1
|
Schenck S, Laeremans T, Steyaert J, Brunner JD. Structures of native SV2A reveal the binding mode for tetanus neurotoxin and anti-epileptic racetams. Nat Commun 2025; 16:4172. [PMID: 40325068 PMCID: PMC12053756 DOI: 10.1038/s41467-025-59545-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 04/24/2025] [Indexed: 05/07/2025] Open
Abstract
The synaptic vesicle glycoprotein 2A (SV2A) is a synaptic vesicle (SV) resident with homology to the major facilitator superfamily (MFS) and essential in vertebrate neurotransmission. Despite its unclear physiological role, SV2A is of high medical relevance as it is the target of the anti-epileptic drug Levetiracetam (LEV) and a receptor for clostridial neurotoxins (CNTs), among them presumably tetanus neurotoxin (TeNT). To obtain detailed insights about these molecular interactions we subjected native SV2A, purified from brain tissue, to cryo-EM. We discover that TeNT binds SV2A strikingly different from botulinum neurotoxin A and unveil the precise geometry of TeNT binding to dipartite SV2-ganglioside receptors. The structures deliver compelling support for SV2A as the protein receptor for TeNT in central neurons and reinforce the concepts of the dual receptor hypothesis for CNT entry into neurons. Further, our LEV-bound structure of SV2A reveals the drug-interacting residues, delineates a putative substrate pocket in SV2A and provides insights into the SV2-isoform-specificity of LEV. Our work has implications for CNT engineering from a hitherto unrecognized SV2 binding interface and for improved designs of anti-convulsant drugs in epilepsy treatment.
Collapse
Affiliation(s)
- Stephan Schenck
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- Structure and Function of Membrane Proteins, VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Toon Laeremans
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
| | - Janine D Brunner
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium.
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium.
- Structure and Function of Membrane Proteins, VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium.
| |
Collapse
|
2
|
Philipp‐Dormston WG, Joseph JH, Carruthers JDA, Fezza JP, Mukherjee M, Yasin A, Musumeci M. Why Dosing Matters: A Closer Look at the Dose-Response Relationship With OnabotulinumtoxinA. J Cosmet Dermatol 2025; 24:e70170. [PMID: 40285447 PMCID: PMC12032540 DOI: 10.1111/jocd.70170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/10/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND OnabotulinumtoxinA is licensed in many countries for simultaneous treatment of three areas of the upper face: glabellar lines, 20 U; lateral canthal lines, 24 U; and forehead lines, 20 U. AIMS To assess the onabotulinumtoxinA dosing science and dose-response relationship in the treatment of upper facial lines (UFL). METHODS Key practical questions are addressed using available data. RESULTS OnabotulinumtoxinA doses were selected for Phase 3 registrational trials based on rigorous dose-ranging studies. In clinical practice, it is important to consider the relationship between dose and efficacy outcomes, duration, and safety. Interstudy comparison of duration analyses is complicated by the lack of a single comprehensive definition, but trial data with standard onabotulinumtoxinA dosing in the glabella suggest a median effect duration of ~4 months. Treatment of UFL at below the approved dose is associated with a shorter duration, inferior response rates, and lower patient satisfaction; there is no evidence that underdosing reduces adverse event risk. It may therefore be advisable to avoid going below the licensed dose unless there is a clear clinical rationale. By contrast, there is growing evidence that treatment outcomes can be further improved using doses above those currently licensed, without adversely affecting safety-as demonstrated in the glabella. Further studies are needed to assess this in lateral canthal and forehead lines. Additional work is also required to examine potential ceiling doses and better understand the dose-response relationship in patient subgroups. CONCLUSIONS Appropriate dosing of onabotulinumtoxinA is essential for maximizing benefit and ensuring patient satisfaction.
Collapse
Affiliation(s)
| | - John H. Joseph
- Clinical Testing of Beverly HillsBeverly HillsCaliforniaUSA
| | - Jean D. A. Carruthers
- Department of OphthalmologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | | | | | - Ahmed Yasin
- Global Aesthetics Medical AffairsAllergan Aesthetics, an AbbVie CompanyDubaiUAE
| | - Maria Musumeci
- Global Aesthetics Medical AffairsAllergan Aesthetics, an AbbVie CompanyRomeItaly
| |
Collapse
|
3
|
Zhou Y, Liu Q, Cong H, Liao L. Advancements in the management of overactive bladder in women using nano-botulinum toxin type A: A narrative review. Curr Urol 2025; 19:77-83. [PMID: 40314015 PMCID: PMC12042194 DOI: 10.1097/cu9.0000000000000272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/12/2024] [Indexed: 05/03/2025] Open
Abstract
Intravesical injections of botulinum toxin type A (BTX-A) are effective for treating refractory overactive bladder (OAB) in women. However, the adverse effects linked to the injections, such as hematuria, pain, and infection, and need for repeated injections can lower patient compliance and make the treatment inconvenient. Hence, urologists are actively pursuing less invasive and more convenient methods for the intravesical delivery of BTX-A. Advances in nanotechnology have facilitated noninvasive intravesical drug delivery. Currently, liposomes, hydrogels, nanoparticles, and many other forms of carriers can be used to enhance bladder wall permeability. This facilitates the entry of BTX-A into the bladder wall, allowing it to exert its effects. In this review, the feasibility and efficacy of liposomes, thermosensitive hydrogels, and hyaluronic acid-phosphatidylethanolamine for the treatment of OAB in women are discussed along with recent animal experiments on the use of nanotechnology-delivered BTX-A for the treatment of OAB in female rat models. Although the clinical efficacy of nanocarrier-encapsulated BTX-A for the treatment of OAB in women has not yet matched that of direct urethral muscle injection of BTX-A, improvements in certain symptoms indicate the potential of bladder instillation of nanocarrier-encapsulated BTX-A for future clinical applications. Consequently, further research on nanomaterials is warranted to advance the development of nanocarriers for the noninvasive delivery of BTX-A in the bladder.
Collapse
Affiliation(s)
- Yongheng Zhou
- Qilu Hospital of Shandong University, Jinan, China
- Department of Urology, China Rehabilitation Research Center, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Qinggang Liu
- Qilu Hospital of Shandong University, Jinan, China
- Department of Urology, China Rehabilitation Research Center, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Huiling Cong
- Department of Urology, China Rehabilitation Research Center, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Limin Liao
- Qilu Hospital of Shandong University, Jinan, China
- Department of Urology, China Rehabilitation Research Center, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Khanppnavar B, Leka O, Pal SK, Korkhov VM, Kammerer RA. Cryo-EM structure of the botulinum neurotoxin A/SV2B complex and its implications for translocation. Nat Commun 2025; 16:1224. [PMID: 39934119 PMCID: PMC11814414 DOI: 10.1038/s41467-025-56304-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
Botulinum neurotoxin A1 (BoNT/A1) belongs to the most potent toxins and is used as a major therapeutic agent. Neurotoxin conformation is crucial for its translocation to the neuronal cytosol, a key process for intoxication that is only poorly understood. To gain molecular insights into the steps preceding toxin translocation, we determine cryo-EM structures of BoNT/A1 alone and in complex with its receptor synaptic vesicle glycoprotein 2B (SV2B). In solution, BoNT/A1 adopts a unique, semi-closed conformation. The toxin changes its structure into an open state upon receptor binding with the translocation domain (HN) and the catalytic domain (LC) remote from the membrane, suggesting translocation incompatibility. Under acidic pH conditions, where translocation is initiated, receptor-bound BoNT/A1 switches back into a semi-closed conformation. This conformation brings the LC and HN close to the membrane, suggesting that a translocation-competent state of the toxin is required for successful LC transport into the neuronal cytosol.
Collapse
Affiliation(s)
| | - Oneda Leka
- PSI Center for Life Sciences, Villigen, Switzerland
| | | | - Volodymyr M Korkhov
- PSI Center for Life Sciences, Villigen, Switzerland.
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| | | |
Collapse
|
5
|
Mittal A, Martin MF, Levin EJ, Adams C, Yang M, Provins L, Hall A, Procter M, Ledecq M, Hillisch A, Wolff C, Gillard M, Horanyi PS, Coleman JA. Structures of synaptic vesicle protein 2A and 2B bound to anticonvulsants. Nat Struct Mol Biol 2024; 31:1964-1974. [PMID: 38898101 DOI: 10.1038/s41594-024-01335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Epilepsy is a common neurological disorder characterized by abnormal activity of neuronal networks, leading to seizures. The racetam class of anti-seizure medications bind specifically to a membrane protein found in the synaptic vesicles of neurons called synaptic vesicle protein 2 (SV2) A (SV2A). SV2A belongs to an orphan subfamily of the solute carrier 22 organic ion transporter family that also includes SV2B and SV2C. The molecular basis for how anti-seizure medications act on SV2s remains unknown. Here we report cryo-electron microscopy structures of SV2A and SV2B captured in a luminal-occluded conformation complexed with anticonvulsant ligands. The conformation bound by anticonvulsants resembles an inhibited transporter with closed luminal and intracellular gates. Anticonvulsants bind to a highly conserved central site in SV2s. These structures provide blueprints for future drug design and will facilitate future investigations into the biological function of SV2s.
Collapse
Affiliation(s)
- Anshumali Mittal
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew F Martin
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Jonathan A Coleman
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Martínez-Carranza M, Škerlová J, Lee PG, Zhang J, Krč A, Sirohiwal A, Burgin D, Elliott M, Philippe J, Donald S, Hornby F, Henriksson L, Masuyer G, Kaila VRI, Beard M, Dong M, Stenmark P. Activity of botulinum neurotoxin X and its structure when shielded by a non-toxic non-hemagglutinin protein. Commun Chem 2024; 7:179. [PMID: 39138288 PMCID: PMC11322297 DOI: 10.1038/s42004-024-01262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Botulinum neurotoxins (BoNTs) are the most potent toxins known and are used to treat an increasing number of medical disorders. All BoNTs are naturally co-expressed with a protective partner protein (NTNH) with which they form a 300 kDa complex, to resist acidic and proteolytic attack from the digestive tract. We have previously identified a new botulinum neurotoxin serotype, BoNT/X, that has unique and therapeutically attractive properties. We present the cryo-EM structure of the BoNT/X-NTNH/X complex and the crystal structure of the isolated NTNH protein. Unexpectedly, the BoNT/X complex is stable and protease-resistant at both neutral and acidic pH and disassembles only in alkaline conditions. Using the stabilizing effect of NTNH, we isolated BoNT/X and showed that it has very low potency both in vitro and in vivo. Given the high catalytic activity and translocation efficacy of BoNT/X, low activity of the full toxin is likely due to the receptor-binding domain, which presents very weak ganglioside binding and exposed hydrophobic surfaces.
Collapse
Affiliation(s)
| | - Jana Škerlová
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Pyung-Gang Lee
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Jie Zhang
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Ajda Krč
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Abhishek Sirohiwal
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | | - Linda Henriksson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
7
|
Li J, Zou R, Varrone A, Nag S, Halldin C, Ågren H. Exploring the Interactions between two Ligands, UCB-J and UCB-F, and Synaptic Vesicle Glycoprotein 2 Isoforms. ACS Chem Neurosci 2024; 15:2018-2027. [PMID: 38701380 PMCID: PMC11099911 DOI: 10.1021/acschemneuro.4c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
In silico modeling was applied to study the efficiency of two ligands, namely, UCB-J and UCB-F, to bind to isoforms of the synaptic vesicle glycoprotein 2 (SV2) that are involved in the regulation of synaptic function in the nerve terminals, with the ultimate goal to understand the selectivity of the interaction between UCB-J and UCB-F to different isoforms of SV2. Docking and large-scale molecular dynamics simulations were carried out to unravel various binding patterns, types of interactions, and binding free energies, covering hydrogen bonding and nonspecific hydrophobic interactions, water bridge, π-π, and cation-π interactions. The overall preference for bonding types of UCB-J and UCB-F with particular residues in the protein pockets can be disclosed in detail. A unique interaction fingerprint, namely, hydrogen bonding with additional cation-π interaction with the pyridine moiety of UCB-J, could be established as an explanation for its high selectivity over the SV2 isoform A (SV2A). Other molecular details, primarily referring to the presence of π-π interactions and hydrogen bonding, could also be analyzed as sources of selectivity of the UCB-F tracer for the three isoforms. The simulations provide atomic details to support future development of new selective tracers targeting synaptic vesicle glycoproteins and their associated diseases.
