouha Bouayed Abdelmoula
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
| |
Collapse
|
9
|
Ren Y, Huang P, Zhang L, Tang YF, Luo SL, She Z, Peng H, Chen YQ, Luo JW, Duan WX, Liu LJ, Liu LQ. Dual Regulation Mechanism of Obesity: DNA Methylation and Intestinal Flora. Biomedicines 2024; 12:1633. [PMID: 39200098 PMCID: PMC11351752 DOI: 10.3390/biomedicines12081633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Obesity is a multifactorial chronic inflammatory metabolic disorder, with pathogenesis influenced by genetic and non-genetic factors such as environment and diet. Intestinal microbes and their metabolites play significant roles in the occurrence and development of obesity by regulating energy metabolism, inducing chronic inflammation, and impacting intestinal hormone secretion. Epigenetics, which involves the regulation of host gene expression without changing the nucleotide sequence, provides an exact direction for us to understand how the environment, lifestyle factors, and other risk factors contribute to obesity. DNA methylation, as the most common epigenetic modification, is involved in the pathogenesis of various metabolic diseases. The epigenetic modification of the host is induced or regulated by the intestinal microbiota and their metabolites, linking the dynamic interaction between the microbiota and the host genome. In this review, we examined recent advancements in research, focusing on the involvement of intestinal microbiota and DNA methylation in the etiology and progression of obesity, as well as potential interactions between the two factors, providing novel perspectives and avenues for further elucidating the pathogenesis, prevention, and treatment of obesity.
Collapse
Affiliation(s)
- Yi Ren
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Department of Pediatrics, Haikou Hospital of the Maternal and Child Health, Haikou 570100, China
- Department of Children’s Healthcare, Hainan Modern Women and Children’s Medical, Haikou 570100, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yu-Fen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Sen-Lin Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yu-Qiong Chen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Jin-Wen Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Wang-Xin Duan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Ling-Juan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Li-Qun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| |
Collapse
|
10
|
Ray AK, Shukla A, Yadav A, Kaur U, Singh AK, Mago P, Bhavesh NS, Chaturvedi R, Tandon R, Shalimar, Kumar A, Malik MZ. A Comprehensive Pilot Study to Elucidate the Distinct Gut Microbial Composition and Its Functional Significance in Cardio-Metabolic Disease. Biochem Genet 2024:10.1007/s10528-024-10847-w. [PMID: 38839647 DOI: 10.1007/s10528-024-10847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Cardio-metabolic disease is a significant global health challenge with increasing prevalence. Recent research underscores the disruption of gut microbial balance as a key factor in disease susceptibility. We aimed to characterize the gut microbiota composition and function in cardio-metabolic disease and healthy controls. For this purpose, we collected stool samples of 18 subjects (12 diseased, 6 healthy) and we performed metagenomics analysis and functional prediction using QIIME2 and PICRUSt. Furthermore, we carried out assessments of microbe-gene interactions, gene ontology, and microbe-disease associations. Our findings revealed distinct microbial patterns in the diseased group, particularly evident in lower taxonomic levels with significant variations in 14 microbial features. The diseased cohort exhibited an enrichment of Lachnospiraceae family, correlating with obesity, insulin resistance, and metabolic disturbances. Conversely, reduced levels of Clostridium, Gemmiger, and Ruminococcus genera indicated a potential inflammatory state, linked to compromised butyrate production and gut permeability. Functional analyses highlighted dysregulated pathways in amino acid metabolism and energy equilibrium, with perturbations correlating with elevated branch-chain amino acid levels-a known contributor to insulin resistance and type 2 diabetes. These findings were consistent across biomarker assessments, microbe-gene associations, and gene ontology analyses, emphasizing the intricate interplay between gut microbial dysbiosis and cardio-metabolic disease progression. In conclusion, our study unveils significant shifts in gut microbial composition and function in cardio-metabolic disease, emphasizing the broader implications of microbial dysregulation. Addressing gut microbial balance emerges as a crucial therapeutic target in managing cardio-metabolic disease burden.
Collapse
Affiliation(s)
- Ashwini Kumar Ray
- Department of Environmental Studies, University of Delhi, New Delhi, India.
| | - Avaneesh Shukla
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Alka Yadav
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Urvinder Kaur
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Alok Kumar Singh
- Department of Zoology, Ramjas College, University of Delhi, New Delhi, India
| | - Payal Mago
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India
- Campus of Open Learning, University of Delhi, New Delhi, India
| | - Neel Sarovar Bhavesh
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Science, New Delhi, India
| | - Abhishek Kumar
- Manipal Academy of Higher Education (MAHE), Manipal, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, India
| | - Md Zubbair Malik
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait.
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
11
|
Jurek JM, Castro-Marrero J. A Narrative Review on Gut Microbiome Disturbances and Microbial Preparations in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Implications for Long COVID. Nutrients 2024; 16:1545. [PMID: 38892479 PMCID: PMC11173566 DOI: 10.3390/nu16111545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Myalgic encephalomyelitis, also known as chronic fatigue syndrome (ME/CFS), and long COVID are complex, multisystemic and long-term disabling conditions characterized by debilitating post-exertional malaise and other core symptoms related to immune dysregulation resultant from post-viral infection, including mitochondrial dysfunction, chronic neuroinflammation and gut dysbiosis. The reported associations between altered microbiota composition and cardinal symptoms of ME/CFS and long COVID suggest that the use of microbial preparations, such as probiotics, by restoring the homeostasis of the brain-immune-gut axis, may help in the management of symptoms in both conditions. Therefore, this review aims to investigate the implications of alerted gut microbiome and assess the evidence supporting use of microbial-based preparations, including probiotics, synbiotics, postbiotics alone and/or in combination with other nutraceuticals in the management of fatigue, inflammation and neuropsychiatric and gastrointestinal symptoms among patients with ME/CFS and long COVID.
Collapse
Affiliation(s)
- Joanna Michalina Jurek
- Unit of Research in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Long COVID, Rheumatology Research Division, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43005 Tarragona, Spain
| | - Jesus Castro-Marrero
- Unit of Research in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Long COVID, Rheumatology Research Division, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| |
Collapse
|
12
|
Zhang Q, Zhao X, Sun M, Dong D. Novel insights into transfer RNA-derived small RNA (tsRNA) in cardio-metabolic diseases. Life Sci 2024; 341:122475. [PMID: 38309576 DOI: 10.1016/j.lfs.2024.122475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Cardio-metabolic diseases, including a cluster of metabolic disorders and their secondary affections on cardiovascular physiology, are gradually brought to the forefront by researchers due to their high prevalence and mortality, as well as an unidentified pathogenesis. tRNA-derived small RNAs (tsRNAs), cleaved by several specific enzymes and once considered as some "metabolic junks" in the past, have been proved to possess numerous functions in human bodies. More interestingly, such a potential also seems to influence the progression of cardio-metabolic diseases to some extent. In this review, the biogenesis, classification and mechanisms of tsRNAs will be discussed based on some latest studies, and their relations with several cardio-metabolic diseases will be highlighted in sequence. Lastly, some future prospects, such as their clinical applications as biomarkers and therapeutic targets will also be mentioned, in order to provide researchers with a comprehensive understanding of the research status of tsRNAs as well as its association with cardio-metabolic diseases, thus presenting as a beacon to indicate directions for the next stage of study.
Collapse
Affiliation(s)
- Qingya Zhang
- Innovation Institute, China Medical University, Shenyang 110122, Liaoning, China
| | - Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning, China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning, China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
13
|
Chaudhry WAR, Ashfaq M, Kaur P, Kumar M, Faraz M, Malik J, Mehmoodi A. Cardiovascular risk assessment in inflammatory bowel disease with coronary calcium score. Ann Med Surg (Lond) 2024; 86:1496-1505. [PMID: 38463108 PMCID: PMC10923345 DOI: 10.1097/ms9.0000000000001652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/11/2023] [Indexed: 03/12/2024] Open
Abstract
The interplay between inflammatory bowel disease (IBD) and atherosclerotic cardiovascular disease (ASCVD) underscores the intricate connections between chronic inflammation and cardiovascular health. This review explores the multifaceted relationship between these conditions, highlighting the emerging significance of the coronary calcium score as a pivotal tool in risk assessment and management. Chronic inflammation, a hallmark of IBD, has far-reaching systemic effects that extend to the cardiovascular system. Shared risk factors and mechanisms, such as endothelial dysfunction, lipid dysfunction, and microbiome dysregulation, contribute to the elevated ASCVD risk observed in individuals with IBD. Amidst this landscape, the coronary calcium score emerges as a means to quantify calcified plaque within coronary arteries, offering insights into atherosclerotic burden and potential risk stratification. The integration of the coronary calcium score refines cardiovascular risk assessment, enabling tailored preventive strategies for individuals with IBD. By identifying those at elevated risk, healthcare providers can guide interventions, fostering informed shared decision-making. Research gaps persist, prompting further investigation into mechanisms linking IBD and ASCVD, particularly in the context of intermediate mechanisms and early atherosclerotic changes. The potential of the coronary calcium score extends beyond risk assessment-it holds promise for targeted interventions. Randomized trials exploring the impact of IBD-modifying therapies on ASCVD risk reduction can revolutionize preventive strategies. As precision medicine gains prominence, the coronary calcium score becomes a beacon of insight, illuminating the path toward personalized cardiovascular care for individuals living with IBD. Through interdisciplinary collaboration and rigorous research, we embark on a journey to transform the paradigm of preventive medicine and enhance the well-being of this patient population.
Collapse
Affiliation(s)
| | - Muhammad Ashfaq
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Islamabad, Pakistan
| | - Parvinder Kaur
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Islamabad, Pakistan
| | - Mahendra Kumar
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Islamabad, Pakistan
| | - Maria Faraz
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Islamabad, Pakistan
| | - Jahanzeb Malik
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Islamabad, Pakistan
| | - Amin Mehmoodi
- Department of Medicine, Ibn e Seena Hospital, Kabul, Afghanistan
| |
Collapse
|
14
|
PING Y, LIU J, WANG H, WANG Y, QIU H, ZHANG Y. Research progress in the treatment of an immune system disease-type 1 diabetes-by regulating the intestinal flora with Chinese medicine and food homologous drugs. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:150-161. [PMID: 38966054 PMCID: PMC11220337 DOI: 10.12938/bmfh.2023-068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/06/2024] [Indexed: 07/06/2024]
Abstract
Type 1 diabetes (T1D) is a specific autoimmune disease related to genetic and autoimmune factors. Recent studies have found that the intestinal flora is one of the important environmental factors in the development of T1D. The gut microbiota is the largest microbiota in the human body and has a significant impact on material and energy metabolism. Related studies have found that the intestinal floras of T1D patients are unbalanced. Compared with normal patients, the abundance of beneficial bacteria is reduced, and various pathogenic bacteria are significantly increased, affecting the occurrence and development of diabetes. Medicinal and food homologous traditional Chinese medicine (TCM) has a multicomponent, multitarget, and biphasic regulatory effect. Its chemical composition can increase the abundance of beneficial bacteria, improve the diversity of the intestinal flora, reduce blood sugar, and achieve the purpose of preventing and treating T1D by regulating the intestinal flora and its metabolites. Therefore, based on a review of T1D, intestinal flora, and TCM derived from medicine and food, this review describes the relationship between T1D and the intestinal flora, as well as the research progress of TCM interventions for T1D through regulation of the intestinal flora. Medicine and food homologous TCM has certain advantages in treating diabetes and regulating the intestinal flora. It can be seen that there is still great research space and broad development prospects for the treatment of diabetes by regulating the intestinal flora with drug and food homologous TCM.
