1
|
Yilmaz-Aydogan H, Kanca-Demirci D, Gul N, Aydogan C, Poyrazoglu S, Tutuncu Y, Malikova F, Ozturk O, Satman I. Target gene variations of PPAR isoforms may contribute to MODY heterogeneity: A preliminary comparative study with type 2 diabetes. Diabetes Res Clin Pract 2024; 218:111932. [PMID: 39551189 DOI: 10.1016/j.diabres.2024.111932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
AIMS The objective of this study was to evaluate the associations of several genetic variants of peroxisome proliferator-activated receptors (PPARs) on clinical and laboratory parameters in patients with maturity-onset diabetes of the young (MODY), and possible contribution to heterogeneity of the disease. METHODS The study groups comprised patients with MODY (genetically confirmed (n = 28), clinically relevant but genetically unconfirmed; MODYX (n = 56)), type 2 diabetes mellitus (T2DM; n = 94) and healthy controls (n = 153). PPARA-L162V-(rs1800206), PPARG-C161T-(rs3856806), P12A-(rs1801282), and PPARB/D + 294 T/C-(rs2016520) polymorphisms were genotyped by real-time-PCR. RESULTS The results demonstrated that the frequencies of PPARA-LL162 (p = 0.002), PPARG-CC161 (p = 0.002), and PPARG-ProPro (p = 0.012) genotypes were significantly higher in the MODY group compared to the controls. Furthermore, total-MODY and MODYX groups had a higher frequency of PPARA-LL162 genotype than T2DM (p = 0.005 and p = 0.006, respectively). The frequency of the PPARB/D + 294 T allele was significantly higher in individuals with T2DM than in genetically-determined MODY group (p = 0.019). The PPARA-LL162 genotype was associated with early-onset diabetes in total-MODY (p = 0.022) and T2DM (p < 0.05) groups. CONCLUSIONS The association of PPARA-L162V polymorphism with early-onset diabetes in both T2DM and MODY is a noteworthy finding. Considering these results, we suggested that genetic polymorphisms in PPAR isoforms may contribute to the clinical and metabolic heterogeneity of MODY.
Collapse
Affiliation(s)
- Hulya Yilmaz-Aydogan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye.
| | - Deniz Kanca-Demirci
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye; Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Halic University, Istanbul, Türkiye.
| | - Nurdan Gul
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye.
| | - Cagatay Aydogan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye.
| | - Sukran Poyrazoglu
- Pediatric Endocrinology Unit, Department of Pediatrics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye.
| | - Yıldız Tutuncu
- Department of KUTTAM Immunology, Faculty of Medicine, Koc University, Istanbul, Türkiye.
| | - Fidan Malikova
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye.
| | - Oguz Ozturk
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye.
| | - Ilhan Satman
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye.
| |
Collapse
|
2
|
Mukha A, Kalkhoven E, van Mil SWC. Splice variants of metabolic nuclear receptors: Relevance for metabolic disease and therapeutic targeting. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166183. [PMID: 34058349 DOI: 10.1016/j.bbadis.2021.166183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Metabolic nuclear receptors are ligand-activated transcription factors which control a wide range of metabolic processes and signaling pathways in response to nutrients and xenobiotics. Targeting these NRs is at the forefront of our endeavours to generate novel treatment options for diabetes, metabolic syndrome and fatty liver disease. Numerous splice variants have been described for these metabolic receptors. Structural changes, as a result of alternative splicing, lead to functional differences among NR isoforms, resulting in the regulation of different metabolic pathways by these NR splice variants. In this review, we describe known splice variants of FXR, LXRs, PXR, RXR, LRH-1, CAR and PPARs. We discuss their structure and functions, and elaborate on the regulation of splice variant abundance by nutritional signals. We conclude that NR splice variants pose an intriguing new layer of complexity in metabolic signaling, which needs to be taken into account in the development of treatment strategies for metabolic diseases.
Collapse
Affiliation(s)
- Anna Mukha
- Center for Molecular Medicine, UMC Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Eric Kalkhoven
- Center for Molecular Medicine, UMC Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Saskia W C van Mil
- Center for Molecular Medicine, UMC Utrecht and Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
3
|
Masulli M, Della Pepa G, Cocozza S, Capasso M, Pignataro P, Vitale M, Gastaldelli A, Russo M, Dolce P, Riccardi G, Rivellese AA, Vaccaro O. The Pro12Ala polymorphism of PPARγ2 modulates beta cell function and failure to oral glucose-lowering drugs in patients with type 2 diabetes. Diabetes Metab Res Rev 2021; 37:e3392. [PMID: 32783395 DOI: 10.1002/dmrr.3392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/18/2020] [Accepted: 08/06/2020] [Indexed: 11/12/2022]
Abstract
BACKGROUND We evaluate whether the Pro12Ala polymorphism of peroxisome proliferator-activated receptor γ2 (PPARγ2) has a role in the progression of diabetes by modulating the occurrence of treatment failure to glucose-lowering drugs. METHODS We studied 215 patients with type 2 diabetes participating in the Thiazolidinediones Or Sulphonylureas and Cardiovascular Accidents Intervention Trial study. All participants were insufficiently controlled (glycated haemoglobin [HbA1c ] 7.0%-9.0%) with metformin 2 g/day and were randomly allocated to add-on pioglitazone or a sulfonylurea. Treatment failure was defined as HbA1c ≥8% on two consecutive visits, 3 months apart. RESULTS Carriers or non-carriers of the polymorphism had similar age, body mass index, and diabetes duration. Ala carriers had lower fasting plasma insulin, better insulin sensitivity (Homeostasis Model Assessment [HOMA]2-%S), and worse beta cell secretion (HOMA2-%B) than non-carriers. During 24 months of follow-up, 32.5% among the Ala carriers and 8.6% among non-carriers (P < 0.001) developed treatment failure with a cumulative incidence of 18.6 vs 4.6/100 person-years. Those patients who developed treatment failure were older, had a younger age at diabetes diagnosis (48 ± 10 vs 52 ± 7 years; P = 0.032), higher HbA1c (8.1 ± 0.5 vs 7.7 ± 0.5%; P < 0.001), and lower HOMA2-%B (30 ± 12 vs 46 ± 29; P = 0.015) at study entry, as compared to those who did not develop treatment failure. At multivariate analysis, the Pro12Ala polymorphism was significantly associated with treatment failure (hazard ratio [HR] 4.45; 95% confidence interval [CI] 1.79-11.1; P < 0.001); HbA1c at study entry was the other independent predictor of failure in this study population. CONCLUSION The Pro12Ala polymorphism is associated with a greater insulin sensitivity, reduced beta cell function and a substantially increased risk of treatment failure.
Collapse
Affiliation(s)
- Maria Masulli
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Giuseppe Della Pepa
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Sara Cocozza
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Mario Capasso
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Piero Pignataro
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Marilena Vitale
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | | | - Marco Russo
- Institute of Clinical Physiology National Research Council, Pisa, Italy
| | - Pasquale Dolce
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Gabriele Riccardi
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Angela A Rivellese
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Olga Vaccaro
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
Sarhangi N, Sharifi F, Hashemian L, Hassani Doabsari M, Heshmatzad K, Rahbaran M, Jamaldini SH, Aghaei Meybodi HR, Hasanzad M. PPARG (Pro12Ala) genetic variant and risk of T2DM: a systematic review and meta-analysis. Sci Rep 2020; 10:12764. [PMID: 32728045 PMCID: PMC7391673 DOI: 10.1038/s41598-020-69363-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex disease caused by the interaction between genetic and environmental factors. A growing number of evidence suggests that the peroxisome proliferator-activated receptor gamma (PPARG) gene plays a major role in T2DM development. Meta-analysis of genetic association studies is an efficient tool to gain a better understanding of multifactorial diseases and potentially to provide valuable insights into gene-disease interactions. The present study was focused on assessing the association between Pro12Ala variation in the PPARG and T2DM risk through a comprehensive meta-analysis. We searched PubMed, WoS, Embase, Scopus and ProQuest from 1990 to 2017. The fixed-effect or random-effect model was used to evaluate the pooled odds ratios (ORs) and 95% confidence intervals (CIs) depending on the heterogeneity among studies. The sources of heterogeneity and publication bias among the included studies were assessed using I2 statistics and Egger's tests. A total of 73 studies, involving 62,250 cases and 69,613 controls were included. The results showed that the minor allele (G) of the rs1801282 variant was associated with the decreased risk of T2DM under different genetic models. Moreover, the protective effect of minor allele was detected to be significantly more in some ethnicities including the European (18%), East Asian (20%), and South East Asian (18%). And the reduction of T2DM risk in Ala12 carriers was stronger in individuals from North Europe rather than Central and South Europe. Our findings indicated that the rs1801282 variant may contribute to decrease of T2DM susceptibility in different ancestries.
Collapse
Affiliation(s)
- Negar Sarhangi
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 1411413137, Tehran, Iran
| | - Farshad Sharifi
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, 1411413137, Tehran, Iran
| | - Leila Hashemian
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, 1916893813, Tehran, Iran
| | - Maryam Hassani Doabsari
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, 1916893813, Tehran, Iran
| | - Katayoun Heshmatzad
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, 1916893813, Tehran, Iran
| | - Marzieh Rahbaran
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, 1916893813, Tehran, Iran
| | - Seyed Hamid Jamaldini
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, 1916893813, Tehran, Iran
| | - Hamid Reza Aghaei Meybodi
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 1411413137, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 1411413137, Tehran, Iran
| | - Mandana Hasanzad
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 1411413137, Tehran, Iran. .,Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, 1916893813, Tehran, Iran.
| |
Collapse
|
5
|
Blond MB, Schnurr TM, Rosenkilde M, Quist JS, Gram AS, Reichkendler MH, Auerbach PL, Nordby P, Skovgaard LT, Ribel-Madsen R, Justesen JM, Kilpeläinen TO, Ploug T, Stallknecht BM, Hansen T. PPARG Pro12Ala Ala carriers exhibit greater improvements in peripheral insulin sensitivity in response to 12 weeks of aerobic exercise training. Physiol Genomics 2019; 51:254-260. [DOI: 10.1152/physiolgenomics.00101.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Ala allele of PPARG Pro12Ala ( rs1801282 ) is associated with greater improvements to the glucose metabolism in exercise studies, but whether this extends to peripheral insulin sensitivity is unknown. Our objective was to investigate the effect of PPARG Pro12Ala on exercise-induced changes in peripheral insulin sensitivity. A total of 124 (91 Pro homozygotes and 33 Ala carriers) previously physically inactive healthy young men and women with overweight or class 1 obesity who completed a 12 wk aerobic exercise intervention were included in the analysis. All participants underwent a hyperinsulinemic euglycemic clamp before and after the 12 wk intervention. The prescribed exercise frequency was 5–7 days/wk, and the exercise energy expenditure was 2,100 4,200 kcal/wk for men and 1,600 kcal/wk for women. Insulin sensitivity improved significantly in both genotype groups. However, Ala carriers had a 1.13-fold (95% confidence interval 1.01; 1.26, P = 0.032) greater improvement in insulin sensitivity from baseline compared with Pro homozygotes. Our data support that PPARG Pro12Ala modifies the effect of aerobic exercise on peripheral insulin sensitivity.
