1
|
Hao S, Liu Z, Lenz HJ, Yu J, Zhang L. Werner helicase as a therapeutic target in mismatch repair deficient colorectal cancer. DNA Repair (Amst) 2025; 149:103831. [PMID: 40203476 DOI: 10.1016/j.dnarep.2025.103831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/16/2025] [Accepted: 03/20/2025] [Indexed: 04/11/2025]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths in the United States. A key driver of CRC development is microsatellite instability (MSI), which is caused by DNA mismatch repair deficiency and characterized by hypermutability of short-tandem repeat sequences. A significant portion of MSI CRCs do not respond to checkpoint immunotherapy treatments, highlighting an unmet need for improved therapies. Recent studies have revealed that MSI cancer cells require Werner (WRN), a RecQ family DNA helicase, for survival. Inhibiting WRN has emerged as a promising approach for targeting MSI CRCs that are insensitive to standard therapies. Several highly potent small-molecule WRN inhibitors have been developed and exhibited striking in vitro and in vivo activities against MSI cancers. Two of these WRN inhibitors, HRO761 and VVD-133214, have recently entered clinical trials. In this review, we summarize recent studies on WRN as a synthetic lethal target in MSI CRC and the development of WRN inhibitors as a new class of anticancer agents.
Collapse
Affiliation(s)
- Suisui Hao
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Zhaojin Liu
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Heinz-Josef Lenz
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Jian Yu
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Lin Zhang
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA.
| |
Collapse
|
2
|
Wang C, Han X, Kong S, Zhang S, Ning H, Wu F. Deciphering the mechanisms of PARP inhibitor resistance in prostate cancer: Implications for precision medicine. Biomed Pharmacother 2025; 185:117955. [PMID: 40086424 DOI: 10.1016/j.biopha.2025.117955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
Prostate cancer is a leading malignancy among men. While early-stage prostate cancer can be effectively managed, metastatic prostate cancer remains incurable, with a median survival of 3-5 years. The primary treatment for advanced prostate cancer is androgen deprivation therapy (ADT), but resistance to ADT often leads to castrationresistant prostate cancer (CRPC), presenting a significant therapeutic challenge. The advent of precision medicine has introduced promising new treatments, including PARP inhibitors (PARPi), which target defects in DNA repair mechanisms in cancer cells. PARPi have shown efficacy in treating advanced prostate cancer, especially in patients with metastatic CRPC (mCRPC) harboring homologous recombination (HR)-associated gene mutations. Despite these advancements, resistance to PARPi remains a critical issue. Here, we explored the primary mechanisms of PARPi resistance in prostate cancer. Key resistance mechanisms include homologous recombination recovery through reverse mutations in BRCA genes, BRCA promoter demethylation, and non-degradation of mutated BRCA proteins. The tumor microenvironment and overactivation of the base excision repair pathway also play significant roles in bypassing PARPi-induced synthetic lethality. In addition, we explored the clinical implications and therapeutic strategies to overcome resistance,emphasizing the need for precision medicine approaches. Our findings highlight the need for comprehensive strategies to improve PARPi sensitivity and effectiveness,ultimately aiming to extend patient survival and improve the quality of life for those with advanced prostate cancer. As our understanding of PARPi resistance evolves, more diverse and effective individualized treatment regimens will emerge.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, PR China
| | - Xiaoran Han
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, PR China
| | - Shaoqiu Kong
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, PR China
| | - Shanhua Zhang
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, PR China
| | - Hao Ning
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, PR China; Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, PR China.
| | - Fei Wu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, PR China; Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, PR China.
| |
Collapse
|
3
|
Bhat A, Bhan S, Kabiraj A, Pandita RK, Ramos KS, Nandi S, Sopori S, Sarkar PS, Dhar A, Pandita S, Kumar R, Das C, Tainer JA, Pandita TK. A predictive chromatin architecture nexus regulates transcription and DNA damage repair. J Biol Chem 2025; 301:108300. [PMID: 39947477 PMCID: PMC11931391 DOI: 10.1016/j.jbc.2025.108300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/16/2024] [Accepted: 01/16/2025] [Indexed: 03/28/2025] Open
Abstract
Genomes are blueprints of life essential for an organism's survival, propagation, and evolutionary adaptation. Eukaryotic genomes comprise of DNA, core histones, and several other nonhistone proteins, packaged into chromatin in the tiny confines of nucleus. Chromatin structural organization restricts transcription factors to access DNA, permitting binding only after specific chromatin remodeling events. The fundamental processes in living cells, including transcription, replication, repair, and recombination, are thus regulated by chromatin structure through ATP-dependent remodeling, histone variant incorporation, and various covalent histone modifications including phosphorylation, acetylation, and ubiquitination. These modifications, particularly involving histone variant H2AX, furthermore play crucial roles in DNA damage responses by enabling repair protein's access to damaged DNA. Chromatin also stabilizes the genome by regulating DNA repair mechanisms while suppressing damage from endogenous and exogenous sources. Environmental factors such as ionizing radiations induce DNA damage, and if repair is compromised, can lead to chromosomal abnormalities and gene amplifications as observed in several tumor types. Consequently, chromatin architecture controls the genome fidelity and activity: it orchestrates correct gene expression, genomic integrity, DNA repair, transcription, replication, and recombination. This review considers connecting chromatin organization to functional outcomes impacting transcription, DNA repair and genomic integrity as an emerging grand challenge for predictive molecular cell biology.
Collapse
Affiliation(s)
- Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Jammu and Kashmir, India.
| | - Sonali Bhan
- Centre for Molecular Biology, Central University of Jammu, Jammu and Kashmir, India
| | - Aindrila Kabiraj
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, BARC Training School Complex, Mumbai, Maharashtra, India
| | - Raj K Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA
| | - Keneth S Ramos
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA
| | - Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, BARC Training School Complex, Mumbai, Maharashtra, India
| | - Shreya Sopori
- Centre for Molecular Biology, Central University of Jammu, Jammu and Kashmir, India
| | - Parthas S Sarkar
- Department of Neurobiology and Neurology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Telangana, India
| | | | - Rakesh Kumar
- Department of Biotechnology, Shri Mata Vaishnav Devi University, Katra, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, BARC Training School Complex, Mumbai, Maharashtra, India.
| | - John A Tainer
- Department of Molecular & Cellular Oncology and Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Tej K Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA.
| |
Collapse
|
4
|
Li Y, Huang X, Li Y, Qiao Q, Chen C, Chen Y, Zhong W, Liu H, Sun T. WRN Nuclease-Mediated EcDNA Clearance Enhances Antitumor Therapy in Conjunction with Trehalose Dimycolate/Mesoporous Silica Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407026. [PMID: 39206698 PMCID: PMC11516056 DOI: 10.1002/advs.202407026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Current research on tumor fibrosis has focused on cancer-associated fibroblasts, which may exert dual functions of tumor promotion and inhibition. Little attention has been paid to whether tumor cells themselves can undergo fibrotic transformation and whether they can inhibit parenchymal cells similar to pulmonary fibrosis, thus achieving the goal of inhibiting the malignant progression of tumors. To explore the significance of inducing tumor fibrosis for cancer treatment. This study utilizes mesoporous silica nanoparticles (MSN) loaded with Trehalose dimycolate (TDM) to induce tumor cell fibrosis through the dual effects of TDM-induced inflammatory granuloma and MSN-induced foreign body granuloma. The results show that TDM/MSN (TM) can effectively induce tumor fibrosis, manifested specifically by collagen internalization, and suppression of proliferation and invasion capabilities, suggesting the potential role of tumor fibrosis therapy. However, further investigation reveals that extrachromosomal DNA (ecDNA) mediates resistance to fibrosis induction. To comprehensively enhance the efficacy, WRN exonuclease is conjugated to TM to form new nanoparticles (TMW) capable of effectively eliminating ecDNA, globally promoting tumor cell fibroblast-like transformation, and validated in a PDX model to inhibit cancer progression. Therefore, TMW, through inducing tumor cell fibrosis to inhibit its malignant progression, holds great potential as a clinical treatment strategy.
Collapse
Affiliation(s)
- Yinan Li
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Xiu Huang
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative DrugsTianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjin300450China
| | - Yingying Li
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative DrugsTianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjin300450China
| | - Qingqing Qiao
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Caihong Chen
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Yang Chen
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Weilong Zhong
- Tianjin Key Laboratory of Digestive DiseasesDepartment of Gastroenterology and HepatologyTianjin Institute of Digestive DiseasesTianjin Medical University General HospitalTianjin300052China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative DrugsTianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjin300450China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| |
Collapse
|
5
|
Orren DK, Machwe A. Response to Replication Stress and Maintenance of Genome Stability by WRN, the Werner Syndrome Protein. Int J Mol Sci 2024; 25:8300. [PMID: 39125869 PMCID: PMC11311767 DOI: 10.3390/ijms25158300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Werner syndrome (WS) is an autosomal recessive disease caused by loss of function of WRN. WS is a segmental progeroid disease and shows early onset or increased frequency of many characteristics of normal aging. WRN possesses helicase, annealing, strand exchange, and exonuclease activities and acts on a variety of DNA substrates, even complex replication and recombination intermediates. Here, we review the genetics, biochemistry, and probably physiological functions of the WRN protein. Although its precise role is unclear, evidence suggests WRN plays a role in pathways that respond to replication stress and maintain genome stability particularly in telomeric regions.
Collapse
Affiliation(s)
- David K. Orren
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA
| | - Amrita Machwe
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
6
|
Yoon JH, Sellamuthu K, Prakash L, Prakash S. WRN exonuclease imparts high fidelity on translesion synthesis by Y family DNA polymerases. Genes Dev 2024; 38:213-232. [PMID: 38503516 PMCID: PMC11065173 DOI: 10.1101/gad.351410.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
Purified translesion synthesis (TLS) DNA polymerases (Pols) replicate through DNA lesions with a low fidelity; however, TLS operates in a predominantly error-free manner in normal human cells. To explain this incongruity, here we determine whether Y family Pols, which play an eminent role in replication through a diversity of DNA lesions, are incorporated into a multiprotein ensemble and whether the intrinsically high error rate of the TLS Pol is ameliorated by the components in the ensemble. To this end, we provide evidence for an indispensable role of Werner syndrome protein (WRN) and WRN-interacting protein 1 (WRNIP1) in Rev1-dependent TLS by Y family Polη, Polι, or Polκ and show that WRN, WRNIP1, and Rev1 assemble together with Y family Pols in response to DNA damage. Importantly, we identify a crucial role of WRN's 3' → 5' exonuclease activity in imparting high fidelity on TLS by Y family Pols in human cells, as the Y family Pols that accomplish TLS in an error-free manner manifest high mutagenicity in the absence of WRN's exonuclease function. Thus, by enforcing high fidelity on TLS Pols, TLS mechanisms have been adapted to safeguard against genome instability and tumorigenesis.
Collapse
Affiliation(s)
- Jung-Hoon Yoon
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555, USA
| | - Karthi Sellamuthu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555, USA
| | - Louise Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555, USA
| | - Satya Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555, USA
| |
Collapse
|
7
|
Wu J, Pan S, Lin W, Wen J, Lu R, Chen G. The identification of a novel mutation (p.I223fs) in WRN associated with Werner syndrome. Endocrine 2024; 84:92-96. [PMID: 37856055 DOI: 10.1007/s12020-023-03565-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
PURPOSE Werner syndrome (WS) is a rare autosomal recessive genetic disease caused by mutations in the WRN gene, and it is characterized by multiple manifestations corresponding to early-onset aging. This study reports the case of a WS patient with a novel WRN mutation. PATIENT AND METHODS A 36-year-old male patient with WS was evaluated after approval from the local ethics committee. The clinical and biochemical findings of the patient were described. Peripheral blood sample was collected to extract genomic DNA for WRN gene exome sequencing. The three-dimensional (3D) protein structural prediction analysis was performed via the AlphaFold 2.2 program and PyMol software. RESULTS We report the case of a clinically diagnosed WS patient with consanguineous parents who presented with complex manifestations including early-onset diabetes mellitus, binocular cataracts, cerebral infarction, cerebral atherosclerosis, hypertension, dyslipidemia, hypothyroidism, and suspected meningioma, accompanied by short stature, gray hair, rough skin with subcutaneous fat atrophy, a high-pitched voice, palmoplantar keratoderma, bilateral flat feet, and an indolent deep ulceration on the foot. Exome sequencing identified a novel homozygous frameshift mutation in the WRN gene, c.666-669 del TATT, p.I223fs. The 3D structure prediction showed that premature termination and significant structural changes could occur in the mutant WRN protein. CONCLUSION We identified a novel homozygous frameshift mutation, p.I223fs, in WRN in a Chinese patient with WS, expanding the spectrum of mutations in WS.