Collapse
Affiliation(s)
- Yang PING
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
- Heilongjiang Pharmaceutical Research Institute, Jiamusi
154007, Heilongjiang, China
| | - Jianing LIU
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
| | - Huilin WANG
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
| | - Yan WANG
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
| | - Hongbin QIU
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
| | - Yu ZHANG
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
- Heilongjiang Pharmaceutical Research Institute, Jiamusi
154007, Heilongjiang, China
| |
Collapse
|
15
|
Chen Z, Wu S, Huang L, Li J, Li X, Zeng Y, Chen Z, Chen M. Colonic microflora and plasma metabolite-based comparative analysis of unilateral ureteral obstruction-induced chronic kidney disease after treatment with the Chinese medicine FuZhengHuaYuJiangZhuTongLuo and AST-120. Heliyon 2024; 10:e24987. [PMID: 38333870 PMCID: PMC10850519 DOI: 10.1016/j.heliyon.2024.e24987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Background Many researchers have investigated the use of Chinese herbs to delay the progression of chronic kidney disease (CKD) through their effects on colonic microflora and microbiota-derived metabolites. However, whether FuZhengHuaYuJiangZhuTongLuo (FZHY) has effects that are similar to those of AST-120 on CKD needs to be elucidated. Methods In this study, we compared the effects of FZHY and AST-120 on the colonic microbiota and plasma metabolites in the CKD rat model. We developed a unilateral ureteral obstruction (UUO)-induced CKD rat model and then administered FZHY and AST-120 to these model rats. Non-targeted metabolomic LC-MS analysis, 16S rRNA sequencing, and histopathological staining were performed on plasma, stool, and kidney tissues, respectively, and the joint correlation between biomarkers and metabolites of candidate bacteria was analyzed. Results Our results showed that administering FZHY and AST-120 effectively ameliorated UUO-induced abnormal renal function and renal fibrosis and regulated the composition of microbiota and metabolites. Compared to the UUO model group, the p_Firmicutes and o_Peptostreptococcales_Tissierellales were increased, while 14 negative ion metabolites were upregulated and 21 were downregulated after FZHY treatment. Additionally, 40 positive ion metabolites were upregulated and 63 were downregulated. On the other hand, AST-120 treatment resulted in an increase in the levels of g_Prevotellaceae_NK3B31_group and f_Prevotellaceae, as well as 12 upregulated and 23 downregulated negative ion metabolites and 56 upregulated and 63 downregulated positive ion metabolites. Besides, FZHY increased the levels of candidate bacterial biomarkers that were found to be negatively correlated with some poisonous metabolites, such as 4-hydroxyretinoic acid, and positively correlated with beneficial metabolites, such as l-arginine. AST-120 increased the levels of candidate bacterial biomarkers that were negatively correlated with some toxic metabolites, such as glycoursodeoxycholic acid, 4-ethylphenol, and indole-3-acetic acid. Conclusion FZHY and AST-120 effectively reduced kidney damage, in which, the recovery of some dysregulated bacteria and metabolites are probably involved. As their mechanisms of regulation were different, FZHY might play a complementary role to AST-120 in treating CKD.
Collapse
Affiliation(s)
- Ziwei Chen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Shaobo Wu
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Li Huang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Jing Li
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Xueying Li
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Yu Zeng
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Zejun Chen
- Department of Nephrology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu Traditional Chinese and Western Medicine Hospital, Chengdu First People's Hospital, Chengdu, Sichuan 610072, China
| | - Ming Chen
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| |
Collapse
|
16
|
Mirzababaei A, Mahmoodi M, Keshtkar A, Ashraf H, Abaj F, Soveid N, Hajmir MM, Radmehr M, Khalili P, Mirzaei K. Serum levels of trimethylamine N-oxide and kynurenine novel biomarkers are associated with adult metabolic syndrome and its components: a case-control study from the TEC cohort. Front Nutr 2024; 11:1326782. [PMID: 38321994 PMCID: PMC10844432 DOI: 10.3389/fnut.2024.1326782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Background Epidemiologic research suggests that gut microbiota alteration (dysbiosis) may play a role in the pathogenesis of metabolic syndrome (MetS). Dysbiosis can influence Trimethylamine N-oxide (TMAO) a gut microbiota-derived metabolite, as well as kynurenine pathways (KP), which are known as a new marker for an early predictor of chronic diseases. Hence, the current study aimed to investigate the association between KYN and TMAO with MetS and its components. Methods This case-control study was conducted on 250 adults aged 18 years or over of Tehran University of Medical Sciences (TUMS) Employee's Cohort study (TEC) in the baseline phase. Data on the dietary intakes were collected using a validated dish-based food frequency questionnaire (FFQ) and dietary intakes of nitrite and nitrate were estimated using FFQ with 144 items. MetS was defined according to the NCEP ATP criteria. Serum profiles TMAO and KYN were measured by standard protocol. Result The mean level of TMAO and KYN in subjects with MetS was 51.49 pg/mL and 417.56 nmol/l. High levels of TMAO (≥30.39 pg/mL) with MetS were directly correlated, after adjusting for confounding factors, the odds of MetS in individuals 2.37 times increased (OR: 2.37, 95% CI: 1.31-4.28, P-value = 0.004), also, high levels of KYN (≥297.18 nmol/L) increased odds of Mets+ 1.48 times, which is statistically significant (OR: 1.48, 95% CI: 0.83-2.63, P-value = 0.04). High levels of TMAO compared with the reference group increased the odds of hypertriglyceridemia and low HDL in crude and adjusted models (P < 0.05). Additionally, there was a statistically significant high level of KYN increased odds of abdominal obesity (P < 0.05). Conclusion Our study revealed a positive association between serum TMAO and KYN levels and MetS and some of its components. For underlying mechanisms and possible clinical implications of the differences. Prospective studies in healthy individuals are necessary.
Collapse
Affiliation(s)
- Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahmoodi
- Department of Cellular and Molecular Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbasali Keshtkar
- Department of Disaster and Emergency Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Ashraf
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Abaj
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Neda Soveid
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahya Mehri Hajmir
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Radmehr
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pardis Khalili
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Bradley E, Haran J. The human gut microbiome and aging. Gut Microbes 2024; 16:2359677. [PMID: 38831607 PMCID: PMC11152108 DOI: 10.1080/19490976.2024.2359677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
The composition of the human gut microbiome has been observed to change over the course of an individual's life. From birth, it is shaped by mode of delivery, diet, environmental exposures, geographic location, exposures to medications, and by aging itself. Here, we present a narrative review of the gut microbiome across the lifespan with a focus on its impacts on aging and age-related diseases in humans. We will describe how it is shaped, and features of the gut microbiome that have been associated with diseases at different phases of life and how this can adversely affect healthy aging. Across the lifespan, and especially in old age, a diverse microbiome that includes organisms suspected to produce anti-inflammatory metabolites such as short-chain fatty acids, has been reported to be associated with healthy aging. These findings have been remarkably consistent across geographic regions of the world suggesting that they could be universal features of healthy aging across all cultures and genetic backgrounds. Exactly how these features of the microbiome affect biologic processes associated with aging thus promoting healthy aging will be crucial to targeting the gut microbiome for interventions that will support health and longevity.
Collapse
Affiliation(s)
- Evan Bradley
- UMass Chan Medical School, Department of Emergency Medicine and Department of Microbiology and Physiologic Systems, Program in Microbiome Dynamics, Worcester, MA, USA
| | - John Haran
- UMass Chan Medical School, Department of Emergency Medicine and Department of Microbiology and Physiologic Systems, Program in Microbiome Dynamics, Worcester, MA, USA
| |
Collapse
|
18
|
Steinbach E, Masi D, Ribeiro A, Serradas P, Le Roy T, Clément K. Upper small intestine microbiome in obesity and related metabolic disorders: A new field of investigation. Metabolism 2024; 150:155712. [PMID: 37884078 DOI: 10.1016/j.metabol.2023.155712] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
The study of the gut microbiome holds great promise for understanding and treating metabolic diseases, as its functions and derived metabolites can influence the metabolic status of the host. While research on the fecal microbiome has provided valuable insights, it tells us only part of the story. This limitation arises from the substantial variations in microorganism distribution throughout the gastrointestinal tract due to changes in physicochemical conditions. Thus, relying solely on the fecal microbiome may not be sufficient to draw comprehensive conclusions about metabolic diseases. The proximal part of the small intestine, particularly the jejunum, indeed, serves as the crucial site for digestion and absorption of nutrients, suggesting a potential role of its microbiome in metabolic regulation. Unfortunately, it remains relatively underexplored due to limited accessibility. This review presents current evidence regarding the relationships between the microbiome in the upper small intestine and various phenotypes, focusing on obesity and type 2 diabetes, in both humans and rodents. Research on humans is still limited with variability in the population and methods used. Accordingly, to better understand the role of the whole gut microbiome in metabolic diseases, studies exploring the human microbiome in different niches are needed.
Collapse
Affiliation(s)
- Emilie Steinbach
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches (NutriOmics) Research Unit, 75013, Paris, France
| | - Davide Masi
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches (NutriOmics) Research Unit, 75013, Paris, France; Sapienza University of Rome, Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, 00161 Rome, Italy
| | - Agnès Ribeiro
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches (NutriOmics) Research Unit, 75013, Paris, France
| | - Patricia Serradas
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches (NutriOmics) Research Unit, 75013, Paris, France
| | - Tiphaine Le Roy
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches (NutriOmics) Research Unit, 75013, Paris, France
| | - Karine Clément
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches (NutriOmics) Research Unit, 75013, Paris, France; Assistance Publique Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, 75013 Paris, France.
| |
Collapse
|
19
|
Feng X, Deng M, Zhang L, Pan Q. Impact of gut microbiota and associated mechanisms on postprandial glucose levels in patients with diabetes. J Transl Int Med 2023; 11:363-371. [PMID: 38130636 PMCID: PMC10732577 DOI: 10.2478/jtim-2023-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Diabetes and its complications are serious medical and global burdens, often manifesting as postprandial hyperglycemia. In recent years, considerable research attention has focused on relationships between the gut microbiota and circulating postprandial glucose (PPG). Different population studies have suggested that PPG is closely related to the gut microbiota which may impact PPG via short-chain fatty acids (SCFAs), bile acids (BAs) and trimethylamine N-oxide (TMAO). Studies now show that gut microbiota models can predict PPG, with individualized nutrition intervention strategies used to regulate gut microbiota and improve glucose metabolism to facilitate the precision treatment of diabetes. However, few studies have been conducted in patients with diabetes. Therefore, little is known about the relationships between the gut microbiota and PPG in this cohort. Thus, more research is required to identify key gut microbiota and associated metabolites and pathways impacting PPG to provide potential therapeutic targets for PPG.
Collapse
Affiliation(s)
- Xinyuan Feng
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Beijing100730 ,China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing100730, China
| | - Mingqun Deng
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Beijing100730 ,China
| | - Lina Zhang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Beijing100730 ,China
| | - Qi Pan
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Beijing100730 ,China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing100730, China
| |
Collapse
|
20
|
Wang A, Guan B, Zhang H, Xu H. Danger-associated metabolites trigger metaflammation: A crowbar in cardiometabolic diseases. Pharmacol Res 2023; 198:106983. [PMID: 37931790 DOI: 10.1016/j.phrs.2023.106983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/12/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Cardiometabolic diseases (CMDs) are characterized by a series of metabolic disorders and chronic low-grade inflammation. CMDs contribute to a high burden of mortality and morbidity worldwide. Host-microbial metabolic regulation that triggers metaflammation is an emerging field of study that promotes a new perspective for perceiving cardiovascular risks. The term metaflammation denotes the entire cascade of immune responses activated by a new class of metabolites known as "danger-associated metabolites" (DAMs). It is being proposed by the present review for the first time. We summarize current studies covering bench to bedside aspects of DAMs to better understand CMDs in the context of DAMs. We have focused on the involvement of DAMs in the pathophysiological development of CMDs, including the disruption of immune homeostasis and chronic inflammation-triggered damage leading to CMD-related adverse events, as well as emerging therapeutic approaches for targeting DAM metabolism in CMDs.