Collapse
Affiliation(s)
- Junhao Li
- Department
of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden
| | - Rongfeng Zou
- Department
of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden
| | - Andrea Varrone
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm 171 77, Sweden
| | - Sangram Nag
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm 171 77, Sweden
| | - Christer Halldin
- Department
of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm 171 77, Sweden
| | - Hans Ågren
- Department
of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden
| |
Collapse
|
8
|
Yamagata A, Ito K, Suzuki T, Dohmae N, Terada T, Shirouzu M. Structural basis for antiepileptic drugs and botulinum neurotoxin recognition of SV2A. Nat Commun 2024; 15:3027. [PMID: 38637505 PMCID: PMC11026379 DOI: 10.1038/s41467-024-47322-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
More than one percent of people have epilepsy worldwide. Levetiracetam (LEV) is a successful new-generation antiepileptic drug (AED), and its derivative, brivaracetam (BRV), shows improved efficacy. Synaptic vesicle glycoprotein 2a (SV2A), a putative membrane transporter in the synaptic vesicles (SVs), has been identified as a target of LEV and BRV. SV2A also serves as a receptor for botulinum neurotoxin (BoNT), which is the most toxic protein and has paradoxically emerged as a potent reagent for therapeutic and cosmetic applications. Nevertheless, no structural analysis on AEDs and BoNT recognition by full-length SV2A has been available. Here we describe the cryo-electron microscopy structures of the full-length SV2A in complex with the BoNT receptor-binding domain, BoNT/A2 HC, and either LEV or BRV. The large fourth luminal domain of SV2A binds to BoNT/A2 HC through protein-protein and protein-glycan interactions. LEV and BRV occupy the putative substrate-binding site in an outward-open conformation. A propyl group in BRV creates additional contacts with SV2A, explaining its higher binding affinity than that of LEV, which was further supported by label-free spectral shift assay. Numerous LEV derivatives have been developed as AEDs and positron emission tomography (PET) tracers for neuroimaging. Our work provides a structural framework for AEDs and BoNT recognition of SV2A and a blueprint for the rational design of additional AEDs and PET tracers.
Collapse
Affiliation(s)
- Atsushi Yamagata
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan.
| | - Kaori Ito
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Tohru Terada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
9
|
Rawson AM, Dempster AW, Humphreys CM, Minton NP. Pathogenicity and virulence of Clostridium botulinum. Virulence 2023; 14:2205251. [PMID: 37157163 PMCID: PMC10171130 DOI: 10.1080/21505594.2023.2205251] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Clostridium botulinum, a polyphyletic Gram-positive taxon of bacteria, is classified purely by their ability to produce botulinum neurotoxin (BoNT). BoNT is the primary virulence factor and the causative agent of botulism. A potentially fatal disease, botulism is classically characterized by a symmetrical descending flaccid paralysis, which is left untreated can lead to respiratory failure and death. Botulism cases are classified into three main forms dependent on the nature of intoxication; foodborne, wound and infant. The BoNT, regarded as the most potent biological substance known, is a zinc metalloprotease that specifically cleaves SNARE proteins at neuromuscular junctions, preventing exocytosis of neurotransmitters, leading to muscle paralysis. The BoNT is now used to treat numerous medical conditions caused by overactive or spastic muscles and is extensively used in the cosmetic industry due to its high specificity and the exceedingly small doses needed to exert long-lasting pharmacological effects. Additionally, the ability to form endospores is critical to the pathogenicity of the bacteria. Disease transmission is often facilitated via the metabolically dormant spores that are highly resistant to environment stresses, allowing persistence in the environment in unfavourable conditions. Infant and wound botulism infections are initiated upon germination of the spores into neurotoxin producing vegetative cells, whereas foodborne botulism is attributed to ingestion of preformed BoNT. C. botulinum is a saprophytic bacterium, thought to have evolved its potent neurotoxin to establish a source of nutrients by killing its host.
Collapse
Affiliation(s)
- Alexander M Rawson
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The Biodiscovery Institute, The University of Nottingham, Nottingham, UK
| | - Andrew W Dempster
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The Biodiscovery Institute, The University of Nottingham, Nottingham, UK
| | - Christopher M Humphreys
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The Biodiscovery Institute, The University of Nottingham, Nottingham, UK
| | | |
Collapse
|
10
|
Joensuu M, Syed P, Saber SH, Lanoue V, Wallis TP, Rae J, Blum A, Gormal RS, Small C, Sanders S, Jiang A, Mahrhold S, Krez N, Cousin MA, Cooper‐White R, Cooper‐White JJ, Collins BM, Parton RG, Balistreri G, Rummel A, Meunier FA. Presynaptic targeting of botulinum neurotoxin type A requires a tripartite PSG-Syt1-SV2 plasma membrane nanocluster for synaptic vesicle entry. EMBO J 2023; 42:e112095. [PMID: 37226896 PMCID: PMC10308369 DOI: 10.15252/embj.2022112095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 05/26/2023] Open
Abstract
The unique nerve terminal targeting of botulinum neurotoxin type A (BoNT/A) is due to its capacity to bind two receptors on the neuronal plasma membrane: polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Whether and how PSGs and SV2 may coordinate other proteins for BoNT/A recruitment and internalization remains unknown. Here, we demonstrate that the targeted endocytosis of BoNT/A into synaptic vesicles (SVs) requires a tripartite surface nanocluster. Live-cell super-resolution imaging and electron microscopy of catalytically inactivated BoNT/A wildtype and receptor-binding-deficient mutants in cultured hippocampal neurons demonstrated that BoNT/A must bind coincidentally to a PSG and SV2 to target synaptic vesicles. We reveal that BoNT/A simultaneously interacts with a preassembled PSG-synaptotagmin-1 (Syt1) complex and SV2 on the neuronal plasma membrane, facilitating Syt1-SV2 nanoclustering that controls endocytic sorting of the toxin into synaptic vesicles. Syt1 CRISPRi knockdown suppressed BoNT/A- and BoNT/E-induced neurointoxication as quantified by SNAP-25 cleavage, suggesting that this tripartite nanocluster may be a unifying entry point for selected botulinum neurotoxins that hijack this for synaptic vesicle targeting.
Collapse
Affiliation(s)
- Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
| | - Parnayan Syed
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Saber H Saber
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
| | - Vanessa Lanoue
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - James Rae
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| | - Ailisa Blum
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Christopher Small
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Shanley Sanders
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Anmin Jiang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Stefan Mahrhold
- Institut für ToxikologieMedizinische Hochschule HannoverHannoverGermany
| | - Nadja Krez
- Institut für ToxikologieMedizinische Hochschule HannoverHannoverGermany
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, Hugh Robson BuildingUniversity of EdinburghEdinburghUK
- Muir Maxwell Epilepsy CentreUniversity of EdinburghEdinburghUK
- Simons Initiative for the Developing BrainUniversity of EdinburghEdinburghUK
| | - Ruby Cooper‐White
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLDAustralia
| | - Justin J Cooper‐White
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLDAustralia
- UQ Centre for Stem Cell Ageing and Regenerative EngineeringThe University of QueenslandBrisbaneQLDAustralia
| | - Brett M Collins
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| | - Robert G Parton
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
- Centre for Microscopy and MicroanalysisThe University of QueenslandBrisbaneQLDAustralia
| | - Giuseppe Balistreri
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Department of Virology, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Andreas Rummel
- Institut für ToxikologieMedizinische Hochschule HannoverHannoverGermany
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- School of Biomedical SciencesThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
11
|
Bradberry MM, Peters-Clarke TM, Shishkova E, Chapman ER, Coon JJ. N-glycoproteomics of brain synapses and synaptic vesicles. Cell Rep 2023; 42:112368. [PMID: 37036808 PMCID: PMC10560701 DOI: 10.1016/j.celrep.2023.112368] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/13/2023] [Accepted: 03/23/2023] [Indexed: 04/11/2023] Open
Abstract
At mammalian neuronal synapses, synaptic vesicle (SV) glycoproteins are essential for robust neurotransmission. Asparagine (N)-linked glycosylation is required for delivery of the major SV glycoproteins synaptophysin and SV2A to SVs. Despite this key role for N-glycosylation, the molecular compositions of SV N-glycans are largely unknown. In this study, we combined organelle isolation techniques and high-resolution mass spectrometry to characterize N-glycosylation at synapses and SVs from mouse brain. Detecting over 2,500 unique glycopeptides, we found that SVs harbor a distinct population of oligomannose and highly fucosylated N-glycans. Using complementary fluorescence methods, we identify at least one highly fucosylated N-glycan enriched in SVs compared with synaptosomes. High fucosylation was characteristic of SV proteins, plasma membrane proteins, and cell adhesion molecules with key roles in synaptic function and development. Our results define the N-glycoproteome of a specialized neuronal organelle and inform timely questions in the glycobiology of synaptic pruning and neuroinflammation.
Collapse
Affiliation(s)
- Mazdak M Bradberry
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA; Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| | - Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
| | - Evgenia Shishkova
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
| | - Edwin R Chapman
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI 53715, USA
| |
Collapse
|
12
|
Liu Z, Lee PG, Krez N, Lam KH, Liu H, Przykopanski A, Chen P, Yao G, Zhang S, Tremblay JM, Perry K, Shoemaker CB, Rummel A, Dong M, Jin R. Structural basis for botulinum neurotoxin E recognition of synaptic vesicle protein 2. Nat Commun 2023; 14:2338. [PMID: 37095076 PMCID: PMC10125960 DOI: 10.1038/s41467-023-37860-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 04/03/2023] [Indexed: 04/26/2023] Open
Abstract
Botulinum neurotoxin E (BoNT/E) is one of the major causes of human botulism and paradoxically also a promising therapeutic agent. Here we determined the co-crystal structures of the receptor-binding domain of BoNT/E (HCE) in complex with its neuronal receptor synaptic vesicle glycoprotein 2A (SV2A) and a nanobody that serves as a ganglioside surrogate. These structures reveal that the protein-protein interactions between HCE and SV2 provide the crucial location and specificity information for HCE to recognize SV2A and SV2B, but not the closely related SV2C. At the same time, HCE exploits a separated sialic acid-binding pocket to mediate recognition of an N-glycan of SV2. Structure-based mutagenesis and functional studies demonstrate that both the protein-protein and protein-glycan associations are essential for SV2A-mediated cell entry of BoNT/E and for its potent neurotoxicity. Our studies establish the structural basis to understand the receptor-specificity of BoNT/E and to engineer BoNT/E variants for new clinical applications.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA
| | - Pyung-Gang Lee
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Nadja Krez
- Institute of Toxicology, Hannover Medical School, Hannover, 30623, Germany
| | - Kwok-Ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA
| | - Hao Liu
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Adina Przykopanski
- Institute of Toxicology, Hannover Medical School, Hannover, 30623, Germany
| | - Peng Chen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA
| | - Guorui Yao
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA
| | - Sicai Zhang
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL, 60439, USA
| | | | - Andreas Rummel
- Institute of Toxicology, Hannover Medical School, Hannover, 30623, Germany
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA.
