1
|
Herre C, Ho A, Eisenbraun B, Vincent J, Nicholson T, Boutsioukis G, Meyer PA, Ottaviano M, Krause KL, Key J, Sliz P. Introduction of the Capsules environment to support further growth of the SBGrid structural biology software collection. Acta Crystallogr D Struct Biol 2024; 80:439-450. [PMID: 38832828 PMCID: PMC11154594 DOI: 10.1107/s2059798324004881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024] Open
Abstract
The expansive scientific software ecosystem, characterized by millions of titles across various platforms and formats, poses significant challenges in maintaining reproducibility and provenance in scientific research. The diversity of independently developed applications, evolving versions and heterogeneous components highlights the need for rigorous methodologies to navigate these complexities. In response to these challenges, the SBGrid team builds, installs and configures over 530 specialized software applications for use in the on-premises and cloud-based computing environments of SBGrid Consortium members. To address the intricacies of supporting this diverse application collection, the team has developed the Capsule Software Execution Environment, generally referred to as Capsules. Capsules rely on a collection of programmatically generated bash scripts that work together to isolate the runtime environment of one application from all other applications, thereby providing a transparent cross-platform solution without requiring specialized tools or elevated account privileges for researchers. Capsules facilitate modular, secure software distribution while maintaining a centralized, conflict-free environment. The SBGrid platform, which combines Capsules with the SBGrid collection of structural biology applications, aligns with FAIR goals by enhancing the findability, accessibility, interoperability and reusability of scientific software, ensuring seamless functionality across diverse computing environments. Its adaptability enables application beyond structural biology into other scientific fields.
Collapse
Affiliation(s)
- Carol Herre
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Alex Ho
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ben Eisenbraun
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - James Vincent
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas Nicholson
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | - Peter A. Meyer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Michelle Ottaviano
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kurt L. Krause
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Jason Key
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Piotr Sliz
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Ray S, Tillo D, Durell SR, Khund-Sayeed S, Vinson C. REL Domain of NFATc2 Binding to Five Types of DNA Using Protein Binding Microarrays. ACS OMEGA 2021; 6:4147-4154. [PMID: 33644537 PMCID: PMC7906578 DOI: 10.1021/acsomega.0c04069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
NFATc2 is a DNA binding protein in the Rel family transcription factors, which binds a CGGAA motif better when both cytosines in the CG dinucleotide are methylated. Using protein binding microarrays (PBMs), we examined the DNA binding of NFATc2 to three additional types of DNA: single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) with either 5-methylcytosine (5mC, M) or 5-hydroxymethylcytosine (5hmC, H) in one strand and a cytosine in the second strand. ATTTCCAC, the complement of the core GGAA motif, is better bound as ssDNA compared to dsDNA. dsDNA containing the 5-mer CGGAA with either 5mC or 5hmC in one DNA strand is bound stronger than CGGAA. In contrast, the reverse complement TTCCG is bound weaker when it contains 5mC. Analysis of the available NFATc2:dsDNA complexes rationalizes these PBM data.
Collapse
Affiliation(s)
- Sreejana Ray
- Laboratory
of Metabolism, National Cancer Institute,
National Institutes of Health, 37 Convent Drive, Building 37, Room 5000, Bethesda, Maryland 20892, United States
| | - Desiree Tillo
- Laboratory
of Metabolism, National Cancer Institute,
National Institutes of Health, 37 Convent Drive, Building 37, Room 5000, Bethesda, Maryland 20892, United States
| | - Stewart R. Durell
- Laboratory
of Cell Biology, National Cancer Institute,
National Institutes of Health, 37 Convent Drive, Building 37, Room 5000, Bethesda, Maryland 20892, United States
| | - Syed Khund-Sayeed
- Laboratory
of Metabolism, National Cancer Institute,
National Institutes of Health, 37 Convent Drive, Building 37, Room 5000, Bethesda, Maryland 20892, United States
| | - Charles Vinson
- Laboratory
of Metabolism, National Cancer Institute,
National Institutes of Health, 37 Convent Drive, Building 37, Room 5000, Bethesda, Maryland 20892, United States
| |
Collapse
|
3
|
Wei X, Li H, Zhang Y, Li C, Li K, Ai K, Yang J. Ca2+–Calcineurin Axis–Controlled NFAT Nuclear Translocation Is Crucial for Optimal T Cell Immunity in an Early Vertebrate. THE JOURNAL OF IMMUNOLOGY 2019; 204:569-585. [DOI: 10.4049/jimmunol.1901065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/22/2019] [Indexed: 11/19/2022]
|
4
|
Zhang W, Takahara T, Achiha T, Shibata H, Maki M. Cellular Ca 2+-Responding Nanoluciferase Reporter Gene System Directed by Tandemly Repeated Pseudo-palindromic NFAT-Response Elements. Methods Mol Biol 2019; 1929:95-109. [PMID: 30710269 DOI: 10.1007/978-1-4939-9030-6_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Luciferase reporter gene systems based on the NFAT-response element (RE) have been used to monitor intracellular Ca2+ elevation. However, Ca2+ mobilization agent (e.g., ionomycin) alone is not adequate to activate the currently often employed reporter gene that contains the NFAT-RE found in the IL2 promoter. In addition to activation of NFAT through the Ca2+-calmodulin/calcineurin pathway, activation of AP-1 as a partner transcription factor is essential for the IL2-based NFAT-RE system. Here, we describe a detailed method for the recently developed new reporter gene system containing the NFAT-RE from the IL8 promoter. This system enables us to monitor endpoint effects of Ca2+-mobilizing agonists independent of AP-1 activation.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Terunao Takahara
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
| | - Takuya Achiha
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hideki Shibata
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Masatoshi Maki
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
| |
Collapse
|
5
|
Nanoluciferase Reporter Gene System Directed by Tandemly Repeated Pseudo-Palindromic NFAT-Response Elements Facilitates Analysis of Biological Endpoint Effects of Cellular Ca 2+ Mobilization. Int J Mol Sci 2018; 19:ijms19020605. [PMID: 29463029 PMCID: PMC5855827 DOI: 10.3390/ijms19020605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/11/2018] [Accepted: 02/14/2018] [Indexed: 01/12/2023] Open
Abstract
NFAT is a cytoplasm-localized hyper-phosphorylated transcription factor that is activated through dephosphorylation by calcineurin, a Ca2+/calmodulin-dependent phosphatase. A non-palindromic NFAT-response element (RE) found in the IL2 promoter region has been commonly used for a Ca2+-response reporter gene system, but requirement of concomitant activation of AP-1 (Fos/Jun) often complicates the interpretation of obtained results. A new nanoluciferase (NanoLuc) reporter gene containing nine-tandem repeats of a pseudo-palindromic NFAT-RE located upstream of the IL8 promoter was designed to monitor Ca2+-induced transactivation activity of NFAT in human embryonic kidney (HEK) 293 cells by measuring luciferase activities of NanoLuc and co-expressed firefly luciferase for normalization. Ionomycin treatment enhanced the relative luciferase activity (RLA), which was suppressed by calcineurin inhibitors. HEK293 cells that stably express human STIM1 and Orai1, components of the store-operated calcium entry (SOCE) machinery, gave a much higher RLA by stimulation with thapsigargin, an inhibitor of sarcoplasmic/endoplamic reticulum Ca2+-ATPase (SERCA). HEK293 cells deficient in a penta-EF-hand Ca2+-binding protein ALG-2 showed a higher RLA value than the parental cells by stimulation with an acetylcholine receptor agonist carbachol. The novel reporter gene system is found to be useful for applications to cell signaling research to monitor biological endpoint effects of cellular Ca2+ mobilization.
Collapse
|
6
|
The Emerging Roles of the Calcineurin-Nuclear Factor of Activated T-Lymphocytes Pathway in Nervous System Functions and Diseases. J Aging Res 2016; 2016:5081021. [PMID: 27597899 PMCID: PMC5002468 DOI: 10.1155/2016/5081021] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/21/2016] [Indexed: 12/27/2022] Open
Abstract
The ongoing epidemics of metabolic diseases and increase in the older population have increased the incidences of neurodegenerative diseases. Evidence from murine and cell line models has implicated calcineurin-nuclear factor of activated T-lymphocytes (NFAT) signaling pathway, a Ca2+/calmodulin-dependent major proinflammatory pathway, in the pathogenesis of these diseases. Neurotoxins such as amyloid-β, tau protein, and α-synuclein trigger abnormal calcineurin/NFAT signaling activities. Additionally increased activities of endogenous regulators of calcineurin like plasma membrane Ca2+-ATPase (PMCA) and regulator of calcineurin 1 (RCAN1) also cause neuronal and glial loss and related functional alterations, in neurodegenerative diseases, psychotic disorders, epilepsy, and traumatic brain and spinal cord injuries. Treatment with calcineurin/NFAT inhibitors induces some degree of neuroprotection and decreased reactive gliosis in the central and peripheral nervous system. In this paper, we summarize and discuss the current understanding of the roles of calcineurin/NFAT signaling in physiology and pathologies of the adult and developing nervous system, with an emphasis on recent reports and cutting-edge findings. Calcineurin/NFAT signaling is known for its critical roles in the developing and adult nervous system. Its role in physiological and pathological processes is still controversial. However, available data suggest that its beneficial and detrimental effects are context-dependent. In view of recent reports calcineurin/NFAT signaling is likely to serve as a potential therapeutic target for neurodegenerative diseases and conditions. This review further highlights the need to characterize better all factors determining the outcome of calcineurin/NFAT signaling in diseases and the downstream targets mediating the beneficial and detrimental effects.
