1
|
DeCaen PG, Kimura LF. Methods to assess neuronal primary cilia electrochemical signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646689. [PMID: 40235990 PMCID: PMC11996568 DOI: 10.1101/2025.04.01.646689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Primary cilia are polymodal sensory organelles which project from the apical side of polarized cells. They are found in all brain hemispheres but are most pronounced in neurons which comprise the granular layers of the hippocampus and cerebellum. Pathogenic variants in genes which encode primary cilia components are responsible for neuronal ciliopathies- a group of central nervous system disorders characterized by neurodevelopmental conditions such as intellectual disability, seizure, ataxia, and sensory deficits. In the hippocampus, neuronal primary cilia form chemical synapses with axons and their membranes are populated with unique sets of ion channels and G protein-coupled receptors (GPCRs). Primary cilia are small and privileged compartments that are challenging organelles to study. In detail, we describe cilia electrophysiology methods and the use of cilia-specific fluorescent sensors to assay neuronal polycystin channel function and serotonergic receptor signaling, respectively. These tools allow researchers to assay calcium, cAMP and channel-related signaling pathways in isolated neurons in real time and in semi-quantitative terms, while enhancing our understanding of this understudied organelle and its dysregulation in ciliopathy disease states.
Collapse
|
2
|
Starling-Alves I, Peters L, Wilkey ED. Beyond the sum of their parts: A multi-dimensional approach to dyscalculia-dyslexia comorbidity integrating studies of the brain, behavior, and genetics. Dev Cogn Neurosci 2025; 72:101510. [PMID: 39827782 PMCID: PMC11787563 DOI: 10.1016/j.dcn.2025.101510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/25/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Mathematics learning disorders (MD) and reading learning disorders (RD) are persistent conditions that interfere with success in academic and daily-life tasks, and cannot be attributed to intellectual disabilities, sensory deficits, or environmental factors. Prevalence rates of MD and RD are estimated at 5-10 % of school-age children, and their comorbidity (MDRD) is highly prevalent, with around 40 % of children with MD also experiencing RD. Despite this high comorbidity rate, research on MDRD has received less attention compared to isolated conditions, leaving its neurocognitive mechanisms unclear. In this study, we review behavioral, neuroimaging, and genetic MDRD research and discuss how they support current MDRD models, including the: (1) additive model, which proposes that MDRD results from the addition of neurocognitive deficits unique to MD or RD, (2) domain-general deficits model, which proposes that MDRD stems from executive function deficits, and (3) increased risk model, which proposes that MDRD emerges from phonological deficits characteristic of RD. Further, we recommend updating models of MDRD by integrating the multiple deficit and dimensional models to build a unified framework for research and diagnosis that considers multiple dimensions of mathematics, reading, and domain-general skills. This unified framework highlights the importance of a holistic, functional diagnosis.
Collapse
|
3
|
DeCaen PG, Kimura LF. Methods to Assess Neuronal Primary Cilia Electrochemical Signaling. J Cell Physiol 2025; 240:e70034. [PMID: 40227694 PMCID: PMC11996007 DOI: 10.1002/jcp.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Primary cilia are polymodal sensory organelles which project from the apical side of polarized cells. They are found in all brain hemispheres but are most pronounced in neurons, which comprise the granular layers of the hippocampus and cerebellum. Pathogenic variants in genes which encode primary cilia components are responsible for neuronal ciliopathies-a group of central nervous system disorders characterized by neurodevelopmental conditions such as intellectual disability, seizure, ataxia, and sensory deficits. In the hippocampus, neuronal primary cilia form chemical synapses with axons and their membranes are populated with unique sets of ion channels and G protein-coupled receptors (GPCRs). Primary cilia are small and privileged compartments that are challenging organelles to study. In detail, we describe cilia electrophysiology methods and the use of cilia-specific fluorescent sensors to assay neuronal polycystin channel function and serotonergic receptor signaling, respectively. These tools allow researchers to assay calcium, cAMP and channel-related signaling pathways in isolated neurons in real-time and in semi-quantitative terms, while enhancing our understanding of this understudied organelle and its dysregulation in ciliopathy disease states.
Collapse
Affiliation(s)
- Paul G. DeCaen
- Feinberg School of Medicine, Department of PharmacologyNorthwestern UniversityChicagoIllinoisUSA
| | - Louise F. Kimura
- Feinberg School of Medicine, Department of PharmacologyNorthwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
4
|
Engelhardt D, Petersen JR, Martyr C, Kuhn-Gale H, Niswander LA. Moderate levels of folic acid benefit outcomes for cilia based neural tube defects. Dev Biol 2025; 520:62-74. [PMID: 39755226 DOI: 10.1016/j.ydbio.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
Folic acid (FA) supplementation is a potent tool to reduce devastating birth defects known as neural tube defects (NTDs). Though effective, questions remain how FA achieves its protective effect and which gene mutations are sensitive to folic acid levels. We explore the relationship between FA dosage and NTD rates using NTD mouse models. We demonstrate that NTD rates in mouse models harboring mutations in cilia genes depend on FA dosage. Cilia mutant mouse models demonstrate reductions in NTD rates when exposed to moderate levels of FA that are not observed at higher fortified levels of FA. This trend continues with a moderate level of FA being beneficial for primary and motile cilia formation. We present a mechanism through which fortified FA levels reduce basal levels of reactive oxygen species (ROS) which in turn reduces ROS-sensitive GTPase activity required for ciliogenesis. Our data indicates that genes involved in cilia formation and function represent a FA sensitive category of mutations and a possible avenue for further reducing NTD and ciliopathy incidences.
Collapse
Affiliation(s)
- David Engelhardt
- Department of Molecular, Cellular and Development Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Juliette R Petersen
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Denver, CO, 80045, USA
| | - Cara Martyr
- Department of Molecular, Cellular and Development Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Hannah Kuhn-Gale
- Department of Molecular, Cellular and Development Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Lee A Niswander
- Department of Molecular, Cellular and Development Biology, University of Colorado, Boulder, CO, 80309, USA.
| |
Collapse
|
5
|
Restoring the primary cilia-autophagy axis in neurons to foster cognitive resilience. NATURE AGING 2025; 5:348-349. [PMID: 39994480 DOI: 10.1038/s43587-025-00834-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
|
6
|
Yusifov E, Schaettin M, Dumoulin A, Bachmann-Gagescu R, Stoeckli ET. The primary cilium gene CPLANE1 is required for peripheral nervous system development. Dev Biol 2025; 519:106-121. [PMID: 39694173 DOI: 10.1016/j.ydbio.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/05/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Ciliopathies are a group of neurodevelopmental disorders characterized by the dysfunction of the primary cilium. This small protrusion from most cells of our body serves as a signaling hub for cell-to-cell communication during development. Cell proliferation, differentiation, migration, and neural circuit formation have been demonstrated to depend on functional primary cilia. In the context of ciliopathies, the focus has been on the development of the central nervous system, while the peripheral nervous system has not been studied in depth. In line with phenotypes seen in patients, the absence of a functional primary cilium was shown to affect the migration of cranial and vagal neural crest cells, which contribute to the development of craniofacial features and the heart, respectively. We show here that the ciliopathy gene Cplane1 is required for the development of the peripheral nervous system. Loss of Cplane1 function in chicken embryos induces defects in dorsal root ganglia, which vary in size and fail to localize symmetrically along the spinal cord. These defects may help to understand the alteration in somatosensory perceptions described in some ciliopathy patients.
Collapse
Affiliation(s)
- Elkhan Yusifov
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Switzerland; University Research Priority Program 'Adaptive Brain Circuits in Development and Learning' (URPP AdaBD), University of Zurich, Switzerland
| | - Martina Schaettin
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Switzerland; University Research Priority Program 'Adaptive Brain Circuits in Development and Learning' (URPP AdaBD), University of Zurich, Switzerland
| | - Alexandre Dumoulin
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Switzerland
| | - Ruxandra Bachmann-Gagescu
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Switzerland; University Research Priority Program 'Adaptive Brain Circuits in Development and Learning' (URPP AdaBD), University of Zurich, Switzerland; Institute of Medical Genetics, University of Zurich, Switzerland
| | - Esther T Stoeckli
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Switzerland; University Research Priority Program 'Adaptive Brain Circuits in Development and Learning' (URPP AdaBD), University of Zurich, Switzerland.
| |
Collapse
|
7
|
Rivagorda M, Romeo-Guitart D, Blanchet V, Mailliet F, Boitez V, Barry N, Milunov D, Siopi E, Goudin N, Moriceau S, Guerrera C, Leibovici M, Saha S, Codogno P, Morselli E, Morel E, Armand AS, Oury F. A primary cilia-autophagy axis in hippocampal neurons is essential to maintain cognitive resilience. NATURE AGING 2025; 5:450-467. [PMID: 39984747 PMCID: PMC11922775 DOI: 10.1038/s43587-024-00791-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/06/2024] [Indexed: 02/23/2025]
Abstract
Blood-borne factors are essential to maintain neuronal synaptic plasticity and cognitive resilience throughout life. One such factor is osteocalcin (OCN), a hormone produced by osteoblasts that influences multiple physiological processes, including hippocampal neuronal homeostasis. However, the mechanism through which this blood-borne factor communicates with neurons remains unclear. Here we show the importance of a core primary cilium (PC) protein-autophagy axis in mediating the effects of OCN. We found that the OCN receptor GPR158 is present at the PC of hippocampal neurons and mediates the regulation of autophagy machinery by OCN. During aging, autophagy and PC core proteins are reduced in neurons, and restoring their levels is sufficient to improve cognitive impairments in aged mice. Mechanistically, the induction of this axis by OCN is dependent on the PC-dependent cAMP response element-binding protein signaling pathway. Altogether, this study demonstrates that the PC-autophagy axis is a gateway to mediate communication between blood-borne factors and neurons, and it advances understanding of the mechanisms involved in age-related cognitive decline.
Collapse
Affiliation(s)
- Manon Rivagorda
- Université Paris Cité, INSERM UMR-U1151, CNRS UMR-8253, Institut Necker Enfants Malades, Team 8, Paris, France
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - David Romeo-Guitart
- Université Paris Cité, INSERM UMR-U1151, CNRS UMR-8253, Institut Necker Enfants Malades, Team 8, Paris, France
| | - Victoria Blanchet
- Université Paris Cité, INSERM UMR-U1151, CNRS UMR-8253, Institut Necker Enfants Malades, Team 8, Paris, France
| | - François Mailliet
- Université Paris Cité, INSERM UMR-U1151, CNRS UMR-8253, Institut Necker Enfants Malades, Team 8, Paris, France
| | - Valérie Boitez
- Université Paris Cité, INSERM UMR-U1151, CNRS UMR-8253, Institut Necker Enfants Malades, Team 8, Paris, France
| | - Natalie Barry
- Université Paris Cité, INSERM UMR-U1151, CNRS UMR-8253, Institut Necker Enfants Malades, Team 8, Paris, France
| | | | - Eleni Siopi
- Université Paris Cité, INSERM UMR-U1151, CNRS UMR-8253, Institut Necker Enfants Malades, Team 8, Paris, France
| | - Nicolas Goudin
- Platform for Image Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR 3633, Paris, France
| | - Stéphanie Moriceau
- Université Paris Cité, INSERM UMR-U1151, CNRS UMR-8253, Institut Necker Enfants Malades, Team 8, Paris, France
- Platform for Neurobehavioral and Metaboblism, Institut Imagine, Structure Fédérative de Recherche Necker, 26 INSERM US24/CNRS UAR, Paris, France
| | - Chiara Guerrera
- Platform for Proteomic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR 3633, Paris, France
| | - Michel Leibovici
- Université Paris Cité, INSERM UMR-U1151, CNRS UMR-8253, Institut Necker Enfants Malades, Team 8, Paris, France
| | | | - Patrice Codogno
- Université Paris Cité, INSERM UMR-U1151, CNRS UMR-8253, Institut Necker Enfants Malades, Team 6, Paris, France
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Etienne Morel
- Université Paris Cité, INSERM UMR-U1151, CNRS UMR-8253, Institut Necker Enfants Malades, Team 6, Paris, France
| | - Anne-Sophie Armand
- Université Paris Cité, INSERM UMR-U1151, CNRS UMR-8253, Institut Necker Enfants Malades, Team 8, Paris, France
| | - Franck Oury
- Université Paris Cité, INSERM UMR-U1151, CNRS UMR-8253, Institut Necker Enfants Malades, Team 8, Paris, France.
