1
|
Kim NJ, Chowdhury NF, Buetow KH, Thompson PM, Irimia A. Genetic Insights into Brain Morphology: a Genome-Wide Association Study of Cortical Thickness and T 1-Weighted MRI Gray Matter-White Matter Intensity Contrast. Neuroinformatics 2025; 23:26. [PMID: 40167904 PMCID: PMC11961481 DOI: 10.1007/s12021-025-09722-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 04/02/2025]
Abstract
In T1-weighted magnetic resonance imaging (MRI), cortical thickness (CT) and gray-white matter contrast (GWC) capture brain morphological traits and vary with age-related disease. To gain insight into genetic factors underlying brain structure and dynamics observed during neurodegeneration, this genome-wide association study (GWAS) quantifies the relationship between single nucleotide polymorphisms (SNPs) and both CT and GWC in UK Biobank participants (N = 43,002). To our knowledge, this is the first GWAS to investigate the genetic determinants of cortical T1-MRI GWC in humans. We found 251 SNPs associated with CT or GWC for at least 1% of cortical locations, including 42 for both CT and GWC; 127 for only CT; and 82 for only GWC. Identified SNPs include rs1080066 (THSB1, featuring the strongest association with both CT and GWC), rs13107325 (SLC39A8, linked to CT at the largest number of cortical locations), and rs864736 (KCNK2, associated with GWC at the largest number of cortical locations). Dimensionality reduction reveals three major gene ontologies constraining CT (neural signaling, ion transport, cell migration) and four constraining GWC (neural cell development, cellular homeostasis, tissue repair, ion transport). Our findings provide insight into genetic determinants of GWC and CT, highlighting pathways associated with brain anatomy and dynamics of neurodegeneration. These insights can assist the development of gene therapies and treatments targeting brain diseases.
Collapse
Affiliation(s)
- Nicholas J Kim
- University of Southern California (Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering), Los Angeles, CA, USA
- University of Southern California (Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology), Los Angeles, CA, USA
| | - Nahian F Chowdhury
- University of Southern California (Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology), Los Angeles, CA, USA
| | - Kenneth H Buetow
- Arizona State University (School of Life Sciences Center for Social Dynamics and Complexity), Tempe, AZ, USA
| | - Paul M Thompson
- University of Southern California (Mark and Mary Stevens Neuroimaging and Informatics Institute), Marina del Rey, Los Angeles, CA, USA
| | - Andrei Irimia
- University of Southern California (Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering), Los Angeles, CA, USA.
- University of Southern California (Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology), Los Angeles, CA, USA.
- University of Southern California (Department of Quantitative & Computational Biology, Dornsife College of Arts and Sciences), Los Angeles, CA, USA.
- King's College London (Centre for Healthy Brain Aging, Institute of Psychiatry, Psychology & Neuroscience), London, England, UK.
| |
Collapse
|
2
|
Sawada H, Saito T, Shimada Y, Nishimura H. Fertilization mechanisms in hermaphroditic ascidians and nematodes: Common mechanisms with mammals and plants. Curr Top Dev Biol 2025; 162:55-114. [PMID: 40180517 DOI: 10.1016/bs.ctdb.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Most animals have male and female, whereas flowering plants are hermaphrodites. Exceptionally, a small population of invertebrates, including ascidians and nematodes, has hermaphrodite in reproductive strategies. Several ascidians exhibit strict self-sterility (or self-incompatibility), similar to flowering plants. Such a self-incompatibility mechanism in ascidian has been revealed to be very similar to those of flowering plants. Here, we describe the mechanisms of ascidian fertilization shared with invertebrates and mammals, as well as with plants. In the nematode Caenorhabditis elegans, having self-fertile hermaphrodite and male, several genes responsible for fertilization are homologous to those of mammals. Thus, novel proteins responsible for fertilization will be easily disclosed by the analyses of sterile mutants. In this review, we focus on the same or similar reproductive strategies by shedding lights on the common mechanisms of fertilization, particularly in hermaphrodites.
Collapse
Affiliation(s)
- Hitoshi Sawada
- Graduate School of Science, Nagoya University, Nagoya, Japan.
| | - Takako Saito
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan.
| | - Yoshihiro Shimada
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan
| | - Hitoshi Nishimura
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan.
| |
Collapse
|
3
|
Perez SM, Augustineli HS, Marcello MR. Utilizing C. elegans Spermatogenesis and Fertilization Mutants as a Model for Human Disease. J Dev Biol 2025; 13:4. [PMID: 39982357 PMCID: PMC11843878 DOI: 10.3390/jdb13010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
The nematode C. elegans is a proven model for identifying genes involved in human disease, and the study of C. elegans reproduction, specifically spermatogenesis and fertilization, has led to significant contributions to our understanding of cellular function. Approximately 70 genes have been identified in C. elegans that control spermatogenesis and fertilization (spe and fer mutants). This review focuses on eight genes that have human orthologs with known pathogenic phenotypes. Using C. elegans to study these genes has led to critical developments in our understanding of protein domain function and human disease, including understanding the role of OTOF (the ortholog of C. elegans fer-1) in hearing loss, the contribution of the spe-39 ortholog VIPAS39 in vacuolar protein sorting, and the overlapping functions of spe-26 and KLHL10 in spermatogenesis. We discuss the cellular function of both the C. elegans genes and their human orthologs and the impact that C. elegans mutants and human variants have on cellular function and physiology. Utilizing C. elegans to understand the function of the genes reviewed here, and additional understudied and undiscovered genes, represents a unique opportunity to understand the function of variants that could lead to better disease diagnosis and clinical decision making.
Collapse
|
4
|
Rathore S, Gahlot D, Castin J, Pandey A, Arvindekar S, Viswanath S, Thukral L. Multiscale simulations reveal architecture of NOTCH protein and ligand specific features. Biophys J 2025; 124:393-407. [PMID: 39674890 PMCID: PMC11788485 DOI: 10.1016/j.bpj.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/15/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024] Open
Abstract
NOTCH, a single-pass transmembrane protein, plays a crucial role in cell fate determination through cell-to-cell communication. It interacts with two canonical ligands, Delta-like (DLL) and Jagged (JAG), located on neighboring cells to regulate diverse cellular processes. Despite extensive studies on the functional roles of NOTCH and its ligands in cellular growth, the structural details of full-length NOTCH and its ligands remain poorly understood. In this study, we employed fragment-based modeling and multiscale simulations to study the full-length structure of the human NOTCH ectodomain, comprising 1756 amino acids. We performed coarse-grained dynamics simulations of NOTCH in both glycosylated and nonglycosylated forms to investigate the role of glycosylation in modulating its conformational dynamics. In apo form, coarse-grained simulations revealed that glycosylated NOTCH protein can transition from an elongated structure of ∼86 nm from the membrane surface to a semicompact state (∼23.81 ± 9.98 nm), which aligns with cryo-EM data. To transition from the apo form to ligand-bound forms of NOTCH, we followed an atomistic and integrative modeling approach to model the interactions between NOTCH-DLL4 and NOTCH-JAG1. Atomistic simulations of the smaller bound fragment EGF8-13 patch revealed conformational plasticity critical for NOTCH binding, while integrative modeling of full-length complexes suggested a larger binding surface than reported previously. Simulations of pathogenic mutations revealed that E360K and R448Q disrupted the NOTCH-ligand interaction surfaces, causing dissociation. In contrast, C1133Y in the Abruptex domain compromised protein stability by disrupting the domain's interaction with the ligand-binding domain in the apo form of NOTCH-ECD. These findings provide a detailed molecular understanding of NOTCH and its ligands, offering insights that could enable the development of novel therapeutic approaches to selectively target pathogenic NOTCH signaling.
Collapse
Affiliation(s)
- Surabhi Rathore
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Deepanshi Gahlot
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jesu Castin
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Arastu Pandey
- National Center for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), GKVK, Bangalore, India
| | - Shreyas Arvindekar
- National Center for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), GKVK, Bangalore, India
| | - Shruthi Viswanath
- National Center for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), GKVK, Bangalore, India
| | - Lipi Thukral
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
5
|
Jeon S, Jeon Y, Lim JY, Kim Y, Cha B, Kim W. Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets. Signal Transduct Target Ther 2025; 10:4. [PMID: 39757214 DOI: 10.1038/s41392-024-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cells orchestrate their processes through complex interactions, precisely organizing biomolecules in space and time. Recent discoveries have highlighted the crucial role of biomolecular condensates-membrane-less assemblies formed through the condensation of proteins, nucleic acids, and other molecules-in driving efficient and dynamic cellular processes. These condensates are integral to various physiological functions, such as gene expression and intracellular signal transduction, enabling rapid and finely tuned cellular responses. Their ability to regulate cellular signaling pathways is particularly significant, as it requires a careful balance between flexibility and precision. Disruption of this balance can lead to pathological conditions, including neurodegenerative diseases, cancer, and viral infections. Consequently, biomolecular condensates have emerged as promising therapeutic targets, with the potential to offer novel approaches to disease treatment. In this review, we present the recent insights into the regulatory mechanisms by which biomolecular condensates influence intracellular signaling pathways, their roles in health and disease, and potential strategies for modulating condensate dynamics as a therapeutic approach. Understanding these emerging principles may provide valuable directions for developing effective treatments targeting the aberrant behavior of biomolecular condensates in various diseases.
Collapse
Affiliation(s)
- Soyoung Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Yeram Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Ji-Youn Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Yujeong Kim
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Boksik Cha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.
| | - Wantae Kim
- Department of Life Science, University of Seoul, Seoul, South Korea.
| |
Collapse
|
6
|
Kuintzle R, Santat LA, Elowitz MB. Diversity in Notch ligand-receptor signaling interactions. eLife 2025; 12:RP91422. [PMID: 39751380 PMCID: PMC11698495 DOI: 10.7554/elife.91422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
The Notch signaling pathway uses families of ligands and receptors to transmit signals to nearby cells. These components are expressed in diverse combinations in different cell types, interact in a many-to-many fashion, both within the same cell (in cis) and between cells (in trans), and their interactions are modulated by Fringe glycosyltransferases. A fundamental question is how the strength of Notch signaling depends on which pathway components are expressed, at what levels, and in which cells. Here, we used a quantitative, bottom-up, cell-based approach to systematically characterize trans-activation, cis-inhibition, and cis-activation signaling efficiencies across a range of ligand and Fringe expression levels in Chinese hamster and mouse cell lines. Each ligand (Dll1, Dll4, Jag1, and Jag2) and receptor variant (Notch1 and Notch2) analyzed here exhibited a unique profile of interactions, Fringe dependence, and signaling outcomes. All four ligands were able to bind receptors in cis and in trans, and all ligands trans-activated both receptors, although Jag1-Notch1 signaling was substantially weaker than other ligand-receptor combinations. Cis-interactions were predominantly inhibitory, with the exception of the Dll1- and Dll4-Notch2 pairs, which exhibited cis-activation stronger than trans-activation. Lfng strengthened Delta-mediated trans-activation and weakened Jagged-mediated trans-activation for both receptors. Finally, cis-ligands showed diverse cis-inhibition strengths, which depended on the identity of the trans-ligand as well as the receptor. The map of receptor-ligand-Fringe interaction outcomes revealed here should help guide rational perturbation and control of the Notch pathway.
Collapse
Affiliation(s)
- Rachael Kuintzle
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Leah A Santat
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
- Howard Hughes Medical Institute, California Institute of TechnologyPasadenaUnited States
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
- Howard Hughes Medical Institute, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
7
|
Zhang Y, Wang J, Huai T, Wang X, Liu Q, Xing Y, Chudnary M, Meng X, Dong L, Malashicheva A, Tian J, Liu J. Cadmium Reduces VE-Cadherin Expression in Endothelial Cells Through Activation of the Notch Signaling Pathway. J Biochem Mol Toxicol 2025; 39:e70115. [PMID: 39799565 DOI: 10.1002/jbt.70115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/12/2024] [Accepted: 12/21/2024] [Indexed: 01/15/2025]
Abstract
Cadmium (Cd) is a toxic heavy metal which induces vascular disorders. Previous studies suggest that Cd in the bloodstream affects vascular endothelial cells (ECs), potentially contributing to vascular-related diseases. However, the molecular mechanisms of effects of Cd on ECs remain poorly understood. Notch signaling pathway abnormalities have been implicated in ECs disruption. The present study aims to investigate the effect of low Cd concentrations on the Notch signaling pathway in ECs. Mice were treated with low concentration of Cd (2.28 mg/kg), and tissues were collected for examination of mRNA and protein levels of Notch pathway components and VE-cadherin, a major junctional protein in ECs. We found that Cd treatment increases expression of NICD1, Hes1, Hey1, Hey2 and decreases expression of VE-cadherin in brain and kidney tissues. In vitro, a low concentration of Cd (1 μM) also induces increase expression of NICD1, Hes1, Hey1, Hey2, and decrease expression of VE-cadherin in human umbilical vein endothelial cells (HUVECs). Low concentration of Cd increased the permeability of HUVECs. We also found that Notch signaling negatively regulates the expression of VE-cadherin. In addition, DAPT, a Notch pathway inhibitor, prevents Cd-induced reduction in VE-cadherin expression in HUVECs. In summary, these findings revealed that Cd exposure decreases VE-cadherin expression through activation of the Notch signaling pathway.