Collapse
|
7
|
Mondragón E, Maher LJ. Anti-Transcription Factor RNA Aptamers as Potential Therapeutics. Nucleic Acid Ther 2015; 26:29-43. [PMID: 26509637 PMCID: PMC4753637 DOI: 10.1089/nat.2015.0566] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcription factors (TFs) are DNA-binding proteins that play critical roles in regulating gene expression. These proteins control all major cellular processes, including growth, development, and homeostasis. Because of their pivotal role, cells depend on proper TF function. It is, therefore, not surprising that TF deregulation is linked to disease. The therapeutic drug targeting of TFs has been proposed as a frontier in medicine. RNA aptamers make interesting candidates for TF modulation because of their unique characteristics. The products of in vitro selection, aptamers are short nucleic acids (DNA or RNA) that bind their targets with high affinity and specificity. Aptamers can be expressed on demand from transgenes and are intrinsically amenable to recognition by nucleic acid-binding proteins such as TFs. In this study, we review several natural prokaryotic and eukaryotic examples of RNAs that modulate the activity of TFs. These examples include 5S RNA, 6S RNA, 7SK, hepatitis delta virus-RNA (HDV-RNA), neuron restrictive silencer element (NRSE)-RNA, growth arrest-specific 5 (Gas5), steroid receptor RNA activator (SRA), trophoblast STAT utron (TSU), the 3' untranslated region of caudal mRNA, and heat shock RNA-1 (HSR1). We then review examples of unnatural RNA aptamers selected to inhibit TFs nuclear factor-kappaB (NF-κB), TATA-binding protein (TBP), heat shock factor 1 (HSF1), and runt-related transcription factor 1 (RUNX1). The field of RNA aptamers for DNA-binding proteins continues to show promise.
Collapse
Affiliation(s)
- Estefanía Mondragón
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine , Rochester, Minnesota
| | - Louis James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine , Rochester, Minnesota
| |
Collapse
|
8
|
Quang CT, Leboucher S, Passaro D, Fuhrmann L, Nourieh M, Vincent-Salomon A, Ghysdael J. The calcineurin/NFAT pathway is activated in diagnostic breast cancer cases and is essential to survival and metastasis of mammary cancer cells. Cell Death Dis 2015; 6:e1658. [PMID: 25719243 PMCID: PMC4669815 DOI: 10.1038/cddis.2015.14] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/23/2014] [Accepted: 01/07/2015] [Indexed: 01/09/2023]
Abstract
Nuclear factor of activated T cells 1 (NFAT1) expression has been associated with increased migratory/invasive properties of mammary tumor-derived cell lines in vitro. It is unknown, however, if NFAT activation actually occurs in breast cancer cases and whether the calcineurin/NFAT pathway is important to mammary tumorigenesis. Using a cohort of 321 diagnostic cases of the major subgroup of breast cancer, we found Cn/NFAT pathway activated in ER−PR−HER2− triple-negative breast cancer subtype, whereas its prevalence is less in other subgroups. Using a small hairpin RNA-based gene expression silencing approach in murine mammary tumor cell line (4T1), we show that not only NFAT1 but also NFAT2 and their upstream activator Cn are essential to the migratory and invasive properties of mammary tumor cells. We also demonstrate that Cn, NFAT1 and NFAT2 are essential to the tumorigenic and metastatic properties of these cells in mice, a phenotype which coincides with increased apoptosis in vivo. Finally, global gene expression analyses identified several NFAT-deregulated genes, many of them being previously associated with mammary tumorigenesis. In particular, we identified the gene encoding a disintegrin and metalloproteinase with thrombonspondin motifs 1, as being a potential direct target of NFAT1. Thus, our results show that the Cn/NFAT pathway is activated in diagnostic cases of breast cancers and is essential to the tumorigenic and metastatic potential of mammary tumor cell line. These results suggest that pharmacological inhibition of the Cn/NFAT pathway at different levels could be of therapeutical interest for breast cancer patients.
Collapse
Affiliation(s)
- C Tran Quang
- 1] U1005-UMR3306-, Institut Curie, Bat 110 Centre Universitaire, Orsay 91405, France [2] Institut National de la Recherche Santé et de la Recherche Medicale, Orsay U1005, France [3] Centre National de la Recherche Scientifique, Orsay UMR3306, France
| | - S Leboucher
- 1] U1005-UMR3306-, Institut Curie, Bat 110 Centre Universitaire, Orsay 91405, France [2] Institut National de la Recherche Santé et de la Recherche Medicale, Orsay U1005, France [3] Centre National de la Recherche Scientifique, Orsay UMR3306, France
| | - D Passaro
- 1] U1005-UMR3306-, Institut Curie, Bat 110 Centre Universitaire, Orsay 91405, France [2] Institut National de la Recherche Santé et de la Recherche Medicale, Orsay U1005, France [3] Centre National de la Recherche Scientifique, Orsay UMR3306, France
| | - L Fuhrmann
- 1] Centre de Recherche, Institut Curie, Paris 75005, France [2] CNRS UMR144, Paris 75005, France [3] Department of Biopathology, Institut Curie, Paris 75005, France
| | - M Nourieh
- 1] Centre de Recherche, Institut Curie, Paris 75005, France [2] Department of Biopathology, Institut Curie, Paris 75005, France
| | - A Vincent-Salomon
- 1] Centre de Recherche, Institut Curie, Paris 75005, France [2] Department of Biopathology, Institut Curie, Paris 75005, France [3] INSERM U934, Paris 75005, France
| | - J Ghysdael
- 1] U1005-UMR3306-, Institut Curie, Bat 110 Centre Universitaire, Orsay 91405, France [2] Institut National de la Recherche Santé et de la Recherche Medicale, Orsay U1005, France [3] Centre National de la Recherche Scientifique, Orsay UMR3306, France
| |
Collapse
|
9
|
Kaunisto A, Henry WS, Montaser-Kouhsari L, Jaminet SC, Oh EY, Zhao L, Luo HR, Beck AH, Toker A. NFAT1 promotes intratumoral neutrophil infiltration by regulating IL8 expression in breast cancer. Mol Oncol 2015; 9:1140-54. [PMID: 25735562 DOI: 10.1016/j.molonc.2015.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 12/26/2022] Open
Abstract
NFAT transcription factors are key regulators of gene expression in immune cells. In addition, NFAT1-induced genes play diverse roles in mediating the progression of various solid tumors. Here we show that NFAT1 induces the expression of the IL8 gene by binding to its promoter and leading to IL8 secretion. Thapsigargin stimulation of breast cancer cells induces IL8 expression in an NFAT-dependent manner. Moreover, we show that NFAT1-mediated IL8 production promotes the migration of primary human neutrophils in vitro and also promotes neutrophil infiltration in tumor xenografts. Furthermore, expression of active NFAT1 effectively suppresses the growth of nascent and established tumors by a non cell-autonomous mechanism. Evaluation of breast tumor tissue reveals that while the levels of NFAT1 are similar in tumor cells and normal breast epithelium, cells in the tumor stroma express higher levels of NFAT1 compared to normal stroma. Elevated levels of NFAT1 also correlate with increased neutrophil infiltrate in breast tumors. These data point to a mechanism by which NFAT1 orchestrates the communication between breast cancer cells and host neutrophils during breast cancer progression.
Collapse
Affiliation(s)
- Aura Kaunisto
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Whitney S Henry
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Shou-Ching Jaminet
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Eun-Yeong Oh
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Li Zhao
- Department of Laboratory Medicine, Children's Hospital Boston, Boston, MA, USA
| | - Hongbo R Luo
- Department of Laboratory Medicine, Children's Hospital Boston, Boston, MA, USA
| | - Andrew H Beck
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Alex Toker
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
10
|
Muhammad K, Alrefai H, Marienfeld R, Pham DAT, Murti K, Patra AK, Avots A, Bukur V, Sahin U, Kondo E, Klein-Hessling S, Serfling E. NF-κB factors control the induction of NFATc1 in B lymphocytes. Eur J Immunol 2014; 44:3392-402. [PMID: 25179582 DOI: 10.1002/eji.201444756] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/16/2014] [Accepted: 08/29/2014] [Indexed: 01/06/2023]
Abstract
In peripheral lymphocytes, the transcription factors (TFs) NF-κB, NFAT, and AP-1 are the prime targets of signals that emerge from immune receptors. Upon activation, these TFs induce gene networks that orchestrate the growth, expansion, and effector function of peripheral lymphocytes. NFAT and NF-κB factors share several properties, such as a similar mode of induction and architecture in their DNA-binding domain, and there is a subgroup of κB-like DNA promoter motifs that are bound by both types of TFs. However, unlike NFAT and AP-1 factors that interact and collaborate in binding to DNA, NFAT, and NF-κB seem neither to interact nor to collaborate. We show here that NF-κB1/p50 and c-Rel, the most prominent NF-κB proteins in BCR-induced splenic B cells, control the induction of NFATc1/αA, a prominent short NFATc1 isoform. In part, this is mediated through two composite κB/NFAT-binding sites in the inducible Nfatc1 P1 promoter that directs the induction of NFATc1/αA by BCR signals. In concert with coreceptor signals that induce NF-κB factors, BCR signaling induces a persistent generation of NFATc1/αA. These data suggest a tight connection between NFATc1 and NF-κB induction in B lymphocytes contributing to the effector function of peripheral B cells.
Collapse
Affiliation(s)
- Khalid Muhammad
- Department of Molecular Pathology, Institute of Pathology and Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gal M, Li S, Luna RE, Takeuchi K, Wagner G. The LxVP and PxIxIT NFAT motifs bind jointly to overlapping epitopes on calcineurin's catalytic domain distant to the regulatory domain. Structure 2014; 22:1016-27. [PMID: 24954618 DOI: 10.1016/j.str.2014.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 04/22/2014] [Accepted: 05/04/2014] [Indexed: 11/28/2022]
Abstract
The serine/threonine phosphatase calcineurin (Cn) targets the nuclear factors of activated T cells (NFATs) that activate cytokine genes. Calcium influx activates Cn to dephosphorylate multiple serine residues within the ∼200 residue NFAT regulatory domain, which triggers joint nuclear translocation of NFAT and Cn. The dephosphorylation process relies on the interaction between Cn and the conserved motifs PxIxIT and LxVP, which are located N- and C-terminal to the phosphorylation sites in NFAT's regulatory domain. Here, we show that an NFATc1-derived 15-residue peptide segment containing the conserved LxVP motif binds to an epitope on Cn's catalytic domain (CnA), which overlaps with the previously established PxIxIT binding site on CnA and is distant to the regulatory domain (CnB). Both NFAT motifs partially compete for binding but do not fully displace each other on the CnA epitope, revealing that both segments bind simultaneously to the same epitope on the catalytic domain.