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
13
|
Tepp WH, Bradshaw M, Gardner AP, Kaufman RL, Barbieri JT, Pellett S. Botulinum Neurotoxin A4 Has a 1000-Fold Reduced Potency Due to Three Single Amino Acid Alterations in the Protein Receptor Binding Domain. Int J Mol Sci 2023; 24:5690. [PMID: 36982762 PMCID: PMC10055998 DOI: 10.3390/ijms24065690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Botulinum neurotoxin subtype A4 (BoNT/A4) is ~1000-fold less potent than BoNT/A1. This study addresses the basis for low BoNT/A4 potency. Utilizing BoNT/A1-A4 and BoNT/A4-A1 Light Chain-Heavy Chain (LC-HC) chimeras, HC-A4 was responsible for low BoNT/A4 potency. Earlier studies showed BoNT/A1-receptor binding domain (Hcc) bound a β-strand peptide (556-564) and glycan-N559 within Luminal Domain 4 (LD4) of SV2C, the BoNT/A protein receptor. Relative to BoNT/A1, the Hcc of BoNT/A4 possesses two amino acid variants (D1141 and N1142) within the β-peptide binding interface and one amino acid variant (R1292) located near the SV2C glycan-N559. Introduction of BoNT/A4 β-strand peptide variant (D1141 and N1142) into BoNT/A1 reduced toxin potency 30-fold, and additional introduction of the BoNT/A4 glycan-N559 variant (D1141, N1142, and R1292) further reduced toxin potency to approach BoNT/A4. While introduction of BoNT/A1 glycan-N559 variant (G1292) into BoNT/A4 did not alter toxin potency, additional introduction of BoNT/A1 β-strand peptide variants (G1141, S1142, and G1292) resulted in potency approaching BoNT/A1 potency. Thus, outcomes from these functional and modeling studies indicate that in rodent models, disruption of Hcc -SV2C β-peptide and -glycan-N559 interactions mediate low BoNT/A4 potency, while in human motor neurons, disruption of Hcc-SV2C β-peptide alone mediates low BoNT/A4 potency, which link to a species-specific variation at SV2C563.
Collapse
Affiliation(s)
- William H. Tepp
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | - Marite Bradshaw
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | - Alexander P. Gardner
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA (J.T.B.)
| | - Rebecca L. Kaufman
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | - Joseph T. Barbieri
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA (J.T.B.)
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
14
|
Azzaz F, Hilaire D, Fantini J. Structural basis of botulinum neurotoxin serotype A1 binding to human SV2A or SV2C receptors. Chem Biol Interact 2023; 373:110384. [PMID: 36754227 DOI: 10.1016/j.cbi.2023.110384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/20/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
Botulinum neurotoxin A1 (BoNT/A1) is the most potent natural poison in human. BoNT/A1 recognize the luminal domain of SV2A (LD-SV2A) and its glycosylation at position N573 (N573g) or the luminal domain of SV2C (LD-SV2C) and its glycosylation at position N559 (N559g) to bind neural membrane. Our computational data suggest that the N-glycan at position 480 (N480g) in the luminal domain of SV2C (LD-SV2C) indirectly enhanced the contacts of the neurotoxin surface with the second N-glycan at position 559 (N559g) by acting as a shield to prevent N559g to interact with residues of LD-SV2C. The absence of an N-glycan homologous to N480g in LD-SV2A leads to a decrease of the binding of N573g to the surface of BoNT/A1. Concerning the intermolecular interactions between BoNT/A and the protein part of LD-SV2A or LD-SV2C, we showed that the high affinity of the neurotoxin for binding LD-SV2C are mediated by a better compaction of its F557-F562 part provided by a π-π network mediated by residues F547, F552, F557 and F562 coupled with the presence of two aromatic residues at position 563 and 564 that optimize the binding of BoNT/A1 via cation-pi and CH-pi interaction. Finally, in addition to the well-known ganglioside binding site which accommodates a ganglioside on the surface of BoNT/A1, we identified a structure we coined the ganglioside binding loop defined by the sequence 1253-HQFNNIAK-1260 that is conserved across all subtypes of BoNT/A and is predicted to has a high affinity to interact with gangliosides. These data solved the puzzle generated by mutational studies that could be only partially understood with crystallographic data that lack both a biologically relevant membrane environment and a full glycosylation of SV2.
Collapse
Affiliation(s)
- Fodil Azzaz
- University of Aix-Marseille and INSERM U_1072, Marseille, France.
| | - Didier Hilaire
- DGA (Direction Générale de L'armement), DGA Maîtrise NRBC, Vert le Petit, France
| | - Jacques Fantini
- University of Aix-Marseille and INSERM U_1072, Marseille, France
| |
Collapse
|
15
|
Split luciferase-based assay to detect botulinum neurotoxins using hiPSC-derived motor neurons. Commun Biol 2023; 6:122. [PMID: 36717690 PMCID: PMC9886929 DOI: 10.1038/s42003-023-04495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/17/2023] [Indexed: 02/01/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) have been widely used clinically as a muscle relaxant. These toxins target motor neurons and cleave proteins essential for neurotransmitter release like Synaptosomal-associated protein of 25 kDa (SNAP-25). In vitro assays for BoNT testing using rodent cells or immortalized cell lines showed limitations in accuracy and physiological relevance. Here, we report a cell-based assay for detecting SNAP-25-cleaving BoNTs by combining human induced Pluripotent Stem Cells (hiPSC)-derived motor neurons and a luminescent detection system based on split NanoLuc luciferase. This assay is convenient, rapid, free-of-specialized antibodies, with a detection sensitivity of femtomolar concentrations of toxin, and can be used to study the different steps of BoNT intoxication.
Collapse
|
16
|
A Comprehensive Structural Analysis of Clostridium botulinum Neurotoxin A Cell-Binding Domain from Different Subtypes. Toxins (Basel) 2023; 15:toxins15020092. [PMID: 36828407 PMCID: PMC9966434 DOI: 10.3390/toxins15020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) cause flaccid neuromuscular paralysis by cleaving one of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex proteins. BoNTs display high affinity and specificity for neuromuscular junctions, making them one of the most potent neurotoxins known to date. There are seven serologically distinct BoNTs (serotypes BoNT/A to BoNT/G) which can be further divided into subtypes (e.g., BoNT/A1, BoNT/A2…) based on small changes in their amino acid sequence. Of these, BoNT/A1 and BoNT/B1 have been utilised to treat various diseases associated with spasticity and hypersecretion. There are potentially many more BoNT variants with differing toxicological profiles that may display other therapeutic benefits. This review is focused on the structural analysis of the cell-binding domain from BoNT/A1 to BoNT/A6 subtypes (HC/A1 to HC/A6), including features such as a ganglioside binding site (GBS), a dynamic loop, a synaptic vesicle glycoprotein 2 (SV2) binding site, a possible Lys-Cys/Cys-Cys bridge, and a hinge motion between the HCN and HCC subdomains. Characterising structural features across subtypes provides a better understanding of how the cell-binding domain functions and may aid the development of novel therapeutics.
Collapse
|
17
|
Structure and activity of botulinum neurotoxin X. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523524. [PMID: 36712025 PMCID: PMC9882044 DOI: 10.1101/2023.01.11.523524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Botulinum neurotoxins (BoNTs) are the most potent toxins known and are used to treat an increasing number of medical disorders. All BoNTs are naturally co-expressed with a protective partner protein (NTNH) with which they form a 300 kDa complex, to resist acidic and proteolytic attack from the digestive tract. We have previously identified a new botulinum neurotoxin serotype, BoNT/X, that has unique and therapeutically attractive properties. We present the cryo-EM structure of the BoNT/X-NTNH/X complex at 3.1 Å resolution. Unexpectedly, the BoNT/X complex is stable and protease resistant at both neutral and acidic pH and disassembles only in alkaline conditions. Using the stabilizing effect of NTNH, we isolated BoNT/X and showed that it has very low potency both in vitro and in vivo . Given the high catalytic activity and translocation efficacy of BoNT/X, low activity of the full toxin is likely due to the receptor-binding domain, which presents weak ganglioside binding and exposed hydrophobic surfaces.
Collapse
|
18
|
Azzaz F, Hilaire D, Fantini J. Structural Basis of Botulinum Toxin Type F Binding to Glycosylated Human SV2A: In Silico Studies at the Periphery of a Lipid Raft. Biomolecules 2022; 12:1821. [PMID: 36551250 PMCID: PMC9776016 DOI: 10.3390/biom12121821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Botulinum neurotoxins are the deadliest microbial neurotoxins in humans, with a lethal dose of 1 ng/kg. Incidentally, these neurotoxins are also widely used for medical and cosmetic purposes. However, little is known about the molecular mechanisms that control binding of botulinum neurotoxin type F1 (BoNT/F1) to its membrane receptor, glycosylated human synaptic vesicle glycoprotein A (hSV2Ag). To elucidate these mechanisms, we performed a molecular dynamics simulation (MDS) study of initial binding kinetics of BoNT/F1 to SV2A. Since this toxin also interacts with gangliosides, the simulations were performed at the periphery of a lipid raft in the presence of both SV2A and gangliosides. Our study suggested that interaction of BoNT/F1 with SV2A is exclusively mediated by N-glycan moiety of SV2A, which interacts with aromatic residues Y898, Y910, F946, Y1059 and H1273 of this toxin. Thus, in contrast with botulinum neurotoxin A1 (BoNT/A1), BoNT/F1 does not interact with protein content of SV2A. We attributed this incapability to a barrage effect exerted by neurotoxin residues Y1132, Q1133 and K1134, which prevent formation of long-lasting intermolecular hydrogen bonds. We also provided structural elements that suggest that BoNT/F1 uses the strategy of BoNT/A1 combined with the strategy of botulinum neurotoxin type E to bind N-glycan of its glycoprotein receptor. Overall, our study opened a gate for design of a universal inhibitor aimed at disrupting N-glycan-toxin interactions and for bioengineering of a BoNT/F1 protein that may be able to bind protein content of synaptic vesicle glycoprotein for therapeutic purposes.
Collapse
Affiliation(s)
- Fodil Azzaz
- Fodil Azzaz, INSERM U_1072, Faculté de Médecine Nord, Bd Pierre Dramard, University of Aix-Marseille, 13015 Marseille, France
| | - Didier Hilaire
- DGA (Direction Générale de L’armement)—DGA Maîtrise NRBC, 91710 Vert le Petit, France
| | - Jacques Fantini
- Fodil Azzaz, INSERM U_1072, Faculté de Médecine Nord, Bd Pierre Dramard, University of Aix-Marseille, 13015 Marseille, France
| |
Collapse
|
19
|
Shivatare SS, Shivatare VS, Wong CH. Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments. Chem Rev 2022; 122:15603-15671. [PMID: 36174107 PMCID: PMC9674437 DOI: 10.1021/acs.chemrev.1c01032] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycoconjugates are major constituents of mammalian cells that are formed via covalent conjugation of carbohydrates to other biomolecules like proteins and lipids and often expressed on the cell surfaces. Among the three major classes of glycoconjugates, proteoglycans and glycoproteins contain glycans linked to the protein backbone via amino acid residues such as Asn for N-linked glycans and Ser/Thr for O-linked glycans. In glycolipids, glycans are linked to a lipid component such as glycerol, polyisoprenyl pyrophosphate, fatty acid ester, or sphingolipid. Recently, glycoconjugates have become better structurally defined and biosynthetically understood, especially those associated with human diseases, and are accessible to new drug, diagnostic, and therapeutic developments. This review describes the status and new advances in the biological study and therapeutic applications of natural and synthetic glycoconjugates, including proteoglycans, glycoproteins, and glycolipids. The scope, limitations, and novel methodologies in the synthesis and clinical development of glycoconjugates including vaccines, glyco-remodeled antibodies, glycan-based adjuvants, glycan-specific receptor-mediated drug delivery platforms, etc., and their future prospectus are discussed.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Vidya S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
20
|
Azzaz F, Yahi N, Chahinian H, Fantini J. The Epigenetic Dimension of Protein Structure Is an Intrinsic Weakness of the AlphaFold Program. Biomolecules 2022; 12:biom12101527. [PMID: 36291736 PMCID: PMC9599222 DOI: 10.3390/biom12101527] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 12/02/2022] Open
Abstract
One of the most important lessons we have learned from sequencing the human genome is that not all proteins have a 3D structure. In fact, a large part of the human proteome is made up of intrinsically disordered proteins (IDPs) which can adopt multiple structures, and therefore, multiple functions, depending on the ligands with which they interact. Under these conditions, one can wonder about the value of algorithms developed for predicting the structure of proteins, in particular AlphaFold, an AI which claims to have solved the problem of protein structure. In a recent study, we highlighted a particular weakness of AlphaFold for membrane proteins. Based on this observation, we have proposed a paradigm, referred to as “Epigenetic Dimension of Protein Structure” (EDPS), which takes into account all environmental parameters that control the structure of a protein beyond the amino acid sequence (hence “epigenetic”). In this new study, we compare the reliability of the AlphaFold and Robetta algorithms’ predictions for a new set of membrane proteins involved in human pathologies. We found that Robetta was generally more accurate than AlphaFold for ascribing a membrane-compatible topology. Raft lipids (e.g., gangliosides), which control the structural dynamics of membrane protein structure through chaperone effects, were identified as major actors of the EDPS paradigm. We conclude that the epigenetic dimension of a protein structure is an intrinsic weakness of AI-based protein structure prediction, especially AlphaFold, which warrants further development.