Collapse
Affiliation(s)
- Yuanqing Zhang
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
- Laboratory of Translational Medicine in Microvascular Regulation, Medical Research Center,The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital; Shandong Provincial Key Laboratory of Medicine in Microvascular Ageing; Laboratory of Future Industry of Gene Editing in Vascular Endothelial Cells of Universities in Shandong Province, Jinan, China
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Wang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianran Huai
- Laboratory of Translational Medicine in Microvascular Regulation, Medical Research Center,The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital; Shandong Provincial Key Laboratory of Medicine in Microvascular Ageing; Laboratory of Future Industry of Gene Editing in Vascular Endothelial Cells of Universities in Shandong Province, Jinan, China
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xia Wang
- Laboratory of Translational Medicine in Microvascular Regulation, Medical Research Center,The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital; Shandong Provincial Key Laboratory of Medicine in Microvascular Ageing; Laboratory of Future Industry of Gene Editing in Vascular Endothelial Cells of Universities in Shandong Province, Jinan, China
| | - Qiang Liu
- Laboratory of Translational Medicine in Microvascular Regulation, Medical Research Center,The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital; Shandong Provincial Key Laboratory of Medicine in Microvascular Ageing; Laboratory of Future Industry of Gene Editing in Vascular Endothelial Cells of Universities in Shandong Province, Jinan, China
| | - Yan Xing
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Maryam Chudnary
- Laboratory of Translational Medicine in Microvascular Regulation, Medical Research Center,The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital; Shandong Provincial Key Laboratory of Medicine in Microvascular Ageing; Laboratory of Future Industry of Gene Editing in Vascular Endothelial Cells of Universities in Shandong Province, Jinan, China
| | - Xianli Meng
- Laboratory of Translational Medicine in Microvascular Regulation, Medical Research Center,The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital; Shandong Provincial Key Laboratory of Medicine in Microvascular Ageing; Laboratory of Future Industry of Gene Editing in Vascular Endothelial Cells of Universities in Shandong Province, Jinan, China
| | - Liang Dong
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Anna Malashicheva
- Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Jinghui Tian
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Ju Liu
- Laboratory of Translational Medicine in Microvascular Regulation, Medical Research Center,The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital; Shandong Provincial Key Laboratory of Medicine in Microvascular Ageing; Laboratory of Future Industry of Gene Editing in Vascular Endothelial Cells of Universities in Shandong Province, Jinan, China
| |
Collapse
|
8
|
Bo Z, Rowntree T, Johnson S, Nurmahdi H, Suckling RJ, Hill J, Korona B, Weisshuhn PC, Sheppard D, Meng Y, Liang S, Lowe ED, Lea SM, Redfield C, Handford PA. Structural and functional studies of the EGF20-27 region reveal new features of the human Notch receptor important for optimal activation. Structure 2024; 32:2325-2336.e5. [PMID: 39488203 DOI: 10.1016/j.str.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/01/2024] [Accepted: 10/08/2024] [Indexed: 11/04/2024]
Abstract
The Notch receptor is activated by the Delta/Serrate/Lag-2 (DSL) family of ligands. The organization of the extracellular signaling complex is unknown, although structures of Notch/ligand complexes comprising the ligand-binding region (LBR), and negative regulatory region (NRR) region, have been solved. Here, we investigate the human Notch-1 epidermal growth factor-like (EGF) 20-27 region, located between the LBR and NRR, and incorporating the Abruptex (Ax) region, associated with distinctive Drosophila phenotypes. Our analyses, using crystallography, NMR and small angle X-ray scattering (SAXS), support a rigid, elongated organization for EGF20-27 with the EGF20-21 linkage showing Ca2+-dependent flexibility. In functional assays, Notch-1 variants containing Ax substitutions result in reduced ligand-dependent trans-activation. When cis-JAG1 was expressed, Notch activity differences between WT and Ca2+-binding Ax variants were less marked than seen in the trans-activation assays alone, consistent with disruption of cis-inhibition. These data indicate the importance of Ca2+-stabilized structure and suggest the balance of cis- and trans-interactions explains the effects of Drosophila Ax mutations.
Collapse
Affiliation(s)
- Zhihan Bo
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Thomas Rowntree
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Hilman Nurmahdi
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Richard J Suckling
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Johan Hill
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Boguslawa Korona
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Philip C Weisshuhn
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Devon Sheppard
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Yao Meng
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Shaoyan Liang
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Edward D Lowe
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - Christina Redfield
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Penny A Handford
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
9
|
Stojanovic M, Kalanj-Bognar S. Toll-like receptors as a missing link in Notch signaling cascade during neurodevelopment. Front Mol Neurosci 2024; 17:1465023. [PMID: 39664114 PMCID: PMC11631889 DOI: 10.3389/fnmol.2024.1465023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/01/2024] [Indexed: 12/13/2024] Open
Abstract
Neurodevelopment encompasses a complex series of molecular events occuring at defined time points distinguishable by the specific genetic readout and active protein machinery. Due to immense intricacy of intertwined molecular pathways, extracting and describing all the components of a single pathway is a demanding task. In other words, there is always a risk of leaving potential transient molecular partners unnoticed while investigating signaling cascades with core functions-and the very neglected ones could be the turning point in understanding the context and regulation of the signaling events. For example, signaling pathways of Notch and Toll-like receptors (TLRs) have been so far unrelated in the vast body of knowledge about neurodevelopment, however evidence from available literature points to their remarkable overlap in influence on identical molecular processes and reveals their potential functional links. Based on data demonstrating Notch and TLR structural engagement and functions during neurodevelopment, along with our description of novel molecular binding models, here we hypothesize that TLR proteins act as likely crucial components in the Notch signaling cascade. We advocate for the hypothesized role of TLRs in Notch signaling by: elaborating components and features of their pathways; reviewing their effects on fates of neural progenitor cells during neurodevelopment; proposing molecular and functional aspects of the hypothesis, along with venues for testing it. Finally, we discuss substantial indications of environmental influence on the proposed Notch-TLR system and its impact on neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Mario Stojanovic
- Laboratory for Neurochemistry and Molecular Neurobiology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Laboratory for Cell Biology and Signalling, Department for Molecular Biology, Institute Ruđer Bošković, Zagreb, Croatia
| | - Svjetlana Kalanj-Bognar
- Laboratory for Neurochemistry and Molecular Neurobiology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department for Chemistry and Biochemistry, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
10
|
Perez DH, Antfolk D, Bustos XE, Medina E, Chang S, Ramadan AA, Rodriguez PC, Gonzalez-Perez D, Abate-Daga D, Luca VC. Engineering synthetic agonists for targeted activation of Notch signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606897. [PMID: 39149362 PMCID: PMC11326249 DOI: 10.1101/2024.08.06.606897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Notch signaling regulates cell fate decisions and has context-dependent tumorigenic or tumor suppressor functions. Although there are several classes of Notch inhibitors, the mechanical force requirement for Notch receptor activation has hindered attempts to generate soluble agonists. To address this problem, we engineered synthetic Notch agonist (SNAG) proteins by tethering affinity-matured Notch ligands to antibodies or cytokines that internalize their targets. This bispecific format enables SNAGs to "pull" on mechanosensitive Notch receptors, triggering their activation in the presence of a desired biomarker. We successfully developed SNAGs targeting six independent surface markers, including the tumor antigens PDL1, CD19, and HER2, and the immunostimulatory receptor CD40. SNAGs targeting CD40 increase expansion of central memory γδ T cells from peripheral blood, highlighting their potential to improve the phenotype and yield of low-abundance T cell subsets. These insights have broad implications for the pharmacological activation of mechanoreceptors and will expand our ability to modulate Notch signaling in biotechnology.
Collapse
Affiliation(s)
- David H. Perez
- Department of Immunology, Moffitt Cancer Center, Tampa, FL 33602, USA
| | - Daniel Antfolk
- Department of Immunology, Moffitt Cancer Center, Tampa, FL 33602, USA
| | - Xiomar E. Bustos
- Department of Immunology, Moffitt Cancer Center, Tampa, FL 33602, USA
| | - Elliot Medina
- Department of Immunology, Moffitt Cancer Center, Tampa, FL 33602, USA
| | - Shiun Chang
- Department of Immunology, Moffitt Cancer Center, Tampa, FL 33602, USA
| | - Ahmed A. Ramadan
- Department of Immunology, Moffitt Cancer Center, Tampa, FL 33602, USA
| | | | | | - Daniel Abate-Daga
- Department of Immunology, Moffitt Cancer Center, Tampa, FL 33602, USA
| | - Vincent C. Luca
- Department of Immunology, Moffitt Cancer Center, Tampa, FL 33602, USA
| |
Collapse
|
11
|
Kuintzle R, Santat LA, Elowitz MB. Diversity in Notch ligand-receptor signaling interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.24.554677. [PMID: 37662208 PMCID: PMC10473737 DOI: 10.1101/2023.08.24.554677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The Notch signaling pathway uses families of ligands and receptors to transmit signals to nearby cells. These components are expressed in diverse combinations in different cell types, interact in a many-to-many fashion, both within the same cell (in cis) and between cells (in trans), and their interactions are modulated by Fringe glycosyltransferases. A fundamental question is how the strength of Notch signaling depends on which pathway components are expressed, at what levels, and in which cells. Here, we used a quantitative, bottom-up, cell-based approach to systematically characterize trans-activation, cis-inhibition, and cis-activation signaling efficiencies across a range of ligand and Fringe expression levels in two mammalian cell types. Each ligand (Dll1, Dll4, Jag1, and Jag2) and receptor variant (Notch1 and Notch2) analyzed here exhibited a unique profile of interactions, Fringe-dependence, and signaling outcomes. All four ligands were able to bind receptors in cis and in trans, and all ligands trans-activated both receptors, although Jag1-Notch1 signaling was substantially weaker than other ligand-receptor combinations. Cis-interactions were predominantly inhibitory, with the exception of the Dll1- and Dll4-Notch2 pairs, which exhibited cis-activation stronger than trans-activation. Lfng strengthened Delta-mediated trans-activation and weakened Jagged-mediated trans-activation for both receptors. Finally, cis-ligands showed diverse cis-inhibition strengths, which depended on the identity of the trans-ligand as well as the receptor. The map of receptor-ligand-Fringe interaction outcomes revealed here should help guide rational perturbation and control of the Notch pathway.
Collapse
|
12
|
Li J, Huang Y, Yang X, Cai Y, Wang Y, Dai W, Jiang L, Wang C, Wen Z. Tyrosine-phosphorylated DNER sensitizes insulin signaling in hepatic gluconeogenesis by inducing proteasomal degradation of TRB3. Mol Metab 2024; 83:101927. [PMID: 38553003 PMCID: PMC10999696 DOI: 10.1016/j.molmet.2024.101927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
OBJECTIVE Hepatic insulin resistance, which leads to increased hepatic gluconeogenesis, is a major contributor to fasting hyperglycemia in type 2 diabetes mellitus (T2DM). However, the mechanism of impaired insulin-dependent suppression of hepatic gluconeogenesis remains elusive. Delta/Notch-like epidermal growth factor (EGF)-related receptor (DNER), firstly described as a neuron-specific Notch ligand, has been recently identified as a susceptibility gene for T2DM through genome-wide association studies. We herein investigated whether DNER regulates hepatic gluconeogenesis and whether this is mediated by enhanced insulin signaling. METHODS The association between DNER, tribbles homolog 3 (TRB3) and Akt signaling was evaluated in C57BL/6J, ob/ob and db/db mice by western blot analysis. DNER loss-of-function and gain-of-function in hepatic gluconeogenesis were analyzed by western blot analysis, quantitative real-time PCR, glucose uptake and output assay in AML-12 cells and partially validated in primary mouse hepatocytes. Hepatic DNER knockdown mice were generated by tail vein injection of adenovirus to confirm the effects of DNER in vivo. The interaction between DNER and TRB3 was investigated by rescue experiments, cycloheximide chase analysis, co-immunoprecipitation and immunofluorescence. The potential insulin-stimulated phosphorylation sites of DNER were determined by co-immunoprecipitation, LC-MS/MS analysis and site-specific mutagenesis. RESULTS Here we show that DNER enhanced hepatic insulin signaling in gluconeogenesis by inhibiting TRB3, an endogenous Akt inhibitor, through the ubiquitin-proteasome degradation pathway. In AML-12 hepatocytes, insulin-stimulated activation of Akt and suppression of gluconeogenesis are attenuated by DNER knockdown, but potentiated by DNER over-expression. In C57BL/6J mice, hepatic DNER knockdown is accompanied by impaired glucose and pyruvate tolerance. Furthermore, the in vitro effects of DNER knockdown or over-expression on both Akt activity and hepatic gluconeogenesis can be rescued by TRB3 knockdown or over-expression, respectively. In response to insulin stimulation, DNER interacted directly with insulin receptor and was phosphorylated at Tyr677. This site-specific phosphorylation is essential for DNER to upregulate Akt activity and then downregulate G6Pase and PEPCK expression, by interacting with TRB3 directly and inducing TRB3 proteasome-dependent degradation. CONCLUSIONS Taken together, the crosstalk between insulin-Akt and DNER-TRB3 pathways represents a previously unrecognized mechanism by which insulin regulates hepatic gluconeogenesis.