Collapse
Affiliation(s)
- Maayan Gal
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Shuai Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Rafael E Luna
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Koh Takeuchi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Mass E, Wachten D, Aschenbrenner AC, Voelzmann A, Hoch M. Murine Creld1 controls cardiac development through activation of calcineurin/NFATc1 signaling. Dev Cell 2014; 28:711-26. [PMID: 24697899 DOI: 10.1016/j.devcel.2014.02.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/28/2014] [Accepted: 02/13/2014] [Indexed: 11/30/2022]
Abstract
Calcineurin is a heteromeric Ca(2+)-dependent serine/threonine phosphatase. It dephosphorylates the transcription factor nuclear factor of activated T cells (NFAT) in the cytoplasm, which subsequently undergoes nuclear translocation. NFAT regulates numerous biological processes, including inflammatory T cell responses and cardiac development. Our study identifies the Cysteine-Rich with EGF-Like Domains 1 (Creld1) gene as a regulator of calcineurin/NFATc1 signaling. We show that Creld1 is sufficient to promote NFATc1 dephosphorylation and translocation to the nucleus. Creld1 is contained in a joint protein complex with the regulatory subunit of calcineurin, CnB, thereby controlling calcineurin function. Localization of Creld1 at the endoplasmic reticulum (ER) is important to exert its action on calcineurin. By using Creld1KO mice, we demonstrate that Creld1 is essential for heart development. Creld1 function is required for the VEGF-dependent proliferation of endocardial cells by promoting the expression of NFATc1 target-genes. Collectively, our study identifies Creld1 as an important regulator of calcineurin/NFATc1 signaling.
Collapse
Affiliation(s)
- Elvira Mass
- LIMES-Institute, Program Unit Development, Genetics and Molecular Physiology, Molecular Developmental Biology, University of Bonn, Carl-Troll-Strasse 31, 53115 Bonn, NRW 53115, Germany
| | - Dagmar Wachten
- Center of Advanced European Studies and Research (caesar), Minerva Research Group, Molecular Physiology, Ludwig-Erhard-Allee 2, 53175 Bonn, NRW 53115, Germany
| | - Anna C Aschenbrenner
- LIMES-Institute, Program Unit Development, Genetics and Molecular Physiology, Molecular Developmental Biology, University of Bonn, Carl-Troll-Strasse 31, 53115 Bonn, NRW 53115, Germany
| | - André Voelzmann
- LIMES-Institute, Program Unit Development, Genetics and Molecular Physiology, Molecular Developmental Biology, University of Bonn, Carl-Troll-Strasse 31, 53115 Bonn, NRW 53115, Germany
| | - Michael Hoch
- LIMES-Institute, Program Unit Development, Genetics and Molecular Physiology, Molecular Developmental Biology, University of Bonn, Carl-Troll-Strasse 31, 53115 Bonn, NRW 53115, Germany.
| |
Collapse
|
13
|
Minami T. Calcineurin-NFAT activation and DSCR-1 auto-inhibitory loop: how is homoeostasis regulated? J Biochem 2014; 155:217-26. [PMID: 24505143 DOI: 10.1093/jb/mvu006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Calcineurin-nuclear factor of activated T cells (NFAT) signalling plays a critical role not only in the immune and nervous systems, but also in cardiovascular development and pathological endothelial cell activation during angiogenesis or inflammation. Studies in NFAT-null mice demonstrated that there is high redundancy between functions of the different NFAT family members. Deletion of only one NFAT causes mild phenotypes, but compound deletions of multiple NFAT family members leads to severe abnormalities in multiple organ systems. Genome-wide transcription analysis revealed that many NFAT target genes are related to cell growth and inflammation, whereas the gene most strongly induced by NFAT in endothelial cells is an auto-inhibitory molecule, Down syndrome critical region (DSCR)-1. The NFAT-DSCR-1 signalling axis may vary depending on the cell-type or signal dosage level under the microenvironment. In the endothelium, stable expression of the DSCR-1 short isoform attenuates septic inflammatory shock, tumour growth and tumour metastasis to lung. Moreover, dysfunction of DSCR-1 and the NFAT priming kinase, DYRK1A, prevents NFAT nuclear occupancy. This change in NFAT nuclear localization is responsible for many of the features of Down syndrome. Thus, fine-tuning of the NFAT-DSCR-1 negative feedback loop may enable therapeutic manipulation in vasculopathic diseases.
Collapse
Affiliation(s)
- Takashi Minami
- Div. of Vascular Biology, RCAST, The University of Tokyo, Tokyo 153-8904, Japan
| |
Collapse
|
14
|
Zhu H, Guariglia S, Li W, Brancho D, Wang ZV, Scherer PE, Chow CW. Role of extracellular signal-regulated kinase 5 in adipocyte signaling. J Biol Chem 2014; 289:6311-22. [PMID: 24425864 DOI: 10.1074/jbc.m113.506584] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Increased adiposity due to energy imbalance is a critical factor of the epidemic crisis of obesity and type II diabetes. In addition to the obvious role in energy storage, regulatory factors are secreted from adipose depots to control appetite and cellular homeostasis. Complex signaling cross-talks within adipocyte are also evident due to the metabolic and immune nature of adipose depots. Here, we uncover a role of extracellular signal-regulated kinase 5 (ERK5) in adipocyte signaling. We find that deletion of ERK5 in adipose depots (adipo-ERK5(-/-)) increases adiposity, in part, due to increased food intake. Dysregulated secretion of adipokines, leptin resistance, and impaired glucose handling are also found in adipo-ERK5(-/-) mice. Mechanistically, we show that ERK5 impinges on transcription factor NFATc4. Decreased phosphorylation at the conserved gate-keeping Ser residues and increased nuclear localization of NFATc4 are found in adipo-ERK5(-/-) mice. We also find attenuated PKA activation in adipo-ERK5(-/-) mice. In response to stimulation of β-adrenergic G-protein-coupled receptor, we find decreased NFATc4 phosphorylation and impaired PKA activation in adipo-ERK5(-/-) mice. Reduced cAMP accumulation and increased phosphodiesterase activity are also found. Together, these results demonstrate integration of ERK5 with NFATc4 nucleo-cytoplasmic shuttling and PKA activation in adipocyte signaling.
Collapse
Affiliation(s)
- Hong Zhu
- From the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
OBJECTIVE AND BACKGROUND FOXJ1 is a member of the Forkhead/winged-helix (Fox) family of transcription factors, which is required for the differentiation of the cells acting as adult neural stem cells which participate in neurogenesis and give rise to neurons, astrocytes, oligodendrocytes. The expression pattern of FOXJ1 in the brain after cerebral ischemia has so far not been described. In the current study, we investigated the expression pattern of FOXJ1 in the rat brain after cerebral ischemia by animal model. METHODS We performed a middle cerebral artery occlusion (MCAO) model in adult rats and investigated the expression of FOXJ1 in the brain by Western blotting and immunochemistry; double immunofluorescence staining was used to analyze FOXJ1's co-expression with Ki67. RESULTS Western blot analysis showed that the expression of FOXJ1 was lower than normal and sham-operated brain after cerebral ischemia, but the level of FOXJ1 gradually increased from Day 1 to Day 14. Immuohistochemical staining suggested that the immunostaining of FOXJ1 deposited strongly in the ipsilateral and contralateral hemisphere in the cortical penumbra (CP). There was no FOXJ1 expression in the ischemic core (IC). The positive cells in the cortical penumbra might migrate to the ischemic core. In addition, double immunofluorescence staining revealed that FOXJ1 was co-expressed with mAP-2 and gFAP, and Ki67 had the colocalization with NeuN, GFAP, and FOXJ1. CONCLUSIONS All our findings suggest that FOXJ1 plays an important role on neuronal production and neurogenesis in the adult brain after cerebral ischemia.
Collapse
|
16
|
Abstract
One of the mechanisms that are in place to control the activation of mature T cells that bear self-reactive antigen receptors is anergy, a long-term state of hyporesponsiveness that is established in T cells in response to suboptimal stimulation. T cells receive signals that result not only from antigen recognition and costimulation but also from other sources, including cytokine receptors, inhibitory receptors or metabolic sensors. Integration of those signals will determine T cell fate. Under conditions that induce anergy, T cells activate a program of gene expression that leads to the production of proteins that block T cell receptor signaling and inhibit cytokine gene expression. In this review we will examine those signals that determine functional outcome following antigen encounter, review current knowledge of the factors that ensure signaling inhibition and epigenetic gene silencing in anergic cells and explore the mechanisms that lead to the reversal of anergy and the reacquisition of effector functions.
