1
|
Capdevila DA, Rondón JJ, Edmonds KA, Rocchio JS, Dujovne MV, Giedroc DP. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chem Rev 2024; 124:13574-13659. [PMID: 39658019 DOI: 10.1021/acs.chemrev.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Transition metals function as structural and catalytic cofactors for a large diversity of proteins and enzymes that collectively comprise the metalloproteome. Metallostasis considers all cellular processes, notably metal sensing, metalloproteome remodeling, and trafficking (or allocation) of metals that collectively ensure the functional integrity and adaptability of the metalloproteome. Bacteria employ both protein and RNA-based mechanisms that sense intracellular transition metal bioavailability and orchestrate systems-level outputs that maintain metallostasis. In this review, we contextualize metallostasis by briefly discussing the metalloproteome and specialized roles that metals play in biology. We then offer a comprehensive perspective on the diversity of metalloregulatory proteins and metal-sensing riboswitches, defining general principles within each sensor superfamily that capture how specificity is encoded in the sequence, and how selectivity can be leveraged in downstream synthetic biology and biotechnology applications. This is followed by a discussion of recent work that highlights selected metalloregulatory outputs, including metalloproteome remodeling and metal allocation by metallochaperones to both client proteins and compartments. We close by briefly discussing places where more work is needed to fill in gaps in our understanding of metallostasis.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Johnma J Rondón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Joseph S Rocchio
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Matias Villarruel Dujovne
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
2
|
Jia R, He Z, Wang C, Guo X, Li F. MetalPrognosis: A Biological Language Model-Based Approach for Disease-Associated Mutations in Metal-Binding Site Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:2340-2348. [PMID: 39320992 DOI: 10.1109/tcbb.2024.3467093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Protein-metal ion interactions play a central role in the onset of numerous diseases. When amino acid changes lead to missense mutations in metal-binding sites, the disrupted interaction with metal ions can compromise protein function, potentially causing severe human ailments. Identifying these disease-associated mutation sites within metal-binding regions is paramount for understanding protein function and fostering innovative drug development. While some computational methods aim to tackle this challenge, they often fall short in accuracy, commonly due to manual feature extraction and the absence of structural data. We introduce MetalPrognosis, an innovative, alignment-free solution that predicts disease-associated mutations within metal-binding sites of metalloproteins with heightened precision. Rather than relying on manual feature extraction, MetalPrognosis employs sliding window sequences as input, extracting deep semantic insights from pre-trained protein language models. These insights are then incorporated into a convolutional neural network, facilitating the derivation of intricate features. Comparative evaluations show MetalPrognosis outperforms leading methodologies like MCCNN and M-Ionic across various metalloprotein test sets. Furthermore, an ablation study reiterates the effectiveness of our model architecture.
Collapse
|
3
|
Marcos-Torres FJ, Juniar L, Griese JJ. The molecular mechanisms of the bacterial iron sensor IdeR. Biochem Soc Trans 2023:233013. [PMID: 37140254 DOI: 10.1042/bst20221539] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
Life came to depend on iron as a cofactor for many essential enzymatic reactions. However, once the atmosphere was oxygenated, iron became both scarce and toxic. Therefore, complex mechanisms have evolved to scavenge iron from an environment in which it is poorly bioavailable, and to tightly regulate intracellular iron contents. In bacteria, this is typically accomplished with the help of one key regulator, an iron-sensing transcription factor. While Gram-negative bacteria and Gram-positive species with low guanine-cytosine (GC) content generally use Fur (ferric uptake regulator) proteins to regulate iron homeostasis, Gram-positive species with high GC content use the functional homolog IdeR (iron-dependent regulator). IdeR controls the expression of iron acquisition and storage genes, repressing the former, and activating the latter in an iron-dependent manner. In bacterial pathogens such as Corynebacterium diphtheriae and Mycobacterium tuberculosis, IdeR is also involved in virulence, whereas in non-pathogenic species such as Streptomyces, it regulates secondary metabolism as well. Although in recent years the focus of research on IdeR has shifted towards drug development, there is much left to learn about the molecular mechanisms of IdeR. Here, we summarize our current understanding of how this important bacterial transcriptional regulator represses and activates transcription, how it is allosterically activated by iron binding, and how it recognizes its DNA target sites, highlighting the open questions that remain to be addressed.
Collapse
Affiliation(s)
- Francisco Javier Marcos-Torres
- Department of Cell and Molecular Biology, Uppsala University, 751 24 Uppsala, Sweden
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-CSIC, 18011 Granada, Spain
| | - Linda Juniar
- Department of Cell and Molecular Biology, Uppsala University, 751 24 Uppsala, Sweden
| | - Julia J Griese
- Department of Cell and Molecular Biology, Uppsala University, 751 24 Uppsala, Sweden
| |
Collapse
|
4
|
Yan W, Zheng Y, Dou C, Zhang G, Arnaout T, Cheng W. The pathogenic mechanism of Mycobacterium tuberculosis: implication for new drug development. MOLECULAR BIOMEDICINE 2022; 3:48. [PMID: 36547804 PMCID: PMC9780415 DOI: 10.1186/s43556-022-00106-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a tenacious pathogen that has latently infected one third of the world's population. However, conventional TB treatment regimens are no longer sufficient to tackle the growing threat of drug resistance, stimulating the development of innovative anti-tuberculosis agents, with special emphasis on new protein targets. The Mtb genome encodes ~4000 predicted proteins, among which many enzymes participate in various cellular metabolisms. For example, more than 200 proteins are involved in fatty acid biosynthesis, which assists in the construction of the cell envelope, and is closely related to the pathogenesis and resistance of mycobacteria. Here we review several essential enzymes responsible for fatty acid and nucleotide biosynthesis, cellular metabolism of lipids or amino acids, energy utilization, and metal uptake. These include InhA, MmpL3, MmaA4, PcaA, CmaA1, CmaA2, isocitrate lyases (ICLs), pantothenate synthase (PS), Lysine-ε amino transferase (LAT), LeuD, IdeR, KatG, Rv1098c, and PyrG. In addition, we summarize the role of the transcriptional regulator PhoP which may regulate the expression of more than 110 genes, and the essential biosynthesis enzyme glutamine synthetase (GlnA1). All these enzymes are either validated drug targets or promising target candidates, with drugs targeting ICLs and LAT expected to solve the problem of persistent TB infection. To better understand how anti-tuberculosis drugs act on these proteins, their structures and the structure-based drug/inhibitor designs are discussed. Overall, this investigation should provide guidance and support for current and future pharmaceutical development efforts against mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Weizhu Yan
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Yanhui Zheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Chao Dou
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Guixiang Zhang
- grid.13291.380000 0001 0807 1581Division of Gastrointestinal Surgery, Department of General Surgery and Gastric Cancer center, West China Hospital, Sichuan University, No. 37. Guo Xue Xiang, Chengdu, 610041 China
| | - Toufic Arnaout
- Kappa Crystals Ltd., Dublin, Ireland ,MSD Dunboyne BioNX, Co. Meath, Ireland
| | - Wei Cheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| |
Collapse
|
5
|
Bradley JM, Svistunenko DA, Wilson MT, Hemmings AM, Moore GR, Le Brun NE. Bacterial iron detoxification at the molecular level. J Biol Chem 2021; 295:17602-17623. [PMID: 33454001 PMCID: PMC7762939 DOI: 10.1074/jbc.rev120.007746] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/07/2020] [Indexed: 01/18/2023] Open
Abstract
Iron is an essential micronutrient, and, in the case of bacteria, its availability is commonly a growth-limiting factor. However, correct functioning of cells requires that the labile pool of chelatable "free" iron be tightly regulated. Correct metalation of proteins requiring iron as a cofactor demands that such a readily accessible source of iron exist, but overaccumulation results in an oxidative burden that, if unchecked, would lead to cell death. The toxicity of iron stems from its potential to catalyze formation of reactive oxygen species that, in addition to causing damage to biological molecules, can also lead to the formation of reactive nitrogen species. To avoid iron-mediated oxidative stress, bacteria utilize iron-dependent global regulators to sense the iron status of the cell and regulate the expression of proteins involved in the acquisition, storage, and efflux of iron accordingly. Here, we survey the current understanding of the structure and mechanism of the important members of each of these classes of protein. Diversity in the details of iron homeostasis mechanisms reflect the differing nutritional stresses resulting from the wide variety of ecological niches that bacteria inhabit. However, in this review, we seek to highlight the similarities of iron homeostasis between different bacteria, while acknowledging important variations. In this way, we hope to illustrate how bacteria have evolved common approaches to overcome the dual problems of the insolubility and potential toxicity of iron.
Collapse
Affiliation(s)
- Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.
| | | | - Michael T Wilson
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Andrew M Hemmings
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom; Centre for Molecular and Structural Biochemistry, School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Geoffrey R Moore
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.
| |
Collapse
|
6
|
Chen X, Spiering GA, Slebodnick C, Long TE, Moore RB. Deciphering the 3D Microstructures of a Doubly Charged Homopolymer through a Complementary Correlation of Monomer Crystallography and Polymer Powder X-ray Diffraction. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xi Chen
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Glenn A. Spiering
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Carla Slebodnick
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Timothy E. Long
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Robert B. Moore
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
7
|
Pellicer Martinez MT, Crack JC, Stewart MYY, Bradley JM, Svistunenko DA, Johnston AWB, Cheesman MR, Todd JD, Le Brun NE. Mechanisms of iron- and O 2-sensing by the [4Fe-4S] cluster of the global iron regulator RirA. eLife 2019; 8:e47804. [PMID: 31526471 PMCID: PMC6748827 DOI: 10.7554/elife.47804] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/29/2019] [Indexed: 01/05/2023] Open
Abstract
RirA is a global regulator of iron homeostasis in Rhizobium and related α-proteobacteria. In its [4Fe-4S] cluster-bound form it represses iron uptake by binding to IRO Box sequences upstream of RirA-regulated genes. Under low iron and/or aerobic conditions, [4Fe-4S] RirA undergoes cluster conversion/degradation to apo-RirA, which can no longer bind IRO Box sequences. Here, we apply time-resolved mass spectrometry and electron paramagnetic resonance spectroscopy to determine how the RirA cluster senses iron and O2. The data indicate that the key iron-sensing step is the O2-independent, reversible dissociation of Fe2+ from [4Fe-4S]2+ to form [3Fe-4S]0. The dissociation constant for this process was determined as Kd = ~3 µM, which is consistent with the sensing of 'free' iron in the cytoplasm. O2-sensing occurs through enhanced cluster degradation under aerobic conditions, via O2-mediated oxidation of the [3Fe-4S]0 intermediate to form [3Fe-4S]1+. This work provides a detailed mechanistic/functional view of an iron-responsive regulator.