| |
Collapse
|
8
|
Noble AR, Masek M, Hofmann C, Cuoco A, Rusterholz TDS, Özkoc H, Greter NR, Phelps IG, Vladimirov N, Kollmorgen S, Stoeckli E, Bachmann-Gagescu R. Shared and unique consequences of Joubert Syndrome gene dysfunction on the zebrafish central nervous system. Biol Open 2024; 13:bio060421. [PMID: 39400299 PMCID: PMC11583916 DOI: 10.1242/bio.060421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Joubert Syndrome (JBTS) is a neurodevelopmental ciliopathy defined by a highly specific midbrain-hindbrain malformation, variably associated with additional neurological features. JBTS displays prominent genetic heterogeneity with >40 causative genes that encode proteins localising to the primary cilium, a sensory organelle that is essential for transduction of signalling pathways during neurodevelopment, among other vital functions. JBTS proteins localise to distinct ciliary subcompartments, suggesting diverse functions in cilium biology. Currently, there is no unifying pathomechanism to explain how dysfunction of such diverse primary cilia-related proteins results in such a highly specific brain abnormality. To identify the shared consequence of JBTS gene dysfunction, we carried out transcriptomic analysis using zebrafish mutants for the JBTS-causative genes cc2d2aw38, cep290fh297, inpp5ezh506, talpid3i264 and togaram1zh510 and the Bardet-Biedl syndrome-causative gene bbs1k742. We identified no commonly dysregulated signalling pathways in these mutants and yet all mutants displayed an enrichment of altered gene sets related to central nervous system function. We found that JBTS mutants have altered primary cilia throughout the brain but do not display abnormal brain morphology. Nonetheless, behavioural analyses revealed reduced locomotion and loss of postural control which, together with the transcriptomic results, hint at underlying abnormalities in neuronal activity and/or neuronal circuit function. These zebrafish models therefore offer the unique opportunity to study the role of primary cilia in neuronal function beyond early patterning, proliferation and differentiation.
Collapse
Affiliation(s)
- Alexandra R. Noble
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
| | - Markus Masek
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Claudia Hofmann
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Arianna Cuoco
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | | | - Hayriye Özkoc
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Nadja R. Greter
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Ian G. Phelps
- Department of Pediatrics, University of Washington, Seattle, WA 8057, USA
| | - Nikita Vladimirov
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
- Brain Research Institute, University of Zurich, 98105 Zurich, Switzerland
- Center for Microscopy and Image Analysis (ZMB), University of Zurich, 8057 Zurich, Switzerland
| | - Sepp Kollmorgen
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
| | - Esther Stoeckli
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
| | - Ruxandra Bachmann-Gagescu
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
- Institute for Medical Genetics, University of Zurich, 8952 Zurich, Switzerland
| |
Collapse
|
9
|
Bear R, Sloan SA, Caspary T. Primary cilia shape postnatal astrocyte development through Sonic Hedgehog signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618851. [PMID: 39464094 PMCID: PMC11507945 DOI: 10.1101/2024.10.17.618851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Primary cilia function as specialized signaling centers that regulate many cellular processes including neuron and glia development. Astrocytes possess cilia, but the function of cilia in astrocyte development remains largely unexplored. Critically, dysfunction of either astrocytes or cilia contributes to molecular changes observed in neurodevelopmental disorders. Here, we show that a sub-population of developing astrocytes in the prefrontal cortex are ciliated. This population corresponds to proliferating astrocytes and largely expresses the ciliary protein ARL13B. Genetic ablation of astrocyte cilia in vivo at two distinct stages of astrocyte development results in changes to Sonic Hedgehog (Shh) transcriptional targets. We show that Shh activity is decreased in immature and mature astrocytes upon loss of cilia. Furthermore, loss of cilia in immature astrocytes results in decreased astrocyte proliferation and loss of cilia in mature astrocytes causes enlarged astrocyte morphology. Together, these results indicate that astrocytes require cilia for Shh signaling throughout development and uncover functions for astrocyte cilia in regulating astrocyte proliferation and maturation. This expands our fundamental knowledge of astrocyte development and cilia function to advance our understanding of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Rachel Bear
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street Suite 301, Atlanta GA 30322
- Graduate Program in Neuroscience
| | - Steven A. Sloan
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street Suite 301, Atlanta GA 30322
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street Suite 301, Atlanta GA 30322
| |
Collapse
|
10
|
Kim AH, Sakin I, Viviano S, Tuncel G, Aguilera SM, Goles G, Jeffries L, Ji W, Lakhani SA, Kose CC, Silan F, Oner SS, Kaplan OI, Ergoren MC, Mishra-Gorur K, Gunel M, Sag SO, Temel SG, Deniz E. CC2D1A causes ciliopathy, intellectual disability, heterotaxy, renal dysplasia, and abnormal CSF flow. Life Sci Alliance 2024; 7:e202402708. [PMID: 39168639 PMCID: PMC11339347 DOI: 10.26508/lsa.202402708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Intellectual and developmental disabilities result from abnormal nervous system development. Over a 1,000 genes have been associated with intellectual and developmental disabilities, driving continued efforts toward dissecting variant functionality to enhance our understanding of the disease mechanism. This report identified two novel variants in CC2D1A in a cohort of four patients from two unrelated families. We used multiple model systems for functional analysis, including Xenopus, Drosophila, and patient-derived fibroblasts. Our experiments revealed that cc2d1a is expressed explicitly in a spectrum of ciliated tissues, including the left-right organizer, epidermis, pronephric duct, nephrostomes, and ventricular zone of the brain. In line with this expression pattern, loss of cc2d1a led to cardiac heterotaxy, cystic kidneys, and abnormal CSF circulation via defective ciliogenesis. Interestingly, when we analyzed brain development, mutant tadpoles showed abnormal CSF circulation only in the midbrain region, suggesting abnormal local CSF flow. Furthermore, our analysis of the patient-derived fibroblasts confirmed defective ciliogenesis, further supporting our observations. In summary, we revealed novel insight into the role of CC2D1A by establishing its new critical role in ciliogenesis and CSF circulation.
Collapse
Affiliation(s)
| | - Irmak Sakin
- Department of ENT, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Acibadem University School of Medicine, Istanbul, Turkey
| | - Stephen Viviano
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Gulten Tuncel
- DESAM Research Institute, Near East University, Nicosia, Cyprus
| | | | - Gizem Goles
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Lauren Jeffries
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Weizhen Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Saquib A Lakhani
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Canan Ceylan Kose
- Canakkale 18 March University, Faculty of Medicine, Department of Medical Genetics, Canakkale, Turkey
| | - Fatma Silan
- Canakkale 18 March University, Faculty of Medicine, Department of Medical Genetics, Canakkale, Turkey
| | - Sukru Sadik Oner
- Department of Pharmacology, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, Turkey
- Istanbul Medeniyet University, Science and Advanced Technologies Research Center (BILTAM), Istanbul, Turkey
| | - Oktay I Kaplan
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| | - Mahmut Cerkez Ergoren
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Ketu Mishra-Gorur
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Program in Brain Tumor Research, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Sebnem Ozemri Sag
- Department of Medical Genetics, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Sehime G Temel
- Department of Medical Genetics, Faculty of Medicine, Uludag University, Bursa, Turkey
- Department of Histology and Embryology and Health Sciences Institute, Department of Translational Medicine, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Engin Deniz
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
11
|
Dumoulin A, Wilson NH, Tucker KL, Stoeckli ET. A cell-autonomous role for primary cilium-mediated signaling in long-range commissural axon guidance. Development 2024; 151:dev202788. [PMID: 39157903 PMCID: PMC11423920 DOI: 10.1242/dev.202788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
Ciliopathies are characterized by the absence or dysfunction of primary cilia. Despite the fact that cognitive impairments are a common feature of ciliopathies, how cilia dysfunction affects neuronal development has not been characterized in detail. Here, we show that primary cilium-mediated signaling is required cell-autonomously by neurons during neural circuit formation. In particular, a functional primary cilium is crucial during axonal pathfinding for the switch in responsiveness of axons at a choice point or intermediate target. Using different animal models and in vivo, ex vivo and in vitro experiments, we provide evidence for a crucial role of primary cilium-mediated signaling in long-range axon guidance. The primary cilium on the cell body of commissural neurons transduces long-range guidance signals sensed by growth cones navigating an intermediate target. In extension of our finding that Shh is required for the rostral turn of post-crossing commissural axons, we suggest a model implicating the primary cilium in Shh signaling upstream of a transcriptional change of axon guidance receptors, which in turn mediate the repulsive response to floorplate-derived Shh shown by post-crossing commissural axons.
Collapse
Affiliation(s)
- Alexandre Dumoulin
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nicole H Wilson
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Kerry L Tucker
- University of New England, College of Osteopathic Medicine, Department of Biomedical Sciences, Center for Excellence in the Neurosciences, Biddeford, ME 04005, USA
| | - Esther T Stoeckli
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- University Research Priority Program 'Adaptive Brain Circuits in Development and Learning' (URPP AdaBD), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
12
|
Wang X, Yu J, Yue H, Li S, Yang A, Zhu Z, Guan Z, Wang J. Inpp5e Regulated the Cilium-Related Genes Contributing to the Neural Tube Defects Under 5-Fluorouracil Exposure. Mol Neurobiol 2024; 61:6189-6199. [PMID: 38285286 DOI: 10.1007/s12035-024-03946-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/09/2024] [Indexed: 01/30/2024]
Abstract
Primary cilia are crucial for neurogenesis, and cilium-related genes are involved in the closure of neural tubes. Inositol polyphosphate-5-phosphatase (Inpp5e) was enriched in primary cilia and closely related to the occurrence of neural tube defects (NTDs). However, the role of Inpp5e in the development of NTDs is not well-known. To investigate whether Inpp5e gene is associated with the neural tube closure, we established a mouse model of NTDs by 5-fluorouracil (5-FU) exposure at gestational day 7.5 (GD7.5). The Inpp5e knockdown (Inpp5e-/-) mouse embryonic stem cells (mESCs) were produced by CRISPR/Cas9 system. The expressions of Inpp5e and other cilium-related genes including intraflagellar transport 80 (Ift80), McKusick-Kaufman syndrome (Mkks), and Kirsten rat sarcoma viral oncogene homolog (Kras) were determined, utilizing quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), western blot, PCR array, and immunofluorescence staining. The result showed that the incidence of NTDs was 37.10% (23 NTDs/62 total embryos) and significantly higher than that in the control group (P < 0.001). The neuroepithelial cells of neural tubes were obviously disarranged in NTD embryos. The mRNA and protein levels of Inpp5e, Ift80, Mkks, and Kras were significantly decreased in NTD embryonic brain tissues, compared to the control (P < 0.05). Knockdown of the Inpp5e (Inpp5e-/-) reduced the expressions of Ift80, Mkks, and Kras in mESCs. Furthermore, the levels of α-tubulin were significantly reduced in NTD embryonic neural tissue and Inpp5e-/- mESCs. These results suggested that maternal 5-FU exposure inhibited the expression of Inpp5e, which resulted in the downregulation of cilium-related genes (Ift80, Mkks, and Kras), leading to the impairment of primary cilium development, and ultimately disrupted the neural tube closure.
Collapse
Affiliation(s)
- Xiuwei Wang
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jialu Yu
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Huixuan Yue
- Department of Pediatrics, Beijing Chaoyang Hospital of Capital Medical University, Beijing, 100020, China
| | - Shen Li
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Aiyun Yang
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zhiqiang Zhu
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zhen Guan
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Jianhua Wang
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
13
|
Sarić N, Ishibashi N. The role of primary cilia in congenital heart defect-associated neurological impairments. Front Genet 2024; 15:1460228. [PMID: 39175754 PMCID: PMC11338889 DOI: 10.3389/fgene.2024.1460228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Congenital heart disease (CHD) has, despite significant improvements in patient survival, increasingly become associated with neurological deficits during infancy that persist into adulthood. These impairments afflict a wide range of behavioral domains including executive function, motor learning and coordination, social interaction, and language acquisition, reflecting alterations in multiple brain areas. In the past few decades, it has become clear that CHD is highly genetically heterogeneous, with large chromosomal aneuploidies and copy number variants (CNVs) as well as single nucleotide polymorphisms (SNPs) being implicated in CHD pathogenesis. Intriguingly, many of the identified loss-of-function genetic variants occur in genes important for primary cilia integrity and function, hinting at a key role for primary cilia in CHD. Here we review the current evidence for CHD primary cilia associated genetic variants, their independent functions during cardiac and brain development and their influence on behavior. We also highlight the role of environmental exposures in CHD, including stressors such as surgical factors and anesthesia, and how they might interact with ciliary genetic predispositions to determine the final neurodevelopmental outcome. The multifactorial nature of CHD and neurological impairments linked with it will, on one hand, likely necessitate therapeutic targeting of molecular pathways and neurobehavioral deficits shared by disparate forms of CHD. On the other hand, strategies for better CHD patient stratification based on genomic data, gestational and surgical history, and CHD complexity would allow for more precise therapeutic targeting of comorbid neurological deficits.
