1
|
Kolecka-Bednarczyk A, Frydrychowicz M, Budny B, Ruciński M, Dompe C, Gabryel P, Płachno BJ, Ruchała M, Ziemnicka K, Zieliński P, Budna-Tukan J. Specific Deletions of Chromosomes 3p, 5q, 13q, and 21q among Patients with G2 Grade of Non-Small Cell Lung Cancer. Int J Mol Sci 2024; 25:8642. [PMID: 39201328 PMCID: PMC11354976 DOI: 10.3390/ijms25168642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) leads as a primary cause of cancer-related premature mortality in Western populations. This study leverages cutting-edge gene-expression-profiling technologies to perform an in-depth molecular characterization of NSCLC specimens, with the objective of uncovering tumor-specific genomic alterations. By employing DNA microarray analysis, our research aims to refine the classification of NSCLC for early detection, guide molecular-targeted treatment approaches, enhance prognostication, and broaden the scientific understanding of the disease's biology. We identified widespread genomic abnormalities in our samples, including the recurrent loss of chromosomal regions 3p, 5q, 13q, and 21q and the gain of 12p. Furthermore, utilizing Metascape for bioinformatic analysis revealed critical biological pathways disrupted in NSCLC, offering promising leads for novel therapeutic interventions.
Collapse
Affiliation(s)
- Agata Kolecka-Bednarczyk
- Department of Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.F.); (C.D.)
| | - Magdalena Frydrychowicz
- Department of Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.F.); (C.D.)
| | - Bartłomiej Budny
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (B.B.); (M.R.); (K.Z.)
| | - Marcin Ruciński
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.R.); (J.B.-T.)
| | - Claudia Dompe
- Department of Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.F.); (C.D.)
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Piotr Gabryel
- Department of Thoracic Surgery, Poznan University of Medical Sciences, 60-569 Poznan, Poland; (P.G.); (P.Z.)
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 30-387 Cracow, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (B.B.); (M.R.); (K.Z.)
| | - Katarzyna Ziemnicka
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (B.B.); (M.R.); (K.Z.)
| | - Paweł Zieliński
- Department of Thoracic Surgery, Poznan University of Medical Sciences, 60-569 Poznan, Poland; (P.G.); (P.Z.)
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.R.); (J.B.-T.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| |
Collapse
|
2
|
Hirose Y, Sato S, Hashiya K, Ooga M, Bando T, Sugiyama H. Chb-M', an Inhibitor of the RUNX Family Binding to DNA, Induces Apoptosis in p53-Mutated Non-Small Cell Lung Cancer and Inhibits Tumor Growth and Repopulation In Vivo. J Med Chem 2024; 67:9165-9172. [PMID: 38803164 DOI: 10.1021/acs.jmedchem.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Runt-related transcription factor (RUNX) proteins are considered to play various roles in cancer. Here, we evaluated the anticancer activity of Chb-M', a compound that specifically and covalently binds to the consensus sequence for RUNX family proteins, in p53-mutated non-small cell lung cancer cells. Chb-M' killed the cancer cells by inducing apoptosis. The compound showed an anticancer effect comparable to that of the clinically used drugs alectinib and ceritinib in vivo. Notably, Chb-M' extended the cancer-free survival of mice after ending treatment more effectively than did the other two drugs. The results presented here suggest that Chb-M' is an attractive candidate as an anticancer drug applicable to the treatment of non-small cell lung cancer and various other types of cancers.
Collapse
Affiliation(s)
- Yuki Hirose
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Shinsuke Sato
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Mitsuharu Ooga
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
Cui X, Huo D, Wang Q, Wang Y, Liu X, Zhao K, You Y, Zhang J, Kang C. RUNX1/NPM1/H3K4me3 complex contributes to extracellular matrix remodeling via enhancing FOSL2 transcriptional activation in glioblastoma. Cell Death Dis 2024; 15:98. [PMID: 38286983 PMCID: PMC10825180 DOI: 10.1038/s41419-024-06481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/31/2024]
Abstract
Extracellular matrix (ECM) remodeling has been implicated in the tumor malignant progression and immune escape in glioblastoma (GBM). Runt-related transcription factor 1 (RUNX1) is a vital transcriptional factor for promoting tumorigenesis and invasion in mesenchymal subtype of GBM. But the correlation between RUNX1 and ECM genes expression and regulatory mechanism of RUNX1 on ECM genes expression remain poorly understood to date. In this study, by using integral analysis of chromatin immunoprecipitation-sequencing and RNA sequencing, we reported that RUNX1 positively regulated the expression of various ECM-related genes, including Fibronectin 1 (FN1), Collagen type IV alpha 1 chain (COL4A1), and Lumican (LUM), in GBM. Mechanistically, we demonstrated that RUNX1 interacted with Nucleophosmin 1 (NPM1) to maintain the chromatin accessibility and facilitate FOS Like 2, AP-1 Transcription Factor Subunit (FOSL2)-mediated transcriptional activation of ECM-related genes, which was independent of RUNX1's transcriptional function. ECM remodeling driven by RUNX1 promoted immunosuppressive microenvironment in GBM. In conclusion, this study provides a novel mechanism of RUNX1 binding to NPM1 in driving the ECM remodeling and GBM progression.
Collapse
Affiliation(s)
- Xiaoteng Cui
- Lab of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Dawei Huo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Institute of Hematology, Zhejiang University, Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310003, China
| | - Qixue Wang
- Lab of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Yunfei Wang
- Lab of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Xiaomin Liu
- Neuro-Oncology Center, Tianjin Huanhu Hospital, Nankai University, Tianjin, 300350, China
| | - Kai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210029, China.
| | - Chunsheng Kang
- Lab of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China.
| |
Collapse
|
4
|
Layden HM, Johnson AE, Hiebert SW. Chemical-genetics refines transcription factor regulatory circuits. Trends Cancer 2024; 10:65-75. [PMID: 37722945 PMCID: PMC10840957 DOI: 10.1016/j.trecan.2023.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 09/20/2023]
Abstract
Transcriptional dysregulation is a key step in oncogenesis, but our understanding of transcriptional control has relied on genetic approaches that are slow and allow for compensation. Chemical-genetic approaches have shortened the time frame for the analysis of transcription factors from days or weeks to minutes. These studies show that while DNA-binding proteins bind to thousands of sites, they are directly required to regulate only a small cadre of genes. Moreover, these transcriptional control networks are far more distinct, with much less overlap and interconnectivity than predicted from DNA binding. The identified direct targets can then be used to dissect the mechanism of action of these factors, which could identify ways to therapeutically manipulate these oncogenic transcriptional control networks.
Collapse
Affiliation(s)
- Hillary M Layden
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Anna E Johnson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN 37027, USA.
| |
Collapse
|
5
|
Day RB, Hickman JA, Xu Z, Katerndahl CD, Ferraro F, Ramakrishnan SM, Erdmann-Gilmore P, Sprung RW, Mi Y, Townsend RR, Miller CA, Ley TJ. Proteogenomic analysis reveals cytoplasmic sequestration of RUNX1 by the acute myeloid leukemia-initiating CBFB::MYH11 oncofusion protein. J Clin Invest 2023; 134:e176311. [PMID: 38061017 PMCID: PMC10866659 DOI: 10.1172/jci176311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/06/2023] [Indexed: 02/16/2024] Open
Abstract
Several canonical translocations produce oncofusion genes that can initiate acute myeloid leukemia (AML). Although each translocation is associated with unique features, the mechanisms responsible remain unclear. While proteins interacting with each oncofusion are known to be relevant for how they act, these interactions have not yet been systematically defined. To address this issue in an unbiased fashion, we fused a promiscuous biotin ligase (TurboID) in-frame with 3 favorable-risk AML oncofusion cDNAs (PML::RARA, RUNX1::RUNX1T1, and CBFB::MYH11) and identified their interacting proteins in primary murine hematopoietic cells. The PML::RARA- and RUNX1::RUNX1T1-TurboID fusion proteins labeled common and unique nuclear repressor complexes, implying their nuclear localization. However, CBFB::MYH11-TurboID-interacting proteins were largely cytoplasmic, probably because of an interaction of the MYH11 domain with several cytoplasmic myosin-related proteins. Using a variety of methods, we showed that the CBFB domain of CBFB::MYH11 sequesters RUNX1 in cytoplasmic aggregates; these findings were confirmed in primary human AML cells. Paradoxically, CBFB::MYH11 expression was associated with increased RUNX1/2 expression, suggesting the presence of a sensor for reduced functional RUNX1 protein, and a feedback loop that may attempt to compensate by increasing RUNX1/2 transcription. These findings may have broad implications for AML pathogenesis.
Collapse
Affiliation(s)
- Ryan B. Day
- Section of Stem Cell Biology, Division of Oncology, Department of Internal Medicine, and
| | - Julia A. Hickman
- Section of Stem Cell Biology, Division of Oncology, Department of Internal Medicine, and
| | - Ziheng Xu
- Section of Stem Cell Biology, Division of Oncology, Department of Internal Medicine, and
| | - Casey D.S. Katerndahl
- Section of Stem Cell Biology, Division of Oncology, Department of Internal Medicine, and
| | - Francesca Ferraro
- Section of Stem Cell Biology, Division of Oncology, Department of Internal Medicine, and
| | | | - Petra Erdmann-Gilmore
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robert W. Sprung
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yiling Mi
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - R. Reid Townsend
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christopher A. Miller
- Section of Stem Cell Biology, Division of Oncology, Department of Internal Medicine, and
| | - Timothy J. Ley
- Section of Stem Cell Biology, Division of Oncology, Department of Internal Medicine, and
| |
Collapse
|
6
|
Hirose Y, Sato S, Hashiya K, Bando T, Sugiyama H. Anticancer Activities of DNA-Alkylating Pyrrole-Imidazole Polyamide Analogs Targeting RUNX Transcription Factors against p53-Mutated Pancreatic Cancer PANC-1 Cells. J Med Chem 2023; 66:12059-12068. [PMID: 37606185 DOI: 10.1021/acs.jmedchem.3c00613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The runt-related transcription factor (RUNX) family is known to play important roles in the progression of cancer. Conjugate 1, which covalently binds to the RUNX-binding sequences, was reported to inhibit the binding of RUNX proteins to their target sites and suppress cancer growth. Here, we evaluated the anticancer effects of 1 and its analogs 2-4 against p53-mutated PANC-1 pancreatic cancer cells. We found that they possessed different DNA-alkylating properties in vitro. And conjugates 1-3 were shown to have anticancer effects by inducing apoptosis in PANC-1 cells. Furthermore, conjugates 2 and 3 suppressed cancer growth in PANC-1 xenograft mice, with activity equivalent to a 50-fold dose of gemcitabine. Especially, 3 showed the highest alkylation efficiency, specificity, and better anticancer effects against pancreatic cancer than 1 in vivo without significant body weight loss. Our results revealed the potential of our compounds as new candidates for cancer therapy.