Collapse
Affiliation(s)
- Martin Bæk Blond
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Theresia Maria Schnurr
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Salling Quist
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Sofie Gram
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michala Holm Reichkendler
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Pernille Landrock Auerbach
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pernille Nordby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lene Theil Skovgaard
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Ribel-Madsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johanne Marie Justesen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tuomas Oskari Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thorkil Ploug
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Merete Stallknecht
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Mannino GC, Andreozzi F, Sesti G. Pharmacogenetics of type 2 diabetes mellitus, the route toward tailored medicine. Diabetes Metab Res Rev 2019; 35:e3109. [PMID: 30515958 PMCID: PMC6590177 DOI: 10.1002/dmrr.3109] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic disease that has reached the levels of a global epidemic. In order to achieve optimal glucose control, it is often necessary to rely on combination therapy of multiple drugs or insulin because uncontrolled glucose levels result in T2DM progression and enhanced risk of complications and mortality. Several antihyperglycemic agents have been developed over time, and T2DM pharmacotherapy should be prescribed based on suitability for the individual patient's characteristics. Pharmacogenetics is the branch of genetics that investigates how our genome influences individual responses to drugs, therapeutic outcomes, and incidence of adverse effects. In this review, we evaluated the pharmacogenetic evidences currently available in the literature, and we identified the top informative genetic variants associated with response to the most common anti-diabetic drugs: metformin, DPP-4 inhibitors/GLP1R agonists, thiazolidinediones, and sulfonylureas/meglitinides. Overall, we found 40 polymorphisms for each drug class in a total of 71 loci, and we examined the possibility of encouraging genetic screening of these variants/loci in order to critically implement decision-making about the therapeutic approach through precision medicine strategies. It is possible then to anticipate that when the clinical practice will take advantage of the genetic information of the diabetic patients, this will provide a useful resource for the prevention of T2DM progression, enabling the identification of the precise drug that is most likely to be effective and safe for each patient and the reduction of the economic impact on a global scale.
Collapse
Affiliation(s)
- Gaia Chiara Mannino
- Department of Medical and Surgical SciencesUniversity Magna Graecia of CatanzaroCatanzaroItaly
| | - Francesco Andreozzi
- Department of Medical and Surgical SciencesUniversity Magna Graecia of CatanzaroCatanzaroItaly
| | - Giorgio Sesti
- Department of Medical and Surgical SciencesUniversity Magna Graecia of CatanzaroCatanzaroItaly
| |
Collapse
|
7
|
Wan R, Ding Z, Xia S, Zheng L, Lu J. Effects Of PPARγ2 Pro12Ala Variant On Adipocyte Phenotype Dependent Of DHA. Diabetes Metab Syndr Obes 2019; 12:2273-2279. [PMID: 31802926 PMCID: PMC6830383 DOI: 10.2147/dmso.s214526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 10/03/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Peroxisome proliferator-activated receptor γ2 (PPARγ2) plays a critical role in the regulation of adipocyte differentiation and adipocytokine production. The Pro12Ala variant is the most common mutation in the PPARγ2 gene. Its effect appears to be sensitive to dietary factors, such as docosahexaenoic acid (DHA) level. The purpose of this study was to investigate the interaction effect between PPARγ2 Pro12Ala variant and DHA on the phenotypes of adipocytes. METHODS We generated stable 3T3-L1 cell lines expressing wild-type PPARγ2 or PPARγ2 Pro12Ala variant. These two cell lines were cultured with different concentrations of DHA (0, 50, 200 umol/L). Then Oil red O staining was used to observe cell differentiation and the degree of lipid accumulation, TUNNEL assay was used to detect cell apoptosis, and ELISA assays were used to detect the changes of TNF-α, resistin and adiponectin levels in cell culture supernatant. RESULTS PPARγ2 Pro12Ala variant reduced lipid droplet accumulation in 3T3-L1 preadipocytes treated with or without 50 μmol/L DHA, but not with 200 μmol/L DHA, compared to that of wild-type PPARγ2. PPARγ2 reduced resistin production and increased adiponectin production in 3T3-L1 adipocytes, whereas PPARγ2 Pro12Ala variant diminished these effects. However, the absence of DHA blocked PPARγ2 Ala12 variant-induced effects on adiponectin production. There was no significant difference in TNF-α secretion between wild-type PPARγ2 and PPARγ2 Pro12Ala cells whether with or without DHA. CONCLUSION These results indicated that the effects of PPARγ2 Pro12Ala variant were dependent on DHA concentration.
Collapse
Affiliation(s)
- Renhui Wan
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai200433, People’s Republic of China
| | - Zhengping Ding
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai200433, People’s Republic of China
| | - Sheng Xia
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai200433, People’s Republic of China
| | - Longyi Zheng
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai200433, People’s Republic of China
| | - Jin Lu
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai200433, People’s Republic of China
- Correspondence: Jin Lu; Longyi Zheng Department of Endocrinology, Changhai Hospital, Second Military Medical University, No.168, Changhai Road, Shanghai200433, People’s Republic of China Email ;
| |
Collapse
|
8
|
Lam YWF, Duggirala R, Jenkinson CP, Arya R. The Role of Pharmacogenomics in Diabetes. Pharmacogenomics 2019. [DOI: 10.1016/b978-0-12-812626-4.00009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
9
|
Prudente S, Di Paola R, Copetti M, Lucchesi D, Lamacchia O, Pezzilli S, Mercuri L, Alberico F, Giusti L, Garofolo M, Penno G, Cignarelli M, De Cosmo S, Trischitta V. The rs12917707 polymorphism at the UMOD locus and glomerular filtration rate in individuals with type 2 diabetes: evidence of heterogeneity across two different European populations. Nephrol Dial Transplant 2018; 32:1718-1722. [PMID: 27448670 DOI: 10.1093/ndt/gfw262] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/04/2016] [Indexed: 11/12/2022] Open
Abstract
Background UMOD variability has been associated at a genome-wide level of statistical significance with glomerular filtration rate (GFR) in Swedish individuals with type 2 diabetes (T2D; n = 4888). Whether this finding is extensible also to diabetic patients from other populations deserves further study. Our aim was to investigate the relationship between UMOD variability and GFR in patients with T2D from Italy. Methods Genotyping of the single nucleotide polymorphism (SNP) rs12917707 at the UMOD locus has been carried out in 3087 individuals from four independent Italian cohorts of patients with T2D by TaqMan allele discrimination. Results In none of the four study cohorts was rs12917707 significantly associated with GFR (P > 0.05 for all). Similar results were obtained when the four samples were pooled and analyzed together (β = 0.83, P = 0.19). Such effect was strikingly smaller than that previously reported in Swedish patients (P for heterogeneity = 1.21 × 10-7). Conclusions The previously reported strong association between rs12917707 and GFR in diabetic patients from Sweden is not observed in Italian diabetic patients, thus clearly pointing to a heterogeneous effect across the two different samples. This suggests that UMOD is a strong genetic determinant of kidney function in patients with T2D in some, but not all, populations.
Collapse
Affiliation(s)
- Sabrina Prudente
- Mendel Laboratory, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Rosa Di Paola
- Research Unit of Diabetes and Endocrine Diseases, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Massimiliano Copetti
- Unit of Biostatistics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Daniela Lucchesi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Olga Lamacchia
- Unit of Endocrinology, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Serena Pezzilli
- Mendel Laboratory, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.,Department of Experimental Medicine, 'Sapienza' University, Rome, Italy
| | - Luana Mercuri
- Mendel Laboratory, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Federica Alberico
- Mendel Laboratory, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Laura Giusti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Monia Garofolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giuseppe Penno
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Mauro Cignarelli
- Unit of Endocrinology, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Salvatore De Cosmo
- Department of Medical Sciences, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Vincenzo Trischitta
- Mendel Laboratory, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.,Research Unit of Diabetes and Endocrine Diseases, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.,Department of Experimental Medicine, 'Sapienza' University, Rome, Italy
| |
Collapse
|
10
|
Pacilli A, Prudente S, Copetti M, Fontana A, Mercuri L, Bacci S, Marucci A, Alberico F, Viti R, Palena A, Lamacchia O, Cignarelli M, De Cosmo S, Trischitta V. The PPARγ2 P12A polymorphism is not associated with all-cause mortality in patients with type 2 diabetes mellitus. Endocrine 2016; 54:38-46. [PMID: 26956846 DOI: 10.1007/s12020-016-0906-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 02/19/2016] [Indexed: 11/26/2022]
Abstract
The high mortality risk of patients with type 2 diabetes mellitus may well be explained by the several comorbidities and/or complications. Also the intrinsic genetic component predisposing to diabetes might have a role in shaping the risk of diabetes-related mortality. Among type 2 diabetes mellitus SNPs, rs1801282 is of particular interest because (i) it is harbored by peroxisome proliferator-activated receptor-γ2 (PPARγ2), which is the target for thiazolidinediones which are used as antidiabetic drugs, decreasing all-cause mortality in type 2 diabetes mellitus, and (ii) it is associated with insulin resistance and related traits, risk factors for overall mortality in type 2 diabetes mellitus. We investigated the role of PPARγ2 P12A, according to a dominant model (PA + AA vs. PP individuals) on incident all-cause mortality in three cohorts of type 2 diabetes mellitus, comprising a total of 1672 patients (462 deaths) and then performed a meta-analysis of ours and all available published data. In the three cohorts pooled and analyzed together, no association between PPARγ2 P12A and all-cause mortality was observed (HR 1.02, 95 % CI 0.79-1.33). Similar results were observed after adjusting for age, sex, smoking habits, and BMI (HR 1.09, 95 % CI 0.83-1.43). In a meta-analysis of ours and all studies previously published (n = 3241 individuals; 666 events), no association was observed between PPARγ2 P12A and all-cause mortality (HR 1.07, 95 % CI 0.85-1.33). Results from our individual samples as well as from our meta-analysis suggest that the PPARγ2 P12A does not significantly affect all-cause mortality in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Antonio Pacilli
- Department of Medical Sciences, Scientific Institute "Casa Sollievo della Sofferenza", San Giovanni Rotondo, FG, Italy
| | - Sabrina Prudente
- Mendel-Laboratory, Scientific Institute "Casa Sollievo della Sofferenza", San Giovanni Rotondo, FG, Italy
| | - Massimiliano Copetti
- Unit of Biostatistics, Scientific Institute "Casa Sollievo della Sofferenza", San Giovanni Rotondo, FG, Italy
| | - Andrea Fontana
- Unit of Biostatistics, Scientific Institute "Casa Sollievo della Sofferenza", San Giovanni Rotondo, FG, Italy
| | - Luana Mercuri
- Mendel-Laboratory, Scientific Institute "Casa Sollievo della Sofferenza", San Giovanni Rotondo, FG, Italy
| | - Simonetta Bacci
- Department of Medical Sciences, Scientific Institute "Casa Sollievo della Sofferenza", San Giovanni Rotondo, FG, Italy
| | - Antonella Marucci
- Research Unit of Diabetes and Endocrine Diseases, Scientific Institute "Casa Sollievo della Sofferenza", Viale Padre Pio, 71013, San Giovanni Rotondo, FG, Italy
| | - Federica Alberico
- Mendel-Laboratory, Scientific Institute "Casa Sollievo della Sofferenza", San Giovanni Rotondo, FG, Italy
| | - Raffaella Viti
- Department of Medical Sciences, Scientific Institute "Casa Sollievo della Sofferenza", San Giovanni Rotondo, FG, Italy
| | - Antonio Palena
- Department of Medical Sciences, Scientific Institute "Casa Sollievo della Sofferenza", San Giovanni Rotondo, FG, Italy
| | - Olga Lamacchia
- Unit of Endocrinology and Metabolic Diseases, Department of Surgical and Medical Sciences, University of Foggia, Foggia, Italy
| | - Mauro Cignarelli
- Unit of Endocrinology and Metabolic Diseases, Department of Surgical and Medical Sciences, University of Foggia, Foggia, Italy
| | - Salvatore De Cosmo
- Department of Medical Sciences, Scientific Institute "Casa Sollievo della Sofferenza", San Giovanni Rotondo, FG, Italy
| | - Vincenzo Trischitta
- Mendel-Laboratory, Scientific Institute "Casa Sollievo della Sofferenza", San Giovanni Rotondo, FG, Italy.