Collapse
Affiliation(s)
- Ma Teresa Pellicer Martinez
- Centre for Molecular and Structural Biochemistry, School of ChemistryUniversity of East AngliaNorwichUnited Kingdom
| | - Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of ChemistryUniversity of East AngliaNorwichUnited Kingdom
| | - Melissa YY Stewart
- Centre for Molecular and Structural Biochemistry, School of ChemistryUniversity of East AngliaNorwichUnited Kingdom
| | - Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of ChemistryUniversity of East AngliaNorwichUnited Kingdom
| | | | - Andrew WB Johnston
- School of Biological SciencesUniversity of East AngliaNorwichUnited Kingdom
| | - Myles R Cheesman
- Centre for Molecular and Structural Biochemistry, School of ChemistryUniversity of East AngliaNorwichUnited Kingdom
| | - Jonathan D Todd
- School of Biological SciencesUniversity of East AngliaNorwichUnited Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of ChemistryUniversity of East AngliaNorwichUnited Kingdom
| |
Collapse
|
8
|
Parveen S, Bishai WR, Murphy JR. Corynebacterium diphtheriae: Diphtheria Toxin, the tox Operon, and Its Regulation by Fe2 + Activation of apo-DtxR. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0063-2019. [PMID: 31267892 PMCID: PMC8713076 DOI: 10.1128/microbiolspec.gpp3-0063-2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Indexed: 11/20/2022] Open
Abstract
Diphtheria is one of the most well studied of all the bacterial infectious diseases. These milestone studies of toxigenic Corynebacterium diphtheriae along with its primary virulence determinant, diphtheria toxin, have established the paradigm for the study of other related bacterial protein toxins. This review highlights those studies that have contributed to our current understanding of the structure-function relationships of diphtheria toxin, the molecular mechanism of its entry into the eukaryotic cell cytosol, the regulation of diphtheria tox expression by holo-DtxR, and the molecular basis of transition metal ion activation of apo-DtxR itself. These seminal studies have laid the foundation for the protein engineering of diphtheria toxin and the development of highly potent eukaryotic cell-surface receptor-targeted fusion protein toxins for the treatment of human diseases that range from T cell malignancies to steroid-resistant graft-versus-host disease to metastatic melanoma. This deeper scientific understanding of diphtheria toxin and the regulation of its expression have metamorphosed the third-most-potent bacterial toxin known into a life-saving targeted protein therapeutic, thereby at least partially fulfilling Paul Erlich's concept of a magic bullet-"a chemical that binds to and specifically kills microbes or tumor cells."
Collapse
Affiliation(s)
- Sadiya Parveen
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - William R Bishai
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - John R Murphy
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| |
Collapse
|
9
|
Pokorzynski ND, Brinkworth AJ, Carabeo R. A bipartite iron-dependent transcriptional regulation of the tryptophan salvage pathway in Chlamydia trachomatis. eLife 2019; 8:e42295. [PMID: 30938288 PMCID: PMC6504234 DOI: 10.7554/elife.42295] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/30/2019] [Indexed: 12/13/2022] Open
Abstract
During infection, pathogens are starved of essential nutrients such as iron and tryptophan by host immune effectors. Without conserved global stress response regulators, how the obligate intracellular bacterium Chlamydia trachomatis arrives at a physiologically similar 'persistent' state in response to starvation of either nutrient remains unclear. Here, we report on the iron-dependent regulation of the trpRBA tryptophan salvage pathway in C. trachomatis. Iron starvation specifically induces trpBA expression from a novel promoter element within an intergenic region flanked by trpR and trpB. YtgR, the only known iron-dependent regulator in Chlamydia, can bind to the trpRBA intergenic region upstream of the alternative trpBA promoter to repress transcription. Simultaneously, YtgR binding promotes the termination of transcripts from the primary promoter upstream of trpR. This is the first description of an iron-dependent mechanism regulating prokaryotic tryptophan biosynthesis that may indicate the existence of novel approaches to gene regulation and stress response in Chlamydia.
Collapse
Affiliation(s)
- Nick D Pokorzynski
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary MedicineWashington State UniversityPullmanUnited States
| | - Amanda J Brinkworth
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary MedicineWashington State UniversityPullmanUnited States
| | - Rey Carabeo
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary MedicineWashington State UniversityPullmanUnited States
| |
Collapse
|
10
|
Aono S, Nakajima H. Transcriptional Regulation of Gene Expression by Metalloproteins. PROGRESS IN REACTION KINETICS AND MECHANISM 2019. [DOI: 10.3184/007967400103165128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
FNR and SoxR are transcriptional regulators containing an iron–sulfur cluster. The iron–sulfur cluster in FNR acts as an oxygen sensor by reacting with oxygen. The structural change of the iron–sulfur cluster takes place when FNR senses oxygen, which regulates the transcriptional regulator activity of FNR through the change of the quaternary structure. SoxR contains the [2Fe–2S] cluster that regulates the transcriptional activator activity of SoxR. Only the oxidized SoxR containing the [2Fe–2S]2+ cluster is active as the transcriptional activator. CooA is a transcriptional activator containing a protoheme that acts as a CO sensor. CO is a physiological effector of CooA and regulates the transcriptional activator activity of CooA. In this review, the biochemical and biophysical properties of FNR, SoxR, and CooA are described.
Collapse
Affiliation(s)
- Shigetoshi Aono
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Tatsunokuchi, Ishikawa 923-1292, Japan
| | - Hiroshi Nakajima
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Tatsunokuchi, Ishikawa 923-1292, Japan
| |
Collapse
|
11
|
Pellicer Martinez MT, Martinez AB, Crack JC, Holmes JD, Svistunenko DA, Johnston AWB, Cheesman MR, Todd JD, Le Brun NE. Sensing iron availability via the fragile [4Fe-4S] cluster of the bacterial transcriptional repressor RirA. Chem Sci 2017; 8:8451-8463. [PMID: 29619193 PMCID: PMC5863699 DOI: 10.1039/c7sc02801f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/20/2017] [Indexed: 01/02/2023] Open
Abstract
The global iron regulator RirA controls transcription of iron metabolism genes via the binding of a fragile [4Fe–4S] cluster.
Rhizobial iron regulator A (RirA) is a global regulator of iron homeostasis in many nitrogen-fixing Rhizobia and related species of α-proteobacteria. It belongs to the widespread Rrf2 super-family of transcriptional regulators and features three conserved Cys residues that characterise the binding of an iron–sulfur cluster in other Rrf2 family regulators. Here we report biophysical studies demonstrating that RirA contains a [4Fe–4S] cluster, and that this form of the protein binds RirA-regulated DNA, consistent with its function as a repressor of expression of many genes involved in iron uptake. Under low iron conditions, [4Fe–4S] RirA undergoes a cluster conversion reaction resulting in a [2Fe–2S] form, which exhibits much lower affinity for DNA. Under prolonged low iron conditions, the [2Fe–2S] cluster degrades to apo-RirA, which does not bind DNA and can no longer function as a repressor of the cell's iron-uptake machinery. [4Fe–4S] RirA was also found to be sensitive to O2, suggesting that both iron and O2 are important signals for iron metabolism. Consistent with this, in vivo data showed that expression of RirA-regulated genes is also affected by O2. These data lead us to propose a novel regulatory model for iron homeostasis, in which RirA senses iron via the incorporation of a fragile iron–sulfur cluster that is sensitive to iron and O2 concentrations.
Collapse
Affiliation(s)
- Ma Teresa Pellicer Martinez
- Centre for Molecular and Structural Biochemistry , School of Chemistry , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK . ; ; Tel: +44 1603 592699
| | - Ana Bermejo Martinez
- School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK
| | - Jason C Crack
- Centre for Molecular and Structural Biochemistry , School of Chemistry , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK . ; ; Tel: +44 1603 592699
| | - John D Holmes
- Centre for Molecular and Structural Biochemistry , School of Chemistry , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK . ; ; Tel: +44 1603 592699
| | - Dimitri A Svistunenko
- School of Biological Sciences , University of Essex , Wivenhoe Park , Colchester CO4 3SQ , UK
| | - Andrew W B Johnston
- School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK
| | - Myles R Cheesman
- Centre for Molecular and Structural Biochemistry , School of Chemistry , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK . ; ; Tel: +44 1603 592699
| | - Jonathan D Todd
- School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry , School of Chemistry , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK . ; ; Tel: +44 1603 592699
| |
Collapse
|
12
|
Zhang L, Butler CA, Khan HSG, Dashper SG, Seers CA, Veith PD, Zhang JG, Reynolds EC. Characterisation of the Porphyromonas gingivalis Manganese Transport Regulator Orthologue. PLoS One 2016; 11:e0151407. [PMID: 27007570 PMCID: PMC4805248 DOI: 10.1371/journal.pone.0151407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/26/2016] [Indexed: 11/19/2022] Open
Abstract
PgMntR is a predicted member of the DtxR family of transcriptional repressors responsive to manganese in the anaerobic periodontal pathogen Porphyromonas gingivalis. Our bioinformatic analyses predicted that PgMntR had divalent metal binding site(s) with elements of both manganous and ferrous ion specificity and that PgMntR has unusual twin C-terminal FeoA domains. We produced recombinant PgMntR and four variants to probe the specificity of metal binding and its impact on protein structure and DNA binding. PgMntR dimerised in the absence of a divalent transition metal cation. PgMntR bound three Mn(II) per monomer with an overall dissociation constant Kd 2.0 x 10(-11) M at pH 7.5. PgMntR also bound two Fe(II) with distinct binding affinities, Kd1 2.5 x 10(-10) M and Kd2 ≤ 6.0 x 10(-8) M at pH 6.8. Two of the metal binding sites may form a binuclear centre with two bound Mn2+ being bridged by Cys108 but this centre provided only one site for Fe2+. Binding of Fe2+ or Mn2+ did not have a marked effect on the PgMntR secondary structure. Apo-PgMntR had a distinct affinity for the promoter region of the gene encoding the only known P. gingivalis manganese transporter, FB2. Mn2+ increased the DNA binding affinity of PgMntR whilst Fe2+ destabilised the protein-DNA complex in vitro. PgMntR did not bind the promoter DNA of the gene encoding the characterised iron transporter FB1. The C-terminal FeoA domain was shown to be essential for PgMntR structure/function, as its removal caused the introduction of an intramolecular disulfide bond and abolished the binding of Mn2+ and DNA. These data indicate that PgMntR is a novel member of the DtxR family that may function as a transcriptional repressor switch to specifically regulate manganese transport and homeostasis in an iron-dependent manner.