Collapse
Affiliation(s)
- Yuki Hirose
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Shinsuke Sato
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
7
|
Rozen EJ, Ozeroff CD, Allen MA. RUN(X) out of blood: emerging RUNX1 functions beyond hematopoiesis and links to Down syndrome. Hum Genomics 2023; 17:83. [PMID: 37670378 PMCID: PMC10481493 DOI: 10.1186/s40246-023-00531-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND RUNX1 is a transcription factor and a master regulator for the specification of the hematopoietic lineage during embryogenesis and postnatal megakaryopoiesis. Mutations and rearrangements on RUNX1 are key drivers of hematological malignancies. In humans, this gene is localized to the 'Down syndrome critical region' of chromosome 21, triplication of which is necessary and sufficient for most phenotypes that characterize Trisomy 21. MAIN BODY Individuals with Down syndrome show a higher predisposition to leukemias. Hence, RUNX1 overexpression was initially proposed as a critical player on Down syndrome-associated leukemogenesis. Less is known about the functions of RUNX1 in other tissues and organs, although growing reports show important implications in development or homeostasis of neural tissues, muscle, heart, bone, ovary, or the endothelium, among others. Even less is understood about the consequences on these tissues of RUNX1 gene dosage alterations in the context of Down syndrome. In this review, we summarize the current knowledge on RUNX1 activities outside blood/leukemia, while suggesting for the first time their potential relation to specific Trisomy 21 co-occurring conditions. CONCLUSION Our concise review on the emerging RUNX1 roles in different tissues outside the hematopoietic context provides a number of well-funded hypotheses that will open new research avenues toward a better understanding of RUNX1-mediated transcription in health and disease, contributing to novel potential diagnostic and therapeutic strategies for Down syndrome-associated conditions.
Collapse
Affiliation(s)
- Esteban J Rozen
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO, 80303, USA.
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA.
| | - Christopher D Ozeroff
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO, 80303, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, 1945 Colorado Ave., Boulder, CO, 80309, USA
| | - Mary Ann Allen
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO, 80303, USA.
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
8
|
Khan AS, Campbell KJ, Cameron ER, Blyth K. The RUNX/CBFβ Complex in Breast Cancer: A Conundrum of Context. Cells 2023; 12:641. [PMID: 36831308 PMCID: PMC9953914 DOI: 10.3390/cells12040641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Dissecting and identifying the major actors and pathways in the genesis, progression and aggressive advancement of breast cancer is challenging, in part because neoplasms arising in this tissue represent distinct diseases and in part because the tumors themselves evolve. This review attempts to illustrate the complexity of this mutational landscape as it pertains to the RUNX genes and their transcription co-factor CBFβ. Large-scale genomic studies that characterize genetic alterations across a disease subtype are a useful starting point and as such have identified recurring alterations in CBFB and in the RUNX genes (particularly RUNX1). Intriguingly, the functional output of these mutations is often context dependent with regards to the estrogen receptor (ER) status of the breast cancer. Therefore, such studies need to be integrated with an in-depth understanding of both the normal and corrupted function in mammary cells to begin to tease out how loss or gain of function can alter the cell phenotype and contribute to disease progression. We review how alterations to RUNX/CBFβ function contextually ascribe to breast cancer subtypes and discuss how the in vitro analyses and mouse model systems have contributed to our current understanding of these proteins in the pathogenesis of this complex set of diseases.
Collapse
Affiliation(s)
- Adiba S. Khan
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; (A.S.K.); (K.J.C.)
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Kirsteen J. Campbell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; (A.S.K.); (K.J.C.)
| | - Ewan R. Cameron
- School of Biodiversity One Health & Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK;
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; (A.S.K.); (K.J.C.)
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
9
|
Wang C, Shi Z, Zhang Y, Li M, Zhu J, Huang Z, Zhang J, Chen J. CBFβ promotes colorectal cancer progression through transcriptionally activating OPN, FAM129A, and UPP1 in a RUNX2-dependent manner. Cell Death Differ 2021; 28:3176-3192. [PMID: 34050318 PMCID: PMC8563980 DOI: 10.1038/s41418-021-00810-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer (CRC) is commonly associated with aberrant transcription regulation, but characteristics of the dysregulated transcription factors in CRC pathogenesis remain to be elucidated. In the present study, core-binding factor β (CBFβ) is found to be significantly upregulated in human CRC tissues and correlates with poor survival rate of CRC patients. Mechanistically, CBFβ is found to promote CRC cell proliferation, migration, invasion, and inhibit cell apoptosis in a RUNX2-dependent way. Transcriptome studies reveal that CBFβ and RUNX2 form a transcriptional complex that activates gene expression of OPN, FAM129A, and UPP1. Furthermore, CBFβ significantly promotes CRC tumor growth and live metastasis in a mouse xenograft model and a mouse liver metastasis model. In addition, tumor-suppressive miR-143/145 are found to inhibit CBFβ expression by specifically targeting its 3'-UTR region. Consistently, an inverse correlation between miR-143/miR-145 and CBFβ expression levels is present in CRC patients. Taken together, this study uncovers a novel regulatory role of CBFβ-RUNX2 complex in the transcriptional activation of OPN, FAM129A, and UPP1 during CRC development, and may provide important insights into CRC pathogenesis.
Collapse
Affiliation(s)
- Chen Wang
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Ziyu Shi
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Yuqian Zhang
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Mingyue Li
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Jie Zhu
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Zhen Huang
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Junfeng Zhang
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Jiangning Chen
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China ,grid.41156.370000 0001 2314 964XState Key Laboratory of Analytical Chemistry for Life Sciences, Nanjing University, Nanjing, PR China
| |
Collapse
|
10
|
Kubota H, Masuda T, Noura M, Furuichi K, Matsuo H, Hirata M, Kataoka TR, Hiramatsu H, Yasumi T, Nakahata T, Imai Y, Takita J, Adachi S, Sugiyama H, Kamikubo Y. RUNX inhibitor suppresses graft-versus-host disease through targeting RUNX-NFATC2 axis. EJHAEM 2021; 2:449-458. [PMID: 35844683 PMCID: PMC9175814 DOI: 10.1002/jha2.230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/13/2022]
Abstract
Patients with refractory graft-versus-host disease (GVHD) have a dismal prognosis. Therefore, novel therapeutic targets are still needed to be identified. Runt-related transcriptional factor (RUNX) family transcription factors are essential transcription factors that mediate the essential roles in effector T cells. However, whether RUNX targeting can suppress, and GVHD is yet unknown. Here, we showed that RUNX family members have a redundant role in directly transactivating NFATC2 expression in T cells. We also found that our novel RUNX inhibitor, Chb-M', which is the inhibitor that switches off the entire RUNX family by alkylating agent-conjugated pyrrole-imidazole (PI) polyamides, inhibited T-cell receptor mediated T cell proliferation and allogenic T cell response. These were designed to specifically bind to consensus RUNX-binding sequences (TGTGGT). Chb-M' also suppressed the expression of NFATC2 and pro-inflammatory cytokine genes in vitro. Using xenogeneic GVHD model, mice injected by Chb-M' showed almost no sign of GVHD. Especially, the CD4 T cell was decreased and GVHD-associated cytokines including tissue necrosis factor-α and granulocyte-macrophage colony-stimulating factor were reduced in the peripheral blood of Chb-M' injected mice. Taken together, our data demonstrates that RUNX family transcriptionally upregulates NFATC2 in T cells, and RUNX-NFATC2 axis can be a novel therapeutic target against GVHD.
Collapse
Affiliation(s)
- Hirohito Kubota
- Department of PediatricsGraduate School of MedicineKyoto UniversitySakyo‐kuKyotoJapan
| | - Tatsuya Masuda
- Department of Human Health SciencesGraduate School of MedicineKyoto, University, Sakyo‐kuKyotoJapan
| | - Mina Noura
- Department of Human Health SciencesGraduate School of MedicineKyoto, University, Sakyo‐kuKyotoJapan
| | - Kana Furuichi
- Department of Human Health SciencesGraduate School of MedicineKyoto, University, Sakyo‐kuKyotoJapan
| | - Hidemasa Matsuo
- Department of Human Health SciencesGraduate School of MedicineKyoto, University, Sakyo‐kuKyotoJapan
| | - Masahiro Hirata
- Department of Diagnostic PathologyKyoto University HospitalSakyo‐kuKyotoJapan
| | - Tatsuki R. Kataoka
- Department of Diagnostic PathologyKyoto University HospitalSakyo‐kuKyotoJapan
| | - Hidefumi Hiramatsu
- Department of PediatricsGraduate School of MedicineKyoto UniversitySakyo‐kuKyotoJapan
| | - Takahiro Yasumi
- Department of PediatricsGraduate School of MedicineKyoto UniversitySakyo‐kuKyotoJapan
| | - Tatsutoshi Nakahata
- Drug Discovery Technology Development OfficeCenter for iPS cell research and application (CiRA)Kyoto UniversitySakyo‐kuKyotoJapan
| | - Yoichi Imai
- Department of Hematology/OncologyIMSUT HospitalThe Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Junko Takita
- Department of PediatricsGraduate School of MedicineKyoto UniversitySakyo‐kuKyotoJapan
| | - Souichi Adachi
- Department of Human Health SciencesGraduate School of MedicineKyoto, University, Sakyo‐kuKyotoJapan
| | - Hiroshi Sugiyama
- Department of ChemistryGraduate School of ScienceKyoto UniversitySakyo‐kuKyotoJapan
| | - Yasuhiko Kamikubo
- Department of Human Health SciencesGraduate School of MedicineKyoto, University, Sakyo‐kuKyotoJapan
| |
Collapse
|
11
|
Transcriptional and epigenetic control of hematopoietic stem cell fate decisions in vertebrates. Dev Biol 2021; 475:156-164. [PMID: 33689804 DOI: 10.1016/j.ydbio.2021.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
Hematopoietic stem cells (HSCs) are the foundation of adult hematopoiesis that produce all types of mature blood lineages. In vertebrates, HSC development is a stepwise process, coordinately regulated by chromatin architectures and a group of transcriptional and epigenetic regulators. A deeper understanding of the molecular mechanisms governing the generation, expansion, and function of HSCs holds great promise in the generation and expansion of engraftable HSCs in vitro for clinical applications. This study reviewed recent advances in transcriptional and epigenetic control of hematopoietic stem cell fate decisions in vertebrates.