- Research Unit of Diabetes and Endocrine Diseases, Scientific Institute "Casa Sollievo della Sofferenza", Viale Padre Pio, 71013, San Giovanni Rotondo, FG, Italy.
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.
| |
Collapse
|
11
|
Abstract
Despite the progress made in understanding the biology of autism spectrum disorder (ASD), effective biological interventions for the core symptoms remain elusive. Because of the etiological heterogeneity of ASD, identification of a "one-size-fits-all" treatment approach will likely continue to be challenging. A meeting was convened at the University of Missouri and the Thompson Center to discuss strategies for stratifying patients with ASD for the purpose of moving toward precision medicine. The "white paper" presented here articulates the challenges involved and provides suggestions for future solutions.
Collapse
|
12
|
Sentinelli F, Capoccia D, Incani M, Bertoccini L, Severino A, Pani MG, Manconi E, Cossu E, Leonetti F, Baroni MG. The perilipin 2 (PLIN2) gene Ser251Pro missense mutation is associated with reduced insulin secretion and increased insulin sensitivity in Italian obese subjects. Diabetes Metab Res Rev 2016; 32:550-6. [PMID: 26443937 DOI: 10.1002/dmrr.2751] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 09/07/2015] [Accepted: 10/05/2015] [Indexed: 01/23/2023]
Abstract
BACKGROUND Perilipin 2 (PLIN2), a member of the family of perilipin lipid droplets coating proteins, is very widely expressed. The Ser251Pro (rs35568725) missense mutation in exon 6 of PLIN2 gene was previously associated with increased lipid accumulation, decreased lipolysis and increased number of small lipid droplets per cell. Furthermore, the Pro251 mutation was associated with decreased plasma triglyceride and very low density lipoprotein concentrations in population studies. The aim of this study was to evaluate the effect of the Ser251Pro mutation of PLIN2 gene in a cohort with a higher predisposition to obesity-associated metabolic alterations, such as insulin resistance, decreased insulin-secretion, hyperglycaemia, and dyslipidaemia. METHODS A large cohort (N = 1692) of Italian obese subjects (mean body mass index = 41 kg/m(2) ) was genotyped for the Ser251Pro mutation. All participants underwent oral glucose tolerance tests (OGTT), with measurement of glucose and insulin levels. Indices of insulin resistance and of insulin secretion were also calculated. Clinical and biochemical parameters were collected for all participants. RESULTS We observed that insulin concentration was significantly reduced at 120 min after the administration of glucose in Pro251 allele carriers, whereas glucose levels were similar in Pro251 allele carriers and non-carriers throughout the OGTT. Furthermore, the CIR120 index of insulin secretion was significantly lower (P < 0.035) and the ISI index of insulin-sensitivity was significantly higher (P < 0.031) in carriers of the Pro251 allele. When we analysed men and women separately to test for gender-specific associations, we observed that in women insulin levels were significantly lower in Pro251 allele carriers compared with wild-type subjects throughout the whole OGTT. In men, we confirmed a significant reduction in insulin concentration only at 120 min after the OGTT. No significant differences between genotype groups regarding triglyceride levels and anyother clinical and metabolic parameters were observed. CONCLUSION We observed a strong significant association between the PLIN2 Pro251 mutation and lower insulin secretion associated with an increased insulin sensitivity. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Federica Sentinelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Danila Capoccia
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Michela Incani
- Endocrinology and Diabetes, Department of Medical Sciences, University of Cagliari, Cagliari, Italy
| | - Laura Bertoccini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Anna Severino
- Institute of Cardiology, Catholic University, Rome, Italy
| | - Maria Grazia Pani
- Endocrinology and Diabetes, Department of Medical Sciences, University of Cagliari, Cagliari, Italy
| | - Ettore Manconi
- Endocrinology and Diabetes, Department of Medical Sciences, University of Cagliari, Cagliari, Italy
| | - Efisio Cossu
- Endocrinology and Diabetes, Department of Medical Sciences, University of Cagliari, Cagliari, Italy
| | - Frida Leonetti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Marco G Baroni
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Endocrinology and Diabetes, Department of Medical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
13
|
Avzaletdinova DS, Sharipova LF, Kochetova OV, Morugova TV, Erdman VV, Mustafina OE. Association of variable rs1801282 locus of PPARG2 gene with diabetic nephropathy. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416080032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Kong X, Xing X, Hong J, Zhang X, Yang W. Genetic variants associated with lean and obese type 2 diabetes in a Han Chinese population: A case-control study. Medicine (Baltimore) 2016; 95:e3841. [PMID: 27281091 PMCID: PMC4907669 DOI: 10.1097/md.0000000000003841] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Type 2 diabetes (T2D) is highly phenotypically heterogeneous. Genetics of the heterogeneity of lean and obese T2D is not clear. The aim of the present study was to identify the associations of T2D-related genetic variants with the risks for lean and obese T2D among the Chinese Han population. A case-control study consisting of 5338 T2D patients and 4663 normal glycemic controls of Chinese Han recruited in the Chinese National Diabetes and Metabolic Disorders Study was conducted. T2D cases were identified according to the 1999 World Health Organization criteria. Lean T2D was defined as T2D patient with a body mass index (BMI) <23 kg/m, whereas obese T2D was defined as T2D patient with a BMI ≥28 kg/m. Twenty-five genome-wide association studies previously validated T2D-related single-nucleotide polymorphisms (SNPs) were genotyped. A genotype risk score (GRS) based on the 25 SNPs was created. After adjusting for multiple covariates, SNPs in or near CDKAL1, CDKN2BAS, KCNQ1, TCF7L2, CDC123/CAMK1D, HHEX, and TCF2 were associated with the risk for lean T2D, and SNPs in or near KCNQ1 and FTO were associated with the risk for obese T2D. The results showed that the GRS for 25 T2D-related SNPs was more strongly associated with the risk for lean T2D (Ptrend = 2.66 × 10) than for obese T2D (Ptrend = 2.91 × 10) in our study population. Notably, the T2D GRS contributed to lower obesity-related measurements and greater β-cell dysfunction, including lower insulin levels in oral glucose tolerance test, decreased insulinogenic index, and Homeostasis Model Assessment for β-cell Function. In conclusion, our findings identified T2D-related genetic loci that contribute to the risk of lean and obese T2D individually and additively in a Chinese Han population. Moreover, the study highlights the contribution of known T2D genomic loci to the heterogeneity of lean and obese T2D in Chinese Hans.
Collapse
Affiliation(s)
| | | | | | | | - Wenying Yang
- ∗Correspondence: Wenying Yang, Department of Endocrinology, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing 100029, P.R. China (e-mail: )
| |
Collapse
|
15
|
Priya SS, Sankaran R, Ramalingam S, Sairam T, Somasundaram LS. Genotype Phenotype Correlation of Genetic Polymorphism of PPAR Gamma Gene and Therapeutic Response to Pioglitazone in Type 2 Diabetes Mellitus- A Pilot Study. J Clin Diagn Res 2016; 10:FC11-4. [PMID: 27042481 DOI: 10.7860/jcdr/2016/16494.7331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/16/2015] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Pro12Ala polymorphism is a missense mutation at codon 12 in peroxisome proliferator-activated receptor γ gene (PPARG). This polymorphism is known to be associated with increased insulin sensitivity. Pioglitazone, a thiazolidinedione, is an anti-diabetic drug which acts as an agonist at PPAR γ receptor. AIM To determine the association between Pro12Ala polymorphism of the PPARG and variation in therapeutic response to the PPARγ agonist, pioglitazone. MATERIALS AND METHODS The study was done as a hospital based pilot project in 30 patients with type 2 diabetes mellitus, on treatment with sulfonylurea or metformin but without adequate glycaemic control. They were started on pioglitazone as add on therapy for a period of 12 weeks. The participants were categorized as responders and non-responders based on the change in HbA1C level after 12 weeks. Pro12Ala polymorphism was analysed by polymerase chain reaction-restriction fragment length polymorphism. STATISTICAL ANALYSIS Logistic regression analysis was done to evaluate the associations between age, baseline body weight, BMI, waist circumference, waist-hip ratio and Pro12Ala variants with the response to pioglitazone. The p-value< 0.05 was considered significant. RESULTS The frequency distributions of PPAR gamma genotypes were 80% for Pro/Pro and 20% for Pro/Ala in the study population. Among the study participants, 30% were non-responders and 70% responders to pioglitazone. A significantly higher frequency of the polymorphism was detected in the responders (p=0.005) compared to non-responders group. CONCLUSION Our study suggests that there is a potential association between Pro12Ala polymorphism and glycaemic response to pioglitazone.