Collapse
Affiliation(s)
- Nemanja Sarić
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC, United States
| | - Nobuyuki Ishibashi
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC, United States
- Department of Pediatrics, Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Children's National Heart Center, Children's National Hospital, Washington, DC, United States
| |
Collapse
|
14
|
Ott CM, Torres R, Kuan TS, Kuan A, Buchanan J, Elabbady L, Seshamani S, Bodor AL, Collman F, Bock DD, Lee WC, da Costa NM, Lippincott-Schwartz J. Ultrastructural differences impact cilia shape and external exposure across cell classes in the visual cortex. Curr Biol 2024; 34:2418-2433.e4. [PMID: 38749425 PMCID: PMC11217952 DOI: 10.1016/j.cub.2024.04.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024]
Abstract
A primary cilium is a membrane-bound extension from the cell surface that contains receptors for perceiving and transmitting signals that modulate cell state and activity. Primary cilia in the brain are less accessible than cilia on cultured cells or epithelial tissues because in the brain they protrude into a deep, dense network of glial and neuronal processes. Here, we investigated cilia frequency, internal structure, shape, and position in large, high-resolution transmission electron microscopy volumes of mouse primary visual cortex. Cilia extended from the cell bodies of nearly all excitatory and inhibitory neurons, astrocytes, and oligodendrocyte precursor cells (OPCs) but were absent from oligodendrocytes and microglia. Ultrastructural comparisons revealed that the base of the cilium and the microtubule organization differed between neurons and glia. Investigating cilia-proximal features revealed that many cilia were directly adjacent to synapses, suggesting that cilia are poised to encounter locally released signaling molecules. Our analysis indicated that synapse proximity is likely due to random encounters in the neuropil, with no evidence that cilia modulate synapse activity as would be expected in tetrapartite synapses. The observed cell class differences in proximity to synapses were largely due to differences in external cilia length. Many key structural features that differed between neuronal and glial cilia influenced both cilium placement and shape and, thus, exposure to processes and synapses outside the cilium. Together, the ultrastructure both within and around neuronal and glial cilia suggest differences in cilia formation and function across cell types in the brain.
Collapse
Affiliation(s)
- Carolyn M Ott
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Russel Torres
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Tung-Sheng Kuan
- Department of Physics, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Aaron Kuan
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - JoAnn Buchanan
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Leila Elabbady
- Allen Institute for Brain Science, Seattle, WA 98109, USA; University of Washington, Seattle, WA 98195, USA
| | | | - Agnes L Bodor
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Davi D Bock
- Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Wei Chung Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
15
|
Muhamad NA, Masutani K, Furukawa S, Yuri S, Toriyama M, Matsumoto C, Itoh S, Shinagawa Y, Isotani A, Toriyama M, Itoh H. Astrocyte-Specific Inhibition of the Primary Cilium Suppresses C3 Expression in Reactive Astrocyte. Cell Mol Neurobiol 2024; 44:48. [PMID: 38822888 PMCID: PMC11144130 DOI: 10.1007/s10571-024-01482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
C3-positive reactive astrocytes play a neurotoxic role in various neurodegenerative diseases. However, the mechanisms controlling C3-positive reactive astrocyte induction are largely unknown. We found that the length of the primary cilium, a cellular organelle that receives extracellular signals was increased in C3-positive reactive astrocytes, and the loss or shortening of primary cilium decreased the count of C3-positive reactive astrocytes. Pharmacological experiments suggested that Ca2+ signalling may synergistically promote C3 expression in reactive astrocytes. Conditional knockout (cKO) mice that specifically inhibit primary cilium formation in astrocytes upon drug stimulation exhibited a reduction in the proportions of C3-positive reactive astrocytes and apoptotic cells in the brain even after the injection of lipopolysaccharide (LPS). Additionally, the novel object recognition (NOR) score observed in the cKO mice was higher than that observed in the neuroinflammation model mice. These results suggest that the primary cilium in astrocytes positively regulates C3 expression. We propose that regulating astrocyte-specific primary cilium signalling may be a novel strategy for the suppression of neuroinflammation.
Collapse
Affiliation(s)
- Nor Atiqah Muhamad
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan
| | - Kohei Masutani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan
| | - Shota Furukawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan
| | - Shunsuke Yuri
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan
| | - Michinori Toriyama
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 1 Gakuenuegahara, Sanda, Hyogo, 669-1330, Japan
| | - Chuya Matsumoto
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan
| | - Seiya Itoh
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan
| | - Yuichiro Shinagawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan
| | - Ayako Isotani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan
| | - Manami Toriyama
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan.
| | - Hiroshi Itoh
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama Cho, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
16
|
Jarosławska J, Kordas B, Miłowski T, Juranek JK. Mammalian Diaphanous1 signalling in neurovascular complications of diabetes. Eur J Neurosci 2024; 59:2628-2645. [PMID: 38491850 DOI: 10.1111/ejn.16310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/18/2024] [Indexed: 03/18/2024]
Abstract
Over the past few decades, diabetes gradually has become one of the top non-communicable disorders, affecting 476.0 million in 2017 and is predicted to reach 570.9 million people in 2025. It is estimated that 70 to 100% of all diabetic patients will develop some if not all, diabetic complications over the course of the disease. Despite different symptoms, mechanisms underlying the development of diabetic complications are similar, likely stemming from deficits in both neuronal and vascular components supplying hyperglycaemia-susceptible tissues and organs. Diaph1, protein diaphanous homolog 1, although mainly known for its regulatory role in structural modification of actin and related cytoskeleton proteins, in recent years attracted research attention as a cytoplasmic partner of the receptor of advanced glycation end-products (RAGE) a signal transduction receptor, whose activation triggers an increase in proinflammatory molecules, oxidative stressors and cytokines in diabetes and its related complications. Both Diaph1 and RAGE are also a part of the RhoA signalling cascade, playing a significant role in the development of neurovascular disturbances underlying diabetes-related complications. In this review, based on the existing knowledge as well as compelling findings from our past and present studies, we address the role of Diaph1 signalling in metabolic stress and neurovascular degeneration in diabetic complications. In light of the most recent developments in biochemical, genomic and transcriptomic research, we describe current theories on the aetiology of diabetes complications, highlighting the function of the Diaph1 signalling system and its role in diabetes pathophysiology.
Collapse
Affiliation(s)
- Julia Jarosławska
- Department of Biological Functions of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Bernard Kordas
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Tadeusz Miłowski
- Department of Emergency Medicine, School of Public Health, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Judyta K Juranek
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
17
|
Zhang X, Yao S, Zhang L, Yang L, Yang M, Guo Q, Li Y, Wang Z, Lei B, Jin X. Mechanisms underlying morphological and functional changes of cilia in fibroblasts derived from patients bearing ARL3 T31A and ARL3 T31A/C118F mutations. FASEB J 2024; 38:e23519. [PMID: 38457249 DOI: 10.1096/fj.202301906r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
ARL3 is essential for cilia development, and mutations in ARL3 are closely associated with ciliopathies. In a previous study, we observed distinct phenotypes of retinal dystrophy in patients with heterozygous ARL3T31A and compound heterozygous ARL3T31A/C118F mutations, indicating that different mutation types may exert diverse effects on their functions. Here, we generated transformed immortal fibroblast cells from patients carrying heterozygous ARL3T31A and compound heterozygous ARL3T31A/C118F mutations, and systematically evaluated their cilia morphology and function, which were further validated in ARPE-19 cells. Results showed that both ARL3T31A and ARL3T31A/C118F mutations led to a decrease in cilium formation. The ARL3T31A/C118F mutations caused significantly elongated cilia and impaired retrograde transport, whereas the ARL3T31A mutation did not induce significant changes in fibroblasts. RNA-sequencing results indicated that compared to ARL3T31A , ARL3T31A/C118F fibroblasts exhibited a higher enrichment of biological processes related to neuron projection development, tissue morphogenesis, and extracellular matrix (ECM) organization, with noticeable alterations in pathways such as ECM-receptor interaction, focal adhesion, and TGF-β signaling. Similar changes were observed in the proteomic results in ARPE-19 cells. Core regulated genes including IQUB, UNC13D, RAB3IP, and GRIP1 were specifically downregulated in the ARL3T31A/C118F group, and expressions of IQUB, NPM2, and SLC38A4 were further validated. Additionally, IQUB showed a rescuing effect on the overlong cilia observed in ARL3T31A/C118F fibroblasts. Our results not only enhance our understanding of ARL3-related diseases but also provide new insights into the analysis of heterozygous and compound heterozygous mutations in genetics.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Shun Yao
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Lujia Zhang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lin Yang
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Mingzhu Yang
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Qingge Guo
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yan Li
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhongfeng Wang
- Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Bo Lei
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Xiuxiu Jin
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| |
Collapse
|
18
|
Jayarajan RO, Chakraborty S, Raghu KG, Purushothaman J, Veleri S. Joubert syndrome causing mutation in C2 domain of CC2D2A affects structural integrity of cilia and cellular signaling molecules. Exp Brain Res 2024; 242:619-637. [PMID: 38231387 DOI: 10.1007/s00221-023-06762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/08/2023] [Indexed: 01/18/2024]
Abstract
Cilia are organelles extend from cells to sense external signals for tuning intracellular signaling for optimal cellular functioning. They have evolved sensory and motor roles in various cells for tissue organization and homeostasis in development and post-development. More than a thousand genes are required for cilia function. Mutations in them cause multisystem disorders termed ciliopathies. The null mutations in CC2D2A result in Meckel syndrome (MKS), which is embryonic lethal, whereas patients who have missense mutations in the C2 domain of CC2D2A display Joubert syndrome (JBTS). They survive with blindness and mental retardation. How C2 domain defects cause disease conditions is not understood. To answer this question, C2 domain of Cc2d2a (mice gene) was knocked down (KD) in IMCD-3 cells by shRNA. This resulted in defective cilia morphology observed by immunofluorescence analysis. To further probe the cellular signaling alteration in affected cells, gene expression profiling was done by RNAseq and compared with the controls. Bioinformatics analysis revealed that the differentially expressed genes (DEGs) have functions in cilia. Among the 61 cilia DEGs identified, 50 genes were downregulated and 11 genes were upregulated. These cilia genes are involved in cilium assembly, protein trafficking to the cilium, intraflagellar transport (IFT), cellular signaling like polarity patterning, and Hedgehog signaling pathway. This suggests that the C2 domain of CC2D2A plays a critical role in cilia assembly and molecular signaling hosted in cilia for cellular homeostasis. Taken together, the missense mutations in the C2 domain of CC2D2A seen in JBTS might have affected cilia-mediated signaling in neurons of the retina and brain.