Collapse
Affiliation(s)
- Anlu Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
| | - Baoyi Guan
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - He Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
| | - Hao Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China.
| |
Collapse
|
21
|
Naami R, Tashtish N, Neeland IJ, Katz J, Sinh P, Nasir K, Chittajallu V, Mansoor E, Rajagopalan S, Al-Kindi S. Coronary artery calcium scoring for cardiovascular risk assessment in patients with inflammatory bowel disease. Am Heart J 2023; 266:120-127. [PMID: 37634654 DOI: 10.1016/j.ahj.2023.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is associated with higher incidence of atherosclerotic cardiovascular disease (ASCVD). Data investigating the role of coronary artery calcium (CAC) scoring in identifying subclinical atherosclerotic disease in IBD patients is scarce. METHODS Using data obtained from the CLARIFY registry, a prospective study of no-charge coronary artery calcium (CAC) testing at University Hospitals, we reviewed patients with ulcerative colitis (UC) or Crohn's disease (CD) who underwent CAC scoring from 2014 to 2020. We investigated the concordance between CAC risk and 10-year estimated ASCVD risk by AHA/ACC pooled cohort equation using pre-established thresholds for statin prescription (CAC≥100, 10-year ASCVD risk ≥7.5%). We additionally investigated the association between CAC, preventive therapy initiation and Major Adverse Cardiovascular Events (MACE). RESULTS A total of 369 patients with IBD were included (174 UC, 195 CD), with median age of 60 years. The median CAC score was 14.9 with no significant difference between UC and CD (P = .76). Overall, 151 (41%) had CAC of 0, 108 (29%) had CAC 1-99, 61 (17%) had CAC 100 to 399, and 49 (13%) had CAC ≥400 with no difference in CAC distribution between CD and UC (P = .17). There was no difference in median CAC between IBD or age/sex-matched controls (P = .34). Approximately half of the patients (52%) with IBD had 10-year estimated ASCVD risk of 7.5% or higher. Among patients with ASCVD risk <7.5% (n = 163), 29 (18%) had CAC≥100 and among patients with ASCVD risk ≥7.5% (n = 178), 102 (57%) had CAC <100. There was no difference between CAC<100 vs CAC≥100 with respect to CRP, use of immunosuppressive or amino-salicylate therapy, IBD severity or complications. CAC score (AUROC 0.67 [0.56-0.78]), but not PCE ASCVD risk (AUROC 0.60 [0.48-0.73]), was predictive of MACE. The best cut-off for CAC score was 76 (sensitivity = 60%, specificity = 69%), and was associated with 4-fold increase in MACE (Hazard Ratio 4.0 [2.0-8.1], P < .001). CONCLUSION Subclinical atherosclerosis, as evaluated by CAC scoring, is prevalent in patients with IBD, and is associated with cardiovascular events. Further studies are needed to understand underlying biological processes of increased atherosclerotic disease risk among adults with IBD.
Collapse
Affiliation(s)
- Robert Naami
- Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Nour Tashtish
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| | - Ian J Neeland
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| | - Jeffry Katz
- Digestive Health Institute, University Hospitals, Cleveland, OH
| | - Preetika Sinh
- Division of Gastroenterology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Khurram Nasir
- Division of Cardiovascular Prevention and Wellness, Department of Cardiology, DeBakey Heart and Vascular Center, Houston Methodist, Houston, TX
| | | | - Emad Mansoor
- Digestive Health Institute, University Hospitals, Cleveland, OH
| | - Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| | - Sadeer Al-Kindi
- Division of Cardiovascular Prevention and Wellness, Department of Cardiology, DeBakey Heart and Vascular Center, Houston Methodist, Houston, TX.
| |
Collapse
|
22
|
Wei XY, Jia PP, Hu H, Liu L, Li TY, Li YZ, Pei DS. Multi-omics reveal mechanisms underlying chronic kidney disease of unknown etiology (CKDu) pathogenesis using zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122524. [PMID: 37683759 DOI: 10.1016/j.envpol.2023.122524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Chronic kidney disease of unknown etiology (CKDu) is an endemic disease in the dry zone of farming communities, Sri Lanka. The drinking water in a CKDu prevalent area contains a high concentration of F-, hardness and other environmental pollutants, including heavy metals and microcystin, which are considered possible etiology of CKDu in these areas. Here, multi-omics data with host transcriptome, metabolome and gut microbiomes were obtained using simulated local drinking water of Sri Lanka after their exposure to adult zebrafish. Based on an integrated multi-omics analysis in the context of host physiology in the kidney injury samples with different pathologic grades, two common pathways necroptosis and purine metabolism were identified as potentially important pathways that affect kidney injury. The key metabolite acetyl adenylate in the purine metabolism pathway was significantly positively correlated with Comamonas (rho = 0.72) and significantly negatively correlated with Plesiomonas (rho = -0.58). This crucial metabolite and two key gut bacteria genera may not only be potential markers but also potential therapeutic targets in the uric acid metabolic pathway, which is an important factor in the pathogenesis of acute kidney injury (AKI) in general, as well as of chronic kidney disease (CKD). Based on this, we revealed the urea metabolism pathway of kidney injury in zebrafish and provided a new avenue for the treatment of CKDu in Sri Lanka.
Collapse
Affiliation(s)
- Xing-Yi Wei
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Huan Hu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Li Liu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Tian-Yun Li
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yong-Zhi Li
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
23
|
Chen Z, Hu Y, Hu FB, Manson JE, Rimm EB, Doria A, Sun Q. Dietary Glutamine and Glutamate in Relation to Cardiovascular Disease Incidence and Mortality in the United States Men and Women with Diabetes Mellitus. J Nutr 2023; 153:3247-3258. [PMID: 37660951 PMCID: PMC10687617 DOI: 10.1016/j.tjnut.2023.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/03/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Evidence regarding the potential health effects of dietary amino acids glutamine and glutamate among individuals with type 2 diabetes (T2D) is limited. OBJECTIVES The aim was to examine dietary glutamine and glutamate in relation to subsequent risk of cardiovascular disease (CVD) and mortality among individuals with T2D. METHODS We prospectively followed 15,040 men and women with T2D at baseline or diagnosed during follow-up (Nurses' Health Study: 1980-2014 and Health Professionals Follow-Up Study: 1986-2018). Diet was repeatedly assessed using validated food frequency questionnaires every 2-4 y. Associations of energy-adjusted glutamine and glutamate intake, as well as their ratio, with CVD risk and mortality, were assessed using Cox proportional-hazards models with adjustments for demographics, dietary and lifestyle factors, and medical history. RESULTS During 196,955 and 225,371 person-years of follow-up in participants with T2D, there were 2927 incident CVD cases and 4898 deaths, respectively. Higher intake of glutamine was associated with lower risk of CVD incidence, CVD mortality, and total mortality: comparing extreme quintiles, the hazard ratios (HRs) (95% confidence intervals [CIs]) were 0.88 (0.77, 0.99), 0.78 (0.65, 0.92), and 0.84 (0.76, 0.92), respectively (all P-trend < 0.05). In contrast, higher intake of glutamate was associated with a higher risk of CVD incidence, CVD mortality, and total mortality; the HRs were 1.30 (1.15, 1.46), 1.46 (1.24, 1.72), and 1.20 (1.09, 1.32), respectively (all P-trend < 0.05). Furthermore, comparing extreme quintiles, a higher dietary glutamine-to-glutamate ratio was associated with a lower risk of CVD incidence (0.84 [0.75, 0.95]), CVD mortality (0.66 [0.57, 0.77]), and total mortality (0.82 [0.75, 0.90]). In addition, compared with participants with stable or decreased consumption of glutamine-to-glutamate ratio from prediabetes to postdiabetes diagnosis, those who increased the ratio had a 17% (5%, 27%) lower CVD mortality. CONCLUSIONS In adults with T2D, dietary glutamine was associated with a lower risk of CVD incidence and mortality, whereas the opposite was observed for glutamate intake.
Collapse
Affiliation(s)
- Zhangling Chen
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Yang Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - JoAnn E Manson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Eric B Rimm
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Alessandro Doria
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Joslin Diabetes Center, Boston, MA, United States
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Joslin Diabetes Center, Boston, MA, United States.
| |
Collapse
|
24
|
Cooper TE, Khalid R, Chan S, Craig JC, Hawley CM, Howell M, Johnson DW, Jaure A, Teixeira-Pinto A, Wong G. Synbiotics, prebiotics and probiotics for people with chronic kidney disease. Cochrane Database Syst Rev 2023; 10:CD013631. [PMID: 37870148 PMCID: PMC10591284 DOI: 10.1002/14651858.cd013631.pub2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a major public health problem affecting 13% of the global population. Prior research has indicated that CKD is associated with gut dysbiosis. Gut dysbiosis may lead to the development and/or progression of CKD, which in turn may in turn lead to gut dysbiosis as a result of uraemic toxins, intestinal wall oedema, metabolic acidosis, prolonged intestinal transit times, polypharmacy (frequent antibiotic exposures) and dietary restrictions used to treat CKD. Interventions such as synbiotics, prebiotics, and probiotics may improve the balance of the gut flora by altering intestinal pH, improving gut microbiota balance and enhancing gut barrier function (i.e. reducing gut permeability). OBJECTIVES This review aimed to evaluate the benefits and harms of synbiotics, prebiotics, and probiotics for people with CKD. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies up to 9 October 2023 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA We included randomised controlled trials (RCTs) measuring and reporting the effects of synbiotics, prebiotics, or probiotics in any combination and any formulation given to people with CKD (CKD stages 1 to 5, including dialysis and kidney transplant). Two authors independently assessed the retrieved titles and abstracts and, where necessary, the full text to determine which satisfied the inclusion criteria. DATA COLLECTION AND ANALYSIS Data extraction was independently carried out by two authors using a standard data extraction form. Summary estimates of effect were obtained using a random-effects model, and results were expressed as risk ratios (RR) and their 95% confidence intervals (CI) for dichotomous outcomes, and mean difference (MD) or standardised mean difference (SMD) and 95% CI for continuous outcomes. The methodological quality of the included studies was assessed using the Cochrane risk of bias tool. Data entry was carried out by one author and cross-checked by another. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS Forty-five studies (2266 randomised participants) were included in this review. Study participants were adults (two studies in children) with CKD ranging from stages 1 to 5, with patients receiving and not receiving dialysis, of whom half also had diabetes and hypertension. No studies investigated the same synbiotic, prebiotic or probiotic of similar strains, doses, or frequencies. Most studies were judged to be low risk for selection bias, performance bias and reporting bias, unclear risk for detection bias and for control of confounding factors, and high risk for attrition and other biases. Compared to prebiotics, it is uncertain whether synbiotics improve estimated glomerular filtration rate (eGFR) at four weeks (1 study, 34 participants: MD -3.80 mL/min/1.73 m², 95% CI -17.98 to 10.38), indoxyl sulfate at four weeks (1 study, 42 participants: MD 128.30 ng/mL, 95% CI -242.77 to 499.37), change in gastrointestinal (GI) upset (borborymgi) at four weeks (1 study, 34 participants: RR 15.26, 95% CI 0.99 to 236.23), or change in GI upset (Gastrointestinal Symptom Rating Scale) at 12 months (1 study, 56 participants: MD 0.00, 95% CI -0.27 to 0.27), because the certainty of the evidence was very low. Compared to certain strains of prebiotics, it is uncertain whether a different strain of prebiotics improves eGFR at 12 weeks (1 study, 50 participants: MD 0.00 mL/min, 95% CI -1.73 to 1.73), indoxyl sulfate at six weeks (2 studies, 64 participants: MD -0.20 μg/mL, 95% CI -1.01 to 0.61; I² = 0%) or change in any GI upset, intolerance or microbiota composition, because the certainty of the evidence was very low. Compared to certain strains of probiotics, it is uncertain whether a different strain of probiotic improves eGFR at eight weeks (1 study, 30 participants: MD -0.64 mL/min, 95% CI -9.51 to 8.23; very low certainty evidence). Compared to placebo or no treatment, it is uncertain whether synbiotics improve eGFR at six or 12 weeks (2 studies, 98 participants: MD 1.42 mL/min, 95% CI 0.65 to 2.2) or change in any GI upset or intolerance at 12 weeks because the certainty of the evidence was very low. Compared to placebo or no treatment, it is uncertain whether prebiotics improves indoxyl sulfate at eight weeks (2 studies, 75 participants: SMD -0.14 mg/L, 95% CI -0.60 to 0.31; very low certainty evidence) or microbiota composition because the certainty of the evidence is very low. Compared to placebo or no treatment, it is uncertain whether probiotics improve eGFR at eight, 12 or 15 weeks (3 studies, 128 participants: MD 2.73 mL/min, 95% CI -2.28 to 7.75; I² = 78%), proteinuria at 12 or 24 weeks (1 study, 60 participants: MD -15.60 mg/dL, 95% CI -34.30 to 3.10), indoxyl sulfate at 12 or 24 weeks (2 studies, 83 participants: MD -4.42 mg/dL, 95% CI -9.83 to 1.35; I² = 0%), or any change in GI upset or intolerance because the certainty of the evidence was very low. Probiotics may have little or no effect on albuminuria at 12 or 24 weeks compared to placebo or no treatment (4 studies, 193 participants: MD 0.02 g/dL, 95% CI -0.08 to 0.13; I² = 0%; low certainty evidence). For all comparisons, adverse events were poorly reported and were minimal (flatulence, nausea, diarrhoea, abdominal pain) and non-serious, and withdrawals were not related to the study treatment. AUTHORS' CONCLUSIONS We found very few studies that adequately test biotic supplementation as alternative treatments for improving kidney function, GI symptoms, dialysis outcomes, allograft function, patient-reported outcomes, CVD, cancer, reducing uraemic toxins, and adverse effects. We are not certain whether synbiotics, prebiotics, or probiotics are more or less effective compared to one another, antibiotics, or standard care for improving patient outcomes in people with CKD. Adverse events were uncommon and mild.