Collapse
Affiliation(s)
- S Shanmuga Priya
- Assistant Professor, Department of Pharmacology, PSG IMSR , Tamilnadu, India
| | | | - Sudha Ramalingam
- Professor, Department of Community Medicine, PSG IMSR , Tamilnadu, India
| | - Thiagarajan Sairam
- Associate Professor, Department of Molecular medicine, PSG IMSR , Tamilnadu, India
| | - L S Somasundaram
- Professor, Department of Internal Medicine, PSG IMSR , Tamilnadu, India
| |
Collapse
|
16
|
Queiroz EM, Cândido APC, Castro IM, Bastos AQA, Machado-Coelho GLL, Freitas RN. IGF2, LEPR, POMC, PPARG, and PPARGC1 gene variants are associated with obesity-related risk phenotypes in Brazilian children and adolescents. ACTA ACUST UNITED AC 2015; 48:595-602. [PMID: 25923461 PMCID: PMC4512097 DOI: 10.1590/1414-431x20154155] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/28/2015] [Indexed: 12/24/2022]
Abstract
Association studies of genetic variants and obesity and/or obesity-related risk factors have yielded contradictory results. The aim of the present study was to determine the possible association of five single-nucleotide polymorphisms (SNPs) located in the IGF2, LEPR, POMC, PPARG, and PPARGC1 genes with obesity or obesity-related risk phenotypes. This case-control study assessed overweight (n=192) and normal-weight (n=211) children and adolescents. The SNPs were analyzed using minisequencing assays, and variables and genotype distributions between the groups were compared using one-way analysis of variance and Pearson's chi-square or Fisher's exact tests. Logistic regression analysis adjusted for age and gender was used to calculate the odds ratios (ORs) for selected phenotype risks in each group. No difference in SNP distribution was observed between groups. In children, POMC rs28932472(C) was associated with lower diastolic blood pressure (P=0.001), higher low-density lipoprotein (LDL) cholesterol (P=0.014), and higher risk in overweight children of altered total cholesterol (OR=7.35, P=0.006). In adolescents, IGF2 rs680(A) was associated with higher glucose (P=0.012) and higher risk in overweight adolescents for altered insulin (OR=10.08, P=0.005) and homeostasis model of insulin resistance (HOMA-IR) (OR=6.34, P=0.010). PPARG rs1801282(G) conferred a higher risk of altered insulin (OR=12.31, P=0.003), and HOMA-IR (OR=7.47, P=0.005) in overweight adolescents. PARGC1 rs8192678(A) was associated with higher triacylglycerols (P=0.005), and LEPR rs1137101(A) was marginally associated with higher LDL cholesterol (P=0.017). LEPR rs1137101(A) conferred higher risk for altered insulin, and HOMA-IR in overweight adolescents. The associations observed in this population suggested increased risk for cardiovascular diseases and/or type 2 diabetes later in life for individuals carrying these alleles.
Collapse
Affiliation(s)
- E M Queiroz
- Departamento de Nutrição Clínica e Social, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil
| | - A P C Cândido
- Departamento de Nutrição, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brasil
| | - I M Castro
- Departamento de Farmácia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil
| | - A Q A Bastos
- Departamento de Nutrição Clínica e Social, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil
| | - G L L Machado-Coelho
- Escola de Medicina, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil
| | - R N Freitas
- Departamento de Nutrição Clínica e Social, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil
| |
Collapse
|
17
|
Qi Q, Wang X, Strizich G, Wang T. Genetic Determinants of Type 2 Diabetes in Asians. ACTA ACUST UNITED AC 2015; 2015. [PMID: 27583258 DOI: 10.19070/2328-353x-si01001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes (T2D) has become a major health problem throughout the world and the epidemic is particularly severe in Asian countries. Compared with European populations, Asians tend to develop diabetes at a younger age and at much higher incidence rates given the same amount of weight gain. Genome-wide association studies (GWAS) have identified over 70 loci associated with T2D. Although the majority of GWAS results were conducted in populations of European ancestry, recent GWAS in Asians have made important contributions to the identification of T2D susceptibility loci. These studies not only confirmed T2D susceptibility loci initially identified in European populations, but also identified novel susceptibility loci that provide new insights into the pathophysiology of diseases. In this article, we review GWAS results of T2D conducted in East and South Asians and compare them to those of European populations. Currently identified T2D genetic variants do not appear to explain the phenomenon that Asians are more susceptible to T2D than European populations, suggesting further studies in Asian populations are needed.
Collapse
Affiliation(s)
- Q Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - X Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - G Strizich
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - T Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
18
|
Kommoju UJ, Maruda J, Kadarkarai Samy S, Irgam K, Kotla JP, Reddy BM. Association of IRS1, CAPN10, and PPARG gene polymorphisms with type 2 diabetes mellitus in the high-risk population of Hyderabad, India. J Diabetes 2014; 6:564-73. [PMID: 24612564 DOI: 10.1111/1753-0407.12142] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND We attempted to validate earlier findings on the nature of the association of the IRS1, CAPN10, and PPARG genes with type 2 diabetes mellitus (T2DM) in the high-risk population of Hyderabad, India. METHODS A sample of 1379 subjects (758 T2DM patients, 621 controls) was genotyped for single nucleotide polymorphisms (SNPs) of the IRS1 (rs1801278), CAPN10 (rs3792267, rs5030952), and PPARG (rs1801282) genes. RESULTS The allele and genotype frequencies of IRS1 (rs1801278) and CAPN10 (rs3792267) SNPs differed significantly between the patient and control groups. Logistic regression analysis suggested a significant association of these two SNPs (P ≤ 0.007) with T2DM and the strength of association did not alter when adjusted for age, gender, body mass index, and the waist : hip ratio as covariates. The same two SNPs showed significant association in multivariate logistic regression analyses, even after Bonferroni correction for multiple testing, suggesting an independent nature of the role of these genes in the manifestation of T2DM in our population. CONCLUSIONS We replicated the significant association of rs1801278 and rs3792267 SNPs of the IRS1 and CAPN10 genes with T2DM in the population of Hyderabad. Despite the known biological significance of the PPARG gene and a sufficient statistical power of the present study, we could not replicate the association of PPARG with T2DM in our high-risk population. Given the vast ethnic, geographic, and genetic heterogeneity of the Indian population, many more studies are needed covering the ethnic and geographic heterogeneity of India to enable identification of an Indian-specific profile of genes associated with T2DM.
Collapse
Affiliation(s)
- Uma Jyothi Kommoju
- Biological Anthropology Unit (Molecular Anthropology Group), Indian Statistical Institute, Hyderabad, India
| | | | | | | | | | | |
Collapse
|
19
|
Brandl EJ, Tiwari AK, Zai CC, Chowdhury NI, Lieberman JA, Meltzer HY, Kennedy JL, Müller DJ. No evidence for a role of the peroxisome proliferator-activated receptor gamma (PPARG) and adiponectin (ADIPOQ) genes in antipsychotic-induced weight gain. Psychiatry Res 2014; 219:255-60. [PMID: 24953421 DOI: 10.1016/j.psychres.2014.05.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 05/12/2014] [Accepted: 05/19/2014] [Indexed: 12/31/2022]
Abstract
Antipsychotics frequently cause changes in glucose metabolism followed by development of weight gain and/or diabetes. Recent findings from our group indicated an influence of glucose-related genes on this serious side effect. With this study, we aimed to extend previous research and performed a comprehensive study on the peroxisome proliferator-activated receptor gamma (PPARG) and the adiponectin (ADIPOQ) genes. In 216 schizophrenic patients receiving antipsychotics for up to 14 weeks, we investigated single-nucleotide polymorphisms in or near PPARG (N=24) and ADIPOQ (N=18). Statistical analysis was done using ANCOVA in SPSS. Haplotype analysis was performed in UNPHASED 3.1.4 and Haploview 4.2. None of the PPARG or ADIPOQ variants showed significant association with antipsychotic-induced weight gain in our combined sample or in a refined subsample of patients of European ancestry treated with clozapine or olanzapine after correction for multiple testing. Similarly, no haplotype association could withstand multiple test correction. Although we could not find a significant influence of ADIPOQ and PPARG on antipsychotic-induced weight gain, our comprehensive examination of these two genes contributes to understanding the biology of this serious side effect. More research on glucose metabolism genes is warranted to elucidate their role in metabolic changes during antipsychotic treatment.
Collapse
Affiliation(s)
- Eva J Brandl
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada; Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Arun K Tiwari
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada
| | - Clement C Zai
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Nabilah I Chowdhury
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Jeffrey A Lieberman
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University and the New York State Psychiatric Institute, New York City, NY, USA
| | - Herbert Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - James L Kennedy
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Daniel J Müller
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
20
|
García-Broncano P, Berenguer J, Fernández-Rodríguez A, Pineda-Tenor D, Jiménez-Sousa MÁ, García-Alvarez M, Miralles P, Aldámiz-Echevarria T, López JC, Micheloud D, Resino S. PPARγ2 Pro12Ala polymorphism was associated with favorable cardiometabolic risk profile in HIV/HCV coinfected patients: a cross-sectional study. J Transl Med 2014; 12:235. [PMID: 25159899 PMCID: PMC4282155 DOI: 10.1186/s12967-014-0235-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 08/20/2014] [Indexed: 11/29/2022] Open
Abstract
Background Peroxisome proliferator-activated receptor gamma-2 gene (PPARγ2) rs1801282 (Pro12Ala) polymorphism has been associated with lower risk of metabolic disturbance and atherosclerosis. The aim of this study was to analyze the association between the Pro12Ala polymorphism and cardiometabolic risk factors in human immunodeficiency virus (HIV)/Hepatitis C virus (HCV)-coinfected patients. Methods We carried out a cross-sectional study on 257 HIV/HCV coinfected patients. PPARγ2 polymorphism was genotyped by GoldenGate® assay. The main outcome measures were: i) serum lipids (cholesterol, triglycerides, high-density lipoprotein (HDL-C), low-density lipoprotein (LDL-C), LDL-C/HDL-C, and atherogenic index (AI)); ii) homeostatic model assessment (HOMA-IR) values; iii) serum adipokines (leptin, adiponectin, resistin, plasminogen activator inhibitor-1(PAI-1), hepatic growth factor (HGF), and nerve growth factor (NGF)). Generalized Linear Models (GLM) with gamma distribution (log-link) were used to investigate the association between PPARγ2 polymorphism and continuous outcome variables. This test gives the differences between groups and the arithmetic mean ratio (AMR) in continuous outcome variables between groups. Results The rs1801282 CG/GG genotype was associated with low values of cholesterol (adjusted arithmetic mean ratio (aAMR) = 0.87 (95% of confidence interval (95% CI) = 0.79; 0.96); p = 0.004) and LDL-C (aAMR = 0.79 (95% CI = 0.68; 0.93); p = 0.004). Furthermore, rs1801282 CG/GG was associated with low values of HOMA-IR (aAMR = 0.69 (95% CI = 0.49; 0.98); p = 0.038) among patients with significant liver fibrosis (F ≥ 2). Moreover, rs1801282 CG/GG was also associated with low serum values of hepatic growth factor (HGF) (aAMR = 0.61 (95% CI = 0.39; 0.94); p = 0.028), and nerve growth factor (NGF) (aAMR = 0.47 (95% CI = 0.26; 0.84); p = 0.010). The serum levels of leptin, adiponectin, resistin, and PAI-1 did not show significant differences. Conclusions The presence of PPARγ2 rs1801282 G allele (Ala variant) was associated with a protective cardiometabolic risk profile versus CC genotype in HIV/HCV-coinfected patients. Thus, PPARγ2 rs1801282 polymorphism may play a significant role in the development of metabolic disorders in HIV/HCV coinfected patients, and might have an influence on the cardiovascular risk.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Majadahonda- Pozuelo, Km 2,2, Majadahonda, Madrid 28220, Spain.