Collapse
|
12
|
Kucinski I, Wilson NK, Hannah R, Kinston SJ, Cauchy P, Lenaerts A, Grosschedl R, Göttgens B. Interactions between lineage-associated transcription factors govern haematopoietic progenitor states. EMBO J 2020; 39:e104983. [PMID: 33103827 PMCID: PMC7737608 DOI: 10.15252/embj.2020104983] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/26/2022] Open
Abstract
Recent advances in molecular profiling provide descriptive datasets of complex differentiation landscapes including the haematopoietic system, but the molecular mechanisms defining progenitor states and lineage choice remain ill-defined. Here, we employed a cellular model of murine multipotent haematopoietic progenitors (Hoxb8-FL) to knock out 39 transcription factors (TFs) followed by RNA-Seq analysis, to functionally define a regulatory network of 16,992 regulator/target gene links. Focussed analysis of the subnetworks regulated by the B-lymphoid TF Ebf1 and T-lymphoid TF Gata3 revealed a surprising role in common activation of an early myeloid programme. Moreover, Gata3-mediated repression of Pax5 emerges as a mechanism to prevent precocious B-lymphoid differentiation, while Hox-mediated activation of Meis1 suppresses myeloid differentiation. To aid interpretation of large transcriptomics datasets, we also report a new method that visualises likely transitions that a progenitor will undergo following regulatory network perturbations. Taken together, this study reveals how molecular network wiring helps to establish a multipotent progenitor state, with experimental approaches and analysis tools applicable to dissecting a broad range of both normal and perturbed cellular differentiation landscapes.
Collapse
Affiliation(s)
- Iwo Kucinski
- Wellcome–MRC Cambridge Stem Cell InstituteDepartment of HaematologyJeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| | - Nicola K Wilson
- Wellcome–MRC Cambridge Stem Cell InstituteDepartment of HaematologyJeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| | - Rebecca Hannah
- Wellcome–MRC Cambridge Stem Cell InstituteDepartment of HaematologyJeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| | - Sarah J Kinston
- Wellcome–MRC Cambridge Stem Cell InstituteDepartment of HaematologyJeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| | - Pierre Cauchy
- Department of Cellular and Molecular ImmunologyMax Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | - Aurelie Lenaerts
- Department of Cellular and Molecular ImmunologyMax Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
- International Max Planck Research School for Molecular and Cellular BiologyMax Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | - Rudolf Grosschedl
- Department of Cellular and Molecular ImmunologyMax Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | - Berthold Göttgens
- Wellcome–MRC Cambridge Stem Cell InstituteDepartment of HaematologyJeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| |
Collapse
|
13
|
Clinicopathological Significance of RUNX1 in Non-Small Cell Lung Cancer. J Clin Med 2020; 9:jcm9061694. [PMID: 32498288 PMCID: PMC7356912 DOI: 10.3390/jcm9061694] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
This study aimed to understand the clinicopathological significance of runt-related transcription factor 1 (RUNX1) in non-small cell lung cancer (NSCLC). The methylation and mRNA levels of RUNX1 in NSCLC were determined using the Infinium HumanMethylation450 BeadChip and the HumanHT-12 expression BeadChip. RUNX1 protein levels were analyzed using immunohistochemistry of formalin-fixed paraffin-embedded tissues from 409 NSCLC patients. Three CpGs (cg04228935, cg11498607, and cg05000748) in the CpG island of RUNX1 showed significantly different methylation levels (Bonferroni corrected p < 0.05) between tumor and matched normal tissues obtained from 42 NSCLC patients. Methylation levels of the CpGs in the tumor tissues were inversely related to mRNA levels of RUNX1. A logistic regression model based on cg04228935 showed the best performance in predicting NSCLCs in a test dataset (N = 28) with the area under the receiver operating characteristic (ROC) curve (AUC) of 0.96 (95% confidence interval (CI) = 0.81–0.99). The expression of RUNX1 was reduced in 125 (31%) of 409 patients. Adenocarcinoma patients with reduced RUNX1 expression showed 1.97-fold (95% confidence interval = 1.16–3.44, p = 0.01) higher hazard ratio for death than those without. In conclusion, the present study suggests that abnormal methylation of RUNX1 may be a valuable biomarker for detection of NSCLC regardless of race. And, reduced RUNX1 expression may be a prognostic indicator of poor overall survival in lung adenocarcinoma.
Collapse
|
14
|
Kamikubo Y. CROX (Cluster Regulation of RUNX) as a Potential Novel Therapeutic Approach. Mol Cells 2020; 43:198-202. [PMID: 31991534 PMCID: PMC7057841 DOI: 10.14348/molcells.2019.0268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/12/2019] [Indexed: 12/28/2022] Open
Abstract
Comprehensive inhibition of RUNX1, RUNX2, and RUNX3 led to marked cell suppression compared with inhibition of RUNX1 alone, clarifying that the RUNX family members are important for proliferation and maintenance of diverse cancers, and "cluster regulation of RUNX (CROX)" is a very effective strategy to suppress cancer cells. Recent studies reported by us and other groups suggested that wild-type RUNX1 is needed for survival and proliferation of certain types of leukemia, lung cancer, gastric cancer, etc. and for their one of metastatic target sites such as born marrow endothelial niche, suggesting that RUNX1 often functions oncogenic manners in cancer cells. In this review, we describe the significance and paradoxical requirement of RUNX1 tumor suppressor in leukemia and even solid cancers based on recent our findings such as "genetic compensation of RUNX family transcription factors (the compensation mechanism for the total level of RUNX family protein expression)", "RUNX1 inhibition-induced inhibitory effects on leukemia cells and on solid cancers through p53 activation", and "autonomous feedback loop of RUNX1-p53-CBFB in acute myeloid leukemia cells". Taken together, these findings identify a crucial role for the RUNX cluster in the maintenance and progression of cancers and suggest that modulation of the RUNX cluster using the pyrrole-imidazole polyamide gene-switch technology is a potential novel therapeutic approach to control cancers.
Collapse
Affiliation(s)
- Yasuhiko Kamikubo
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
15
|
Lie-a-ling M, Mevel R, Patel R, Blyth K, Baena E, Kouskoff V, Lacaud G. RUNX1 Dosage in Development and Cancer. Mol Cells 2020; 43:126-138. [PMID: 31991535 PMCID: PMC7057845 DOI: 10.14348/molcells.2019.0301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/30/2022] Open
Abstract
The transcription factor RUNX1 first came to prominence due to its involvement in the t(8;21) translocation in acute myeloid leukemia (AML). Since this discovery, RUNX1 has been shown to play important roles not only in leukemia but also in the ontogeny of the normal hematopoietic system. Although it is currently still challenging to fully assess the different parameters regulating RUNX1 dosage, it has become clear that the dose of RUNX1 can greatly affect both leukemia and normal hematopoietic development. It is also becoming evident that varying levels of RUNX1 expression can be used as markers of tumor progression not only in the hematopoietic system, but also in non-hematopoietic cancers. Here, we provide an overview of the current knowledge of the effects of RUNX1 dosage in normal development of both hematopoietic and epithelial tissues and their associated cancers.
Collapse
Affiliation(s)
- Michael Lie-a-ling
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK0 4TG, UK
| | - Renaud Mevel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK0 4TG, UK
| | - Rahima Patel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK0 4TG, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Esther Baena
- Cancer Research UK Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK10 TG, UK
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Manchester, M13 9PT, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK0 4TG, UK
| |
Collapse
|
16
|
Samarakkody AS, Shin NY, Cantor AB. Role of RUNX Family Transcription Factors in DNA Damage Response. Mol Cells 2020; 43:99-106. [PMID: 32024352 PMCID: PMC7057837 DOI: 10.14348/molcells.2019.0304] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/12/2019] [Indexed: 01/06/2023] Open
Abstract
Cells are constantly exposed to endogenous and exogenous stresses that can result in DNA damage. In response, they have evolved complex pathways to maintain genomic integrity. RUNX family transcription factors (RUNX1, RUNX2, and RUNX3 in mammals) are master regulators of development and differentiation, and are frequently dysregulated in cancer. A growing body of research also implicates RUNX proteins as regulators of the DNA damage response, often acting in conjunction with the p53 and Fanconi anemia pathways. In this review, we discuss the functional role and mechanisms involved in RUNX factor mediated response to DNA damage and other cellular stresses. We highlight the impact of these new findings on our understanding of cancer predisposition associated with RUNX factor dysregulation and their implications for designing novel approaches to prevent cancer formation in affected individuals.
Collapse
Affiliation(s)
- Ann Sanoji Samarakkody
- Department of Pediatric Hematology-Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 025, USA
| | - Nah-Young Shin
- Department of Pediatric Hematology-Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 025, USA
| | - Alan B. Cantor
- Department of Pediatric Hematology-Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 025, USA
- Harvard Stem Cell Institute, Cambridge, MA 0138, USA
| |
Collapse
|
17
|
Mevel R, Draper JE, Lie-A-Ling M, Kouskoff V, Lacaud G. RUNX transcription factors: orchestrators of development. Development 2019; 146:dev148296. [PMID: 31488508 DOI: 10.1242/dev.148296] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RUNX transcription factors orchestrate many different aspects of biology, including basic cellular and developmental processes, stem cell biology and tumorigenesis. In this Primer, we introduce the molecular hallmarks of the three mammalian RUNX genes, RUNX1, RUNX2 and RUNX3, and discuss the regulation of their activities and their mechanisms of action. We then review their crucial roles in the specification and maintenance of a wide array of tissues during embryonic development and adult homeostasis.
Collapse
Affiliation(s)
- Renaud Mevel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Julia E Draper
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Michael Lie-A-Ling
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| |
Collapse
|
18
|
Selective deployment of transcription factor paralogs with submaximal strength facilitates gene regulation in the immune system. Nat Immunol 2019; 20:1372-1380. [PMID: 31451789 PMCID: PMC6754753 DOI: 10.1038/s41590-019-0471-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/16/2019] [Indexed: 12/12/2022]
Abstract
In multicellular organisms, duplicated genes can diverge through tissue-specific gene expression patterns, as exemplified by highly regulated expression of Runx transcription factor paralogs with apparent functional redundancy. Here we asked what cell type-specific biologies might be supported by the selective expression of Runx paralogs during Langerhans cell and inducible regulatory T cell differentiation. We uncovered functional non-equivalence between Runx paralogs. Selective expression of native paralogs allowed integration of transcription factor activity with extrinsic signals, while non-native paralogs enforced differentiation even in the absence of exogenous inducers. DNA-binding affinity was controlled by divergent amino acids within the otherwise highly conserved RUNT domain, and evolutionary reconstruction suggested convergence of RUNT domain residues towards sub-maximal strength. Hence, the selective expression of gene duplicates in specialized cell types can synergize with the acquisition of functional differences to enable appropriate gene expression, lineage choice and differentiation in the mammalian immune system.