Collapse
Affiliation(s)
- Lianyi Zhang
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Catherine A. Butler
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Hasnah S. G. Khan
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stuart G. Dashper
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christine A. Seers
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paul D. Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jian-Guo Zhang
- Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Eric C. Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
13
|
Ghosh S, Chandra N, Vishveshwara S. Mechanism of Iron-Dependent Repressor (IdeR) Activation and DNA Binding: A Molecular Dynamics and Protein Structure Network Study. PLoS Comput Biol 2015; 11:e1004500. [PMID: 26699663 PMCID: PMC4689551 DOI: 10.1371/journal.pcbi.1004500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/11/2015] [Indexed: 11/19/2022] Open
Abstract
Metalloproteins form a major class of enzymes in the living system that are involved in crucial biological functions such as catalysis, redox reactions and as 'switches' in signal transductions. Iron dependent repressor (IdeR) is a metal-sensing transcription factor that regulates free iron concentration in Mycobacterium tuberculosis. IdeR is also known to promote bacterial virulence, making it an important target in the field of therapeutics. Mechanistic details of how iron ions modulate IdeR such that it dimerizes and binds to DNA is not understood clearly. In this study, we have performed molecular dynamic simulations and integrated it with protein structure networks to study the influence of iron on IdeR structure and function. A significant structural variation between the metallated and the non-metallated system is observed. Our simulations clearly indicate the importance of iron in stabilizing its monomeric subunit, which in turn promotes dimerization. However, the most striking results are obtained from the simulations of IdeR-DNA complex in the absence of metals, where at the end of 100ns simulations, the protein subunits are seen to rapidly dissociate away from the DNA, thereby forming an excellent resource to investigate the mechanism of DNA binding. We have also investigated the role of iron as an allosteric regulator of IdeR that positively induces IdeR-DNA complex formation. Based on this study, a mechanistic model of IdeR activation and DNA binding has been proposed.
Collapse
Affiliation(s)
- Soma Ghosh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
- I.I.Sc. Mathematics Initiative, Indian Institute of Science, Bangalore, Karnataka, India
| | - Nagasuma Chandra
- I.I.Sc. Mathematics Initiative, Indian Institute of Science, Bangalore, Karnataka, India
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Saraswathi Vishveshwara
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
- I.I.Sc. Mathematics Initiative, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
14
|
Luebke JL, Giedroc DP. Cysteine sulfur chemistry in transcriptional regulators at the host-bacterial pathogen interface. Biochemistry 2015; 54:3235-49. [PMID: 25946648 DOI: 10.1021/acs.biochem.5b00085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hosts employ myriad weapons to combat invading microorganisms as an integral feature of the host-bacterial pathogen interface. This interface is dominated by highly reactive small molecules that collectively induce oxidative stress. Successful pathogens employ transcriptional regulatory proteins that sense these small molecules directly or indirectly via a change in the ratio of reduced to oxidized low-molecular weight (LMW) thiols that collectively comprise the redox buffer in the cytoplasm. These transcriptional regulators employ either a prosthetic group or reactive cysteine residue(s) to effect changes in the transcription of genes that encode detoxification and repair systems that is driven by regulator conformational switching between high-affinity and low-affinity DNA-binding states. Cysteine harbors a highly polarizable sulfur atom that readily undergoes changes in oxidation state in response to oxidative stress to produce a range of regulatory post-translational modifications (PTMs), including sulfenylation (S-hydroxylation), mixed disulfide bond formation with LMW thiols (S-thiolation), di- and trisulfide bond formation, S-nitrosation, and S-alkylation. Here we discuss several examples of structurally characterized cysteine thiol-specific transcriptional regulators that sense changes in cellular redox balance, focusing on the nature of the cysteine PTM itself and the interplay of small molecule oxidative stressors in mediating a specific transcriptional response.
Collapse
Affiliation(s)
- Justin L Luebke
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
15
|
Ishimori K, Watanabe Y. Unique Heme Environmental Structures in Heme-regulated Proteins Using Heme as the Signaling Molecule. CHEM LETT 2014. [DOI: 10.1246/cl.140787] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - Yuta Watanabe
- Department of Chemistry, Faculty of Science, Hokkaido University
| |
Collapse
|
16
|
Lisher JP, Higgins KA, Maroney MJ, Giedroc DP. Physical characterization of the manganese-sensing pneumococcal surface antigen repressor from Streptococcus pneumoniae. Biochemistry 2013; 52:7689-701. [PMID: 24067066 DOI: 10.1021/bi401132w] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Transition metals, including manganese, are required for the proper virulence and persistence of many pathogenic bacteria. In Streptococcus pneumoniae (Spn), manganese homeostasis is controlled by a high-affinity Mn(II) uptake complex, PsaBCA, and a constitutively expressed efflux transporter, MntE. psaBCA expression is transcriptionally regulated by the DtxR/MntR family metalloregulatory protein pneumococcal surface antigen repressor (PsaR) in Spn. Here, we present a comprehensive analysis of the metal and DNA binding properties of PsaR. PsaR is a homodimer in the absence and presence of metals and binds two manganese or zinc atoms per protomer (four per dimer) in two pairs of structurally distinct sites, termed site 1 and site 2. Site 1 is likely filled with Zn(II) in vivo (K(Zn1) ≥ 10¹³ M⁻¹; K(Mn1) ≈ 10⁸ M⁻¹). The Zn(II)-site 1 complex adopts a pentacoordinate geometry as determined by X-ray absorption spectroscopy containing a single cysteine and appears to be analogous to the Cd(II) site observed in Streptococcus gordonii ScaR. Site 1 is necessary but not sufficient for full positive allosteric activation of DNA operator binding by metals as measured by ΔGc, the allosteric coupling free energy, because site 1 mutants show an intermediate ΔGc. Site 2 is the primary regulatory site and governs specificity for Mn(II) over Zn(II) in PsaR, where ΔGc(Zn,Mn) >> ΔGc(Zn,Zn) despite the fact that Zn(II) binds site 2 with an affinity 40-fold higher than that of Mn(II); i.e., K(Zn2) > K(Mn2). Mutational studies reveal that Asp7 in site 2 is a critical ligand for Mn(II)-dependent allosteric activation of DNA binding. These findings are discussed in the context of other well-studied DtxR/MntR Mn(II)/Fe(II) metallorepressors.
Collapse
Affiliation(s)
- John P Lisher
- Department of Chemistry and ‡Interdisciplinary Graduate Program in Biochemistry, Indiana University , Bloomington, Indiana 47405-7102, United States
| | | | | | | |
Collapse
|
17
|
Stapleton B, Walker LR, Logan TM. Zn(II) stimulation of Fe(II)-activated repression in the iron-dependent repressor from Mycobacterium tuberculosis. Biochemistry 2013; 52:1927-38. [PMID: 23432191 DOI: 10.1021/bi301608p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thermodynamic measurements of Fe(II) binding and activation of repressor function in the iron-dependent repressor from Mycobacterium tuberculosis (IdeR) are reported. IdeR, a member of the diphtheria toxin repressor family of proteins, regulates iron homeostasis and contributes to the virulence response in M. tuberculosis. Although iron is the physiological ligand, this is the first detailed analysis of iron binding and activation in this protein. The results showed that IdeR binds 2 equiv of Fe(II) with dissociation constants that differ by a factor of 25. The high- and low-affinity iron binding sites were assigned to physical binding sites I and II, respectively, using metal binding site mutants. IdeR was also found to contain a high-affinity Zn(II) binding site that was assigned to physical metal binding site II through the use of binding site mutants and metal competition assays. Fe(II) binding was modestly weaker in the presence of Zn(II), but the coupled metal binding-DNA binding affinity was significantly stronger, requiring 30-fold less Fe(II) to activate DNA binding compared to Fe(II) alone. Together, these results suggest that IdeR is a mixed-metal repressor, where Zn(II) acts as a structural metal and Fe(II) acts to trigger the physiologically relevant promoter binding. This new model for IdeR activation provides a better understanding of IdeR and the biology of iron homeostasis in M. tuberculosis.