Collapse
Affiliation(s)
- Tess E Cooper
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
| | - Rabia Khalid
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - Samuel Chan
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - Jonathan C Craig
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Carmel M Hawley
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - Martin Howell
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - David W Johnson
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - Allison Jaure
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - Armando Teixeira-Pinto
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - Germaine Wong
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
- Centre for Transplant and Renal Research, Westmead Hospital, Westmead, Australia
| |
Collapse
|
25
|
Zhou X, Lian P, Liu H, Wang Y, Zhou M, Feng Z. Causal Associations between Gut Microbiota and Different Types of Dyslipidemia: A Two-Sample Mendelian Randomization Study. Nutrients 2023; 15:4445. [PMID: 37892520 PMCID: PMC10609956 DOI: 10.3390/nu15204445] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The determination of a causal association between gut microbiota and a range of dyslipidemia remains uncertain. To clarify these associations, we employed a two-sample Mendelian randomization (MR) analysis utilizing the inverse-variance weighted (IVW) method. This comprehensive analysis investigated the genetic variants that exhibited a significant association (p < 5 × 10-8) with 129 distinct gut microbiota genera and their potential link to different types of dyslipidemia. The results indicated a potential causal association between 22 gut microbiota genera and dyslipidemia in humans. Furthermore, these findings suggested that the impact of gut microbiota on dyslipidemia regulation is dependent on the specific phylum, family, and genus. Bacillota phylum demonstrated the greatest diversity, with 15 distinct genera distributed among eight families. Notably, gut microbiota-derived from the Lachnospiraceae and Lactobacillaceae families exhibit statistically significant associations with lipid levels that contribute to overall health (p < 0.05). The sensitivity analysis indicated that our findings possess robustness (p > 0.05). The findings of our investigation provide compelling evidence that substantiates a causal association between the gut microbiota and dyslipidemia in the human body. It is noteworthy to highlight the significant influence of the Bacillota phylum as a crucial regulator of lipid levels, and the families Lachnospiraceae and Lactobacillaceae should be recognized as probiotics that significantly contribute to this metabolic process.
Collapse
Affiliation(s)
| | | | | | | | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, China; (X.Z.); (P.L.); (H.L.); (Y.W.)
| | - Zhijun Feng
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, China; (X.Z.); (P.L.); (H.L.); (Y.W.)
| |
Collapse
|
26
|
Salas-Espejo E, Terrón-Camero LC, Ruiz JL, Molina NM, Andrés-León E. Exploring the Microbiome in Human Reproductive Tract: High-Throughput Methods for the Taxonomic Characterization of Microorganisms. Semin Reprod Med 2023; 41:125-143. [PMID: 38320576 DOI: 10.1055/s-0044-1779025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Microorganisms are important due to their widespread presence and multifaceted roles across various domains of life, ecology, and industries. In humans, they underlie the proper functioning of multiple systems crucial to well-being, including immunological and metabolic functions. Emerging research addressing the presence and roles of microorganisms within human reproduction is increasingly relevant. Studies implementing new methodologies (e.g., to investigate vaginal, uterine, and semen microenvironments) can now provide relevant insights into fertility, reproductive health, or pregnancy outcomes. In that sense, cutting-edge sequencing techniques, as well as others such as meta-metabolomics, culturomics, and meta-proteomics, are becoming more popular and accessible worldwide, allowing the characterization of microbiomes at unprecedented resolution. However, they frequently involve rather complex laboratory protocols and bioinformatics analyses, for which researchers may lack the required expertise. A suitable pipeline would successfully enable both taxonomic classification and functional profiling of the microbiome, providing easy-to-understand biological interpretations. However, the selection of an appropriate methodology would be crucial, as it directly impacts the reproducibility, accuracy, and quality of the results and observations. This review focuses on the different current microbiome-related techniques in the context of human reproduction, encompassing niches like vagina, endometrium, and seminal fluid. The most standard and reliable methods are 16S rRNA gene sequencing, metagenomics, and meta-transcriptomics, together with complementary approaches including meta-proteomics, meta-metabolomics, and culturomics. Finally, we also offer case examples and general recommendations about the most appropriate methods and workflows and discuss strengths and shortcomings for each technique.
Collapse
Affiliation(s)
- Eduardo Salas-Espejo
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Laura C Terrón-Camero
- Bioinformatics Unit, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN), CSIC, Granada, Spain
| | - José L Ruiz
- Bioinformatics Unit, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN), CSIC, Granada, Spain
| | - Nerea M Molina
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Eduardo Andrés-León
- Bioinformatics Unit, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN), CSIC, Granada, Spain
| |
Collapse
|
27
|
Wu Y, Yang X, Hu Y, Hu X, Zhang Y, An T, Lv B, Tao S, Liu Q, Jiang G. Moringa oleifera leaf supplementation relieves oxidative stress and regulates intestinal flora to ameliorate polycystic ovary syndrome in letrozole-induced rats. Food Sci Nutr 2023; 11:5137-5156. [PMID: 37701184 PMCID: PMC10494614 DOI: 10.1002/fsn3.3473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 09/14/2023] Open
Abstract
This study investigated the effects of supplementation Moringa oleifera leaf (MOL) on relieving oxidative stress, anti-inflammation, changed the relative abundance of multiple intestinal flora and blood biochemical indices during letrozole-induced polycystic ovary syndrome (PCOS). Previous studies have shown that MOL has anti-inflammatory, anti-oxidation, insulin-sensitizing effects. However, whether MOL has beneficial effects on PCOS remains to be elucidated. In the current study, 10-week-old female Sprague-Dawley rats received letrozole to induce PCOS-like rats, and subsequently were treated with a MOL diet. Then, the body weight and estrus cycles were measured regularly in this period. Finally, the ovarian morphology, blood biochemical indices, anti-oxidative, intestinal flora, and anti-inflammation were observed at the end of the experiment. We found that MOL supplementation markedly decreased the body weight, significantly upregulated the expression of Sirt1, FoxO1, PGC-1α, IGF1, and substantially modulated the sex hormone level and improved insulin resistance, which may be associated with the relieves oxidative stress. Moreover, the supplementation of MOL changed the relative abundance of multiple intestinal flora, the relative abundance of Fusobacterium, Prevotella were decreased, and Blautia and Parabacteroides were increased. These results indicate that MOL is potentially a supplementary medication for the management of PCOS.
Collapse
Affiliation(s)
- YanXiang Wu
- Traditional Chinese Medicine SchoolBeijing University of Chinese MedicineBeijingChina
| | - XiuYan Yang
- Traditional Chinese Medicine SchoolBeijing University of Chinese MedicineBeijingChina
| | - YuanYuan Hu
- Traditional Chinese Medicine SchoolBeijing University of Chinese MedicineBeijingChina
| | - XueHong Hu
- Traditional Chinese Medicine SchoolBeijing University of Chinese MedicineBeijingChina
| | - YueLin Zhang
- Traditional Chinese Medicine SchoolBeijing University of Chinese MedicineBeijingChina
| | - Tian An
- Traditional Chinese Medicine SchoolBeijing University of Chinese MedicineBeijingChina
- School of traditional Chinese medicineCapital Medical UniversityBeijingChina
| | - BoHan Lv
- Traditional Chinese Medicine SchoolBeijing University of Chinese MedicineBeijingChina
| | - SiYu Tao
- Traditional Chinese Medicine SchoolBeijing University of Chinese MedicineBeijingChina
| | - Qing Liu
- Beijing Changping Qingyitang Hospital of Traditional Chinese MedicineBeijingChina
- Beijing Yaoshi Tongyuan Trading Co., Ltd.BeijingChina
| | - GuangJian Jiang
- Traditional Chinese Medicine SchoolBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
28
|
Ai S, Li Y, Tao J, Zheng H, Tian L, Wang Y, Wang Z, Liu WJ. Bibliometric visualization analysis of gut-kidney axis from 2003 to 2022. Front Physiol 2023; 14:1176894. [PMID: 37362429 PMCID: PMC10287975 DOI: 10.3389/fphys.2023.1176894] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
Background: The gut-kidney axis refers to the interaction between the gastrointestinal tract and the kidneys, and its disorders have become increasingly important in the development of kidney diseases. The aim of this study is to identify current research hotspots in the field of the gut-kidney axis from 2003 to 2022 and provide guidance for future research in this field. Methods: We collected relevant literature on the gut-kidney axis from the Web of Science Core Collection (WoSCC) database and conducted bibliometric and visualization analyses using biblioshiny in R-Studio and VOSviewer (version 1.6.16). Results: A total of 3,900 documents were retrieved from the WoSCC database. The publications have shown rapid expansion since 2011, with the greatest research hotspot emerging due to the concept of the "intestinal-renal syndrome," first proposed by Meijers. The most relevant journals were in the field of diet and metabolism, such as Nutrients. The United States and China were the most influential countries, and the most active institute was the University of California San Diego. Author analysis revealed that Denise Mafra, Nosratola D. Vaziri, Fouque, and Denis made great contributions in different aspects of the field. Clustering analysis of the keywords found that important research priorities were "immunity," "inflammation," "metabolism," and "urinary toxin," reflecting the basis of research in the field. Current research frontiers in the field include "hyperuricemia," "gut microbiota," "diabetes," "trimethylamine n-oxide," "iga nephropathy," "acute kidney injury," "chronic kidney disease," "inflammation," all of which necessitate further investigation. Conclusion: This study presents a comprehensive bibliometric analysis and offers an up-to-date outlook on the research related to the gut-kidney axis, with a specific emphasis on the present state of intercommunication between gut microbiota and kidney diseases in this field. This perspective may assist researchers in selecting appropriate journals and partners, and help to gain a deeper understanding of the field's hotspots and frontiers, thereby promoting future research.