Collapse
Affiliation(s)
- Rut Valdor
- Department of Pathology. Albert Einstein College of Medicine. Bronx, NY. USA
| | - Fernando Macian
- Department of Pathology. Albert Einstein College of Medicine. Bronx, NY. USA
| |
Collapse
|
17
|
Mueller K, Quandt J, Marienfeld RB, Weihrich P, Fiedler K, Claussnitzer M, Laumen H, Vaeth M, Berberich-Siebelt F, Serfling E, Wirth T, Brunner C. Octamer-dependent transcription in T cells is mediated by NFAT and NF-κB. Nucleic Acids Res 2013; 41:2138-54. [PMID: 23293002 PMCID: PMC3575799 DOI: 10.1093/nar/gks1349] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The transcriptional co-activator BOB.1/OBF.1 was originally identified in B cells and is constitutively expressed throughout B cell development. BOB.1/OBF.1 associates with the transcription factors Oct1 and Oct2, thereby enhancing octamer-dependent transcription. In contrast, in T cells, BOB.1/OBF.1 expression is inducible by treatment of cells with PMA/Ionomycin or by antigen receptor engagement, indicating a marked difference in the regulation of BOB.1/OBF.1 expression in B versus T cells. The molecular mechanisms underlying the differential expression of BOB.1/OBF.1 in T and B cells remain largely unknown. Therefore, the present study focuses on mechanisms controlling the transcriptional regulation of BOB.1/OBF.1 and Oct2 in T cells. We show that both calcineurin- and NF-κB-inhibitors efficiently attenuate the expression of BOB.1/OBF.1 and Oct2 in T cells. In silico analyses of the BOB.1/OBF.1 promoter revealed the presence of previously unappreciated combined NFAT/NF-κB sites. An array of genetic and biochemical analyses illustrates the involvement of the Ca2+/calmodulin-dependent phosphatase calcineurin as well as NFAT and NF-κB transcription factors in the transcriptional regulation of octamer-dependent transcription in T cells. Conclusively, impaired expression of BOB.1/OBF.1 and Oct2 and therefore a hampered octamer-dependent transcription may participate in T cell-mediated immunodeficiency caused by the deletion of NFAT or NF-κB transcription factors.
Collapse
Affiliation(s)
- Kerstin Mueller
- Institute of Physiological Chemistry, University Ulm, D-89081 Ulm, Germany, Institute of Pathology, University Ulm, D-89081 Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Serfling E, Avots A, Klein-Hessling S, Rudolf R, Vaeth M, Berberich-Siebelt F. NFATc1/αA: The other Face of NFAT Factors in Lymphocytes. Cell Commun Signal 2012; 10:16. [PMID: 22764736 PMCID: PMC3464794 DOI: 10.1186/1478-811x-10-16] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/19/2012] [Indexed: 12/20/2022] Open
Abstract
In effector T and B cells immune receptor signals induce within minutes a rise of intracellular Ca++, the activation of the phosphatase calcineurin and the translocation of NFAT transcription factors from cytosol to nucleus. In addition to this first wave of NFAT activation, in a second step the occurrence of NFATc1/αA, a short isoform of NFATc1, is strongly induced. Upon primary stimulation of lymphocytes the induction of NFATc1/αA takes place during the G1 phase of cell cycle. Due to an auto-regulatory feedback circuit high levels of NFATc1/αA are kept constant during persistent immune receptor stimulation. Contrary to NFATc2 and further NFATc proteins which dampen lymphocyte proliferation, induce anergy and enhance activation induced cell death (AICD), NFATc1/αA supports antigen-mediated proliferation and protects lymphocytes against rapid AICD. Whereas high concentrations of NFATc1/αA can also lead to apoptosis, in collaboration with NF-κB-inducing co-stimulatory signals they support the survival of mature lymphocytes in late phases after their activation. However, if dysregulated, NFATc1/αA appears to contribute to lymphoma genesis and - as we assume - to further disorders of the lymphoid system. While the molecular details of NFATc1/αA action and its contribution to lymphoid disorders have to be investigated, NFATc1/αA differs in its generation and function markedly from all the other NFAT proteins which are expressed in lymphoid cells. Therefore, it represents a prime target for causal therapies of immune disorders in future.
Collapse
Affiliation(s)
- Edgar Serfling
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Josef-Schneider-Str 2, D-97080, Würzburg, Germany
| | - Andris Avots
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Josef-Schneider-Str 2, D-97080, Würzburg, Germany
| | - Stefan Klein-Hessling
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Josef-Schneider-Str 2, D-97080, Würzburg, Germany
| | - Ronald Rudolf
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Josef-Schneider-Str 2, D-97080, Würzburg, Germany
| | - Martin Vaeth
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Josef-Schneider-Str 2, D-97080, Würzburg, Germany
| | - Friederike Berberich-Siebelt
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Josef-Schneider-Str 2, D-97080, Würzburg, Germany
| |
Collapse
|
19
|
Wang X, Huang Y, Li L, Wei Q. TRAF3 negatively regulates calcineurin-NFAT pathway by targeting calcineurin B subunit for degradation. IUBMB Life 2012; 64:748-56. [DOI: 10.1002/iub.1060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 05/18/2012] [Indexed: 11/10/2022]
|
20
|
Bandukwala HS, Wu Y, Feurer M, Chen Y, Barbosa B, Ghosh S, Stroud JC, Benoist C, Mathis D, Rao A, Chen L. Structure of a domain-swapped FOXP3 dimer on DNA and its function in regulatory T cells. Immunity 2011; 34:479-91. [PMID: 21458306 PMCID: PMC3085397 DOI: 10.1016/j.immuni.2011.02.017] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 12/24/2010] [Accepted: 02/23/2011] [Indexed: 12/18/2022]
Abstract
The transcription factor FOXP3 is essential for the suppressive function of regulatory T cells that are required for maintaining self-tolerance. We have solved the crystal structure of the FOXP3 forkhead domain as a ternary complex with the DNA-binding domain of the transcription factor NFAT1 and a DNA oligonucleotide from the interleukin-2 promoter. A striking feature of this structure is that FOXP3 forms a domain-swapped dimer that bridges two molecules of DNA. Structure-guided or autoimmune disease (IPEX)-associated mutations in the domain-swap interface diminished dimer formation by the FOXP3 forkhead domain without compromising FOXP3 DNA binding. These mutations also eliminated T cell-suppressive activity conferred by FOXP3, both in vitro and in a murine model of autoimmune diabetes in vivo. We conclude that FOXP3-mediated suppressor function requires dimerization through the forkhead domain and that mutations in the dimer interface can lead to the systemic autoimmunity observed in IPEX patients.
Collapse
Affiliation(s)
- Hozefa S. Bandukwala
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children’s Hospital, Boston, MA 02115
- Department of Pathology, Harvard Medical School, Boston, MA 02115
- Department of Pediatrics, Children’s Hospital Boston and Harvard Medical School, Boston, MA 02115
| | - Yongqing Wu
- Department of Biological Sciences, Department of Chemistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089
| | - Markus Feurer
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Yongheng Chen
- Department of Biological Sciences, Department of Chemistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089
| | - Bianca Barbosa
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children’s Hospital, Boston, MA 02115
| | - Srimoyee Ghosh
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children’s Hospital, Boston, MA 02115
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - James C. Stroud
- Department of Biological Sciences, Department of Chemistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089
| | | | - Diane Mathis
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Anjana Rao
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children’s Hospital, Boston, MA 02115
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Lin Chen
- Department of Biological Sciences, Department of Chemistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
21
|
Jolma A, Kivioja T, Toivonen J, Cheng L, Wei G, Enge M, Taipale M, Vaquerizas JM, Yan J, Sillanpää MJ, Bonke M, Palin K, Talukder S, Hughes TR, Luscombe NM, Ukkonen E, Taipale J. Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities. Genome Res 2010; 20:861-73. [PMID: 20378718 PMCID: PMC2877582 DOI: 10.1101/gr.100552.109] [Citation(s) in RCA: 327] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 03/22/2010] [Indexed: 01/15/2023]
Abstract
The genetic code-the binding specificity of all transfer-RNAs--defines how protein primary structure is determined by DNA sequence. DNA also dictates when and where proteins are expressed, and this information is encoded in a pattern of specific sequence motifs that are recognized by transcription factors. However, the DNA-binding specificity is only known for a small fraction of the approximately 1400 human transcription factors (TFs). We describe here a high-throughput method for analyzing transcription factor binding specificity that is based on systematic evolution of ligands by exponential enrichment (SELEX) and massively parallel sequencing. The method is optimized for analysis of large numbers of TFs in parallel through the use of affinity-tagged proteins, barcoded selection oligonucleotides, and multiplexed sequencing. Data are analyzed by a new bioinformatic platform that uses the hundreds of thousands of sequencing reads obtained to control the quality of the experiments and to generate binding motifs for the TFs. The described technology allows higher throughput and identification of much longer binding profiles than current microarray-based methods. In addition, as our method is based on proteins expressed in mammalian cells, it can also be used to characterize DNA-binding preferences of full-length proteins or proteins requiring post-translational modifications. We validate the method by determining binding specificities of 14 different classes of TFs and by confirming the specificities for NFATC1 and RFX3 using ChIP-seq. Our results reveal unexpected dimeric modes of binding for several factors that were thought to preferentially bind DNA as monomers.