Collapse
Affiliation(s)
- Brian Stapleton
- Department of Chemistry and Biochemistry, 102 Varsity Way, Florida State University, Tallahassee, Florida 32306-4390, United States
| | | | | |
Collapse
|
18
|
Characterization of the functional domains of the SloR metalloregulatory protein in Streptococcus mutans. J Bacteriol 2012; 195:126-34. [PMID: 23104811 DOI: 10.1128/jb.01648-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans is a commensal member of the healthy plaque biofilm and the primary causative agent of dental caries. The present study is an investigation of SloR, a 25-kDa metalloregulatory protein that modulates genes responsible for S. mutans-induced cariogenesis. Previous studies of SloR homologues in other bacterial pathogens have identified three domains critical to repressor functionality: an N-terminal DNA-binding domain, a central dimerization domain, and a C-terminal FeoA (previously SH3-like) domain. We used site-directed mutagenesis to identify critical amino acid residues within each of these domains of the SloR protein. Select residues were targeted for mutagenesis, and nonconservative amino acid substitutions were introduced by overlap extension PCR. Furthermore, three C-terminally truncated SloR variants were generated using conventional PCR. The repressor functionality and DNA-binding ability of each variant was assessed using CAT reporter gene assays, real-time semiquantitative reverse transcriptase (qRT)-PCR, and electrophoretic mobility shift assays. We identified 12 residues within SloR that cause significant derepression of sloABC promoter activity (P < 0.05) compared to the results for wild-type SloR. Derepression was particularly noteworthy in metal ion-binding site 1 mutants, consistent with the site's importance in gene repression by SloR. In addition, a hyperactive SloR(E169A/Q170A) mutant was identified as having significantly heightened repression of sloABC promoter activity, and experiments with C-terminal deletion mutants support involvement of the FeoA domain in SloR-mediated gene repression. Given these results, we describe the functional domains of the S. mutans SloR protein and propose that the hyperactive mutant could serve as a target for rational drug design aimed at repressing SloR-mediated virulence gene expression.
Collapse
|
19
|
Yeo HK, Kang J, Park YW, Sung JS, Lee JY. Crystallization and preliminary X-ray diffraction analysis of the metalloregulatory protein DtxR from Thermoplasma acidophilum. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:172-4. [PMID: 22297991 DOI: 10.1107/s1744309111051700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 11/30/2011] [Indexed: 11/10/2022]
Abstract
The diphtheria toxin repressor (DtxR) is a metal-ion-dependent transcriptional regulator which regulates genes encoding proteins involved in metal-ion uptake to maintain metal-ion homeostasis. DtxR from Thermoplasma acidophilum was cloned and overexpressed in Escherichia coli. Crystals of N-terminally His-tagged DtxR were obtained by hanging-drop vapour diffusion and diffracted to 1.8 Å resolution. DtxR was crystallized at 296 K using polyethylene glycol 4000 as a precipitant. The crystals belonged to the orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 61.14, b = 84.61, c = 46.91 Å, α = β = γ = 90°. The asymmetric unit contained approximately one monomer of DtxR, giving a crystal volume per mass (V(M)) of 2.22 Å(3) Da(-1) and a solvent content of 44.6%.
Collapse
Affiliation(s)
- Hyun Ku Yeo
- Department of Life Science, Dongguk University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
20
|
Abstract
The dramatic changes in the environmental conditions that organisms encountered during evolution and adaptation to life in specific niches, have influenced intracellular and extracellular metal ion contents and, as a consequence, the cellular ability to sense and utilize different metal ions. This metal-driven differentiation is reflected in the specific panels of metal-responsive transcriptional regulators found in different organisms, which finely tune the intracellular metal ion content and all metal-dependent processes. In order to understand the processes underlying this complex metal homeostasis network, the study of the molecular processes that determine the protein-metal ion recognition, as well as how this event is transduced into a transcriptional output, is necessary. This chapter describes how metal ion binding to specific proteins influences protein interaction with DNA and how this event can influence the fate of genetic expression, leading to specific transcriptional outputs. The features of representative metal-responsive transcriptional regulators, as well as the molecular basis of metal-protein and protein-DNA interactions, are discussed on the basis of the structural information available. An overview of the recent advances in the understanding of how these proteins choose specific metal ions among the intracellular metal ion pool, as well as how they allosterically respond to their effector binding, is given.
Collapse
|
21
|
White GF, Singleton C, Todd JD, Cheesman MR, Johnston AWB, Le Brun NE. Heme binding to the second, lower-affinity site of the global iron regulator Irr from Rhizobium leguminosarum promotes oligomerization. FEBS J 2011; 278:2011-21. [PMID: 21481185 DOI: 10.1111/j.1742-4658.2011.08117.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The iron responsive regulator Irr is found in a wide range of α-proteobacteria, where it regulates many genes in response to the essential but toxic metal iron. Unlike Fur, the transcriptional regulator that is used for iron homeostasis by almost all other bacterial lineages, Irr does not sense Fe(2+) directly, but, rather, interacts with a physiologically important form of iron, namely heme. Recent studies of Irr from the N(2)-fixing symbiont Rhizobium leguminosarum (Irr(Rl)) showed that it binds heme with submicromolar affinity at a His-Xxx-His (HxH) motif. This caused the protein to dissociate from its cognate DNA regulatory iron control element box sequences, thus allowing expression of its target genes under iron-replete conditions. In the present study, we report new insights into the mechanisms and consequences of heme binding to Irr. In addition to the HxH motif, Irr binds heme at a second, lower-affinity site. Spectroscopic studies of wild-type Irr and His variants show that His46 and probably His66 are involved in coordinating heme in a low-spin state at this second site. By contrast to the well-studied Irr from Bradyrhizobium japonicum, neither heme site of Irr(Rl) stabilizes ferrous heme. Furthermore, we show that heme-free Irr(Rl) exists as a mixture of dimeric and larger, likely hexameric, forms and that heme binding promotes Irr(Rl) oligomerization. Bioanalytical studies of Irr(Rl) variants showed that this property is not dependent on the HxH motif but is associated with heme binding at the second site. STRUCTURED DIGITAL ABSTRACT • Irr binds to irr by molecular sieving (View Interaction 1, 2) • Irr binds to irr by cosedimentation in solution (View interaction).
Collapse
Affiliation(s)
- Gaye F White
- School of Chemistry, Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich Research Park, Norwich, UK
| | | | | | | | | | | |
Collapse
|
22
|
Singleton C, White GF, Todd JD, Marritt SJ, Cheesman MR, Johnston AWB, Le Brun NE. Heme-responsive DNA binding by the global iron regulator Irr from Rhizobium leguminosarum. J Biol Chem 2010; 285:16023-31. [PMID: 20233710 PMCID: PMC2871471 DOI: 10.1074/jbc.m109.067215] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 03/13/2010] [Indexed: 11/06/2022] Open
Abstract
Heme, a physiologically crucial form of iron, is a cofactor for a very wide range of proteins and enzymes. These include DNA regulatory proteins in which heme is a sensor to which an analyte molecule binds, effecting a change in the DNA binding affinity of the regulator. Given that heme, and more generally iron, must be carefully regulated, it is surprising that there are no examples yet in bacteria in which heme itself is sensed directly by a reversibly binding DNA regulatory protein. Here we show that the Rhizobium leguminosarum global iron regulatory protein Irr, which has many homologues within the alpha-proteobacteria and is a member of the Fur superfamily, binds heme, resulting in a dramatic decrease in affinity between the protein and its cognate, regulatory DNA operator sequence. Spectroscopic studies of wild-type and mutant Irr showed that the principal (but not only) heme-binding site is at a conserved HXH motif, whose substitution led to loss of DNA binding in vitro and of regulatory function in vivo. The R. leguminosarum Irr behaves very differently to the Irr of Bradyrhizobium japonicum, which is rapidly degraded in vivo by an unknown mechanism in conditions of elevated iron or heme, but whose DNA binding affinity in vitro does not respond to heme.
Collapse
Affiliation(s)
- Chloe Singleton
- From the Centre for Molecular and Structural Biochemistry, School of Chemistry, and
| | - Gaye F. White
- From the Centre for Molecular and Structural Biochemistry, School of Chemistry, and
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Jonathan D. Todd
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Sophie J. Marritt
- From the Centre for Molecular and Structural Biochemistry, School of Chemistry, and
| | - Myles R. Cheesman
- From the Centre for Molecular and Structural Biochemistry, School of Chemistry, and
| | - Andrew W. B. Johnston
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Nick E. Le Brun
- From the Centre for Molecular and Structural Biochemistry, School of Chemistry, and
| |
Collapse
|
23
|
D'Aquino JA, Denninger AR, Moulin AG, D'Aquino KE, Ringe D. Decreased sensitivity to changes in the concentration of metal ions as the basis for the hyperactivity of DtxR(E175K). J Mol Biol 2009; 390:112-23. [PMID: 19433095 DOI: 10.1016/j.jmb.2009.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/29/2009] [Accepted: 05/06/2009] [Indexed: 11/25/2022]
Abstract
The metal-ion-activated diphtheria toxin repressor (DtxR) is responsible for the regulation of virulence and other genes in Corynebacterium diphtheriae. A single point mutation in DtxR, DtxR(E175K), causes this mutant repressor to have a hyperactive phenotype. Mice infected with Mycobacterium tuberculosis transformed with plasmids carrying this mutant gene show reduced signs of the tuberculosis infection. Corynebacterial DtxR is able to complement mycobacterial IdeR and vice versa. To date, an explanation for the hyperactivity of DtxR(E175K) has remained elusive. In an attempt to address this issue, we have solved the first crystal structure of DtxR(E175K) and characterized this mutant using circular dichroism, isothermal titration calorimetry, and other biochemical techniques. The results show that although DtxR(E175K) and the wild type have similar secondary structures, DtxR(E175K) gains additional thermostability upon activation with metal ions, which may lead to this mutant requiring a lower concentration of metal ions to reach the same levels of thermostability as the wild-type protein. The E175K mutation causes binding site 1 to retain metal ion bound at all times, which can only be removed by incubation with an ion chelator. The crystal structure of DtxR(E175K) shows an empty binding site 2 without evidence of oxidation of Cys102. The association constant for this low-affinity binding site of DtxR(E175K) obtained from calorimetric titration with Ni(II) is K(a)=7.6+/-0.5x10(4), which is very similar to the reported value for the wild-type repressor, K(a)=6.3x10(4). Both the wild type and DtxR(E175K) require the same amount of metal ion to produce a shift in the electrophoretic mobility shift assay, but unlike the wild type, DtxR(E175K) binding to its cognate DNA [tox promoter-operator (toxPO)] does not require metal-ion supplementation in the running buffer. In the timescale of these experiments, the Mn(II)-DtxR(E175K)-toxPO complex is insensitive to changes in the environmental cation concentrations. In addition to Mn(II), Ni(II), Co(II), Cd(II), and Zn(II) are able to sustain the hyperactive phenotype. These results demonstrate a prominent role of binding site 1 in the activation of DtxR and support the hypothesis that DtxR(E175K) attenuates the expression of virulence due to the decreased ability of the Me(II)-DtxR(E175K)-toxPO complex to dissociate at low concentrations of metal ions.