Collapse
|
21
|
Abstract
AB toxins are protein virulence factors secreted by many bacterial pathogens, contributing to the pathogenicity of the cognate bacteria. AB toxins consist of two functionally distinct components: the enzymatic "A" component for pathogenicity and the receptor-binding "B" component for toxin delivery. Consistently, unlike other virulence factors such as effectors, AB toxins do not require additional systems to deliver them to the target host cells. Target host cells are located in the infection site and/or located distantly from infected host cells. The first part of this review discusses the structural and functional features of single-peptide and multiprotein AB toxins in the context of host-microbe interactions, using several well-characterized examples. The second part of this review discusses toxin neutralization strategies, as well as applications of AB toxins relevant to developing intervention strategies against diseases.
Collapse
Affiliation(s)
- Jeongmin Song
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
22
|
Chen B, Liu Z, Perry K, Jin R. Structure of the glucosyltransferase domain of TcdA in complex with RhoA provides insights into substrate recognition. Sci Rep 2022; 12:9028. [PMID: 35637242 PMCID: PMC9151644 DOI: 10.1038/s41598-022-12909-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/17/2022] [Indexed: 01/05/2023] Open
Abstract
Clostridioides difficile is one of the most common causes of antibiotic-associated diarrhea in developed countries. As key virulence factors of C. difficile, toxin A (TcdA) and toxin B (TcdB) act by glucosylating and inactivating Rho and Ras family small GTPases in host cells, which leads to actin cytoskeleton disruption, cell rounding, and ultimately cell death. Here we present the co-crystal structure of the glucosyltransferase domain (GTD) of TcdA in complex with its substrate human RhoA at 2.60-angstrom resolution. This structure reveals that TcdA GTD grips RhoA mainly through its switch I and switch II regions, which is complemented by interactions involving RhoA's pre-switch I region. Comprehensive structural comparisons between the TcdA GTD-RhoA complex and the structures of TcdB GTD in complex with Cdc42 and R-Ras reveal both the conserved and divergent features of these two toxins in terms of substrate recognition. Taken together, these findings establish the structural basis for TcdA recognition of small GTPases and advance our understanding of the substrates selectivity of large clostridial toxins.
Collapse
Affiliation(s)
- Baohua Chen
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Zheng Liu
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Argonne National Laboratory, Cornell University, Argonne, IL, 60439, USA
| | - Rongsheng Jin
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
23
|
Rossi R, Arjmand S, Bærentzen SL, Gjedde A, Landau AM. Synaptic Vesicle Glycoprotein 2A: Features and Functions. Front Neurosci 2022; 16:864514. [PMID: 35573314 PMCID: PMC9096842 DOI: 10.3389/fnins.2022.864514] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/05/2022] [Indexed: 01/05/2023] Open
Abstract
In recent years, the field of neuroimaging dramatically moved forward by means of the expeditious development of specific radioligands of novel targets. Among these targets, the synaptic vesicle glycoprotein 2A (SV2A) is a transmembrane protein of synaptic vesicles, present in all synaptic terminals, irrespective of neurotransmitter content. It is involved in key functions of neurons, focused on the regulation of neurotransmitter release. The ubiquitous expression in gray matter regions of the brain is the basis of its candidacy as a marker of synaptic density. Following the development of molecules derived from the structure of the anti-epileptic drug levetiracetam, which selectively binds to SV2A, several radiolabeled markers have been synthetized to allow the study of SV2A distribution with positron emission tomography (PET). These radioligands permit the evaluation of in vivo changes of SV2A distribution held to be a potential measure of synaptic density in physiological and pathological conditions. The use of SV2A as a biomarker of synaptic density raises important questions. Despite numerous studies over the last decades, the biological function and the expressional properties of SV2A remain poorly understood. Some functions of SV2A were claimed, but have not been fully elucidated. While the expression of SV2A is ubiquitous, stronger associations between SV2A and Υ amino butyric acid (GABA)-ergic rather than glutamatergic synapses were observed in some brain structures. A further issue is the unclear interaction between SV2A and its tracers, which reflects a need to clarify what really is detected with neuroimaging tools. Here, we summarize the current knowledge of the SV2A protein and we discuss uncertain aspects of SV2A biology and physiology. As SV2A expression is ubiquitous, but likely more strongly related to a certain type of neurotransmission in particular circumstances, a more extensive knowledge of the protein would greatly facilitate the analysis and interpretation of neuroimaging results by allowing the evaluation not only of an increase or decrease of the protein level, but also of the type of neurotransmission involved.
Collapse
Affiliation(s)
- Rachele Rossi
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Shokouh Arjmand
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Simone Larsen Bærentzen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Albert Gjedde
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
24
|
Pirazzini M, Montecucco C, Rossetto O. Toxicology and pharmacology of botulinum and tetanus neurotoxins: an update. Arch Toxicol 2022; 96:1521-1539. [PMID: 35333944 PMCID: PMC9095541 DOI: 10.1007/s00204-022-03271-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/28/2022] [Indexed: 12/27/2022]
Abstract
Tetanus and botulinum neurotoxins cause the neuroparalytic syndromes of tetanus and botulism, respectively, by delivering inside different types of neurons, metalloproteases specifically cleaving the SNARE proteins that are essential for the release of neurotransmitters. Research on their mechanism of action is intensively carried out in order to devise improved therapies based on antibodies and chemical drugs. Recently, major results have been obtained with human monoclonal antibodies and with single chain antibodies that have allowed one to neutralize the metalloprotease activity of botulinum neurotoxin type A1 inside neurons. In addition, a method has been devised to induce a rapid molecular evolution of the metalloprotease domain of botulinum neurotoxin followed by selection driven to re-target the metalloprotease activity versus novel targets with respect to the SNARE proteins. At the same time, an intense and wide spectrum clinical research on novel therapeutics based on botulinum neurotoxins is carried out, which are also reviewed here.
Collapse
Affiliation(s)
- Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy.,Centro Interdipartimentale di Ricerca di Miologia, CIR-Myo, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy. .,Institute of Neuroscience, National Research Council, Via Ugo Bassi 58/B, 35131, Padova, Italy.
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy.,Centro Interdipartimentale di Ricerca di Miologia, CIR-Myo, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy.,Institute of Neuroscience, National Research Council, Via Ugo Bassi 58/B, 35131, Padova, Italy
| |
Collapse
|
25
|
Tang H, Peng T, Yang X, Liu L, Xu Y, Zhao Y, Huang S, Fu C, Huang Y, Zhou H, Li J, He L, Wang W, Niu H, Xu K. Plasma Metabolomic Changes in Children with Cerebral Palsy Exposed to Botulinum Neurotoxin. J Proteome Res 2022; 21:671-682. [PMID: 35018779 DOI: 10.1021/acs.jproteome.1c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The long-term effect of botulinum neurotoxin A (BoNT-A) on children with cerebral palsy (CP) is unclear, and how the dynamic changes of metabolites impact the duration of effect remains unknown. To tackle this, we collected 120 plasma samples from 91 children with spastic CP for analysis, with 30 samples in each time point: prior to injection and 1, 3, and 6 months after injection. A total of 354 metabolites were identified across all the time points, 39 of which exhibited significant changes (with tentative IDs) (p values <0.05, VIP > 1). Principal component analysis and partial least-squares discriminant analysis disclosed a clear separation between different groups (p values <0.05). Network analysis revealed the coordinated changes of functional metabolites. Pathway analysis highlighted the metabolic pathways associated with energy consumption and glycine, serine, and threonine metabolism and cysteine and methionine metabolism. Collectively, our results identified the significant dynamic changes of plasma metabolite after BoNT-A injections on children with CP. Metabolic pathways associated with energy expenditure might provide a new perspective for the effect of BoNT-A in children with CP. Glycine, serine, and threonine metabolism and cysteine and methionine metabolism might be related to the duration of effect of BoNT-A.
Collapse
Affiliation(s)
- Hongmei Tang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Tingting Peng
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Xubo Yang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Liru Liu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Yunxian Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Yiting Zhao
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Shiya Huang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Chaoqiong Fu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Yuan Huang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China.,Department of Rehabilitation, School of Medicine, South China University of Technology, Guangzhou 510655, China
| | - Hongyu Zhou
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Jinling Li
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Lu He
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Wenda Wang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Huiran Niu
- Genechem Biotechnology Co., Ltd. Shanghai 200120, China
| | - Kaishou Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| |
Collapse
|
26
|
Liu Z, Zhang S, Chen P, Tian S, Zeng J, Perry K, Dong M, Jin R. Structural basis for selective modification of Rho and Ras GTPases by Clostridioides difficile toxin B. SCIENCE ADVANCES 2021; 7:eabi4582. [PMID: 34678063 PMCID: PMC8535798 DOI: 10.1126/sciadv.abi4582] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/02/2021] [Indexed: 05/15/2023]
Abstract
Toxin B (TcdB) is a primary cause of Clostridioides difficile infection (CDI). This toxin acts by glucosylating small GTPases in the Rho/Ras families, but the structural basis for TcdB recognition and selectivity of specific GTPase substrates remain unsolved. Here, we report the cocrystal structures of the glucosyltransferase domain (GTD) of two distinct TcdB variants in complex with human Cdc42 and R-Ras, respectively. These structures reveal a common structural mechanism by which TcdB recognizes Rho and R-Ras. Furthermore, we find selective clustering of adaptive residue changes in GTDs that determine their substrate preferences, which helps partition all known TcdB variants into two groups that display distinct specificities toward Rho or R-Ras. Mutations that selectively disrupt GTPases binding reduce the glucosyltransferase activity of the GTD and the toxicity of TcdB holotoxin. These findings establish the structural basis for TcdB recognition of small GTPases and reveal strategies for therapeutic interventions for CDI.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Sicai Zhang
- Department of Urology, Boston Children’s Hospital, and Departments of Microbiology and Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Peng Chen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Songhai Tian
- Department of Urology, Boston Children’s Hospital, and Departments of Microbiology and Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Ji Zeng
- Department of Urology, Boston Children’s Hospital, and Departments of Microbiology and Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, and Departments of Microbiology and Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
27
|
Knockin mouse models demonstrate differential contributions of synaptotagmin-1 and -2 as receptors for botulinum neurotoxins. PLoS Pathog 2021; 17:e1009994. [PMID: 34662366 PMCID: PMC8553082 DOI: 10.1371/journal.ppat.1009994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/28/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are the most potent toxins known and are also utilized to treat a wide range of disorders including muscle spasm, overactive bladder, and pain. BoNTs' ability to target neurons determines their specificity, potency, and therapeutic efficacy. Homologous synaptic vesicle membrane proteins synaptotagmin-1 (Syt1) and synaptotagmin-2 (Syt2) have been identified as receptors for BoNT family members including BoNT/B, DC, and G, but their contributions at physiologically relevant toxin concentrations in vivo have yet to be validated and established. Here we generated two knockin mutant mouse models containing three designed point-mutations that specifically disrupt BoNT binding in endogenous Syt1 or Syt2, respectively. Utilizing digit abduction score assay by injecting toxins into the leg muscle, we found that Syt1 mutant mice showed similar sensitivity as the wild type mice, whereas Syt2 mutant mice showed reduced sensitivity to BoNT/B, DC, and G, demonstrating that Syt2 is the dominant receptor at skeletal neuromuscular junctions. We further developed an in vivo bladder injection assay for analyzing BoNT action on bladder tissues and demonstrated that Syt1 is the dominant toxin receptor in autonomic nerves controlling bladder tissues. These findings establish the critical role of protein receptors for the potency and specificity of BoNTs in vivo and demonstrate the differential contributions of Syt1 and Syt2 in two sets of clinically relevant target tissues.