Collapse
Affiliation(s)
- Arttu Jolma
- Department of Molecular Medicine, National Public Health Institute (KTL) and Genome-Scale Biology Program, Institute of Biomedicine and High Throughput Center, University of Helsinki, Biomedicum, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Teemu Kivioja
- Department of Molecular Medicine, National Public Health Institute (KTL) and Genome-Scale Biology Program, Institute of Biomedicine and High Throughput Center, University of Helsinki, Biomedicum, Helsinki, Finland
- Department of Computer Science, FI-00014 University of Helsinki, Helsinki, Finland
| | - Jarkko Toivonen
- Department of Computer Science, FI-00014 University of Helsinki, Helsinki, Finland
| | - Lu Cheng
- Department of Computer Science, FI-00014 University of Helsinki, Helsinki, Finland
| | - Gonghong Wei
- Department of Molecular Medicine, National Public Health Institute (KTL) and Genome-Scale Biology Program, Institute of Biomedicine and High Throughput Center, University of Helsinki, Biomedicum, Helsinki, Finland
| | - Martin Enge
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Mikko Taipale
- Department of Molecular Medicine, National Public Health Institute (KTL) and Genome-Scale Biology Program, Institute of Biomedicine and High Throughput Center, University of Helsinki, Biomedicum, Helsinki, Finland
| | - Juan M. Vaquerizas
- EMBL–European Bioinformatics Institute, Cambridge CB10 1SD, United Kingdom
| | - Jian Yan
- Department of Molecular Medicine, National Public Health Institute (KTL) and Genome-Scale Biology Program, Institute of Biomedicine and High Throughput Center, University of Helsinki, Biomedicum, Helsinki, Finland
| | - Mikko J. Sillanpää
- Department of Mathematics and Statistics, FI-00014 University of Helsinki, Helsinki, Finland
| | - Martin Bonke
- Department of Molecular Medicine, National Public Health Institute (KTL) and Genome-Scale Biology Program, Institute of Biomedicine and High Throughput Center, University of Helsinki, Biomedicum, Helsinki, Finland
| | - Kimmo Palin
- Department of Computer Science, FI-00014 University of Helsinki, Helsinki, Finland
| | - Shaheynoor Talukder
- Department of Molecular Genetics and Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M4T 2J4, Canada
| | - Timothy R. Hughes
- Department of Molecular Genetics and Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M4T 2J4, Canada
| | | | - Esko Ukkonen
- Department of Computer Science, FI-00014 University of Helsinki, Helsinki, Finland
| | - Jussi Taipale
- Department of Molecular Medicine, National Public Health Institute (KTL) and Genome-Scale Biology Program, Institute of Biomedicine and High Throughput Center, University of Helsinki, Biomedicum, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Baine I, Abe BT, Macian F. Regulation of T-cell tolerance by calcium/NFAT signaling. Immunol Rev 2009; 231:225-40. [PMID: 19754900 DOI: 10.1111/j.1600-065x.2009.00817.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cells that escape negative selection in the thymus must be inactivated or eliminated in the periphery through a series of mechanisms that include the induction of anergy, dominant suppression by regulatory T cells, and peripheral deletion of self-reactive T cells. Calcium signaling plays a central role in the induction of anergy in T cells, which become functionally inactivated and incapable of proliferating and expressing cytokines following antigen re-encounter. Suboptimal stimulation of T cells results in the activation of a calcium/calcineurin/nuclear factor of activated T cells-dependent cell-intrinsic program of self-inactivation. The proteins encoded by those genes are required to impose a state of functional unresponsiveness through different mechanisms that include downregulation of T-cell receptor signaling and inhibition of cytokine transcription.
Collapse
Affiliation(s)
- Ian Baine
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
23
|
Maldonado-Pérez D, Brown P, Morgan K, Millar RP, Thompson EA, Jabbour HN. Prokineticin 1 modulates IL-8 expression via the calcineurin/NFAT signaling pathway. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:1315-24. [PMID: 19348862 PMCID: PMC2707763 DOI: 10.1016/j.bbamcr.2009.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 03/24/2009] [Accepted: 03/26/2009] [Indexed: 01/15/2023]
Abstract
Prokineticins and their receptors are expressed in various cellular compartments in human endometrium, with prokineticin 1 (PROK1) showing a dynamic pattern of expression across the menstrual cycle and during pregnancy. Previous studies suggest that PROK1 can play an important role in implantation and early pregnancy by inducing vascular remodeling and increasing vascular permeability. Here we demonstrate that PROK1 induces the expression of IL-8, a chemokine with angiogenic properties, in endometrial epithelial Ishikawa cells stably expressing prokineticin receptor 1 and in human first trimester decidua. We also show that IL-8 promoter activity is induced by PROK1 and that this requires the presence of AP1 and NFAT motifs. The role of calcineurin/NFAT signaling pathway is confirmed by the use of specific chemical inhibitors. Additionally, PROK1 induces the expression of the regulator of calcineurin 1 isoform 4 (RCAN1-4) via the calcineurin/NFAT pathway. A modulatory role for RCAN1-4 is demonstrated by RCAN1-4 overexpression which results in the inhibition of PROK1-induced IL-8 expression whereas reduction in RCAN1-4 endogenous expression results in an increase in PROK1-induced IL-8 production. Our findings show that in endometrial cells PROK1 can activate the calcineurin/NFAT pathway to induce IL-8 expression and that this is negatively modulated by the induction of expression of RCAN1-4.
Collapse
Affiliation(s)
| | - Pamela Brown
- Human Reproductive Sciences Unit, Medical Research Council, Edinburgh EH16 4TJ, UK
| | - Kevin Morgan
- Human Reproductive Sciences Unit, Medical Research Council, Edinburgh EH16 4TJ, UK
| | - Robert P. Millar
- Human Reproductive Sciences Unit, Medical Research Council, Edinburgh EH16 4TJ, UK
| | - E. Aubrey Thompson
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224, USA
| | - Henry N. Jabbour
- Human Reproductive Sciences Unit, Medical Research Council, Edinburgh EH16 4TJ, UK
| |
Collapse
|
24
|
Soto-Nieves N, Puga I, Abe BT, Bandyopadhyay S, Baine I, Rao A, Macian F. Transcriptional complexes formed by NFAT dimers regulate the induction of T cell tolerance. J Exp Med 2009; 206:867-76. [PMID: 19307325 PMCID: PMC2715123 DOI: 10.1084/jem.20082731] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 02/27/2009] [Indexed: 01/27/2023] Open
Abstract
In T cells, anergy can be induced after T cell receptor engagement in the absence of costimulation. Under these conditions, the expression of a specific set of anergy-associated genes is activated. Several lines of evidence suggest that nuclear factor of activated T cells (NFAT) proteins may regulate the expression of many of those genes; however, the nature of the complexes responsible for the induction of this new program of gene expression is unknown. Here, we show that transcriptional complexes formed by NFAT homodimers are directly responsible for the activation of at least two anergy-inducing genes, Grail and Caspase3. Our data shows that Grail expression is activated by direct binding of NFAT dimers to the Grail promoter at two different sites. Consequently, a mutant NFAT protein with impaired ability to dimerize is not able to induce an unresponsive state in T cells. Our results not only identify a new biological function for NFAT dimers but also reveal the different nature of NFAT-containing complexes that induce anergy versus those that are activated during a productive immune response. These data also establish a basis for the design of immunomodulatory strategies that specifically target each type of complex.
Collapse
Affiliation(s)
- Noemi Soto-Nieves
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Irene Puga
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Brian T. Abe
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | - Ian Baine
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Anjana Rao
- Immune Disease Institute and the Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Fernando Macian
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
25
|
Szuhai K, IJszenga M, de Jong D, Karseladze A, Tanke HJ, Hogendoorn PC. The NFATc2 Gene Is Involved in a Novel Cloned Translocation in a Ewing Sarcoma Variant That Couples Its Function in Immunology to Oncology. Clin Cancer Res 2009; 15:2259-68. [DOI: 10.1158/1078-0432.ccr-08-2184] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Abstract
The transcription factor NFATp integrates multiple signal transduction pathways through coordinate binding with basic-region leucine zipper (bZIP) proteins and other transcription factors. The NFATp monomer, even in the absence of its activation domains, recruits bZIP proteins to canonical NFAT-bZIP composite DNA elements. By contrast, the NFATp dimer and its bZIP partner bind noncooperatively to the NFAT-bZIP element of the tumor necrosis factor (TNF) gene promoter. This observation raises the possibility that the function of the activation domains of NFATp is dimer-specific. Here, we determine the consensus DNA binding site of the NFATp dimer, describe monomer- and dimer-specific NFATp-DNA contact patterns, and demonstrate that NFATp dimerization and dimer-specific activation subdomains are required for transcriptional activation from the TNF NFAT-bZIP element. We also show that these NFATp subdomains interact with the coactivator CBP (CREB-binding protein), which is required for NFATp-dependent TNF gene transcription. Thus, the context-specific function of the activation domains of NFAT can be potentiated by DNA-directed dimerization.
Collapse
|
27
|
Bates DL, Barthel KKB, Wu Y, Kalhor R, Stroud JC, Giffin MJ, Chen L. Crystal structure of NFAT bound to the HIV-1 LTR tandem kappaB enhancer element. Structure 2008; 16:684-94. [PMID: 18462673 PMCID: PMC2697820 DOI: 10.1016/j.str.2008.01.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 01/24/2008] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
Abstract
The host factor, nuclear factor of activated T-cells (NFAT), regulates the transcription and replication of HIV-1. Here, we have determined the crystal structure of the DNA binding domain of NFAT bound to the HIV-1 long terminal repeat (LTR) tandem kappaB enhancer element at 3.05 A resolution. NFAT binds as a dimer to the upstream kappaB site (Core II), but as a monomer to the 3' end of the downstream kappaB site (Core I). The DNA shows a significant bend near the 5' end of Core I, where a lysine residue from NFAT bound to the 3' end of Core II inserts into the minor groove and seems to cause DNA bases to flip out. Consistent with this structural feature, the 5' end of Core I become hypersensitive to dimethylsulfate in the in vivo footprinting upon transcriptional activation of the HIV-1 LTR. Our studies provide a basis for further investigating the functional mechanisms of NFAT in HIV-1 transcription and replication.