Collapse
Affiliation(s)
- Roopasree O Jayarajan
- Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Soura Chakraborty
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Kozhiparambil Gopalan Raghu
- Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jayamurthy Purushothaman
- Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shobi Veleri
- Drug Safety Division, National Institute of Nutrition, Indian Council of Medical Research, Department of Health Research, Ministry of Health and Family Welfare, Govt. of India, Hyderabad, 500007, India.
| |
Collapse
|
19
|
Coschiera A, Yoshihara M, Lauter G, Ezer S, Pucci M, Li H, Kavšek A, Riedel CG, Kere J, Swoboda P. Primary cilia promote the differentiation of human neurons through the WNT signaling pathway. BMC Biol 2024; 22:48. [PMID: 38413974 PMCID: PMC10900739 DOI: 10.1186/s12915-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Primary cilia emanate from most human cell types, including neurons. Cilia are important for communicating with the cell's immediate environment: signal reception and transduction to/from the ciliated cell. Deregulation of ciliary signaling can lead to ciliopathies and certain neurodevelopmental disorders. In the developing brain cilia play well-documented roles for the expansion of the neural progenitor cell pool, while information about the roles of cilia during post-mitotic neuron differentiation and maturation is scarce. RESULTS We employed ciliated Lund Human Mesencephalic (LUHMES) cells in time course experiments to assess the impact of ciliary signaling on neuron differentiation. By comparing ciliated and non-ciliated neuronal precursor cells and neurons in wild type and in RFX2 -/- mutant neurons with altered cilia, we discovered an early-differentiation "ciliary time window" during which transient cilia promote axon outgrowth, branching and arborization. Experiments in neurons with IFT88 and IFT172 ciliary gene knockdowns, leading to shorter cilia, confirm these results. Cilia promote neuron differentiation by tipping WNT signaling toward the non-canonical pathway, in turn activating WNT pathway output genes implicated in cyto-architectural changes. CONCLUSIONS We provide a mechanistic entry point into when and how ciliary signaling coordinates, promotes and translates into anatomical changes. We hypothesize that ciliary alterations causing neuron differentiation defects may result in "mild" impairments of brain development, possibly underpinning certain aspects of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Andrea Coschiera
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Masahito Yoshihara
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
- Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba, Japan
- Chiba University, Chiba, Japan
| | - Gilbert Lauter
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
- Uppsala University, Uppsala, Sweden
| | - Sini Ezer
- University of Helsinki, Stem Cells and Metabolism Research Program, and Folkhälsan Research Center, Helsinki, Finland
| | - Mariangela Pucci
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
- Department of Bioscience and Technology for Food, Agriculture and Environment, Teramo, Italy
- University of Teramo, Teramo, Italy
| | - Haonan Li
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Alan Kavšek
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Christian G Riedel
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
- University of Helsinki, Stem Cells and Metabolism Research Program, and Folkhälsan Research Center, Helsinki, Finland
| | - Peter Swoboda
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden.
| |
Collapse
|
20
|
Wang W, Dai X, Li Y, Li M, Chi Z, Hu X, Wang Z. The miR-669a-5p/G3BP/HDAC6/AKAP12 Axis Regulates Primary Cilia Length. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305068. [PMID: 38088586 PMCID: PMC10853727 DOI: 10.1002/advs.202305068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/13/2023] [Indexed: 02/10/2024]
Abstract
Primary cilia are conserved organelles in most mammalian cells, acting as "antennae" to sense external signals. Maintaining a physiological cilium length is required for cilium function. MicroRNAs (miRNAs) are potent gene expression regulators, and aberrant miRNA expression is closely associated with ciliopathies. However, how miRNAs modulate cilium length remains elusive. Here, using the calcium-shock method and small RNA sequencing, a miRNA is identified, namely, miR-669a-5p, that is highly expressed in the cilia-enriched noncellular fraction. It is shown that miR-669a-5p promotes cilium elongation but not cilium formation in cultured cells. Mechanistically, it is demonstrated that miR-669a-5p represses ras-GTPase-activating protein SH3-domain-binding protein (G3BP) expression to inhibit histone deacetylase 6 (HDAC6) expression, which further upregulates A-kinase anchor protein 12 (AKAP12) expression. This effect ultimately blocks cilia disassembly and leads to greater cilium length, which can be restored to wild-type lengths by either upregulating HDAC6 or downregulating AKAP12. Collectively, these results elucidate a previously unidentified miR-669a-5p/G3BP/HDAC6/AKAP12 signaling pathway that regulates cilium length, providing potential pharmaceutical targets for treating ciliopathies.
Collapse
Affiliation(s)
- Weina Wang
- School of Life SciencesInstitute of Life Science and Green DevelopmentHebei UniversityBaoding071002China
| | - Xuyao Dai
- School of Life SciencesInstitute of Life Science and Green DevelopmentHebei UniversityBaoding071002China
| | - Yue Li
- School of Life SciencesInstitute of Life Science and Green DevelopmentHebei UniversityBaoding071002China
| | - Mo Li
- School of Public HealthHebei UniversityBaoding071000China
| | - Zongqi Chi
- School of Public HealthHebei UniversityBaoding071000China
| | - Xiaoyu Hu
- School of Life SciencesInstitute of Life Science and Green DevelopmentHebei UniversityBaoding071002China
| | - Zhenshan Wang
- School of Life SciencesInstitute of Life Science and Green DevelopmentHebei UniversityBaoding071002China
| |
Collapse
|
21
|
Wu JY, Cho SJ, Descant K, Li PH, Shapson-Coe A, Januszewski M, Berger DR, Meyer C, Casingal C, Huda A, Liu J, Ghashghaei T, Brenman M, Jiang M, Scarborough J, Pope A, Jain V, Stein JL, Guo J, Yasuda R, Lichtman JW, Anton ES. Mapping of neuronal and glial primary cilia contactome and connectome in the human cerebral cortex. Neuron 2024; 112:41-55.e3. [PMID: 37898123 PMCID: PMC10841524 DOI: 10.1016/j.neuron.2023.09.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 07/25/2023] [Accepted: 09/22/2023] [Indexed: 10/30/2023]
Abstract
Primary cilia act as antenna receivers of environmental signals and enable effective neuronal or glial responses. Disruption of their function is associated with circuit disorders. To understand the signals these cilia receive, we comprehensively mapped cilia's contacts within the human cortical connectome using serial-section EM reconstruction of a 1 mm3 cortical volume, spanning the entire cortical thickness. We mapped the "contactome" of cilia emerging from neurons and astrocytes in every cortical layer. Depending on the layer and cell type, cilia make distinct patterns of contact. Primary cilia display cell-type- and layer-specific variations in size, shape, and microtubule axoneme core, which may affect their signaling competencies. Neuronal cilia are intrinsic components of a subset of cortical synapses and thus a part of the connectome. This diversity in the structure, contactome, and connectome of primary cilia endows each neuron or glial cell with a unique barcode of access to the surrounding neural circuitry.
Collapse
Affiliation(s)
- Jun Yao Wu
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Su-Ji Cho
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Katherine Descant
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Peter H Li
- Google Research, Mountain View, CA 94043, USA
| | - Alexander Shapson-Coe
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Daniel R Berger
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Cailyn Meyer
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Cristine Casingal
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Ariba Huda
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jiaqi Liu
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Tina Ghashghaei
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Mikayla Brenman
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Michelle Jiang
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Joseph Scarborough
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Art Pope
- Google Research, Mountain View, CA 94043, USA
| | - Viren Jain
- Google Research, Mountain View, CA 94043, USA
| | - Jason L Stein
- UNC Neuroscience Center and the Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jiami Guo
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA.
| | - Jeff W Lichtman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - E S Anton
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
22
|
Horwitz A, Levi-Carmel N, Shnaider O, Birk R. BBS genes are involved in accelerated proliferation and early differentiation of BBS-related tissues. Differentiation 2024; 135:100745. [PMID: 38215537 DOI: 10.1016/j.diff.2024.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
Bardet-Biedl syndrome (BBS) is an inherited disorder primarily ciliopathy with pleiotropic multi-systemic phenotypic involvement, including adipose, nerve, retinal, kidney, Etc. Consequently, it is characterized by obesity, cognitive impairment and retinal, kidney and cutaneous abnormalities. Initial studies, including ours have shown that BBS genes play a role in the early developmental stages of adipocytes and β-cells. However, this role in other BBS-related tissues is unknown. We investigated BBS genes involvement in the proliferation and early differentiation of different BBS cell types. The involvement of BBS genes in cellular proliferation were studied in seven in-vitro and transgenic cell models; keratinocytes (hHaCaT) and Ras-transfected keratinocytes (Ras-hHaCaT), neuronal cell lines (hSH-SY5Y and rPC-12), silenced BBS4 neural cell lines (siBbs4 hSH-SY5Y and siBbs4 rPC-12), adipocytes (m3T3L1), and ex-vivo transformed B-cells obtain from BBS4 patients, using molecular and biochemical methodologies. RashHaCaT cells showed an accelerated proliferation rate in parallel to significant reduction in the transcript levels of BBS1, 2, and 4. BBS1, 2, and 4 transcripts linked with hHaCaT cell cycle arrest (G1 phase) using both chemical (CDK4 inhibitor) and serum deprivation methodologies. Adipocyte (m3T3-L1) Bbs1, 2 and 4 transcript levels corresponded to the cell cycle phase (CDK4 inhibitor and serum deprivation). SiBBS4 hSH-SY5Y cells exhibited early cell proliferation and differentiation (wound healing assay) rates. SiBbs4 rPC-12 models exhibited significant proliferation and differentiation rate corresponding to Nestin expression levels. BBS4 patients-transformed B-cells exhibited an accelerated proliferation rate (LPS-induced methodology). In conclusions, the BBS4 gene plays a significant, similar and global role in the cellular proliferation of various BBS related tissues. These results highlight the universal role of the BBS gene in the cell cycle, and further deepen the knowledge of the mechanisms underlying the development of BBS.
Collapse
Affiliation(s)
- Avital Horwitz
- Nutrition Department, Health Sciences Faculty, Ariel University, Israel
| | | | - Olga Shnaider
- Nutrition Department, Health Sciences Faculty, Ariel University, Israel
| | - Ruth Birk
- Nutrition Department, Health Sciences Faculty, Ariel University, Israel.
| |
Collapse
|
23
|
Bear RM, Caspary T. Uncovering cilia function in glial development. Ann Hum Genet 2024; 88:27-44. [PMID: 37427745 PMCID: PMC10776815 DOI: 10.1111/ahg.12519] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023]
Abstract
Primary cilia play critical roles in regulating signaling pathways that underlie several developmental processes. In the nervous system, cilia are known to regulate signals that guide neuron development. Cilia dysregulation is implicated in neurological diseases, and the underlying mechanisms remain poorly understood. Cilia research has predominantly focused on neurons and has overlooked the diverse population of glial cells in the brain. Glial cells play essential roles during neurodevelopment, and their dysfunction contributes to neurological disease; however, the relationship between cilia function and glial development is understudied. Here we review the state of the field and highlight the glial cell types where cilia are found and the ciliary functions that are linked to glial development. This work uncovers the importance of cilia in glial development and raises outstanding questions for the field. We are poised to make progress in understanding the function of glial cilia in human development and their contribution to neurological diseases.
Collapse
Affiliation(s)
- Rachel M. Bear
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta GA 30322
- Graduate Program in Neuroscience
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta GA 30322
| |
Collapse
|
24
|
Cai E, Barba MG, Ge X. Hedgehog Signaling in Cortical Development. Cells 2023; 13:21. [PMID: 38201225 PMCID: PMC10778342 DOI: 10.3390/cells13010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The Hedgehog (Hh) pathway plays a crucial role in embryonic development, acting both as a morphogenic signal that organizes tissue formation and a potent mitogenic signal driving cell proliferation. Dysregulated Hh signaling leads to various developmental defects in the brain. This article aims to review the roles of Hh signaling in the development of the neocortex in the mammalian brain, focusing on its regulation of neural progenitor proliferation and neuronal production. The review will summarize studies on genetic mouse models that have targeted different components of the Hh pathway, such as the ligand Shh, the receptor Ptch1, the GPCR-like transducer Smo, the intracellular transducer Sufu, and the three Gli transcription factors. As key insights into the Hh signaling transduction mechanism were obtained from mouse models displaying neural tube defects, this review will also cover some studies on Hh signaling in neural tube development. The results from these genetic mouse models suggest an intriguing hypothesis that elevated Hh signaling may play a role in the gyrification of the brain in certain species. Additionally, the distinctive production of GABAergic interneurons in the dorsal cortex in the human brain may also be linked to the extension of Hh signaling from the ventral to the dorsal brain region. Overall, these results suggest key roles of Hh signaling as both a morphogenic and mitogenic signal during the forebrain development and imply the potential involvement of Hh signaling in the evolutionary expansion of the neocortex.
Collapse
Affiliation(s)
| | | | - Xuecai Ge
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA 95340, USA
| |
Collapse
|
25
|
Loukil A, Ebright E, Uezu A, Gao Y, Soderling SH, Goetz SC. Identification of new ciliary signaling pathways in the brain and insights into neurological disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572700. [PMID: 38187761 PMCID: PMC10769350 DOI: 10.1101/2023.12.20.572700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Primary cilia are conserved sensory hubs essential for signaling transduction and embryonic development. Ciliary dysfunction causes a variety of developmental syndromes with neurological features and cognitive impairment, whose basis mostly remains unknown. Despite connections to neural function, the primary cilium remains an overlooked organelle in the brain. Most neurons have a primary cilium; however, it is still unclear how this organelle modulates brain architecture and function, given the lack of any systemic dissection of neuronal ciliary signaling. Here, we present the first in vivo glance at the molecular composition of cilia in the mouse brain. We have adapted in vivo BioID (iBioID), targeting the biotin ligase BioID2 to primary cilia in neurons. We identified tissue-specific signaling networks enriched in neuronal cilia, including Eph/Ephrin and GABA receptor signaling pathways. Our iBioID ciliary network presents a wealth of neural ciliary hits that provides new insights into neurological disorders. Our findings are a promising first step in defining the fundamentals of ciliary signaling and their roles in shaping neural circuits and behavior. This work can be extended to pathological conditions of the brain, aiming to identify the molecular pathways disrupted in the brain cilium. Hence, finding novel therapeutic strategies will help uncover and leverage the therapeutic potential of the neuronal cilium.