Collapse
Affiliation(s)
- Junfeng Li
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yan Huang
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xinyu Yang
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yuli Cai
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ye Wang
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenling Dai
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Liu Jiang
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Changhua Wang
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Zhongyuan Wen
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
13
|
Wang S, Gu S, Chen J, Yuan Z, Liang P, Cui H. Mechanism of Notch Signaling Pathway in Malignant Progression of Glioblastoma and Targeted Therapy. Biomolecules 2024; 14:480. [PMID: 38672496 PMCID: PMC11048644 DOI: 10.3390/biom14040480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of glioma and the most common primary tumor of the central nervous system. Despite significant advances in clinical management strategies and diagnostic techniques for GBM in recent years, it remains a fatal disease. The current standard of care includes surgery, radiation, and chemotherapy, but the five-year survival rate for patients is less than 5%. The search for a more precise diagnosis and earlier intervention remains a critical and urgent challenge in clinical practice. The Notch signaling pathway is a critical signaling system that has been extensively studied in the malignant progression of glioblastoma. This highly conserved signaling cascade is central to a variety of biological processes, including growth, proliferation, self-renewal, migration, apoptosis, and metabolism. In GBM, accumulating data suggest that the Notch signaling pathway is hyperactive and contributes to GBM initiation, progression, and treatment resistance. This review summarizes the biological functions and molecular mechanisms of the Notch signaling pathway in GBM, as well as some clinical advances targeting the Notch signaling pathway in cancer and glioblastoma, highlighting its potential as a focus for novel therapeutic strategies.
Collapse
Affiliation(s)
- Shenghao Wang
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China;
| | - Sikuan Gu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (S.G.); (J.C.); (Z.Y.)
| | - Junfan Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (S.G.); (J.C.); (Z.Y.)
| | - Zhiqiang Yuan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (S.G.); (J.C.); (Z.Y.)
| | - Ping Liang
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China;
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (S.G.); (J.C.); (Z.Y.)
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
14
|
Shu X, Wang J, Zeng H, Shao L. Progression of Notch signaling regulation of B cells under radiation exposure. Front Immunol 2024; 15:1339977. [PMID: 38524139 PMCID: PMC10957566 DOI: 10.3389/fimmu.2024.1339977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/14/2024] [Indexed: 03/26/2024] Open
Abstract
With the continuous development of nuclear technology, the radiation exposure caused by radiation therapy is a serious health hazard. It is of great significance to further develop effective radiation countermeasures. B cells easily succumb to irradiation exposure along with immunosuppressive response. The approach to ameliorate radiation-induced B cell damage is rarely studied, implying that the underlying mechanisms of B cell damage after exposure are eager to be revealed. Recent studies suggest that Notch signaling plays an important role in B cell-mediated immune response. Notch signaling is a critical regulator for B cells to maintain immune function. Although accumulating studies reported that Notch signaling contributes to the functionality of hematopoietic stem cells and T cells, its role in B cells is scarcely appreciated. Presently, we discussed the regulation of Notch signaling on B cells under radiation exposure to provide a scientific basis to prevent radiation-induced B cell damage.
Collapse
Affiliation(s)
- Xin Shu
- Department of Occupational Health and Toxicology, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, School of Public Health, Nanchang University, Nanchang, China
| | - Jie Wang
- Department of Histology and Embryology, School of Basic Medicine Sciences, Nanchang University, Nanchang, China
| | - Huihong Zeng
- Department of Histology and Embryology, School of Basic Medicine Sciences, Nanchang University, Nanchang, China
| | - Lijian Shao
- Department of Occupational Health and Toxicology, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, China
| |
Collapse
|
15
|
Kumari L, Mishra L, Sharma Y, Chahar K, Kumar M, Patel P, Gupta GD, Kurmi BD. NOTCH Signaling Pathway: Occurrence, Mechanism, and NOTCH-Directed Therapy for the Management of Cancer. Cancer Biother Radiopharm 2024; 39:19-34. [PMID: 37797218 DOI: 10.1089/cbr.2023.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
It is now well understood that many signaling pathways are vital in carrying out and controlling essential pro-survival and pro-growth cellular functions. The NOTCH signaling pathway, a highly conserved evolutionary signaling pathway, has been thoroughly studied since the discovery of NOTCH phenotypes about 100 years ago in Drosophila melanogaster. Abnormal NOTCH signaling has been linked to the pathophysiology of several diseases, notably cancer. In tumorigenesis, NOTCH plays the role of a "double-edged sword," that is, it may act as an oncogene or as a tumor suppressor gene depending on the nature of the context. However, its involvement in several cancers and inhibition of the same provides targeted therapy for the management of cancer. The use of gamma (γ)-secretase inhibitors and monoclonal antibodies for cancer treatment involved NOTCH receptors inhibition, leading to the possibility of a targeted approach for cancer treatment. Likewise, several natural compounds, including curcumin, resveratrol, diallyl sulfide, and genistein, also play a dynamic role in the management of cancer by inhibition of NOTCH receptors. This review outlines the functions and structure of NOTCH receptors and their associated ligands with the mechanism of the signaling pathway. In addition, it also emphasizes the role of NOTCH-targeted nanomedicine in various cancer treatment strategies.
Collapse
Affiliation(s)
- Lakshmi Kumari
- Department of Pharmaceutics, ISF College Pharmacy, Moga, India
| | | | - Yash Sharma
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, Moga, India
| | - Kanak Chahar
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, Moga, India
| | - Mritunjay Kumar
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, Moga, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College Pharmacy, Moga, India
| | | | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College Pharmacy, Moga, India
| |
Collapse
|
16
|
Cai J, Qiao Y, Chen L, Lu Y, Zheng D. Regulation of the Notch signaling pathway by natural products for cancer therapy. J Nutr Biochem 2024; 123:109483. [PMID: 37848105 DOI: 10.1016/j.jnutbio.2023.109483] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/13/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
The Notch signaling pathway is an evolutionarily conserved pathway that modulates normal biological processes involved in cellular differentiation, apoptosis, and stem cell self-renewal in a context-dependent fashion. Attributed to its pleiotropic physiological roles, both overexpression and silencing of the pathway are associated with the emergence, progression, and poorer prognosis in various types of cancer. To decrease disease incidence and promote survival, targeting Notch may have chemopreventive and anti-cancer effects. Natural products with profound historical origins have distinguished themselves from other therapies due to their easy access, high biological compatibility, low toxicity, and reliable effects at specific physiological sites in vivo. This review describes the Notch signaling pathway, particularly its normal activation process, and some main illnesses related to Notch signaling pathway dysregulation. Emphasis is placed on the effects and mechanisms of natural products targeting the Notch signaling pathway in diverse cancer types, including curcumin, ellagic acid (EA), resveratrol, genistein, epigallocatechin-3-gallate (EGCG), quercetin, and xanthohumol and so on. Existing evidence indicates that natural products are feasible solution to fight against cancer by targeting Notch signaling, either alone or in combination with current therapeutic agents.
Collapse
Affiliation(s)
- Jiayi Cai
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Yajie Qiao
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Lingbin Chen
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China; Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350001, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
17
|
Medina E, Perez DH, Antfolk D, Luca VC. New tricks for an old pathway: emerging Notch-based biotechnologies and therapeutics. Trends Pharmacol Sci 2023; 44:934-948. [PMID: 37891017 PMCID: PMC10841456 DOI: 10.1016/j.tips.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023]
Abstract
The Notch pathway regulates a diverse array of cell fate decisions, making it an enticing target in cancer therapy and regenerative medicine. During the early stages of Notch drug development, off-target toxicity precluded the approval of Notch inhibitors for the treatment of cancer. However, recent advances in our understanding of Notch structure and signaling have led to the development of several innovative Notch-based biotechnologies. In addition to new classes of inhibitors, pharmacological Notch activators have been shown to enhance osteogenesis and various aspects of T cell function. Furthermore, the mechanosensitive negative regulatory region (NRR) of the Notch receptor has been converted into synthetic Notch (synNotch) receptors with fully customizable signaling circuits. We review emergent Notch-based compounds, biologics, and cell therapies while highlighting the challenges and opportunities they face on the path to clinical development.
Collapse
Affiliation(s)
- Elliot Medina
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL, USA
| | - David H Perez
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, USA
| | - Daniel Antfolk
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, USA.
| | - Vincent C Luca
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
18
|
Kałafut J, Czerwonka A, Czapla K, Przybyszewska-Podstawka A, Hermanowicz JM, Rivero-Müller A, Borkiewicz L. Regulation of Notch1 Signalling by Long Non-Coding RNAs in Cancers and Other Health Disorders. Int J Mol Sci 2023; 24:12579. [PMID: 37628760 PMCID: PMC10454443 DOI: 10.3390/ijms241612579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/30/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Notch1 signalling plays a multifaceted role in tissue development and homeostasis. Currently, due to the pivotal role of Notch1 signalling, the relationship between NOTCH1 expression and the development of health disorders is being intensively studied. Nevertheless, Notch1 signalling is not only controlled at the transcriptional level but also by a variety of post-translational events. First is the ligand-dependent mechanical activation of NOTCH receptors and then the intracellular crosstalk with other signalling molecules-among those are long non-coding RNAs (lncRNAs). In this review, we provide a detailed overview of the specific role of lncRNAs in the modulation of Notch1 signalling, from expression to activity, and their connection with the development of health disorders, especially cancers.
Collapse
Affiliation(s)
- Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Karolina Czapla
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
- Department of Clinical Pharmacy, Medical University of Bialystok, Waszyngtona 15, 15-274 Bialystok, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Lidia Borkiewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| |
Collapse
|
19
|
Hall MWJ, Shorthouse D, Alcraft R, Jones PH, Hall BA. Mutations observed in somatic evolution reveal underlying gene mechanisms. Commun Biol 2023; 6:753. [PMID: 37468606 PMCID: PMC10356810 DOI: 10.1038/s42003-023-05136-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
Highly sensitive DNA sequencing techniques have allowed the discovery of large numbers of somatic mutations in normal tissues. Some mutations confer a competitive advantage over wild-type cells, generating expanding clones that spread through the tissue. Competition between mutant clones leads to selection. This process can be considered a large scale, in vivo screen for mutations increasing cell fitness. It follows that somatic missense mutations may offer new insights into the relationship between protein structure, function and cell fitness. We present a flexible statistical method for exploring the selection of structural features in data sets of somatic mutants. We show how this approach can evidence selection of specific structural features in key drivers in aged tissues. Finally, we show how drivers may be classified as fitness-enhancing and fitness-suppressing through different patterns of mutation enrichment. This method offers a route to understanding the mechanism of protein function through in vivo mutant selection.
Collapse
Affiliation(s)
| | - David Shorthouse
- Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, University College London, Gower Street, London, WC1E 6BT, UK
| | - Rachel Alcraft
- Advanced Research Computing, University College London, London, UK
| | - Philip H Jones
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Oncology, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Benjamin A Hall
- Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
20
|
Sargis T, Youn SW, Thakkar K, Naiche LA, Paik NY, Pajcini KV, Kitajewski JK. Notch1 and Notch4 core binding domain peptibodies exhibit distinct ligand-binding and anti-angiogenic properties. Angiogenesis 2023; 26:249-263. [PMID: 36376768 PMCID: PMC10119233 DOI: 10.1007/s10456-022-09861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022]
Abstract
The Notch signaling pathway is an important therapeutic target for the treatment of inflammatory diseases and cancer. We previously created ligand-specific inhibitors of Notch signaling comprised of Fc fusions to specific EGF-like repeats of the Notch1 extracellular domain, called Notch decoys, which bound ligands, blocked Notch signaling, and showed anti-tumor activity with low toxicity. However, the study of their function depended on virally mediated expression, which precluded dosage control and limited clinical applicability. We have refined the decoy design to create peptibody-based Notch inhibitors comprising the core binding domains, EGF-like repeats 10-14, of either Notch1 or Notch4. These Notch peptibodies showed high secretion properties and production yields that were improved by nearly 100-fold compared to previous Notch decoys. Using surface plasmon resonance spectroscopy coupled with co-immunoprecipitation assays, we observed that Notch1 and Notch4 peptibodies demonstrate strong but distinct binding properties to Notch ligands DLL4 and JAG1. Both Notch1 and Notch4 peptibodies interfere with Notch signaling in endothelial cells and reduce expression of canonical Notch targets after treatment. While prior DLL4 inhibitors cause hyper-sprouting, the Notch1 peptibody reduced angiogenesis in a 3-dimensional in vitro sprouting assay. Administration of Notch1 peptibodies to neonate mice resulted in reduced radial outgrowth of retinal vasculature, confirming anti-angiogenic properties. We conclude that purified Notch peptibodies comprising EGF-like repeats 10-14 bind to both DLL4 and JAG1 ligands and exhibit anti-angiogenic properties. Based on their secretion profile, unique Notch inhibitory activities, and anti-angiogenic properties, Notch peptibodies present new opportunities for therapeutic Notch inhibition.