Collapse
Affiliation(s)
- Darren L. Bates
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309-0215
| | - Kristen K. B. Barthel
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309-0215
| | - Yongqing Wu
- Molecular and Computational Biology, Department of Chemistry, Norris Cancer Center, University of Southern California, Los Angeles, CA 90089-2910
| | - Reza Kalhor
- Molecular and Computational Biology, Department of Chemistry, Norris Cancer Center, University of Southern California, Los Angeles, CA 90089-2910
| | - James C. Stroud
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309-0215
| | - Michael J. Giffin
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309-0215
| | - Lin Chen
- Molecular and Computational Biology, Department of Chemistry, Norris Cancer Center, University of Southern California, Los Angeles, CA 90089-2910
| |
Collapse
|
28
|
Tone Y, Kojima Y, Furuuchi K, Brady M, Yashiro-Ohtani Y, Tykocinski ML, Tone M. OX40 gene expression is up-regulated by chromatin remodeling in its promoter region containing Sp1/Sp3, YY1, and NF-kappa B binding sites. THE JOURNAL OF IMMUNOLOGY 2007; 179:1760-7. [PMID: 17641042 DOI: 10.4049/jimmunol.179.3.1760] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OX40 is a member of the TNFR superfamily (CD134; TNFRSF4) that is expressed on activated T cells and regulates T cell-mediated immune responses. In this study, we have examined the regulation of OX40 gene expression in T cells. Low-level OX40 mRNA expression was detected in both resting T cells and the nonactivated EL4 T cell line, and was up-regulated in both types of T cells upon activation with anti-CD3 Ab. We have shown in this study that basal OX40 promoter activity is regulated by constitutively expressed Sp1/Sp3 and YY1 transcription factors. NF-kappaB (p50 and p65) also binds to the OX40 promoter region, but the level of direct enhancement of the OX40 promoter activity by this transcription factor is not sufficient to account for the observed up-regulation of OX40 mRNA expression associated with activation. We have detected by chromatin immunoprecipitation that histone H4 molecules in the OX40 promoter region are highly acetylated by activation and NF-kappaB binds to the OX40 promoter in vivo. These findings suggest that OX40 gene expression is regulated by chromatin remodeling, and that NF-kappaB might be involved in initiation of chromatin remodeling in the OX40 promoter region in activated T cells. CD4(+)CD25(+) regulatory T (Treg) cells also express OX40 at high levels, and signaling through this receptor can neutralize suppressive activity of this Treg cell. In CD4(+)CD25(+) Treg cells, histone H4 molecules in the OX40 promoter region are also highly acetylated, even in the absence of in vitro activation.
Collapse
Affiliation(s)
- Yukiko Tone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Gibson HM, Hedgcock CJ, Aufiero BM, Wilson AJ, Hafner MS, Tsokos GC, Wong HK. Induction of the CTLA-4 gene in human lymphocytes is dependent on NFAT binding the proximal promoter. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:3831-40. [PMID: 17785820 PMCID: PMC4290020 DOI: 10.4049/jimmunol.179.6.3831] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CTLA-4 is a member of the costimulatory family, has homology to CD28, and binds the B7 family of ligands. Unlike CD28, CTLA-4 ligation transmits a negative signal in T cells. CTLA-4 expression, while inducible in most T cells, is expressed constitutively on T cells with a regulatory phenotype. The mechanism controlling CTLA-4 expression in human T cells is poorly characterized, thus we sought to better understand the mechanism of activation of the CTLA-4 gene. By cloning the 5' upstream promoter and creating promoter-deletion reporter constructs, we show that the proximal promoter is critical for activating the CTLA-4 gene. Within this region, we identify a NFAT consensus sequence that binds NFAT with high affinity that differs from other NFAT sequences and does not recruit AP-1. Analysis of the chromatin proteins in the native CTLA-4 gene shows that this promoter region becomes associated with acetylated histones by chromatin immunoprecipitation assays. In addition, NFAT1 binds to the promoter of the CTLA-4 gene after stimulation by chromatin immunoprecipitation. The functional requirement of the NFAT site for CTLA-4 transcription was demonstrated by mutations in the NFAT site that abolished the activity of the promoter. Furthermore, inhibitors of NFAT suppressed CTLA-4 gene expression, indicating that NFAT plays a critical role in regulating the induction of the CTLA-4 gene in lymphocytes. The identification of NFAT as a critical regulator of the CTLA-4 gene suggests that targeting NFAT function may lead to novel approaches to modulate the CTLA-4 gene to control the immune response.
Collapse
Affiliation(s)
| | | | | | - Adam J. Wilson
- Department of Dermatology, Henry Ford Hospital, Detroit, MI 48202
| | - Mikehl S. Hafner
- Department of Dermatology, Henry Ford Hospital, Detroit, MI 48202
| | - George C. Tsokos
- Rheumatology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University School of Medicine, Boston, MA 02115
| | - Henry K. Wong
- Department of Dermatology, Henry Ford Hospital, Detroit, MI 48202
| |
Collapse
|
30
|
Bandyopadhyay S, Soto-Nieves N, Macián F. Transcriptional regulation of T cell tolerance. Semin Immunol 2007; 19:180-7. [PMID: 17387022 PMCID: PMC1978193 DOI: 10.1016/j.smim.2007.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 02/16/2007] [Indexed: 01/16/2023]
Abstract
Self-reactive T cells that escape negative selection in the thymus must be kept under control in the periphery. Mechanisms of peripheral tolerance include deletion or functional inactivation of self-reactive T cells and mechanisms of dominant tolerance mediated by regulatory T cells. In the absence of costimulation, T cell receptor (TCR) engagement results in unopposed calcium signaling that leads to the activation of a cell-intrinsic program of inactivation, which makes T cells hyporesponsive to subsequent stimulations. The activation of this program in anergic T cells is a consequence of the induction of a nuclear factor of activated T cells (NFAT)-dependent program of gene expression. Recent studies have offered new insights into the mechanisms responsible for the implementation and maintenance of T cell anergy and have provided evidence that the proteins encoded by the genes upregulated in anergic T cells are responsible for the implementation of anergy by interfering with TCR signaling or directly inhibiting cytokine gene transcription.
Collapse
Affiliation(s)
- Sanmay Bandyopadhyay
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
31
|
Nam Y, Sliz P, Pear WS, Aster JC, Blacklow SC. Cooperative assembly of higher-order Notch complexes functions as a switch to induce transcription. Proc Natl Acad Sci U S A 2007; 104:2103-8. [PMID: 17284587 PMCID: PMC1892977 DOI: 10.1073/pnas.0611092104] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Indexed: 01/20/2023] Open
Abstract
Notch receptors control differentiation and contribute to pathologic states such as cancer by interacting directly with a transcription factor called CSL (for CBF-1/Suppressor of Hairless/Lag-1) to induce expression of target genes. A number of Notch-regulated targets, including genes of the hairy/enhancer-of-split family in organisms ranging from Drosophila to humans, are characterized by paired CSL-binding sites in a characteristic head-to-head arrangement. Using a combination of structural and molecular approaches, we establish here that cooperative formation of dimeric Notch transcription complexes on promoters with paired sites is required to activate transcription. Our findings identify a mechanistic step that can account for the exquisite sensitivity of Notch target genes to variation in signal strength and developmental context, enable new strategies for sensitive and reliable identification of Notch target genes, and lay the groundwork for the development of Notch pathway inhibitors that are active on target genes containing paired sites.
Collapse
Affiliation(s)
- Yunsun Nam
- *Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115
| | - Piotr Sliz
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Howard Hughes Medical Institute, Boston, MA 02115; and
| | - Warren S. Pear
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Jon C. Aster
- *Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115
| | - Stephen C. Blacklow
- *Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
32
|
Serfling E, Klein-Hessling S, Palmetshofer A, Bopp T, Stassen M, Schmitt E. NFAT transcription factors in control of peripheral T cell tolerance. Eur J Immunol 2007; 36:2837-43. [PMID: 17039563 DOI: 10.1002/eji.200536618] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Ca++-regulated calcineurin/NFAT cascade is one of the crucial signalling pathways that controls adaptive immunity. However, a number of novel experimental data suggest that, in addition to their role in T cell activation, NFATc transcription factors play also a decisive role in the generation of peripheral tolerance against self-antigens. This function of NFATc factors is mediated by controlling activation-induced cell death and clonal anergy of T helper cells and the activity of regulatory T cells. The multi-functional role of NFATc proteins characterize these transcription factors as key regulators of immunological tolerance and, if dysregulated, of development of autoimmune diseases.
Collapse
Affiliation(s)
- Edgar Serfling
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD, Stroud JC, Bates DL, Guo L, Han A, Ziegler SF, Mathis D, Benoist C, Chen L, Rao A. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 2006; 126:375-87. [PMID: 16873067 DOI: 10.1016/j.cell.2006.05.042] [Citation(s) in RCA: 927] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 04/12/2006] [Accepted: 05/22/2006] [Indexed: 02/08/2023]
Abstract
Antigen stimulation of immune cells activates the transcription factor NFAT, a key regulator of T cell activation and anergy. NFAT forms cooperative complexes with the AP-1 family of transcription factors and regulates T cell activation-associated genes. Here we show that regulatory T cell (Treg) function is mediated by an analogous cooperative complex of NFAT with the forkhead transcription factor FOXP3, a lineage specification factor for Tregs. The crystal structure of an NFAT:FOXP2:DNA complex reveals an extensive protein-protein interaction interface between NFAT and FOXP2. Structure-guided mutations of FOXP3, predicted to progressively disrupt its interaction with NFAT, interfere in a graded manner with the ability of FOXP3 to repress expression of the cytokine IL2, upregulate expression of the Treg markers CTLA4 and CD25, and confer suppressor function in a murine model of autoimmune diabetes. Thus by switching transcriptional partners, NFAT converts the acute T cell activation program into the suppressor program of Tregs.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Binding Sites
- Biomarkers/metabolism
- Cells, Cultured
- Crystallography, X-Ray
- Dimerization
- Forkhead Transcription Factors/chemistry
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Genes, Reporter
- Humans
- Interleukin-2/genetics
- Interleukin-2/metabolism
- Jurkat Cells
- Luciferases/metabolism
- Mice
- Mice, Inbred NOD
- Models, Molecular
- Molecular Sequence Data
- NFATC Transcription Factors/chemistry
- NFATC Transcription Factors/genetics
- NFATC Transcription Factors/metabolism
- Protein Binding
- Protein Structure, Tertiary
- Receptors, Interleukin-2/genetics
- Receptors, Interleukin-2/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Retroviridae/genetics
- Sequence Homology, Amino Acid
- T-Lymphocytes, Regulatory/immunology
- Up-Regulation
Collapse
Affiliation(s)
- Yongqing Wu
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Serfling E, Chuvpilo S, Liu J, Höfer T, Palmetshofer A. NFATc1 autoregulation: a crucial step for cell-fate determination. Trends Immunol 2006; 27:461-9. [PMID: 16931157 DOI: 10.1016/j.it.2006.08.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 07/17/2006] [Accepted: 08/09/2006] [Indexed: 01/08/2023]
Abstract
Nuclear factor of activated T cell c (NFATc) transcription factors appeared in evolution with the emergence of lymphocytes in jawed fish. They have decisive roles in the development of the immune system and adaptive immune responses. Following immunoreceptor stimulation, NFAT factors control the expression of a large set of genes and thereby the fate of peripheral lymphocytes. NFATc1 and NFATc2 are the most prominent NFAT factors in peripheral T cells; they overlap in their function but differ remarkably in the mode of expression. NFATc2 is constitutively synthesized in T cells, whereas the expression of NFATc1/alphaA, the most prominent of six NFATc1 isoforms in peripheral T cells, is strongly induced following T-cell receptor and co-receptor stimulation and maintained by positive autoregulation. Findings concerning NFATc1 autoregulation in peripheral T lymphocytes and other cells suggest that positive autoregulation of NFATc1 is a crucial step in cell-fate determination.