Collapse
|
19
|
RUNX1-targeted therapy for AML expressing somatic or germline mutation in RUNX1. Blood 2019; 134:59-73. [PMID: 31023702 DOI: 10.1182/blood.2018893982] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 04/16/2019] [Indexed: 12/22/2022] Open
Abstract
RUNX1 transcription factor regulates normal and malignant hematopoiesis. Somatic or germline mutant RUNX1 (mtRUNX1) is associated with poorer outcome in acute myeloid leukemia (AML). Knockdown or inhibition of RUNX1 induced more apoptosis of AML expressing mtRUNX1 versus wild-type RUNX1 and improved survival of mice engrafted with mtRUNX1-expressing AML. CRISPR/Cas9-mediated editing-out of RUNX1 enhancer (eR1) within its intragenic super-enhancer, or BET protein BRD4 depletion by short hairpin RNA, repressed RUNX1, inhibited cell growth, and induced cell lethality in AML cells expressing mtRUNX1. Moreover, treatment with BET protein inhibitor or degrader (BET-proteolysis targeting chimera) repressed RUNX1 and its targets, inducing apoptosis and improving survival of mice engrafted with AML expressing mtRUNX1. Library of Integrated Network-based Cellular Signatures 1000-connectivity mapping data sets queried with messenger RNA signature of RUNX1 knockdown identified novel expression-mimickers (EMs), which repressed RUNX1 and exerted in vitro and in vivo efficacy against AML cells expressing mtRUNX1. In addition, the EMs cinobufagin, anisomycin, and narciclasine induced more lethality in hematopoietic progenitor cells (HPCs) expressing germline mtRUNX1 from patients with AML compared with HPCs from patients with familial platelet disorder (FPD), or normal untransformed HPCs. These findings highlight novel therapeutic agents for AML expressing somatic or germline mtRUNX1.
Collapse
|
20
|
Windisch R, Pirschtat N, Kellner C, Chen-Wichmann L, Lausen J, Humpe A, Krause DS, Wichmann C. Oncogenic Deregulation of Cell Adhesion Molecules in Leukemia. Cancers (Basel) 2019; 11:E311. [PMID: 30841639 PMCID: PMC6468598 DOI: 10.3390/cancers11030311] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 01/01/2023] Open
Abstract
Numerous cell⁻cell and cell⁻matrix interactions within the bone marrow microenvironment enable the controlled lifelong self-renewal and progeny of hematopoietic stem and progenitor cells (HSPCs). On the cellular level, this highly mutual interaction is granted by cell adhesion molecules (CAMs) integrating differentiation, proliferation, and pro-survival signals from the surrounding microenvironment to the inner cell. However, cell⁻cell and cell⁻matrix interactions are also critically involved during malignant transformation of hematopoietic stem/progenitor cells. It has become increasingly apparent that leukemia-associated gene products, such as activated tyrosine kinases and fusion proteins resulting from chromosomal translocations, directly regulate the activation status of adhesion molecules, thereby directing the leukemic phenotype. These observations imply that interference with adhesion molecule function represents a promising treatment strategy to target pre-leukemic and leukemic lesions within the bone marrow niche. Focusing on myeloid leukemia, we provide a current overview of the mechanisms by which leukemogenic gene products hijack control of cellular adhesion to subsequently disturb normal hematopoiesis and promote leukemia development.
Collapse
Affiliation(s)
- Roland Windisch
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Nina Pirschtat
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Christian Kellner
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Linping Chen-Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Jörn Lausen
- Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University and German Red Cross Blood Service, 60528 Frankfurt am Main, Germany.
| | - Andreas Humpe
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Daniela S Krause
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt am Main, Germany.
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, 81377 Munich, Germany.
| |
Collapse
|
21
|
Kamikubo Y. Genetic compensation of RUNX family transcription factors in leukemia. Cancer Sci 2018; 109:2358-2363. [PMID: 29883054 PMCID: PMC6113440 DOI: 10.1111/cas.13664] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022] Open
Abstract
Runt (Runt domain)‐related transcription factor 1 (RUNX1) is a transcription factor belonging to the core‐binding factor (CBF) family. It is considered to be a master regulator of hematopoiesis and has been regarded as a tumor suppressor because it is essential for definitive hematopoiesis in vertebrates. It is one of the most frequent target genes of chromosomal translocation in leukemia, and germ line mutation of RUNX1 causes familial platelet disorder with associated myeloid malignancies. Somatic cell mutations and chromosomal abnormalities, including those of RUNX1, are observed in myelodysplastic syndrome, acute myeloid leukemia, acute lymphoblastic leukemia, and chronic myelomonocytic leukemia at a high frequency. In addition, recent studies reported by us and other groups suggested that WT RUNX1 is needed for survival and proliferation of certain types of leukemia. In this review, we describe the significance and paradoxical requirement of RUNX1 tumor suppressor in hematological malignancies based on recent findings such as “Genetic compensation of RUNX family transcription factors in leukemia,” “RUNX1 inhibition‐induced inhibitory effects on leukemia cells through p53 activation” and our novel promising theory “Cluster regulation of RUNX (CROX)” through the RUNX gene switch method using pyrrole‐imidazole polyamides as a new technique that could contribute to the next generation of leukemia treatment strategies.
Collapse
Affiliation(s)
- Yasuhiko Kamikubo
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
22
|
Zhang L, Martini GD, Rube HT, Kribelbauer JF, Rastogi C, FitzPatrick VD, Houtman JC, Bussemaker HJ, Pufall MA. SelexGLM differentiates androgen and glucocorticoid receptor DNA-binding preference over an extended binding site. Genome Res 2017; 28:111-121. [PMID: 29196557 PMCID: PMC5749176 DOI: 10.1101/gr.222844.117] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 11/22/2017] [Indexed: 11/28/2022]
Abstract
The DNA-binding interfaces of the androgen (AR) and glucocorticoid (GR) receptors are virtually identical, yet these transcription factors share only about a third of their genomic binding sites and regulate similarly distinct sets of target genes. To address this paradox, we determined the intrinsic specificities of the AR and GR DNA-binding domains using a refined version of SELEX-seq. We developed an algorithm, SelexGLM, that quantifies binding specificity over a large (31-bp) binding site by iteratively fitting a feature-based generalized linear model to SELEX probe counts. This analysis revealed that the DNA-binding preferences of AR and GR homodimers differ significantly, both within and outside the 15-bp core binding site. The relative preference between the two factors can be tuned over a wide range by changing the DNA sequence, with AR more sensitive to sequence changes than GR. The specificity of AR extends to the regions flanking the core 15-bp site, where isothermal calorimetry measurements reveal that affinity is augmented by enthalpy-driven readout of poly(A) sequences associated with narrowed minor groove width. We conclude that the increased specificity of AR is correlated with more enthalpy-driven binding than GR. The binding models help explain differences in AR and GR genomic binding and provide a biophysical rationale for how promiscuous binding by GR allows functional substitution for AR in some castration-resistant prostate cancers.
Collapse
Affiliation(s)
- Liyang Zhang
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Gabriella D Martini
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.,Department of Systems Biology, Columbia University Medical Center, New York, New York 10032, USA
| | - H Tomas Rube
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.,Department of Systems Biology, Columbia University Medical Center, New York, New York 10032, USA
| | - Judith F Kribelbauer
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.,Department of Systems Biology, Columbia University Medical Center, New York, New York 10032, USA
| | - Chaitanya Rastogi
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.,Department of Systems Biology, Columbia University Medical Center, New York, New York 10032, USA
| | - Vincent D FitzPatrick
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.,Department of Systems Biology, Columbia University Medical Center, New York, New York 10032, USA
| | - Jon C Houtman
- Department of Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Harmen J Bussemaker
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.,Department of Systems Biology, Columbia University Medical Center, New York, New York 10032, USA
| | - Miles A Pufall
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
23
|
Autonomous feedback loop of RUNX1-p53-CBFB in acute myeloid leukemia cells. Sci Rep 2017; 7:16604. [PMID: 29192243 PMCID: PMC5709397 DOI: 10.1038/s41598-017-16799-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023] Open
Abstract
Although runt-related transcription factor 1 (RUNX1) and its associating core binding factor-β (CBFB) play pivotal roles in leukemogenesis, and inhibition of RUNX1 has now been widely recognized as a novel strategy for anti-leukemic therapies, it has been elusive how leukemic cells could acquire the serious resistance against RUNX1-inhibition therapies and also whether CBFB could participate in this process. Here, we show evidence that p53 (TP53) and CBFB are sequentially up-regulated in response to RUNX1 depletion, and their mutual interaction causes the physiological resistance against chemotherapy for acute myeloid leukemia (AML) cells. Mechanistically, p53 induced by RUNX1 gene silencing directly binds to CBFB promoter and stimulates its transcription as well as its translation, which in turn acts as a platform for the stabilization of RUNX1, thereby creating a compensative RUNX1-p53-CBFB feedback loop. Indeed, AML cells derived from relapsed cases exhibited higher CBFB expression levels compared to those from primary AML cells at diagnosis, and these CBFB expressions were positively correlated to those of p53. Our present results underscore the importance of RUNX1-p53-CBFB regulatory loop in the development and/or maintenance of AML cells, which could be targeted at any sides of this triangle in strategizing anti-leukemia therapies.
Collapse
|
24
|
Morita K, Suzuki K, Maeda S, Matsuo A, Mitsuda Y, Tokushige C, Kashiwazaki G, Taniguchi J, Maeda R, Noura M, Hirata M, Kataoka T, Yano A, Yamada Y, Kiyose H, Tokumasu M, Matsuo H, Tanaka S, Okuno Y, Muto M, Naka K, Ito K, Kitamura T, Kaneda Y, Liu PP, Bando T, Adachi S, Sugiyama H, Kamikubo Y. Genetic regulation of the RUNX transcription factor family has antitumor effects. J Clin Invest 2017; 127:2815-2828. [PMID: 28530640 DOI: 10.1172/jci91788] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/06/2017] [Indexed: 12/23/2022] Open
Abstract
Runt-related transcription factor 1 (RUNX1) is generally considered to function as a tumor suppressor in the development of leukemia, but a growing body of evidence suggests that it has pro-oncogenic properties in acute myeloid leukemia (AML). Here we have demonstrated that the antileukemic effect mediated by RUNX1 depletion is highly dependent on a functional p53-mediated cell death pathway. Increased expression of other RUNX family members, including RUNX2 and RUNX3, compensated for the antitumor effect elicited by RUNX1 silencing, and simultaneous attenuation of all RUNX family members as a cluster led to a much stronger antitumor effect relative to suppression of individual RUNX members. Switching off the RUNX cluster using alkylating agent-conjugated pyrrole-imidazole (PI) polyamides, which were designed to specifically bind to consensus RUNX-binding sequences, was highly effective against AML cells and against several poor-prognosis solid tumors in a xenograft mouse model of AML without notable adverse events. Taken together, these results identify a crucial role for the RUNX cluster in the maintenance and progression of cancer cells and suggest that modulation of the RUNX cluster using the PI polyamide gene-switch technology is a potential strategy to control malignancies.