Collapse
Affiliation(s)
- Jushuang Wu
- Fujian Academy of Medical Sciences, Fuzhou, 350001, Fujian, China
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Shuyao Pan
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Wei Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Junping Wen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Rongmei Lu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China.
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China.
| | - Gang Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China.
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
8
|
Parker MJ, Lee H, Yao S, Irwin S, Hwang S, Belanger K, de Mare SW, Surgenor R, Yan L, Gee P, Morla S, Puyang X, Hsiao P, Zeng H, Zhu P, Korpal M, Dransfield P, Bolduc DM, Larsen NA. Identification of 2-Sulfonyl/Sulfonamide Pyrimidines as Covalent Inhibitors of WRN Using a Multiplexed High-Throughput Screening Assay. Biochemistry 2023; 62:2147-2160. [PMID: 37403936 PMCID: PMC10358344 DOI: 10.1021/acs.biochem.2c00599] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/03/2023] [Indexed: 07/06/2023]
Abstract
Werner syndrome protein (WRN) is a multifunctional enzyme with helicase, ATPase, and exonuclease activities that are necessary for numerous DNA-related transactions in the human cell. Recent studies identified WRN as a synthetic lethal target in cancers characterized by genomic microsatellite instability resulting from defects in DNA mismatch repair pathways. WRN's helicase activity is essential for the viability of these high microsatellite instability (MSI-H) cancers and thus presents a therapeutic opportunity. To this end, we developed a multiplexed high-throughput screening assay that monitors exonuclease, ATPase, and helicase activities of full-length WRN. This screening campaign led to the discovery of 2-sulfonyl/sulfonamide pyrimidine derivatives as novel covalent inhibitors of WRN helicase activity. The compounds are specific for WRN versus other human RecQ family members and show competitive behavior with ATP. Examination of these novel chemical probes established the sulfonamide NH group as a key driver of compound potency. One of the leading compounds, H3B-960, showed consistent activities in a range of assays (IC50 = 22 nM, KD = 40 nM, KI = 32 nM), and the most potent compound identified, H3B-968, has inhibitory activity IC50 ∼ 10 nM. These kinetic properties trend toward other known covalent druglike molecules. Our work provides a new avenue for screening WRN for inhibitors that may be adaptable to different therapeutic modalities such as targeted protein degradation, as well as a proof of concept for the inhibition of WRN helicase activity by covalent molecules.
Collapse
Affiliation(s)
- Mackenzie J. Parker
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Hyelee Lee
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Shihua Yao
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Sean Irwin
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Sunil Hwang
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Kylie Belanger
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Sofia Woo de Mare
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Richard Surgenor
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Lu Yan
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Patricia Gee
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Shravan Morla
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Xiaoling Puyang
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Peng Hsiao
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Hao Zeng
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Ping Zhu
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Manav Korpal
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Paul Dransfield
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - David M. Bolduc
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Nicholas A. Larsen
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Romero-Zamora D, Hayashi MT. A non-catalytic N-terminus domain of WRN prevents mitotic telomere deprotection. Sci Rep 2023; 13:645. [PMID: 36635307 PMCID: PMC9837040 DOI: 10.1038/s41598-023-27598-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023] Open
Abstract
Telomeric ends form a loop structure (T-loop) necessary for the repression of ATM kinase activation throughout the normal cell cycle. However, cells undergoing a prolonged mitotic arrest are prone to lose the T-loop, resulting in Aurora B kinase-dependent mitotic telomere deprotection, which was proposed as an anti-tumor mechanism that eliminates precancerous cells from the population. The mechanism of mitotic telomere deprotection has not been elucidated. Here, we show that WRN, a RECQ helicase family member, can suppress mitotic telomere deprotection independently of its exonuclease and helicase activities. Truncation of WRN revealed that N-terminus amino acids 168-333, a region that contains a coiled-coil motif, is sufficient to suppress mitotic telomere deprotection without affecting both mitotic Aurora B-dependent spindle checkpoint and ATM kinase activity. The suppressive activity of the WRN168-333 fragment is diminished in cells partially depleted of TRF2, while WRN is required for complete suppression of mitotic telomere deprotection by TRF2 overexpression. Finally, we found that phosphomimetic but not alanine mutations of putative Aurora B target sites in the WRN168-333 fragment abolished its suppressive effect. Our findings reveal a non-enzymatic function of WRN, which may be regulated by phosphorylation in cells undergoing mitotic arrest. We propose that WRN enhances the protective function of TRF2 to counteract the hypothetical pathway that resolves the mitotic T-loop.
Collapse
Affiliation(s)
- Diana Romero-Zamora
- grid.258799.80000 0004 0372 2033Graduate School of Biostudies, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto, 606-8501 Japan ,grid.258799.80000 0004 0372 2033IFOM-KU Joint Research Laboratory, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto, 606-8501 Japan
| | - Makoto T. Hayashi
- grid.258799.80000 0004 0372 2033IFOM-KU Joint Research Laboratory, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto, 606-8501 Japan ,IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| |
Collapse
|
10
|
Yuan LG, Liu NN, Xi XG. Biochemical and functional characterization of an exonuclease from Chaetomium thermophilum. Biochem Biophys Res Commun 2022; 636:17-24. [DOI: 10.1016/j.bbrc.2022.10.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022]
|
11
|
Kohzaki M. Mammalian Resilience Revealed by a Comparison of Human Diseases and Mouse Models Associated With DNA Helicase Deficiencies. Front Mol Biosci 2022; 9:934042. [PMID: 36032672 PMCID: PMC9403131 DOI: 10.3389/fmolb.2022.934042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/23/2022] [Indexed: 12/01/2022] Open
Abstract
Maintaining genomic integrity is critical for sustaining individual animals and passing on the genome to subsequent generations. Several enzymes, such as DNA helicases and DNA polymerases, are involved in maintaining genomic integrity by unwinding and synthesizing the genome, respectively. Indeed, several human diseases that arise caused by deficiencies in these enzymes have long been known. In this review, the author presents the DNA helicases associated with human diseases discovered to date using recent analyses, including exome sequences. Since several mouse models that reflect these human diseases have been developed and reported, this study also summarizes the current knowledge regarding the outcomes of DNA helicase deficiencies in humans and mice and discusses possible mechanisms by which DNA helicases maintain genomic integrity in mammals. It also highlights specific diseases that demonstrate mammalian resilience, in which, despite the presence of genomic instability, patients and mouse models have lifespans comparable to those of the general population if they do not develop cancers; finally, this study discusses future directions for therapeutic applications in humans that can be explored using these mouse models.
Collapse
|
12
|
Gupta P, Majumdar AG, Patro BS. Non-enzymatic function of WRN RECQL helicase regulates removal of topoisomerase-I-DNA covalent complexes and triggers NF-κB signaling in cancer. Aging Cell 2022; 21:e13625. [PMID: 35582959 PMCID: PMC9197415 DOI: 10.1111/acel.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/25/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022] Open
Abstract
Mutation in Werner (WRN) RECQL helicase is associated with premature aging syndrome (Werner syndrome, WS) and predisposition to multiple cancers. In patients with solid cancers, deficiency of the WRN RECQL helicase is paradoxically associated with enhanced overall survival in response to treatment with TOP1 inhibitors, which stabilize pathological TOP1-DNA-covalent-complexes (TOP1cc) on the genome. However, the underlying mechanism of WRN in development of chemoresistance to TOP1 inhibitors is not yet explored. Our whole-genome transcriptomic analysis for ~25,000 genes showed robust activation of NF-κB-dependent prosurvival genes in response to TOP1cc. CRISPR-Cas9 knockout, shRNA silencing, and under-expression of WRN confer high-sensitivity of multiple cancers to TOP1 inhibitor. We demonstrated that WRN orchestrates TOP1cc repair through proteasome-dependent and proteasome-independent process, unleashing robust ssDNA generation. This in turn ensues signal transduction for CHK1 mediated NF-κB-activation through IκBα-degradation and nuclear localization of p65 protein. Intriguingly, our site-directed mutagenesis and rescue experiments revealed that neither RECQL-helicase nor DNA-exonuclease enzyme activity of WRN (WRNE84A , WRNK577M , and WRNE84A-K577M ) were required for TOP1cc removal, ssDNA generation and signaling for NF-κB activation. In correlation with patient data and above results, the TOP1 inhibitor-based targeted therapy showed that WRN-deficient melanoma tumors were highly sensitive to TOP1 inhibition in preclinical in vivo mouse model. Collectively, our findings identify hitherto unknown non-enzymatic role of WRN RECQL helicase in pathological mechanisms underlying TOP1cc processing and subsequent NF-κB-activation, offering a potential targeted therapy for WRN-deficient cancer patients.
Collapse
Affiliation(s)
- Pooja Gupta
- Bio‐Organic DivisionBhabha Atomic Research CentreTrombayMumbaiIndia
- Homi Bhabha National InstituteAnushaktinagarMumbaiIndia
| | - Ananda Guha Majumdar
- Bio‐Organic DivisionBhabha Atomic Research CentreTrombayMumbaiIndia
- Homi Bhabha National InstituteAnushaktinagarMumbaiIndia
| | - Birija Sankar Patro
- Bio‐Organic DivisionBhabha Atomic Research CentreTrombayMumbaiIndia
- Homi Bhabha National InstituteAnushaktinagarMumbaiIndia
| |
Collapse
|
13
|
Partial lipodystrophy, severe dyslipidaemia and insulin resistant diabetes as early signs of Werner syndrome. J Clin Lipidol 2022; 16:583-590. [DOI: 10.1016/j.jacl.2022.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022]
|
14
|
Lu H, Guan J, Wang SY, Li GM, Bohr VA, Davis AJ. DNA-PKcs-dependent phosphorylation of RECQL4 promotes NHEJ by stabilizing the NHEJ machinery at DNA double-strand breaks. Nucleic Acids Res 2022; 50:5635-5651. [PMID: 35580045 PMCID: PMC9178012 DOI: 10.1093/nar/gkac375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 12/21/2022] Open
Abstract
Non-homologous end joining (NHEJ) is the major pathway that mediates the repair of DNA double-strand breaks (DSBs) generated by ionizing radiation (IR). Previously, the DNA helicase RECQL4 was implicated in promoting NHEJ, but its role in the pathway remains unresolved. In this study, we report that RECQL4 stabilizes the NHEJ machinery at DSBs to promote repair. Specifically, we find that RECQL4 interacts with the NHEJ core factor DNA-PKcs and the interaction is increased following IR. RECQL4 promotes DNA end bridging mediated by DNA-PKcs and Ku70/80 in vitro and the accumulation/retention of NHEJ factors at DSBs in vivo. Moreover, interaction between DNA-PKcs and the other core NHEJ proteins following IR treatment is attenuated in the absence of RECQL4. These data indicate that RECQL4 promotes the stabilization of the NHEJ factors at DSBs to support formation of the NHEJ long-range synaptic complex. In addition, we observed that the kinase activity of DNA-PKcs is required for accumulation of RECQL4 to DSBs and that DNA-PKcs phosphorylates RECQL4 at six serine/threonine residues. Blocking phosphorylation at these sites reduced the recruitment of RECQL4 to DSBs, attenuated the interaction between RECQL4 and NHEJ factors, destabilized interactions between the NHEJ machinery, and resulted in decreased NHEJ. Collectively, these data illustrate reciprocal regulation between RECQL4 and DNA-PKcs in NHEJ.