| |
Collapse
|
21
|
Vergotine Z, Yako YY, Kengne AP, Erasmus RT, Matsha TE. Proliferator-activated receptor gamma Pro12Ala interacts with the insulin receptor substrate 1 Gly972Arg and increase the risk of insulin resistance and diabetes in the mixed ancestry population from South Africa. BMC Genet 2014; 15:10. [PMID: 24447396 PMCID: PMC3900266 DOI: 10.1186/1471-2156-15-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/18/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The peroxisome proliferator-activated receptor gamma (PPARG), Pro12Ala and the insulin receptor substrate (IRS1), Gly972Arg confer opposite effects on insulin resistance and type 2 diabetes mellitus (T2DM). We investigated the independent and joint effects of PPARG Pro12Ala and IRS1 Gly972Arg on markers of insulin resistance and T2DM in an African population with elevated risk of T2DM. In all 787 (176 men) mixed-ancestry adults from the Bellville-South community in Cape Town were genotyped for PPARG Pro12Ala and IRS1 Gly972Arg by two independent laboratories. Glucose tolerance status and insulin resistance/sensitivity were assessed. RESULTS Genotype frequencies were 10.4% (PPARG Pro12Ala) and 7.7% (IRS1 Gly972Arg). Alone, none of the polymorphisms predicted prevalent T2DM, but in regression models containing both alleles and their interaction term, PPARG Pro12 conferred a 64% higher risk of T2DM. Furthermore PPARG Pro12 was positively associated in adjusted linear regressions with increased 2-hour post-load insulin in non-diabetic but not in diabetic participants. CONCLUSION The PPARG Pro12 is associated with insulin resistance and this polymorphism interacts with IRS1 Gly972Arg, to increase the risk of T2DM in the mixed-ancestry population of South Africa. Our findings require replication in a larger study before any generalisation and possible application for risk stratification.
Collapse
Affiliation(s)
| | | | | | | | - Tandi E Matsha
- Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, PO Box 1906, Bellville 7530, Cape Town, South Africa.
| |
Collapse
|
22
|
Prudente S, Copetti M, Morini E, Mendonca C, Andreozzi F, Chandalia M, Baratta R, Pellegrini F, Mercuri L, Bailetti D, Abate N, Frittitta L, Sesti G, Florez JC, Doria A, Trischitta V. The SH2B1 obesity locus and abnormal glucose homeostasis: lack of evidence for association from a meta-analysis in individuals of European ancestry. Nutr Metab Cardiovasc Dis 2013; 23:1043-1049. [PMID: 24103803 DOI: 10.1016/j.numecd.2013.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/29/2013] [Accepted: 05/20/2013] [Indexed: 01/10/2023]
Abstract
BACKGROUND/AIMS The development of type 2 diabetes (T2D) is influenced both by environmental and by genetic determinants. Obesity is an important risk factor for T2D, mostly mediated by obesity-related insulin resistance. Obesity and insulin resistance are also modulated by the genetic milieu; thus, genes affecting risk of obesity and insulin resistance might also modulate risk of T2D. Recently, 32 loci have been associated with body mass index (BMI) by genome-wide studies, including one locus on chromosome 16p11 containing the SH2B1 gene. Animal studies have suggested that SH2B1 is a physiological enhancer of the insulin receptor and humans with rare deletions or mutations at SH2B1 are obese with a disproportionately high insulin resistance. Thus, the role of SH2B1 in both obesity and insulin resistance makes it a strong candidate for T2D. However, published data on the role of SH2B1 variability on the risk for T2D are conflicting, ranging from no effect at all to a robust association. METHODS The SH2B1 tag SNP rs4788102 (SNP, single nucleotide polymorphism) was genotyped in 6978 individuals from six studies for abnormal glucose homeostasis (AGH), including impaired fasting glucose, impaired glucose tolerance or T2D, from the GENetics of Type 2 Diabetes in Italy and the United States (GENIUS T2D) consortium. Data from these studies were then meta-analyzed, in a Bayesian fashion, with those from DIAGRAM+ (n = 47,117) and four other published studies (n = 39,448). RESULTS Variability at the SH2B1 obesity locus was not associated with AGH either in the GENIUS consortium (overall odds ratio (OR) = 0.96; 0.89-1.04) or in the meta-analysis (OR = 1.01; 0.98-1.05). CONCLUSION Our data exclude a role for the SH2B1 obesity locus in the modulation of AGH.
Collapse
Affiliation(s)
- S Prudente
- IRCSS Casa Sollievo della Sofferenza-Mendel Laboratory, San Giovanni Rotondo, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abbas S, Raza ST, Ahmed F, Ahmad A, Rizvi S, Mahdi F. Association of genetic polymorphism of PPARγ-2, ACE, MTHFR, FABP-2 and FTO genes in risk prediction of type 2 diabetes mellitus. J Biomed Sci 2013; 20:80. [PMID: 24156506 PMCID: PMC4015124 DOI: 10.1186/1423-0127-20-80] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 10/01/2013] [Indexed: 01/05/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a non-autoimmune, complex, heterogeneous and polygenic metabolic disease condition characterized by persistent elevated blood glucose levels (hyperglycemia). India as said to be the diabetic capital of the world is likely to experience the largest increase in T2DM and a greater number of diabetic individuals in the world by the year 2030. Identification of specific genetic variations in a particular ethnic group has a critical role in understanding the risk of developing T2DM in a much efficient way in future. These genetic variations include numerous types of polymorphisms among which single nucleotide polymorphisms (SNPs) is the most frequent. SNPs are basically located within the regulatory elements of several gene sequences. There are scores of genes interacting with various environmental factors affecting various pathways and sometimes even the whole signalling network that cause diseases like T2DM. This review discusses the biomarkers for early risk prediction of T2DM. Such predictions could be used in order to understand the pathogenesis of T2DM and to better diagnostics, treatment, and eventually prevention.
Collapse
Affiliation(s)
- Shania Abbas
- Molecular Biology Lab, Department of Biochemistry, Era’s Lucknow Medical College and Hospital, Lucknow 226003, India
| | - Syed Tasleem Raza
- Molecular Biology Lab, Department of Biochemistry, Era’s Lucknow Medical College and Hospital, Lucknow 226003, India
| | - Faisal Ahmed
- Molecular Biology Lab, Department of Biochemistry, Era’s Lucknow Medical College and Hospital, Lucknow 226003, India
| | - Absar Ahmad
- Molecular Biology Lab, Department of Biochemistry, Era’s Lucknow Medical College and Hospital, Lucknow 226003, India
| | - Saliha Rizvi
- Molecular Biology Lab, Department of Biochemistry, Era’s Lucknow Medical College and Hospital, Lucknow 226003, India
| | - Farzana Mahdi
- Molecular Biology Lab, Department of Biochemistry, Era’s Lucknow Medical College and Hospital, Lucknow 226003, India
| |
Collapse
|
24
|
Wang X, Liu J, Ouyang Y, Fang M, Gao H, Liu L. The association between the Pro12Ala variant in the PPARγ2 gene and type 2 diabetes mellitus and obesity in a Chinese population. PLoS One 2013; 8:e71985. [PMID: 23991018 PMCID: PMC3749141 DOI: 10.1371/journal.pone.0071985] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 07/05/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Conflicting results have been reported on the association of the Pro12Ala polymorphism of the PPARγ2 gene with the risk of type 2 diabetes or obesity. METHODS AND FINDINGS A total of 3146 subjects with 1145 cases of type 2 diabetes and 2001 healthy controls were included in the study. Genomic DNA was obtained from blood samples and the screening for the gene polymorphisms was done using an allelic discrimination assay-by-design TaqMan method. Overall, the Ala allele frequency was 5.6% in control subjects and 3.9% in diabetes subjects (P = 0.023). We found a statistically significant association of carriers of the Ala allele with greater homoeostasis model assessment of beta cell function index in all subjects (P = 0.046). After controlling for confounders, carriers of the Ala allele had a decreased risk of diabetes compared with noncarriers [odds ratio (OR) 0.64, 95% confidence interval (CI) 0.49-0.83; P = 0.001]. A beneficial effect of the Ala allele was also observed for obesity (OR 0.64, 95% CI 0.42-0.96; P = 0.030). CONCLUSION Our results suggested that the presence of the Ala allele may contribute to improved insulin secretory capacity and may confer protection from type 2 diabetes and obesity in the Chinese population.
Collapse
Affiliation(s)
- Xia Wang
- Department of Maternal and Child Health Care, School of Public Health, Shandong University, Jinan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Liu
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingying Ouyang
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Fang
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Gao
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Domenici FA, Brochado MJF, Martinelli ADLC, Zucoloto S, da Cunha SFDC, Vannucchi H. Peroxisome proliferator-activated receptors alpha and gamma2 polymorphisms in nonalcoholic fatty liver disease: a study in Brazilian patients. Gene 2013; 529:326-31. [PMID: 23891824 DOI: 10.1016/j.gene.2013.06.091] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/11/2013] [Accepted: 06/27/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) refers to the accumulation of hepatic steatosis in the absence of excess alcohol consumption. The pathogenesis of fatty liver disease and steatohepatitis (NASH) is not fully elucidated, but the common association with visceral obesity, hyperlipidemia, hypertension and type 2 diabetes mellitus (T2DM) suggests that it is the hepatic manifestation of metabolic syndrome. Peroxisome proliferator-activated receptor PPARα and PPARγ are members of a family of nuclear receptors involved in the metabolism of lipids and carbohydrates, adipogenesis and sensitivity to insulin. The objective of this study was to analyze the polymorphisms Leu162Val of PPARα and Pro12Ala of PPARγ as genetic risk factors for the development and progression of NAFLD. METHODS One hundred and three NAFLD patients (89 NASH, 14 pure steatosis) and 103 healthy volunteers were included. Single nucleotide polymorphisms (SNPs) Leu162Val and Pro12Ala were analyzed by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP). RESULTS NASH patients presented higher BMI, AST and prevalence of T2DM than patients with pure steatosis. A higher prevalence of 12Ala allele was observed in the NASH Subgroup when compared to Control Group. When we grouped NASH and Steatosis Subgroups (NAFLD), we found lower serum glucose and more advanced fibrosis in the Leu162Val SNP. On the other hand, there was no statistical difference in clinical, laboratorial and histological parameters according to the Pro12Ala SNP. CONCLUSIONS We documented a lower prevalence of 12Ala allele of gene PPARγ in the NASH Subgroup when compared to Control Group. In NAFLD patients, there were no associations among the occurrence of Pro12Ala SNP with clinical, laboratorial and histological parameters. We also documented more advanced fibrosis in the Leu162Val SNP. The obtained data suggest that Pro12Ala SNP may result in protection against liver injury and that Leu162Val SNP may be involved in the progression of NAFLD.