Collapse
Affiliation(s)
- Sinan Ai
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yake Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - JiaYin Tao
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Huijuan Zheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Lei Tian
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yaoxian Wang
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China
| | - Zhen Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Jing Liu
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
29
|
Mady EA, Doghish AS, El-Dakroury WA, Elkhawaga SY, Ismail A, El-Mahdy HA, Elsakka EGE, El-Husseiny HM. Impact of the mother's gut microbiota on infant microbiome and brain development. Neurosci Biobehav Rev 2023; 150:105195. [PMID: 37100161 DOI: 10.1016/j.neubiorev.2023.105195] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023]
Abstract
The link between the gut microbiome and health has recently garnered considerable interest in its employment for medicinal purposes. Since the early microbiota exhibits more flexibility compared to that of adults, there is a considerable possibility that altering it will have significant consequences on human development. Like genetics, the human microbiota can be passed from mother to child. This provides information on early microbiota acquisition, future development, and prospective chances for intervention. The succession and acquisition of early-life microbiota, modifications of the maternal microbiota during pregnancy, delivery, and infancy, and new efforts to understand maternal-infant microbiota transmission are discussed in this article. We also examine the shaping of mother-to-infant microbial transmission, and we then explore possible paths for future research to advance our knowledge in this area.
Collapse
Affiliation(s)
- Eman A Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya,13736, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and industrial pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hussein M El-Husseiny
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
30
|
Bica IC, Pietroșel VA, Salmen T, Diaconu CT, Fierbinteanu Braticevici C, Stoica RA, Suceveanu AI, Pantea Stoian A. The Effects of Cardioprotective Antidiabetic Therapy on Microbiota in Patients with Type 2 Diabetes Mellitus-A Systematic Review. Int J Mol Sci 2023; 24:ijms24087184. [PMID: 37108347 PMCID: PMC10138454 DOI: 10.3390/ijms24087184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
As the pathophysiologic mechanisms of type 2 diabetes mellitus (T2DM) are discovered, there is a switch from glucocentric to a more comprehensive, patient-centered management. The holistic approach considers the interlink between T2DM and its complications, finding the best therapies for minimizing the cardiovascular (CV) or renal risk and benefitting from the treatment's pleiotropic effects. Sodium-glucose cotransporter 2 inhibitors (SGLT-2i) and glucagon-like peptide-1 receptor agonists (GLP-1 RA) fit best in the holistic approach because of their effects in reducing the risk of CV events and obtaining better metabolic control. Additionally, research on the SGLT-2i and GLP-1 RA modification of gut microbiota is accumulating. The microbiota plays a significant role in the relation between diet and CV disease because some intestinal bacteria lead to an increase in short-chain fatty acids (SCFA) and consequent positive effects. Thus, our review aims to describe the relation between antidiabetic non-insulin therapy (SGLT-2i and GLP-1 RA) with CV-proven benefits and the gut microbiota in patients with T2DM. We identified five randomized clinical trials including dapagliflozin, empagliflozin, liraglutide, and loxenatide, with different results. There were differences between empagliflozin and metformin regarding the effects on microbiota despite similar glucose control in both study groups. One study demonstrated that liraglutide induced gut microbiota alterations in patients with T2DM treated initially with metformin, but another failed to detect any differences when the same molecule was compared with sitagliptin. The established CV and renal protection that the SGLT-2i and GLP-1 RA exert could be partly due to their action on gut microbiota. The individual and cumulative effects of antidiabetic drugs on gut microbiota need further research.
Collapse
Affiliation(s)
- Ioana-Cristina Bica
- The Doctoral School, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Valeria-Anca Pietroșel
- Department of Diabetes, "Prof. Dr. N.C. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 030167 Bucharest, Romania
| | - Teodor Salmen
- The Doctoral School, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Cosmina-Theodora Diaconu
- The Doctoral School, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | | | - Roxana-Adriana Stoica
- The Department of Diabetes, Nutrition and Metabolic Diseases, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | | | - Anca Pantea Stoian
- The Department of Diabetes, Nutrition and Metabolic Diseases, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
31
|
Peluso AA, Lundgaard AT, Babaei P, Mousovich-Neto F, Rocha AL, Damgaard MV, Bak EG, Gnanasekaran T, Dollerup OL, Trammell SAJ, Nielsen TS, Kern T, Abild CB, Sulek K, Ma T, Gerhart-Hines Z, Gillum MP, Arumugam M, Ørskov C, McCloskey D, Jessen N, Herrgård MJ, Mori MAS, Treebak JT. Oral supplementation of nicotinamide riboside alters intestinal microbial composition in rats and mice, but not humans. NPJ AGING 2023; 9:7. [PMID: 37012386 PMCID: PMC10070358 DOI: 10.1038/s41514-023-00106-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
The gut microbiota impacts systemic levels of multiple metabolites including NAD+ precursors through diverse pathways. Nicotinamide riboside (NR) is an NAD+ precursor capable of regulating mammalian cellular metabolism. Some bacterial families express the NR-specific transporter, PnuC. We hypothesized that dietary NR supplementation would modify the gut microbiota across intestinal sections. We determined the effects of 12 weeks of NR supplementation on the microbiota composition of intestinal segments of high-fat diet-fed (HFD) rats. We also explored the effects of 12 weeks of NR supplementation on the gut microbiota in humans and mice. In rats, NR reduced fat mass and tended to decrease body weight. Interestingly, NR increased fat and energy absorption but only in HFD-fed rats. Moreover, 16S rRNA gene sequencing analysis of intestinal and fecal samples revealed an increased abundance of species within Erysipelotrichaceae and Ruminococcaceae families in response to NR. PnuC-positive bacterial strains within these families showed an increased growth rate when supplemented with NR. The abundance of species within the Lachnospiraceae family decreased in response to HFD irrespective of NR. Alpha and beta diversity and bacterial composition of the human fecal microbiota were unaltered by NR, but in mice, the fecal abundance of species within Lachnospiraceae increased while abundances of Parasutterella and Bacteroides dorei species decreased in response to NR. In conclusion, oral NR altered the gut microbiota in rats and mice, but not in humans. In addition, NR attenuated body fat mass gain in rats, and increased fat and energy absorption in the HFD context.
Collapse
Affiliation(s)
- A Augusto Peluso
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Agnete T Lundgaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Parizad Babaei
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Felippe Mousovich-Neto
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Andréa L Rocha
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Mads V Damgaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emilie G Bak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thiyagarajan Gnanasekaran
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole L Dollerup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Samuel A J Trammell
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas S Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Timo Kern
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline B Abild
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karolina Sulek
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev Hospital, Herlev, Denmark
| | - Tao Ma
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zach Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthew P Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cathrine Ørskov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Douglas McCloskey
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Markus J Herrgård
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
- BioInnovation Institute, Copenhagen, Denmark
| | - Marcelo A S Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
- Experimental Medicine Research Cluster, University of Campinas, Campinas, SP, Brazil
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
32
|
Zhang Z, Chen H, Huang J, Zhang S, Li Z, Kong C, Mao Y, Han B. Early Administration of Vancomycin Inhibits Pulmonary Embolism by Remodeling Gut Microbiota. J Pers Med 2023; 13:jpm13030537. [PMID: 36983718 PMCID: PMC10059710 DOI: 10.3390/jpm13030537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Pulmonary embolism (PE) is a common and potentially fatal condition in the emergency department, and early identification of modifiable risk factors for prevention and management is highly desirable. Although gut dysbiosis is associated with a high incidence of venous thromboembolism, the role and mechanisms of the gut microbiome in the pathogenesis of venous thromboembolism, especially PE, remain unexplored. Here, we attempted to elucidate the benefits of the gut microbiome in the pathogenesis of PE using multiple antibiotics and fecal microbiota transplantation (FMT) for early intervention in a classical mouse model of PE. The results showed that early administration of various antibiotics (except ampicillin) could inhibit pulmonary thrombosis to a certain extent and reduced mortality in young and old mice with PE. Among them, vancomycin has the best inhibitory effect on PE. With the help of gut microbiota sequencing analysis, we found that antibiotic treatment can reshape the gut microbiota; especially vancomycin can significantly improve the gut microbiota structure in PE mice. Furthermore, FMT could transfer vancomycin-modified gut microbes into mice and inhibit the pathogenesis of PE, possibly due to increased intestinal colonization by Parasutterella. These data elucidate the underlying molecular mechanism by which early administration of vancomycin can remodel the gut microbiota to suppress PE, providing new clues for clinical optimization and development of PE prevention strategies.
Collapse
Affiliation(s)
- Zhengyan Zhang
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai 201199, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Huiling Chen
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai 201199, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Jiating Huang
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Shilong Zhang
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai 201199, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Zhanming Li
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai 201199, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Chaoyue Kong
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai 201199, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Yuqin Mao
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai 201199, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Bing Han
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai 201199, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China
- Correspondence:
| |
Collapse
|
33
|
Wang Y, Lindemann SR, Cross TWL, Tang M, Clark CM, Campbell WW. Effects of adding lean red meat to a U.S.-Style Healthy Vegetarian Dietary Pattern on gut microbiota and cardiovascular risk factors in young adults: a crossover randomized-controlled trial. J Nutr 2023; 153:1439-1452. [PMID: 36921804 DOI: 10.1016/j.tjnut.2023.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Limited research evidence exists on the effects of red meat on gut microbiota in human adults. OBJECTIVE We aim to assess the effects of consuming a Healthy U.S.-Style Dietary Pattern (HDP), without or with unprocessed or processed lean red meat, on gut microbiota and fecal short-chain fatty acids levels (SCFA) in healthy young adults. Secondary outcomes are cardiovascular disease risk factors. METHODS We conducted a randomized-controlled, cross-over trial with three 3-week dietary interventions, each separated by a 5-week washout period with habitual dietary intake. Nineteen participants (8 females, age 26 ± 4 years old, BMI 23 ± 3 kg/m2) consumed three study diets in random order: 1) healthy lacto-ovo vegetarian diet (LOV); 2) LOV plus 3 ounces/day of cooked unprocessed lean red meat (URM); and 3) LOV plus 3 ounces/day of cooked processed lean red meat (PRM). Fecal and fasting blood samples were collected before and during the last 2 weeks of each intervention. We measured fecal bacterial community structure using 16S rRNA amplicon sequencing (V4 region, primers 515F-806R). Community diversity, structure, and taxonomic composition were computed using Mothur v.1.44.3. RESULTS The addition of unprocessed or processed lean red meats to a LOV HDP did not influence short-term changes in bacterial taxonomic composition. Independent of red meat intake, the HDP led to changes in 23 bacteria; reductions in serum total cholesterol (TC) and LDL-C concentrations; but no changes in fecal SCFA, serum triglycerides, HDL-C, TC/HDL-C ratio, or blood pressures. With data from all 3 diet interventions combined, changes in some bacteria were associated with improvements in TC, LDL-C, HDL-C, TC/HDL-C ratio, and triglycerides. CONCLUSIONS Healthy young adults who adopt a HDP that may be vegetarian or omnivorous only including lean red meat experience short-term changes in gut microbial composition, which associate with improvements in multiple lipid-related cardiovascular risk factors. CLINICAL TRIAL REGISTRY NUMBER AND WEBSITE NCT03885544, https://clinicaltrials.gov/ct2/show/NCT03885544?cond=NCT03885544&draw=2&rank=1.