Collapse
Affiliation(s)
- Huiming Lu
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Junhong Guan
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shih-Ya Wang
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guo-Min Li
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vilhelm A Bohr
- DNA Repair Section, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Anthony J Davis
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
15
|
Rosenberg DJ, Hura GL, Hammel M. Size exclusion chromatography coupled small angle X-ray scattering with tandem multiangle light scattering at the SIBYLS beamline. Methods Enzymol 2022; 677:191-219. [DOI: 10.1016/bs.mie.2022.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Chinnam NB, Syed A, Burnett KH, Hura GL, Tainer JA, Tsutakawa SE. Universally Accessible Structural Data on Macromolecular Conformation, Assembly, and Dynamics by Small Angle X-Ray Scattering for DNA Repair Insights. Methods Mol Biol 2022; 2444:43-68. [PMID: 35290631 PMCID: PMC9020468 DOI: 10.1007/978-1-0716-2063-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Structures provide a critical breakthrough step for biological analyses, and small angle X-ray scattering (SAXS) is a powerful structural technique to study dynamic DNA repair proteins. As toxic and mutagenic repair intermediates need to be prevented from inadvertently harming the cell, DNA repair proteins often chaperone these intermediates through dynamic conformations, coordinated assemblies, and allosteric regulation. By measuring structural conformations in solution for both proteins, DNA, RNA, and their complexes, SAXS provides insight into initial DNA damage recognition, mechanisms for validation of their substrate, and pathway regulation. Here, we describe exemplary SAXS analyses of a DNA damage response protein spanning from what can be derived directly from the data to obtaining super resolution through the use of SAXS selection of atomic models. We outline strategies and tactics for practical SAXS data collection and analysis. Making these structural experiments in reach of any basic and clinical researchers who have protein, SAXS data can readily be collected at government-funded synchrotrons, typically at no cost for academic researchers. In addition to discussing how SAXS complements and enhances cryo-electron microscopy, X-ray crystallography, NMR, and computational modeling, we furthermore discuss taking advantage of recent advances in protein structure prediction in combination with SAXS analysis.
Collapse
Affiliation(s)
- Naga Babu Chinnam
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Aleem Syed
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Kathryn H Burnett
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Greg L Hura
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Chemistry and Biochemistry Department, University of California Santa Cruz, Santa Cruz, CA, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
17
|
Tsutakawa SE, Bacolla A, Katsonis P, Bralić A, Hamdan SM, Lichtarge O, Tainer JA, Tsai CL. Decoding Cancer Variants of Unknown Significance for Helicase-Nuclease-RPA Complexes Orchestrating DNA Repair During Transcription and Replication. Front Mol Biosci 2021; 8:791792. [PMID: 34966786 PMCID: PMC8710748 DOI: 10.3389/fmolb.2021.791792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/16/2021] [Indexed: 01/13/2023] Open
Abstract
All tumors have DNA mutations, and a predictive understanding of those mutations could inform clinical treatments. However, 40% of the mutations are variants of unknown significance (VUS), with the challenge being to objectively predict whether a VUS is pathogenic and supports the tumor or whether it is benign. To objectively decode VUS, we mapped cancer sequence data and evolutionary trace (ET) scores onto crystallography and cryo-electron microscopy structures with variant impacts quantitated by evolutionary action (EA) measures. As tumors depend on helicases and nucleases to deal with transcription/replication stress, we targeted helicase–nuclease–RPA complexes: (1) XPB-XPD (within TFIIH), XPF-ERCC1, XPG, and RPA for transcription and nucleotide excision repair pathways and (2) BLM, EXO5, and RPA plus DNA2 for stalled replication fork restart. As validation, EA scoring predicts severe effects for most disease mutations, but disease mutants with low ET scores not only are likely destabilizing but also disrupt sophisticated allosteric mechanisms. For sites of disease mutations and VUS predicted to be severe, we found strong co-localization to ordered regions. Rare discrepancies highlighted the different survival requirements between disease and tumor mutations, as well as the value of examining proteins within complexes. In a genome-wide analysis of 33 cancer types, we found correlation between the number of mutations in each tumor and which pathways or functional processes in which the mutations occur, revealing different mutagenic routes to tumorigenesis. We also found upregulation of ancient genes including BLM, which supports a non-random and concerted cancer process: reversion to a unicellular, proliferation-uncontrolled, status by breaking multicellular constraints on cell division. Together, these genes and global analyses challenge the binary “driver” and “passenger” mutation paradigm, support a gradient impact as revealed by EA scoring from moderate to severe at a single gene level, and indicate reduced regulation as well as activity. The objective quantitative assessment of VUS scoring and gene overexpression in the context of functional interactions and pathways provides insights for biology, oncology, and precision medicine.
Collapse
Affiliation(s)
- Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Amer Bralić
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Samir M Hamdan
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - John A Tainer
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States.,Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
18
|
Ye Z, Shi Y, Lees-Miller SP, Tainer JA. Function and Molecular Mechanism of the DNA Damage Response in Immunity and Cancer Immunotherapy. Front Immunol 2021; 12:797880. [PMID: 34970273 PMCID: PMC8712645 DOI: 10.3389/fimmu.2021.797880] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
The DNA damage response (DDR) is an organized network of multiple interwoven components evolved to repair damaged DNA and maintain genome fidelity. Conceptually the DDR includes damage sensors, transducer kinases, and effectors to maintain genomic stability and accurate transmission of genetic information. We have recently gained a substantially improved molecular and mechanistic understanding of how DDR components are interconnected to inflammatory and immune responses to stress. DDR shapes both innate and adaptive immune pathways: (i) in the context of innate immunity, DDR components mainly enhance cytosolic DNA sensing and its downstream STimulator of INterferon Genes (STING)-dependent signaling; (ii) in the context of adaptive immunity, the DDR is needed for the assembly and diversification of antigen receptor genes that is requisite for T and B lymphocyte development. Imbalances between DNA damage and repair impair tissue homeostasis and lead to replication and transcription stress, mutation accumulation, and even cell death. These impacts from DDR defects can then drive tumorigenesis, secretion of inflammatory cytokines, and aberrant immune responses. Yet, DDR deficiency or inhibition can also directly enhance innate immune responses. Furthermore, DDR defects plus the higher mutation load in tumor cells synergistically produce primarily tumor-specific neoantigens, which are powerfully targeted in cancer immunotherapy by employing immune checkpoint inhibitors to amplify immune responses. Thus, elucidating DDR-immune response interplay may provide critical connections for harnessing immunomodulatory effects plus targeted inhibition to improve efficacy of radiation and chemotherapies, of immune checkpoint blockade, and of combined therapeutic strategies.
Collapse
Affiliation(s)
- Zu Ye
- Department of Molecular and Cellular Oncology, and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yin Shi
- Department of Immunology, Zhejiang University School of Medicine, Hangzhou, China
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Susan P. Lees-Miller
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - John A. Tainer
- Department of Molecular and Cellular Oncology, and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
19
|
Hsu TY, Hsu LN, Chen SY, Juang BT. MUT-7 Provides Molecular Insight into the Werner Syndrome Exonuclease. Cells 2021; 10:cells10123457. [PMID: 34943966 PMCID: PMC8700014 DOI: 10.3390/cells10123457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 11/24/2022] Open
Abstract
Werner syndrome (WS) is a rare recessive genetic disease characterized by premature aging. Individuals with this disorder develop normally during childhood, but their physiological conditions exacerbate the aging process in late adolescence. WS is caused by mutation of the human WS gene (WRN), which encodes two main domains, a 3′-5′ exonuclease and a 3′-5′ helicase. Caenorhabditis elegans expresses human WRN orthologs as two different proteins: MUT-7, which has a 3′-5′ exonuclease domain, and C. elegans WRN-1 (CeWRN-1), which has only helicase domains. These unique proteins dynamically regulate olfactory memory in C. elegans, providing insight into the molecular roles of WRN domains in humans. In this review, we specifically focus on characterizing the function of MUT-7 in small interfering RNA (siRNA) synthesis in the cytoplasm and the roles of siRNA in directing nuclear CeWRN-1 loading onto a heterochromatin complex to induce negative feedback regulation. Further studies on the different contributions of the 3′-5′ exonuclease and helicase domains in the molecular mechanism will provide clues to the accelerated aging processes in WS.
Collapse
Affiliation(s)
- Tsung-Yuan Hsu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
- Department of Cell and Tissue Biology, University of California, 513 Parnassus, San Francisco, CA 94143, USA
| | - Ling-Nung Hsu
- Occupational Safety and Health Office, Fu Jen Catholic University Hospital, New Taipei City 243, Taiwan;
| | - Shih-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan;
| | - Bi-Tzen Juang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Chiao Tung University, Hsinchu 300, Taiwan
- Correspondence:
| |
Collapse
|
20
|
Wilson DM, Deacon AM, Duncton MAJ, Pellicena P, Georgiadis MM, Yeh AP, Arvai AS, Moiani D, Tainer JA, Das D. Fragment- and structure-based drug discovery for developing therapeutic agents targeting the DNA Damage Response. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:130-142. [PMID: 33115610 PMCID: PMC8666131 DOI: 10.1016/j.pbiomolbio.2020.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/13/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
Cancer will directly affect the lives of over one-third of the population. The DNA Damage Response (DDR) is an intricate system involving damage recognition, cell cycle regulation, DNA repair, and ultimately cell fate determination, playing a central role in cancer etiology and therapy. Two primary therapeutic approaches involving DDR targeting include: combinatorial treatments employing anticancer genotoxic agents; and synthetic lethality, exploiting a sporadic DDR defect as a mechanism for cancer-specific therapy. Whereas, many DDR proteins have proven "undruggable", Fragment- and Structure-Based Drug Discovery (FBDD, SBDD) have advanced therapeutic agent identification and development. FBDD has led to 4 (with ∼50 more drugs under preclinical and clinical development), while SBDD is estimated to have contributed to the development of >200, FDA-approved medicines. Protein X-ray crystallography-based fragment library screening, especially for elusive or "undruggable" targets, allows for simultaneous generation of hits plus details of protein-ligand interactions and binding sites (orthosteric or allosteric) that inform chemical tractability, downstream biology, and intellectual property. Using a novel high-throughput crystallography-based fragment library screening platform, we screened five diverse proteins, yielding hit rates of ∼2-8% and crystal structures from ∼1.8 to 3.2 Å. We consider current FBDD/SBDD methods and some exemplary results of efforts to design inhibitors against the DDR nucleases meiotic recombination 11 (MRE11, a.k.a., MRE11A), apurinic/apyrimidinic endonuclease 1 (APE1, a.k.a., APEX1), and flap endonuclease 1 (FEN1).
Collapse
Affiliation(s)
- David M Wilson
- Hasselt University, Biomedical Research Institute, Diepenbeek, Belgium; Boost Scientific, Heusden-Zolder, Belgium; XPose Therapeutics Inc., San Carlos, CA, USA
| | - Ashley M Deacon
- Accelero Biostructures Inc., San Francisco, CA, USA; XPose Therapeutics Inc., San Carlos, CA, USA
| | | | | | - Millie M Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA; XPose Therapeutics Inc., San Carlos, CA, USA
| | - Andrew P Yeh
- Accelero Biostructures Inc., San Francisco, CA, USA
| | - Andrew S Arvai
- Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Davide Moiani
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX, USA; Department of Molecular and Cellular Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - John A Tainer
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX, USA; Department of Molecular and Cellular Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Debanu Das
- Accelero Biostructures Inc., San Francisco, CA, USA; XPose Therapeutics Inc., San Carlos, CA, USA.
| |
Collapse
|
21
|
RecQ helicases in DNA repair and cancer targets. Essays Biochem 2021; 64:819-830. [PMID: 33095241 PMCID: PMC7588665 DOI: 10.1042/ebc20200012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Helicases are enzymes that use the energy derived from ATP hydrolysis to catalyze the unwinding of DNA or RNA. The RecQ family of helicases is conserved through evolution from prokaryotes to higher eukaryotes and plays important roles in various DNA repair pathways, contributing to the maintenance of genome integrity. Despite their roles as general tumor suppressors, there is now considerable interest in exploiting RecQ helicases as synthetic lethal targets for the development of new cancer therapeutics. In this review, we summarize the latest developments in the structural and mechanistic study of RecQ helicases and discuss their roles in various DNA repair pathways. Finally, we consider the potential to exploit RecQ helicases as therapeutic targets and review the recent progress towards the development of small molecules targeting RecQ helicases as cancer therapeutics.