Collapse
Affiliation(s)
- Fernanda Aparecida Domenici
- Clinical Nutrition Division, Department of Internal Medicine, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil; Gastroenterology Division, Department of Internal Medicine, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil; Department of Pathology and Legal Medicine, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil.
| | | | | | | | | | | |
Collapse
|
26
|
Trombetta M, Bonetti S, Boselli ML, Miccoli R, Trabetti E, Malerba G, Pignatti PF, Bonora E, Del Prato S, Bonadonna RC. PPARG2 Pro12Ala and ADAMTS9 rs4607103 as "insulin resistance loci" and "insulin secretion loci" in Italian individuals. The GENFIEV study and the Verona Newly Diagnosed Type 2 Diabetes Study (VNDS) 4. Acta Diabetol 2013; 50:401-8. [PMID: 23161442 DOI: 10.1007/s00592-012-0443-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/05/2012] [Indexed: 12/16/2022]
Abstract
We investigated cross-sectionally whether the type 2 diabetes (T2DM) risk alleles of rs1801282 (PPARG2) and rs4607103 (ADAMTS9) were associated with T2DM and/or insulin sensitivity (IS) and beta cell function (βF) in Italians without and with newly diagnosed T2DM. In 676 nondiabetic subjects (336 NGR and 340 IGR) from the GENFIEV study and in 597 patients from the Verona Newly Diagnosed Type 2 Diabetes Study (VNDS), we (1) genotyped rs1801282 and rs4607103, (2) assessed βF by C-peptide/glucose modeling after OGTT, and (3) assessed IS by HOMA-IR in both studies and by euglycemic insulin clamp in VNDS only. Logistic, linear, and two-stage least squares regression analyses were used to test (a) genetic associations with T2DM and with pathophysiological phenotypes, (b) causal relationships of the latter ones with T2DM by a Mendelian randomization design. Both SNPs were associated with T2DM. The rs4607103 risk allele was associated to impaired βF (p < 0.01) in the GENFIEV study and in both cohorts combined. The rs1801282 genotype was associated with IS both in the GENFIEV study (p < 0.03) and in the VNDS (p < 0.03), whereas rs4607103 did so in the VNDS only (p = 0.01). In a Mendelian randomization design, both HOMA-IR (instrumental variables: rs1801282, rs4607103) and βF (instrumental variable: rs4607103) were related to T2DM (p < 0.03-0.01 and p < 0.03, respectively). PPARG2 and ADAMTS9 variants are both associated with T2DM and with insulin resistance, whereas only ADAMTS9 may be related to βF. Thus, at least in Italians, they may be considered bona fide "insulin resistance genes".
Collapse
Affiliation(s)
- M Trombetta
- Division of Endocrinology and Metabolism, Department of Medicine, Ospedale Civile Maggiore, University of Verona, Piazzale Stefani 1, 37126, Verona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pei Q, Huang Q, Yang GP, Zhao YC, Yin JY, Song M, Zheng Y, Mo ZH, Zhou HH, Liu ZQ. PPAR-γ2 and PTPRD gene polymorphisms influence type 2 diabetes patients' response to pioglitazone in China. Acta Pharmacol Sin 2013; 34:255-61. [PMID: 23147557 DOI: 10.1038/aps.2012.144] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AIM To investigate the influence of peroxisome proliferator-activated receptor γ2 (PPAR-γ2) gene polymorphism rs1801282 and protein tyrosine phosphatase receptor type D (PTPRD) gene polymorphism rs17584499 on the occurrence of type 2 diabetes and pioglitazone efficacy in a Chinese Han population. METHODS One hundred ninety seven type 2 diabetes patients and 212 healthy controls were enrolled. Among them, 67 type 2 diabetes patients were administered pioglitazone (30 mg/d, po) for 3 months. All the subjects were genotyped for genetic variants in PPAR-γ2 and PTPRD using MALDI-TOF mass spectrometry. Fasting plasma glucose, postprandial plasma glucose, glycated hemoglobin, serum triglyceride, total cholesterol, low-density and high-density lipoprotein-cholesterol were determined. RESULTS The PPAR-γ2 gene rs1801282 polymorphism was significantly associated with type 2 diabetes susceptibility (OR=0.515, 95% CI 0.268-0.990) and the PTPRD gene rs17584499 polymorphism was also significantly associated with type 2 diabetes (OR=1.984, 95% CI 1.135-3.469) in a dominant model adjusted for age, gender and BMI. After pioglitazone treatment for 3 months, the type 2 diabetes patients with PPAR-γ2 rs1801282 CG genotypes significantly showed higher differential values of postprandial plasma glucose and serum triglyceride compared with those with rs1801282 CC genotype. The patients with PTPRD rs17584499 CT+TT genotypes showed significantly lower differential value of postprandial plasma glucose compared to those with rs17584499 CC genotype. CONCLUSION Diabetes risk alleles in PPAR-γ2 (rs1801282) and PTPRD (rs17584499) are associated with pioglitazone therapeutic efficacy.
Collapse
|
28
|
Aquilante CL, Lam YF. The Role of Pharmacogenomics in Diabetes, HIV Infection, and Pain Management. Pharmacogenomics 2013. [DOI: 10.1016/b978-0-12-391918-2.00007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
29
|
Berhouma R, Kouidhi S, Ammar M, Abid H, Baroudi T, Ennafaa H, Benammar-Elgaaied A. Genetic Susceptibility to Type 2 Diabetes: A Global Meta-Analysis Studying the Genetic Differences in Tunisian Populations. Hum Biol 2012; 84:423-35. [DOI: 10.3378/027.084.0405] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Manning AK, Hivert MF, Scott RA, Grimsby JL, Bouatia-Naji N, Chen H, Rybin D, Liu CT, Bielak LF, Prokopenko I, Amin N, Barnes D, Cadby G, Hottenga JJ, Ingelsson E, Jackson AU, Johnson T, Kanoni S, Ladenvall C, Lagou V, Lahti J, Lecoeur C, Liu Y, Martinez-Larrad MT, Montasser ME, Navarro P, Perry JRB, Rasmussen-Torvik LJ, Salo P, Sattar N, Shungin D, Strawbridge RJ, Tanaka T, van Duijn CM, An P, de Andrade M, Andrews JS, Aspelund T, Atalay M, Aulchenko Y, Balkau B, Bandinelli S, Beckmann JS, Beilby JP, Bellis C, Bergman RN, Blangero J, Boban M, Boehnke M, Boerwinkle E, Bonnycastle LL, Boomsma DI, Borecki IB, Böttcher Y, Bouchard C, Brunner E, Budimir D, Campbell H, Carlson O, Chines PS, Clarke R, Collins FS, Corbatón-Anchuelo A, Couper D, de Faire U, Dedoussis GV, Deloukas P, Dimitriou M, Egan JM, Eiriksdottir G, Erdos MR, Eriksson JG, Eury E, Ferrucci L, Ford I, Forouhi NG, Fox CS, Franzosi MG, Franks PW, Frayling TM, Froguel P, Galan P, de Geus E, Gigante B, Glazer NL, Goel A, Groop L, Gudnason V, Hallmans G, Hamsten A, Hansson O, Harris TB, Hayward C, Heath S, Hercberg S, Hicks AA, Hingorani A, Hofman A, Hui J, Hung J, et alManning AK, Hivert MF, Scott RA, Grimsby JL, Bouatia-Naji N, Chen H, Rybin D, Liu CT, Bielak LF, Prokopenko I, Amin N, Barnes D, Cadby G, Hottenga JJ, Ingelsson E, Jackson AU, Johnson T, Kanoni S, Ladenvall C, Lagou V, Lahti J, Lecoeur C, Liu Y, Martinez-Larrad MT, Montasser ME, Navarro P, Perry JRB, Rasmussen-Torvik LJ, Salo P, Sattar N, Shungin D, Strawbridge RJ, Tanaka T, van Duijn CM, An P, de Andrade M, Andrews JS, Aspelund T, Atalay M, Aulchenko Y, Balkau B, Bandinelli S, Beckmann JS, Beilby JP, Bellis C, Bergman RN, Blangero J, Boban M, Boehnke M, Boerwinkle E, Bonnycastle LL, Boomsma DI, Borecki IB, Böttcher Y, Bouchard C, Brunner E, Budimir D, Campbell H, Carlson O, Chines PS, Clarke R, Collins FS, Corbatón-Anchuelo A, Couper D, de Faire U, Dedoussis GV, Deloukas P, Dimitriou M, Egan JM, Eiriksdottir G, Erdos MR, Eriksson JG, Eury E, Ferrucci L, Ford I, Forouhi NG, Fox CS, Franzosi MG, Franks PW, Frayling TM, Froguel P, Galan P, de Geus E, Gigante B, Glazer NL, Goel A, Groop L, Gudnason V, Hallmans G, Hamsten A, Hansson O, Harris TB, Hayward C, Heath S, Hercberg S, Hicks AA, Hingorani A, Hofman A, Hui J, Hung J, Jarvelin MR, Jhun MA, Johnson PC, Jukema JW, Jula A, Kao W, Kaprio J, Kardia SLR, Keinanen-Kiukaanniemi S, Kivimaki M, Kolcic I, Kovacs P, Kumari M, Kuusisto J, Kyvik KO, Laakso M, Lakka T, Lannfelt L, Lathrop GM, Launer LJ, Leander K, Li G, Lind L, Lindstrom J, Lobbens S, Loos RJF, Luan J, Lyssenko V, Mägi R, Magnusson PKE, Marmot M, Meneton P, Mohlke KL, Mooser V, Morken MA, Miljkovic I, Narisu N, O’Connell J, Ong KK, Oostra BA, Palmer LJ, Palotie A, Pankow JS, Peden JF, Pedersen NL, Pehlic M, Peltonen L, Penninx B, Pericic M, Perola M, Perusse L, Peyser PA, Polasek O, Pramstaller PP, Province MA, Räikkönen K, Rauramaa R, Rehnberg E, Rice K, Rotter JI, Rudan I, Ruokonen A, Saaristo T, Sabater-Lleal M, Salomaa V, Savage DB, Saxena R, Schwarz P, Seedorf U, Sennblad B, Serrano-Rios M, Shuldiner AR, Sijbrands EJ, Siscovick DS, Smit JH, Small KS, Smith NL, Smith AV, Stančáková A, Stirrups K, Stumvoll M, Sun YV, Swift AJ, Tönjes A, Tuomilehto J, Trompet S, Uitterlinden AG, Uusitupa M, Vikström M, Vitart V, Vohl MC, Voight BF, Vollenweider P, Waeber G, Waterworth DM, Watkins H, Wheeler E, Widen E, Wild SH, Willems SM, Willemsen G, Wilson JF, Witteman JC, Wright AF, Yaghootkar H, Zelenika D, Zemunik T, Zgaga L, Wareham NJ, McCarthy MI, Barroso I, Watanabe RM, Florez JC, Dupuis J, Meigs JB, Langenberg C. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet 2012; 44:659-69. [PMID: 22581228 PMCID: PMC3613127 DOI: 10.1038/ng.2274] [Show More Authors] [Citation(s) in RCA: 626] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 04/13/2012] [Indexed: 12/15/2022]
Abstract
Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and β-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associations with fasting insulin and glucose on a genome-wide scale. We present six previously unknown loci associated with fasting insulin at P < 5 × 10(-8) in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals. Risk variants were associated with higher triglyceride and lower high-density lipoprotein (HDL) cholesterol levels, suggesting a role for these loci in insulin resistance pathways. The discovery of these loci will aid further characterization of the role of insulin resistance in T2D pathophysiology.