Collapse
Affiliation(s)
- Yu Wang
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Stephen R Lindemann
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Tzu-Wen L Cross
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Minghua Tang
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, CO 80045, USA
| | - Caroline M Clark
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Wayne W Campbell
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
34
|
Reis F. Gut microbiota dysbiosis and cardiovascular disease - The chicken and the egg. Rev Port Cardiol 2023:S0870-2551(23)00129-4. [PMID: 36893843 DOI: 10.1016/j.repc.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Affiliation(s)
- Flávio Reis
- University of Coimbra, Faculty of Medicine, Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
35
|
Alayo QA, Loftus EV, Yarur A, Alvarado D, Ciorba MA, de las Fuentes L, Deepak P. Inflammatory Bowel Disease Is Associated With an Increased Risk of Incident Acute Arterial Events: Analysis of the United Kingdom Biobank. Clin Gastroenterol Hepatol 2023; 21:761-770.e13. [PMID: 36075499 DOI: 10.1016/j.cgh.2022.08.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Population-based studies have suggested an increased risk of acute arterial events (AAEs) in patients with inflammatory bowel disease (IBD). We aimed to assess the risk of incident AAEs and premature AAEs, adjusted for diet, physical activity, and inflammation biomarkers, in participants with IBD in the UK Biobank (UKB) METHODS: UKB participants with IBD and without prevalent AAEs at enrollment were matched to random non-IBD controls. A Cox regression model, adjusting for baseline cardiovascular and IBD risk factors, diet, physical activity, and high-sensitivity C-reactive protein, estimated adjusted hazard ratios (aHRs) for association between IBD and AAEs or premature AAEs (age, <55 years for men and <65 years for women). Predictors of AAEs within the IBD cohort were identified in a Cox model adjusting for disease severity (IBD-related hospitalizations or surgeries). RESULTS Among 455,950 UKB participants, 5094 with IBD were matched to 20,376 non-IBD controls. After a median follow-up period of 12.4 years, participants with IBD had a higher incident rate of AAE (924.1 vs 730.9 per 100,000 person years; P < .001), risk of all AAEs (aHR, 1.19; 95% CI, 1.08-1.31; P < .001), and premature AAEs (aHR, 1.38; 95% CI, 1.11-1.72; P = .001). High-sensitivity C-reactive protein levels (highest quartile: aHR, 1.53; 95% CI, 1.15-2.03) and disease severity (aHR, 5.40; 95% CI, 4.03-7.22) were independent predictors of AAE in IBD. CONCLUSIONS In a prospective cohort, there was an increased risk of incident AAEs and premature AAEs in IBD participants. Beyond traditional AAE risk factors, quantifiable indices of IBD disease activity and severity were independent predictors of AAEs.
Collapse
Affiliation(s)
- Quazim A Alayo
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Edward V Loftus
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Andres Yarur
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David Alvarado
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Matthew A Ciorba
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Lisa de las Fuentes
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Parakkal Deepak
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
36
|
Zhao S, Tian Y, Wang S, Yang F, Xu J, Qin Z, Liu X, Cao M, Zhao P, Zhang G, Wang Z, Zhang Y, Wang Y, Lin K, Fang S, Wang Z, Han T, Tian M, Yin H, Tian J, Yu B. Prognostic value of gut microbiota-derived metabolites in patients with ST-segment elevation myocardial infarction. Am J Clin Nutr 2023; 117:499-508. [PMID: 36811471 DOI: 10.1016/j.ajcnut.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Studies about the prognostic role of gut microbiota-derived metabolites including phenylacetyl glutamine (PAGln), indoxyl sulfate (IS), lithocholic acid (LCA), deoxycholic acid (DCA), trimethylamine (TMA), trimethylamine N-oxide (TMAO), and its precursor trimethyllysine (TML) are limited in patients with ST-segment elevation myocardial infarction (STEMI). OBJECTIVES To examine the relationship between plasma metabolite levels and major adverse cardiovascular events (MACEs), including nonfatal MI, nonfatal stroke, all-cause mortality, and heart failure in patients with STEMI. METHODS We enrolled 1004 patients with STEMI undergoing percutaneous coronary intervention (PCI). Plasma levels of these metabolites were determined by targeted liquid chromatography/mass spectrometry. The associations of metabolite levels with MACEs were assessed with the Cox regression model and quantile g-computation. RESULTS During a median follow-up of 360 d, 102 patients experienced MACEs. Higher plasma PAGln (hazard ratio [HR], 3.17 [95% CI: 2.05, 4.89]; P < 0.001), IS (2.67 [1.68, 4.24], P < 0.001), DCA (2.36 [1.40, 4.00], P = 0.001), TML (2.66 [1.77,3.99], P < 0.001), and TMAO (2.61 [1.70, 4.00], P < 0.001) levels were significantly associated with MACEs independent of traditional risk factors. According to quantile g-computation, the joint effect of all these metabolites was 1.86 (95% CI: 1.46, 2.27). PAGln, IS and TML had the greatest proportional positive contributions to the mixture effect. Additionally, plasma PAGln and TML combined with coronary angiography scores including the Synergy between PCI with Taxus and cardiac surgery (SYNTAX) score (area under the curve [AUC]: 0.792 vs. 0.673), Gensini score (0.794 vs. 0.647) and Balloon pump-assisted Coronary Intervention Study (BCIS-1) jeopardy score (0.774 vs. 0.573) showed better prediction performance for MACEs. CONCLUSIONS Higher plasma PAGln, IS, DCA, TML, and TMAO levels are independently associated with MACEs suggesting that these metabolites may be useful markers for prognosis in patients with STEMI.
Collapse
Affiliation(s)
- Suhong Zhao
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Yanan Tian
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China; Department of Cardiology, The Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Shanjie Wang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Fan Yang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Junyan Xu
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China; Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, College of Emergency and Trauma, Hainan Medical University, Haikou, People's Republic of China
| | - Zhifeng Qin
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Xinxin Liu
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Muhua Cao
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Peng Zhao
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Guohua Zhang
- Department of Cardiology, Harbin Second Hospital, Harbin, China
| | - Zhuozhong Wang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Yiying Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Jiamusi University, Jiamusi, China
| | - Yidan Wang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Kaiyang Lin
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Shaohong Fang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Zhao Wang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Tianshu Han
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Maoyi Tian
- School of Public Health, Harbin Medical University, Harbin, China; The George Institute for Global Health, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), University of the Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| | - Jinwei Tian
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China; Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, College of Emergency and Trauma, Hainan Medical University, Haikou, People's Republic of China.
| | - Bo Yu
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| |
Collapse
|
37
|
Zhou Y, Gui L, Wei W, Xu EG, Zhou W, Sokolova IM, Li M, Wang Y. Low particle concentrations of nanoplastics impair the gut health of medaka. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106422. [PMID: 36773443 DOI: 10.1016/j.aquatox.2023.106422] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
The environmental occurrence of nanoplastics (NPs) is now evident but their long-term impacts on organisms are unclear, limiting ecological and health risk assessment. We hypothesized that chronic exposure to low particle concentrations of NPs can result in gut-associated toxicity, and subsequently affect survival of fish. Japanese medaka Oryzias latipes were exposed to polystyrene NPs (diameter 100 nm; 0, 10, 104, and 106 items/L) for 3 months, and histopathology, digestive and antioxidant enzymes, immunity, intestinal permeability, gut microbiota, and mortality were assessed. NP exposures caused intestinal lesions, and increased intestinal permeability of the gut. The trypsin, lipase, and chymotrypsin activities were increased, but the amylase activity was decreased. Oxidative damage was reflected by the decreased superoxide dismutase and alkaline phosphatase and increased malondialdehyde, catalase, and lysozyme. The integrated biomarkers response index values of all NP-exposed medaka were significantly increased compared to the control group. Moreover, NP exposures resulted in a decrease of diversity and changed the intestinal microbiota composition. Our results provide new evidence that long-term NPs exposure impaired the health of fish at extremely low particle concentrations, suggesting the need for long-term toxicological studies resembling environmental particle concentrations when assessing the risk of NPs.
Collapse
Affiliation(s)
- Yinfeng Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center For Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lang Gui
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center For Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wenbo Wei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center For Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Wenzhong Zhou
- Eco‑environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Mingyou Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center For Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Youji Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center For Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
38
|
Lee JH, Woo KJ, Hong J, Han KI, Kim HS, Kim TJ. Heat-Killed Enterococcus faecalis Inhibit FL83B Hepatic Lipid Accumulation and High Fat Diet-Induced Fatty Liver Damage in Rats by Activating Lipolysis through the Regulation the AMPK Signaling Pathway. Int J Mol Sci 2023; 24:ijms24054486. [PMID: 36901915 PMCID: PMC10002555 DOI: 10.3390/ijms24054486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Continuous consumption of high-calorie meals causes lipid accumulation in the liver and liver damage, leading to non-alcoholic fatty liver disease (NAFLD). A case study of the hepatic lipid accumulation model is needed to identify the mechanisms underlying lipid metabolism in the liver. In this study, the prevention mechanism of lipid accumulation in the liver of Enterococcus faecalis 2001 (EF-2001) was extended using FL83B cells (FL83Bs) and high-fat diet (HFD)-induced hepatic steatosis. EF-2001 treatment inhibited the oleic acid (OA) lipid accumulation in FL83B liver cells. Furthermore, we performed lipid reduction analysis to confirm the underlying mechanism of lipolysis. The results showed that EF-2001 downregulated proteins and upregulated AMP-activated protein kinase (AMPK) phosphorylation in the sterol regulatory element-binding protein 1c (SREBP-1c) and AMPK signaling pathways, respectively. The effect of EF-2001 on OA-induced hepatic lipid accumulation in FL83Bs enhanced the phosphorylation of acetyl-CoA carboxylase and reduced the levels of lipid accumulation proteins SREBP-1c and fatty acid synthase. EF-2001 treatment increased the levels of adipose triglyceride lipase and monoacylglycerol during lipase enzyme activation, which, when increased, contributed to increased liver lipolysis. In conclusion, EF-2001 inhibits OA-induced FL83B hepatic lipid accumulation and HFD-induced hepatic steatosis in rats through the AMPK signaling pathway.
Collapse
Affiliation(s)
- Jin-Ho Lee
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Keun-Jung Woo
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Joonpyo Hong
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Kwon-Il Han
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
- Research & Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea
| | - Han Sung Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Tack-Joong Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
- Research & Development Center, Doctor TJ Co., Ltd., Wonju 26493, Republic of Korea
- Correspondence: ; Tel.: +82-33-760-224
| |
Collapse
|
39
|
Gholami H, Chmiel JA, Burton JP, Maleki Vareki S. The Role of Microbiota-Derived Vitamins in Immune Homeostasis and Enhancing Cancer Immunotherapy. Cancers (Basel) 2023; 15:1300. [PMID: 36831641 PMCID: PMC9954268 DOI: 10.3390/cancers15041300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Not all cancer patients who receive immunotherapy respond positively and emerging evidence suggests that the gut microbiota may be linked to treatment efficacy. Though mechanisms of microbial contributions to the immune response have been postulated, one likely function is the supply of basic co-factors to the host including selected vitamins. Bacteria, fungi, and plants can produce their own vitamins, whereas humans primarily obtain vitamins from exogenous sources, yet despite the significance of microbial-derived vitamins as crucial immune system modulators, the microbiota is an overlooked source of these nutrients in humans. Microbial-derived vitamins are often shared by gut bacteria, stabilizing bioenergetic pathways amongst microbial communities. Compositional changes in gut microbiota can affect metabolic pathways that alter immune function. Similarly, the immune system plays a pivotal role in maintaining the gut microbiota, which parenthetically affects vitamin biosynthesis. Here we elucidate the immune-interactive mechanisms underlying the effects of these microbially derived vitamins and how they can potentially enhance the activity of immunotherapies in cancer.