Collapse
|
28
|
Mechanism of Ganglioside Receptor Recognition by Botulinum Neurotoxin Serotype E. Int J Mol Sci 2021; 22:ijms22158315. [PMID: 34361086 PMCID: PMC8346984 DOI: 10.3390/ijms22158315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/10/2023] Open
Abstract
The botulinum neurotoxins are potent molecules that are not only responsible for the lethal paralytic disease botulism, but have also been harnessed for therapeutic uses in the treatment of an increasing number of chronic neurological and neuromuscular disorders, in addition to cosmetic applications. The toxins act at the cholinergic nerve terminals thanks to an efficient and specific mechanism of cell recognition which is based on a dual receptor system that involves gangliosides and protein receptors. Binding to surface-anchored gangliosides is the first essential step in this process. Here, we determined the X-ray crystal structure of the binding domain of BoNT/E, a toxin of clinical interest, in complex with its GD1a oligosaccharide receptor. Beyond confirmation of the conserved ganglioside binding site, we identified key interacting residues that are unique to BoNT/E and a significant rearrangement of loop 1228–1237 upon carbohydrate binding. These observations were also supported by thermodynamic measurements of the binding reaction and assessment of ganglioside selectivity by immobilised-receptor binding assays. These results provide a structural basis to understand the specificity of BoNT/E for complex gangliosides.
Collapse
|
29
|
Brier S, Rasetti-Escargueil C, Wijkhuisen A, Simon S, Marechal M, Lemichez E, Popoff MR. Characterization of a highly neutralizing single monoclonal antibody to botulinum neurotoxin type A. FASEB J 2021; 35:e21540. [PMID: 33817838 DOI: 10.1096/fj.202002492r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 01/15/2023]
Abstract
Compared to conventional antisera strategies, monoclonal antibodies (mAbs) represent an alternative and safer way to treat botulism, a fatal flaccid paralysis due to botulinum neurotoxins (BoNTs). In addition, mAbs offer the advantage to be produced in a reproducible manner. We previously identified a unique and potent mouse mAb (TA12) targeting BoNT/A1 with high affinity and neutralizing activity. In this study, we characterized the molecular basis of TA12 neutralization by combining Hydrogen/Deuterium eXchange Mass Spectrometry (HDX-MS) with site-directed mutagenesis and functional studies. We found that TA12 recognizes a conformational epitope located at the interface between the HCN and HCC subdomains of the BoNT/A1 receptor-binding domain (HC ). The TA12-binding interface shares common structural features with the ciA-C2 VHH epitope and lies on the face opposite recognized by ciA-C2- and the CR1/CR2-neutralizing mAbs. The single substitution of N1006 was sufficient to affect TA12 binding to HC confirming the position of the epitope. We further uncovered that the TA12 epitope overlaps with the BoNT/A1-binding site for both the neuronal cell surface receptor synaptic vesicle glycoprotein 2 isoform C (SV2C) and the GT1b ganglioside. Hence, TA12 potently blocks the entry of BoNT/A1 into neurons by interfering simultaneously with the binding of SV2C and to a lower extent GT1b. Our study reveals the unique neutralization mechanism of TA12 and emphasizes on the potential of using single mAbs for the treatment of botulism type A.
Collapse
Affiliation(s)
- Sébastien Brier
- Biological NMR Technological Platform, Institut Pasteur, CNRS UMR3528, Paris, France
| | | | - Anne Wijkhuisen
- Département Médicaments et Technologies pour la santé, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Stéphanie Simon
- Département Médicaments et Technologies pour la santé, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Maud Marechal
- Institut Pasteur, Unité des Toxines Bactériennes, UMR CNRS 2001, Paris, France
| | - Emmanuel Lemichez
- Institut Pasteur, Unité des Toxines Bactériennes, UMR CNRS 2001, Paris, France
| | - Michel R Popoff
- Institut Pasteur, Unité des Toxines Bactériennes, UMR CNRS 2001, Paris, France
| |
Collapse
|
30
|
Zhang R, Kennedy MA. Current Understanding of the Structure and Function of Pentapeptide Repeat Proteins. Biomolecules 2021; 11:638. [PMID: 33925937 PMCID: PMC8145042 DOI: 10.3390/biom11050638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/28/2022] Open
Abstract
The pentapeptide repeat protein (PRP) superfamily, identified in 1998, has grown to nearly 39,000 sequences from over 3300 species. PRPs, recognized as having at least eight contiguous pentapeptide repeats (PRs) of a consensus pentapeptide sequence, adopt a remarkable structure, namely, a right-handed quadrilateral β-helix with four consecutive PRs forming a single β-helix coil. Adjacent coils join together to form a β-helix "tower" stabilized by β-ladders on the tower faces and type I, type II, or type IV β-turns facilitating an approximately -90° redirection of the polypeptide chain joining one coil face to the next. PRPs have been found in all branches of life, but they are predominantly found in cyanobacteria. Cyanobacteria have existed on earth for more than two billion years and are thought to be responsible for oxygenation of the earth's atmosphere. Filamentous cyanobacteria such as Nostoc sp. strain PCC 7120 may also represent the oldest and simplest multicellular organisms known to undergo cell differentiation on earth. Knowledge of the biochemical function of these PRPs is essential to understanding how ancient cyanobacteria achieved functions critical to early development of life on earth. PRPs are predicted to exist in all cyanobacteria compartments including thylakoid and cell-wall membranes, cytoplasm, and thylakoid periplasmic space. Despite their intriguing structure and importance to understanding ancient cyanobacteria, the biochemical functions of PRPs in cyanobacteria remain almost completely unknown. The precise biochemical function of only a handful of PRPs is currently known from any organisms, and three-dimensional structures of only sixteen PRPs or PRP-containing multidomain proteins from any organism have been reported. In this review, the current knowledge of the structures and functions of PRPs is presented and discussed.
Collapse
Affiliation(s)
| | - Michael A. Kennedy
- Department of Chemistry and Biochemistry, 106 Hughes Laboratories, Miami University, Oxford, OH 45056, USA;
| |
Collapse
|
31
|
Characterization of clostridium botulinum neurotoxin serotype A (BoNT/A) and fibroblast growth factor receptor interactions using novel receptor dimerization assay. Sci Rep 2021; 11:7832. [PMID: 33837264 PMCID: PMC8035261 DOI: 10.1038/s41598-021-87331-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 03/24/2021] [Indexed: 01/03/2023] Open
Abstract
Clostridium botulinum neurotoxin serotype A (BoNT/A) is a potent neurotoxin that serves as an effective therapeutic for several neuromuscular disorders via induction of temporary muscular paralysis. Specific binding and internalization of BoNT/A into neuronal cells is mediated by its binding domain (HC/A), which binds to gangliosides, including GT1b, and protein cell surface receptors, including SV2. Previously, recombinant HC/A was also shown to bind to FGFR3. As FGFR dimerization is an indirect measure of ligand-receptor binding, an FCS & TIRF receptor dimerization assay was developed to measure rHC/A-induced dimerization of fluorescently tagged FGFR subtypes (FGFR1-3) in cells. rHC/A dimerized FGFR subtypes in the rank order FGFR3c (EC50 ≈ 27 nM) > FGFR2b (EC50 ≈ 70 nM) > FGFR1c (EC50 ≈ 163 nM); rHC/A dimerized FGFR3c with similar potency as the native FGFR3c ligand, FGF9 (EC50 ≈ 18 nM). Mutating the ganglioside binding site in HC/A, or removal of GT1b from the media, resulted in decreased dimerization. Interestingly, reduced dimerization was also observed with an SV2 mutant variant of HC/A. Overall, the results suggest that the FCS & TIRF receptor dimerization assay can assess FGFR dimerization with known and novel ligands and support a model wherein HC/A, either directly or indirectly, interacts with FGFRs and induces receptor dimerization.
Collapse
|
32
|
Grover S, Kumar-Sreelatha AA, Bobbili DR, May P, Domenighetti C, Sugier PE, Schulte C, Elbaz A, Krüger R, Gasser T, Sharma M. Replication of a Novel Parkinson's Locus in a European Ancestry Population. Mov Disord 2021; 36:1689-1695. [PMID: 33760272 DOI: 10.1002/mds.28546] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND A recently published East Asian genome-wide association study of Parkinson;s disease (PD) reported 2 novel risk loci, SV2C and WBSCR17. OBJECTIVES The objective of this study were to determine whether recently reported novel SV2C and WBSCR17 loci contribute to the risk of developing PD in European and East Asian ancestry populations. METHODS We report an association analysis of recently reported variants with PD in the COURAGE-PD cohort (9673 PD patients; 8465 controls) comprising individuals of European and East Asian ancestries. In addition, publicly available summary data (41,386 PD patients; 476,428 controls) were pooled. RESULTS Our findings confirmed the role of the SV2C variant in PD pathogenesis (rs246814, COURAGE-PD PEuropean = 6.64 × 10-4 , pooled PD P = 1.15 × 10-11 ). The WBSCR17 rs9638616 was observed as a significant risk marker in the East Asian pooled population only (P = 1.16 × 10-8 ). CONCLUSIONS Our comprehensive study provides an up-to-date summary of recently detected novel loci in different PD populations and confirmed the role of SV2C locus as a novel risk factor for PD irrespective of the population or ethnic group analyzed. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sandeep Grover
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Ashwin Ashok Kumar-Sreelatha
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Dheeraj R Bobbili
- Bioinformatics Core, Luxembourg Centre for Systems Biomedicine (LCSB), Belvaux, Luxembourg
| | - Patrick May
- Bioinformatics Core, Luxembourg Centre for Systems Biomedicine (LCSB), Belvaux, Luxembourg
| | - Cloé Domenighetti
- UVSQ, Univ. Paris-Sud, Inserm, Team « Exposome, Heredity, Cancer, and Health, CESP, Université Paris-Saclay, Villejuif, France
| | - Pierre-Emmanuel Sugier
- UVSQ, Univ. Paris-Sud, Inserm, Team « Exposome, Heredity, Cancer, and Health, CESP, Université Paris-Saclay, Villejuif, France
| | - Claudia Schulte
- Center of Neurology, and Hertie Institute for Clinical Brain Research, University Hospital, Tübingen, Germany
| | | | - Alexis Elbaz
- UVSQ, Univ. Paris-Sud, Inserm, Team « Exposome, Heredity, Cancer, and Health, CESP, Université Paris-Saclay, Villejuif, France
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), Belvaux, Luxembourg.,Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg.,Parkinson Research Clinic, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
| | - Thomas Gasser
- Center of Neurology, and Hertie Institute for Clinical Brain Research, University Hospital, Tübingen, Germany
| | - Manu Sharma
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
33
|
Structural Insights into Rational Design of Single-Domain Antibody-Based Antitoxins against Botulinum Neurotoxins. Cell Rep 2021; 30:2526-2539.e6. [PMID: 32101733 PMCID: PMC7138525 DOI: 10.1016/j.celrep.2020.01.107] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/23/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Botulinum neurotoxin (BoNT) is one of the most acutely lethal toxins known to humans, and effective treatment for BoNT intoxication is urgently needed. Single-domain antibodies (VHH) have been examined as a countermeasure for BoNT because of their high stability and ease of production. Here, we investigate the structures and the neutralization mechanisms for six unique VHHs targeting BoNT/A1 or BoNT/B1. These studies reveal diverse neutralizing mechanisms by which VHHs prevent host receptor binding or block transmembrane delivery of the BoNT protease domain. Guided by this knowledge, we design heterodimeric VHHs by connecting two neutralizing VHHs via a flexible spacer so they can bind simultaneously to the toxin. These bifunctional VHHs display much greater potency in a mouse co-intoxication model than similar heterodimers unable to bind simultaneously. Taken together, our studies offer insight into antibody neutralization of BoNTs and advance our ability to design multivalent anti-pathogen VHHs with improved therapeutic properties. Botulinum neurotoxins (BoNTs) are extremely toxic biothreats. Lam et al. report the crystal structures and neutralizing mechanisms of six unique antitoxin VHHs against BoNT/A1 and BoNT/B1, the two major human pathogenic BoNTs. They then develop a platform for structure-based rational design of bifunctional VHH heterodimers with superior antitoxin potencies.