Collapse
Affiliation(s)
- Edgar Serfling
- Department of Molecular Pathology, Institute of Pathology, University of Wuerzburg, D-97080 Wuerzburg, Germany.
| | | | | | | | | |
Collapse
|
35
|
Yang TTC, Ung PMU, Rincón M, Chow CW. Role of the CCAAT/enhancer-binding protein NFATc2 transcription factor cascade in the induction of secretory phospholipase A2. J Biol Chem 2006; 281:11541-52. [PMID: 16500900 DOI: 10.1074/jbc.m511214200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Inflammatory cytokines such as interleukin-1 and tumor necrosis factor-alpha modulate a transcription factor cascade in the liver to induce and sustain an acute and systemic defense against foreign entities. The transcription factors involved include NF-kappaB, STAT, and CCAAT/enhancer-binding protein (C/EBP). Whether the NFAT group of transcription factors (which was first characterized as playing an important role in cytokine gene expression in the adaptive response in immune cells) participates in the acute-phase response in hepatocytes is not known. Here, we have investigated whether NFAT is part of the transcription factor cascade in hepatocytes during inflammatory stress. We report that interleukin-1 or tumor necrosis factor-alpha increases expression of and activates NFATc2. C/EBP-mediated NFATc2 induction is temporally required for expression of type IIA secretory phospholipase A2. NFATc2 is also required for expression of phospholipase D1 and the calcium-binding protein S100A3. Thus, a C/EBP-NFATc2 transcription factor cascade provides an additional means to modulate the acute-phase response upon stimulation with inflammatory cytokines.
Collapse
Affiliation(s)
- Teddy T C Yang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
36
|
Minami T, Miura M, Aird WC, Kodama T. Thrombin-induced autoinhibitory factor, Down syndrome critical region-1, attenuates NFAT-dependent vascular cell adhesion molecule-1 expression and inflammation in the endothelium. J Biol Chem 2006; 281:20503-20. [PMID: 16627481 DOI: 10.1074/jbc.m513112200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Activation and dysfunction of the endothelium underlie many vascular disorders including atherosclerosis, tumor growth, and inflammation. We recently reported that thrombin and vascular endothelial growth factor, but not tumor necrosis factor-alpha, results in dramatic up-regulation of Down syndrome critical region (DSCR)-1 gene in endothelial cells, a negative feedback regulator of calcineurin-NFAT signaling. Constitutive expression of DSCR-1 in activated endothelial cells markedly impaired NFAT nuclear localization, proliferation, tube formation, and tumor growth. The goal of the present study was to elucidate the relative roles of NFAT/DSCR-1 and NF-kappaB/I-kappaB in mediating thrombin-responsive gene expression in endothelial cells. DNA microarrays of thrombin-treated human umbilical vein endothelial cells overexpressing DSCR-1 or constitutive active IkappaBalpha revealed genes that were dependent on NFAT and/or NF-kappaB activity. Vascular cell adhesion molecule-1 was inhibited both by DSCR-1 and I-kappaB at the level of mRNA, protein, promoter activity, and function (monocyte adhesion). Using a combination of transient transfections, electrophoretic mobility shift assays, and chromatin immunoprecipitation, thrombin was shown to induce time-dependent coordinate binding of RelA and NFATc to a tandem NF-kappaB element in the upstream promoter region of vascular cell adhesion molecule-1. Together, these findings suggest that thrombin-mediated activation of endothelial cells involves an interplay between NFAT and NF-kappaB signaling pathways and their negative feedback inhibitors, DSCR-1 and I-kappaB, respectively. As natural brakes in the inflammatory process, DSCR-1 and I-kappaB may lend themselves to therapeutic manipulation in vasculopathic disease states.
Collapse
Affiliation(s)
- Takashi Minami
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan.
| | | | | | | |
Collapse
|
37
|
Gendron FP, Mongrain S, Laprise P, McMahon S, Dubois CM, Blais M, Asselin C, Rivard N. The CDX2 transcription factor regulates furin expression during intestinal epithelial cell differentiation. Am J Physiol Gastrointest Liver Physiol 2006; 290:G310-8. [PMID: 16239403 DOI: 10.1152/ajpgi.00217.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
CDX2, a member of the caudal family of transcription factors, is involved in enterocyte lineage specification. CDX2 activates many intestine-specific genes, such as sucrase-isomaltase and lactase-phlorizin hydrolase (LPH), and adhesion proteins, namely, LI-cadherin and claudin-2. In this study, we show that the proprotein convertase furin, involved in proteolytic maturation of proprotein substrates including LPH and cell surface proteins, is a CDX2 target. Indeed, expression of the rat furin homolog was induced 1.5-fold, as determined by microarray experiments that compared control with CDX2-expressing intestinal epithelial cells (IEC-6). As determined by transient transfection assays in Caco-2/15 cells, the furin P1 promoter 1.3-kb fragment between SacI and NheI was essential for CDX2 transcriptional activation. Electrophoretic mobility shift/supershift assays followed by site-specific mutagenesis and chromatin immunoprecipitation identified the CDX DNA-binding site (CBS)2 sequence from nt -1827 to -1821 as the major CBS involved in furin P1 promoter activation. Increased furin mRNA and protein expression correlated with both CDX2 expression and intestinal epithelial cell differentiation. In addition, furin mRNAs were detected predominantly in differentiated epithelial cells of the villus, as determined by in situ hybridization. Treatment of Caco-2/15 cells with a furin inhibitor led to inhibition of LPH activity. Morphological differentiation of enterocyte-like features in Caco-2/15 such as epithelial cell polarity and brush-border formation were strongly attenuated by furin inhibition. These results suggest that CDX2 regulates furin expression in intestinal epithelial cells. Furin may be important in modulating the maturation and/or activation of key factors involved in enterocyte differentiation.
Collapse
Affiliation(s)
- Fernand-Pierre Gendron
- Département d'Anatomie et de Biologie Cellulaire, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC, Canada J1H5N4
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Since the discovery of the first nuclear factor of activated T cells (NFAT) protein more than a decade ago, the NFAT family of transcription factors has grown to include five members. It has also become clear that NFAT proteins have crucial roles in the development and function of the immune system. In T cells, NFAT proteins not only regulate activation but also are involved in the control of thymocyte development, T-cell differentiation and self-tolerance. The functional versatility of NFAT proteins can be explained by their complex mechanism of regulation and their ability to integrate calcium signalling with other signalling pathways. This Review focuses on the recent advances in our understanding of the regulation, mechanism of action and functions of NFAT proteins in T cells.
Collapse
Affiliation(s)
- Fernando Macian
- Albert Einstein College of Medicine, Department of Pathology, 1300 Morris Park Avenue, Bronx, New York 10461, USA.
| |
Collapse
|
39
|
Yang TTC, Xiong Q, Graef IA, Crabtree GR, Chow CW. Recruitment of the extracellular signal-regulated kinase/ribosomal S6 kinase signaling pathway to the NFATc4 transcription activation complex. Mol Cell Biol 2005; 25:907-20. [PMID: 15657420 PMCID: PMC544015 DOI: 10.1128/mcb.25.3.907-920.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integration of protein kinases into transcription activation complexes influences the magnitude of gene expression. The nuclear factor of activated T cells (NFAT) group of proteins are critical transcription factors that direct gene expression in immune and nonimmune cells. A balance of phosphotransferase activity is necessary for optimal NFAT activation. Activation of NFAT requires dephosphorylation by the calcium-mediated calcineurin phosphatase to promote NFAT nuclear accumulation, and the Ras-activated extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase, which targets NFAT partners, to potentiate transcription. Whether protein kinases operate on NFAT and contribute positively to transcription activation is not clear. Here, we coupled DNA affinity isolation with in-gel kinase assays to avidly pull down the activated NFAT and identify its associated protein kinases. We demonstrate that p90 ribosomal S6 kinase (RSK) is recruited to the NFAT-DNA transcription complex upon activation. The formation of RSK-NFATc4-DNA transcription complex is also apparent upon adipogenesis. Bound RSK phosphorylates Ser(676) and potentiates NFATc4 DNA binding by escalating NFAT-DNA association. Ser(676) is also targeted by the ERK MAP kinase, which interacts with NFAT at a distinct region than RSK. Thus, integration of the ERK/RSK signaling pathway provides a mechanism to modulate NFATc4 transcription activity.
Collapse
Affiliation(s)
- Teddy T C Yang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
40
|
Xu QS, Kucera RB, Roberts RJ, Guo HC. An Asymmetric Complex of Restriction Endonuclease MspI on Its Palindromic DNA Recognition Site. Structure 2004; 12:1741-7. [PMID: 15341737 DOI: 10.1016/j.str.2004.07.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 06/28/2004] [Accepted: 07/06/2004] [Indexed: 11/30/2022]
Abstract
Most well-known restriction endonucleases recognize palindromic DNA sequences and are classified as Type IIP. Due to the recognition and cleavage symmetry, Type IIP enzymes are usually found to act as homodimers in forming 2-fold symmetric enzyme-DNA complexes. Here we report an asymmetric complex of the Type IIP restriction enzyme MspI in complex with its cognate recognition sequence. Unlike any other Type IIP enzyme reported to date, an MspI monomer and not a dimer binds to a palindromic DNA sequence. The enzyme makes specific contacts with all 4 base pairs in the recognition sequence, by six direct and five water-mediated hydrogen bonds and numerous van der Waal contacts. This MspI-DNA structure represents the first example of asymmetric recognition of a palindromic DNA sequence by two different structural motifs in one polypeptide. A few possible pathways are discussed for MspI to cut both strands of DNA, either as a monomer or dimer.