Collapse
Affiliation(s)
- Abdelhalim Loukil
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Emma Ebright
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Akiyoshi Uezu
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Yudong Gao
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Scott H Soderling
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Sarah C. Goetz
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
26
|
Ott CM, Torres R, Kuan TS, Kuan A, Buchanan J, Elabbady L, Seshamani S, Bodor AL, Collman F, Bock DD, Lee WC, da Costa NM, Lippincott-Schwartz J. Nanometer-scale views of visual cortex reveal anatomical features of primary cilia poised to detect synaptic spillover. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564838. [PMID: 37961618 PMCID: PMC10635062 DOI: 10.1101/2023.10.31.564838] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
A primary cilium is a thin membrane-bound extension off a cell surface that contains receptors for perceiving and transmitting signals that modulate cell state and activity. While many cell types have a primary cilium, little is known about primary cilia in the brain, where they are less accessible than cilia on cultured cells or epithelial tissues and protrude from cell bodies into a deep, dense network of glial and neuronal processes. Here, we investigated cilia frequency, internal structure, shape, and position in large, high-resolution transmission electron microscopy volumes of mouse primary visual cortex. Cilia extended from the cell bodies of nearly all excitatory and inhibitory neurons, astrocytes, and oligodendrocyte precursor cells (OPCs), but were absent from oligodendrocytes and microglia. Structural comparisons revealed that the membrane structure at the base of the cilium and the microtubule organization differed between neurons and glia. OPC cilia were distinct in that they were the shortest and contained pervasive internal vesicles only occasionally observed in neuron and astrocyte cilia. Investigating cilia-proximal features revealed that many cilia were directly adjacent to synapses, suggesting cilia are well poised to encounter locally released signaling molecules. Cilia proximity to synapses was random, not enriched, in the synapse-rich neuropil. The internal anatomy, including microtubule changes and centriole location, defined key structural features including cilium placement and shape. Together, the anatomical insights both within and around neuron and glia cilia provide new insights into cilia formation and function across cell types in the brain.
Collapse
Affiliation(s)
- Carolyn M. Ott
- Janelia Research Campus, Howard Hughes Medical Institute
| | | | | | - Aaron Kuan
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Current address Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | | | - Leila Elabbady
- Allen Institute for Brain Science
- University of Washington, Seattle, WA, USA
| | | | | | | | - Davi D. Bock
- Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Wei Chung Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
27
|
Prosseda PP, Dannewitz Prosseda S, Tran M, Liton PB, Sun Y. Crosstalk between the mTOR pathway and primary cilia in human diseases. Curr Top Dev Biol 2023; 155:1-37. [PMID: 38043949 PMCID: PMC11227733 DOI: 10.1016/bs.ctdb.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Autophagy is a fundamental catabolic process whereby excessive or damaged cytoplasmic components are degraded through lysosomes to maintain cellular homeostasis. Studies of mTOR signaling have revealed that mTOR controls biomass generation and metabolism by modulating key cellular processes, including protein synthesis and autophagy. Primary cilia, the assembly of which depends on kinesin molecular motors, serve as sensory organelles and signaling platforms. Given these pathways' central role in maintaining cellular and physiological homeostasis, a connection between mTOR and primary cilia signaling is starting to emerge in a variety of diseases. In this review, we highlight recent advances in our understanding of the complex crosstalk between the mTOR pathway and cilia and discuss its function in the context of related diseases.
Collapse
Affiliation(s)
- Philipp P Prosseda
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States
| | | | - Matthew Tran
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Paloma B Liton
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States; Palo Alto Veterans Administration Medical Center, Palo Alto, CA, United States.
| |
Collapse
|
28
|
Hoi KK, Xia W, Wei MM, Ulloa Navas MJ, Garcia Verdugo JM, Nachury MV, Reiter JF, Fancy SPJ. Primary cilia control oligodendrocyte precursor cell proliferation in white matter injury via Hedgehog-independent CREB signaling. Cell Rep 2023; 42:113272. [PMID: 37858465 PMCID: PMC10715572 DOI: 10.1016/j.celrep.2023.113272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/30/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023] Open
Abstract
Remyelination after white matter injury (WMI) often fails in diseases such as multiple sclerosis because of improper recruitment and repopulation of oligodendrocyte precursor cells (OPCs) in lesions. How OPCs elicit specific intracellular programs in response to a chemically and mechanically diverse environment to properly regenerate myelin remains unclear. OPCs construct primary cilia, specialized signaling compartments that transduce Hedgehog (Hh) and G-protein-coupled receptor (GPCR) signals. We investigated the role of primary cilia in the OPC response to WMI. Removing cilia from OPCs genetically via deletion of Ift88 results in OPCs failing to repopulate WMI lesions because of reduced proliferation. Interestingly, loss of cilia does not affect Hh signaling in OPCs or their responsiveness to Hh signals but instead leads to dysfunctional cyclic AMP (cAMP)-dependent cAMP response element-binding protein (CREB)-mediated transcription. Because inhibition of CREB activity in OPCs reduces proliferation, we propose that a GPCR/cAMP/CREB signaling axis initiated at OPC cilia orchestrates OPC proliferation during development and in response to WMI.
Collapse
Affiliation(s)
- Kimberly K Hoi
- Departments of Neurology and Pediatrics, Division of Neuroimmunology and Glial Biology, Newborn Brain Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Wenlong Xia
- Departments of Neurology and Pediatrics, Division of Neuroimmunology and Glial Biology, Newborn Brain Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ming Ming Wei
- Departments of Neurology and Pediatrics, Division of Neuroimmunology and Glial Biology, Newborn Brain Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Maria Jose Ulloa Navas
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universidad de Valencia, CIBERNED, 46980 Paterna, Spain
| | - Jose-Manuel Garcia Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universidad de Valencia, CIBERNED, 46980 Paterna, Spain
| | - Maxence V Nachury
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Stephen P J Fancy
- Departments of Neurology and Pediatrics, Division of Neuroimmunology and Glial Biology, Newborn Brain Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
29
|
Waszczykowska A, Jeziorny K, Barańska D, Matera K, Pyziak-Skupien A, Ciborowski M, Zmysłowska A. Searching for Effective Methods of Diagnosing Nervous System Lesions in Patients with Alström and Bardet-Biedl Syndromes. Genes (Basel) 2023; 14:1784. [PMID: 37761924 PMCID: PMC10530666 DOI: 10.3390/genes14091784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Bardet-Biedl syndrome (BBS) and Alström syndrome (ALMS) are rare multisystem diseases with an autosomal recessive mode of inheritance and genetic heterogeneity, characterized by visual impairment, hearing impairment, cardiomyopathy, childhood obesity, and insulin resistance. The purpose of our study was to evaluate the indicators of nervous system changes occurring in patients with ALMS and BBS using optical coherence tomography (OCT) and magnetic resonance spectroscopy (MRS) methods compared to a group of healthy subjects. The OCT results showed significantly lower macular thickness in the patient group compared to the control group (p = 0.002). The MRS study observed differences in metabolite levels between the study and control groups in brain areas such as the cerebellum, thalamus, and white matter. After summing the concentrations from all areas, statistically significant results were obtained for N-acetylaspartate, total N-acetylaspartate, and total creatine. Concentrations of these metabolites were reduced in ALMS/BBS patients by 38% (p = 0.0004), 35% (p = 0.0008), and 28% (p = 0.0005), respectively. Our results may help to understand the pathophysiology of these rare diseases and identify strategies for new therapies.
Collapse
Affiliation(s)
| | - Krzysztof Jeziorny
- Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), 93-338 Lodz, Poland;
- Department of Pediatric Endocrinology, Medical University of Lodz, 90-419 Lodz, Poland
| | - Dobromiła Barańska
- Department of Diagnostic Imaging, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), 93-338 Lodz, Poland; (D.B.); (K.M.)
| | - Katarzyna Matera
- Department of Diagnostic Imaging, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), 93-338 Lodz, Poland; (D.B.); (K.M.)
| | - Aleksandra Pyziak-Skupien
- Department of Children’s Diabetology, Silesian Medical University in Katowice, 40-752 Katowice, Poland;
| | - Michał Ciborowski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Agnieszka Zmysłowska
- Department of Clinical Genetics, Medical University of Lodz, 90-419 Lodz, Poland;
| |
Collapse
|
30
|
Bruel AL, Ganga AK, Nosková L, Valenzuela I, Martinovic J, Duffourd Y, Zikánová M, Majer F, Kmoch S, Mohler M, Sun J, Sweeney LK, Martínez-Gil N, Thauvin-Robinet C, Breslow DK. Pathogenic RAB34 variants impair primary cilium assembly and cause a novel oral-facial-digital syndrome. Hum Mol Genet 2023; 32:2822-2831. [PMID: 37384395 PMCID: PMC10481091 DOI: 10.1093/hmg/ddad109] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023] Open
Abstract
Oral-facial-digital syndromes (OFDS) are a group of clinically and genetically heterogeneous disorders characterized by defects in the development of the face and oral cavity along with digit anomalies. Pathogenic variants in over 20 genes encoding ciliary proteins have been found to cause OFDS through deleterious structural or functional impacts on primary cilia. We identified by exome sequencing bi-allelic missense variants in a novel disease-causing ciliary gene RAB34 in four individuals from three unrelated families. Affected individuals presented a novel form of OFDS (OFDS-RAB34) accompanied by cardiac, cerebral, skeletal and anorectal defects. RAB34 encodes a member of the Rab GTPase superfamily and was recently identified as a key mediator of ciliary membrane formation. Unlike many genes required for cilium assembly, RAB34 acts selectively in cell types that use the intracellular ciliogenesis pathway, in which nascent cilia begin to form in the cytoplasm. We find that the protein products of these pathogenic variants, which are clustered near the RAB34 C-terminus, exhibit a strong loss of function. Although some variants retain the ability to be recruited to the mother centriole, cells expressing mutant RAB34 exhibit a significant defect in cilium assembly. While many Rab proteins have been previously linked to ciliogenesis, our studies establish RAB34 as the first small GTPase involved in OFDS and reveal the distinct clinical manifestations caused by impairment of intracellular ciliogenesis.