Collapse
|
34
|
Lekholm E, Ceder MM, Forsberg EC, Schiöth HB, Fredriksson R. Differentiation of two human neuroblastoma cell lines alters SV2 expression patterns. Cell Mol Biol Lett 2021; 26:5. [PMID: 33588752 PMCID: PMC7885392 DOI: 10.1186/s11658-020-00243-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The synaptic vesicle glycoprotein 2 (SV2) family is essential to the synaptic machinery involved in neurotransmission and vesicle recycling. The isoforms SV2A, SV2B and SV2C are implicated in neurological diseases such as epilepsy, Alzheimer's and Parkinson's disease. Suitable cell systems for studying regulation of these proteins are essential. Here we present gene expression data of SV2A, SV2B and SV2C in two human neuroblastoma cell lines after differentiation. METHODS Human neuroblastoma cell lines SiMa and IMR-32 were treated for seven days with growth supplements (B-27 and N-2), all-trans-retinoic acid (ATRA) or vasoactive intestinal peptide (VIP) and gene expression levels of SV2 and neuronal targets were analyzed. RESULTS The two cell lines reacted differently to the treatments, and only one of the three SV2 isoforms was affected at a time. SV2B and choline O-acetyltransferase (CHAT) expression was changed in concert after growth supplement treatment, decreasing in SiMa cells while increasing in IMR-32. ATRA treatment resulted in no detected changes in SV2 expression in either cell line while VIP increased both SV2C and dopamine transporter (DAT) in IMR-32 cells. CONCLUSION The synergistic expression patterns between SV2B and CHAT as well as between SV2C and DAT mirror the connectivity between these targets found in disease models and knock-out animals, although here no genetic alteration was made. These cell lines and differentiation treatments could possibly be used to study SV2 regulation and function.
Collapse
Affiliation(s)
- Emilia Lekholm
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden. .,Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| | - Mikaela M Ceder
- Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Erica C Forsberg
- Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Robert Fredriksson
- Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
35
|
Choudhury S, Baker MR, Chatterjee S, Kumar H. Botulinum Toxin: An Update on Pharmacology and Newer Products in Development. Toxins (Basel) 2021; 13:58. [PMID: 33466571 PMCID: PMC7828686 DOI: 10.3390/toxins13010058] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
Since its introduction as a treatment for strabismus, botulinum toxin (BoNT) has had a phenomenal journey and is now recommended as first-line treatment for focal dystonia, despite short-term clinical benefits and the risks of adverse effects. To cater for the high demand across various medical specialties, at least six US Food and Drug Administration (FDA)-approved formulations of BoNT are currently available for diverse labelled indications. The toxo-pharmacological properties of these formulations are not uniform and thus should not be used interchangeably. Synthetic BoNTs and BoNTs from non-clostridial sources are not far from clinical use. Moreover, the study of mutations in naturally occurring toxins has led to modulation in the toxo-pharmacokinetic properties of BoNTs, including the duration and potency. We present an overview of the toxo-pharmacology of conventional and novel BoNT preparations, including those awaiting imminent translation from the laboratory to the clinic.
Collapse
Affiliation(s)
- Supriyo Choudhury
- Department of Neurology, Institute of Neurosciences Kolkata, Kolkata 700017, India; (S.C.); (S.C.)
| | - Mark R. Baker
- Departments of Neurology and Clinical Neurophysiology, Royal Victoria Infirmary, Queen Victoria Rd, Newcastle upon Tyne NE1 4LP, UK;
- Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Suparna Chatterjee
- Department of Neurology, Institute of Neurosciences Kolkata, Kolkata 700017, India; (S.C.); (S.C.)
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, Kolkata 700020, India
| | - Hrishikesh Kumar
- Department of Neurology, Institute of Neurosciences Kolkata, Kolkata 700017, India; (S.C.); (S.C.)
| |
Collapse
|
36
|
Bierig T, Collu G, Blanc A, Poghosyan E, Benoit RM. Design, Expression, Purification, and Characterization of a YFP-Tagged 2019-nCoV Spike Receptor-Binding Domain Construct. Front Bioeng Biotechnol 2020; 8:618615. [PMID: 33409271 PMCID: PMC7779597 DOI: 10.3389/fbioe.2020.618615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/24/2020] [Indexed: 01/24/2023] Open
Abstract
2019-nCoV is the causative agent of the serious, still ongoing, worldwide coronavirus disease (COVID-19) pandemic. High quality recombinant virus proteins are required for research related to the development of vaccines and improved assays, and to the general understanding of virus action. The receptor-binding domain (RBD) of the 2019-nCoV spike (S) protein contains disulfide bonds and N-linked glycosylations, therefore, it is typically produced by secretion. Here, we describe a construct and protocol for the expression and purification of yellow fluorescent protein (YFP) labeled 2019-nCoV spike RBD. The fusion protein, in the vector pcDNA 4/TO, comprises an N-terminal interferon alpha 2 (IFNα2) signal peptide, an eYFP, a FLAG-tag, a human rhinovirus 3C protease (HRV3C) cleavage site, the RBD of the 2019-nCoV spike protein and a C-terminal 8x His-tag. We stably transfected HEK 293 cells. Following expansion of the cells, the fusion protein was secreted from adherent cells into serum-free medium. Ni-NTA immobilized metal ion affinity chromatography (IMAC) purification resulted in very high protein purity, based on analysis by SDS-PAGE. The fusion protein was soluble and monodisperse, as confirmed by size-exclusion chromatography (SEC) and negative staining electron microscopy. Deglycosylation experiments confirmed the presence of N-linked glycosylations in the secreted protein. Complex formation with the peptidase domain of human angiotensin-converting enzyme 2 (ACE2), the receptor for the 2019-nCoV spike RBD, was confirmed by SEC, both for the YFP-fused spike RBD and for spike RBD alone, after removal of YFP by proteolytic cleavage. Possible applications for the fusion protein include binding studies on cells or in vitro, fluorescent labeling of potential virus-binding sites on cells, the use as an antigen for immunization studies or as a tool for the development of novel virus- or antibody-detection assays.
Collapse
Affiliation(s)
- Tobias Bierig
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
- Department of Biology, ETH Zürich, Zurich, Switzerland
| | - Gabriella Collu
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
- Department of Biology, ETH Zürich, Zurich, Switzerland
| | - Alain Blanc
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
| | - Emiliya Poghosyan
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Roger M. Benoit
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
37
|
The 25 kDa H CN Domain of Clostridial Neurotoxins Is Indispensable for Their Neurotoxicity. Toxins (Basel) 2020; 12:toxins12120743. [PMID: 33255952 PMCID: PMC7760224 DOI: 10.3390/toxins12120743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022] Open
Abstract
The extraordinarily potent clostridial neurotoxins (CNTs) comprise tetanus neurotoxin (TeNT) and the seven established botulinum neurotoxin serotypes (BoNT/A-G). They are composed of four structurally independent domains: the roles of the catalytically active light chain, the translocation domain HN, and the C-terminal receptor binding domain HCC are largely resolved, but that of the HCN domain sandwiched between HN and HCC has remained unclear. Here, mutants of BoNT/A, BoNT/B, and TeNT were generated by deleting their HCN domains or swapping HCN domains between each other. Both deletion and replacement of TeNT HCN domain by HCNA and HCNB reduced the biological activity similarly, by ~95%, whereas BoNT/A and B deletion mutants displayed >500-fold reduced activity in the mouse phrenic nerve hemidiaphragm assay. Swapping HCN domains between BoNT/A and B hardly impaired their biological activity, but substitution with HCNT did. Binding assays revealed that in the absence of HCN, not all receptor binding sites are equally well accessible. In conclusion, the presence of HCN is vital for CNTs to exert their neurotoxicity. Although structurally similar, the HCN domain of TeNT cannot equally substitute those of BoNT and vice versa, leaving the possibility that HCNT plays a different role in the intoxication mechanism of TeNT.
Collapse
|
38
|
Nestor MS, Arnold D, Fischer D. The mechanisms of action and use of botulinum neurotoxin type A in aesthetics: Key Clinical Postulates II. J Cosmet Dermatol 2020; 19:2785-2804. [PMID: 32866999 PMCID: PMC7693297 DOI: 10.1111/jocd.13702] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The literature on botulinum neurotoxin type A (BoNT-A) is extensive, often contradictory, and confounded by a competitive market of products and research attempting to distinguish brand individuality. METHODS A comprehensive review of literature on the principles of BoNT-A in aesthetics as well as clinical examples. RESULTS In 2017, the Eight Key Clinical Postulates were formulated as a guide for the aesthetic practitioner in understanding BoNT-A pharmacodynamics and to compare different toxins. These are now updated to include (a) All type A toxins act identically; (b) The mathematical relationship between toxin and receptor is the basis of efficacy, and clinical efficacy is influenced by molecular potency and patient attributes including muscle mass, gender, age, and ethnicity; (c) Efficacy, onset, and duration are functions of "molecular potency" defined as the number of active 150 kDa molecules available for binding; (d) "Molecular potency" is difficult to objectively quantify for commercially available toxins; (e) Up to a point, increased molecular potency decreases time to onset and increases duration of effect, and the "Molecular Potency Quotient" is a construct for comparing molecular potency commercial cost; (f) The area of effect of a toxin injection is dependent upon molecular potency, diffusion (passive), and spread (active); (g) Differing reconstitution volumes; and (h) Increased number of injection sites can affect spread, onset, and duration of effect. CONCLUSIONS The principles of BoNT-A use in aesthetics are complex yet understandable as outlined in the framework of the updated Eight Key Clinical Postulates and serves as a useful tool for providing the most effective treatment and interpreting research on present and future toxin formulations.
Collapse
Affiliation(s)
- Mark S. Nestor
- Center for Clinical and Cosmetic ResearchAventuraFloridaUSA
- Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Department of SurgeryDivision of Plastic SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - David Arnold
- Center for Clinical and Cosmetic ResearchAventuraFloridaUSA
| | - Daniel Fischer
- Center for Clinical and Cosmetic ResearchAventuraFloridaUSA
| |
Collapse
|
39
|
Two VHH Antibodies Neutralize Botulinum Neurotoxin E1 by Blocking Its Membrane Translocation in Host Cells. Toxins (Basel) 2020; 12:toxins12100616. [PMID: 32992561 PMCID: PMC7599855 DOI: 10.3390/toxins12100616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Botulinum neurotoxin serotype E (BoNT/E) is one of the major causes of human botulism, which is a life-threatening disease caused by flaccid paralysis of muscles. After receptor-mediated toxin internalization into motor neurons, the translocation domain (HN) of BoNT/E transforms into a protein channel upon vesicle acidification in endosomes and delivers its protease domain (LC) across membrane to enter the neuronal cytosol. It is believed that the rapid onset of BoNT/E intoxication compared to other BoNT serotypes is related to its swift internalization and translocation. We recently identified two neutralizing single-domain camelid antibodies (VHHs) against BoNT/E1 termed JLE-E5 and JLE-E9. Here, we report the crystal structures of these two VHHs bound to the LCHN domain of BoNT/E1. The structures reveal that these VHHs recognize two distinct epitopes that are partially overlapping with the putative transmembrane regions on HN, and therefore could physically block membrane association of BoNT/E1. This is confirmed by our in vitro studies, which show that these VHHs inhibit the structural change of BoNT/E1 at acidic pH and interfere with BoNT/E1 association with lipid vesicles. Therefore, these two VHHs neutralize BoNT/E1 by preventing the transmembrane delivery of LC. Furthermore, structure-based sequence analyses show that the 3-dimensional epitopes of these two VHHs are largely conserved across many BoNT/E subtypes, suggesting a broad-spectrum protection against the BoNT/E family. In summary, this work improves our understanding of the membrane translocation mechanism of BoNT/E and paves the way for developing VHHs as diagnostics or therapeutics for the treatment of BoNT/E intoxication.