Collapse
|
22
|
Hammel M, Tainer JA. X-ray scattering reveals disordered linkers and dynamic interfaces in complexes and mechanisms for DNA double-strand break repair impacting cell and cancer biology. Protein Sci 2021; 30:1735-1756. [PMID: 34056803 PMCID: PMC8376411 DOI: 10.1002/pro.4133] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022]
Abstract
Evolutionary selection ensures specificity and efficiency in dynamic metastable macromolecular machines that repair DNA damage without releasing toxic and mutagenic intermediates. Here we examine non‐homologous end joining (NHEJ) as the primary conserved DNA double‐strand break (DSB) repair process in human cells. NHEJ has exemplary key roles in networks determining the development, outcome of cancer treatments by DSB‐inducing agents, generation of antibody and T‐cell receptor diversity, and innate immune response for RNA viruses. We determine mechanistic insights into NHEJ structural biochemistry focusing upon advanced small angle X‐ray scattering (SAXS) results combined with X‐ray crystallography (MX) and cryo‐electron microscopy (cryo‐EM). SAXS coupled to atomic structures enables integrated structural biology for objective quantitative assessment of conformational ensembles and assemblies in solution, intra‐molecular distances, structural similarity, functional disorder, conformational switching, and flexibility. Importantly, NHEJ complexes in solution undergo larger allosteric transitions than seen in their cryo‐EM or MX structures. In the long‐range synaptic complex, X‐ray repair cross‐complementing 4 (XRCC4) plus XRCC4‐like‐factor (XLF) form a flexible bridge and linchpin for DNA ends bound to KU heterodimer (Ku70/80) and DNA‐PKcs (DNA‐dependent protein kinase catalytic subunit). Upon binding two DNA ends, auto‐phosphorylation opens DNA‐PKcs dimer licensing NHEJ via concerted conformational transformations of XLF‐XRCC4, XLF–Ku80, and LigIVBRCT–Ku70 interfaces. Integrated structures reveal multifunctional roles for disordered linkers and modular dynamic interfaces promoting DSB end processing and alignment into the short‐range complex for ligation by LigIV. Integrated findings define dynamic assemblies fundamental to designing separation‐of‐function mutants and allosteric inhibitors targeting conformational transitions in multifunctional complexes.
Collapse
Affiliation(s)
- Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - John A Tainer
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA.,Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
23
|
Nguyen MT, Moiani D, Ahmed Z, Arvai AS, Namjoshi S, Shin DS, Fedorov Y, Selvik EJ, Jones DE, Pink J, Yan Y, Laverty DJ, Nagel ZD, Tainer JA, Gerson SL. An effective human uracil-DNA glycosylase inhibitor targets the open pre-catalytic active site conformation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:143-159. [PMID: 33675849 PMCID: PMC8722130 DOI: 10.1016/j.pbiomolbio.2021.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
Human uracil DNA-glycosylase (UDG) is the prototypic and first identified DNA glycosylase with a vital role in removing deaminated cytosine and incorporated uracil and 5-fluorouracil (5-FU) from DNA. UDG depletion sensitizes cells to high APOBEC3B deaminase and to pemetrexed (PEM) and floxuridine (5-FdU), which are toxic to tumor cells through incorporation of uracil and 5-FU into DNA. To identify small-molecule UDG inhibitors for pre-clinical evaluation, we optimized biochemical screening of a selected diversity collection of >3,000 small-molecules. We found aurintricarboxylic acid (ATA) as an inhibitor of purified UDG at an initial calculated IC50 < 100 nM. Subsequent enzymatic assays confirmed effective ATA inhibition but with an IC50 of 700 nM and showed direct binding to the human UDG with a KD of <700 nM. ATA displays preferential, dose-dependent binding to purified human UDG compared to human 8-oxoguanine DNA glycosylase. ATA did not bind uracil-containing DNA at these concentrations. Yet, combined crystal structure and in silico docking results unveil ATA interactions with the DNA binding channel and uracil-binding pocket in an open, destabilized UDG conformation. Biologically relevant ATA inhibition of UDG was measured in cell lysates from human DLD1 colon cancer cells and in MCF-7 breast cancer cells using a host cell reactivation assay. Collective findings provide proof-of-principle for development of an ATA-based chemotype and “door stopper” strategy targeting inhibitor binding to a destabilized, open pre-catalytic glycosylase conformation that prevents active site closing for functional DNA binding and nucleotide flipping needed to excise altered bases in DNA.
Collapse
Affiliation(s)
- My T Nguyen
- Case Western Reserve University, Department of Biochemistry, Cleveland, OH, 44106, USA
| | - Davide Moiani
- Departments of Cancer Biology and of Molecular & Cellular Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcomb Blvd, Houston, TX, 77030, USA
| | - Zamal Ahmed
- Departments of Cancer Biology and of Molecular & Cellular Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcomb Blvd, Houston, TX, 77030, USA
| | - Andrew S Arvai
- Integrative Structural & Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Sarita Namjoshi
- Departments of Cancer Biology and of Molecular & Cellular Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcomb Blvd, Houston, TX, 77030, USA
| | - Dave S Shin
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yuriy Fedorov
- Case Small-Molecule Screening Core, School of Medicine, Case Western Reserve University, Cleveland, OH, 44016, USA
| | - Edward J Selvik
- Department of Pharmaceutical Sciences, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA
| | - Darin E Jones
- Department of Pharmaceutical Sciences, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA
| | - John Pink
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yan Yan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Daniel J Laverty
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
| | - Zachary D Nagel
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
| | - John A Tainer
- Departments of Cancer Biology and of Molecular & Cellular Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcomb Blvd, Houston, TX, 77030, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Stanton L Gerson
- Case Western Reserve University, Department of Biochemistry, Cleveland, OH, 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
24
|
Hsu TY, Zhang B, L'Etoile ND, Juang BT. C. elegans orthologs MUT-7/CeWRN-1 of Werner syndrome protein regulate neuronal plasticity. eLife 2021; 10:62449. [PMID: 33646120 PMCID: PMC7946423 DOI: 10.7554/elife.62449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/26/2021] [Indexed: 12/28/2022] Open
Abstract
Caenorhabditis elegans expresses human Werner syndrome protein (WRN) orthologs as two distinct proteins: MUT-7, with a 3′−5′ exonuclease domain, and CeWRN-1, with helicase domains. How these domains cooperate remains unclear. Here, we demonstrate the different contributions of MUT-7 and CeWRN-1 to 22G small interfering RNA (siRNA) synthesis and the plasticity of neuronal signaling. MUT-7 acts specifically in the cytoplasm to promote siRNA biogenesis and in the nucleus to associate with CeWRN-1. The import of siRNA by the nuclear Argonaute NRDE-3 promotes the loading of the heterochromatin-binding protein HP1 homolog HPL-2 onto specific loci. This heterochromatin complex represses the gene expression of the guanylyl cyclase ODR-1 to direct olfactory plasticity in C. elegans. Our findings suggest that the exonuclease and helicase domains of human WRN may act in concert to promote RNA-dependent loading into a heterochromatin complex, and the failure of this entire process reduces plasticity in postmitotic neurons.
Collapse
Affiliation(s)
- Tsung-Yuan Hsu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States
| | - Bo Zhang
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States
| | - Noelle D L'Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States
| | - Bi-Tzen Juang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
25
|
Das T, Pal S, Ganguly A. Human RecQ helicases in transcription-associated stress management: bridging the gap between DNA and RNA metabolism. Biol Chem 2021; 402:617-636. [PMID: 33567180 DOI: 10.1515/hsz-2020-0324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/24/2021] [Indexed: 12/13/2022]
Abstract
RecQ helicases are a highly conserved class of DNA helicases that play crucial role in almost all DNA metabolic processes including replication, repair and recombination. They are able to unwind a wide variety of complex intermediate DNA structures that may result from cellular DNA transactions and hence assist in maintaining genome integrity. Interestingly, a huge number of recent reports suggest that many of the RecQ family helicases are directly or indirectly involved in regulating transcription and gene expression. On one hand, they can remove complex structures like R-loops, G-quadruplexes or RNA:DNA hybrids formed at the intersection of transcription and replication. On the other hand, emerging evidence suggests that they can also regulate transcription by directly interacting with RNA polymerase or recruiting other protein factors that may regulate transcription. This review summarizes the up to date knowledge on the involvement of three human RecQ family proteins BLM, WRN and RECQL5 in transcription regulation and management of transcription associated stress.
Collapse
Affiliation(s)
- Tulika Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Surasree Pal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Agneyo Ganguly
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| |
Collapse
|
26
|
Targeting RNF8 effectively reverses cisplatin and doxorubicin resistance in endometrial cancer. Biochem Biophys Res Commun 2021; 545:89-97. [PMID: 33548629 DOI: 10.1016/j.bbrc.2021.01.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Endometrial cancer (EC) is one of the most frequent gynecological malignancy worldwide. However, resistance to chemotherapy remains one of the major difficulties in the treatment of EC. Thus, there is an urgent requirement to understand mechanisms of chemoresistance and identify novel regimens for patients with EC. We found that protein and mRNA expression levels of RNF8 were significantly increased in both cisplatin and doxorubicin resistant EC cells. Cell survival assay showed that RNF deficiency significantly enhanced the sensitivity of resistant EC cells to cisplatin and doxorubicin (P < 0.01). In addition, chemoresistant EC cells exhibited increased NHEJ efficiency. Knockout of RNF8 in chemoresistant EC cells significantly reduced NHEJ efficiency and prolonged Ku80 retention on DSB. Moreover, cisplatin resistant AN3CA xenograft showed that RNF8 deficiency overcame cisplatin resistance. Our in vitro and in vivo assays provide evidence for RNF8, which is a NHEJ factor, serving as a promising, novel target in EC chemotherapy.
Collapse
|
27
|
Checkpoint functions of RecQ helicases at perturbed DNA replication fork. Curr Genet 2021; 67:369-382. [PMID: 33427950 DOI: 10.1007/s00294-020-01147-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 01/17/2023]
Abstract
DNA replication checkpoint is a cell signaling pathway that is activated in response to perturbed replication. Although it is crucial for maintaining genomic integrity and cell survival, the exact mechanism of the checkpoint signaling remains to be understood. Emerging evidence has shown that RecQ helicases, a large family of helicases that are conserved from bacteria to yeasts and humans, contribute to the replication checkpoint as sensors, adaptors, or regulation targets. Here, we highlight the multiple functions of RecQ helicases in the replication checkpoint in four model organisms and present additional evidence that fission yeast RecQ helicase Rqh1 may participate in the replication checkpoint as a sensor.