Collapse
Affiliation(s)
- J Alejandro D'Aquino
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | |
Collapse
|
24
|
Wang SC, Dias AV, Zamble DB. The “metallo-specific” response of proteins: A perspective based on the Escherichia coli transcriptional regulator NikR. Dalton Trans 2009:2459-66. [DOI: 10.1039/b818167p] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
25
|
Brett PJ, Burtnick MN, Fenno JC, Gherardini FC. Treponema denticola TroR is a manganese- and iron-dependent transcriptional repressor. Mol Microbiol 2008; 70:396-409. [PMID: 18761626 PMCID: PMC2628430 DOI: 10.1111/j.1365-2958.2008.06418.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Treponema denticola harbours a genetic locus with significant homology to most of the previously characterized Treponema pallidum tro operon. Within this locus are five genes (troABCDR) encoding for the components of an ATP-binding cassette cation-transport system (troABCD) and a DtxR-like transcriptional regulator (troR). In addition, a sigma(70)-like promoter and an 18 bp region of dyad symmetry were identified upstream of the troA start codon. This putative operator sequence demonstrated similarity to the T. pallidum TroR (TroR(Tp)) binding sequence; however, the position of this motif with respect to the predicted tro promoters differed. Interestingly, unlike the T. pallidum orthologue, T. denticola TroR (TroR(Td)) possesses a C-terminal Src homology 3-like domain commonly associated with DtxR family members. In the present study, we show that TroR(Td) is a manganese- and iron-dependent transcriptional repressor using Escherichia coli reporter constructs and in T. denticola. In addition, we demonstrate that although TroR(Td) possessing various C-terminal deletions maintain metal-sensing capacities, these truncated proteins exhibit reduced repressor activities in comparison with full-length TroR(Td). Based upon these findings, we propose that TroR(Td) represents a novel member of the DtxR family of transcriptional regulators and is likely to play an important role in regulating both manganese and iron homeostases in this spirochaete.
Collapse
Affiliation(s)
- Paul J Brett
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA
| | | | | | | |
Collapse
|
26
|
Liu C, Mao K, Zhang M, Sun Z, Hong W, Li C, Peng B, Chang Z. The SH3-like domain switches its interaction partners to modulate the repression activity of mycobacterial iron-dependent transcription regulator in response to metal ion fluctuations. J Biol Chem 2007; 283:2439-53. [PMID: 18055464 DOI: 10.1074/jbc.m706580200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron-dependent regulator (IdeR), a metal ion-activated pleiotropic transcription factor, plays a critical role in maintaining the intracellular iron homeostasis in Mycobacteria, which is important for the normal growth of the cells. This study was initially performed in an attempt to elucidate all potential interactions between the various domains of IdeR that occur in living mycobacterial cells. This led to a hitherto unidentified self-association for the SH3-like domain of IdeR. Further studies demonstrate that the SH3-like domain interacts with different partners in the dimeric forms of IdeR depending on the levels of metal ions in the environment: it undergoes inter-subunit self-association in the metal-free DNA-non-binding form, but interacts with the N-terminal domain in the metal-bound DNA-binding form in an intra-subunit manner to finely modulate the transcription repression activity of IdeR. Our more detailed mapping studies reveal that the SH3-like domain uses an overlapping surface to participate in these two interactions, which therefore occur in a mutually exclusive fashion. This novel mechanism would allow an effective and cooperative interconversion between the two functional forms of IdeR. Our data also demonstrate that a disturbance of the interactions involving the SH3-like domain impairs the transcription repression activity of IdeR and delays the growth of mycobacterial cells.
Collapse
Affiliation(s)
- Chong Liu
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Giedroc DP, Arunkumar AI. Metal sensor proteins: nature's metalloregulated allosteric switches. Dalton Trans 2007:3107-20. [PMID: 17637984 DOI: 10.1039/b706769k] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metalloregulatory proteins control the expression of genes that allow organisms to quickly adapt to chronic toxicity or deprivation of both biologically essential metal ions and heavy metal pollutants found in their microenvironment. Emerging evidence suggests that metal ion homeostasis and resistance defines an important tug-of-war in human host-bacterial pathogen interactions. This adaptive response originates with the formation of "metal receptor" complexes of exquisite selectivity. In this perspective, we summarize consensus structural features of metal sensing coordination complexes and the evolution of distinct metal selectivities within seven characterized metal sensor protein families. In addition, we place recent efforts to understand the structural basis of metal-induced allosteric switching of these metalloregulatory proteins in a thermodynamic framework, and review the degree to which coordination chemistry drives changes in protein structure and dynamics in selected metal sensor systems. New insights into how metal sensor proteins function in the complex intracellular milieu of the cytoplasm of cells will require a more sophisticated understanding of the "metallome" and will benefit greatly from ongoing collaborative efforts in bioinorganic, biophysical and analytical chemistry, structural biology and microbiology.
Collapse
Affiliation(s)
- David P Giedroc
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA.
| | | |
Collapse
|
28
|
Iwig JS, Rowe JL, Chivers PT. Nickel homeostasis in Escherichia coli - the rcnR-rcnA efflux pathway and its linkage to NikR function. Mol Microbiol 2006; 62:252-62. [PMID: 16956381 DOI: 10.1111/j.1365-2958.2006.05369.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The nickel physiology of Escherichia coli is dominated by its Ni-Fe hydrogenase isozymes, which are expressed under anaerobic growth conditions. Hydrogenase activity in E. coli requires the NikABCDE nickel transporter, which is transcriptionally repressed by NikR in the presence of excess nickel. Recently, a nickel and cobalt-efflux protein, RcnA, was identified in E. coli. This study examines the effect of RcnA on nickel homeostasis in E. coli. Under nickel-limiting conditions, deletion of rcnA increased NikR activity in vivo. Nickel and cobalt-dependent regulation of rcnA expression required the newly identified transcriptional repressor RcnR (formerly YohL). Deletion of rcnR results in constitutive rcnA expression and a corresponding decrease in NikR activity. Purified RcnR binds directly to the rcnA promoter DNA fragment and this interaction is inhibited by nickel and cobalt. Nickel accumulation is affected differently among deletion strains with impaired nickel homeostasis. Surprisingly, in low nickel growth conditions rcnA expression is required for nickel import via NikABCDE. The data support a model with two distinct pools of nickel ions in E. coli. NikR bridges these two pools by controlling the levels of the hydrogenase-associated pool based on the nickel levels in the second pool.
Collapse
Affiliation(s)
- Jeffrey S Iwig
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
29
|
D'Aquino JA, Tetenbaum-Novatt J, White A, Berkovitch F, Ringe D. Mechanism of metal ion activation of the diphtheria toxin repressor DtxR. Proc Natl Acad Sci U S A 2005; 102:18408-13. [PMID: 16352732 PMCID: PMC1317899 DOI: 10.1073/pnas.0500908102] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The diphtheria toxin repressor (DtxR) is a metal ion-activated transcriptional regulator that has been linked to the virulence of Corynebacterium diphtheriae. Structure determination has shown that there are two metal ion binding sites per repressor monomer, and site-directed mutagenesis has demonstrated that binding site 2 (primary) is essential for recognition of the target DNA repressor, leaving the role of binding site 1 (ancillary) unclear. Calorimetric techniques have demonstrated that although binding site 1 (ancillary) has high affinity for metal ion with a binding constant of 2 x 10(-7), binding site 2 (primary) is a low-affinity binding site with a binding constant of 6.3 x 10(-4). These two binding sites act in an independent fashion, and their contribution can be easily dissected by traditional mutational analysis. Our results clearly demonstrate that binding site 1 (ancillary) is the first one to be occupied during metal ion activation, playing a critical role in stabilization of the repressor. In addition, structural data obtained for the mutants Ni-DtxR(H79A,C102D), reported here, and the previously reported DtxR(H79A) have allowed us to propose a mechanism of metal activation for DtxR.
Collapse
|
30
|
|
31
|
De Zoysa A, Efstratiou A, Hawkey PM. Molecular characterization of diphtheria toxin repressor (dtxR) genes present in nontoxigenic Corynebacterium diphtheriae strains isolated in the United Kingdom. J Clin Microbiol 2005; 43:223-8. [PMID: 15634975 PMCID: PMC540142 DOI: 10.1128/jcm.43.1.223-228.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontoxigenic strains of Corynebacterium diphtheriae represent a potential reservoir for the emergence of toxigenic C. diphtheriae strains if they possessed functional diphtheria toxin repressor (dtxR) genes. We studied the predominant strain of nontoxigenic C. diphtheriae circulating in the United Kingdom to see if they possessed dtxR genes and ascertain whether they were functional. A total of 26 nontoxigenic C. diphtheriae strains isolated in the United Kingdom during 1995 and 4 nontoxigenic strains isolated in other countries were analyzed by PCR and direct sequencing to determine the presence and intactness of the dtxR genes. The functionality of the DtxR proteins was assayed by testing for the production of siderophore in medium containing high and low concentrations of iron. PCR amplification and sequence analysis of the dtxR genes revealed four variants of the predicted DtxR protein among the nontoxigenic strains isolated in the United Kingdom. Production of siderophore in medium containing a low concentration of iron and repression of siderophore production in medium containing a high concentration of iron demonstrated that in all the strains the dtxR genes were functional. These findings demonstrate that, if lysogenised by a bacteriophage, nontoxigenic strains circulating in the United Kingdom could produce toxin and therefore represent a potential reservoir for toxigenic C. diphtheriae.