Collapse
Affiliation(s)
- Ange-Line Bruel
- INSERM U1231 Génétique des Anomalies du Développement (GAD), University Bourgogne Franche-Comté, 21070 Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU-TRANSLAD), Centre Hospitalo-Universitaire (CHU) Dijon Bourgogne, 21079 Dijon, France
| | - Anil Kumar Ganga
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Lenka Nosková
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 128 08, Czech Republic
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, 08035 Barcelona, Spain
- Medical Genetics Group, Vall d'Hebron Research Institute,08035 Barcelona, Spain
| | - Jelena Martinovic
- Unit of Embryo-Fetal Pathology, AP-HP, Antoine Béclère Hospital, Paris Saclay University, 92141 Clamart, France
| | - Yannis Duffourd
- INSERM U1231 Génétique des Anomalies du Développement (GAD), University Bourgogne Franche-Comté, 21070 Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU-TRANSLAD), Centre Hospitalo-Universitaire (CHU) Dijon Bourgogne, 21079 Dijon, France
| | - Marie Zikánová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 128 08, Czech Republic
| | - Filip Majer
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 128 08, Czech Republic
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 128 08, Czech Republic
| | - Markéta Mohler
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava 708 52, Czech Republic
| | - Jingbo Sun
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Lauren K Sweeney
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Núria Martínez-Gil
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, 08035 Barcelona, Spain
- Medical Genetics Group, Vall d'Hebron Research Institute,08035 Barcelona, Spain
| | - Christel Thauvin-Robinet
- INSERM U1231 Génétique des Anomalies du Développement (GAD), University Bourgogne Franche-Comté, 21070 Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU-TRANSLAD), Centre Hospitalo-Universitaire (CHU) Dijon Bourgogne, 21079 Dijon, France
- Centre de Génétique et Centre de référence maladies rares ‘Anomalies du Développement et Syndromes Malformatifs’, FHU-TRANSLAD, Hôpital d'Enfants, CHU Dijon Bourgogne, 21079 Dijon, France
| | - David K Breslow
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
31
|
Martins M, Oliveira AR, Martins S, Vieira JP, Perdigão P, Fernandes AR, de Almeida LP, Palma PJ, Sequeira DB, Santos JMM, Duque F, Oliveira G, Cardoso AL, Peça J, Seabra CM. A Novel Genetic Variant in MBD5 Associated with Severe Epilepsy and Intellectual Disability: Potential Implications on Neural Primary Cilia. Int J Mol Sci 2023; 24:12603. [PMID: 37628781 PMCID: PMC10454663 DOI: 10.3390/ijms241612603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Disruptions in the MBD5 gene have been linked with an array of clinical features such as global developmental delay, intellectual disability, autistic-like symptoms, and seizures, through unclear mechanisms. MBD5 haploinsufficiency has been associated with the disruption of primary cilium-related processes during early cortical development, and this has been reported in many neurodevelopmental disorders. In this study, we describe the clinical history of a 12-year-old child harboring a novel MBD5 rare variant and presenting psychomotor delay and seizures. To investigate the impact of MBD5 haploinsufficiency on neural primary cilia, we established a novel patient-derived cell line and used CRISPR-Cas9 technology to create an isogenic control. The patient-derived neural progenitor cells revealed a decrease in the length of primary cilia and in the total number of ciliated cells. This study paves the way to understanding the impact of MBD5 haploinsufficiency in brain development through its potential impact on neural primary cilia.
Collapse
Affiliation(s)
- Mariana Martins
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Rafaela Oliveira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Solange Martins
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - José Pedro Vieira
- Neuropediatrics Unit, Central Lisbon Hospital Center, 1169-045 Lisbon, Portugal
| | - Pedro Perdigão
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ana Rita Fernandes
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Paulo Jorge Palma
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Diana Bela Sequeira
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - João Miguel Marques Santos
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Frederico Duque
- University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, 3000-602 Coimbra, Portugal
- Child Developmental Center and Research and Clinical Training Center, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-602 Coimbra, Portugal
| | - Guiomar Oliveira
- University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, 3000-602 Coimbra, Portugal
- Child Developmental Center and Research and Clinical Training Center, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-602 Coimbra, Portugal
| | - Ana Luísa Cardoso
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - João Peça
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Catarina Morais Seabra
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
32
|
Turan MG, Orhan ME, Cevik S, Kaplan OI. CiliaMiner: an integrated database for ciliopathy genes and ciliopathies. Database (Oxford) 2023; 2023:baad047. [PMID: 37542408 PMCID: PMC10403755 DOI: 10.1093/database/baad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/05/2023] [Accepted: 07/18/2023] [Indexed: 08/06/2023]
Abstract
Cilia are found in eukaryotic species ranging from single-celled organisms, such as Chlamydomonas reinhardtii, to humans, but not in plants. The ability to respond to repellents and/or attractants, regulate cell proliferation and differentiation and provide cellular mobility are just a few examples of how crucial cilia are to cells and organisms. Over 30 distinct rare disorders generally known as ciliopathy are caused by abnormalities or functional impairments in cilia and cilia-related compartments. Because of the complexity of ciliopathies and the rising number of ciliopathies and ciliopathy genes, a ciliopathy-oriented and up-to-date database is required. Here, we present CiliaMiner, a manually curated ciliopathy database that includes ciliopathy lists collected from articles and databases. Analysis reveals that there are 55 distinct disorders likely related to ciliopathy, with over 4000 clinical manifestations. Based on comparative symptom analysis and subcellular localization data, diseases are classified as primary, secondary or atypical ciliopathies. CiliaMiner provides easy access to all of these diseases and disease genes, as well as clinical features and gene-specific clinical features, as well as subcellular localization of each protein. Additionally, the orthologs of disease genes are also provided for mice, zebrafish, Xenopus, Drosophila, Caenorhabditis elegans and Chlamydomonas reinhardtii. CiliaMiner (https://kaplanlab.shinyapps.io/ciliaminer) aims to serve the cilia community with its comprehensive content and highly enriched interactive heatmaps, and will be continually updated. Database URL: https://kaplanlab.shinyapps.io/ciliaminer/.
Collapse
Affiliation(s)
- Merve Gül Turan
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Sumer Kampusu, Kayseri 38080, Turkey
- Department of Bioengineering, School of Life and Natural Sciences, Abdullah Gul University, Sumer Kampusu, Kayseri 38080, Turkey
| | - Mehmet Emin Orhan
- Department of Bioengineering, School of Life and Natural Sciences, Abdullah Gul University, Sumer Kampusu, Kayseri 38080, Turkey
| | - Sebiha Cevik
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Sumer Kampusu, Kayseri 38080, Turkey
| | - Oktay I Kaplan
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Sumer Kampusu, Kayseri 38080, Turkey
| |
Collapse
|
33
|
Vien T, Ta M, Kimura L, Onay T, DeCaen P. Primary cilia TRP channel regulates hippocampal excitability. Proc Natl Acad Sci U S A 2023; 120:e2219686120. [PMID: 37216541 PMCID: PMC10235993 DOI: 10.1073/pnas.2219686120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Polycystins (PKD2, PKD2L1, and PKD2L2) are members of the transient receptor potential family, which form ciliary ion channels. Most notably, PKD2 dysregulation in the kidney nephron cilia is associated with polycystic kidney disease, but the function of PKD2L1 in neurons is undefined. In this report, we develop animal models to track the expression and subcellular localization of PKD2L1 in the brain. We discover that PKD2L1 localizes and functions as a Ca2+ channel in the primary cilia of hippocampal neurons that apically radiate from the soma. Loss of PKD2L1 expression ablates primary ciliary maturation and attenuates neuronal high-frequency excitability, which precipitates seizure susceptibility and autism spectrum disorder-like behavior in mice. The disproportionate impairment of interneuron excitability suggests that circuit disinhibition underlies the neurophenotypic features of these mice. Our results identify PKD2L1 channels as regulators of hippocampal excitability and the neuronal primary cilia as organelle mediators of brain electrical signaling.
Collapse
Affiliation(s)
- Thuy N. Vien
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - My C. Ta
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Louise F. Kimura
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Tuncer Onay
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL60911
| | - Paul G. DeCaen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| |
Collapse
|
34
|
Bieder A, Chandrasekar G, Wason A, Erkelenz S, Gopalakrishnan J, Kere J, Tapia-Páez I. Genetic and protein interaction studies between the ciliary dyslexia candidate genes DYX1C1 and DCDC2. BMC Mol Cell Biol 2023; 24:20. [PMID: 37237337 DOI: 10.1186/s12860-023-00483-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND DYX1C1 (DNAAF4) and DCDC2 are two of the most replicated dyslexia candidate genes in genetic studies. They both have demonstrated roles in neuronal migration, in cilia growth and function and they both are cytoskeletal interactors. In addition, they both have been characterized as ciliopathy genes. However, their exact molecular functions are still incompletely described. Based on these known roles, we asked whether DYX1C1 and DCDC2 interact on the genetic and the protein level. RESULTS Here, we report the physical protein-protein interaction of DYX1C1 and DCDC2 as well as their respective interactions with the centrosomal protein CPAP (CENPJ) on exogenous and endogenous levels in different cell models including brain organoids. In addition, we show a synergistic genetic interaction between dyx1c1 and dcdc2b in zebrafish exacerbating the ciliary phenotype. Finally, we show a mutual effect on transcriptional regulation among DYX1C1 and DCDC2 in a cellular model. CONCLUSIONS In summary, we describe the physical and functional interaction between the two genes DYX1C1 and DCDC2. These results contribute to the growing understanding of the molecular roles of DYX1C1 and DCDC2 and set the stage for future functional studies.
Collapse
Affiliation(s)
- Andrea Bieder
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - Arpit Wason
- Center for Molecular Medicine, Institute for Biochemistry I of the University of Cologne, Cologne, Germany
| | - Steffen Erkelenz
- Institute of Human Genetics, Universitätsklinikum, Heinrich Heine University, Düsseldorf, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, Universitätsklinikum, Heinrich Heine University, Düsseldorf, Germany
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Molecular Neurology Research Program, University of Helsinki, Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Isabel Tapia-Páez
- Department of Medicine, Solna, Karolinska Institutet, Solnavägen 30, SE-171 76, Solna, Sweden.
| |
Collapse
|
35
|
Paolocci E, Zaccolo M. Compartmentalised cAMP signalling in the primary cilium. Front Physiol 2023; 14:1187134. [PMID: 37256063 PMCID: PMC10226274 DOI: 10.3389/fphys.2023.1187134] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
cAMP is a universal second messenger that relies on precise spatio-temporal regulation to control varied, and often opposing, cellular functions. This is achieved via selective activation of effectors embedded in multiprotein complexes, or signalosomes, that reside at distinct subcellular locations. cAMP is also one of many pathways known to operate within the primary cilium. Dysfunction of ciliary signaling leads to a class of diseases known as ciliopathies. In Autosomal Dominant Polycystic Kidney Disease (ADPKD), a ciliopathy characterized by the formation of fluid-filled kidney cysts, upregulation of cAMP signaling is known to drive cystogenesis. For decades it has been debated whether the primary cilium is an independent cAMP sub-compartment, or whether it shares a diffusible pool of cAMP with the cell body. Recent studies now suggest it is a specific pool of cAMP generated in the cilium that propels cyst formation in ADPKD, supporting the notion that this antenna-like organelle is a compartment within which cAMP signaling occurs independently from cAMP signaling in the bulk cytosol. Here we present examples of cAMP function in the cilium which suggest this mysterious organelle is home to more than one cAMP signalosome. We review evidence that ciliary membrane localization of G-Protein Coupled Receptors (GPCRs) determines their downstream function and discuss how optogenetic tools have contributed to establish that cAMP generated in the primary cilium can drive cystogenesis.
Collapse
|
36
|
Gottardo M, Riparbelli MG, Callaini G, Megraw TL. Evidence for intraflagellar transport in butterfly spermatocyte cilia. Cytoskeleton (Hoboken) 2023; 80:112-122. [PMID: 37036073 PMCID: PMC10330035 DOI: 10.1002/cm.21755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/04/2023] [Accepted: 03/22/2023] [Indexed: 04/11/2023]
Abstract
In the model organism insect Drosophila melanogaster short cilia assemble on spermatocytes that elaborate into 1.8 mm long flagella during spermatid differentiation. A unique feature of these cilia/flagella is their lack of dependence on intraflagellar transport (IFT) for their assembly. Here, we show that in the common butterfly Pieris brassicae, the spermatocyte cilia are exceptionally long: about 40 μm compared to less than 1 μm in Drosophila. By transmission electron microscopy, we show that P. brassicae spermatocytes display several features not found in melanogaster, including compelling evidence of IFT structures and features of motile cilia.
Collapse
Affiliation(s)
- Marco Gottardo
- Department of Life Sciences, University of Siena, Italy
- These Authors contributed equally to this work
| | - Maria Giovanna Riparbelli
- Department of Life Sciences, University of Siena, Italy
- These Authors contributed equally to this work
| | | | - Timothy L. Megraw
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL USA
| |
Collapse
|
37
|
Toriyama M, Rizaldy D, Nakamura M, Atsumi Y, Toriyama M, Fujita F, Okada F, Morita A, Itoh H, Ishii KJ. Dendritic cell proliferation by primary cilium in atopic dermatitis. Front Mol Biosci 2023; 10:1149828. [PMID: 37179569 PMCID: PMC10169737 DOI: 10.3389/fmolb.2023.1149828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction: Atopic dermatitis (AD) is a common allergic eczema that affects up to 10% of adults in developed countries. Immune cells in the epidermis, namely, Langerhans cells (LCs), contribute to the pathogenesis of AD, although their exact role(s) in disease remain unclear. Methods: We performed immunostaining on human skin and peripheral blood mononuclear cells (PBMCs) and visualized primary cilium. Result and discussion: We show that human dendritic cells (DCs) and LCs have a previously unknown primary cilium-like structure. The primary cilium was assembled during DC proliferation in response to the Th2 cytokine GM-CSF, and its formation was halted by DC maturation agents. This suggests that the role of primary cilium is to transduce proliferation signaling. The platelet-derived growth factor receptor alpha (PDGFRα) pathway, which is known for transducing proliferation signals in the primary cilium, promoted DC proliferation in a manner dependent on the intraflagellar transport (IFT) system. We also examined the epidermal samples from AD patients, and observed aberrantly ciliated LCs and keratinocytes in immature and proliferating states. Our results identify a potential relationship between the primary cilium and allergic skin barrier disorders, and suggest that targeting the primary cilium may contribute to treating AD.