Collapse
|
40
|
Davies JR, Britton A, Liu SM, Acharya KR. High-resolution crystal structures of the botulinum neurotoxin binding domains from subtypes A5 and A6. FEBS Open Bio 2020; 10:1474-1481. [PMID: 32654405 PMCID: PMC7396429 DOI: 10.1002/2211-5463.12931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 11/10/2022] Open
Abstract
Clostridium botulinum neurotoxins (BoNTs) cause flaccid paralysis through inhibition of acetylcholine release from motor neurons; however, at tiny doses, this property is exploited for use as a therapeutic. Each member of the BoNT family of proteins consists of three distinct domains: a binding domain that targets neuronal cell membranes (HC ), a translocation domain (HN ) and a catalytic domain (LC). Here, we present high-resolution crystal structures of the binding domains of BoNT subtypes/A5 (HC /A5) and/A6 (HC /A6). These structures show that the core fold identified in other subtypes is maintained, but with subtle differences at the expected receptor-binding sites.
Collapse
Affiliation(s)
- Jonathan R Davies
- Department of Biology and Biochemistry, Claverton Down, University of Bath, Bath, UK.,Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Amy Britton
- Department of Biology and Biochemistry, Claverton Down, University of Bath, Bath, UK
| | - Sai Man Liu
- Ipsen Bioinnovation Limited, Milton Park, Abingdon, UK
| | - K Ravi Acharya
- Department of Biology and Biochemistry, Claverton Down, University of Bath, Bath, UK
| |
Collapse
|
41
|
Burstein R, Blumenfeld AM, Silberstein SD, Manack Adams A, Brin MF. Mechanism of Action of OnabotulinumtoxinA in Chronic Migraine: A Narrative Review. Headache 2020; 60:1259-1272. [PMID: 32602955 PMCID: PMC7496564 DOI: 10.1111/head.13849] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/20/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
Objective To review the literature on the mechanism of action of onabotulinumtoxinA in chronic migraine. Background OnabotulinumtoxinA is a chronic migraine preventive treatment that significantly reduces headache frequency. The traditional mechanism described for onabotulinumtoxinA – reducing muscle contractions – is insufficient to explain its efficacy in migraine, which is primarily a sensory neurological disease. Methods A narrative literature review on the mechanism of action of onabotulinumtoxinA in chronic migraine. Results Following injection into tissues, onabotulinumtoxinA inhibits soluble N‐ethylmaleimide‐sensitive fusion attachment protein receptor (SNARE)‐mediated vesicle trafficking by cleaving one of its essential proteins, soluble N‐ethylmaleimide‐sensitive fusion attachment protein (SNAP‐25), which occurs in both motor and sensory nerves. OnabotulinumtoxinA inhibits regulated exocytosis of motor and sensory neurochemicals and proteins, as well as membrane insertion of peripheral receptors that convey pain from the periphery to the brain, because both processes are SNARE dependent. OnabotulinumtoxinA can decrease exocytosis of pro‐inflammatory and excitatory neurotransmitters and neuropeptides such as substance P, calcitonin gene‐related peptide, and glutamate from primary afferent fibers that transmit nociceptive pain and participate in the development of peripheral and central sensitization. OnabotulinumtoxinA also decreases the insertion of pain‐sensitive ion channels such as transient receptor potential cation channel subfamily V member 1 (TRPV1) into the membranes of nociceptive neurons; this is likely enhanced in the sensitized neuron. For chronic migraine prevention, onabotulinumtoxinA is injected into 31‐39 sites in 7 muscles of the head and neck. Sensory nerve endings of neurons whose cell bodies are located in trigeminal and cervical ganglia are distributed throughout the injected muscles, and are overactive in people with migraine. Through inhibition of these sensory nerve endings, onabotulinumtoxinA reduces the number of pain signals that reach the brain and consequently prevents activation and sensitization of central neurons postulated to be involved in migraine chronification. Conclusion OnabotulinumtoxinA likely acts via sensory mechanisms to treat chronic migraine.
Collapse
Affiliation(s)
- Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Andrew M Blumenfeld
- The Headache Center of Southern California, The Neurology Center, Carlsbad, CA, USA
| | - Stephen D Silberstein
- Department of Neurology Jefferson Headache Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Mitchell F Brin
- Allergan, Inc., Irvine, CA, USA.,University of California, Irvine, CA, USA
| |
Collapse
|
42
|
Foo JN, Chew EGY, Chung SJ, Peng R, Blauwendraat C, Nalls MA, Mok KY, Satake W, Toda T, Chao Y, Tan LCS, Tandiono M, Lian MM, Ng EY, Prakash KM, Au WL, Meah WY, Mok SQ, Annuar AA, Chan AYY, Chen L, Chen Y, Jeon BS, Jiang L, Lim JL, Lin JJ, Liu C, Mao C, Mok V, Pei Z, Shang HF, Shi CH, Song K, Tan AH, Wu YR, Xu YM, Xu R, Yan Y, Yang J, Zhang B, Koh WP, Lim SY, Khor CC, Liu J, Tan EK. Identification of Risk Loci for Parkinson Disease in Asians and Comparison of Risk Between Asians and Europeans: A Genome-Wide Association Study. JAMA Neurol 2020; 77:746-754. [PMID: 32310270 PMCID: PMC7171584 DOI: 10.1001/jamaneurol.2020.0428] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/03/2020] [Indexed: 02/05/2023]
Abstract
Importance Large-scale genome-wide association studies in the European population have identified 90 risk variants associated with Parkinson disease (PD); however, there are limited studies in the largest population worldwide (ie, Asian). Objectives To identify novel genome-wide significant loci for PD in Asian individuals and to compare genetic risk between Asian and European cohorts. Design Setting, and Participants Genome-wide association data generated from PD cases and controls in an Asian population (ie, Singapore/Malaysia, Hong Kong, Taiwan, mainland China, and South Korea) were collected from January 1, 2016, to December 31, 2018, as part of an ongoing study. Results were combined with inverse variance meta-analysis, and replication of top loci in European and Japanese samples was performed. Discovery samples of 31 575 individuals passing quality control of 35 994 recruited were used, with a greater than 90% participation rate. A replication cohort of 1 926 361 European-ancestry and 3509 Japanese samples was analyzed. Parkinson disease was diagnosed using UK Parkinson's Disease Society Brain Bank Criteria. Main Outcomes and Measures Genotypes of common variants, association with disease status, and polygenic risk scores. Results Of 31 575 samples identified, 6724 PD cases (mean [SD] age, 64.3 [10] years; age at onset, 58.8 [10.6] years; 3472 [53.2%] men) and 24 851 controls (age, 59.4 [11.4] years; 11 030 [45.0%] men) were analyzed in the discovery study. Eleven genome-wide significant loci were identified; 2 of these loci were novel (SV2C and WBSCR17) and 9 were previously found in Europeans. Replication in European-ancestry and Japanese samples showed robust association for SV2C (rs246814; odds ratio, 1.16; 95% CI, 1.11-1.21; P = 1.17 × 10-10 in meta-analysis of discovery and replication samples) but showed potential genetic heterogeneity at WBSCR17 (rs9638616; I2=67.1%; P = 3.40 × 10-3 for hetereogeneity). Polygenic risk score models including variants at these 11 loci were associated with a significant improvement in area under the curve over the model based on 78 European loci alone (63.1% vs 60.2%; P = 6.81 × 10-12). Conclusions and Relevance This study identified 2 apparently novel gene loci and found 9 previously identified European loci to be associated with PD in this large, meta-genome-wide association study in a worldwide population of Asian individuals and reports similarities and differences in genetic risk factors between Asian and European individuals in the risk for PD. These findings may lead to improved stratification of Asian patients and controls based on polygenic risk scores. Our findings have potential academic and clinical importance for risk stratification and precision medicine in Asia.
Collapse
Affiliation(s)
- Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Elaine Guo Yan Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Rong Peng
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - Mike A. Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland
- Data Tecnica International LLC, Glen Echo, Maryland
| | - Kin Y. Mok
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Wataru Satake
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- Department of Neurology, The University of Tokyo Graduate School of Medicine, Bunkyo, Tokyo, Japan
| | - Tatsushi Toda
- Department of Neurology, The University of Tokyo Graduate School of Medicine, Bunkyo, Tokyo, Japan
| | - Yinxia Chao
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Louis C. S. Tan
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Moses Tandiono
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Michelle M. Lian
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Ebonne Y. Ng
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
| | - Kumar-M. Prakash
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
| | - Wing-Lok Au
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Wee-Yang Meah
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Shi Qi Mok
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Azlina Ahmad Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Anne Y. Y. Chan
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, Prince of Wales Hospital, Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, PR China
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Yongping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Beom S. Jeon
- Department of Neurology, Seoul National University Hospital, Jongno-gu, Seoul, South Korea
| | - Lulu Jiang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Jia Lun Lim
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Juei-Jueng Lin
- Department of Neurology, Chushang Show-Chwan Hospital, Zhushan District, Nantou, Taiwan
| | - Chunfeng Liu
- Department of Neurology, Second Affiliated Hospital of Soochow University, Suzhou, PR China
| | - Chengjie Mao
- Department of Neurology, Second Affiliated Hospital of Soochow University, Suzhou, PR China
| | - Vincent Mok
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, Prince of Wales Hospital, Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, PR China
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Hui-Fang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Chang-He Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Kyuyoung Song
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ai Huey Tan
- Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University, Taipei, Taiwan
| | - Yu-ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Yaping Yan
- Second Affiliated Hospital, Department of Neurology, Zhejiang University College of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - BaoRong Zhang
- Second Affiliated Hospital, Department of Neurology, Zhejiang University College of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Woon-Puay Koh
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Shen-Yang Lim
- Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chiea Chuen Khor
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
| | - Jianjun Liu
- Human Genetics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
| |
Collapse
|
43
|
Roderer D, Bröcker F, Sitsel O, Kaplonek P, Leidreiter F, Seeberger PH, Raunser S. Glycan-dependent cell adhesion mechanism of Tc toxins. Nat Commun 2020; 11:2694. [PMID: 32483155 PMCID: PMC7264150 DOI: 10.1038/s41467-020-16536-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/11/2020] [Indexed: 01/19/2023] Open
Abstract
Toxin complex (Tc) toxins are virulence factors of pathogenic bacteria. Tcs are composed of three subunits: TcA, TcB and TcC. TcA facilitates receptor-toxin interaction and membrane permeation, TcB and TcC form a toxin-encapsulating cocoon. While the mechanisms of holotoxin assembly and pore formation have been described, little is known about receptor binding of TcAs. Here, we identify heparins/heparan sulfates and Lewis antigens as receptors for different TcAs from insect and human pathogens. Glycan array screening reveals that all tested TcAs bind negatively charged heparins. Cryo-EM structures of Morganella morganii TcdA4 and Xenorhabdus nematophila XptA1 reveal that heparins/heparan sulfates unexpectedly bind to different regions of the shell domain, including receptor-binding domains. In addition, Photorhabdus luminescens TcdA1 binds to Lewis antigens with micromolar affinity. Here, the glycan interacts with the receptor-binding domain D of the toxin. Our results suggest a glycan dependent association mechanism of Tc toxins on the host cell surface.