Collapse
Affiliation(s)
- Ken Morita
- Department of Human Health Sciences, Graduate School of Medicine.,Department of Pediatrics, Graduate School of Medicine, and
| | - Kensho Suzuki
- Department of Human Health Sciences, Graduate School of Medicine
| | - Shintaro Maeda
- Department of Human Health Sciences, Graduate School of Medicine
| | - Akihiko Matsuo
- Department of Human Health Sciences, Graduate School of Medicine
| | | | - Chieko Tokushige
- Department of Human Health Sciences, Graduate School of Medicine
| | - Gengo Kashiwazaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Junichi Taniguchi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Rina Maeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Mina Noura
- Department of Human Health Sciences, Graduate School of Medicine
| | - Masahiro Hirata
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Tatsuki Kataoka
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Ayaka Yano
- Department of Human Health Sciences, Graduate School of Medicine
| | - Yoshimi Yamada
- Department of Human Health Sciences, Graduate School of Medicine
| | - Hiroki Kiyose
- Department of Human Health Sciences, Graduate School of Medicine
| | - Mayu Tokumasu
- Department of Human Health Sciences, Graduate School of Medicine
| | - Hidemasa Matsuo
- Department of Human Health Sciences, Graduate School of Medicine
| | - Sunao Tanaka
- Department of Human Health Sciences, Graduate School of Medicine
| | - Yasushi Okuno
- Department of Human Health Sciences, Graduate School of Medicine
| | - Manabu Muto
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuhito Naka
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Kosei Ito
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy and Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasufumi Kaneda
- Division of Gene Therapy Science, Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Paul P Liu
- Oncogenesis and Development Section, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Souichi Adachi
- Department of Human Health Sciences, Graduate School of Medicine.,Department of Pediatrics, Graduate School of Medicine, and
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | |
Collapse
|
25
|
Tahirov TH, Bushweller J. Structure and Biophysics of CBFβ/RUNX and Its Translocation Products. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:21-31. [PMID: 28299648 DOI: 10.1007/978-981-10-3233-2_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The core binding factor (CBF) transcription factor is somewhat unique in that it is composed of a DNA binding RUNX subunit (RUNX1, 2, or 3) and a non-DNA binding CBFβ subunit, which modulates RUNX protein activity by modulating the auto-inhibition of the RUNX subunits. Since the discovery of this fascinating transcription factor more than 20 years ago, there has been a robust effort to characterize the structure as well as the biochemical properties of CBF. More recently, these efforts have also extended to the fusion proteins that arise from the subunits of CBF in leukemia. This chapter highlights the work of numerous labs which has provided a detailed understanding of the structure and function of this transcription factor and its fusion proteins.
Collapse
Affiliation(s)
- Tahir H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - John Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
26
|
Abstract
The functions of many proteins are regulated through allostery, whereby effector binding at a distal site changes the functional activity (e.g., substrate binding affinity or catalytic efficiency) at the active site. Most allosteric studies have focused on thermodynamic properties, in particular, substrate binding affinity. Changes in substrate binding affinity by allosteric effectors have generally been thought to be mediated by conformational transitions of the proteins or, alternatively, by changes in the broadness of the free energy basin of the protein conformational state without shifting the basin minimum position. When effector binding changes the free energy landscape of a protein in conformational space, the change affects not only thermodynamic properties but also dynamic properties, including the amplitudes of motions on different time scales and rates of conformational transitions. Here we assess the roles of conformational dynamics in allosteric regulation. Two cases are highlighted where NMR spectroscopy and molecular dynamics simulation have been used as complementary approaches to identify residues possibly involved in allosteric communication. Perspectives on contentious issues, for example, the relationship between picosecond-nanosecond local and microsecond-millisecond conformational exchange dynamics, are presented.
Collapse
Affiliation(s)
- Jingjing Guo
- School of Chemistry and Chemical Engineering, Henan Normal University , Xinxiang, Henan 453007, People's Republic of China
| | - Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University , Tallahassee, Florida 32306, United States
| |
Collapse
|
27
|
Nagatake T, Fukuyama S, Sato S, Okura H, Tachibana M, Taniuchi I, Ito K, Shimojou M, Matsumoto N, Suzuki H, Kunisawa J, Kiyono H. Central Role of Core Binding Factor β2 in Mucosa-Associated Lymphoid Tissue Organogenesis in Mouse. PLoS One 2015; 10:e0127460. [PMID: 26001080 PMCID: PMC4441428 DOI: 10.1371/journal.pone.0127460] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 04/15/2015] [Indexed: 12/21/2022] Open
Abstract
Mucosa-associated lymphoid tissue (MALT) is a group of secondary and organized lymphoid tissue that develops at different mucosal surfaces. Peyer's patches (PPs), nasopharynx-associated lymphoid tissue (NALT), and tear duct-associated lymphoid tissue (TALT) are representative MALT in the small intestine, nasal cavity, and lacrimal sac, respectively. A recent study has shown that transcriptional regulators of core binding factor (Cbf) β2 and promotor-1-transcribed Runt-related transcription factor 1 (P1-Runx1) are required for the differentiation of CD3-CD4+CD45+ lymphoid tissue inducer (LTi) cells, which initiate and trigger the developmental program of PPs, but the involvement of this pathway in NALT and TALT development remains to be elucidated. Here we report that Cbfβ2 plays an essential role in NALT and TALT development by regulating LTi cell trafficking to the NALT and TALT anlagens. Cbfβ2 was expressed in LTi cells in all three types of MALT examined. Indeed, similar to the previous finding for PPs, we found that Cbfβ2-/- mice lacked NALT and TALT lymphoid structures. However, in contrast to PPs, NALT and TALT developed normally in the absence of P1-Runx1 or other Runx family members such as Runx2 and Runx3. LTi cells for NALT and TALT differentiated normally but did not accumulate in the respective lymphoid tissue anlagens in Cbfβ2-/- mice. These findings demonstrate that Cbfβ2 is a central regulator of the MALT developmental program, but the dependency of Runx proteins on the lymphoid tissue development would differ among PPs, NALT, and TALT.
Collapse
Affiliation(s)
- Takahiro Nagatake
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108–8639, Japan
- Laboratory of Vaccine Materials, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-asagi, Ibaraki-city, Osaka, 567–0085, Japan
| | - Satoshi Fukuyama
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108–8639, Japan
- Division of Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108–8639, Japan
| | - Shintaro Sato
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108–8639, Japan
| | - Hideaki Okura
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108–8639, Japan
| | - Masashi Tachibana
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230–0045, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230–0045, Japan
| | - Kosei Ito
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852–8588, Japan
| | - Michiko Shimojou
- Laboratory of Vaccine Materials, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-asagi, Ibaraki-city, Osaka, 567–0085, Japan
| | - Naomi Matsumoto
- Laboratory of Vaccine Materials, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-asagi, Ibaraki-city, Osaka, 567–0085, Japan
| | - Hidehiko Suzuki
- Laboratory of Vaccine Materials, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-asagi, Ibaraki-city, Osaka, 567–0085, Japan
| | - Jun Kunisawa
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108–8639, Japan
- Laboratory of Vaccine Materials, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-asagi, Ibaraki-city, Osaka, 567–0085, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Department of Microbiology and Immunology, Kobe University School of Medicine, Kobe, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108–8639, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Medical Genome Science, Graduate School of Frontier Science, The University of Tokyo, Chiba, Japan
- * E-mail:
| |
Collapse
|
28
|
Yoshikawa R, Takeuchi JS, Yamada E, Nakano Y, Ren F, Tanaka H, Münk C, Harris RS, Miyazawa T, Koyanagi Y, Sato K. Vif determines the requirement for CBF-β in APOBEC3 degradation. J Gen Virol 2015; 96:887-892. [PMID: 25516542 PMCID: PMC4361795 DOI: 10.1099/jgv.0.000027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/03/2014] [Indexed: 11/18/2022] Open
Abstract
APOBEC3 (apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3) proteins are cellular DNA deaminases that restrict a broad spectrum of lentiviruses. This process is counteracted by Vif (viral infectivity factor) of lentiviruses, which binds APOBEC3s and promotes their degradation. CBF-β (core binding factor subunit β) is an essential co-factor for the function of human immunodeficiency virus type 1 Vif to degrade human APOBEC3s. However, the requirement for CBF-β in Vif-mediated degradation of other mammalian APOBEC3 proteins is less clear. Here, we determined the sequence of feline CBFB and performed phylogenetic analyses. These analyses revealed that mammalian CBFB is under purifying selection. Moreover, we demonstrated that CBF-β is dispensable for feline immunodeficiency virus Vif-mediated degradation of APOBEC3s of its host. These findings suggested that primate lentiviruses have adapted to use CBF-β, an evolutionary stable protein, to counteract APOBEC3 proteins of their hosts after diverging from other lentiviruses.
Collapse
Affiliation(s)
- Rokusuke Yoshikawa
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan
| | - Junko S. Takeuchi
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan
| | - Eri Yamada
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan
| | - Yusuke Nakano
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan
- Department of Medical Virology, Faculty of Life Sciences, Kumamoto University, Kumamoto 8608556, Japan
| | - Fengrong Ren
- Department of Bioinformatics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 1138510, Japan
| | - Hiroshi Tanaka
- Department of Bioinformatics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 1138510, Japan
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, Masonic Cancer Center and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Takayuki Miyazawa
- Laboratory of Signal Transduction, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan
- Laboratory of Virolution, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan
| | - Yoshio Koyanagi
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan
| | - Kei Sato
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan
- CREST, Japan Science and Technology Agency, Saitama 3220012, Japan
| |
Collapse
|
29
|
Identifying druggable targets by protein microenvironments matching: application to transcription factors. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2014; 3:e93. [PMID: 24452614 PMCID: PMC3910014 DOI: 10.1038/psp.2013.66] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/19/2013] [Indexed: 01/17/2023]
Abstract
Druggability of a protein is its potential to be modulated by drug-like molecules. It is important in the target selection phase. We hypothesize that: (i) known drug-binding sites contain advantageous physicochemical properties for drug binding, or “druggable microenvironments” and (ii) given a target, the presence of multiple druggable microenvironments similar to those seen previously is associated with a high likelihood of druggability. We developed DrugFEATURE to quantify druggability by assessing the microenvironments in potential small-molecule binding sites. We benchmarked DrugFEATURE using two data sets. One data set measures druggability using NMR-based screening. DrugFEATURE correlates well with this metric. The second data set is based on historical drug discovery outcomes. Using the DrugFEATURE cutoffs derived from the first, we accurately discriminated druggable and difficult targets in the second. We further identified novel druggable transcription factors with implications for cancer therapy. DrugFEATURE provides useful insight for drug discovery, by evaluating druggability and suggesting specific regions for interacting with drug-like molecules.