Collapse
Affiliation(s)
- Qian Steven Xu
- Department of Physiology and Biophysics, Boston University School of Medicine, 715 Albany Street, MA 02118, USA
| | | | | | | |
Collapse
|
41
|
Kelker MS, Foss TR, Peti W, Teyton L, Kelly JW, Wüthrich K, Wilson IA. Crystal Structure of Human Triggering Receptor Expressed on Myeloid Cells 1 (TREM-1) at 1.47Å. J Mol Biol 2004; 342:1237-48. [PMID: 15351648 DOI: 10.1016/j.jmb.2004.07.089] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 07/13/2004] [Accepted: 07/26/2004] [Indexed: 11/18/2022]
Abstract
The triggering receptor expressed on myeloid cells (TREM) family of single extracellular immunoglobulin receptors includes both activating and inhibitory isoforms whose ligands are unknown. TREM-1 activation amplifies the Toll-like receptor initiated responses to invading pathogens allowing the secretion of pro-inflammatory chemokines and cytokines. Hence, TREM-1 amplifies the inflammation induced by both bacteria and fungi, and thus represents a potential therapeutic target. We report the crystal structure of the human TREM-1 extracellular domain at 1.47 A resolution. The overall fold places it within the V-type immunoglobulin domain family and reveals close homology with Ig domains from antibodies, T-cell receptors and other activating receptors, such as NKp44. With the additional use of analytical ultracentrifugation and 1H NMR spectroscopy of both human and mouse TREM-1, we have conclusively demonstrated the monomeric state of this extracellular ectodomain in solution and, presumably, of the TREM family in general.
Collapse
Affiliation(s)
- Matthew S Kelker
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
de Lumley M, Hart DJ, Cooper MA, Symeonides S, Blackburn JM. A biophysical characterisation of factors controlling dimerisation and selectivity in the NF-kappaB and NFAT families. J Mol Biol 2004; 339:1059-75. [PMID: 15178248 DOI: 10.1016/j.jmb.2004.03.083] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Revised: 02/11/2004] [Accepted: 03/31/2004] [Indexed: 10/26/2022]
Abstract
The Rel/NF-kappaB family of eukaryotic transcription factors bind DNA with high specificity and affinity as homo- or heterodimers to mediate a diverse range of biological processes. By comparison, the nuclear factor of activated T-cells (NFAT) family has been recognised as Rel homologues due to structural similarities between the DNA-binding domains, yet they bind DNA as lower-affinity monomers. The structural and functional overlap between the NF-kappaB and NFAT families suggests that they may be evolutionarily divergent from a common, monomeric ancestor but have evolved different mechanisms to achieve high-affinity binding to their target DNA sequences. In order to understand the origin of these mechanistic differences, we constructed two chimeric proteins, based on molecular modelling, comprising the DNA-binding domain of NFAT and the dimerisation domain of NF-kappaB p50, differing only in the position of the splice site. Biophysical characterisation of the wild-type and chimeric proteins revealed that one of the chimeras bound DNA as a high-affinity, NF-kappaB-like cooperative dimer, whilst the other bound as a lower-affinity, NFAT-like monomer, demonstrating the importance of the interdomain linker in controlling the intrinsic ability of NFATc to form dimers. In addition, we have studied the rate of exchange of monomers between preformed NF-kappaB dimers and have determined, for the first time, the intrinsic homodimerisation constant for NF-kappaB p50. These data support a model in which NF-kappaB proteins bind DNA both in vitro and in vivo as high-affinity preformed homo- or heterodimers, which in an unbound form can still exchange monomer units on a physiologically relevant timescale in vivo.
Collapse
Affiliation(s)
- Marie de Lumley
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | |
Collapse
|
43
|
Lee DU, Avni O, Chen L, Rao A. A Distal Enhancer in the Interferon-γ (IFN-γ) Locus Revealed by Genome Sequence Comparison. J Biol Chem 2004; 279:4802-10. [PMID: 14607827 DOI: 10.1074/jbc.m307904200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Large-scale cross-species DNA sequence comparison has become a powerful tool to identify conserved cis-regulatory modules of genes. However, bioinformatic analysis alone cannot reveal how an evolutionarily conserved region regulates gene expression: whether it functions as an enhancer, silencer, or insulator; whether its function is cell-type restricted; and whether biologically relevant transcription factors bind to the element. Here we combine bioinformatics with wet-lab techniques to illustrate a general and systematic method of identifying functional conserved regulatory regions of genes. We applied this approach to the interferon-gamma (IFN-gamma) gene. Comparison of human and mouse IFN-gamma reveals a highly conserved non-coding sequence located approximately 5 kb 5' of the transcription start site. This region coincides with constitutive and inducible DNase I hypersensitivity sites present in IFN-gamma-producing Th1 cells but not in Th2 cells that do not produce IFN-gamma. Histone methylation at the 5' conserved non-coding sequences indicates a more accessible chromatin structure in Th1 cells compared with Th2 cells. This element binds two transcription factors known to be essential for IFN-gamma expression: nuclear factor of activated T cells, an inducible transcription factor, and T-box protein expressed in T cells, a cell lineage-restricted transcription factor. Together, these findings identify a highly conserved distal enhancer in the IFN-gamma cytokine locus and validate our approach as a successful method to detect cis-regulatory elements.
Collapse
Affiliation(s)
- Dong U Lee
- Center for Blood Research and the Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
44
|
Ghosh G, Huang DB, Huxford T. Molecular mimicry of the NF-κB DNA target site by a selected RNA aptamer. Curr Opin Struct Biol 2004; 14:21-7. [PMID: 15102445 DOI: 10.1016/j.sbi.2004.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
During the past two decades, structural and biophysical studies of DNA-protein and RNA-protein complexes have enhanced our understanding of the physico-chemical basis of nucleic acid recognition by proteins. However, it remains unclear what protein surface features are most important for nucleic acid binding and whether the same protein surface could bind specifically to both DNA and RNA. The recently described X-ray crystal structure of the transcription factor NF-kappaB p50 homodimer bound to a high-affinity RNA aptamer allows the direct comparison of NF-kappaB-RNA and NF-kappaB-DNA binding modes. The RNA aptamer, which bears no sequence homology to natural NF-kappaB DNA targets, adopts a structure with similar physico-chemical properties to kappaB DNA and contacts a common nucleic-acid-binding 'consensus surface' on the p50 homodimer.
Collapse
Affiliation(s)
- Gourisankar Ghosh
- Department of Chemistry & Biochemistry, University of California San Diego, Mail Code 0359, Urey Hall 5230, 9500 Gilman Drive, La Jolla, CA 92093-0359, USA.
| | | | | |
Collapse
|
45
|
Abstract
The nuclear factor of activated T cells (NFAT) is a calcium-dependent transcription factor that cooperates with a myriad of partner transcription factors to regulate distinct transcription programs. Transcription activation by NFAT without the cooperation of co-stimulatory signals in lymphocytes can also impose a genetic program of anergy. Although the ternary NFAT1/Fos-Jun/DNA complex has been structurally characterized, how NFAT1 recognizes DNA in the absence of cooperative partners and how such a binary NFAT/DNA complex may lead to the assembly of distinct high-order NFAT transcription complexes are still poorly understood. We have determined the crystal structure of the entire Rel homology region (RHR) of human NFAT1 (NFATc2) bound to DNA as a monomer. We also present footprinting evidence that corroborates the protein-DNA contacts observed in the crystal structure. Our structural and biochemical studies reveal the mechanism by which the monomeric Rel protein NFAT recognizes its cognate DNA site. A remarkable feature of the binary NFAT/DNA complex is the conformational flexibility exhibited by NFAT1 in the four independent copies of the NFAT/DNA complex in the crystal structure, which may reflect a mechanism by which NFAT1 interacts with a variety of protein partners as it mediates disparate biological responses.
Collapse
Affiliation(s)
- James C Stroud
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Campus Box 215, Boulder, CO 80309-0437, USA
| | | |
Collapse
|
46
|
Giffin MJ, Stroud JC, Bates DL, von Koenig KD, Hardin J, Chen L. Structure of NFAT1 bound as a dimer to the HIV-1 LTR kappa B element. Nat Struct Mol Biol 2003; 10:800-6. [PMID: 12949493 DOI: 10.1038/nsb981] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2003] [Accepted: 08/01/2003] [Indexed: 11/09/2022]
Abstract
DNA binding by NFAT1 as a dimer has been implicated in the activation of host and viral genes. Here we report a crystal structure of NFAT1 bound cooperatively as a dimer to the highly conserved kappa B site from the human immunodeficiency virus 1 (HIV-1) long terminal repeat (LTR). This structure reveals a new mode of dimerization and protein-DNA recognition by the Rel homology region (RHR) of NFAT1. The two NFAT1 monomers form a complete circle around the kappa B DNA through protein-protein interactions mediated by both their N- and C-terminal subdomains. The major dimer interface, formed by the C-terminal domain, is asymmetric and substantially different from the symmetric dimer interface seen in other Rel family proteins. Comparison to other NFAT structures, including NFAT5 and the NFAT1-Fos-Jun-ARRE2 complex, reveals that NFAT1 adopts different conformations and its protein surfaces mediate distinct protein-protein interactions in the context of different DNA sites.
Collapse
Affiliation(s)
- Michael J Giffin
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309-0215, USA
| | | | | | | | | | | |
Collapse
|