Collapse
Affiliation(s)
- Aruni De Zoysa
- Respiratory and Systemic Infection Laboratory, Specialist and Reference Microbiology Division, Health Protection Agency, London NW9 5HT, United Kingdom.
| | | | | |
Collapse
|
32
|
Chou CJ, Wisedchaisri G, Monfeli RR, Oram DM, Holmes RK, Hol WGJ, Beeson C. Functional studies of the Mycobacterium tuberculosis iron-dependent regulator. J Biol Chem 2004; 279:53554-61. [PMID: 15456786 DOI: 10.1074/jbc.m407385200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The iron-dependent regulator (IdeR) protein in Mycobacterium tuberculosis, and its better characterized homologue, the diphtheria toxin repressor (DtxR) from Corynebacterium diphtheriae, are iron-dependent regulatory proteins that control gene expression in response to iron availability in bacteria. IdeR regulates several genes required for iron uptake and storage including those involved in the synthesis of transition metal chelators called siderophores that are linked to the M. tuberculosis virulence. In this study, the metal ion and binding affinities for IdeR binding to an fxbA operator duplex DNA were estimated using fluorescence assays. The Fe(2+), Co(2+), and Ni(2+) affinities of the two metal ion binding sites in IdeR that are involved in the activation of the regulator DNA binding process in vitro were independently estimated. Binding to the two metal ion binding sites is apparently cooperative and the two affinities differ significantly. Occupation of the first metal ion binding site causes dimerization of IdeR, and the metal ion affinity is about 4 microM for Ni(2+) and much less for Fe(2+) and Co(2+). Binding of the second metal ion fully activates IdeR for binding to the fxbA operator. The equilibrium metal ion dissociation constants for IdeR-fxbA operator binding are approximately 9 microM for Fe(2+), 13 microM for Ni(2+), and 23 microM for Co(2+). Interestingly, the natural IdeR cofactor, Fe(2+), shows high affinities toward both binding sites. These results provide insight into the possible roles for each metal binding site in IdeR activation.
Collapse
Affiliation(s)
- C James Chou
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Love JF, vanderSpek JC, Marin V, Guerrero L, Logan TM, Murphy JR. Genetic and biophysical studies of diphtheria toxin repressor (DtxR) and the hyperactive mutant DtxR(E175K) support a multistep model of activation. Proc Natl Acad Sci U S A 2004; 101:2506-11. [PMID: 14983039 PMCID: PMC356980 DOI: 10.1073/pnas.0303794101] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The diphtheria toxin repressor (DtxR) from Corynebacterium diphtheriae is the prototypic member of a superfamily of transition metal ion-activated transcriptional regulators that have been isolated from Gram-positive prokaryotes. Upon binding divalent transition metal ions, the N-terminal domain of DtxR undergoes a dynamic structural organization leading to homodimerization and target DNA binding. We have used site-directed mutagenesis and NMR analysis to probe the mechanism by which apo-DtxR transits from an inactive to a fully active repressor upon metal ion binding. We demonstrate that the ancillary metal-binding site mutant DtxR(H79A) requires higher concentrations of metal ions for activation both in vivo and in vitro, providing a functional correlation to the proposed cooperativity between ancillary and primary binding sites. We also demonstrate that the C-terminal src homology 3 (SH3)-like domain of DtxR functions to modulate repressor activity by (i) binding to the polyprolyl tether region between the N- and C-terminal domains, and (ii) destabilizing the ancillary binding site, leading to full inactivation of the repressor. Finally, we show by NMR analysis that the hyperactive phenotype of DtxR(E175K) results from the stabilization of a structural intermediate in the activation process. Taken together, the data presented support a multistep model for the activation of apo-DtxR by transition metal ions.
Collapse
Affiliation(s)
- John F Love
- Department of Microbiology, Boston University School of Medicine, 650 Albany Street, X830, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
In eukaryotes, the Src homology domain 3 (SH3) is a very important motif in signal transduction. SH3 domains recognize poly-proline-rich peptides and are involved in protein-protein interactions. Until now, the existence of SH3 domains has not been demonstrated in prokaryotes. However, the structure of the C-terminal domain of DtxR clearly shows that the fold of this domain is very similar to that of the SH3 domain. In addition, there is evidence that the C-terminal domain of DtxR binds to poly-proline-rich regions. Other bacterial proteins have domains that are structurally similar to the SH3 domain but whose functions are unknown or differ from that of the SH3 domain. The observed similarities between the structures of the C-terminal domain of DtxR and the SH3 domain constitute a perfect system to gain insight into their function and information about their evolution. Our results show that the C-terminal domain of DtxR shares a number of conserved key hydrophobic positions not recognizable from sequence comparison that might be responsible for the integrity of the SH3-like fold. Structural alignment of an ensemble of such domains from unrelated proteins shows a common structural core that seems to be conserved despite the lack of sequence similarity. This core constitutes the minimal requirements of protein architecture for the SH3-like fold.
Collapse
Affiliation(s)
- J Alejandro D'Aquino
- Department of Chemistry and Biochemistry and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | | |
Collapse
|
35
|
Abstract
Iron is essential to virtually all organisms, but poses problems of toxicity and poor solubility. Bacteria have evolved various mechanisms to counter the problems imposed by their iron dependence, allowing them to achieve effective iron homeostasis under a range of iron regimes. Highly efficient iron acquisition systems are used to scavenge iron from the environment under iron-restricted conditions. In many cases, this involves the secretion and internalisation of extracellular ferric chelators called siderophores. Ferrous iron can also be directly imported by the G protein-like transporter, FeoB. For pathogens, host-iron complexes (transferrin, lactoferrin, haem, haemoglobin) are directly used as iron sources. Bacterial iron storage proteins (ferritin, bacterioferritin) provide intracellular iron reserves for use when external supplies are restricted, and iron detoxification proteins (Dps) are employed to protect the chromosome from iron-induced free radical damage. There is evidence that bacteria control their iron requirements in response to iron availability by down-regulating the expression of iron proteins during iron-restricted growth. And finally, the expression of the iron homeostatic machinery is subject to iron-dependent global control ensuring that iron acquisition, storage and consumption are geared to iron availability and that intracellular levels of free iron do not reach toxic levels.
Collapse
Affiliation(s)
- Simon C Andrews
- School of Animal and Microbial Sciences, University of Reading, Reading RG6 6AJ, UK.
| | | | | |
Collapse
|
36
|
Spiering MM, Ringe D, Murphy JR, Marletta MA. Metal stoichiometry and functional studies of the diphtheria toxin repressor. Proc Natl Acad Sci U S A 2003; 100:3808-13. [PMID: 12655054 PMCID: PMC153003 DOI: 10.1073/pnas.0737977100] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diphtheria toxin repressor (DtxR) is a transition metal ion-activated repressor in Corynebacterium diphtheriae. DtxR is an iron sensor; metal-bound DtxR represses transcription of genes downstream of the tox operator. Wild-type DtxR [DtxR(wt)] and several mutant forms were overexpressed and purified from Escherichia coli. DtxR was isolated without bound metal. Metal reconstitution gave a binding stoichiometry of 2 per monomer for DtxR(wt) and 1 per monomer for DtxR(H79A) and DtxR(M10A). DNA binding of DtxR(H79A) and DtxR(M10A) indicates that metal site 2 is essential for activity. Metal binding lowers the dimerization K(d) of DtxR from low micromolar to 33 nM. Gel electrophoretic mobility-shift assays show that Fe(2+) and not Fe(3+) activates DtxR for DNA binding. This finding suggests that gene regulation by DtxR may be sensitive not only to iron levels but also to redox state of the iron. Mutations in the tox operator sequence indicate that DtxR dimers binding to DNA may be highly cooperative.
Collapse
Affiliation(s)
- Michelle M Spiering
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
37
|
Love JF, VanderSpek JC, Murphy JR. The src homology 3-like domain of the diphtheria toxin repressor (DtxR) modulates repressor activation through interaction with the ancillary metal ion-binding site. J Bacteriol 2003; 185:2251-8. [PMID: 12644496 PMCID: PMC151513 DOI: 10.1128/jb.185.7.2251-2258.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diphtheria toxin repressor (DtxR) is a transition metal ion-activated repressor that acts as a global regulatory element in the control of iron-sensitive genes in Corynebacterium diphtheriae. We recently described (L. Sun, J. C. vanderSpek, and J. R. Murphy, Proc. Natl. Acad. Sci. USA 95:14985-14990, 1998) the isolation and in vivo characterization of a hyperactive mutant of DtxR, DtxR(E175K), that appeared to be constitutively active. We demonstrate here that while DtxR(E175K) remains active in vivo in the presence of 300 micro M 2,2'dipyridyl, the purified repressor is, in fact, dependent upon low levels of transition metal ion to transit from the inactive apo form to the active metal ion-bound form of the repressor. Binding studies using 8-anilino-1-naphthalenesulfonic acid suggest that the E175K mutation stabilizes an intermediate of the molten-globule form of the repressor, increasing exposure of hydrophobic residues to solvent. We demonstrate that the hyperactive DtxR(E175K) phenotype is dependent upon an intact ancillary metal ion-binding site (site 1) of the repressor. These observations support the hypothesis that metal ion binding in the ancillary site facilitates the conversion of the inactive apo-repressor to its active, operator-binding conformation. Furthermore, these results support the hypothesis that the C-terminal src homology 3-like domain of DtxR plays an active role in the modulation of repressor activity.
Collapse
Affiliation(s)
- John F Love
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
38
|
Abstract
Corynebacterium diphtheriae DtxR is an iron-specific repressor of diphtheria toxin expression and iron homeostasis functions. A homologue, MntR, serves as a manganese-specific repressor of Mn(II) uptake in Bacillus subtilis. When expressed in B. subtilis, DtxR regulates gene expression in response to either iron or manganese with comparable sensitivity. Replacement of two amino acids in the metal-sensing site with the corresponding residues from MntR results in a DtxR mutant that is highly selective for Mn(II). However, iron responsiveness can be partially restored in a fur mutant in which iron uptake is derepressed and intracellular iron pools elevated. Conversely, if the putative metal-binding residues in MntR are altered to those in DtxR, the resulting protein responds to both iron and manganese. These results suggest that the composition and geometry of the metal-binding site plays a major role in defining the metal-selectivity in this protein family. However, the broadened selectivity of DtxR when expressed in B. subtilis, and the effects of a fur mutation, demonstrate that cellular milieu also influences metal responsiveness.