Collapse
Affiliation(s)
- Hasti Gholami
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - John A. Chmiel
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
- Canadian Research and Development Centre for Probiotics, Lawson Research Health Research Institute, London, ON N6A 5W9, Canada
| | - Jeremy P. Burton
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
- Canadian Research and Development Centre for Probiotics, Lawson Research Health Research Institute, London, ON N6A 5W9, Canada
- Division of Urology, Department of Surgery, Western University, London, ON N6A 3K7, Canada
| | - Saman Maleki Vareki
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
40
|
Chen TH, Cheng CY, Huang CK, Ho YH, Lin JC. Exploring the Relevance between Gut Microbiota-Metabolites Profile and Chronic Kidney Disease with Distinct Pathogenic Factor. Microbiol Spectr 2023; 11:e0280522. [PMID: 36475922 PMCID: PMC9927243 DOI: 10.1128/spectrum.02805-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
The intimate correlation of chronic kidney disease (CKD) with structural alteration in gut microbiota or metabolite profile has been documented in a growing body of studies. Nevertheless, a paucity of demonstrated knowledge regarding the impact and underlying mechanism of gut microbiota or metabolite on occurrence or progression of CKD is unclarified thus far. In this study, a liquid chromatography coupled-mass spectrometry and long-read sequencing were applied to identify gut metabolites and microbiome with statistically-discriminative abundance in diabetic CKD patients (n = 39), hypertensive CKD patients (n = 26), or CKD patients without comorbidity (n = 40) compared to those of healthy participants (n = 60). The association between CKD-related species and metabolite was evaluated by using zero-inflated negative binomial (ZINB) regression. The predictive utility of identified operational taxonomic units (OTUs), metabolite, or species-metabolite association toward the diagnosis of incident chronic kidney disease with distinct pathogenic factor was assessed using the random forest regression model and the receiver operating characteristic (ROC) curve. The results of statistical analyses indicated alterations in the relative abundances of 26 OTUs and 41 metabolites that were specifically relevant to each CKD-patient group. The random forest regression model with only species, metabolites, or its association differentially distinguished the hypertensive, diabetic CKD patients, or enrolled CKD patients without comorbidity from the healthy participants. IMPORTANCE Gut dysbiosis-altered metabolite association exhibits specific and convincing utility to differentiate CKD associated with distinct pathogenic factor. These results present the validity of pathogenesis-associated markers across healthy participants and high-risk population toward the early screening, prevention, diagnosis, or personalized treatment of CKD.
Collapse
Affiliation(s)
- Tso-Hsiao Chen
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Medical University-Research Center of Urology and Kidney (RCUK), School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Yi Cheng
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Medical University-Research Center of Urology and Kidney (RCUK), School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Kai Huang
- Department of Laboratory Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hsien Ho
- Department of Laboratory Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
41
|
Chen J, Xiao Y, Li D, Zhang S, Wu Y, Zhang Q, Bai W. New insights into the mechanisms of high-fat diet mediated gut microbiota in chronic diseases. IMETA 2023; 2:e69. [PMID: 38868334 PMCID: PMC10989969 DOI: 10.1002/imt2.69] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/13/2022] [Accepted: 11/06/2022] [Indexed: 06/14/2024]
Abstract
High-fat diet (HFD) has been recognized as a primary factor in the risk of chronic disease. Obesity, diabetes, gastrointestinal diseases, neurodegenerative diseases, and cardiovascular diseases have long been known as chronic diseases with high worldwide incidence. In this review, the influences of gut microbiota and their corresponding bacterial metabolites on the mechanisms of HFD-induced chronic diseases are systematically summarized. Gut microbiota imbalance is also known to increase susceptibility to diseases. Several studies have proven that HFD has a negative impact on gut microbiota, also exacerbating the course of many chronic diseases through increased populations of Erysipelotrichaceae, facultative anaerobic bacteria, and opportunistic pathogens. Since bile acids, lipopolysaccharide, short-chain fatty acids, and trimethylamine N-oxide have long been known as common features of bacterial metabolites, we will explore the possibility of synergistic mechanisms among those metabolites and gut microbiota in the context of HFD-induced chronic diseases. Recent literature concerning the mechanistic actions of HFD-mediated gut microbiota have been collected from PubMed, Google Scholar, and Scopus. The aim of this review is to provide new insights into those mechanisms and to point out the potential biomarkers of HFD-mediated gut microbiota.
Collapse
Affiliation(s)
- Jiali Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid DetectionJinan UniversityGuangzhouChina
- School of Chinese Medicine, Centre for Cancer and Inflammation ResearchHong Kong Baptist UniversityHong KongChina
| | - Yuhang Xiao
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid DetectionJinan UniversityGuangzhouChina
| | - Dongmei Li
- Department of Microbiology & ImmunologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Shiqing Zhang
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Yingzi Wu
- School of Chinese Medicine, Centre for Cancer and Inflammation ResearchHong Kong Baptist UniversityHong KongChina
| | - Qing Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid DetectionJinan UniversityGuangzhouChina
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid DetectionJinan UniversityGuangzhouChina
| |
Collapse
|
42
|
Jian S, Yang K, Zhang L, Zhang L, Xin Z, Wen C, He S, Deng J, Deng B. The modulation effects of plant‐derived bioactive ingredients on chronic kidney disease: Focus on the gut–kidney axis. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Shiyan Jian
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Kang Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Lingna Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Limeng Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Zhongquan Xin
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Chaoyu Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Shansong He
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Jinping Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Baichuan Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| |
Collapse
|
43
|
Liang X, Chou OHI, Cheung BMY. The association between denture use and cardiovascular diseases. The United States National Health and Nutrition Examination Survey 2009-2018. Front Cardiovasc Med 2023; 9:1000478. [PMID: 36704477 PMCID: PMC9871755 DOI: 10.3389/fcvm.2022.1000478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Poor dental health is associated with cardiovascular diseases (CVD). However, the relationship between CVD and denture use is currently unknown. This study aimed to investigate whether denture use is associated with CVD among American adults. Methods 10,246 non-pregnant subjects aged 30-59 years from five cycles (2009-2018) of the United States National Health and Nutrition Examination Survey (NHANES) were included in this study. Participants who were observed by a dental examiner wearing denture/partial denture/plates were defined as denture users. CVD was defined as self-reported coronary heart disease, myocardial infarction, angina pectoris, stroke, and congestive heart failure. The association between denture use and CVD was analyzed using logistic regression with adjustment for potential cofounders. Results 4.4% (95% CI, 3.9-5.0) participants had CVD, and 3.5% (95% CI, 2.8-4.5) participants were denture users. Denture use was associated with CVD [OR = 4.26, 95% CI (2.90-6.28), P < 0.01], which remained significant [adjusted OR = 1.82, 95% CI (1.15-2.88), P < 0.01] after adjustments for sociodemographic characteristics, smoking, alcohol use, drug addiction, body mass index (BMI), and abnormal medical conditions including gum problem, hypertension, diabetes, and hyperlipidemia. Women with dentures had significantly higher odds of CVD [adjusted OR = 2.13, 95% CI (1.10-4.11), P = 0.025]. Conclusion In this nationally representative survey, denture use was associated with CVD. Denture use may be an unconventional risk factor for assessing CVD risks, especially in women. Future studies are required to investigate whether CVD and denture use is causally related.
Collapse
Affiliation(s)
- Xiaopeng Liang
- Division of Clinical Pharmacology and Therapeutics, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Oscar Hou In Chou
- Division of Clinical Pharmacology and Therapeutics, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Bernard M. Y. Cheung
- Division of Clinical Pharmacology and Therapeutics, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,Institute of Cardiovascular Science and Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,*Correspondence: Bernard M. Y. Cheung,
| |
Collapse
|
44
|
Luo ED, Jiang HM, Chen W, Wang Y, Tang M, Guo WM, Diao HY, Cai NY, Yang X, Bian Y, Xing SS. Advancements in lead therapeutic phytochemicals polycystic ovary syndrome: A review. Front Pharmacol 2023; 13:1065243. [PMID: 36699064 PMCID: PMC9868606 DOI: 10.3389/fphar.2022.1065243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine diseases in women of reproductive age and features complex pathological symptoms and mechanisms. Existing medical treatments have, to some extent, alleviated the deterioration of PCOS. However, these strategies only temporarily control symptoms, with a few side effects and no preventive effect. Phytochemicals extracted from medicinal herbs and plants are vital for discovering novel drugs. In recent years, many kinds of research have proven that phytochemicals isolated from traditional Chinese medicine (TCM) and medicinal plants show significant potential in preventing, alleviating, and treating PCOS. Nevertheless, compared to the abundance of experimental literature and minimal specific-topic reviews related to PCOS, there is a lack of systematic reviews to summarize these advancements in this promising field. Under this background, we systematically document the progress of bioactive phytochemicals from TCM and medicinal plants in treating PCOS, including flavonoids, polyphenols, and alkaloids. According to the literature, these valuable phytochemicals demonstrated therapeutic effects on PCOS supported by in vivo and in vitro experiments, mainly depending on anti-inflammatory, antioxidation, improvement of hormone disorder and insulin resistance (IR), and alleviation of hyperinsulinemia. Based on the current progress, future research directions should emphasize 1) exploring bioactive phytochemicals that potentially mediate bone metabolism for the treatment of PCOS; 2) improving unsatisfactory bioavailability by using advanced drug delivery systems such as nanoparticles and antibody-conjugated drugs, as well as a chemical modification; 3) conducting in-depth research on the pathogenesis of PCOS to potentially impact the gut microbiota and its metabolites in the evolution of PCOS; 4) revealing the pharmacological effects of these bioactive phytochemicals on PCOS at the genetic level; and 5) exploring the hypothetical and unprecedented functions in regulating PCOS by serving as proteolysis-targeting chimeras and molecular glues compared with traditional small molecule drugs. In brief, this review aims to provide detailed mechanisms of these bioactive phytochemicals and hopefully practical and reliable insight into clinical applications concerning PCOS.
Collapse
Affiliation(s)
- Er-Dan Luo
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hai-Mei Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Chen
- Traditional Chinese Medicine Department, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Chengdu, China
| | - Mi Tang
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wen-Mei Guo
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao-Yang Diao
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ning-Yuan Cai
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Yang
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Bian
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Chengdu, China
| | - Sha-Sha Xing
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
45
|
Chandiwana P, Munjoma PT, Mazhandu AJ, Li J, Baertschi I, Wyss J, Jordi SBU, Mazengera LR, Yilmaz B, Misselwitz B, Duri K. Antenatal gut microbiome profiles and effect on pregnancy outcome in HIV infected and HIV uninfected women in a resource limited setting. BMC Microbiol 2023; 23:4. [PMID: 36604616 PMCID: PMC9817306 DOI: 10.1186/s12866-022-02747-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV) severely damages the epithelial cells of the gut lining leading to an inflamed leaky gut, translocation of microbial products, and dysbiosis resulting in systemic immune activation. Also, microbiota composition and maternal gut function can be altered in pregnancy through changes in the immune system and intestinal physiology. The aim of this study was to investigate the gut microbiota in HIV-infected and HIV-uninfected pregnant women and to compare and identify the association between gut microbial composition and adverse birth outcomes. RESULTS A total of 94 pregnant women (35 HIV-infected and 59 HIV-uninfected controls) were recruited in Harare from 4 polyclinics serving populations with relatively poor socioeconomic status. Women were of a median age of 28 years (interquartile range, IQR: 22.3-32.0) and 55% of women were 35 weeks gestational age at enrolment (median 35.0 weeks, IQR: 32.5-37.2). Microbiota profiling in these participants showed that species richness was significantly lower in the HIV-infected pregnant women compared to their HIV-uninfected peers and significant differences in β-diversity using Bray-Curtis dissimilarity were observed. In contrast, there was no significant difference in α-diversity between immune-compromised (CD4+ < 350 cells/µL) and immune-competent HIV-infected women (CD4+ ≥ 350 cells/µL) even after stratification by viral load suppression. HIV infection was significantly associated with a reduced abundance of Clostridium, Turicibacter, Ruminococcus, Parabacteroides, Bacteroides, Bifidobacterium, Treponema, Oscillospira, and Faecalibacterium and a higher abundance of Actinomyces, and Succinivibrio. Low infant birth weight (< 2500 g) was significantly associated with high abundances of the phylum Spirochaetes, the families Spirochaeteceae, Veillonellaceae, and the genus Treponema. CONCLUSION The results reported here show that the species richness and taxonomy composition of the gut microbiota is altered in HIV-infected pregnant women, possibly reflecting intestinal dysbiosis. Some of these taxa were also associated with low infant birth weight.