Collapse
Affiliation(s)
- Timothy Sargis
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Seock-Won Youn
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Krishna Thakkar
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - L A Naiche
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Na Yoon Paik
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Kostandin V Pajcini
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Jan K Kitajewski
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, 60612, USA.
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
21
|
Novel scFv against Notch Ligand JAG1 Suitable for Development of Cell Therapies toward JAG1-Positive Tumors. Biomolecules 2023; 13:biom13030459. [PMID: 36979394 PMCID: PMC10046313 DOI: 10.3390/biom13030459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The Notch signaling ligand JAG1 is overexpressed in various aggressive tumors and is associated with poor clinical prognosis. Hence, therapies targeting oncogenic JAG1 hold great potential for the treatment of certain tumors. Here, we report the identification of specific anti-JAG1 single-chain variable fragments (scFvs), one of them endowing chimeric antigen receptor (CAR) T cells with cytotoxicity against JAG1-positive cells. Anti-JAG1 scFvs were identified from human phage display libraries, reformatted into full-length monoclonal antibodies (Abs), and produced in mammalian cells. The characterization of these Abs identified two specific anti-JAG1 Abs (J1.B5 and J1.F1) with nanomolar affinities. Cloning the respective scFv sequences in our second- and third-generation CAR backbones resulted in six anti-JAG1 CAR constructs, which were screened for JAG1-mediated T-cell activation in Jurkat T cells in coculture assays with JAG1-positive cell lines. Studies in primary T cells demonstrated that one CAR harboring the J1.B5 scFv significantly induced effective T-cell activation in the presence of JAG1-positive, but not in JAG1-knockout, cancer cells, and enabled specific killing of JAG1-positive cells. Thus, this new anti-JAG1 scFv represents a promising candidate for the development of cell therapies against JAG1-positive tumors.
Collapse
|
22
|
Abstract
Notch signaling is a highly conserved signaling pathway that coordinates cellular differentiation during the development and homeostasis in numerous organs and tissues across metazoans. Activation of Notch signaling relies on direct contact between neighboring cells and mechanical pulling of the Notch receptors by the Notch ligands. Notch signaling is commonly used in developmental processes to coordinate the differentiation into distinct cell fates of neighboring cells. In this Development at a Glance article, we describe the current understanding of the Notch pathway activation and the different regulatory levels that control the pathway. We then describe several developmental processes where Notch is crucial for coordinating differentiation. These examples include processes that are largely based on lateral inhibition mechanisms giving rise to alternating patterns (e.g. SOP selection, hair cell in the inner ear and neural stem cell maintenance), as well as processes where Notch activity is oscillatory (e.g. somitogenesis and neurogenesis in mammals).
Collapse
Affiliation(s)
- Oren Gozlan
- School of Neurobiology, Biochemistry, and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - David Sprinzak
- School of Neurobiology, Biochemistry, and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
23
|
Gonzalez-Perez D, Das S, Antfolk D, Ahsan HS, Medina E, Dundes CE, Jokhai RT, Egan ED, Blacklow SC, Loh KM, Rodriguez PC, Luca VC. Affinity-matured DLL4 ligands as broad-spectrum modulators of Notch signaling. Nat Chem Biol 2023; 19:9-17. [PMID: 36050494 PMCID: PMC10132381 DOI: 10.1038/s41589-022-01113-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/14/2022] [Indexed: 12/31/2022]
Abstract
The Notch pathway regulates cell fate decisions and is an emerging target for regenerative and cancer therapies. Recombinant Notch ligands are attractive candidates for modulating Notch signaling; however, their intrinsically low receptor-binding affinity restricts their utility in biomedical applications. To overcome this limitation, we evolved variants of the ligand Delta-like 4 with enhanced affinity and cross-reactivity. A consensus variant with maximized binding affinity, DeltaMAX, binds human and murine Notch receptors with 500- to 1,000-fold increased affinity compared with wild-type human Delta-like 4. DeltaMAX also potently activates Notch in plate-bound, bead-bound and cellular formats. When administered as a soluble decoy, DeltaMAX inhibits Notch in reporter and neuronal differentiation assays, highlighting its dual utility as an agonist or antagonist. Finally, we demonstrate that DeltaMAX stimulates increased proliferation and expression of effector mediators in T cells. Taken together, our data define DeltaMAX as a versatile tool for broad-spectrum activation or inhibition of Notch signaling.
Collapse
Affiliation(s)
| | - Satyajit Das
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, USA
| | - Daniel Antfolk
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL, USA
| | - Hadia S Ahsan
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Elliot Medina
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL, USA
| | - Carolyn E Dundes
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rayyan T Jokhai
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Emily D Egan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Kyle M Loh
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Vincent C Luca
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
24
|
Vargas‐Franco D, Kalra R, Draper I, Pacak CA, Asakura A, Kang PB. The Notch signaling pathway in skeletal muscle health and disease. Muscle Nerve 2022; 66:530-544. [PMID: 35968817 PMCID: PMC9804383 DOI: 10.1002/mus.27684] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 01/05/2023]
Abstract
The Notch signaling pathway is a key regulator of skeletal muscle development and regeneration. Over the past decade, the discoveries of three new muscle disease genes have added a new dimension to the relationship between the Notch signaling pathway and skeletal muscle: MEGF10, POGLUT1, and JAG2. We review the clinical syndromes associated with pathogenic variants in each of these genes, known molecular and cellular functions of their protein products with a particular focus on the Notch signaling pathway, and potential novel therapeutic targets that may emerge from further investigations of these diseases. The phenotypes associated with two of these genes, POGLUT1 and JAG2, clearly fall within the realm of muscular dystrophy, whereas the third, MEGF10, is associated with a congenital myopathy/muscular dystrophy overlap syndrome classically known as early-onset myopathy, areflexia, respiratory distress, and dysphagia. JAG2 is a canonical Notch ligand, POGLUT1 glycosylates the extracellular domain of Notch receptors, and MEGF10 interacts with the intracellular domain of NOTCH1. Additional genes and their encoded proteins relevant to muscle function and disease with links to the Notch signaling pathway include TRIM32, ATP2A1 (SERCA1), JAG1, PAX7, and NOTCH2NLC. There is enormous potential to identify convergent mechanisms of skeletal muscle disease and new therapeutic targets through further investigations of the Notch signaling pathway in the context of skeletal muscle development, maintenance, and disease.
Collapse
Affiliation(s)
| | - Raghav Kalra
- Division of Pediatric NeurologyUniversity of Florida College of MedicineGainesvilleFlorida
| | - Isabelle Draper
- Molecular Cardiology Research InstituteTufts Medical CenterBostonMassachusetts
| | - Christina A. Pacak
- Paul and Sheila Wellstone Muscular Dystrophy CenterUniversity of Minnesota Medical SchoolMinneapolisMinnesota
- Department of NeurologyUniversity of Minnesota Medical SchoolMinneapolisMinnesota
| | - Atsushi Asakura
- Paul and Sheila Wellstone Muscular Dystrophy CenterUniversity of Minnesota Medical SchoolMinneapolisMinnesota
- Department of NeurologyUniversity of Minnesota Medical SchoolMinneapolisMinnesota
| | - Peter B. Kang
- Paul and Sheila Wellstone Muscular Dystrophy CenterUniversity of Minnesota Medical SchoolMinneapolisMinnesota
- Department of NeurologyUniversity of Minnesota Medical SchoolMinneapolisMinnesota
- Institute for Translational NeuroscienceUniversity of Minnesota Medical SchoolMinneapolisMinnesota
| |
Collapse
|
25
|
Meng Y, Sanlidag S, Jensen SA, Burnap SA, Struwe WB, Larsen AH, Feng X, Mittal S, Sansom MSP, Sahlgren C, Handford PA. An N-glycan on the C2 domain of JAGGED1 is important for Notch activation. Sci Signal 2022; 15:eabo3507. [PMID: 36219682 DOI: 10.1126/scisignal.abo3507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The canonical members of the Jagged/Serrate and Delta families of transmembrane ligands have an extracellular, amino-terminal C2 domain that binds to phospholipids and is required for optimal activation of the Notch receptor. Somatic mutations that cause amino substitutions in the C2 domain in human JAGGED1 (JAG1) have been identified in tumors. We found in reporter cell assays that mutations affecting an N-glycosylation site reduced the ligand's ability to activate Notch. This N-glycosylation site located in the C2 domain is conserved in the Jagged/Serrate family but is lacking in the Delta family. Site-specific glycan analysis of the JAG1 amino terminus demonstrated that occupancy of this site by either a complex-type or high-mannose N-glycan was required for full Notch activation in reporter cell assays. Similarly to JAG1 variants with defects in Notch binding, N-glycan removal, either by mutagenesis of the glycosylation site or by endoglycosidase treatment, reduced receptor activation. The N-glycan variants also reduced receptor activation in a Notch signaling-dependent vascular smooth muscle cell differentiation assay. Loss of the C2 N-glycan reduced JAG1 binding to liposomes to a similar extent as the loss of the entire C2 domain. Molecular dynamics simulations suggested that the presence of the N-glycan limits the orientation of JAG1 relative to the membrane, thus facilitating Notch binding. These data are consistent with a critical role for the N-glycan in promoting a lipid-binding conformation that is required to orient Jagged at the cell membrane for full Notch activation.
Collapse
Affiliation(s)
- Yao Meng
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Sami Sanlidag
- Faculty for Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland.,Turku Bioscience Centre, Åbo Akademi University and University of Turku, Turku, Finland
| | - Sacha A Jensen
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Sean A Burnap
- Kavli Institute for NanoScience Discovery and Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Weston B Struwe
- Kavli Institute for NanoScience Discovery and Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Andreas H Larsen
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Xinyi Feng
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Shruti Mittal
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Cecilia Sahlgren
- Faculty for Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland.,Turku Bioscience Centre, Åbo Akademi University and University of Turku, Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Penny A Handford
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
26
|
Vázquez-Ulloa E, Lin KL, Lizano M, Sahlgren C. Reversible and bidirectional signaling of notch ligands. Crit Rev Biochem Mol Biol 2022; 57:377-398. [PMID: 36048510 DOI: 10.1080/10409238.2022.2113029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Notch signaling pathway is a direct cell-cell communication system involved in a wide variety of biological processes, and its disruption is observed in several pathologies. The pathway is comprised of a ligand-expressing (sender) cell and a receptor-expressing (receiver) cell. The canonical ligands are members of the Delta/Serrate/Lag-1 (DSL) family of proteins. Their binding to a Notch receptor in a neighboring cell induces a conformational change in the receptor, which will undergo regulated intramembrane proteolysis (RIP), liberating the Notch intracellular domain (NICD). The NICD is translocated to the nucleus and promotes gene transcription. It has been demonstrated that the ligands can also undergo RIP and nuclear translocation, suggesting a function for the ligands in the sender cell and possible bidirectionality of the Notch pathway. Although the complete mechanism of ligand processing is not entirely understood, and its dependence on Notch receptors has not been ruled out. Also, ligands have autonomous functions beyond Notch activation. Here we review the concepts of reverse and bidirectional signalization of DSL proteins and discuss the characteristics that make them more than just ligands of the Notch pathway.
Collapse
Affiliation(s)
- Elenaé Vázquez-Ulloa
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Kai-Lan Lin
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Departamento de Medicina Genomica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Cecilia Sahlgren
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
27
|
Choi JI, Rim JH, Jang SI, Park JS, Park H, Cho JH, Lim JB. The role of Jagged1 as a dynamic switch of cancer cell plasticity in PDAC assembloids. Theranostics 2022; 12:4431-4445. [PMID: 35673567 PMCID: PMC9169352 DOI: 10.7150/thno.71364] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC), which commonly relapses due to chemotherapy resistance, has a poor 5-year survival rate (< 10%). The ability of PDAC to dynamically switch between cancer-initiating cell (CIC) and non-CIC states, which is influenced by both internal and external events, has been suggested as a reason for the low drug efficacy. However, cancer cell plasticity using patient-derived PDAC organoids remains poorly understood. Methods: First, we successfully differentiated CICs, which were the main components of PDAC organoids, toward epithelial ductal carcinomas. We further established PDAC assembloids of organoid-derived differentiated ductal cancer cells with endothelial cells (ECs) and autologous immune cells. To investigate the mechanism for PDAC plasticity, we performed single-cell RNA sequencing analysis after culturing the assembloids for 7 days. Results: In the PDAC assembloids, the ECs and immune cells acted as tumor-supporting cells and induced plasticity in the differentiated ductal carcinomas. We also observed that the transcriptome dynamics during PDAC re-programming were related to the WNT/beta-catenin pathway and apoptotic process. Interestingly, we found that WNT5B in the ECs was highly expressed by trans interaction with a JAG1. Furthermore, JAG1 was highly expressed on PDAC during differentiation, and NOTCH1/NOTCH2 were expressed on the ECs at the same time. The WNT5B expression level correlated positively with those of JAG1, NOTCH1, and NOTCH2, and high JAG1 expression correlated with poor survival. Additionally, we experimentally demonstrated that neutralizing JAG1 inhibited cancer cell plasticity. Conclusions: Our results indicate that JAG1 on PDAC plays a critical role in cancer cell plasticity and maintenance of tumor heterogeneity.