Collapse
|
30
|
Scheitz CJF, Tumbar T. New insights into the role of Runx1 in epithelial stem cell biology and pathology. J Cell Biochem 2013; 114:985-93. [PMID: 23150456 PMCID: PMC5788165 DOI: 10.1002/jcb.24453] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 10/30/2012] [Indexed: 12/29/2022]
Abstract
The transcription factor Runx1 has been studied in leukemia and blood for decades, but recently it has been also implicated in epithelial biology and pathology. Particularly in mouse skin Runx1 modulates Wnt signaling levels thereby regulating timely induction of hair follicle specification, proper maturation of the emerging adult hair follicle stem cells in embryogenesis, and timely stem cell (SC) activation during adult homeostasis. Moreover, Runx1 acts as a tumor promoter in mouse skin squamous tumor formation and maintenance, likely by repressing p21 and promoting Stat3 activation. Similarly, Runx1 is essential for oral epithelium tumorigenesis mediated in mice by Ras, and for growth of three kinds of human epithelial cancer cells. In contrast, Runx1 has a tumor suppressor function in the mouse intestine and shows tumor subtype specific behavior in human breast cancer. Multiple studies revealed Runx1 SNPs to be associated with human cancers and autoimmune disease. With this information as background, the field is poised for functional and mechanistic studies to elucidate the role of Runx1 in formation and/or progression of epithelial-based human disease.
Collapse
Affiliation(s)
| | - Tudorita Tumbar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| |
Collapse
|
31
|
Chen MJ, Li Y, De Obaldia ME, Yang Q, Yzaguirre AD, Yamada-Inagawa T, Vink CS, Bhandoola A, Dzierzak E, Speck NA. Erythroid/myeloid progenitors and hematopoietic stem cells originate from distinct populations of endothelial cells. Cell Stem Cell 2012; 9:541-52. [PMID: 22136929 DOI: 10.1016/j.stem.2011.10.003] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 09/20/2011] [Accepted: 10/11/2011] [Indexed: 12/25/2022]
Abstract
Hematopoietic stem cells (HSCs) and an earlier wave of definitive erythroid/myeloid progenitors (EMPs) differentiate from hemogenic endothelial cells in the conceptus. EMPs can be generated in vitro from embryonic or induced pluripotent stem cells, but efforts to produce HSCs have largely failed. The formation of both EMPs and HSCs requires the transcription factor Runx1 and its non-DNA binding partner core binding factor β (CBFβ). Here we show that the requirements for CBFβ in EMP and HSC formation in the conceptus are temporally and spatially distinct. Panendothelial expression of CBFβ in Tek-expressing cells was sufficient for EMP formation, but was not adequate for HSC formation. Expression of CBFβ in Ly6a-expressing cells, on the other hand, was sufficient for HSC, but not EMP, formation. The data indicate that EMPs and HSCs differentiate from distinct populations of hemogenic endothelial cells, with Ly6a expression specifically marking the HSC-generating hemogenic endothelium.
Collapse
Affiliation(s)
- Michael J Chen
- Abramson Family Cancer Research Institute and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mangan JK, Speck NA. RUNX1 mutations in clonal myeloid disorders: from conventional cytogenetics to next generation sequencing, a story 40 years in the making. Crit Rev Oncog 2012; 16:77-91. [PMID: 22150309 DOI: 10.1615/critrevoncog.v16.i1-2.80] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Translocations and mutations in the core binding factor genes, RUNX1 or CBFB, are found in acute myeloid and lymphocytic leukemia, therapy-related myeloid leukemia, myelodysplastic syndrome, chronic myelomonocytic leukemia, and in familial platelet disorder with predisposition to acute myeloid leukemia. Here we review the biochemical and biological properties of the normal Runx1 protein, discuss the nature of RUNX1 mutations in myeloid leukemia, their prognostic significance, and the mutations that cooperate or co-exist with them in these various diseases.
Collapse
Affiliation(s)
- James K Mangan
- Department of Internal Medicine, Division of Hematology-Oncology and the Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
33
|
T-cell differentiation factor CBF-β regulates HIV-1 Vif-mediated evasion of host restriction. Nature 2011; 481:376-9. [DOI: 10.1038/nature10718] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 11/17/2011] [Indexed: 11/09/2022]
|
34
|
Lipchock J, Loria JP. Nanometer propagation of millisecond motions in V-type allostery. Structure 2010; 18:1596-607. [PMID: 21134639 PMCID: PMC3003306 DOI: 10.1016/j.str.2010.09.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/21/2010] [Accepted: 09/22/2010] [Indexed: 11/24/2022]
Abstract
Imidazole glycerol phosphate synthase (IGPS) is a V-type allosteric enzyme, which is catalytically inactive for glutamine hydrolysis until the allosteric effector, N'-[(5'-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) binds 30 Å away. In the apo state, NMR relaxation dispersion experiments indicate the absence of millisecond (ms) timescale motions. Binding of the PRFAR to form the active ternary complex is endothermic with a large positive entropy change. In addition, there is a protein wide enhancement of conformational motions in the ternary complex, which connect the two active sites. NMR chemical shift changes and acrylamide quenching experiments suggest that little in the way of structural changes accompany these motions. The data indicate that enzyme activation in the ternary complex is primarily due to an enhancement of ms motions that allows formation of a population of enzymatically active conformers.
Collapse
Affiliation(s)
- James Lipchock
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - J. Patrick Loria
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
35
|
Abstract
The Runt domain (Runx) is a 128 amino acid sequence motif that defines a metazoan family of sequence-specific DNA binding proteins, which appears to have originated in concert with the intercellular signaling systems that coordinate multicellular development in animals. In the model organisms where they have been studied (fruit fly, mouse, sea urchin, and nematode) Runx genes are essential for normal development, and in humans they are causally associated with a variety of cancers, manifesting both oncogenic and tumor suppressive attributes. During development Runx proteins support both cell proliferation and differentiation, and function in both transcriptional activation and repression. Runx function is thus context-dependent, with the context provided genetically by cis-regulatory sequence architecture and epigenetically by development. This context dependency makes it difficult to formulate reductionistic generalizations concerning Runx function in normal and carcinogenic development. However, a growing body of literature links Runx function to each of the major intercellular signaling systems in animals, suggesting that the general function of Runx transcription factors may be to potentiate and govern genomic responsiveness to developmental signaling.
Collapse
Affiliation(s)
- James A Coffman
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine 04672, USA.
| |
Collapse
|
36
|
Roudaia L, Cheney MD, Manuylova E, Chen W, Morrow M, Park S, Lee CT, Kaur P, Williams O, Bushweller JH, Speck NA. CBFbeta is critical for AML1-ETO and TEL-AML1 activity. Blood 2009; 113:3070-9. [PMID: 19179469 PMCID: PMC2662647 DOI: 10.1182/blood-2008-03-147207] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 01/11/2009] [Indexed: 01/29/2023] Open
Abstract
AML1-ETO and TEL-AML1 are chimeric proteins resulting from the t(8;21)(q22;q22) in acute myeloid leukemia, and the t(12;21)(p13;q22) in pre-B-cell leukemia, respectively. The Runt domain of AML1 in both proteins mediates DNA binding and heterodimerization with the core binding factor beta (CBFbeta) subunit. To determine whether CBFbeta is required for AML1-ETO and TEL-AML1 activity, we introduced amino acid substitutions into the Runt domain that disrupt heterodimerization with CBFbeta but not DNA binding. We show that CBFbeta contributes to AML1-ETO's inhibition of granulocyte differentiation, is essential for its ability to enhance the clonogenic potential of primary mouse bone marrow cells, and is indispensable for its cooperativity with the activated receptor tyrosine kinase TEL-PDGFbetaR in generating acute myeloid leukemia in mice. Similarly, CBFbeta is essential for TEL-AML1's ability to promote self-renewal of B cell precursors in vitro. These studies validate the Runt domain/CBFbeta interaction as a therapeutic target in core binding factor leukemias.
Collapse
Affiliation(s)
- Liya Roudaia
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lin QS, Weis S, Yang G, Zhuang T, Abate A, Dennery PA. Catalytic inactive heme oxygenase-1 protein regulates its own expression in oxidative stress. Free Radic Biol Med 2008; 44:847-55. [PMID: 18154739 PMCID: PMC6503848 DOI: 10.1016/j.freeradbiomed.2007.11.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 10/30/2007] [Accepted: 11/12/2007] [Indexed: 11/17/2022]
Abstract
Heme oxygenase-1 (HO-1) catalyzes the degradation of heme and forms antioxidant bile pigments as well as the signaling molecule carbon monoxide. HO-1 is inducible in response to a variety of chemical and physical stress conditions to function as a cytoprotective molecule. Therefore, it is important to maintain the basal level of HO-1 expression even when substrate availability is limited. We hypothesized that the HO-1 protein itself could regulate its own expression in a positive feedback manner, and that this positive feedback was important in the HO-1 gene induction in response to oxidative stress. In cultured NIH 3T3 cells, transfection of HO-1 cDNA or intracellular delivery of pure HO-1 protein resulted in activation of a 15-kb HO-1 promoter upstream of luciferase as visualized by bioluminescent technology and increased HO-1 mRNA and protein levels. These effects were independent of HO activity because an enzymatically inactive mutant form of HO-1 similarly activated the HO-1 promoter and incubation with HO inhibitor metalloporphyrin SnPP did not affect the promoter activation. In addition, HO-1-specific siRNA significantly reduced hemin and cadmium chloride-mediated HO-1 induction. Furthermore, deletion analyses demonstrated that the E1 and E2 distal enhancers of the HO-1 promoter are required for this HO-1 autoregulation. These experiments document feed-forward autoregulation of HO-1 in oxidative stress and suggest that HO-1 protein has a role in the induction process. We speculate that this mechanism may be useful for maintaining HO-1 expression when substrate is limited and may also serve to up-regulate other genes to promote cytoprotection and to modulate cell proliferation.