Collapse
Affiliation(s)
- Daniel Roderer
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| | - Felix Bröcker
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
- Vaxxilon Deutschland GmbH, 12489, Berlin, Germany
| | - Oleg Sitsel
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| | - Paulina Kaplonek
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Franziska Leidreiter
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany.
| |
Collapse
|
44
|
Yin L, Masuyer G, Zhang S, Zhang J, Miyashita SI, Burgin D, Lovelock L, Coker SF, Fu TM, Stenmark P, Dong M. Characterization of a membrane binding loop leads to engineering botulinum neurotoxin B with improved therapeutic efficacy. PLoS Biol 2020; 18:e3000618. [PMID: 32182233 PMCID: PMC7077807 DOI: 10.1371/journal.pbio.3000618] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 02/12/2020] [Indexed: 11/25/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are a family of bacterial toxins with seven major serotypes (BoNT/A–G). The ability of these toxins to target and bind to motor nerve terminals is a key factor determining their potency and efficacy. Among these toxins, BoNT/B is one of the two types approved for medical and cosmetic uses. Besides binding to well-established receptors, an extended loop in the C-terminal receptor-binding domain (HC) of BoNT/B (HC/B) has been proposed to also contribute to toxin binding to neurons by interacting with lipid membranes (termed lipid-binding loop [LBL]). Analogous loops exist in the HCs of BoNT/C, D, G, and a chimeric toxin DC. However, it has been challenging to detect and characterize binding of LBLs to lipid membranes. Here, using the nanodisc system and biolayer interferometry assays, we find that HC/DC, C, and G, but not HC/B and HC/D, are capable of binding to receptor-free lipids directly, with HC/DC having the highest level of binding. Mutagenesis studies demonstrate the critical role of consecutive aromatic residues at the tip of the LBL for binding of HC/DC to lipid membranes. Taking advantage of this insight, we then create a “gain-of-function” mutant HC/B by replacing two nonaromatic residues at the tip of its LBL with tryptophan. Cocrystallization studies confirm that these two tryptophan residues do not alter the structure of HC/B or the interactions with its receptors. Such a mutated HC/B gains the ability to bind receptor-free lipid membranes and shows enhanced binding to cultured neurons. Finally, full-length BoNT/B containing two tryptophan mutations in its LBL, together with two additional mutations (E1191M/S1199Y) that increase binding to human receptors, is produced and evaluated in mice in vivo using Digit Abduction Score assays. This mutant toxin shows enhanced efficacy in paralyzing local muscles at the injection site and lower systemic diffusion, thus extending both safety range and duration of paralysis compared with the control BoNT/B. These findings establish a mechanistic understanding of LBL–lipid interactions and create a modified BoNT/B with improved therapeutic efficacy. Botulinum neurotoxins are a family of bacterial toxins, some of which are approved for medical and cosmetic uses. This study shows that introducing aromatic residues to a lipid binding loop improved therapeutic efficacy of botulinum neurotoxin B by enhancing its ability to bind to lipid membranes at motor nerve terminals.
Collapse
Affiliation(s)
- Linxiang Yin
- Department of Urology, Boston Children’s Hospital, Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Sicai Zhang
- Department of Urology, Boston Children’s Hospital, Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jie Zhang
- Department of Urology, Boston Children’s Hospital, Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shin-Ichiro Miyashita
- Department of Urology, Boston Children’s Hospital, Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | | | | | - Tian-min Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- * E-mail: (PS); (MD)
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (PS); (MD)
| |
Collapse
|
45
|
Poulain B, Lemichez E, Popoff MR. Neuronal selectivity of botulinum neurotoxins. Toxicon 2020; 178:20-32. [PMID: 32094099 DOI: 10.1016/j.toxicon.2020.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Botulinum neurotoxins (BoNTs) are highly potent toxins responsible for a severe disease, called botulism. They are also efficient therapeutic tools with an increasing number of indications ranging from neuromuscular dysfunction to hypersecretion syndrome, pain release, depression as well as cosmetic application. BoNTs are known to mainly target the motor-neurons terminals and to induce flaccid paralysis. BoNTs recognize a specific double receptor on neuronal cells consisting of gangliosides and synaptic vesicle protein, SV2 or synaptotagmin. Using cultured neuronal cells, BoNTs have been established blocking the release of a wide variety of neurotransmitters. However, BoNTs are more potent in motor-neurons than in the other neuronal cell types. In in vivo models, BoNT/A impairs the cholinergic neuronal transmission at the motor-neurons but also at neurons controlling secretions and smooth muscle neurons, and blocks several neuronal pathways including excitatory, inhibitory, and sensitive neurons. However, only a few reports investigated the neuronal selectivity of BoNTs in vivo. In the intestinal wall, BoNT/A and BoNT/B target mainly the cholinergic neurons and to a lower extent the other non-cholinergic neurons including serotonergic, glutamatergic, GABAergic, and VIP-neurons. The in vivo effects induced by BoNTs on the non-cholinergic neurons remain to be precisely investigated. We report here a literature review of the neuronal selectivity of BoNTs.
Collapse
Affiliation(s)
- Bernard Poulain
- Université de Strasbourg, CNRS, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | | | | |
Collapse
|
46
|
The Novel Clostridial Neurotoxin Produced by Strain IBCA10-7060 Is Immunologically Equivalent to BoNT/HA. Toxins (Basel) 2019; 12:toxins12010009. [PMID: 31877649 PMCID: PMC7020490 DOI: 10.3390/toxins12010009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/07/2019] [Accepted: 12/12/2019] [Indexed: 11/16/2022] Open
Abstract
Background: Botulinum neurotoxins (BoNTs) comprise seven agreed-on serotypes, A through G. In 2014, a novel chimeric neurotoxin produced by clostridial strain IBCA10-7060 was reported as BoNT/H, with subsequent names of BoNT/FA or BoNT/HA based on sequence homology of the N-terminus to BoNT/F, the C-terminus to BoNT/A and neutralization studies. The purpose of this study was to define the immunologic identity of the novel BoNT. Methods: monoclonal antibodies (mAbs) to the novel BoNT/H N-terminus were generated by antibody repertoire cloning and yeast display after immunization with BoNT/H LC-HN or BoNT/F LC-HN. Results: 21 unique BoNT/H LC-HN mAbs were obtained; 15 from the BoNT/H LC-HN immunized library (KD 0.78 nM to 182 nM) and six from the BoNT/F-immunized libraries (KD 20.5 nM to 1490 nM). A total of 15 of 21 mAbs also bound catalytically inactive BoNT/H holotoxin. The mAbs bound nine non-overlapping epitopes on the BoNT/H LC-HN. None of the mAbs showed binding to BoNT serotypes A-G, nor any of the seven subtypes of BoNT/F, except for one mAb that weakly bound BoNT/F5. Conclusions: The results, combined with the chimeric structure and neutralization by anti-A, but not anti-F antitoxin indicate that immunologically the novel BoNT is BoNT/HA. This determination has significant implications for existing countermeasures and potential vulnerabilities.
Collapse
|
47
|
Structural insights into the interaction of botulinum neurotoxin a with its neuronal receptor SV2C. Toxicon 2019; 175:36-43. [PMID: 31783045 DOI: 10.1016/j.toxicon.2019.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/08/2019] [Accepted: 11/25/2019] [Indexed: 11/23/2022]
Abstract
A dual-receptor interaction with a polysialoganglioside and synaptic vesicle glycoprotein 2 (SV2) is required for botulinum neurotoxin A (BoNT) toxicity. Here, we review what is currently known about the BoNT/A-SV2 interaction based on structural studies. Currently, five crystal structures of the receptor-binding domain (Hc) of BoNT subtypes A1 and A2 complexed to the large luminal domain (LD4) of SV2C have been determined. On the basis of the available structures, we will discuss the importance of protein-protein and protein-carbohydrate interactions for BoNT/A toxicity as well as the high plasticity of BoNT/A for receptor recognition by tolerating a variety of side-chain interactions at the interface. A plausible explanation how receptor-binding specificity of BoNT/A may be achieved without an extensive and conserved side chain-side chain interaction network will be provided.
Collapse
|
48
|
Stout K, Dunn A, Hoffman C, Miller GW. The Synaptic Vesicle Glycoprotein 2: Structure, Function, and Disease Relevance. ACS Chem Neurosci 2019; 10:3927-3938. [PMID: 31394034 PMCID: PMC11562936 DOI: 10.1021/acschemneuro.9b00351] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The synaptic vesicle glycoprotein 2 (SV2) family is comprised of three paralogues: SV2A, SV2B, and SV2C. In vertebrates, SV2s are 12-transmembrane proteins present on every secretory vesicle, including synaptic vesicles, and are critical to neurotransmission. Structural and functional studies suggest that SV2 proteins may play several roles to promote proper vesicular function. Among these roles are their potential to stabilize the transmitter content of vesicles, to maintain and orient the releasable pool of vesicles, and to regulate vesicular calcium sensitivity to ensure efficient, coordinated release of the transmitter. The SV2 family is highly relevant to human health in a number of ways. First, SV2A plays a role in neuronal excitability and as such is the specific target for the antiepileptic drug levetiracetam. SV2 proteins also act as the target by which potent neurotoxins, particularly botulinum, gain access to neurons and exert their toxicity. Both SV2B and SV2C are increasingly implicated in diseases such as Alzheimer's disease and Parkinson's disease. Interestingly, despite decades of intensive research, their exact function remains elusive. Thus, SV2 proteins are intriguing in their potentially diverse roles within the presynaptic terminal, and several recent developments have enhanced our understanding and appreciation of the protein family. Here, we review the structure and function of SV2 proteins as well as their relevance to disease and therapeutic development.
Collapse
Affiliation(s)
- Kristen Stout
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States
| | - Amy Dunn
- The Jackson Laboratory, Bar Harbor, Maine, United States
| | - Carlie Hoffman
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States
| | - Gary W. Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States
| |
Collapse
|
49
|
Type I beta turns make a new twist in pentapeptide repeat proteins: Crystal structure of Alr5209 from Nostoc sp. PCC 7120 determined at 1.7 angström resolution. JOURNAL OF STRUCTURAL BIOLOGY-X 2019; 3:100010. [PMID: 32647815 PMCID: PMC7337050 DOI: 10.1016/j.yjsbx.2019.100010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/05/2019] [Accepted: 07/31/2019] [Indexed: 11/22/2022]
Abstract
Pentapeptide repeat proteins (PRPs) are found abundantly in cyanobacteria, numbering in the dozens in some genomes, e.g. in Nostoc sp. PCC 7120. PRPs, comprised of a repeating consensus sequence of five amino acids, adopt a distinctive right-handed quadrilateral β-helical structure, also referred to as a repeat five residue (Rfr) fold, made up of stacks of coils formed by four consecutive pentapeptide repeats. The right-handed quadrilateral β-helical PRP structure is constructed by repeating β turns at each of four corners in a given coil, each causing a 90° change in direction of the polypeptide chain. Until now, all PRP structures have consisted either of type II and IV β turns or exclusively of type II β turns. Here, we report the first structure of a PRP comprised of type I and II β turns, Alr5209 from Nostoc sp. PCC 7120. The alr5209 gene encodes 129 amino acids containing 16 tandem pentapeptide repeats. The Alr5209 structure was analyzed in comparison to all other PRPs to determine how type I β turns can be accommodated in Rfr folds and the consequences of type I β turns on the right-handed quadrilateral β-helical structure. Given that Alr5209 represents the first PRP structure containing type I β turns, the PRP consensus sequence was reevaluated and updated. Despite a growing number of PRP structural investigations, their function remains largely unknown. Genome analysis indicated that alr5209 resides in a five-gene operon (alr5208-alr5212) with Alr5211 annotated to be a NADH dehydrogenase indicating Alr5209 may be involved in oxidative phosphorylation.
Collapse
|
50
|
Pellett S, Tepp WH, Johnson EA. Botulinum neurotoxins A, B, C, E, and F preferentially enter cultured human motor neurons compared to other cultured human neuronal populations. FEBS Lett 2019; 593:2675-2685. [PMID: 31240706 PMCID: PMC7751886 DOI: 10.1002/1873-3468.13508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/11/2022]
Abstract
Human-induced pluripotent stem cell (hiPSC)-derived neurons can be exquisitely sensitive to botulinum neurotoxins (BoNTs), exceeding sensitivity of the traditionally used mouse bioassay. In this report, four defined hiPSC-derived neuronal populations including primarily GABAergic, glutamatergic, dopaminergic, and motor neurons were examined for BoNT/A, B, C, D, E, and F sensitivity. The data indicate that sensitivity varies markedly for the BoNTs tested. Motor neurons are significantly more sensitive than other neuron types for all BoNTs except BoNT/D. Examination of SNARE protein levels and BoNT-specific cell surface protein receptors reveals few differences between the cell types except greater expression levels of the receptor protein SV2C and synapsin-IIa in motor neurons. This indicates that differential toxicity of BoNTs for motor neurons compared to other neuronal cell types involves multiple mechanisms.
Collapse
Affiliation(s)
- Sabine Pellett
- Department of Bacteriology, University of Wisconsin-Madison, WI, USA
| | - William H Tepp
- Department of Bacteriology, University of Wisconsin-Madison, WI, USA
| | - Eric A Johnson
- Department of Bacteriology, University of Wisconsin-Madison, WI, USA
| |
Collapse
|