Collapse
Affiliation(s)
- Jae-Il Choi
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - John Hoon Rim
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Ill Jang
- Institute of Gastroenterology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon Seong Park
- Pancreatobiliary Cancer Clinic, Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hak Park
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Hee Cho
- Institute of Gastroenterology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong-Baeck Lim
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
28
|
Patterson LL, Velayutham TS, Byerly CD, Bui DC, Patel J, Veljkovic V, Paessler S, McBride JW. Ehrlichia SLiM Ligand Mimetic Activates Notch Signaling in Human Monocytes. mBio 2022; 13:e0007622. [PMID: 35357214 PMCID: PMC9040721 DOI: 10.1128/mbio.00076-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/14/2022] [Indexed: 12/15/2022] Open
Abstract
Ehrlichia chaffeensis evades innate host defenses by reprogramming the mononuclear phagocyte through mechanisms that involve the exploitation of multiple evolutionarily conserved cellular signaling pathways, including Notch. This immune evasion strategy is directed in part by tandem repeat protein (TRP) effectors. Specifically, the TRP120 effector activates and regulates Notch signaling through interactions with the Notch receptor and the negative regulator, F-Box and WD repeat domain-containing 7 (FBW7). However, the specific molecular interactions and motifs required for E. chaffeensis TRP120-Notch receptor interaction and activation have not been defined. To investigate the molecular basis of TRP120 Notch activation, we compared TRP120 with endogenous canonical/noncanonical Notch ligands and identified a short region of sequence homology within the tandem repeat (TR) domain. TRP120 was predicted to share biological function with Notch ligands, and a function-associated sequence in the TR domain was identified. To investigate TRP120-Notch receptor interactions, colocalization between TRP120 and endogenous Notch-1 was observed. Moreover, direct interactions between full-length TRP120, the TRP120 TR domain containing the putative Notch ligand sequence, and the Notch receptor LBR were demonstrated. To molecularly define the TRP120 Notch activation motif, peptide mapping was used to identify an 11-amino acid short linear motif (SLiM) located within the TRP120 TR that activated Notch signaling and downstream gene expression. Peptide mutants of the Notch SLiM or anti-Notch SLiM antibody reduced or eliminated Notch activation and NICD nuclear translocation. This investigation reveals a novel molecularly defined pathogen encoded Notch SLiM mimetic that activates Notch signaling consistent with endogenous ligands. IMPORTANCE E. chaffeensis infects and replicates in mononuclear phagocytes, but how it evades innate immune defenses of this indispensable primary innate immune cell is not well understood. This investigation revealed the molecular details of a ligand mimicry cellular reprogramming strategy that involved a short linear motif (SLiM), which enabled E. chaffeensis to exploit host cell signaling to establish and maintain infection. E. chaffeensis TRP120 is a moonlighting effector that has been associated with cellular activation and other functions, including ubiquitin ligase activity. Herein, we identified and demonstrated that a SLiM present within each tandem repeat of TRP120 activated Notch signaling. Notch is an evolutionarily conserved signaling pathway responsible for many cell functions, including cell fate, development, and innate immunity. This study is significant because it revealed the first molecularly defined pathogen encoded SLiM that appears to have evolved de novo to mimic endogenous Notch ligands. Understanding Notch activation during E. chaffeensis infection provides a model to study pathogen exploitation of signaling pathways and will be useful in developing molecularly targeted countermeasures for inhibiting infection by a multitude of disease-causing pathogens that exploit cell signaling through molecular mimicry.
Collapse
Affiliation(s)
- LaNisha L. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Caitlan D. Byerly
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Duc Cuong Bui
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jignesh Patel
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
29
|
Nian FS, Hou PS. Evolving Roles of Notch Signaling in Cortical Development. Front Neurosci 2022; 16:844410. [PMID: 35422684 PMCID: PMC9001970 DOI: 10.3389/fnins.2022.844410] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/15/2022] [Indexed: 01/09/2023] Open
Abstract
Expansion of the neocortex is thought to pave the way toward acquisition of higher cognitive functions in mammals. The highly conserved Notch signaling pathway plays a crucial role in this process by regulating the size of the cortical progenitor pool, in part by controlling the balance between self-renewal and differentiation. In this review, we introduce the components of Notch signaling pathway as well as the different mode of molecular mechanisms, including trans- and cis-regulatory processes. We focused on the recent findings with regard to the expression pattern and levels in regulating neocortical formation in mammals and its interactions with other known signaling pathways, including Slit–Robo signaling and Shh signaling. Finally, we review the functions of Notch signaling pathway in different species as well as other developmental process, mainly somitogenesis, to discuss how modifications to the Notch signaling pathway can drive the evolution of the neocortex.
Collapse
Affiliation(s)
- Fang-Shin Nian
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Shan Hou
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- *Correspondence: Pei-Shan Hou,
| |
Collapse
|
30
|
O’Brien KA, Murray AJ, Simonson TS. Notch Signaling and Cross-Talk in Hypoxia: A Candidate Pathway for High-Altitude Adaptation. Life (Basel) 2022; 12:437. [PMID: 35330188 PMCID: PMC8954738 DOI: 10.3390/life12030437] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/17/2022] Open
Abstract
Hypoxia triggers complex inter- and intracellular signals that regulate tissue oxygen (O2) homeostasis, adjusting convective O2 delivery and utilization (i.e., metabolism). Human populations have been exposed to high-altitude hypoxia for thousands of years and, in doing so, have undergone natural selection of multiple gene regions supporting adaptive traits. Some of the strongest selection signals identified in highland populations emanate from hypoxia-inducible factor (HIF) pathway genes. The HIF pathway is a master regulator of the cellular hypoxic response, but it is not the only regulatory pathway under positive selection. For instance, regions linked to the highly conserved Notch signaling pathway are also top targets, and this pathway is likely to play essential roles that confer hypoxia tolerance. Here, we explored the importance of the Notch pathway in mediating the cellular hypoxic response. We assessed transcriptional regulation of the Notch pathway, including close cross-talk with HIF signaling, and its involvement in the mediation of angiogenesis, cellular metabolism, inflammation, and oxidative stress, relating these functions to generational hypoxia adaptation.
Collapse
Affiliation(s)
- Katie A. O’Brien
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK;
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK;
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
31
|
Osathanon T, Egusa H. Notch signaling in induced pluripotent stem cells. MOLECULAR PLAYERS IN IPSC TECHNOLOGY 2022:249-284. [DOI: 10.1016/b978-0-323-90059-1.00003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
32
|
Márquez-Expósito L, Lavoz C, Cantero-Navarro E, Rodrigues-Diez RR, Mezzano S, Ruiz-Ortega M. Studying the NOTCH Signaling Pathway Activation in Kidney Biopsies. Methods Mol Biol 2022; 2472:187-196. [PMID: 35674901 DOI: 10.1007/978-1-0716-2201-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The NOTCH signaling pathway is an evolutionarily conserved family of transmembrane receptors, ligands, and transcription factors. The NOTCH signaling is activated in many biological processes including nephrogenesis, tubulogenesis, and glomerulogenesis, as well as during pathological situations. Activation of Notch signaling is characterized by successive proteolytic cleavages triggered by the interaction between membrane-bound Notch receptors and ligands expressed on neighboring cells. In chronic kidney diseases, activation of the canonical NOTCH signaling pathway has been described. The following protocols will allow the direct assessment of Jagged-1/NOTCH signaling activation in biopsies of patients with chronic kidney diseases and in murine experimental models of renal damage.
Collapse
Affiliation(s)
- Laura Márquez-Expósito
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Lavoz
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile
| | - Elena Cantero-Navarro
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Raúl R Rodrigues-Diez
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain.
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
33
|
Liu LP, Zheng DX, Xu ZF, Zhou HC, Wang YC, Zhou H, Ge JY, Sako D, Li M, Akimoto K, Li YM, Zheng YW. Transcriptomic and Functional Evidence Show Similarities between Human Amniotic Epithelial Stem Cells and Keratinocytes. Cells 2021; 11:70. [PMID: 35011631 PMCID: PMC8750621 DOI: 10.3390/cells11010070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 01/06/2023] Open
Abstract
Amniotic epithelial stem cells (AESCs) are considered as potential alternatives to keratinocytes (KCs) in tissue-engineered skin substitutes used for treating skin damage. However, their clinical application is limited since similarities and distinctions between AESCs and KCs remain unclear. Herein, a transcriptomics analysis and functional evaluation were used to understand the commonalities and differences between AESCs and KCs. RNA-sequencing revealed that AESCs are involved in multiple epidermis-associated biological processes shared by KCs and show more similarity to early stage immature KCs than to adult KCs. However, AESCs were observed to be heterogeneous, and some possessed hybrid mesenchymal and epithelial features distinct from KCs. A functional evaluation revealed that AESCs can phagocytose melanosomes transported by melanocytes in both 2D and 3D co-culture systems similar to KCs, which may help reconstitute pigmented skin. The overexpression of TP63 and activation of NOTCH signaling could promote AESC stemness and improve their differentiation features, respectively, bridging the gap between AESCs and KCs. These changes induced the convergence of AESC cell fate with KCs. In future, modified reprogramming strategies, such as the use of small molecules, may facilitate the further modulation human AESCs for use in skin regeneration.
Collapse
Affiliation(s)
- Li-Ping Liu
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (L.-P.L.); (H.-C.Z.); (Y.-C.W.); (H.Z.); (M.L.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (D.-X.Z.); (J.-Y.G.); (D.S.)
| | - Dong-Xu Zheng
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (D.-X.Z.); (J.-Y.G.); (D.S.)
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Zheng-Fang Xu
- Department of Obstetrics and Gynaecology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| | - Hu-Cheng Zhou
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (L.-P.L.); (H.-C.Z.); (Y.-C.W.); (H.Z.); (M.L.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yun-Cong Wang
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (L.-P.L.); (H.-C.Z.); (Y.-C.W.); (H.Z.); (M.L.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Hang Zhou
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (L.-P.L.); (H.-C.Z.); (Y.-C.W.); (H.Z.); (M.L.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Jian-Yun Ge
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (D.-X.Z.); (J.-Y.G.); (D.S.)
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Daisuke Sako
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (D.-X.Z.); (J.-Y.G.); (D.S.)
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan;
| | - Mi Li
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (L.-P.L.); (H.-C.Z.); (Y.-C.W.); (H.Z.); (M.L.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Kazunori Akimoto
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan;
| | - Yu-Mei Li
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (L.-P.L.); (H.-C.Z.); (Y.-C.W.); (H.Z.); (M.L.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (L.-P.L.); (H.-C.Z.); (Y.-C.W.); (H.Z.); (M.L.)
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (D.-X.Z.); (J.-Y.G.); (D.S.)
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- School of Medicine, Yokohama City University, Yokohama 236-0004, Kanagawa, Japan
| |
Collapse
|
34
|
Grosche S, Marenholz I, Esparza-Gordillo J, Arnau-Soler A, Pairo-Castineira E, Rüschendorf F, Ahluwalia TS, Almqvist C, Arnold A, Baurecht H, Bisgaard H, Bønnelykke K, Brown SJ, Bustamante M, Curtin JA, Custovic A, Dharmage SC, Esplugues A, Falchi M, Fernandez-Orth D, Ferreira MAR, Franke A, Gerdes S, Gieger C, Hakonarson H, Holt PG, Homuth G, Hubner N, Hysi PG, Jarvelin MR, Karlsson R, Koppelman GH, Lau S, Lutz M, Magnusson PKE, Marks GB, Müller-Nurasyid M, Nöthen MM, Paternoster L, Pennell CE, Peters A, Rawlik K, Robertson CF, Rodriguez E, Sebert S, Simpson A, Sleiman PMA, Standl M, Stölzl D, Strauch K, Szwajda A, Tenesa A, Thompson PJ, Ullemar V, Visconti A, Vonk JM, Wang CA, Weidinger S, Wielscher M, Worth CL, Xu CJ, Lee YA. Rare variant analysis in eczema identifies exonic variants in DUSP1, NOTCH4 and SLC9A4. Nat Commun 2021; 12:6618. [PMID: 34785669 PMCID: PMC8595373 DOI: 10.1038/s41467-021-26783-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 10/21/2021] [Indexed: 11/10/2022] Open
Abstract
Previous genome-wide association studies revealed multiple common variants involved in eczema but the role of rare variants remains to be elucidated. Here, we investigate the role of rare variants in eczema susceptibility. We meta-analyze 21 study populations including 20,016 eczema cases and 380,433 controls. Rare variants are imputed with high accuracy using large population-based reference panels. We identify rare exonic variants in DUSP1, NOTCH4, and SLC9A4 to be associated with eczema. In DUSP1 and NOTCH4 missense variants are predicted to impact conserved functional domains. In addition, five novel common variants at SATB1-AS1/KCNH8, TRIB1/LINC00861, ZBTB1, TBX21/OSBPL7, and CSF2RB are discovered. While genes prioritized based on rare variants are significantly up-regulated in the skin, common variants point to immune cell function. Over 20% of the single nucleotide variant-based heritability is attributable to rare and low-frequency variants. The identified rare/low-frequency variants located in functional protein domains point to promising targets for novel therapeutic approaches to eczema. Genetic studies of eczema to date have mostly explored common genetic variation. Here, the authors perform a large meta-analysis for common and rare variants and discover 8 loci associated with eczema. Over 20% of the heritability of the condition is attributable to rare variants.