Collapse
|
28
|
Moiani D, Link TM, Brosey CA, Katsonis P, Lichtarge O, Kim Y, Joachimiak A, Ma Z, Kim IK, Ahmed Z, Jones DE, Tsutakawa SE, Tainer JA. An efficient chemical screening method for structure-based inhibitors to nucleic acid enzymes targeting the DNA repair-replication interface and SARS CoV-2. Methods Enzymol 2021; 661:407-431. [PMID: 34776222 PMCID: PMC8474023 DOI: 10.1016/bs.mie.2021.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We present a Chemistry and Structure Screen Integrated Efficiently (CASSIE) approach (named for Greek prophet Cassandra) to design inhibitors for cancer biology and pathogenesis. CASSIE provides an effective path to target master keys to control the repair-replication interface for cancer cells and SARS CoV-2 pathogenesis as exemplified here by specific targeting of Poly(ADP-ribose) glycohydrolase (PARG) and ADP-ribose glycohydrolase ARH3 macrodomains plus SARS CoV-2 nonstructural protein 3 (Nsp3) Macrodomain 1 (Mac1) and Nsp15 nuclease. As opposed to the classical massive effort employing libraries with large numbers of compounds against single proteins, we make inhibitor design for multiple targets efficient. Our compact, chemically diverse, 5000 compound Goldilocks (GL) library has an intermediate number of compounds sized between fragments and drugs with predicted favorable ADME (absorption, distribution, metabolism, and excretion) and toxicological profiles. Amalgamating our core GL library with an approved drug (AD) library, we employ a combined GLAD library virtual screen, enabling an effective and efficient design cycle of ranked computer docking, top hit biophysical and cell validations, and defined bound structures using human proteins or their avatars. As new drug design is increasingly pathway directed as well as molecular and mechanism based, our CASSIE approach facilitates testing multiple related targets by efficiently turning a set of interacting drug discovery problems into a tractable medicinal chemistry engineering problem of optimizing affinity and ADME properties based upon early co-crystal structures. Optimization efforts are made efficient by a computationally-focused iterative chemistry and structure screen. Thus, we herein describe and apply CASSIE to define prototypic, specific inhibitors for PARG vs distinct inhibitors for the related macrodomains of ARH3 and SARS CoV-2 Nsp3 plus the SARS CoV-2 Nsp15 RNA nuclease.
Collapse
Affiliation(s)
- Davide Moiani
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States,Department of Molecular & Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Todd M. Link
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States,Department of Molecular & Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Chris A. Brosey
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States,Department of Molecular & Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Youngchang Kim
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, United States,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, United States
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, United States,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, United States
| | - Zhijun Ma
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, United States
| | - In-Kwon Kim
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, United States
| | - Zamal Ahmed
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States,Department of Molecular & Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Darin E. Jones
- Department of Pharmaceutical Sciences, The University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Susan E. Tsutakawa
- Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States,Corresponding authors:
| | - John A. Tainer
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, United States,Department of Molecular & Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States,Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States,Corresponding authors:
| |
Collapse
|
29
|
Newman JA, Gavard AE, Lieb S, Ravichandran MC, Hauer K, Werni P, Geist L, Böttcher J, Engen JR, Rumpel K, Samwer M, Petronczki M, Gileadi O. Structure of the helicase core of Werner helicase, a key target in microsatellite instability cancers. Life Sci Alliance 2021; 4:e202000795. [PMID: 33199508 PMCID: PMC7671478 DOI: 10.26508/lsa.202000795] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022] Open
Abstract
Loss of WRN, a DNA repair helicase, was identified as a strong vulnerability of microsatellite instable (MSI) cancers, making WRN a promising drug target. We show that ATP binding and hydrolysis are required for genome integrity and viability of MSI cancer cells. We report a 2.2-Å crystal structure of the WRN helicase core (517-1,093), comprising the two helicase subdomains and winged helix domain but not the HRDC domain or nuclease domains. The structure highlights unusual features. First, an atypical mode of nucleotide binding that results in unusual relative positioning of the two helicase subdomains. Second, an additional β-hairpin in the second helicase subdomain and an unusual helical hairpin in the Zn2+ binding domain. Modelling of the WRN helicase in complex with DNA suggests roles for these features in the binding of alternative DNA structures. NMR analysis shows a weak interaction between the HRDC domain and the helicase core, indicating a possible biological role for this association. Together, this study will facilitate the structure-based development of inhibitors against WRN helicase.
Collapse
Affiliation(s)
- Joseph A Newman
- Structural Genomics Consortium, University of Oxford, Oxford, UK
| | | | - Simone Lieb
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | - Katja Hauer
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Patrick Werni
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | - Jark Böttcher
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Klaus Rumpel
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | - Opher Gileadi
- Structural Genomics Consortium, University of Oxford, Oxford, UK
| |
Collapse
|
30
|
Deshmukh AL, Porro A, Mohiuddin M, Lanni S, Panigrahi GB, Caron MC, Masson JY, Sartori AA, Pearson CE. FAN1, a DNA Repair Nuclease, as a Modifier of Repeat Expansion Disorders. J Huntingtons Dis 2021; 10:95-122. [PMID: 33579867 PMCID: PMC7990447 DOI: 10.3233/jhd-200448] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FAN1 encodes a DNA repair nuclease. Genetic deficiencies, copy number variants, and single nucleotide variants of FAN1 have been linked to karyomegalic interstitial nephritis, 15q13.3 microdeletion/microduplication syndrome (autism, schizophrenia, and epilepsy), cancer, and most recently repeat expansion diseases. For seven CAG repeat expansion diseases (Huntington's disease (HD) and certain spinocerebellar ataxias), modification of age of onset is linked to variants of specific DNA repair proteins. FAN1 variants are the strongest modifiers. Non-coding disease-delaying FAN1 variants and coding disease-hastening variants (p.R507H and p.R377W) are known, where the former may lead to increased FAN1 levels and the latter have unknown effects upon FAN1 functions. Current thoughts are that ongoing repeat expansions in disease-vulnerable tissues, as individuals age, promote disease onset. Fan1 is required to suppress against high levels of ongoing somatic CAG and CGG repeat expansions in tissues of HD and FMR1 transgenic mice respectively, in addition to participating in DNA interstrand crosslink repair. FAN1 is also a modifier of autism, schizophrenia, and epilepsy. Coupled with the association of these diseases with repeat expansions, this suggests a common mechanism, by which FAN1 modifies repeat diseases. Yet how any of the FAN1 variants modify disease is unknown. Here, we review FAN1 variants, associated clinical effects, protein structure, and the enzyme's attributed functional roles. We highlight how variants may alter its activities in DNA damage response and/or repeat instability. A thorough awareness of the FAN1 gene and FAN1 protein functions will reveal if and how it may be targeted for clinical benefit.
Collapse
Affiliation(s)
- Amit L. Deshmukh
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Antonio Porro
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Mohiuddin Mohiuddin
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Stella Lanni
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Gagan B. Panigrahi
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Marie-Christine Caron
- Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, Quebec, Canada
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, Quebec, Canada
| | - Jean-Yves Masson
- Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, Quebec, Canada
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, Quebec, Canada
| | | | - Christopher E. Pearson
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- University of Toronto, Program of Molecular Genetics, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Park J, Lee SY, Jeong H, Kang MG, Van Haute L, Minczuk M, Seo JK, Jun Y, Myung K, Rhee HW, Lee C. The structure of human EXD2 reveals a chimeric 3' to 5' exonuclease domain that discriminates substrates via metal coordination. Nucleic Acids Res 2020; 47:7078-7093. [PMID: 31127291 PMCID: PMC6648332 DOI: 10.1093/nar/gkz454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 12/24/2022] Open
Abstract
EXD2 (3′-5′ exonuclease domain-containing protein 2) is an essential protein with a conserved DEDDy superfamily 3′-5′ exonuclease domain. Recent research suggests that EXD2 has two potential functions: as a component of the DNA double-strand break repair machinery and as a ribonuclease for the regulation of mitochondrial translation. Herein, electron microscope imaging analysis and proximity labeling revealed that EXD2 is anchored to the mitochondrial outer membrane through a conserved N-terminal transmembrane domain, while the C-terminal region is cytosolic. Crystal structures of the exonuclease domain in complex with Mn2+/Mg2+ revealed a domain-swapped dimer in which the central α5−α7 helices are mutually crossed over, resulting in chimeric active sites. Additionally, the C-terminal segments absent in other DnaQ family exonucleases enclose the central chimeric active sites. Combined structural and biochemical analyses demonstrated that the unusual dimeric organization stabilizes the active site, facilitates discrimination between DNA and RNA substrates based on divalent cation coordination and generates a positively charged groove that binds substrates.
Collapse
Affiliation(s)
- Jumi Park
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea.,Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Song-Yi Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea.,Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Hanbin Jeong
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea.,Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Myeong-Gyun Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Lindsey Van Haute
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Jeong Kon Seo
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Youngsoo Jun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.,Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Kyungjae Myung
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea.,Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Changwook Lee
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea.,Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.,Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| |
Collapse
|
32
|
Calvanese L, Squeglia F, Romano M, D'Auria G, Falcigno L, Berisio R. Structural and dynamic studies provide insights into specificity and allosteric regulation of ribonuclease as, a key enzyme in mycobacterial virulence. J Biomol Struct Dyn 2019; 38:2455-2467. [PMID: 31299874 DOI: 10.1080/07391102.2019.1643786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribonuclease AS (RNase AS) is a crucial enzyme for virulence of Mycobacterium tuberculosis. We previously observed that RNase AS structurally resembles RNase T from Escherichia coli, an important enzyme for tRNA maturation and turnover. Here, we combine X-ray crystallography and molecular dynamics (MD) to investigate the specificity and dynamic properties of substrate binding. Both X-ray and MD data provide structural determinants that corroborate the strict substrate specificity of RNase AS to cleave only adenosine residues, due to the structural features of adenine base. Beside suggesting tRNA as most likely substrate of RNase AS, MD and modeling studies identify key enzyme-ligand interactions, both involving the catalytic site and the double helix region of tRNA, which is locked by interactions with a set of arginine residues. The MD data also evidence a ligand-induced conformational change of the enzyme which is transferred from one chain to the adjacent one. These data will explain the dimeric nature of both RNase AS and RNase T, with two catalytic grooves composed of both chains. Also, they account for the dichotomy of tRNA, which contains both the substrate poly(A) chain and an inhibiting double strand RNA. Indeed, they provide a possible mechanism of allosteric regulation, which unlocks one catalytic groove when the second groove is inhibited by the double strand region of tRNA. Finally, a full comprehension of the molecular details of tRNA maturation processes is essential to develop novel strategies to modulate RNA processing, for therapeutic purposes. AbbreviationsMDmolecular dynamicsPDBProtein Data BankRMSDroot mean square deviationRMSFroot mean square fluctuationRNAribonucleotidic acidRNase ASRibonuclease ASCommunicated by Ramasamy H. Sarma.
Collapse
Affiliation(s)
- Luisa Calvanese
- CIRPeB, University of Naples Federico II, Naples, Italy.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Flavia Squeglia
- Institute of Bio-Structures and Bio-Imaging - CNR-IBB, Naples, Italy
| | - Maria Romano
- Department of Life Sciences, Imperial College London, London, UK
| | - Gabriella D'Auria
- CIRPeB, University of Naples Federico II, Naples, Italy.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Lucia Falcigno
- CIRPeB, University of Naples Federico II, Naples, Italy.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Rita Berisio
- Institute of Bio-Structures and Bio-Imaging - CNR-IBB, Naples, Italy
| |
Collapse
|
33
|
Abstract
Functional genomics approaches can overcome limitations-such as the lack of identification of robust targets and poor clinical efficacy-that hamper cancer drug development. Here we performed genome-scale CRISPR-Cas9 screens in 324 human cancer cell lines from 30 cancer types and developed a data-driven framework to prioritize candidates for cancer therapeutics. We integrated cell fitness effects with genomic biomarkers and target tractability for drug development to systematically prioritize new targets in defined tissues and genotypes. We verified one of our most promising dependencies, the Werner syndrome ATP-dependent helicase, as a synthetic lethal target in tumours from multiple cancer types with microsatellite instability. Our analysis provides a resource of cancer dependencies, generates a framework to prioritize cancer drug targets and suggests specific new targets. The principles described in this study can inform the initial stages of drug development by contributing to a new, diverse and more effective portfolio of cancer drug targets.
Collapse
|
34
|
Behan FM, Iorio F, Picco G, Gonçalves E, Beaver CM, Migliardi G, Santos R, Rao Y, Sassi F, Pinnelli M, Ansari R, Harper S, Jackson DA, McRae R, Pooley R, Wilkinson P, van der Meer D, Dow D, Buser-Doepner C, Bertotti A, Trusolino L, Stronach EA, Saez-Rodriguez J, Yusa K, Garnett MJ. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature 2019; 568:511-516. [PMID: 30971826 DOI: 10.1038/s41586-019-1103-9] [Citation(s) in RCA: 836] [Impact Index Per Article: 139.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 03/08/2019] [Indexed: 12/15/2022]
Abstract
Functional genomics approaches can overcome limitations-such as the lack of identification of robust targets and poor clinical efficacy-that hamper cancer drug development. Here we performed genome-scale CRISPR-Cas9 screens in 324 human cancer cell lines from 30 cancer types and developed a data-driven framework to prioritize candidates for cancer therapeutics. We integrated cell fitness effects with genomic biomarkers and target tractability for drug development to systematically prioritize new targets in defined tissues and genotypes. We verified one of our most promising dependencies, the Werner syndrome ATP-dependent helicase, as a synthetic lethal target in tumours from multiple cancer types with microsatellite instability. Our analysis provides a resource of cancer dependencies, generates a framework to prioritize cancer drug targets and suggests specific new targets. The principles described in this study can inform the initial stages of drug development by contributing to a new, diverse and more effective portfolio of cancer drug targets.