Collapse
Affiliation(s)
- Manami Toriyama
- Graduate School of Pharmacological Sciences, Osaka University, Osaka, Japan
- Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Defri Rizaldy
- Graduate School of Pharmacological Sciences, Osaka University, Osaka, Japan
- Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| | - Motoki Nakamura
- Graduate School of Pharmacological Sciences, Osaka University, Osaka, Japan
- Department of Geriatric and Environmental Dermatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yukiko Atsumi
- Graduate School of Pharmacological Sciences, Osaka University, Osaka, Japan
- Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Michinori Toriyama
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo, Japan
| | - Fumitaka Fujita
- Graduate School of Pharmacological Sciences, Osaka University, Osaka, Japan
- Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Mandom Corporation, Osaka, Japan
| | - Fumihiro Okada
- Graduate School of Pharmacological Sciences, Osaka University, Osaka, Japan
- Mandom Corporation, Osaka, Japan
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Hiroshi Itoh
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Ken J. Ishii
- Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
38
|
Cheung SKK, Kwok J, Or PMY, Wong CW, Feng B, Choy KW, Chang RCC, Burbach JPH, Cheng ASL, Chan AM. Neuropathological signatures revealed by transcriptomic and proteomic analysis in Pten-deficient mouse models. Sci Rep 2023; 13:6763. [PMID: 37185447 PMCID: PMC10130134 DOI: 10.1038/s41598-023-33869-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
PTEN hamartoma tumour syndrome is characterised by mutations in the human PTEN gene. We performed transcriptomic and proteomic analyses of neural tissues and primary cultures from heterozygous and homozygous Pten-knockout mice. The somatosensory cortex of heterozygous Pten-knockout mice was enriched in immune response and oligodendrocyte development Gene Ontology (GO) terms. Parallel proteomic analysis revealed differentially expressed proteins (DEPs) related to dendritic spine development, keratinisation and hamartoma signatures. However, primary astrocytes (ASTs) from heterozygous Pten-knockout mice were enriched in the extracellular matrix GO term, while primary cortical neurons (PCNs) were enriched in immediate-early genes. In ASTs from homozygous Pten-knockout mice, cilium-related activity was enriched, while PCNs exhibited downregulation of forebrain neuron generation and differentiation, implying an altered excitatory/inhibitory balance. By integrating DEPs with pre-filtered differentially expressed genes, we identified the enrichment of traits of intelligence, cognitive function and schizophrenia, while DEPs in ASTs were significantly associated with intelligence and depression.
Collapse
Affiliation(s)
- Stanley K K Cheung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Jacinda Kwok
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Canada
| | - Penelope M Y Or
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Chi Wai Wong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Bo Feng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Kwong Wai Choy
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Raymond C C Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - J Peter H Burbach
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alfred S L Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Andrew M Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- Brain and Mind Institute, The Chinese University of Hong Kong, 4/F, Hui Yeung Shing Building, Hong Kong, SAR, China.
| |
Collapse
|
39
|
Zhang K, Da Silva F, Seidl C, Wilsch-Bräuninger M, Herbst J, Huttner WB, Niehrs C. Primary cilia are WNT-transducing organelles whose biogenesis is controlled by a WNT-PP1 axis. Dev Cell 2023; 58:139-154.e8. [PMID: 36693320 DOI: 10.1016/j.devcel.2022.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/18/2022] [Accepted: 12/19/2022] [Indexed: 01/24/2023]
Abstract
WNT signaling is important in development, stem cell maintenance, and disease. WNT ligands typically signal via receptor activation across the plasma membrane to induce β-catenin-dependent gene activation. Here, we show that in mammalian primary cilia, WNT receptors relay a WNT/GSK3 signal that β-catenin-independently promotes ciliogenesis. Characterization of a LRP6 ciliary targeting sequence and monitoring of acute WNT co-receptor activation (phospho-LRP6) support this conclusion. Ciliary WNT signaling inhibits protein phosphatase 1 (PP1) activity, a negative regulator of ciliogenesis, by preventing GSK3-mediated phosphorylation of the PP1 regulatory inhibitor subunit PPP1R2. Concordantly, deficiency of WNT/GSK3 signaling by depletion of cyclin Y and cyclin-Y-like protein 1 induces primary cilia defects in mouse embryonic neuronal precursors, kidney proximal tubules, and adult mice preadipocytes.
Collapse
Affiliation(s)
- Kaiqing Zhang
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Fabio Da Silva
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Carina Seidl
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Michaela Wilsch-Bräuninger
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraβe 108, 01307 Dresden, Germany
| | - Jessica Herbst
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraβe 108, 01307 Dresden, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| |
Collapse
|
40
|
Zheng NX, Miao YT, Zhang X, Huang MZ, Jahangir M, Luo S, Lang B. Primary cilia-associated protein IFT172 in ciliopathies. Front Cell Dev Biol 2023; 11:1074880. [PMID: 36733456 PMCID: PMC9887189 DOI: 10.3389/fcell.2023.1074880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Cilium is a highly conserved antenna-like structure protruding from the surface of the cell membrane, which is widely distributed on most mammalian cells. Two types of cilia have been described so far which include motile cilia and immotile cilia and the latter are also known as primary cilia. Dysfunctional primary cilia are commonly associated with a variety of congenital diseases called ciliopathies with multifaceted presentations such as retinopathy, congenital kidney disease, intellectual disability, cancer, polycystic kidney, obesity, Bardet Biedl syndrome (BBS), etc. Intraflagellar transport (IFT) is a bi-directional transportation process that helps maintain a balanced flow of proteins or signaling molecules essential for the communication between cilia and cytoplasm. Disrupted IFT contributes to the abnormal structure or function of cilia and frequently promotes the occurrence of ciliopathies. Intraflagellar transport 172 (IFT172) is a newly identified member of IFT proteins closely involved in some rare ciliopathies such as Mainzer-Saldino syndrome (MZSDS) and BBS, though the underpinning causal mechanisms remain largely elusive. In this review, we summarize the key findings on the genetic and protein characteristic of IFT172, as well as its function in intraflagellar transport, to provide comprehensive insights to understand IFT172-related ciliopathies.
Collapse
Affiliation(s)
- Nan-Xi Zheng
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ya-Ting Miao
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xi Zhang
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mu-Zhi Huang
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Muhammad Jahangir
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shilin Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China,*Correspondence: Shilin Luo, ; Bing Lang,
| | - Bing Lang
- Department of Psychiatry, National Clinical Research Centre for Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Shilin Luo, ; Bing Lang,
| |
Collapse
|
41
|
Tingey M, Ruba A, Yang W. High-SPEED super-resolution SPEED microscopy to study primary cilium signaling in vivo. Methods Cell Biol 2023; 176:181-197. [PMID: 37164537 DOI: 10.1016/bs.mcb.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The primary cilium is a surface exposed organelle found in eukaryotic cells that functions to decode a variety of intracellular signals with significant implications in human developmental disorders and diseases. It is therefore highly desirable to obtain in vivo information regarding the dynamic processes occurring within the primary cilium. However, current techniques are limited by either the physical limitations of light microscopy or the static nature of electron microscopy. To overcome these limitations, single-point edge-excitation sub-diffraction (SPEED) microscopy was developed to obtain dynamic in vivo information in subcellular organelles such as cilia and nuclear pore complexes using single-molecule super-resolution light microscopy with a spatiotemporal resolution of 10-20nm and 0.4-2ms. Three-dimensional (3D) structural and dynamic information in these organelles can be further obtained through a post-processing 2D-to-3D transformation algorithm. Here we present a modular step-by-step protocol for studying primary cilium signaling dynamics, including Intraflagellar transport (IFT) via IFT20 and somatostatin g-protein-coupled receptor activity via SSTR3.
Collapse
Affiliation(s)
- Mark Tingey
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - Andrew Ruba
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA, United States.
| |
Collapse
|
42
|
Alhassen W, Alhassen S, Chen J, Monfared RV, Alachkar A. Cilia in the Striatum Mediate Timing-Dependent Functions. Mol Neurobiol 2023; 60:545-565. [PMID: 36322337 PMCID: PMC9849326 DOI: 10.1007/s12035-022-03095-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/16/2022] [Indexed: 11/07/2022]
Abstract
Almost all brain cells contain cilia, antennae-like microtubule-based organelles. Yet, the significance of cilia, once considered vestigial organelles, in the higher-order brain functions is unknown. Cilia act as a hub that senses and transduces environmental sensory stimuli to generate an appropriate cellular response. Similarly, the striatum, a brain structure enriched in cilia, functions as a hub that receives and integrates various types of environmental information to drive appropriate motor response. To understand cilia's role in the striatum functions, we used loxP/Cre technology to ablate cilia from the dorsal striatum of male mice and monitored the behavioral consequences. Our results revealed an essential role for striatal cilia in the acquisition and brief storage of information, including learning new motor skills, but not in long-term consolidation of information or maintaining habitual/learned motor skills. A fundamental aspect of all disrupted functions was the "time perception/judgment deficit." Furthermore, the observed behavioral deficits form a cluster pertaining to clinical manifestations overlapping across psychiatric disorders that involve the striatum functions and are known to exhibit timing deficits. Thus, striatal cilia may act as a calibrator of the timing functions of the basal ganglia-cortical circuit by maintaining proper timing perception. Our findings suggest that dysfunctional cilia may contribute to the pathophysiology of neuro-psychiatric disorders, as related to deficits in timing perception.
Collapse
Affiliation(s)
- Wedad Alhassen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, 356A Med Surge II, Irvine, CA 92697-4625 USA
| | - Sammy Alhassen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, 356A Med Surge II, Irvine, CA 92697-4625 USA
| | - Jiaqi Chen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, 356A Med Surge II, Irvine, CA 92697-4625 USA
| | - Roudabeh Vakil Monfared
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, 356A Med Surge II, Irvine, CA 92697-4625 USA
| | - Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California-Irvine, 356A Med Surge II, Irvine, CA 92697-4625 USA ,UC Irvine Center for the Neurobiology of Learning and Memory, University of California-Irvine, Irvine, CA 92697 USA ,Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92697 USA
| |
Collapse
|
43
|
Karalis V, Donovan KE, Sahin M. Primary Cilia Dysfunction in Neurodevelopmental Disorders beyond Ciliopathies. J Dev Biol 2022; 10:54. [PMID: 36547476 PMCID: PMC9782889 DOI: 10.3390/jdb10040054] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Primary cilia are specialized, microtubule-based structures projecting from the surface of most mammalian cells. These organelles are thought to primarily act as signaling hubs and sensors, receiving and integrating extracellular cues. Several important signaling pathways are regulated through the primary cilium including Sonic Hedgehog (Shh) and Wnt signaling. Therefore, it is no surprise that mutated genes encoding defective proteins that affect primary cilia function or structure are responsible for a group of disorders collectively termed ciliopathies. The severe neurologic abnormalities observed in several ciliopathies have prompted examination of primary cilia structure and function in other brain disorders. Recently, neuronal primary cilia defects were observed in monogenic neurodevelopmental disorders that were not traditionally considered ciliopathies. The molecular mechanisms of how these genetic mutations cause primary cilia defects and how these defects contribute to the neurologic manifestations of these disorders remain poorly understood. In this review we will discuss monogenic neurodevelopmental disorders that exhibit cilia deficits and summarize findings from studies exploring the role of primary cilia in the brain to shed light into how these deficits could contribute to neurologic abnormalities.