Collapse
Affiliation(s)
- Sarah Grosche
- Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany.,Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité University Medical Center, Berlin, Germany.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ingo Marenholz
- Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany.,Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité University Medical Center, Berlin, Germany
| | - Jorge Esparza-Gordillo
- Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany.,Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité University Medical Center, Berlin, Germany.,GlaxoSmithKline, Stevenage, UK
| | - Aleix Arnau-Soler
- Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany.,Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité University Medical Center, Berlin, Germany
| | - Erola Pairo-Castineira
- Roslin Institute, University of Edinburgh, Edinburgh, UK.,MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | | | - Tarunveer S Ahluwalia
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.,Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Andreas Arnold
- Clinic and Polyclinic of Dermatology, University Medicine Greifswald, Greifswald, Germany
| | | | - Hansjörg Baurecht
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Kiel, Germany.,Department of Epidemiology and Preventive Medicine, University Regensburg, Regensburg, Germany
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Sara J Brown
- Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Mariona Bustamante
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
| | - John A Curtin
- Division of Infection Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre and Manchester University NHS Foundation Trust, Manchester, UK
| | - Adnan Custovic
- National Lung and Heart Institute, Imperial College London, London, UK
| | - Shyamali C Dharmage
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Ana Esplugues
- Nursing School, University of Valencia, FISABIO-University Jaume I-University of Valencia Joint Research Unit of Epidemiology and Environmental Health, CIBERESP, Valencia, Spain
| | - Mario Falchi
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
| | | | - Manuel A R Ferreira
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sascha Gerdes
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Christian Gieger
- Research Unit Molecular Epidemiology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, and Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick G Holt
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Norbert Hubner
- Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany
| | - Pirro G Hysi
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, UK.,Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, the Netherlands
| | - Susanne Lau
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité University Medical Center, Berlin, Germany
| | - Manuel Lutz
- Institute of Genetic Epidemiology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Guy B Marks
- Woolcock Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany.,Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Faculty of Medicine, LMU Munich, Munich, Germany.,Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Lavinia Paternoster
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Craig E Pennell
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Newcastle, Australia
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | - Konrad Rawlik
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Colin F Robertson
- Respiratory Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Elke Rodriguez
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Sylvain Sebert
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, UK.,Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Angela Simpson
- Division of Infection Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre and Manchester University NHS Foundation Trust, Manchester, UK
| | - Patrick M A Sleiman
- Center for Applied Genomics, Children's Hospital of Philadelphia, and Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | - Dora Stölzl
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany.,Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Faculty of Medicine, LMU Munich, Munich, Germany.,Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Agnieszka Szwajda
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Albert Tenesa
- Roslin Institute, University of Edinburgh, Edinburgh, UK.,MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK.,Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, Edinburgh, UK
| | - Philip J Thompson
- Institute for Respiratory Health and Centre for Respiratory Health, School of Biomedical Sciences, University of Western Australia, Nedlands, Australia
| | - Vilhelmina Ullemar
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Alessia Visconti
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
| | - Judith M Vonk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, the Netherlands
| | - Carol A Wang
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Newcastle, Australia
| | - Stephan Weidinger
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Matthias Wielscher
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, UK
| | | | - Chen-Jian Xu
- Department of Pediatric Pulmonology and Pediatric Allergology, University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, the Netherlands.,Department of Gastroenterology, Hepatology and Endocrinology, Centre for individualized infection medicine (CIIM), Hannover Medical School, Hannover, Germany
| | - Young-Ae Lee
- Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany. .,Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité University Medical Center, Berlin, Germany.
| |
Collapse
|
35
|
Silva G, Sales-Dias J, Casal D, Alves S, Domenici G, Barreto C, Matos C, Lemos AR, Matias AT, Kucheryava K, Ferreira A, Moita MR, Braga S, Brito C, Cabral MG, Casalou C, Barral DC, Sousa PMF, Videira PA, Bandeiras TM, Barbas A. Development of Dl1.72, a Novel Anti-DLL1 Antibody with Anti-Tumor Efficacy against Estrogen Receptor-Positive Breast Cancer. Cancers (Basel) 2021; 13:cancers13164074. [PMID: 34439228 PMCID: PMC8392387 DOI: 10.3390/cancers13164074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Over 70% of breast cancers (BCs) are estrogen receptor-positive (ER+). The development of endocrine therapy has considerably improved patient outcomes. However, there is a clinical need for novel effective therapies against ER+ BCs, since many of these do not respond to standard therapy, and more than one-third of responders acquire resistance, experience relapse and metastasize. The Notch ligand Delta-like 1 (DLL1) is a key player in ER+ BC development and aggressiveness. Contrary to complete Notch pharmacological inhibitors, antibody-targeting of individual Notch components is expected to have superior therapeutic efficacy and be better tolerated. In this study, we developed and characterized a novel specific anti-DLL1 antibody with efficacy in inhibiting BC cell proliferation, mammosphere formation and angiogenesis, as well as anti-tumor and anti-metastatic efficacy in an ER+ BC mouse model without side effects. Thus, our data suggest that this anti-DLL1 antibody is a promising candidate for ER+ BC treatment. Abstract The Notch-signaling ligand DLL1 has emerged as an important player and promising therapeutic target in breast cancer (BC). DLL1-induced Notch activation promotes tumor cell proliferation, survival, migration, angiogenesis and BC stem cell maintenance. In BC, DLL1 overexpression is associated with poor prognosis, particularly in estrogen receptor-positive (ER+) subtypes. Directed therapy in early and advanced BC has dramatically changed the natural course of ER+ BC; however, relapse is a major clinical issue, and new therapeutic strategies are needed. Here, we report the development and characterization of a novel monoclonal antibody specific to DLL1. Using phage display technology, we selected an anti-DLL1 antibody fragment, which was converted into a full human IgG1 (Dl1.72). The Dl1.72 antibody exhibited DLL1 specificity and affinity in the low nanomolar range and significantly impaired DLL1-Notch signaling and expression of Notch target genes in ER+ BC cells. Functionally, in vitro treatment with Dl1.72 reduced MCF-7 cell proliferation, migration, mammosphere formation and endothelial tube formation. In vivo, Dl1.72 significantly inhibited tumor growth, reducing both tumor cell proliferation and liver metastases in a xenograft mouse model, without apparent toxicity. These findings suggest that anti-DLL1 Dl1.72 could be an attractive agent against ER+ BC, warranting further preclinical investigation.
Collapse
Affiliation(s)
- Gabriela Silva
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
- Correspondence: ; Tel.: +351-214-469-419
| | - Joana Sales-Dias
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Diogo Casal
- Departamento de Anatomia, NOVA Medical School (NMS), Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal; (D.C.); (S.A.)
- iNOVA4Health, CEDOC, NOVA Medical School (NMS), Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal; (A.T.M.); (A.F.); (S.B.); (M.G.C.); (C.C.); (D.C.B.)
| | - Sara Alves
- Departamento de Anatomia, NOVA Medical School (NMS), Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal; (D.C.); (S.A.)
- Serviço de Anatomia Patológica, Centro Hospitalar de Lisboa Central-Hospital de São José, 1150-199 Lisbon, Portugal
| | - Giacomo Domenici
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Clara Barreto
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
| | - Carolina Matos
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
| | - Ana R. Lemos
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana T. Matias
- iNOVA4Health, CEDOC, NOVA Medical School (NMS), Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal; (A.T.M.); (A.F.); (S.B.); (M.G.C.); (C.C.); (D.C.B.)
| | - Khrystyna Kucheryava
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
| | - Andreia Ferreira
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
| | - Maria Raquel Moita
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Sofia Braga
- iNOVA4Health, CEDOC, NOVA Medical School (NMS), Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal; (A.T.M.); (A.F.); (S.B.); (M.G.C.); (C.C.); (D.C.B.)
- Unidade de Mama, Instituto CUF de Oncologia, 1998-018 Lisbon, Portugal
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - M. Guadalupe Cabral
- iNOVA4Health, CEDOC, NOVA Medical School (NMS), Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal; (A.T.M.); (A.F.); (S.B.); (M.G.C.); (C.C.); (D.C.B.)
| | - Cristina Casalou
- iNOVA4Health, CEDOC, NOVA Medical School (NMS), Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal; (A.T.M.); (A.F.); (S.B.); (M.G.C.); (C.C.); (D.C.B.)
| | - Duarte C. Barral
- iNOVA4Health, CEDOC, NOVA Medical School (NMS), Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal; (A.T.M.); (A.F.); (S.B.); (M.G.C.); (C.C.); (D.C.B.)
| | - Pedro M. F. Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Paula A. Videira
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| | - Tiago M. Bandeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Barbas
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.S.-D.); (G.D.); (C.B.); (C.M.); (A.R.L.); (K.K.); (M.R.M.); (C.B.); (P.M.F.S.); (T.M.B.); (A.B.)
| |
Collapse
|
36
|
Feedback regulation of Notch signaling and myogenesis connected by MyoD-Dll1 axis. PLoS Genet 2021; 17:e1009729. [PMID: 34370738 PMCID: PMC8376015 DOI: 10.1371/journal.pgen.1009729] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/19/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022] Open
Abstract
Muscle precursor cells known as myoblasts are essential for muscle development and regeneration. Notch signaling is an ancient intercellular communication mechanism that plays prominent roles in controlling the myogenic program of myoblasts. Currently whether and how the myogenic cues feedback to refine Notch activities in these cells are largely unknown. Here, by mouse and human gene gain/loss-of-function studies, we report that MyoD directly turns on the expression of Notch-ligand gene Dll1 which activates Notch pathway to prevent precautious differentiation in neighboring myoblasts, while autonomously inhibits Notch to facilitate a myogenic program in Dll1 expressing cells. Mechanistically, we studied cis-regulatory DNA motifs underlying the MyoD-Dll1-Notch axis in vivo by characterizing myogenesis of a novel E-box deficient mouse model, as well as in human cells through CRISPR-mediated interference. These results uncovered the crucial transcriptional mechanism that mediates the reciprocal controls of Notch and myogenesis.
Collapse
|
37
|
Martins T, Meng Y, Korona B, Suckling R, Johnson S, Handford PA, Lea SM, Bray SJ. The conserved C2 phospholipid-binding domain in Delta contributes to robust Notch signalling. EMBO Rep 2021; 22:e52729. [PMID: 34347930 PMCID: PMC8490980 DOI: 10.15252/embr.202152729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/10/2021] [Accepted: 07/15/2021] [Indexed: 11/09/2022] Open
Abstract
Accurate Notch signalling is critical for development and homeostasis. Fine‐tuning of Notch–ligand interactions has substantial impact on signalling outputs. Recent structural studies have identified a conserved N‐terminal C2 domain in human Notch ligands which confers phospholipid binding in vitro. Here, we show that Drosophila ligands Delta and Serrate adopt the same C2 domain structure with analogous variations in the loop regions, including the so‐called β1‐2 loop that is involved in phospholipid binding. Mutations in the β1‐2 loop of the Delta C2 domain retain Notch binding but have impaired ability to interact with phospholipids in vitro. To investigate its role in vivo, we deleted five residues within the β1‐2 loop of endogenous Delta. Strikingly, this change compromises ligand function. The modified Delta enhances phenotypes produced by Delta loss‐of‐function alleles and suppresses that of Notch alleles. As the modified protein is present on the cell surface in normal amounts, these results argue that C2 domain phospholipid binding is necessary for robust signalling in vivo fine‐tuning the balance of trans and cis ligand–receptor interactions.