Collapse
Affiliation(s)
- Qing S. Lin
- Children’s Hospital of Philadelphia, PA, USA
| | - Sebastian Weis
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Guang Yang
- Children’s Hospital of Philadelphia, PA, USA
| | | | - Aida Abate
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Phyllis A. Dennery
- Children’s Hospital of Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
38
|
Kagoshima H, Nimmo R, Saad N, Tanaka J, Miwa Y, Mitani S, Kohara Y, Woollard A. The C. elegans CBFbeta homologue BRO-1 interacts with the Runx factor, RNT-1, to promote stem cell proliferation and self-renewal. Development 2007; 134:3905-15. [PMID: 17933794 DOI: 10.1242/dev.008276] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2025]
Abstract
In this report, we investigate the C. elegans CBFbeta homologue, BRO-1. bro-1 mutants have a similar male-specific sensory ray loss phenotype to rnt-1 (the C. elegans homologue of the mammalian CBFbeta-interacting Runx factors), caused by failed cell divisions in the seam lineages. Our studies indicate that BRO-1 and RNT-1 form a cell proliferation-promoting complex, and that BRO-1 increases both the affinity and specificity of RNT-1-DNA interactions. Overexpression of bro-1, like rnt-1, leads to an expansion of seam cell number and co-overexpression of bro-1 and rnt-1 results in massive seam cell hyperplasia. Finally, we find that BRO-1 appears to act independently of RNT-1 in certain situations. These studies provide new insights into the function and regulation of this important cancer-associated DNA-binding complex in stem cells and support the view that Runx/CBFbeta factors have oncogenic potential.
Collapse
Affiliation(s)
- Hiroshi Kagoshima
- Genome Biology Laboratory, National Institute of Genetics, Mishima 411-8560, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Allosteric Inhibition of the Protein-Protein Interaction between the Leukemia-Associated Proteins Runx1 and CBFβ. ACTA ACUST UNITED AC 2007; 14:1186-97. [DOI: 10.1016/j.chembiol.2007.09.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 09/07/2007] [Accepted: 09/10/2007] [Indexed: 11/20/2022]
|
40
|
Xia D, Zhang Y, Huang X, Sun Y, Zhang H. The C. elegans CBFbeta homolog, BRO-1, regulates the proliferation, differentiation and specification of the stem cell-like seam cell lineages. Dev Biol 2007; 309:259-72. [PMID: 17706957 DOI: 10.1016/j.ydbio.2007.07.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 07/11/2007] [Accepted: 07/14/2007] [Indexed: 11/22/2022]
Abstract
The RUNX/CBFbeta heterodimeric transcription factor plays an important role in regulating cell proliferation and differentiation in a variety of developmental contexts. Aberrant function of Runx and CBFbeta has been causally related to the development of various diseases, including acute myeloid leukemia, gastric cancer and cleidocranial dysplasia. The underlying mechanism of the RUNX/CBFbeta complex in regulation of cell proliferation is still poorly defined. In this study, we demonstrate that the Caenorhabditis elegans CBFbeta homolog, bro-1, is essential for the proliferation, differentiation and specification of a row of stem cell-like lineages, called seam cells. BRO-1 forms complex with the C. elegans RUNX homolog, RNT-1, and augments the DNA-binding activity of RNT-1. The RNT-1/BRO-1 complex directly interacts with the C. elegans Groucho homolog, UNC-37, whose loss of function mutations display similar defects in the proliferation of seam cells as those of bro-1 and rnt-1 mutants. Additionally, the defects in seam cell division in bro-1 mutants are substantially rescued by the inactivation of the negative regulators of the G1 to S phase cell cycle progression, including the lin-35 Rb, fzr-1 Cdh1 and cki-1 CIP homologs. Our studies indicate that the transcriptional repression activity of the RNT-1/BRO-1 complex regulates the G1 to S cell cycle progression during seam cell division.
Collapse
Affiliation(s)
- Dan Xia
- Graduate Program in Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | | | | | | | | |
Collapse
|
41
|
Lin Q, Weis S, Yang G, Weng YH, Helston R, Rish K, Smith A, Bordner J, Polte T, Gaunitz F, Dennery PA. Heme oxygenase-1 protein localizes to the nucleus and activates transcription factors important in oxidative stress. J Biol Chem 2007; 282:20621-33. [PMID: 17430897 DOI: 10.1074/jbc.m607954200] [Citation(s) in RCA: 343] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme degradation, is an integral membrane protein of the smooth endoplasmic reticulum. However, we detected an HO-1 immunoreactive signal in the nucleus of cultured cells after exposure to hypoxia and heme or heme/hemopexin. Under these conditions, a faster migrating HO-1 immunoreactive band was enriched in nuclear extracts, suggesting that HO-1 was cleaved to allow nuclear entry. This was confirmed by the absence of immunoreactive signal with an antibody against the C terminus and the lack of a C-terminal sequence by gas chromatographymass spectrometry. Incubation with leptomycin B prior to hypoxia abolished nuclear HO-1 and the faster migrating band on Western analysis, suggesting that this process was facilitated by CRM1. Furthermore, preincubation with a cysteine protease inhibitor prevented nuclear entry of green fluorescent protein-labeled HO-1, demonstrating that protease-mediated C-terminal cleavage was also necessary for nuclear transport of HO-1. Nuclear localization was also associated with reduction of HO activity. HO-1 protein, whether it was enzymatically active or not, mediated activation of oxidant-responsive transcription factors, including activator protein-1. Nevertheless, nuclear HO-1 protected cells against hydrogen peroxide-mediated injury equally as well as cytoplasmic HO-1. We speculate that nuclear localization of HO-1 protein may serve to up-regulate genes that promote cytoprotection against oxidative stress.
Collapse
Affiliation(s)
- Qing Lin
- Children's Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chen Y, Campbell SL, Dokholyan NV. Deciphering protein dynamics from NMR data using explicit structure sampling and selection. Biophys J 2007; 93:2300-6. [PMID: 17557784 PMCID: PMC1965439 DOI: 10.1529/biophysj.107.104174] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Perhaps one of the most prominent realizations of recent years is the critical role that protein dynamics plays in many facets of cellular function. While characterization of protein dynamics is fundamental to our understanding of protein function, the ability to explicitly detect an ensemble of protein conformations from dynamics data is a paramount challenge in structural biology. Here, we report a new computational method, Sample and Select, for determining the ensemble of protein conformations consistent with NMR dynamics data. This method can be generalized and extended to different sources of dynamics data, enabling broad applicability in deciphering protein dynamics at different timescales. The structural ensemble derived from Sample and Select will provide structural and dynamic information that should aid us in understanding and manipulating protein function.
Collapse
Affiliation(s)
- Yiwen Chen
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | |
Collapse
|
43
|
Namanja AT, Peng T, Zintsmaster JS, Elson AC, Shakour MG, Peng JW. Substrate recognition reduces side-chain flexibility for conserved hydrophobic residues in human Pin1. Structure 2007; 15:313-27. [PMID: 17355867 DOI: 10.1016/j.str.2007.01.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 01/22/2007] [Accepted: 01/24/2007] [Indexed: 11/26/2022]
Abstract
Pin1 is a peptidyl-prolyl isomerase consisting of a WW domain and a catalytic isomerase (PPIase) domain connected by a flexible linker. Pin1 recognizes phospho-Ser/Thr-Pro motifs in cell-signaling proteins, and is both a cancer and an Alzheimer's disease target. Here, we provide novel insight into the functional motions underlying Pin1 substrate interaction using nuclear magnetic resonance deuterium ((2)D) and carbon ((13)C) spin relaxation. Specifically, we compare Pin1 side-chain motions in the presence and absence of a known phosphopeptide substrate derived from the mitotic phosphatase Cdc25. Substrate interaction alters Pin1 side-chain motions on both the microsecond-millisecond (mus-ms) and picosecond-nanosecond (ps-ns) timescales. Alterations include loss of ps-ns flexibility along an internal conduit of hydrophobic residues connecting the catalytic site with the interdomain interface. These residues are conserved among Pin1 homologs; hence, their dynamics are likely important for the Pin1 mechanism.
Collapse
Affiliation(s)
- Andrew T Namanja
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | | | | | | | | | | |
Collapse
|
44
|
Suad O, Eyal E, Blumenzweig I, Kessler N, Levanon D, Groner Y, Shakked Z. RUN-CBFβ Interaction inC. elegans: Computational Prediction and Experimental Verification. J Biomol Struct Dyn 2007; 24:343-58. [PMID: 17206850 DOI: 10.1080/07391102.2007.10507124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The Runt domain proteins are eukaryotic transcription factors that regulate major developmental pathways. All members of this family contain a highly-conserved sequence-specific DNA binding domain: the Runt domain (RD). Structural and biochemical studies have shown that the Runt domain undergoes a conformational transition upon binding to DNA and that this process is regulated by an unrelated partner protein CBFbeta that enhances the DNA binding affinity of RD. Most of the reported studies on the Runt domain transcription factors were performed on proteins from mammals and Drosophila whereas very little has been known about the C. elegans RD protein, RUN, which provides the simplest model system for understanding the function of this class of transcription factors. We performed computational studies on RD domains from various species including C. elegans, Drosophila, and human, using the atom-atom contact surface area scoring method. The scoring analysis indicates that the DNA binding regulation of the C. elegans RD protein (CeRD) occurs via its interaction with a CBFbeta-like partner, as found for the human proteins, whereas a different mode of regulation may occur in the Drosophila system. Sequence, secondary structure and fold analyses of a putative CBFbeta protein identified in the C. elegans genome, CeCBFbeta, sharing a 22% identity with the human protein, predict a similar structure of this protein to that of the human CBFbeta protein. We produced the C. elegans proteins CeRD and CeCBFbeta in bacteria and confirmed their physical interaction as well as cross interactions with the corresponding human proteins. We also confirmed the structural similarity of CBFbeta and CeCBFbeta by circular dichroism analysis. The combined results suggest that a similar mechanism of regulation operates for the human and the C. elegans RD proteins despite the low sequence identity between their CBFbeta proteins and the evolutionary distance between the two systems.