Collapse
Affiliation(s)
- Alisa K. Manning
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts
| | - Marie-France Hivert
- General Medicine Division, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Universite de Sherbrooke, Sherbrooke, Québec, Canada
| | - Robert A. Scott
- MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Jonna L. Grimsby
- General Medicine Division, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Nabila Bouatia-Naji
- Institut Pasteur de Lille, Lille, France
- Lille Nord de France University, Lille, France
| | - Han Chen
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Denis Rybin
- Boston University Data Coordinating Center, Boston, Massachusetts, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Lawrence F. Bielak
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Inga Prokopenko
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Daniel Barnes
- MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Gemma Cadby
- Genetic Epidemiology and Biostatistics Platform, Ontario Institute for Cancer Research. Toronto, Canada
- Prosserman Centre for Health Research, Samuel Lunenfeld Research Institute, Toronto, Canada
| | - Jouke-Jan Hottenga
- Netherlands Twin Register, Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| | - Erik Ingelsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Anne U. Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Toby Johnson
- Clinical Pharmacology and The Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Stavroula Kanoni
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hixton, Cambridge, UK
| | - Claes Ladenvall
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, Malmö, Sweden
- Lund University Diabetes Centre, Malmö, Sweden
| | - Vasiliki Lagou
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jari Lahti
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
| | - Cecile Lecoeur
- Institut Pasteur de Lille, Lille, France
- Lille Nord de France University, Lille, France
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Maria Teresa Martinez-Larrad
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - May E. Montasser
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Pau Navarro
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Edinburgh, UK
| | - John R. B. Perry
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Genetics of Complex Traits, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, UK
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Laura J. Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Perttu Salo
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Dmitry Shungin
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, Malmö, Sweden
- Lund University Diabetes Centre, Malmö, Sweden
- Department of Public Health & Clinical Medicine, Genetic Epidemiology & Clinical Research Group, Umeå University Hospital, Umeå, Sweden
- Department of Odontology, Umeå University, Sweden
| | - Rona J. Strawbridge
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Toshiko Tanaka
- Clinical Research Branch, National Institute on Aging, Baltimore, Maryland, USA
| | - Cornelia M. van Duijn
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Centre for medical systems biology, Netherlands Genomics Initiative, The Hague
- Netherlands Genomics Initiative and the Netherlands Consortium for Healthy Aging, Rotterdam, The Netherlands
| | - Ping An
- Department of Genetics Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mariza de Andrade
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Jeanette S. Andrews
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Thor Aspelund
- Icelandic Heart Association, Kopavogur, Iceland
- University of Iceland, Reykjavik, Iceland
| | - Mustafa Atalay
- Institute of Biomedicine/Physiology, University of Eastern Finland, Kuopio Campus, Kuopio, Finland
| | - Yurii Aulchenko
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Beverley Balkau
- Inserm, CESP Centre for research in Epidemiology and Population Health, Villejuif, France
- University Paris Sud 11, Villejuif, France
| | | | - Jacques S. Beckmann
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - John P. Beilby
- PathWest Laboratory Medicine of WA, J Block, QEII Medical Centre, Nedlands, Australia
- School of Pathology and Laboratory Medicine, The University of Western Australia, Nedlands, Australia
- Busselton Population Medical Research Foundation, B Block, QEII Medical Centre, Nedlands, Australia
| | - Claire Bellis
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Richard N. Bergman
- Department of Physiology & Biophysics, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - John Blangero
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Mladen Boban
- Department of Pharmacology, Faculty of Medicine, University of Split, Croatia
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Lori L. Bonnycastle
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Dorret I. Boomsma
- Netherlands Twin Register, Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| | - Ingrid B. Borecki
- Department of Genetics Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yvonne Böttcher
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Claude Bouchard
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Eric Brunner
- University College London, Department of Epidemiology & Public Health, London, UK
| | - Danijela Budimir
- Department of Pharmacology, Faculty of Medicine, University of Split, Croatia
| | - Harry Campbell
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Olga Carlson
- Laboratory of Clinical Investigation, National Institute of Aging, Baltimore, Maryland, USA
| | - Peter S. Chines
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Robert Clarke
- Clinical Trial Service Unit, University of Oxford, Oxford, UK
| | - Francis S. Collins
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Arturo Corbatón-Anchuelo
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - David Couper
- Department of Biostatistics, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
| | - Ulf de Faire
- Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - George V Dedoussis
- Department of Nutrition - Dietetics, Harokopio University, Athens, Greece
| | - Panos Deloukas
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hixton, Cambridge, UK
| | - Maria Dimitriou
- Department of Nutrition - Dietetics, Harokopio University, Athens, Greece
| | - Josephine M Egan
- Laboratory of Clinical Investigation, National Institute of Aging, Baltimore, Maryland, USA
| | | | - Michael R. Erdos
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Johan G. Eriksson
- Department of General Practice and Primary health Care, University of Helsinki, Finland
- Helsinki University Central Hospital, Unit of General Practice, Helsinki, Finland
- Folkhalsan Research Centre, Helsinki, Finland
- Vaasa Central Hospital, Vaasa, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | - Elodie Eury
- Institut Pasteur de Lille, Lille, France
- Lille Nord de France University, Lille, France
| | - Luigi Ferrucci
- Longitudinal Studies Section, Clinical Research Branch, National Institute on Aging, Baltimore, Maryland, USA
| | - Ian Ford
- Robertson Centre for Biostatistics, University of Glasgow, UK
| | - Nita G. Forouhi
- MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Caroline S Fox
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, USA
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria Grazia Franzosi
- Department of Cardiovascular Research, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Paul W Franks
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, Malmö, Sweden
- Lund University Diabetes Centre, Malmö, Sweden
- Department of Public Health & Clinical Medicine, Genetic Epidemiology & Clinical Research Group, Umeå University Hospital, Umeå, Sweden
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
- Institut National de la Recherche Agronomique, Université Paris, Bobigny Cedex, France
| | - Timothy M Frayling
- Genetics of Complex Traits, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, UK
| | - Philippe Froguel
- Institut Pasteur de Lille, Lille, France
- Lille Nord de France University, Lille, France
- Genomic Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Pilar Galan
- Institut National de la Santé et de la Recherche Médicale, Université Paris, Bobigny Cedex, France
| | - Eco de Geus
- Netherlands Twin Register, Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| | - Bruna Gigante
- Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nicole L. Glazer
- Department of Medicine, Section of Preventive Medicine and Epidemiology, BU School of Medicine, Boston, Massachusetts, USA
- Department of Epidemiology, BU School of Public Health, Boston, Massachusetts, USA
| | - Anuj Goel
- Department of Cardiovascular Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, Malmö, Sweden
- Lund University Diabetes Centre, Malmö, Sweden
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- University of Iceland, Reykjavik, Iceland
| | - Göran Hallmans
- Department of Public Health & Clinical Medicine, Nutrition Research, Umeå University, Sweden
| | - Anders Hamsten
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ola Hansson
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, Malmö, Sweden
- Lund University Diabetes Centre, Malmö, Sweden
| | - Tamara B. Harris
- Intramural Research Program, Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Bethesda, Maryland, USA
| | - Caroline Hayward
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Edinburgh, UK
| | - Simon Heath
- Centre National de Génotypage, Commissariat à L’Energie Atomique, Institut de Génomique, Evry, France
| | - Serge Hercberg
- Institut National de la Santé et de la Recherche Médicale, Université Paris, Bobigny Cedex, France
| | - Andrew A. Hicks
- Center for Biomedicine, European Academy Bozen/Bolzano, Bolzano, Italy - Affiliated Institute of the University of Lübeck, Lübeck, Germany
| | - Aroon Hingorani
- Genetic epidemiology group, University College London, Department of Epidemiology & Public Health, London, UK
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Genomics Initiative and the Netherlands Consortium for Healthy Aging, Rotterdam, The Netherlands
| | - Jennie Hui
- PathWest Laboratory Medicine of WA, J Block, QEII Medical Centre, Nedlands, Australia
- School of Pathology and Laboratory Medicine, The University of Western Australia, Nedlands, Australia
- Busselton Population Medical Research Foundation, B Block, QEII Medical Centre, Nedlands, Australia
- School of Population Health, The University of Western Australia, Nedlands, Australia
| | - Joseph Hung
- Busselton Population Medical Research Foundation, B Block, QEII Medical Centre, Nedlands, Australia
- Sir Charles Gairdner Hospital Unit, School of Medicine & Pharmacology, University of Western Australia, Australia
| | - Marjo Riitta Jarvelin
- Department of Epidemiology and Biostatistics, School of Public Health, MRC-HPA Centre for Environment and Health, Faculty of Medicine, Imperial College London, UK
- Institute of Health Sciences, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- National Institute of Health and Welfare, Oulu, Finland
| | - Min A. Jhun
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - J Wouter Jukema
- Department of Cardiology C5-P, Leiden University Medical Center, Leiden, the Netherlands
- Durrer Center for Cardiogenetic Research, Amsterdam, The Netherlands
| | - Antti Jula
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - W.H. Kao
- Division of Epidemiology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA
| | - Jaakko Kaprio
- National Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Hjelt Institute, Dept of Public Health, University of Helsinki, Finland
| | - Sharon L. R. Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sirkka Keinanen-Kiukaanniemi
- Faculty of Medicine, Institute of Health Sciences, University of Oulu, Oulu, Finland
- Unit of General Practice, Oulu University Hospital, Oulu, Finland
| | - Mika Kivimaki
- University College London, Department of Epidemiology & Public Health, London, UK
| | - Ivana Kolcic
- Department of Public Health, Faculty of Medicine, University of Split, Croatia
| | - Peter Kovacs
- Interdisciplinary Centre for Clinical Research, University of Leipzig, Leipzig, Germany
| | - Meena Kumari
- Genetic epidemiology group, University College London, Department of Epidemiology & Public Health, London, UK
| | - Johanna Kuusisto
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Kirsten Ohm Kyvik
- Institute of Regional Health Services Research and Professor Odense Patient data Explorative Network (OPEN)
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Timo Lakka
- Institute of Biomedicine/Physiology, University of Eastern Finland, Kuopio Campus, Kuopio, Finland
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Lars Lannfelt
- Department of Public Health and Caring Sciences, Uppsala University, Rudbecklaboratoriet, Uppsala, Sweden
| | - G Mark Lathrop
- Centre National de Génotypage, Commissariat à L’Energie Atomique, Institut de Génomique, Evry, France
| | - Lenore J. Launer
- Intramural Research Program, Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Bethesda, Maryland, USA
| | - Karin Leander
- Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Guo Li
- Cardiovascular Health Research Unit, University of Washington, Seattle, Washington, USA
| | - Lars Lind
- Department of Medical Sciences, University Hospital, Uppsala University, Uppsala, Sweden
| | - Jaana Lindstrom
- Diabetes Prevention Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Stéphane Lobbens