Collapse
Affiliation(s)
- Torcato Martins
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Yao Meng
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Richard Suckling
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Sarah J Bray
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
38
|
Mao C, Ma Z, Jia Y, Li W, Xie N, Zhao G, Ma B, Yu F, Sun J, Zhou Y, Cui Q, Fu Y, Kong W. Nidogen-2 Maintains the Contractile Phenotype of Vascular Smooth Muscle Cells and Prevents Neointima Formation via Bridging Jagged1-Notch3 Signaling. Circulation 2021; 144:1244-1261. [PMID: 34315224 DOI: 10.1161/circulationaha.120.053361] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: How the extracellular matrix (ECM) microenvironment modulates the contractile phenotype of vascular smooth muscle cells (VSMCs) and confers vascular homeostasis remains elusive. Methods: To explore the key ECM proteins in the maintenance of the contractile phenotype of VSMCs, we applied protein-protein interaction (PPI) network analysis to explore novel ECM proteins associated with the VSMC phenotype. By combining in vitro and in vivo genetic mice vascular injury model, we identified nidogen-2, a basement membrane (BM) glycoprotein, as a key ECM protein for maintenance of vascular smooth muscle cell identity. Results: We collected a VSMC phenotype-related gene dataset (VSMCPRG dataset) by using Gene Ontology (GO) annotation combined with a literature search. A computational analysis of protein-protein interactions between ECM protein genes and the genes from the VSMCPRG dataset revealed the candidate gene nidogen-2, a BM glycoprotein involved in regulation of the VSMC phenotype. Indeed, nidogen-2-deficient VSMCs exhibited loss of contractile phenotype in vitro, and compared with wild-type (WT) mice, nidogen-2-/- mice showed aggravated post-wire injury neointima formation of carotid arteries. Further bioinformatics analysis, co-immunoprecipitation assays and luciferase assays revealed that nidogen-2 specifically interacted with Jagged1, a conventional Notch ligand. Nidogen-2 maintained the VSMC contractile phenotype via Jagged1-Notch3 signaling but not Notch1 or Notch2 signaling. Notably, nidogen-2 enhanced Jagged1 and Notch3 interaction and subsequent Notch3 activation. Reciprocally, Jagged1 and Notch3 interaction, signaling activation, and Jagged1-triggered VSMC differentiation were significantly repressed in nidogen-2-deficient VSMCs. In accordance, the suppressive effect of Jagged1 overexpression on neointima formation was attenuated in nidogen-2-/- mice compared to wild-type mice. Conclusions: Nidogen-2 maintains the contractile phenotype of VSMCs through Jagged1-Notch3 signaling in vitro and in vivo. Nidogen-2 is required for Jagged1-Notch3 signaling.
Collapse
Affiliation(s)
- Chenfeng Mao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Zihan Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yiting Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Weihao Li
- Department of Vascular Surgery, Peking University People's Hospital, Peking University, Beijing, China
| | - Nan Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Guizhen Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Baihui Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Fang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Jinpeng Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
39
|
Zeronian MR, Klykov O, Portell I de Montserrat J, Konijnenberg MJ, Gaur A, Scheltema RA, Janssen BJC. Notch-Jagged signaling complex defined by an interaction mosaic. Proc Natl Acad Sci U S A 2021; 118:e2102502118. [PMID: 34301900 PMCID: PMC8325348 DOI: 10.1073/pnas.2102502118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Notch signaling system links cellular fate to that of its neighbors, driving proliferation, apoptosis, and cell differentiation in metazoans, whereas dysfunction leads to debilitating developmental disorders and cancers. Other than a five-by-five domain complex, it is unclear how the 40 extracellular domains of the Notch1 receptor collectively engage the 19 domains of its canonical ligand, Jagged1, to activate Notch1 signaling. Here, using cross-linking mass spectrometry (XL-MS), biophysical, and structural techniques on the full extracellular complex and targeted sites, we identify five distinct regions, two on Notch1 and three on Jagged1, that form an interaction network. The Notch1 membrane-proximal regulatory region individually binds to the established Notch1 epidermal growth factor (EGF) 8-EGF13 and Jagged1 C2-EGF3 activation sites as well as to two additional Jagged1 regions, EGF8-EGF11 and cysteine-rich domain. XL-MS and quantitative interaction experiments show that the three Notch1-binding sites on Jagged1 also engage intramolecularly. These interactions, together with Notch1 and Jagged1 ectodomain dimensions and flexibility, determined by small-angle X-ray scattering, support the formation of nonlinear architectures. Combined, the data suggest that critical Notch1 and Jagged1 regions are not distal but engage directly to control Notch1 signaling, thereby redefining the Notch1-Jagged1 activation mechanism and indicating routes for therapeutic applications.
Collapse
Affiliation(s)
- Matthieu R Zeronian
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Oleg Klykov
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, 3584 CH Utrecht, The Netherlands
| | - Júlia Portell I de Montserrat
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Maria J Konijnenberg
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Anamika Gaur
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Richard A Scheltema
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands;
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Centre, 3584 CH Utrecht, The Netherlands
| | - Bert J C Janssen
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands;
| |
Collapse
|
40
|
Ng HL, Quail E, Cruickshank MN, Ulgiati D. To Be, or Notch to Be: Mediating Cell Fate from Embryogenesis to Lymphopoiesis. Biomolecules 2021; 11:biom11060849. [PMID: 34200313 PMCID: PMC8227657 DOI: 10.3390/biom11060849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/29/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Notch signaling forms an evolutionarily conserved juxtacrine pathway crucial for cellular development. Initially identified in Drosophila wing morphogenesis, Notch signaling has since been demonstrated to play pivotal roles in governing mammalian cellular development in a large variety of cell types. Indeed, abolishing Notch constituents in mouse models result in embryonic lethality, demonstrating that Notch signaling is critical for development and differentiation. In this review, we focus on the crucial role of Notch signaling in governing embryogenesis and differentiation of multiple progenitor cell types. Using hematopoiesis as a diverse cellular model, we highlight the role of Notch in regulating the cell fate of common lymphoid progenitors. Additionally, the influence of Notch through microenvironment interplay with lymphoid cells and how dysregulation influences disease processes is explored. Furthermore, bi-directional and lateral Notch signaling between ligand expressing source cells and target cells are investigated, indicating potentially novel therapeutic options for treatment of Notch-mediated diseases. Finally, we discuss the role of cis-inhibition in regulating Notch signaling in mammalian development.
Collapse
Affiliation(s)
- Han Leng Ng
- Centre for Haematology, Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK;
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (E.Q.); (M.N.C.)
| | - Elizabeth Quail
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (E.Q.); (M.N.C.)
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Mark N. Cruickshank
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (E.Q.); (M.N.C.)
| | - Daniela Ulgiati
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (E.Q.); (M.N.C.)
- Correspondence: ; Tel.: +61-8-6457-1076
| |
Collapse
|
41
|
Sales-Dias J, Ferreira A, Lamy M, Domenici G, Monteiro SMS, Pires A, Lemos AR, Kucheryava K, Nobre LS, Sousa PMF, Bandeiras TM, Silva G, Barbas A. Development of antibodies against the notch ligand Delta-Like-1 by phage display with activity against breast cancer cells. N Biotechnol 2021; 64:17-26. [PMID: 33992842 DOI: 10.1016/j.nbt.2021.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/12/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
Notch signalling is a well-established oncogenic pathway, and its ligand Delta-like 1 (DLL1) is overexpressed in estrogen receptor-positive (ER+) breast cancers and associated with poor patient prognosis. Hence, DLL1 has become an interesting therapeutic target for breast cancer. Here, the development of specific functional blocking anti-DLL1 antibodies with potential activity against ER+ breast cancer cells is reported. Human DLL1 proteins, containing the essential regions for binding to the Notch receptor and Notch signalling activation, were produced and used to select specific scFv antibody fragments by phage display. Fifteen unique scFvs were identified and reformatted into full IgGs. Characterization of these antibodies by ELISA, surface plasmon resonance and flow cytometry enabled selection of three specific anti-DLL1 IgGs, sharing identical VH regions, with nM affinities. Cellular assays on ER+ breast cancer MCF-7 cells showed that one of the IgGs (IgG-69) was able to partially impair DLL1-mediated activation of the Notch pathway, as determined by Notch reporter and RT-qPCR assays, and to attenuate cell growth. Treatment of MCF-7 cells with IgG-69 reduced mammosphere formation, suggesting that it decreases the breast cancer stem cell subpopulation. These results support the use of this strategy to develop and identify potential anti-DLL1 antibodies candidates against breast cancer.
Collapse
Affiliation(s)
- Joana Sales-Dias
- iBET, Instituto de Biologia Experimental e Tecnológica, (Institute of Experimental and Technological Biology), Oeiras, Portugal; ITQB, Instituto de Tecnologia Química e Biológica António Xavier, (Institute of Chemical and Biological Technology António Xavier), Nova University Lisbon, Oeiras, Portugal
| | - Andreia Ferreira
- iBET, Instituto de Biologia Experimental e Tecnológica, (Institute of Experimental and Technological Biology), Oeiras, Portugal
| | - Márcia Lamy
- iBET, Instituto de Biologia Experimental e Tecnológica, (Institute of Experimental and Technological Biology), Oeiras, Portugal
| | - Giacomo Domenici
- iBET, Instituto de Biologia Experimental e Tecnológica, (Institute of Experimental and Technological Biology), Oeiras, Portugal; ITQB, Instituto de Tecnologia Química e Biológica António Xavier, (Institute of Chemical and Biological Technology António Xavier), Nova University Lisbon, Oeiras, Portugal
| | - Sandra M S Monteiro
- iBET, Instituto de Biologia Experimental e Tecnológica, (Institute of Experimental and Technological Biology), Oeiras, Portugal
| | - António Pires
- iBET, Instituto de Biologia Experimental e Tecnológica, (Institute of Experimental and Technological Biology), Oeiras, Portugal
| | - Ana R Lemos
- iBET, Instituto de Biologia Experimental e Tecnológica, (Institute of Experimental and Technological Biology), Oeiras, Portugal; ITQB, Instituto de Tecnologia Química e Biológica António Xavier, (Institute of Chemical and Biological Technology António Xavier), Nova University Lisbon, Oeiras, Portugal
| | - Khrystyna Kucheryava
- iBET, Instituto de Biologia Experimental e Tecnológica, (Institute of Experimental and Technological Biology), Oeiras, Portugal
| | - Lígia S Nobre
- iBET, Instituto de Biologia Experimental e Tecnológica, (Institute of Experimental and Technological Biology), Oeiras, Portugal
| | - Pedro M F Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, (Institute of Experimental and Technological Biology), Oeiras, Portugal; ITQB, Instituto de Tecnologia Química e Biológica António Xavier, (Institute of Chemical and Biological Technology António Xavier), Nova University Lisbon, Oeiras, Portugal
| | - Tiago M Bandeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, (Institute of Experimental and Technological Biology), Oeiras, Portugal; ITQB, Instituto de Tecnologia Química e Biológica António Xavier, (Institute of Chemical and Biological Technology António Xavier), Nova University Lisbon, Oeiras, Portugal
| | - Gabriela Silva
- iBET, Instituto de Biologia Experimental e Tecnológica, (Institute of Experimental and Technological Biology), Oeiras, Portugal
| | - Ana Barbas
- iBET, Instituto de Biologia Experimental e Tecnológica, (Institute of Experimental and Technological Biology), Oeiras, Portugal; Bayer Portugal, LDA, Rua Quinta Do Pinheiro, Carnaxide, 2790-143, Portugal.
| |
Collapse
|
42
|
Abstract
Notch signaling is a conserved system of communication between adjacent cells, influencing numerous cell fate decisions in the development of multicellular organisms. Aberrant signaling is also implicated in many human pathologies. At its core, Notch has a mechanotransduction module that decodes receptor-ligand engagement at the cell surface under force to permit proteolytic cleavage of the receptor, leading to the release of the Notch intracellular domain (NICD). NICD enters the nucleus and acts as a transcriptional effector to regulate expression of Notch-responsive genes. In this article, we review and integrate current understanding of the detailed molecular basis for Notch signal transduction, highlighting quantitative, structural, and dynamic features of this developmentally central signaling mechanism. We discuss the implications of this mechanistic understanding for the functionality of the signaling pathway in different molecular and cellular contexts.
Collapse
Affiliation(s)
- David Sprinzak
- George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
43
|
Sabol HM, Delgado-Calle J. The multifunctional role of Notch signaling in multiple myeloma. JOURNAL OF CANCER METASTASIS AND TREATMENT 2021; 7:20. [PMID: 34778567 PMCID: PMC8589324 DOI: 10.20517/2394-4722.2021.35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Multiple myeloma (MM) is a hematologic cancer characterized by uncontrolled growth of malignant plasma cells in the bone marrow and currently is incurable. The bone marrow microenvironment plays a critical role in MM. MM cells reside in specialized niches where they interact with multiple marrow cell types, transforming the bone/bone marrow compartment into an ideal microenvironment for the migration, proliferation, and survival of MM cells. In addition, MM cells interact with bone cells to stimulate bone destruction and promote the development of bone lesions that rarely heal. In this review, we discuss how Notch signals facilitate the communication between adjacent MM cells and between MM cells and bone/bone marrow cells and shape the microenvironment to favor MM progression and bone disease. We also address the potential and therapeutic approaches used to target Notch signaling in MM.