Collapse
Affiliation(s)
- Panashe Chandiwana
- grid.13001.330000 0004 0572 0760Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| | - Privilege Tendai Munjoma
- grid.13001.330000 0004 0572 0760Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| | - Arthur John Mazhandu
- grid.13001.330000 0004 0572 0760Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| | - Jiaqi Li
- grid.411656.10000 0004 0479 0855Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, 3008 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Isabel Baertschi
- grid.411656.10000 0004 0479 0855Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, 3008 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Jacqueline Wyss
- grid.411656.10000 0004 0479 0855Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, 3008 Bern, Switzerland
| | - Sebastian Bruno Ulrich Jordi
- grid.411656.10000 0004 0479 0855Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, 3008 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Lovemore Ronald Mazengera
- grid.13001.330000 0004 0572 0760Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| | - Bahtiyar Yilmaz
- grid.411656.10000 0004 0479 0855Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, 3008 Bern, Switzerland
| | - Benjamin Misselwitz
- grid.411656.10000 0004 0479 0855Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland ,grid.5734.50000 0001 0726 5157Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, 3008 Bern, Switzerland
| | - Kerina Duri
- grid.13001.330000 0004 0572 0760Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| |
Collapse
|
46
|
Bubnov R, Spivak M. Pathophysiology-Based Individualized Use of Probiotics and Prebiotics for Metabolic Syndrome: Implementing Predictive, Preventive, and Personalized Medical Approach. ADVANCES IN PREDICTIVE, PREVENTIVE AND PERSONALISED MEDICINE 2023:133-196. [DOI: 10.1007/978-3-031-19564-8_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
47
|
Pipitone RM, Ciccioli C, Infantino G, La Mantia C, Parisi S, Tulone A, Pennisi G, Grimaudo S, Petta S. MAFLD: a multisystem disease. Ther Adv Endocrinol Metab 2023; 14:20420188221145549. [PMID: 36726391 PMCID: PMC9885036 DOI: 10.1177/20420188221145549] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/26/2022] [Indexed: 01/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), affecting about 25% of general population and more than 50% of dysmetabolic patients, is an emerging cause of chronic liver disease and its complications. Recently, an international consensus of experts proposed to rename this disease as 'Metabolic dysfunction-Associated Fatty Liver Disease' (MAFLD) to focus on the bidirectional interplay between fatty liver and metabolic alterations and to stress the need of assessing fatty liver independently from alcohol consumption and other coexisting causes of liver disease. The peculiarity of NAFLD/MAFLD lies in the presence of a higher risk of not only - as expected - liver-related events but also of extrahepatic events, mostly cardiovascular and cancers. Available evidence suggests that these associations are not only the expression of sharing the same risk factors but shed light about the ability of NAFLD/MAFLD and particularly of its progressive form - nonalcoholic/metabolic dysfunction-associated steatohepatitis - to act as an independent risk factor via promotion of atherogenic dyslipidemia and a proinflammatory, profibrogenic, and procoagulant systemic environment. The present review summarizes available epidemiological and clinical evidence supporting the concept of NAFLD/MAFLD as a multisystemic disease, and highlights potential explanatory mechanisms underlying the association between NAFLD/MAFLD and extrahepatic disorders.
Collapse
Affiliation(s)
- Rosaria Maria Pipitone
- Section of Gastroenterology and Hepatology,
PROMISE, University of Palermo, Palermo, Italy
| | - Carlo Ciccioli
- Section of Gastroenterology and Hepatology,
PROMISE, University of Palermo, Palermo, Italy
| | - Giuseppe Infantino
- Section of Gastroenterology and Hepatology,
PROMISE, University of Palermo, Palermo, Italy
| | - Claudia La Mantia
- Section of Gastroenterology and Hepatology,
PROMISE, University of Palermo, Palermo, Italy
| | - Stefanie Parisi
- Section of Gastroenterology and Hepatology,
PROMISE, University of Palermo, Palermo, Italy
| | - Adele Tulone
- Section of Gastroenterology and Hepatology,
PROMISE, University of Palermo, Palermo, Italy
| | - Grazia Pennisi
- Section of Gastroenterology and Hepatology,
PROMISE, University of Palermo, Palermo, Italy
| | - Stefania Grimaudo
- Section of Gastroenterology and Hepatology,
PROMISE, University of Palermo, Palermo, Italy
| | | |
Collapse
|
48
|
Impact of broad-spectrum antibiotics on the gut-microbiota-spleen-brain axis. Brain Behav Immun Health 2022; 27:100573. [PMID: 36583066 PMCID: PMC9793168 DOI: 10.1016/j.bbih.2022.100573] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
The spleen is a key immune-related organ that plays a role in communication between the brain and the immune system through the brain-spleen axis and brain-gut-microbiota axis. However, how the gut microbiota affects spleen and brain function remains unclear. Here, we investigated whether microbiome depletion induced by administration of an antibiotic cocktail (ABX) affects spleen and brain function. Treatment with ABX for 14 days resulted in a significant decrease in spleen weight and significant alterations in splenic functions, including the percentage of neutrophils, NK cells, macrophages, and CD8+ T cells. Furthermore, ABX treatment resulted in the depletion of a large portion of the gut microbiota. Untargeted metabolomics analysis showed that ABX treatment caused alterations in the levels of certain compounds in the plasma, spleen, and brain. Moreover, ABX treatment decreased the expression of microglia marker Iba1 in the cerebral cortex. Interestingly, correlations were found between the abundance of different microbiome components and metabolites in various tissues, as well as splenic cell populations and spleen weight. These findings suggest that ABX-induced microbiome depletion and altered metabolite levels may affect spleen and brain function through the gut-microbiota-spleen-brain axis.
Collapse
|
49
|
Chen B, Collen LV, Mowat C, Isaacs KL, Singh S, Kane SV, Farraye FA, Snapper S, Jneid H, Lavie CJ, Krittanawong C, Krittanawong C. Inflammatory Bowel Disease and Cardiovascular Diseases. Am J Med 2022; 135:1453-1460. [PMID: 36058305 DOI: 10.1016/j.amjmed.2022.08.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Emerging data showed patients with chronic inflammatory disorders, including inflammatory bowel disease, are more likely to develop atherosclerotic cardiovascular diseases, heart failure, and atrial fibrillation. This article aims to review the evidence of those associations. METHODS PubMed was searched from inception to January 2022 using the keywords, including inflammatory bowel diseases, Crohn disease, ulcerative colitis, atherosclerotic cardiovascular disease, coronary artery disease, cardiovascular disease, atrial fibrillation, heart failure, and premature coronary artery disease. Relevant literature, including retrospective/prospective cohort studies, clinical trials, meta-analyses, and guidelines, were reviewed and summarized. RESULTS Both ulcerative colitis and Crohn disease are associated with an increased risk of atherosclerotic cardiovascular diseases, cerebrovascular accidents, premature coronary artery disease, and atrial fibrillation. Ulcerative colitis is associated with an increased risk of heart failure. The increased atrial fibrillation occurred during inflammatory bowel disease flares and persistent activity but not during periods of remission. Hypotheses for the mechanism underlying the association of inflammatory bowel disease and atherosclerotic cardiovascular diseases include shared risk factors (ie, obesity, diabetes, smoking, diet) and pathophysiology (gut microbiome dysfunction) or adverse effects from inflammatory bowel disease itself or its treatment (ie, chronic inflammation, dyslipidemia, thrombocytosis, steroids). CONCLUSION Inflammatory bowel disease is associated with an increased risk of atherosclerotic cardiovascular diseases, heart failure, and atrial fibrillation. A multidisciplinary team with gastroenterologists and cardiologists is needed to optimize the care for patients with inflammatory bowel disease and associated cardiac diseases.
Collapse
Affiliation(s)
- Bing Chen
- Department of Gastroenterology and Nutrition, Geisinger Medical Center, Danville, Penn
| | - Lauren V Collen
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | - Craig Mowat
- Gastrointestinal Unit, Ninewells Hospital & Medical School, Dundee, UK
| | - Kim L Isaacs
- University of North Carolina at Chapel Hill, Division of Gastroenterology and Hepatology, Chapel Hill, NC
| | - Siddharth Singh
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minn
| | - Sunanda V Kane
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minn
| | - Francis A Farraye
- Inflammatory Bowel Disease Center, Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Fla
| | - Scott Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Mass; Division of Gastroenterology, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, Mass
| | - Hani Jneid
- John Sealy Distinguished Centennial Chair in Cardiology, Chief, Division of Cardiology, University of Texas Medical Branch, Houston
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School, University of Queensland School of Medicine, New Orleans, La
| | | | | |
Collapse
|
50
|
Yong C, Huang G, Ge H, Zhu Y, Yang Y, Yu Y, Tian F, Gao K, Zhou E. Perilla frutescens
L. alleviates trimethylamine
N‐oxide
–induced apoptosis in the renal tubule by regulating
ASK1‐JNK
phosphorylation. Phytother Res 2022; 37:1274-1292. [PMID: 36420586 DOI: 10.1002/ptr.7684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/24/2022] [Accepted: 10/11/2022] [Indexed: 11/26/2022]
Abstract
Trimethylamine N-oxide (TMAO) is associated with overall mortality in patients with chronic kidney disease (CKD). Previous findings suggest that P. frutescens (L.) can alleviate renal injury, but its effects and mechanisms underlying alleviation of TMAO-induced kidney damage remain unclear. In this study, a TMAO injury model, in vivo and in vitro, was established to clarify the effects and mechanisms of P. frutescens in alleviating TMAO-induced kidney injury. The results show that TMAO (60 mM/L) can induce the activation of apoptosis signal-regulating kinase 1 (ASK1)-c-Jun N-terminal kinase (JNK), thus aggravating downstream cell apoptosis in vitro. The study also found that P. frutescens aqueous extract (PFAE) (5 mg/mL) can inhibit TMAO-induced apoptosis by downregulating ASK1-JNK phosphorylation. In the in vivo experiments, it was demonstrated that TMAO can increase the levels of blood urea nitrogen and cystatin C, aggravating renal tubular epithelial apoptosis. The results also show that PFAE can reduce TMAO-induced renal damage by inhibiting ASK1-JNK phosphorylation in vivo. Our findings confirmed that P. frutescens can alleviate TMAO-induced renal tubule apoptosis by regulating ASK1-JNK phosphorylation, indicating that P. frutescens may be an effective treatment for alleviating TMAO damage in CKD.
Collapse
Affiliation(s)
- Chen Yong
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine Jiangsu Province Hospital of Chinese Medicine Nanjing People's Republic of China
- No. 1 Clinical Medical College Nanjing University of Chinese Medicine Nanjing People's Republic of China
| | - Guoshun Huang
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine Jiangsu Province Hospital of Chinese Medicine Nanjing People's Republic of China
- No. 1 Clinical Medical College Nanjing University of Chinese Medicine Nanjing People's Republic of China
| | - Hongwei Ge
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine Jiangsu Province Hospital of Chinese Medicine Nanjing People's Republic of China
- No. 1 Clinical Medical College Nanjing University of Chinese Medicine Nanjing People's Republic of China
| | - Yiye Zhu
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine Jiangsu Province Hospital of Chinese Medicine Nanjing People's Republic of China
- No. 1 Clinical Medical College Nanjing University of Chinese Medicine Nanjing People's Republic of China
| | - Yang Yang
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine Jiangsu Province Hospital of Chinese Medicine Nanjing People's Republic of China
- No. 1 Clinical Medical College Nanjing University of Chinese Medicine Nanjing People's Republic of China
| | - Yongfei Yu
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine Jiangsu Province Hospital of Chinese Medicine Nanjing People's Republic of China
- No. 1 Clinical Medical College Nanjing University of Chinese Medicine Nanjing People's Republic of China
| | - Fang Tian
- Research Center of Chinese Medicine Jiangsu Province Hospital of Chinese Medicine Nanjing People's Republic of China
| | - Kun Gao
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine Jiangsu Province Hospital of Chinese Medicine Nanjing People's Republic of China
- Inheritance Studio of Traditional Chinese Medicine Master Yanqin Zou Jiangsu Province Hospital of Chinese Medicine Nanjing People's Republic of China
| | - Enchao Zhou
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine Jiangsu Province Hospital of Chinese Medicine Nanjing People's Republic of China
- Inheritance Studio of Traditional Chinese Medicine Master Yanqin Zou Jiangsu Province Hospital of Chinese Medicine Nanjing People's Republic of China
| |
Collapse
|