Collapse
Affiliation(s)
- Vasiliki Karalis
- The Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Kathleen E. Donovan
- The Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Mustafa Sahin
- The Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
44
|
Park K, Leroux MR. Composition, organization and mechanisms of the transition zone, a gate for the cilium. EMBO Rep 2022; 23:e55420. [PMID: 36408840 PMCID: PMC9724682 DOI: 10.15252/embr.202255420] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/08/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
The cilium evolved to provide the ancestral eukaryote with the ability to move and sense its environment. Acquiring these functions required the compartmentalization of a dynein-based motility apparatus and signaling proteins within a discrete subcellular organelle contiguous with the cytosol. Here, we explore the potential molecular mechanisms for how the proximal-most region of the cilium, termed transition zone (TZ), acts as a diffusion barrier for both membrane and soluble proteins and helps to ensure ciliary autonomy and homeostasis. These include a unique complement and spatial organization of proteins that span from the microtubule-based axoneme to the ciliary membrane; a protein picket fence; a specialized lipid microdomain; differential membrane curvature and thickness; and lastly, a size-selective molecular sieve. In addition, the TZ must be permissive for, and functionally integrates with, ciliary trafficking systems (including intraflagellar transport) that cross the barrier and make the ciliary compartment dynamic. The quest to understand the TZ continues and promises to not only illuminate essential aspects of human cell signaling, physiology, and development, but also to unravel how TZ dysfunction contributes to ciliopathies that affect multiple organ systems, including eyes, kidney, and brain.
Collapse
Affiliation(s)
- Kwangjin Park
- Department of Molecular Biology and BiochemistrySimon Fraser UniversityBurnabyBCCanada
- Centre for Cell Biology, Development, and DiseaseSimon Fraser UniversityBurnabyBCCanada
- Present address:
Terry Fox LaboratoryBC CancerVancouverBCCanada
- Present address:
Department of Medical GeneticsUniversity of British ColumbiaVancouverBCCanada
| | - Michel R Leroux
- Department of Molecular Biology and BiochemistrySimon Fraser UniversityBurnabyBCCanada
- Centre for Cell Biology, Development, and DiseaseSimon Fraser UniversityBurnabyBCCanada
| |
Collapse
|
45
|
Bonet-Ponce L, Cookson MR. LRRK2 recruitment, activity, and function in organelles. FEBS J 2022; 289:6871-6890. [PMID: 34196120 PMCID: PMC8744135 DOI: 10.1111/febs.16099] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/13/2021] [Accepted: 06/30/2021] [Indexed: 01/13/2023]
Abstract
Protein coding mutations in leucine-rich repeat kinase 2 (LRRK2) cause familial Parkinson's disease (PD), and noncoding variations around the gene increase the risk of developing sporadic PD. It is generally accepted that pathogenic LRRK2 mutations increase LRRK2 kinase activity, resulting in a toxic hyperactive protein that is inferred to lead to the PD phenotype. LRRK2 has long been linked to different membrane trafficking events, but the specific role of LRRK2 in these events has been difficult to resolve. Recently, several papers have reported the activation and translocation of LRRK2 to cellular organelles under specific conditions, which suggests that LRRK2 may influence intracellular membrane trafficking. Here, we review what is known about the role of LRRK2 at various organelle compartments.
Collapse
Affiliation(s)
| | - Mark R. Cookson
- Correspondence: Mark R. Cookson, Ph.D., Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, 35 Convent Drive, Room 1A–116, Bethesda, MD, 20892–3707, USA. Phone: 301–451–3870,
| |
Collapse
|
46
|
Scarinci N, Perez PL, Cantiello HF, Cantero MDR. Polycystin-2 (TRPP2) regulates primary cilium length in LLC-PK1 renal epithelial cells. Front Physiol 2022; 13:995473. [PMID: 36267587 PMCID: PMC9577394 DOI: 10.3389/fphys.2022.995473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
Polycystin-2 (PC2, TRPP2) is a Ca2+ permeable nonselective cation channel whose dysfunction generates autosomal dominant polycystic kidney disease (ADPKD). PC2 is present in different cell locations, including the primary cilium of renal epithelial cells. However, little is known as to whether PC2 contributes to the primary cilium structure. Here, we explored the effect(s) of external Ca2+, PC2 channel blockers, and PKD2 gene silencing on the length of primary cilia in wild-type LLC-PK1 renal epithelial cells. Confluent cell monolayers were fixed and immuno-labeled with an anti-acetylated α-tubulin antibody to identify primary cilia and measure their length. Although primary cilia length measurements did not follow a Normal distribution, the data were normalized by Box-Cox transformation rendering statistical differences under all experimental conditions. Cells exposed to high external Ca2+ (6.2 mM) decreased a 13.5% (p < 0.001) primary cilia length as compared to controls (1.2 mM Ca2+). In contrast, the PC2 inhibitors amiloride (200 μM) and LiCl (10 mM), both increased primary ciliary length by 33.2% (p < 0.001), and 17.4% (p < 0.001), respectively. PKD2 gene silencing by siRNA elicited a statistically significant, 10.3% (p < 0.001) increase in primary cilia length compared to their respective scrambled RNA transfected cells. The data indicate that conditions that regulate PC2 function or gene expression modify the length of primary cilia in renal epithelial cells. Blocking of PC2 mitigates the effects of elevated external Ca2+ concentration on primary cilia length. Proper regulation of PC2 function in the primary cilium may be essential in the onset of mechanisms that trigger cyst formation in ADPKD.
Collapse
Affiliation(s)
| | | | | | - María del Rocío Cantero
- Laboratorio de Canales Iónicos, IMSaTeD, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (CONICET-UNSE), Santiago del Estero, Argentina
| |
Collapse
|
47
|
Lee B, Beuhler L, Lee HY. The Primary Ciliary Deficits in Cerebellar Bergmann Glia of the Mouse Model of Fragile X Syndrome. CEREBELLUM (LONDON, ENGLAND) 2022; 21:801-813. [PMID: 35438410 PMCID: PMC10857775 DOI: 10.1007/s12311-022-01382-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 12/14/2022]
Abstract
Primary cilia are non-motile cilia that function as antennae for cells to sense signals. Deficits of primary cilia cause ciliopathies, leading to the pathogenesis of various developmental disorders; however, the contribution of primary cilia to neurodevelopmental disorders is largely unknown. Fragile X syndrome (FXS) is a genetically inherited disorder and is the most common known cause of autism spectrum disorders. FXS is caused by the silencing of the fragile X mental retardation 1 (FMR1) gene, which encodes for the fragile X mental retardation protein (FMRP). Here, we discovered a reduction in the number of primary cilia and the Sonic hedgehog (Shh) signaling in cerebellar Bergmann glia of Fmr1 KO mice. We further found reduced granule neuron precursor (GNP) proliferation and thickness of the external germinal layer (EGL) in Fmr1 KO mice, implicating that primary ciliary deficits in Bergmann glia may contribute to cerebellar developmental phenotypes in FXS, as Shh signaling through primary cilia in Bergmann glia is known to mediate proper GNP proliferation in the EGL. Taken together, our study demonstrates that FMRP loss leads to primary ciliary deficits in cerebellar Bergmann glia which may contribute to cerebellar deficits in FXS.
Collapse
Affiliation(s)
- Bumwhee Lee
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Laura Beuhler
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Hye Young Lee
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
48
|
Pânzaru MC, Popa S, Lupu A, Gavrilovici C, Lupu VV, Gorduza EV. Genetic heterogeneity in corpus callosum agenesis. Front Genet 2022; 13:958570. [PMID: 36246626 PMCID: PMC9562966 DOI: 10.3389/fgene.2022.958570] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
The corpus callosum is the largest white matter structure connecting the two cerebral hemispheres. Agenesis of the corpus callosum (ACC), complete or partial, is one of the most common cerebral malformations in humans with a reported incidence ranging between 1.8 per 10,000 livebirths to 230–600 per 10,000 in children and its presence is associated with neurodevelopmental disability. ACC may occur as an isolated anomaly or as a component of a complex disorder, caused by genetic changes, teratogenic exposures or vascular factors. Genetic causes are complex and include complete or partial chromosomal anomalies, autosomal dominant, autosomal recessive or X-linked monogenic disorders, which can be either de novo or inherited. The extreme genetic heterogeneity, illustrated by the large number of syndromes associated with ACC, highlight the underlying complexity of corpus callosum development. ACC is associated with a wide spectrum of clinical manifestations ranging from asymptomatic to neonatal death. The most common features are epilepsy, motor impairment and intellectual disability. The understanding of the genetic heterogeneity of ACC may be essential for the diagnosis, developing early intervention strategies, and informed family planning. This review summarizes our current understanding of the genetic heterogeneity in ACC and discusses latest discoveries.
Collapse
Affiliation(s)
- Monica-Cristina Pânzaru
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Setalia Popa
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- *Correspondence: Setalia Popa, ; Vasile Valeriu Lupu,
| | - Ancuta Lupu
- Department of Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Cristina Gavrilovici
- Department of Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Vasile Valeriu Lupu
- Department of Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- *Correspondence: Setalia Popa, ; Vasile Valeriu Lupu,
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
49
|
Van Bergen NJ, Massey S, Quigley A, Rollo B, Harris AR, Kapsa RM, Christodoulou J. CDKL5 deficiency disorder: molecular insights and mechanisms of pathogenicity to fast-track therapeutic development. Biochem Soc Trans 2022; 50:1207-1224. [PMID: 35997111 PMCID: PMC9444073 DOI: 10.1042/bst20220791] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022]
Abstract
CDKL5 deficiency disorder (CDD) is an X-linked brain disorder of young children and is caused by pathogenic variants in the cyclin-dependent kinase-like 5 (CDKL5) gene. Individuals with CDD suffer infantile onset, drug-resistant seizures, severe neurodevelopmental impairment and profound lifelong disability. The CDKL5 protein is a kinase that regulates key phosphorylation events vital to the development of the complex neuronal network of the brain. Pathogenic variants identified in patients may either result in loss of CDKL5 catalytic activity or are hypomorphic leading to partial loss of function. Whilst the progressive nature of CDD provides an excellent opportunity for disease intervention, we cannot develop effective therapeutics without in-depth knowledge of CDKL5 function in human neurons. In this mini review, we summarize new findings on the function of CDKL5. These include CDKL5 phosphorylation targets and the consequence of disruptions on signaling pathways in the human brain. This new knowledge of CDKL5 biology may be leveraged to advance targeted drug discovery and rapid development of treatments for CDD. Continued development of effective humanized models will further propel our understanding of CDD biology and may permit the development and testing of therapies that will significantly alter CDD disease trajectory in young children.
Collapse
Affiliation(s)
- Nicole J. Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Anita Quigley
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
- Aikenhead Centre for Medical Discovery, Department of Biomedical Engineering, University of Melbourne, Melbourne 3010, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Alexander R. Harris
- Aikenhead Centre for Medical Discovery, Department of Biomedical Engineering, University of Melbourne, Melbourne 3010, Australia
| | - Robert M.I. Kapsa
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Discipline of Child and Adolescent Health, University of Sydney, Sydney, Australia
| |
Collapse
|
50
|
Lennon J, zur Lage P, von Kriegsheim A, Jarman AP. Strongly Truncated Dnaaf4 Plays a Conserved Role in Drosophila Ciliary Dynein Assembly as Part of an R2TP-Like Co-Chaperone Complex With Dnaaf6. Front Genet 2022; 13:943197. [PMID: 35873488 PMCID: PMC9298768 DOI: 10.3389/fgene.2022.943197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/16/2022] [Indexed: 11/15/2022] Open
Abstract
Axonemal dynein motors are large multi-subunit complexes that drive ciliary movement. Cytoplasmic assembly of these motor complexes involves several co-chaperones, some of which are related to the R2TP co-chaperone complex. Mutations of these genes in humans cause the motile ciliopathy, Primary Ciliary Dyskinesia (PCD), but their different roles are not completely known. Two such dynein (axonemal) assembly factors (DNAAFs) that are thought to function together in an R2TP-like complex are DNAAF4 (DYX1C1) and DNAAF6 (PIH1D3). Here we investigate the Drosophila homologues, CG14921/Dnaaf4 and CG5048/Dnaaf6. Surprisingly, Drosophila Dnaaf4 is truncated such that it completely lacks a TPR domain, which in human DNAAF4 is likely required to recruit HSP90. Despite this, we provide evidence that Drosophila Dnaaf4 and Dnaaf6 proteins can associate in an R2TP-like complex that has a conserved role in dynein assembly. Both are specifically expressed and required during the development of the two Drosophila cell types with motile cilia: mechanosensory chordotonal neurons and sperm. Flies that lack Dnaaf4 or Dnaaf6 genes are viable but with impaired chordotonal neuron function and lack motile sperm. We provide molecular evidence that Dnaaf4 and Dnaaf6 are required for assembly of outer dynein arms (ODAs) and a subset of inner dynein arms (IDAs).
Collapse
Affiliation(s)
- Jennifer Lennon
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Petra zur Lage
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Alex von Kriegsheim
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew P. Jarman
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|