Collapse
Affiliation(s)
- Fiona M Behan
- Wellcome Sanger Institute, Cambridge, UK.,Open Targets, Cambridge, UK
| | - Francesco Iorio
- Wellcome Sanger Institute, Cambridge, UK.,Open Targets, Cambridge, UK.,European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | | | | | | | - Giorgia Migliardi
- Candiolo Cancer Institute-FPO, IRCCS, Turin, Italy.,Department of Oncology, University of Torino, Turin, Italy
| | - Rita Santos
- GlaxoSmithKline Research and Development, Stevenage, UK
| | - Yanhua Rao
- GlaxoSmithKline Research and Development, Collegeville, PA, USA
| | | | - Marika Pinnelli
- Candiolo Cancer Institute-FPO, IRCCS, Turin, Italy.,Department of Oncology, University of Torino, Turin, Italy
| | | | | | | | | | | | | | | | - David Dow
- Open Targets, Cambridge, UK.,GlaxoSmithKline Research and Development, Stevenage, UK
| | - Carolyn Buser-Doepner
- Open Targets, Cambridge, UK.,GlaxoSmithKline Research and Development, Collegeville, PA, USA
| | - Andrea Bertotti
- Candiolo Cancer Institute-FPO, IRCCS, Turin, Italy.,Department of Oncology, University of Torino, Turin, Italy
| | - Livio Trusolino
- Candiolo Cancer Institute-FPO, IRCCS, Turin, Italy.,Department of Oncology, University of Torino, Turin, Italy
| | - Euan A Stronach
- Open Targets, Cambridge, UK.,GlaxoSmithKline Research and Development, Stevenage, UK
| | - Julio Saez-Rodriguez
- Open Targets, Cambridge, UK.,European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK.,Faculty of Medicine, Joint Research Centre for Computational Biomedicine, RWTH Aachen University, Aachen, Germany.,Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Bioquant, Heidelberg, Germany.,Heidelberg University Hospital, Heidelberg, Germany
| | - Kosuke Yusa
- Wellcome Sanger Institute, Cambridge, UK. .,Open Targets, Cambridge, UK. .,Stem Cell Genetics, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| | - Mathew J Garnett
- Wellcome Sanger Institute, Cambridge, UK. .,Open Targets, Cambridge, UK.
| |
Collapse
|
35
|
Plugged into the Ku-DNA hub: The NHEJ network. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 147:62-76. [PMID: 30851288 DOI: 10.1016/j.pbiomolbio.2019.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/16/2022]
Abstract
In vertebrates, double-strand breaks in DNA are primarily repaired by Non-Homologous End-Joining (NHEJ). The ring-shaped Ku heterodimer rapidly senses and threads onto broken DNA ends forming a recruiting hub. Through protein-protein contacts eventually reinforced by protein-DNA interactions, the Ku-DNA hub attracts a series of specialized proteins with scaffolding and/or enzymatic properties. To shed light on these dynamic interplays, we review here current knowledge on proteins directly interacting with Ku and on the contact points involved, with a particular accent on the different classes of Ku-binding motifs identified in several Ku partners. An integrated structural model of the core NHEJ network at the synapsis step is proposed.
Collapse
|
36
|
Mukherjee S, Sinha D, Bhattacharya S, Srinivasan K, Abdisalaam S, Asaithamby A. Werner Syndrome Protein and DNA Replication. Int J Mol Sci 2018; 19:ijms19113442. [PMID: 30400178 PMCID: PMC6274846 DOI: 10.3390/ijms19113442] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 01/07/2023] Open
Abstract
Werner Syndrome (WS) is an autosomal recessive disorder characterized by the premature development of aging features. Individuals with WS also have a greater predisposition to rare cancers that are mesenchymal in origin. Werner Syndrome Protein (WRN), the protein mutated in WS, is unique among RecQ family proteins in that it possesses exonuclease and 3' to 5' helicase activities. WRN forms dynamic sub-complexes with different factors involved in DNA replication, recombination and repair. WRN binding partners either facilitate its DNA metabolic activities or utilize it to execute their specific functions. Furthermore, WRN is phosphorylated by multiple kinases, including Ataxia telangiectasia mutated, Ataxia telangiectasia and Rad3 related, c-Abl, Cyclin-dependent kinase 1 and DNA-dependent protein kinase catalytic subunit, in response to genotoxic stress. These post-translational modifications are critical for WRN to function properly in DNA repair, replication and recombination. Accumulating evidence suggests that WRN plays a crucial role in one or more genome stability maintenance pathways, through which it suppresses cancer and premature aging. Among its many functions, WRN helps in replication fork progression, facilitates the repair of stalled replication forks and DNA double-strand breaks associated with replication forks, and blocks nuclease-mediated excessive processing of replication forks. In this review, we specifically focus on human WRN's contribution to replication fork processing for maintaining genome stability and suppressing premature aging. Understanding WRN's molecular role in timely and faithful DNA replication will further advance our understanding of the pathophysiology of WS.
Collapse
Affiliation(s)
- Shibani Mukherjee
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Debapriya Sinha
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Souparno Bhattacharya
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Kalayarasan Srinivasan
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Salim Abdisalaam
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Aroumougame Asaithamby
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
37
|
Wang S, Liu Z, Ye Y, Li B, Liu T, Zhang W, Liu GH, Zhang YA, Qu J, Xu D, Chen Z. Ectopic hTERT expression facilitates reprograming of fibroblasts derived from patients with Werner syndrome as a WS cellular model. Cell Death Dis 2018; 9:923. [PMID: 30206203 PMCID: PMC6134116 DOI: 10.1038/s41419-018-0948-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/14/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
The induced pluripotent stem cell (iPSC) technology has provided a unique opportunity to develop disease-specific models and personalized treatment for genetic disorders, and is well suitable for the study of Werner syndrome (WS), an autosomal recessive disease with adult onset of premature aging caused by mutations in the RecQ like helicase (WRN) gene. WS-derived fibroblasts were previously shown to be able to generate iPSCs; however, it remains elusive how WS-derived iPSCs behave and whether they are able to mimic the disease-specific phenotype. The present study was designed to address these issues. Unexpectedly, we found that a specific WS fibroblast line of homozygous truncation mutation was difficult to be reprogrammed by using the Yamanaka factors even under hypoxic conditions due to their defect in induction of hTERT, the catalytic unit of telomerase. Ectopic expression of hTERT restores the ability of this WS fibroblast line to form iPSCs, although with a low efficiency. To examine the phenotype of WRN-deficient pluripotent stem cells, we also generated WRN knockout human embryonic stem (ES) cells by using the CRISPR/Cas9 method. The iPSCs derived from WS-hTERT cells and WRN-/- ESCs are fully pluripotent, express pluripotent markers and can differentiate into three germ layer cells; however, WS-iPSCs and WRN-/- ESCs show S phase defect in cell cycle progression. Moreover, WS-iPSCs and WRN-/- ESCs, like WS patient-derived fibroblasts, remain hypersensitive to topoisomerase inhibitors. Collectively, WS-derived iPSCs and WRN-/- ESCs mimic the intrinsic disease phenotype, which may serve as a suitable disease model, whereas not be good for a therapeutic purpose without gene correction.
Collapse
Affiliation(s)
- Shuyan Wang
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Zhongfeng Liu
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Yanxia Ye
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bingnan Li
- Division of Hematology, Department of Medicine and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Tiantian Liu
- Department of Pathology, Shandong University School of Medicine, Jinan, China
| | - Weiqi Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guang-Hui Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Y Alex Zhang
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Dawei Xu
- Division of Hematology, Department of Medicine and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| | - Zhiguo Chen
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China. .,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
38
|
Syed A, Tainer JA. The MRE11-RAD50-NBS1 Complex Conducts the Orchestration of Damage Signaling and Outcomes to Stress in DNA Replication and Repair. Annu Rev Biochem 2018; 87:263-294. [PMID: 29709199 PMCID: PMC6076887 DOI: 10.1146/annurev-biochem-062917-012415] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genomic instability in disease and its fidelity in health depend on the DNA damage response (DDR), regulated in part from the complex of meiotic recombination 11 homolog 1 (MRE11), ATP-binding cassette-ATPase (RAD50), and phosphopeptide-binding Nijmegen breakage syndrome protein 1 (NBS1). The MRE11-RAD50-NBS1 (MRN) complex forms a multifunctional DDR machine. Within its network assemblies, MRN is the core conductor for the initial and sustained responses to DNA double-strand breaks, stalled replication forks, dysfunctional telomeres, and viral DNA infection. MRN can interfere with cancer therapy and is an attractive target for precision medicine. Its conformations change the paradigm whereby kinases initiate damage sensing. Delineated results reveal kinase activation, posttranslational targeting, functional scaffolding, conformations storing binding energy and enabling access, interactions with hub proteins such as replication protein A (RPA), and distinct networks at DNA breaks and forks. MRN biochemistry provides prototypic insights into how it initiates, implements, and regulates multifunctional responses to genomic stress.
Collapse
Affiliation(s)
- Aleem Syed
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; ,
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; ,
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
39
|
Silva J, Aivio S, Knobel PA, Bailey LJ, Casali A, Vinaixa M, Garcia-Cao I, Coyaud É, Jourdain AA, Pérez-Ferreros P, Rojas AM, Antolin-Fontes A, Samino-Gené S, Raught B, González-Reyes A, Ribas de Pouplana L, Doherty AJ, Yanes O, Stracker TH. EXD2 governs germ stem cell homeostasis and lifespan by promoting mitoribosome integrity and translation. Nat Cell Biol 2018; 20:162-174. [PMID: 29335528 DOI: 10.1038/s41556-017-0016-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 11/27/2017] [Indexed: 02/08/2023]
Abstract
Mitochondria are subcellular organelles that are critical for meeting the bioenergetic and biosynthetic needs of the cell. Mitochondrial function relies on genes and RNA species encoded both in the nucleus and mitochondria, and on their coordinated translation, import and respiratory complex assembly. Here, we characterize EXD2 (exonuclease 3'-5' domain-containing 2), a nuclear-encoded gene, and show that it is targeted to the mitochondria and prevents the aberrant association of messenger RNAs with the mitochondrial ribosome. Loss of EXD2 results in defective mitochondrial translation, impaired respiration, reduced ATP production, increased reactive oxygen species and widespread metabolic abnormalities. Depletion of the Drosophila melanogaster EXD2 orthologue (CG6744) causes developmental delays and premature female germline stem cell attrition, reduced fecundity and a dramatic extension of lifespan that is reversed with an antioxidant diet. Our results define a conserved role for EXD2 in mitochondrial translation that influences development and ageing.