Collapse
Affiliation(s)
- Emmanuel Guedon
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | |
Collapse
|
39
|
Pohl E, Haller JC, Mijovilovich A, Meyer-Klaucke W, Garman E, Vasil ML. Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol Microbiol 2003; 47:903-15. [PMID: 12581348 DOI: 10.1046/j.1365-2958.2003.03337.x] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Iron is an essential element for almost all organisms, although an overload of this element results in toxicity because of the formation of hydroxyl radicals. Consequently, most living entities have developed sophisticated mechanisms to control their intracellular iron concentration. In many bacteria, including the opportunistic pathogen Pseudomonas aeruginosa, this task is performed by the ferric uptake regulator (Fur). Fur controls a wide variety of basic physiological processes including iron uptake systems and the expression of exotoxin A. Here, we present the first crystal structure of Fur from P. aeruginosa in complex with Zn2+ determined at a resolution of 1.8 A. Furthermore, X-ray absorption spectroscopic measurements and microPIXE analysis were performed in order to characterize the distinct zinc and iron binding sites in solution. The combination of these complementary techniques enables us to present a model for the activation and DNA binding of the Fur protein.
Collapse
Affiliation(s)
- Ehmke Pohl
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestr. 85, D-22603 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Schmitt MP. Analysis of a DtxR-like metalloregulatory protein, MntR, from Corynebacterium diphtheriae that controls expression of an ABC metal transporter by an Mn(2+)-dependent mechanism. J Bacteriol 2002; 184:6882-92. [PMID: 12446639 PMCID: PMC135481 DOI: 10.1128/jb.184.24.6882-6892.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DtxR protein is a global iron-dependent repressor in Corynebacterium diphtheriae that regulates transcription from multiple promoters. A search of the partially completed C. diphtheriae genome identified a gene, mntR, whose predicted product has significant homology with the DtxR repressor protein. The mntR gene is the terminal gene in a five-gene operon that also carries the mntABCD genes, whose predicted products are homologous to ABC metal transporters. Transcription of this genetic system, as measured by expression of an mntA-lacZ reporter fusion, is strongly repressed by Mn(2+). The divalent metals Fe(2+), Cu(2+), and Zn(2+) did not repress expression of the mntA-lacZ construct. A mutation in the mntR gene abolished Mn(2+)-dependent repression of the mntA-lacZ fusion, demonstrating that MntR is essential for the Mn(2+)-dependent regulation of this promoter. Footprinting experiments showed that MntR protects from DNase I digestion an approximately 73-bp AT-rich region that includes the entire mntA promoter. This large region protected from DNase I suggests that as many as three MntR dimer pairs may bind to this region. Binding studies also revealed that DtxR failed to bind to the MntR binding site and that MntR exhibited weak and diffuse binding at the DtxR binding site at the tox promoter. A C. diphtheriae mntA mutant grew as well as the wild type in a low-Mn(2+) medium, which suggests that the mntABCD metal transporter is not required for growth in a low-Mn(2+) medium and that additional Mn(2+) transport systems may be present in C. diphtheriae. This study reports the characterization of MntR, a Mn(2+)-dependent repressor, and the second member of the family of DtxR-like metalloregulatory proteins to be identified in C. diphtheriae.
Collapse
Affiliation(s)
- Michael P Schmitt
- Laboratory of Bacterial Toxins, Division of Bacterial, Allergenic and Parasitic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA.
| |
Collapse
|
41
|
Love JF, Murphy JR. Design and development of a novel genetic probe for the analysis of repressor-operator interactions. J Microbiol Methods 2002; 51:63-72. [PMID: 12069891 DOI: 10.1016/s0167-7012(02)00058-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
While the native diphtheria tox promoter/operator (toxPO)-lacZ transcriptional fusion has allowed initial isolation and characterization of the diphtheria toxin repressor (DtxR), the low level of reporter gene expression has limited the detection and analysis of mutations affecting subtle changes in repressor-operator binding. In order to overcome this difficulty, we have constructed a novel hybrid promoter/operator-lacZ transcriptional fusion in which the "-35" and spacing of the tac promoter was fused to the "-10" and interrupted palindromic sequence of toxO. We show that the hybrid tacPtoxO is regulated by the transition metal ion-dependent DtxR and that lacZ expression is increased approximately 70-fold in the reporter strain Escherichia coli DH5alpha/lambdaRS45-tacPtoxO-lacZ relative to DH5alpha/lambdaRS45-toxPO-lacZ. In addition, we have constructed a transcriptional fusion between tacPtoxO and luc, pJL1. We have used pJL1 to program S30 extracts of E. coli in order to direct in vitro the coupled transcription and translation of luciferase. We demonstrate the utility of this in vitro system in providing a direct functional link between in vivo and in vitro observations with DtxR and mutants of DtxR, which display subtle changes in activity in a manner not previously possible.
Collapse
Affiliation(s)
- John F Love
- Evans Department of Clinical Research and Department of Medicine, Boston University School of Medicine, 650 Albany Street, EBRC 830, Boston, MA 02118, USA
| | | |
Collapse
|
42
|
Twigg PD, Parthasarathy G, Guerrero L, Logan TM, Caspar DL. Disordered to ordered folding in the regulation of diphtheria toxin repressor activity. Proc Natl Acad Sci U S A 2001; 98:11259-64. [PMID: 11572979 PMCID: PMC58717 DOI: 10.1073/pnas.191354798] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2001] [Indexed: 11/18/2022] Open
Abstract
Understanding how metal binding regulates the activity of the diphtheria toxin repressor protein (DtxR) requires information about the structure in solution. We have prepared a DtxR mutant construct with three additional N-terminal residues, Gly-Ser-His-DtxR(Cys-102 --> Asp), that retains metal-binding capabilities, but remains monomeric in solution and does not bind DNA under conditions that effect dimerization and DNA binding in the functional DtxR(Cys-102 --> Asp) construct. Although the interaction properties of this inactive mutant in solution are very different from that of active repressors, crystallization imposes the same dimeric structure as observed in all crystal forms of the active repressor with and without bound metal. Our solution NMR analyses of active and inactive metal-free diphtheria toxin repressors demonstrate that whereas the C-terminal one-third of the protein is well ordered, the N-terminal two-thirds exhibits conformational flexibility and exists as an ensemble of structural substates with undefined tertiary structure. Fluorescence binding assays with 1-anilino naphthalene-8-sulfonic acid (ANS) confirm that the highly alpha-helical N-terminal two-thirds of the apoprotein is molten globule-like in solution. Binding of divalent metal cations induces a substantial conformational reorganization to a more ordered state, as evidenced by changes in the NMR spectra and ANS binding. The evident disorder to order transition upon binding of metal in solution is in contrast to the minor conformational changes seen comparing apo- and holo-DtxR crystal structures. Disordered to ordered folding appears to be a general mechanism for regulating specific recognition in protein action and this mechanism provides a plausible explanation for how metal binding controls the DtxR repressor activity.
Collapse
Affiliation(s)
- P D Twigg
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
The ability of pathogens to obtain iron from transferrins, ferritin, hemoglobin, and other iron-containing proteins of their host is central to whether they live or die. To combat invading bacteria, animals go into an iron-withholding mode and also use a protein (Nramp1) to generate reactive oxygen species in an attempt to kill the pathogens. Some invading bacteria respond by producing specific iron chelators-siderophores-that remove the iron from the host sources. Other bacteria rely on direct contact with host iron proteins, either abstracting the iron at their surface or, as with heme, taking it up into the cytoplasm. The expression of a large number of genes (>40 in some cases) is directly controlled by the prevailing intracellular concentration of Fe(II) via its complexing to a regulatory protein (the Fur protein or equivalent). In this way, the biochemistry of the bacterial cell can accommodate the challenges from the host. Agents that interfere with bacterial iron metabolism may prove extremely valuable for chemotherapy of diseases.
Collapse
Affiliation(s)
- C Ratledge
- Department of Biological Sciences, University of Hull, Hull HU6 7RX.
| | | |
Collapse
|
44
|
Feese MD, Ingason BP, Goranson-Siekierke J, Holmes RK, Hol WG. Crystal structure of the iron-dependent regulator from Mycobacterium tuberculosis at 2.0-A resolution reveals the Src homology domain 3-like fold and metal binding function of the third domain. J Biol Chem 2001; 276:5959-66. [PMID: 11053439 DOI: 10.1074/jbc.m007531200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron-dependent regulators are primary transcriptional regulators of virulence factors and iron scavenging systems that are important for infection by several bacterial pathogens. Here we present the 2.0-A crystal structure of the wild type iron-dependent regulator from Mycobacterium tuberculosis in its fully active holorepressor conformation. Clear, unbiased electron density for the Src homology domain 3-like third domain, which is often invisible in structures of iron-dependent regulators, was revealed by density modification and averaging. This domain is one of the rare examples of Src homology domain 3-like folds in bacterial proteins, and, in addition, displays a metal binding function by contributing two ligands, one Glu and one Gln, to the pentacoordinated cobalt atom at metal site 1. Both metal sites are fully occupied, and tightly bound water molecules at metal site 1 ("Water 1") and metal site 2 ("Water 2") are identified unambiguously. The main chain carbonyl of Leu4 makes an indirect interaction with the cobalt atom at metal site 2 via Water 2, and the adjacent residue, Val5, forms a rare gamma turn. Residues 1-3 are well ordered and make numerous interactions. These ordered solvent molecules and the conformation and interactions of the N-terminal pentapeptide thus might be important in metal-dependent activation.