Collapse
Affiliation(s)
- Oded Suad
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
45
|
Cammenga J, Niebuhr B, Horn S, Bergholz U, Putz G, Buchholz F, Löhler J, Stocking C. RUNX1 DNA-Binding Mutants, Associated with Minimally Differentiated Acute Myelogenous Leukemia, Disrupt Myeloid Differentiation. Cancer Res 2007; 67:537-45. [PMID: 17234761 DOI: 10.1158/0008-5472.can-06-1903] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutations in the RUNX1 gene are found at high frequencies in minimally differentiated acute myelogenous leukemia. In addition to null mutations, many of the mutations generate Runx1 DNA-binding (RDB) mutants. To determine if these mutants antagonize wild-type protein activity, cDNAs were transduced into murine bone marrow or human cord blood cells using retroviral vectors. Significantly, the RDB mutants did not act in a transdominant fashion in vivo to disrupt Runx1 activity in either T-cell or platelet development, which are highly sensitive to Runx1 dosage. However, RDB mutant expression impaired expansion and differentiation of the erythroid compartment in which Runx1 expression is normally down-regulated, showing that a RDB-independent function is incompatible with erythroid differentiation. Significantly, both bone marrow progenitors expressing RDB mutants or deficient for Runx1 showed increased replating efficiencies in vitro, accompanied by the accumulation of myeloblasts and dysplastic progenitors, but the effect was more pronounced in RDB cultures. Disruption of the interface that binds CBFbeta, an important cofactor of Runx1, did not impair RDB mutant replating activity, arguing against inactivation of Runx1 function by CBFbeta sequestration. We propose that RDB mutants antagonize Runx1 function in early progenitors by disrupting a critical balance between DNA-binding-independent and DNA-binding-dependent signaling.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Core Binding Factor Alpha 2 Subunit/antagonists & inhibitors
- Core Binding Factor Alpha 2 Subunit/biosynthesis
- Core Binding Factor Alpha 2 Subunit/deficiency
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor beta Subunit/metabolism
- DNA, Complementary/genetics
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/genetics
- Erythropoiesis/genetics
- Genetic Vectors/genetics
- Hematopoiesis/genetics
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/physiology
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Inbred C57BL
- Mutagenesis, Site-Directed
- Retroviridae/genetics
- Transduction, Genetic
Collapse
|
46
|
Vanderzwan-Butler CJ, Prazak LM, Gergen JP. The HMG-box protein Lilliputian is required for Runt-dependent activation of the pair-rule gene fushi-tarazu. Dev Biol 2006; 301:350-60. [PMID: 17137570 DOI: 10.1016/j.ydbio.2006.10.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 09/06/2006] [Accepted: 10/19/2006] [Indexed: 10/24/2022]
Abstract
lilliputian (lilli), the sole Drosophila member of the FMR2/AF4 (Fragile X Mental Retardation/Acute Lymphoblastic Leukemia) family of transcription factors, is widely expressed with roles in segmentation, cellularization, and gastrulation during early embryogenesis with additional distinct roles at later stages of embryonic and postembryonic development. We identified lilli in a genetic screen based on the suppression of a lethal phenotype that is associated with ectopic expression of the transcription factor encoded by the segmentation gene runt in the blastoderm embryo. In contrast to other factors identified by this screen, lilli appears to have no role in mediating either the establishment or maintenance of engrailed (en) repression by Runt. Instead, we find that Lilli plays a critical role in the Runt-dependent activation of the pair-rule segmentation gene fushi-tarazu (ftz). The requirement for lilli is distinct from and temporally precedes the Runt-dependent activation of ftz that is mediated by the orphan nuclear receptor protein Ftz-F1. We further describe a role for lilli in the activation of Sex-lethal (Sxl), an early target of Runt in the sex determination pathway. However, lilli is not required for all targets that are activated by Runt and appears to have no role in activation of sloppy paired (slp1). Based on these results we suggest that Lilli plays an architectural role in facilitating transcriptional activation that depends both on the target gene and the developmental context.
Collapse
Affiliation(s)
- Christine J Vanderzwan-Butler
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5140, USA; Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794-5140, USA
| | | | | |
Collapse
|
47
|
Li Z, Lukasik SM, Liu Y, Grembecka J, Bielnicka I, Bushweller JH, Speck NA. A mutation in the S-switch region of the Runt domain alters the dynamics of an allosteric network responsible for CBFbeta regulation. J Mol Biol 2006; 364:1073-83. [PMID: 17059830 PMCID: PMC1783549 DOI: 10.1016/j.jmb.2006.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 08/26/2006] [Accepted: 10/02/2006] [Indexed: 02/03/2023]
Abstract
The Runt domain is the DNA binding domain of the core binding factor (CBF) Runx subunits. The CBFs are transcription factors that play critical roles in hematopoiesis, bone, and neuron development in mammals. A common non-DNA binding CBFbeta subunit heterodimerizes with the Runt domain of the Runx proteins and allosterically regulates its affinity for DNA. Previous NMR dynamics studies suggested a model whereby CBFbeta allosterically regulates DNA binding by quenching conformational exchange in the Runt domain, particularly in the S-switch region and the betaE'-F loop. We sought to test this model, and to this end introduced all possible single amino acid substitutions into the S-switch region and the betaE'-F loop, and screened for mutations that enhanced DNA-binding. We demonstrate that one Runt domain mutant, R164N, binds both DNA and CBFbeta with higher affinity, but it is less sensitive to allosteric regulation by CBFbeta. Analysis of NMR relaxation data shows that the chemical exchange exhibited by the wild-type Runt domain is largely quenched by the R164N substitution. These data support a model in which the dynamic behavior of a network of residues connecting the CBFbeta and DNA binding sites on the Runt domain plays a critical role in the mechanism of allosteric regulation. This study provides an important functional link between dynamic behavior and protein allosteric function, consistent with results on other allosterically regulated proteins.
Collapse
Affiliation(s)
- Zhe Li
- Department of Biochemistry, Dartmouth Medical School, Hanover,
New Hampshire 03755
| | - Steven M. Lukasik
- Department of Molecular Physiology and Biological Physics,
University of Virginia, Charlottesville, Virginia 22906-0011
| | - Yizhou Liu
- Department of Molecular Physiology and Biological Physics,
University of Virginia, Charlottesville, Virginia 22906-0011
| | - Jolanta Grembecka
- Department of Molecular Physiology and Biological Physics,
University of Virginia, Charlottesville, Virginia 22906-0011
| | - Izabela Bielnicka
- Department of Molecular Physiology and Biological Physics,
University of Virginia, Charlottesville, Virginia 22906-0011
| | - John H. Bushweller
- Department of Molecular Physiology and Biological Physics,
University of Virginia, Charlottesville, Virginia 22906-0011
- Corresponding authors: Nancy A. Speck, Phone:
603-650-1159, Fax: 603-650-1128, , John
H. Bushweller, Phone: 434-243-6409, Fax: 434-982-1616,
| | - Nancy A. Speck
- Department of Biochemistry, Dartmouth Medical School, Hanover,
New Hampshire 03755
- Corresponding authors: Nancy A. Speck, Phone:
603-650-1159, Fax: 603-650-1128, , John
H. Bushweller, Phone: 434-243-6409, Fax: 434-982-1616,
| |
Collapse
|
48
|
Günther S, Rother K, Frömmel C. Molecular flexibility in protein–DNA interactions. Biosystems 2006; 85:126-36. [PMID: 16488073 DOI: 10.1016/j.biosystems.2005.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2005] [Revised: 09/07/2005] [Accepted: 12/13/2005] [Indexed: 10/25/2022]
Abstract
In living cells protein-DNA interactions are fundamental processes. Here, we compare the 3D structures of several DNA-binding proteins frequently determined with and without attached DNA. We studied the global structure (backbone-traces) as well as the local structure (binding sites) by comparing pair-wise the related atoms. The DNA-interaction sites of uncomplexed proteins show conspicuously high local structural flexibility. Binding to DNA results in specific local conformations, which are clearly distinct from the unbound states. The adaptation of the protein's binding site to DNA can never be described by the lock and key model but in all cases by the induced fit model. Conformational changes in the seven protein backbone traces take place in different ways. Two of them dock onto DNA without a significant change, while the other five proteins are characterized by a backbone conformation change caused by DNA docking. In the case of three proteins of the latter group the DNA-complexed conformation also occurs in a few uncomplexed structures. This behavior can be described by a conformational ensemble, which is narrowed down by DNA docking until only one single DNA-complexed conformation occurs. Different docking models are discussed and each of the seven proteins is assigned to one of them.
Collapse
Affiliation(s)
- Stefan Günther
- Institute of Biochemistry Charité, Monbijoustrasse 2, 10117 Berlin, Germany.
| | | | | |
Collapse
|
49
|
Hawkins RJ, McLeish TCB. Coupling of global and local vibrational modes in dynamic allostery of proteins. Biophys J 2006; 91:2055-62. [PMID: 16798805 PMCID: PMC1557547 DOI: 10.1529/biophysj.106.082180] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is now recognized that internal global protein dynamics play an important role in the allosteric function of many proteins. Alterations of protein flexibility on effector binding affect the entropic cost of binding at a distant site. We present a coarse-grained model for a potential amplification of such entropic allostery due to coupling of fast, localized modes to the slow, global modes. We show how such coupling can give rise to large compensating entropic and enthalpic terms. The model corresponds to the pattern of calorimetry and NMR data from experiments on the Met repressor.
Collapse
Affiliation(s)
- Rhoda J Hawkins
- Interdisciplinary Research Centre in Polymer Science and Technology, School of Physics and Astronomy and Astbury Centre for Structural Biology, University of Leeds, Leeds, United Kingdom
| | | |
Collapse
|
50
|
Abstract
Runx1/AML1 (also known as CBFA2 and PEBP23B) is a Runt family transcription factor critical for normal hematopoiesis. Runx1 forms a heterodimer with CBF3 and binds to the consensus PEBP2 sequence through the Runt domain. Runx1 enhances gene transcription by interacting with transcriptional coactivators such as p300 and CREB-binding protein. However, Runx1 can also suppress gene transcription by interacting with transcriptional corepressors, including mSin3A, TLE (mammalian homolog of Groucho), and histone deacetylases. Runx1 not only is critical for definitive hematopoiesis in the fetus but also is required for normal megakaryocytic maturation and T-lymphocyte and B-lymphocyte development in adult mice. Runx1 has been identified in leukemia-associated chromosomal translocations, including t(8;21) (Runx1-ETO/MTG8), t(16;21) (Runx1-MTG16), t(3;21) (Runx1-Evi1), t(12;21) (TEL-Runx1), and t(X;21) (Runx1-Fog2). The molecular mechanism of leukemogenesis by these fusion proteins is discussed. Various mutant mice expressing these fusion proteins have been created. However, expression of the fusion protein is not sufficient by itself to cause leukemia and likely requires additional events for leukemogenesis. Point mutations in a Runx1 allele cause haploinsufficiency and a biallelic null for Runx1, which are associated with familial platelet disorder with a propensity for acute myeloid leukemia (FPD/AML) and AML-M0, respectively. Thus, the correct protein structure and the precise dosage of Runx1 are essential for the maintenance of normal hematopoiesis.
Collapse
Affiliation(s)
- Tetsuya Yamagata
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|