Collapse
Affiliation(s)
- Joana Silva
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Suvi Aivio
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Philip A Knobel
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Department for Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Laura J Bailey
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Andreu Casali
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Maria Vinaixa
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, Tarragona, Spain.,Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Isabel Garcia-Cao
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Étienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Alexis A Jourdain
- Department of Molecular Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA, USA.,Department of Systems Biology, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Pablo Pérez-Ferreros
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,EMBL Australia, University of New South Wales, Lowy Cancer Research Center, Single Molecule Science Node, Sydney and Arc Center of Excellence in Advance Molecular Imaging, Sydney, New South Wales, Australia
| | - Ana M Rojas
- Computational Biology and Bioinformatics Group, Institute of Biomedicine of Seville (IBIS/CSIC/US/JA), Campus Hospital Universitario Virgen del Rocio, Seville, Spain
| | - Albert Antolin-Fontes
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Sara Samino-Gené
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, Tarragona, Spain.,Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Acaimo González-Reyes
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Seville, Spain
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Aidan J Doherty
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Oscar Yanes
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, Tarragona, Spain.,Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| |
Collapse
|
40
|
Rambo RP. Considerations for Sample Preparation Using Size-Exclusion Chromatography for Home and Synchrotron Sources. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1009:31-45. [PMID: 29218552 PMCID: PMC6126186 DOI: 10.1007/978-981-10-6038-0_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The success of a SAXS experiment for structural investigations depends on two precise measurements, the sample and the buffer background. Buffer matching between the sample and background can be achieved using dialysis methods but in biological SAXS of monodisperse systems, sample preparation is routinely being performed with size exclusion chromatography (SEC). SEC is the most reliable method for SAXS sample preparation as the method not only purifies the sample for SAXS but also almost guarantees ideal buffer matching. Here, I will highlight the use of SEC for SAXS sample preparation and demonstrate using example proteins that SEC purification does not always provide for ideal samples. Scrutiny of the SEC elution peak using quasi-elastic and multi-angle light scattering techniques can reveal hidden features (heterogeneity) of the sample that should be considered during SAXS data analysis. In some cases, sample heterogeneity can be controlled using a small molecule additive and I outline a simple additive screening method for sample preparation.
Collapse
Affiliation(s)
- Robert P Rambo
- Diamond Light Source Ltd., Harwell Science & Innovation Campus, Didcot, OX11 0DE, UK.
| |
Collapse
|
41
|
Tainer JA. Uncovering the secrets of protein interactions with the DNA enforcing genomic stability. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 127:89-92. [PMID: 28709479 DOI: 10.1016/j.pbiomolbio.2017.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Holcombe Blvd., Houston, TX 77030, United States; SIBYLS, Advanced Light Source, Lawrence Berkeley National Lab, United States. http://bl1231.als.lbl.gov
| |
Collapse
|
42
|
Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:235-263. [PMID: 28485537 PMCID: PMC5474181 DOI: 10.1002/em.22087] [Citation(s) in RCA: 1185] [Impact Index Per Article: 148.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/16/2017] [Indexed: 05/08/2023]
Abstract
Living organisms are continuously exposed to a myriad of DNA damaging agents that can impact health and modulate disease-states. However, robust DNA repair and damage-bypass mechanisms faithfully protect the DNA by either removing or tolerating the damage to ensure an overall survival. Deviations in this fine-tuning are known to destabilize cellular metabolic homeostasis, as exemplified in diverse cancers where disruption or deregulation of DNA repair pathways results in genome instability. Because routinely used biological, physical and chemical agents impact human health, testing their genotoxicity and regulating their use have become important. In this introductory review, we will delineate mechanisms of DNA damage and the counteracting repair/tolerance pathways to provide insights into the molecular basis of genotoxicity in cells that lays the foundation for subsequent articles in this issue. Environ. Mol. Mutagen. 58:235-263, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
|
43
|
Zhang Z, Hu F, Sung MW, Shu C, Castillo-González C, Koiwa H, Tang G, Dickman M, Li P, Zhang X. RISC-interacting clearing 3'- 5' exoribonucleases (RICEs) degrade uridylated cleavage fragments to maintain functional RISC in Arabidopsis thaliana. eLife 2017; 6. [PMID: 28463111 PMCID: PMC5451212 DOI: 10.7554/elife.24466] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/29/2017] [Indexed: 01/01/2023] Open
Abstract
RNA-induced silencing complex (RISC) is composed of miRNAs and AGO proteins. AGOs use miRNAs as guides to slice target mRNAs to produce truncated 5' and 3' RNA fragments. The 5' cleaved RNA fragments are marked with uridylation for degradation. Here, we identified novel cofactors of Arabidopsis AGOs, named RICE1 and RICE2. RICE proteins specifically degraded single-strand (ss) RNAs in vitro; but neither miRNAs nor miRNA*s in vivo. RICE1 exhibited a DnaQ-like exonuclease fold and formed a homohexamer with the active sites located at the interfaces between RICE1 subunits. Notably, ectopic expression of catalytically-inactive RICE1 not only significantly reduced miRNA levels; but also increased 5' cleavage RISC fragments with extended uridine tails. We conclude that RICEs act to degrade uridylated 5’ products of AGO cleavage to maintain functional RISC. Our study also suggests a possible link between decay of cleaved target mRNAs and miRNA stability in RISC. DOI:http://dx.doi.org/10.7554/eLife.24466.001 DNA contains all the information needed to build a body, yet molecules of RNA carry these instructions to the sites in the cell where they can be used. Cells must control how much RNA they produce in order to ensure that they develop properly and can respond well to their environment. RNA silencing refers to a collection of mechanisms that use smaller RNA molecules called microRNAs to incapacitate certain RNA molecules and selectively switch off the genes that encode them to stop more from being made. One key player in RNA silencing is the multi-protein complex called RISC, which contains microRNA and a group of proteins called AGOs. Once the microRNA has identified its RNA target, the AGOs cut the RNA into two pieces, known as the 5’ cleavage fragment and 3’ cleavage fragment. The two resulting fragments need to be cleared away swiftly, so that the RISC can move on to the next target. While it was known how the 3’ cleavage fragment was removed, it was less clear how the 5’ cleavage fragment was dealt with. Previous studies had shown that the 5’ cleavage fragment was marked with a chemical called uridine, which somehow signals to the RISC that this fragment needs to be destroyed. Now, using biochemical techniques, Zhang et al. have identified two new proteins in the model plant Arabidopsis that attach to the AGO proteins and degrade the 5’ cleavage fragments that are marked with uridine. The two proteins are named RICE1 and RICE2. Zhang et al. then analyzed the three-dimensional shape of RICE1 and identified the ‘active’ region that is responsible for degrading the RNA fragments. When these active regions were blocked, the microRNA levels were low, but the uridine-marked 5’ cleavage fragments were high. Also, the RISC complex could not work properly, which lead to problems during the development of the plant. These results suggest that RICE proteins degrade 5’ cleavage fragments modified with uridine to activate RISC. RICE proteins are conserved between plants and animals, and it is likely that their counterparts in humans will have a similar role to the plant proteins. The next challenge will be to explore how RICE proteins work in more details, which may lead to new ways to manipulate the levels of microRNAs to change the architecture of the plant and to improve their tolerance to various stress conditions. DOI:http://dx.doi.org/10.7554/eLife.24466.002
Collapse
Affiliation(s)
- Zhonghui Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States.,Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, United States
| | - Fuqu Hu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States.,Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, United States
| | - Min Woo Sung
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| | - Chang Shu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| | - Claudia Castillo-González
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States.,Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, United States
| | - Hisashi Koiwa
- Department of Horticulture, Texas A&M University, College Station, United States
| | - Guiliang Tang
- Department of Biological Sciences, Michigan Technological University, Houghton, United States
| | - Martin Dickman
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, United States
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States.,Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, United States
| |
Collapse
|
44
|
Wei XB, Zhang B, Bazeille N, Yu Y, Liu NN, René B, Mauffret O, Xi XG. A 3'-5' exonuclease activity embedded in the helicase core domain of Candida albicans Pif1 helicase. Sci Rep 2017; 7:42865. [PMID: 28216645 PMCID: PMC5316945 DOI: 10.1038/srep42865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/18/2017] [Indexed: 11/11/2022] Open
Abstract
3′-5′ exonucleases are frequently found to be associated to polymerases or helicases domains in the same enzyme or could function as autonomous entities. Here we uncovered that Candida albicans Pif1 (CaPif1) displays a 3′-5′ exonuclease activity besides its main helicase activity. These two latter activities appear to reside on the same polypeptide and the new exonuclease activity could be mapped to the helicase core domain. We clearly show that CaPif1 displays exclusively exonuclease activity and unambiguously establish the directionality of the exonuclease activity as the 3′-to-5′ polarity. The enzyme appears to follow the two-metal-ion driven hydrolyzing activity exhibited by most of the nucleases, as shown by its dependence of magnesium and also by the identification of aspartic residues. Interestingly, an excellent correlation could be found between the presence of the conserved residues and the exonuclease activity when testing activities on Pif1 enzymes from eight fungal organisms. In contrast to others proteins endowed with the double helicase/exonuclease functionality, CaPif1 differs in the fact that the two activities are embedded in the same helicase domain and not located on separated domains. Our findings may suggest a biochemical basis for mechanistic studies of Pif1 family helicases.
Collapse
Affiliation(s)
- Xiao-Bin Wei
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bo Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nicolas Bazeille
- LBPA, ENS-Cachan, CNRS, Université Paris-Saclay, 61 Avenue du Président Wilson, 94235 Cachan, France
| | - Ying Yu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na-Nv Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Brigitte René
- LBPA, ENS-Cachan, CNRS, Université Paris-Saclay, 61 Avenue du Président Wilson, 94235 Cachan, France
| | - Olivier Mauffret
- LBPA, ENS-Cachan, CNRS, Université Paris-Saclay, 61 Avenue du Président Wilson, 94235 Cachan, France
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.,LBPA, ENS-Cachan, CNRS, Université Paris-Saclay, 61 Avenue du Président Wilson, 94235 Cachan, France
| |
Collapse
|
45
|
Rulten SL, Grundy GJ. Non-homologous end joining: Common interaction sites and exchange of multiple factors in the DNA repair process. Bioessays 2017; 39. [PMID: 28133776 DOI: 10.1002/bies.201600209] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-homologous end-joining (NHEJ) is the dominant means of repairing chromosomal DNA double strand breaks (DSBs), and is essential in human cells. Fifteen or more proteins can be involved in the detection, signalling, synapsis, end-processing and ligation events required to repair a DSB, and must be assembled in the confined space around the DNA ends. We review here a number of interaction points between the core NHEJ components (Ku70, Ku80, DNA-PKcs, XRCC4 and Ligase IV) and accessory factors such as kinases, phosphatases, polymerases and structural proteins. Conserved protein-protein interaction sites such as Ku-binding motifs (KBMs), XLF-like motifs (XLMs), FHA and BRCT domains illustrate that different proteins compete for the same binding sites on the core machinery, and must be spatially and temporally regulated. We discuss how post-translational modifications such as phosphorylation, ADP-ribosylation and ubiquitinylation may regulate sequential steps in the NHEJ pathway or control repair at different types of DNA breaks.
Collapse
Affiliation(s)
- Stuart L Rulten
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Gabrielle J Grundy
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| |
Collapse
|
46
|
Personalised Medicine: Genome Maintenance Lessons Learned from Studies in Yeast as a Model Organism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:157-178. [PMID: 28840557 DOI: 10.1007/978-3-319-60733-7_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Yeast research has been tremendously contributing to the understanding of a variety of molecular pathways due to the ease of its genetic manipulation, fast doubling time as well as being cost-effective. The understanding of these pathways did not only help scientists learn more about the cellular functions but also assisted in deciphering the genetic and cellular defects behind multiple diseases. Hence, yeast research not only opened the doors for transforming basic research into applied research, but also paved the roads for improving diagnosis and innovating personalized therapy of different diseases. In this chapter, we discuss how yeast research has contributed to understanding major genome maintenance pathways such as the S-phase checkpoint activation pathways, repair via homologous recombination and non-homologous end joining as well as topoisomerases-induced protein linked DNA breaks repair. Defects in these pathways lead to neurodegenerative diseases and cancer. Thus, the understanding of the exact genetic defects underlying these diseases allowed the development of personalized medicine, improving the diagnosis and treatment and overcoming the detriments of current conventional therapies such as the side effects, toxicity as well as drug resistance.