Collapse
Affiliation(s)
- Hayley M Sabol
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jesus Delgado-Calle
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
44
|
Saiki W, Ma C, Okajima T, Takeuchi H. Current Views on the Roles of O-Glycosylation in Controlling Notch-Ligand Interactions. Biomolecules 2021; 11:biom11020309. [PMID: 33670724 PMCID: PMC7922208 DOI: 10.3390/biom11020309] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
The 100th anniversary of Notch discovery in Drosophila has recently passed. The Notch is evolutionarily conserved from Drosophila to humans. The discovery of human-specific Notch genes has led to a better understanding of Notch signaling in development and diseases and will continue to stimulate further research in the future. Notch receptors are responsible for cell-to-cell signaling. They are activated by cell-surface ligands located on adjacent cells. Notch activation plays an important role in determining the fate of cells, and dysregulation of Notch signaling results in numerous human diseases. Notch receptors are primarily activated by ligand binding. Many studies in various fields including genetics, developmental biology, biochemistry, and structural biology conducted over the past two decades have revealed that the activation of the Notch receptor is regulated by unique glycan modifications. Such modifications include O-fucose, O-glucose, and O-N-acetylglucosamine (GlcNAc) on epidermal growth factor-like (EGF) repeats located consecutively in the extracellular domain of Notch receptors. Being fine-tuned by glycans is an important property of Notch receptors. In this review article, we summarize the latest findings on the regulation of Notch activation by glycosylation and discuss future challenges.
Collapse
Affiliation(s)
- Wataru Saiki
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; (W.S.); (C.M.); (T.O.)
| | - Chenyu Ma
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; (W.S.); (C.M.); (T.O.)
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; (W.S.); (C.M.); (T.O.)
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; (W.S.); (C.M.); (T.O.)
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi 464-8601, Japan
- Correspondence: ; Tel.: +81-52-744-2068
| |
Collapse
|
45
|
Chen W, Yang F, Wang C, Narula J, Pascua E, Ni I, Ding S, Deng X, Chu MLH, Pham A, Jiang X, Lindquist KC, Doonan PJ, Van Blarcom T, Yeung YA, Chaparro-Riggers J. One size does not fit all: navigating the multi-dimensional space to optimize T-cell engaging protein therapeutics. MAbs 2021; 13:1871171. [PMID: 33557687 PMCID: PMC7889206 DOI: 10.1080/19420862.2020.1871171] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
T-cell engaging biologics is a class of novel and promising immune-oncology compounds that leverage the immune system to eradicate cancer. Here, we compared and contrasted a bispecific diabody-Fc format, which displays a relatively short antigen-binding arm distance, with our bispecific IgG platform. By generating diverse panels of antigen-expressing cells where B cell maturation antigen is either tethered to the cell membrane or located to the juxtamembrane region and masked by elongated structural spacer units, we presented a systematic approach to investigate the role of antigen epitope location and molecular formats in immunological synapse formation and cytotoxicity. We demonstrated that diabody-Fc is more potent for antigen epitopes located in the membrane distal region, while bispecific IgG is more efficient for membrane-proximal epitopes. Additionally, we explored other parameters, including receptor density, antigen-binding affinity, and kinetics. Our results show that molecular format and antigen epitope location, which jointly determine the intermembrane distance between target cells and T cells, allow decoupling of cytotoxicity and cytokine release, while antigen-binding affinities appear to be positively correlated with both readouts. Our work offers new insight that could potentially lead to a wider therapeutic window for T-cell engaging biologics in general.
Collapse
Affiliation(s)
- Wei Chen
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA.,Asher Bio, Protein Sciences , San Carlos, CA, USA
| | - Fan Yang
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA
| | - Carole Wang
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA
| | - Jatin Narula
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA
| | | | - Irene Ni
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA.,Asher Bio, Protein Sciences , San Carlos, CA, USA
| | - Sheng Ding
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA.,Gilead Sciences, Biology Department , Foster City, CA, USA
| | - Xiaodi Deng
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA.,Dren Bio, Biologics Department , San Carlos, CA, USA
| | - Matthew Ling-Hon Chu
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA.,Tizona Therapeutics, Protein Sciences , Antibody Development & Technical Operations, South San Francisco, CA, USA
| | - Amber Pham
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA.,Arcus Biosciences, Protein Sciences , Hayward, CA, USA
| | - Xiaoyue Jiang
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA.,Nektar Therapeutics, Biologics Analytical Development , San Francisco, CA, USA
| | | | - Patrick J Doonan
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA.,Janssen BioTherapeutics, Janssen Research & Development, LLC , Spring House, PA, USA
| | - Tom Van Blarcom
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA.,Allogene Therapeutics, Protein Engineering , South San Francisco, CA, USA
| | - Yik Andy Yeung
- Pfizer Worldwide R&D , BioMedicine Design, CA, USA.,Asher Bio, Protein Sciences , San Carlos, CA, USA
| | | |
Collapse
|
46
|
Garis M, Garrett-Sinha LA. Notch Signaling in B Cell Immune Responses. Front Immunol 2021; 11:609324. [PMID: 33613531 PMCID: PMC7892449 DOI: 10.3389/fimmu.2020.609324] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022] Open
Abstract
The Notch signaling pathway is highly evolutionarily conserved, dictating cell fate decisions and influencing the survival and growth of progenitor cells that give rise to the cells of the immune system. The roles of Notch signaling in hematopoietic stem cell maintenance and in specification of T lineage cells have been well-described. Notch signaling also plays important roles in B cells. In particular, it is required for specification of marginal zone type B cells, but Notch signaling is also important in other stages of B cell development and activation. This review will focus on established and new roles of Notch signaling during B lymphocyte lineage commitment and describe the function of Notch within mature B cells involved in immune responses.
Collapse
Affiliation(s)
- Matthew Garis
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
47
|
Fowler JC, King C, Bryant C, Hall MWJ, Sood R, Ong SH, Earp E, Fernandez-Antoran D, Koeppel J, Dentro SC, Shorthouse D, Durrani A, Fife K, Rytina E, Milne D, Roshan A, Mahububani K, Saeb-Parsy K, Hall BA, Gerstung M, Jones PH. Selection of Oncogenic Mutant Clones in Normal Human Skin Varies with Body Site. Cancer Discov 2021; 11:340-361. [PMID: 33087317 PMCID: PMC7116717 DOI: 10.1158/2159-8290.cd-20-1092] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/24/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022]
Abstract
Skin cancer risk varies substantially across the body, yet how this relates to the mutations found in normal skin is unknown. Here we mapped mutant clones in skin from high- and low-risk sites. The density of mutations varied by location. The prevalence of NOTCH1 and FAT1 mutations in forearm, trunk, and leg skin was similar to that in keratinocyte cancers. Most mutations were caused by ultraviolet light, but mutational signature analysis suggested differences in DNA-repair processes between sites. Eleven mutant genes were under positive selection, with TP53 preferentially selected in the head and FAT1 in the leg. Fine-scale mapping revealed 10% of clones had copy-number alterations. Analysis of hair follicles showed mutations in the upper follicle resembled adjacent skin, but the lower follicle was sparsely mutated. Normal skin is a dense patchwork of mutant clones arising from competitive selection that varies by location. SIGNIFICANCE: Mapping mutant clones across the body reveals normal skin is a dense patchwork of mutant cells. The variation in cancer risk between sites substantially exceeds that in mutant clone density. More generally, mutant genes cannot be assigned as cancer drivers until their prevalence in normal tissue is known.See related commentary by De Dominici and DeGregori, p. 227.This article is highlighted in the In This Issue feature, p. 211.
Collapse
Affiliation(s)
| | | | | | - Michael W J Hall
- Wellcome Sanger Institute, Hinxton, United Kingdom
- MRC Cancer Unit, University of Cambridge, Hutchison-MRC Research Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Roshan Sood
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Swee Hoe Ong
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Eleanor Earp
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | | | | | - Stefan C Dentro
- Wellcome Sanger Institute, Hinxton, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
| | - David Shorthouse
- MRC Cancer Unit, University of Cambridge, Hutchison-MRC Research Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Amer Durrani
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Kate Fife
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Edward Rytina
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Doreen Milne
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Amit Roshan
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Krishnaa Mahububani
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, Cambridge, United Kingdom
| | - Kourosh Saeb-Parsy
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, Cambridge, United Kingdom
| | - Benjamin A Hall
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Moritz Gerstung
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Philip H Jones
- Wellcome Sanger Institute, Hinxton, United Kingdom.
- MRC Cancer Unit, University of Cambridge, Hutchison-MRC Research Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
48
|
Zohorsky K, Mequanint K. Designing Biomaterials to Modulate Notch Signaling in Tissue Engineering and Regenerative Medicine. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:383-410. [PMID: 33040694 DOI: 10.1089/ten.teb.2020.0182] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The design of cell-instructive biomaterials for tissue engineering and regenerative medicine is at a crossroads. Although the conventional tissue engineering approach is top-down (cells seeded to macroporous scaffolds and mature to form tissues), bottom-up tissue engineering strategies are becoming appealing. With such developments, we can study cell signaling events, thus enabling functional tissue assembly in physiologic and diseased models. Among many important signaling pathways, the Notch signaling pathway is the most diverse in its influence during tissue morphogenesis and repair following injury. Although Notch signaling is extensively studied in developmental biology and cancer biology, our knowledge of designing biomaterial-based Notch signaling platforms and incorporating Notch signaling components into engineered tissue systems is limited. By incorporating Notch signaling to tissue engineering scaffolds, we can direct cell-specific responses and improve engineered tissue maturation. This review will discuss recent progress in the development of Notch signaling biomaterials as a promising target to control cellular fate decisions, including the influences of ligand identity, biophysical material cues, ligand presentation strategies, and mechanotransduction. Notch signaling is consequently of interest to direct, control, and reprogram cellular behavior on a biomaterial surface. We anticipate that discussions in this article will allow for enhanced knowledge and insight into designing Notch targeted biomaterials for various tissue engineering and cell fate determinations. Impact statement Notch signaling is recognized as an important pathway in tissue engineering and regenerative medicine; however, there is no systematic review on this topic. The comprehensive review and perspectives presented here provide an in-depth discussion on ligand presentation strategies both in 2D and in 3D cell culture environments involving biomaterials/scaffolds. In addition, this review article provides insight into the challenges in designing cell surrogate biomaterials capable of providing Notch signals. To the best of the authors' knowledge, this is the first review relevant to the fields of tissue engineering.
Collapse
Affiliation(s)
- Kathleen Zohorsky
- School of Biomedical Engineering and The University of Western Ontario, London, Canada
| | - Kibret Mequanint
- School of Biomedical Engineering and The University of Western Ontario, London, Canada.,Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Canada
| |
Collapse
|
49
|
Lee J, Lee J, Kim JH. Association of Jagged1 expression with malignancy and prognosis in human pancreatic cancer. Cell Oncol (Dordr) 2020; 43:821-834. [PMID: 32483746 DOI: 10.1007/s13402-020-00527-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2020] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Pancreatic cancer is one of the most aggressive cancers. Preclinical and clinical data indicate that Notch 1 ligand jagged1 (JAG1) plays a pro-oncogenic role in several malignant cancers. As yet, however, the role of JAG1 in pancreatic cancer is poorly understood. The objective of the present study was to investigate JAG1 as a therapeutic target in human pancreatic cancer. METHODS Expression levels of Notch signaling molecules were assessed using GEO datasets and Western blot analysis, respectively. Anti-tumor effects following JAG1 silencing were evaluated using in vitro and in vivo assays. Prognostic implications were assessed using GEO datasets. RESULTS Using GEO datasets and Western blot analysis we detected significantly higher JAG1 mRNA and protein expression levels in pancreatic cancer compared to normal pancreatic tissues. JAG1 silencing significantly restrained the growth, migration and invasion of pancreatic cancer cells through the induction of apoptosis and blockade of various kinases independent of the Notch1 pathway. Combined JAG1 silencing and gemcitabine treatment showed synergistic anti-viability effects in human pancreatic cancer cells. JAG1 silencing also resulted in significant anti-cancer effects in vivo and high JAG1 expression was found to be associated with an adverse prognosis in pancreatic cancer patients. CONCLUSIONS From our data we conclude that JAG1 may be a promising therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Jungwhoi Lee
- Department of Applied Life Science, SARI, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju-do, 63243, Republic of Korea.
| | - Jungsul Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Jae Hoon Kim
- Department of Applied Life Science, SARI, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju-do, 63243, Republic of Korea. .,Subtropical/tropical Organism Gene Bank, Jeju National University, Jeju-do, 63243, Republic of Korea.
| |
Collapse
|
50
|
Dayekh K, Mequanint K. Comparative Studies of Fibrin-Based Engineered Vascular Tissues and Notch Signaling from Progenitor Cells. ACS Biomater Sci Eng 2020; 6:2696-2706. [DOI: 10.1021/acsbiomaterials.0c00255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Khalil Dayekh
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada
| | - Kibret Mequanint
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada
| |
Collapse
|