Collapse
Affiliation(s)
- M D Feese
- Department of Biological Structure, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
45
|
Kitten T, Munro CL, Michalek SM, Macrina FL. Genetic characterization of a Streptococcus mutans LraI family operon and role in virulence. Infect Immun 2000; 68:4441-51. [PMID: 10899841 PMCID: PMC98344 DOI: 10.1128/iai.68.8.4441-4451.2000] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2000] [Accepted: 04/27/2000] [Indexed: 11/20/2022] Open
Abstract
Proteins belonging to the LraI (for "lipoprotein receptor antigen") family function as adhesins in several streptococci, as a virulence factor for endocarditis in at least one of these species, and potentially as metal transporters in many bacteria. We have identified and characterized the chromosomal locus containing the LraI family gene (designated sloC) from Streptococcus mutans, an agent of dental caries and endocarditis in humans. Northern blot analysis indicated that sloC is cotranscribed with three other genes. As with other LraI operons, the sloA and sloB genes apparently encode components of an ATP-binding cassette transport system. The product of the fourth gene, sloR, has homology to the metal-dependent regulator from Corynebacterium diphtheriae, DtxR. A potential binding site for SloR was identified upstream from the sloABCR operon and was conserved upstream from LraI operons in several other streptococci. Potential SloR homologs were identified in the unfinished genomic sequences from two of these, S. pneumoniae and S. pyogenes. Mutagenesis of sloC in S. mutans resulted in apparent loss of expression of the entire operon as assessed by Northern blot analysis. The sloC mutant was indistinguishable from its wild-type parent in a gnotobiotic rat model of caries but was significantly less virulent in a rat model of endocarditis. Virulence for endocarditis was restored by correction of the sloC mutation but not by provision of the sloC gene in trans, suggesting that virulence requires the expression of other genes in the sloC operon.
Collapse
Affiliation(s)
- T Kitten
- Philips Institute of Oral & Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298, USA.
| | | | | | | |
Collapse
|
46
|
Que Q, Helmann JD. Manganese homeostasis in Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins. Mol Microbiol 2000; 35:1454-68. [PMID: 10760146 DOI: 10.1046/j.1365-2958.2000.01811.x] [Citation(s) in RCA: 219] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Bacillus subtilis yqhN gene encodes a metalloregulatory protein distantly related to the Corynebacterium diphtheriae diphtheria toxin repressor (DtxR). While DtxR mediates the iron-dependent repression of iron uptake, we demonstrate that yqhN (herein renamed mntR) encodes a manganese modulated regulator of manganese transport. An mntR mutant strain is sensitive to both manganese and cadmium, suggesting that the transport of these metals is derepressed. We selected Tn10 insertions that suppress the Mn(II) sensitivity of the mntR mutant or that increase the Cd(II) tolerance of wild-type cells, and in both cases we recovered insertions in mntH (formerly ydaR). MntH is a member of the NRAMP family of proton-coupled, metal ion transporters. MntR also regulates expression of a Mn(II) ABC transporter (MntABCD). The MntH and MntABCD transporters are both selectively repressed by Mn(II) and this regulation requires MntR. In high Mn(II) conditions, MntR functions as a Mn(II)-dependent repressor of mntH transcription. In contrast, MntR acts as a positive regulator of the mntABCD operon under low Mn(II) growth conditions. Biochemical studies demonstrate that MntR binding to the mntH control region requires Mn(II), while interaction with the mntABCD control region does not depend on Mn(II).
Collapse
Affiliation(s)
- Q Que
- Section of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14853-8101, USA
| | | |
Collapse
|
47
|
Holmes RK. Biology and molecular epidemiology of diphtheria toxin and the tox gene. J Infect Dis 2000; 181 Suppl 1:S156-67. [PMID: 10657208 DOI: 10.1086/315554] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Diphtheria toxin (DT) is an extracellular protein of Corynebacterium diphtheriae that inhibits protein synthesis and kills susceptible cells. The gene that encodes DT (tox) is present in some corynephages, and DT is only produced by C. diphtheriae isolates that harbor tox+ phages. The diphtheria toxin repressor (DtxR) is a global regulatory protein that uses Fe2+ as co-repressor. Holo-DtxR represses production of DT, corynebacterial siderophore, heme oxygenase, and several other proteins. Diagnostic tests for toxinogenicity of C. diphtheriae are based either on immunoassays or on bioassays for DT. Molecular analysis of tox and dtxR genes in recent clinical isolates of C. diphtheriae revealed several tox alleles that encode identical DT proteins and multiple dtxR alleles that encode five variants of DtxR protein. Therefore, recent clinical isolates of C. diphtheriae produce a single antigenic type of DT, and diphtheria toxoid continues to be an effective vaccine for immunization against diphtheria.
Collapse
Affiliation(s)
- R K Holmes
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| |
Collapse
|
48
|
Lee JH, Holmes RK. Characterization of specific nucleotide substitutions in DtxR-specific operators of Corynebacterium diphtheriae that dramatically affect DtxR binding, operator function, and promoter strength. J Bacteriol 2000; 182:432-8. [PMID: 10629190 PMCID: PMC94293 DOI: 10.1128/jb.182.2.432-438.2000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diphtheria toxin repressor (DtxR) of Corynebacterium diphtheriae uses Fe(2+) as a corepressor. Holo-DtxR inhibits transcription from the iron-regulated promoters (IRPs) designated IRP1 through IRP5 as well as from the promoters for the tox and hmuO genes. DtxR binds to 19-bp operators with the consensus sequence 5'-TTAGGTTAGCCTAACCTAA-3', a perfect 9-bp palindrome interrupted by a single C. G base pair. Among the seven known DtxR-specific operators, IRP3 exhibits the weakest binding to DtxR. The message (sense) strand of the IRP3 operator (5'-TTAGGTGAGACGCACCCAT-3' [nonconsensus nucleotides underlined]) overlaps by 2 nucleotides at its 5' end with the putative -10 sequence of the IRP3 promoter. The underlined C at position +7 from the center of the IRP3 operator [C(+7)] is unique, because T is conserved at that position in other DtxR-specific operators. The present study examined the effects of nucleotide substitutions at position +7 or -7 in the IRP3 operator. In gel mobility shift assays, only the change of C(+7) to the consensus nucleotide T caused a dramatic increase in the binding of DtxR, whereas other nucleotide substitutions for C(+7) or replacements for A(-7) had only small positive or negative effects on DtxR binding. All substitutions for C(+7) or A(-7) except for A(-7)C dramatically decreased IRP3 promoter strength. In contrast, the A(-7)C variant caused increased promoter strength at the cost of nearly eliminating repressibility by DtxR. The message (sense) strand of the IRP1 operator (5'-TTAGGTTAGCCAAACCTTT-3') includes the -35 region of the IRP3 promoter. A T(+7)C variant of the IRP1 operator was also constructed, and it was shown to exhibit decreased binding to DtxR, decreased repressibility by DtxR, and increased promoter strength. The nucleotides at positions +7 and -7 in DtxR-specific operators are therefore important determinants of DtxR binding and repressibility of transcription by DtxR, and they also have significant effects on promoter activity for IRP3 and IRP1.
Collapse
Affiliation(s)
- J H Lee
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
49
|
Pohl E, Holmes RK, Hol WG. Crystal structure of a cobalt-activated diphtheria toxin repressor-DNA complex reveals a metal-binding SH3-like domain. J Mol Biol 1999; 292:653-67. [PMID: 10497029 DOI: 10.1006/jmbi.1999.3073] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The diphtheria toxin repressor (DtxR) is the prototype of a family of iron-dependent regulator (IdeR) proteins, which are activated by divalent iron and bind DNA to prevent the transcription of downstream genes. In Corynebacterium diphtheriae, DtxR regulates not only the expression of diphtheria toxin encoded by a corynebacteriophage, but also of components of the siderophore-mediated iron-transport system. Here we report the crystal structure of wild-type DtxR, a 226 residue three-domain dimeric protein, activated by cobalt and bound to a 21 bp DNA duplex based on the consensus operator sequence. Two DtxR dimers surround the DNA duplex which is distorted compared to canonical B -DNA. The SH3-like third domain interacts with the metal at site 1 via the side-chains of Glu170 and Gln173, revealing for the first time a metal-binding function for this class of domains. The SH3-like domain is also in contact with the DNA-binding first domain and with the second, or dimerization, domain. The DNA-binding helices in the first domain are shifted by 3 to 5 A when compared to the apo-repressor, and fit into the major groove of the duplex bound. These shifts are due to a hinge-binding motion of the DNA-binding domain with respect to the dimerization domains of DtxR. The third domain might play a role in regulating this hinge motion.
Collapse
Affiliation(s)
- E Pohl
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
50
|
Wang G, Wylie GP, Twigg PD, Caspar DL, Murphy JR, Logan TM. Solution structure and peptide binding studies of the C-terminal src homology 3-like domain of the diphtheria toxin repressor protein. Proc Natl Acad Sci U S A 1999; 96:6119-24. [PMID: 10339551 PMCID: PMC26845 DOI: 10.1073/pnas.96.11.6119] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The diphtheria toxin repressor (DtxR) is the best-characterized member of a family of homologous proteins that regulate iron uptake and virulence gene expression in the Gram-positive bacteria. DtxR contains two domains that are separated by a short, unstructured linker. The N-terminal domain is structurally well-defined and is responsible for Fe2+ binding, dimerization, and DNA binding. The C-terminal domain adopts a fold similar to eukaryotic Src homology 3 domains, but the functional role of the C-terminal domain in repressor activity is unknown. The solution structure of the C-terminal domain, consisting of residues N130-L226 plus a 13-residue N-terminal extension, has been determined by using NMR spectroscopy. Residues before A147 are highly mobile and adopt a random coil conformation, but residues A147-L226 form a single structured domain consisting of five beta-strands and three helices arranged into a partially orthogonal, two-sheet beta-barrel, similar to the structure observed in the crystalline Co2+ complex of full-length DtxR. Chemical shift perturbation studies demonstrate that a proline-rich peptide corresponding to residues R125-G139 of intact DtxR binds to the C-terminal domain in a pocket formed by residues in beta-strands 2, 3, and 5, and helix 3. Binding of the proline-rich peptide by the C-terminal domain of DtxR presents an example of peptide binding by a prokaryotic Src homology 3-like protein. The results of this study, combined with previous x-ray studies of intact DtxR, provide insights into a possible biological function of the C-terminal domain in regulating repressor activity.
Collapse
Affiliation(s)
- G Wang
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | | | |
Collapse
|