Collapse
|
47
|
Bloom's syndrome: Why not premature aging?: A comparison of the BLM and WRN helicases. Ageing Res Rev 2017; 33:36-51. [PMID: 27238185 DOI: 10.1016/j.arr.2016.05.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 01/19/2023]
Abstract
Genomic instability is a hallmark of cancer and aging. Premature aging (progeroid) syndromes are often caused by mutations in genes whose function is to ensure genomic integrity. The RecQ family of DNA helicases is highly conserved and plays crucial roles as genome caretakers. In humans, mutations in three RecQ genes - BLM, WRN, and RECQL4 - give rise to Bloom's syndrome (BS), Werner syndrome (WS), and Rothmund-Thomson syndrome (RTS), respectively. WS is a prototypic premature aging disorder; however, the clinical features present in BS and RTS do not indicate accelerated aging. The BLM helicase has pivotal functions at the crossroads of DNA replication, recombination, and repair. BS cells exhibit a characteristic form of genomic instability that includes excessive homologous recombination. The excessive homologous recombination drives the development in BS of the many types of cancers that affect persons in the normal population. Replication delay and slower cell turnover rates have been proposed to explain many features of BS, such as short stature. More recently, aberrant transcriptional regulation of growth and survival genes has been proposed as a hypothesis to explain features of BS.
Collapse
|
48
|
Shamanna RA, Lu H, de Freitas JK, Tian J, Croteau DL, Bohr VA. WRN regulates pathway choice between classical and alternative non-homologous end joining. Nat Commun 2016; 7:13785. [PMID: 27922005 PMCID: PMC5150655 DOI: 10.1038/ncomms13785] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/01/2016] [Indexed: 11/20/2022] Open
Abstract
Werner syndrome (WS) is an accelerated ageing disorder with genomic instability caused by WRN protein deficiency. Many features seen in WS can be explained by the diverse functions of WRN in DNA metabolism. However, the origin of the large genomic deletions and telomere fusions are not yet understood. Here, we report that WRN regulates the pathway choice between classical (c)- and alternative (alt)-nonhomologous end joining (NHEJ) during DNA double-strand break (DSB) repair. It promotes c-NHEJ via helicase and exonuclease activities and inhibits alt-NHEJ using non-enzymatic functions. When WRN is recruited to the DSBs it suppresses the recruitment of MRE11 and CtIP, and protects the DSBs from 5′ end resection. Moreover, knockdown of Wrn, alone or in combination with Trf2 in mouse embryonic fibroblasts results in increased telomere fusions, which were ablated by Ctip knockdown. We show that WRN regulates alt-NHEJ and shields DSBs from MRE11/CtIP-mediated resection to prevent large deletions and telomere fusions. Werner Syndrome is an accelerated aging disorder marked by genome instability, large deletions and telomere fusions, hallmarks of aberrant DNA repair. Here the authors report a role for the WRN helicase in regulating the choice between classical and alternative non-homologous end-joning.
Collapse
Affiliation(s)
- Raghavendra A Shamanna
- Laboratory of Molecular Gerontology, Biomedical Research Center, 251 Bayview Boulevard, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Huiming Lu
- Laboratory of Molecular Gerontology, Biomedical Research Center, 251 Bayview Boulevard, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Jessica K de Freitas
- Laboratory of Molecular Gerontology, Biomedical Research Center, 251 Bayview Boulevard, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Jane Tian
- Laboratory of Molecular Gerontology, Biomedical Research Center, 251 Bayview Boulevard, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, Biomedical Research Center, 251 Bayview Boulevard, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, Biomedical Research Center, 251 Bayview Boulevard, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| |
Collapse
|
49
|
Yokote K, Chanprasert S, Lee L, Eirich K, Takemoto M, Watanabe A, Koizumi N, Lessel D, Mori T, Hisama FM, Ladd PD, Angle B, Baris H, Cefle K, Palanduz S, Ozturk S, Chateau A, Deguchi K, Easwar TKM, Federico A, Fox A, Grebe TA, Hay B, Nampoothiri S, Seiter K, Streeten E, Piña-Aguilar RE, Poke G, Poot M, Posmyk R, Martin GM, Kubisch C, Schindler D, Oshima J. WRN Mutation Update: Mutation Spectrum, Patient Registries, and Translational Prospects. Hum Mutat 2016; 38:7-15. [PMID: 27667302 DOI: 10.1002/humu.23128] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 12/19/2022]
Abstract
Werner syndrome (WS) is a rare autosomal recessive disorder characterized by a constellation of adult onset phenotypes consistent with an acceleration of intrinsic biological aging. It is caused by pathogenic variants in the WRN gene, which encodes a multifunctional nuclear protein with exonuclease and helicase activities. WRN protein is thought to be involved in optimization of various aspects of DNA metabolism, including DNA repair, recombination, replication, and transcription. In this update, we summarize a total of 83 different WRN mutations, including eight previously unpublished mutations identified by the International Registry of Werner Syndrome (Seattle, WA) and the Japanese Werner Consortium (Chiba, Japan), as well as 75 mutations already reported in the literature. The Seattle International Registry recruits patients from all over the world to investigate genetic causes of a wide variety of progeroid syndromes in order to contribute to the knowledge of basic mechanisms of human aging. Given the unusually high prevalence of WS patients and heterozygous carriers in Japan, the major goal of the Japanese Consortium is to develop effective therapies and to establish management guidelines for WS patients in Japan and elsewhere. This review will also discuss potential translational approaches to this disorder, including those currently under investigation.
Collapse
Affiliation(s)
- Koutaro Yokote
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sirisak Chanprasert
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington
| | - Lin Lee
- Department of Pathology, University of Washington, Seattle, Washington
| | - Katharina Eirich
- Department of Human Genetics, University of Wuerzburg, Wuerzburg, Germany
| | - Minoru Takemoto
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Aki Watanabe
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoko Koizumi
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Takayasu Mori
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, Washington
| | - Fuki M Hisama
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington
| | - Paula D Ladd
- Department of Pathology, University of Washington, Seattle, Washington
| | - Brad Angle
- Advocate Lutheran General Hospital and Advocate Children's Hospital, Park Ridge, Illinois
| | - Hagit Baris
- The Genetics Institute, Rambam Health Care Campus and Rappaport School of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Kivanc Cefle
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Turkey
| | - Sukru Palanduz
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Turkey
| | - Sukru Ozturk
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Turkey
| | - Antoinette Chateau
- Department of Dermatology, Greys Hospital, Pietermaritzburg, South Africa
| | - Kentaro Deguchi
- Department of Neurology, Okayama City Hospital, Okayama, Japan
| | | | - Antonio Federico
- Department of Medicine, Surgery and Neurosciences, Unit Clinical Neurology and Neurometabolic Diseases, Medical School, University of Siena, Siena, Italy
| | - Amy Fox
- Department of Dermatology, University of North Carolina, Chapel Hill, North Carolina
| | - Theresa A Grebe
- Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, Arizona
| | - Beverly Hay
- Division of Genetics, UMass Memorial Medical Center, Worcester, Massachusetts
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences and Research Center, Kochi, Kerala, India
| | - Karen Seiter
- Department of Medicine, New York Medical College, Hawthorne, New York
| | - Elizabeth Streeten
- Division of Genetics, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Gemma Poke
- Genetic Health Service NZ, Wellington, New Zealand
| | - Martin Poot
- University Medical Center, Utrecht, Netherlands
| | - Renata Posmyk
- Department of Clinical Genetics, Podlaskie Medical Center, Bialystok, Poland
- Department of Perinatology, Medical University of Bialystok, Bialystok, Poland
| | - George M Martin
- Department of Pathology, University of Washington, Seattle, Washington
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Detlev Schindler
- Department of Human Genetics, University of Wuerzburg, Wuerzburg, Germany
| | - Junko Oshima
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Pathology, University of Washington, Seattle, Washington
| |
Collapse
|
50
|
Fernández-Pernas P, Fafián-Labora J, Lesende-Rodriguez I, Mateos J, De la Fuente A, Fuentes I, De Toro Santos J, Blanco García F, Arufe MC. 3, 3', 5-triiodo-L-thyronine Increases In Vitro Chondrogenesis of Mesenchymal Stem Cells From Human Umbilical Cord Stroma Through SRC2. J Cell Biochem 2016; 117:2097-2108. [PMID: 26869487 DOI: 10.1002/jcb.25515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/09/2016] [Indexed: 02/05/2023]
Abstract
Our group focuses on the study of mesenchymal stem cells (MSCs) from human umbilical cord stroma or Warthońs jelly and their directed differentiation toward chondrocyte-like cells capable of regenerating damaged cartilage when transplanted into an injured joint. This study aimed to determine whether lactogenic hormone prolactin (PRL) or 3, 3', 5-triiodo-L-thyronine (T3), the active thyroid hormone, modulates chondrogenesis in our in vitro model of directed chondrogenic differentiation, and whether Wnt signalling is involved in this modulation. MSCs from human umbilical cord stroma underwent directed differentiation toward chondrocyte-like cells by spheroid formation. The addition of T3 to the chondrogenic medium increased the expression of genes linked to chondrogenesis like collagen type 2, integrin alpha 10 beta 1, and Sox9 measured by quantitative real time polymerase chain reaction (qRT-PCR) analysis. Levels of collagen type 2 and aggrecane analyzed by immunohistochemistry, and staining by Safranin O were increased after 14 days in spheroid culture with T3 compared to those without T3 or only with PRL. B-catenin, Frizzled, and GSK-3β gene expressions were significantly higher in spheroids cultured with chondrogenic medium (CM) plus T3 compared to CM alone after 14 days in culture. The increase of chondrogenic differentiation was inhibited when the cells were treated with T3 plus ML151, an inhibitor of the T3 steroid receptor. This work demonstrates, for first time, that T3 promotes differentiation towards chondrocytes-like cells in our in vitro model, that this differentiation is mediated by steroid receptor co-activator 2 (SRC2) and does not induce hypertrophy. J. Cell. Biochem. 117: 2097-2108, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pablo Fernández-Pernas
- Grupo de Terapia Celular y Medicina Regenerativa (TCMR-CHUAC), CIBER-BBN/ISCIII, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Departamento de Medicina, Facultade de Oza, Universidade da Coruña (UDC), As Xubias, 15006, A Coruña, Spain
| | - Juan Fafián-Labora
- Grupo de Terapia Celular y Medicina Regenerativa (TCMR-CHUAC), CIBER-BBN/ISCIII, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Departamento de Medicina, Facultade de Oza, Universidade da Coruña (UDC), As Xubias, 15006, A Coruña, Spain
| | - Iván Lesende-Rodriguez
- Grupo de Terapia Celular y Medicina Regenerativa (TCMR-CHUAC), CIBER-BBN/ISCIII, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Departamento de Medicina, Facultade de Oza, Universidade da Coruña (UDC), As Xubias, 15006, A Coruña, Spain
| | - Jesús Mateos
- Grupo de Proteómica-PBR2-ProteoRed/ISCIII-Servicio de Reumatologia, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Universidade da Coruña (UDC), As Xubias, 15006, A Coruña, España
| | - Alexandre De la Fuente
- Grupo de Terapia Celular y Medicina Regenerativa (TCMR-CHUAC), CIBER-BBN/ISCIII, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Departamento de Medicina, Facultade de Oza, Universidade da Coruña (UDC), As Xubias, 15006, A Coruña, Spain
| | - Isaac Fuentes
- Grupo de Terapia Celular y Medicina Regenerativa (TCMR-CHUAC), CIBER-BBN/ISCIII, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Departamento de Medicina, Facultade de Oza, Universidade da Coruña (UDC), As Xubias, 15006, A Coruña, Spain
| | - Javier De Toro Santos
- Grupo de Terapia Celular y Medicina Regenerativa (TCMR-CHUAC), CIBER-BBN/ISCIII, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Departamento de Medicina, Facultade de Oza, Universidade da Coruña (UDC), As Xubias, 15006, A Coruña, Spain
| | - Fco Blanco García
- Grupo de Proteómica-PBR2-ProteoRed/ISCIII-Servicio de Reumatologia, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Universidade da Coruña (UDC), As Xubias, 15006, A Coruña, España
| | - María C Arufe
- Grupo de Terapia Celular y Medicina Regenerativa (TCMR-CHUAC), CIBER-BBN/ISCIII, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Departamento de Medicina, Facultade de Oza, Universidade da Coruña (UDC), As Xubias, 15006, A Coruña, Spain
| |
Collapse
|