- Institut Pasteur de Lille, Lille, France
- Lille Nord de France University, Lille, France
| | - Ruth J. F. Loos
- MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Jian’an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Valeriya Lyssenko
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, Malmö, Sweden
- Lund University Diabetes Centre, Malmö, Sweden
| | - Reedik Mägi
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Patrik K. E. Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Michael Marmot
- University College London, Department of Epidemiology & Public Health, London, UK
| | - Pierre Meneton
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Paris, France
| | - Karen L. Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Vincent Mooser
- Division of Genetics, GlaxoSmithKline, Philadelphia, Pennsylvania, USA
| | - Mario A. Morken
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Iva Miljkovic
- Department of Epidemiology, Center for Aging and Population Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Narisu Narisu
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Jeff O’Connell
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Ken K. Ong
- MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Ben A. Oostra
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Lyle J. Palmer
- Genetic Epidemiology and Biostatistics Platform, Ontario Institute for Cancer Research. Toronto, Canada
- Prosserman Centre for Health Research, Samuel Lunenfeld Research Institute, Toronto, Canada
| | - Aarno Palotie
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hixton, Cambridge, UK
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Department of Medical Genetics, University of Helsinki and Helsinki University Central Hospital, Finland
| | - James S. Pankow
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota, USA
| | - John F. Peden
- Department of Cardiovascular Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Nancy L. Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Marina Pehlic
- Department of Biology, Faculty of Medicine, University of Split, Croatia
| | - Leena Peltonen
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hixton, Cambridge, UK
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Brenda Penninx
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department Psychiatry, EMGO Institute for Health and Care Research and Institute for Neurosciences, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Markus Perola
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Louis Perusse
- Department of Preventive Medicine, Laval University, Quebec, Canada
| | - Patricia A Peyser
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ozren Polasek
- Department of Public Health, Faculty of Medicine, University of Split, Croatia
| | - Peter P. Pramstaller
- Center for Biomedicine, European Academy Bozen/Bolzano, Bolzano, Italy - Affiliated Institute of the University of Lübeck, Lübeck, Germany
| | - Michael A. Province
- Department of Genetics Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Katri Räikkönen
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
| | - Rainer Rauramaa
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Emil Rehnberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ken Rice
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | | | - Igor Rudan
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Global Health, University of Split, Croatia
| | - Aimo Ruokonen
- Institute of Clinical Medicine, University of Oulu, Finland
| | - Timo Saaristo
- Finnish Diabetes Association, Tampere, Finland
- Pirkanmaa Hospital District, Tampere, Finland
| | - Maria Sabater-Lleal
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Veikko Salomaa
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - David B. Savage
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Richa Saxena
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Peter Schwarz
- Department of Medicine, Division Prevention and Care of Diabetes, University of Dresden, Dresden, Germany
| | - Udo Seedorf
- Leibniz Institute for Arteriosclerosis Research, University of Munster, Germany
| | - Bengt Sennblad
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Serrano-Rios
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Alan R. Shuldiner
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland, School of Medicine, Baltimore, Maryland, USA
- Geriatric Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore, Maryland, USA
| | | | - David S. Siscovick
- Cardiovascular Health Research Unit, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Johannes H. Smit
- Department of Psychiatry, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands
| | - Kerrin S. Small
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Nicholas L. Smith
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Group Health Research Institute, Group Health Cooperative, Seattle, Washington, USA
- Seattle Epidemiologic Research and Information Center, Veterans Affairs Office of Research and Development, Seattle, WA, USA
| | - Albert Vernon Smith
- Icelandic Heart Association, Kopavogur, Iceland
- University of Iceland, Reykjavik, Iceland
| | - Alena Stančáková
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Kathleen Stirrups
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hixton, Cambridge, UK
| | - Michael Stumvoll
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Department of Medicine, University of Leipzig, Division of Endocrinology and Diabetes, Leipzig, Germany
| | - Yan V. Sun
- Department of Epidemiology, Emory University, Atlanta, Georgia, US
| | - Amy J. Swift
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Anke Tönjes
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Department of Medicine, University of Leipzig, Division of Endocrinology and Diabetes, Leipzig, Germany
| | - Jaakko Tuomilehto
- Diabetes Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
- South Ostrobothnia Central Hospital, Seinäjoki, Finland
- Hospital Universitario La Paz, Madrid, Spain
- Centre for Vascular Prevention, Danube-University Krems, Krems, Austria
| | - Stella Trompet
- Department of Cardiology C5-P, Leiden University Medical Center, Leiden, the Netherlands
| | - Andre G. Uitterlinden
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Genomics Initiative and the Netherlands Consortium for Healthy Aging, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Matti Uusitupa
- Institute of Public Health and Clinical Nutrition, University of Easten Finland, Kuopio, Finland
- Research Unit, Kuopio University Hospital, Kuopio, Finland
| | - Max Vikström
- Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Veronique Vitart
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Edinburgh, UK
| | - Marie-Claude Vohl
- Department of Food Science and Nutrition, Laval University, Quebec, Canada
| | - Benjamin F. Voight
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - Peter Vollenweider
- Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Gerard Waeber
- Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Dawn M Waterworth
- Division of Genetics, GlaxoSmithKline, Philadelphia, Pennsylvania, USA
| | - Hugh Watkins
- Department of Cardiovascular Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Eleanor Wheeler
- Metabolic Disease Group, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Elisabeth Widen
- Institute for Molecular Medicine Finland, University of Helsinki, Finland
| | - Sarah H. Wild
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Sara M. Willems
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Gonneke Willemsen
- Netherlands Twin Register, Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| | - James F. Wilson
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Jacqueline C.M. Witteman
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Genomics Initiative and the Netherlands Consortium for Healthy Aging, Rotterdam, The Netherlands
| | - Alan F. Wright
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Edinburgh, UK
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, UK
| | - Diana Zelenika
- Centre National de Génotypage, Commissariat à L’Energie Atomique, Institut de Génomique, Evry, France
| | - Tatijana Zemunik
- Department of Biology, Faculty of Medicine, University of Split, Croatia
| | - Lina Zgaga
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
- Department of medical statistics, epidemiology and medical informatics, University of Zagreb, Zagreb, Croatia
| | | | | | - Nicholas J. Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Mark I. McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Ines Barroso
- Metabolic Disease Group, Wellcome Trust Sanger Institute, Hinxton, UK
- University of Cambridge, Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Richard M. Watanabe
- Department of Physiology & Biophysics, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Jose C. Florez
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
- Diabetes Research Center, Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, USA
| | - James B. Meigs
- General Medicine Division, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| |
Collapse
|
31
|
Dahlman I, Arner P. Genetics of adipose tissue biology. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 94:39-74. [PMID: 21036322 DOI: 10.1016/b978-0-12-375003-7.00003-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Adipose tissue morphology and release of free fatty acids, as well as peptide hormones, are believed to contribute to obesity and related metabolic disorders. These adipose tissue phenotypes are influenced by adiposity, but there is also a strong hereditary impact. Polymorphisms in numerous adipose-expressed genes have been evaluated for association with adipocyte and clinical phenotypes. In our opinion, some results are convincing. Thus ADRB2 and GPR74 genes are associated with adipocyte lipolysis, GPR74 also with BMI; PPARG and SREBP1, which promote adipogenesis and lipid storage, are associated with T2D and possible adiposity; ADIPOQ and ARL15 are associated with circulating levels of adiponectin, ARL15 also with coronary heart disease. We anticipate that the use of complementary approaches such as expression profiling and RNAi screening, and studies of additional levels of gene regulation, that is, miRNA and epigenetics, will be important to unravel the genetics of adipose tissue function.
Collapse
|
32
|
Sentinelli F, Romeo S, Maglio C, Incani M, Burza MA, Scano F, Coccia F, Cossu E, Leonetti F, Baroni MG. Lack of effect of apolipoprotein C3 polymorphisms on indices of liver steatosis, lipid profile and insulin resistance in obese Southern Europeans. Lipids Health Dis 2011; 10:93. [PMID: 21663607 PMCID: PMC3135552 DOI: 10.1186/1476-511x-10-93] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 06/10/2011] [Indexed: 12/14/2022] Open
Abstract
Background Apolipoprotein C3 (APOC3) is a component of triglyceride-rich lipoproteins, and APOC3 rs2854116 and rs2854117 polymorphisms have been associated with non-alcoholic fatty liver disease, hypertriglyceridaemia, and insulin-resistance. Objective To determine if the APOC3 variants alter the susceptibility of obese subjects to develop liver damage, hypertrigliceridaemia, and insulin-resistance. Methods The study was carried out on 585 unrelated obese Italians (median body mass index BMI = 41 kg/m2) who were genotyped for the rs2854116 and rs2854117 variants. All participants underwent oral glucose tolerance tests (OGTT), with measurement of glucose, insulin, lipid parameters. Indices of insulin-resistance (HOMA and ISI) were calculated. Alanine transaminase (ALT) and aspartate transaminase (AST) were used as markers of liver injury. Results The study subjects were divided into two groups: those homozygous for the wild-type alleles at both SNPs (-482C and -455T alleles) and those who were carriers of at least one variant allele or both (-482T, -455C or both). Also each SNP was analysed independently. No significant differences were found in ALT and AST levels and in the lipid profile between the two groups. Insulin concentrations, glucose tolerance and insulin sensitivity were similar in the two groups. Conclusion We did not identify any significant association between APOC3 polymorphisms and fatty liver disease, lipids, and insulin-resistance in obese subjects, thus not confirming the suggested role of these APOC3 gene sequence variants.
Collapse
Affiliation(s)
- Federica Sentinelli
- Endocrinology and Diabetes, Department of Medical Sciences, University of Cagliari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lu Y, Ye X, Cao Y, Li Q, Yu X, Cheng J, Gao Y, Ma J, Du W, Zhou L. Genetic variants in peroxisome proliferator-activated receptor-γ and retinoid X receptor-α gene and type 2 diabetes risk: a case-control study of a Chinese Han population. Diabetes Technol Ther 2011; 13:157-164. [PMID: 21284483 DOI: 10.1089/dia.2010.0122] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The serum levels of adiponectin are paradoxically decreased in obesity and may play important roles in the development of type 2 diabetes mellitus (T2DM). Potentially functional polymorphisms in the peroxisome proliferator-activated receptor-γ (PPAR-γ) and retinoid X receptor-α (RXR-α) genes may alter T2DM risks by increasing the human adiponectin promoter activity in cells. Therefore, we hypothesized that single nucleotide polymorphisms (SNPs) in PPAR-γ and RXR-α were associated with risk of T2DM. To test this hypothesis, three potentially functional SNPs of PPAR-γ and four of RXR-α with a minor allele frequency of ≥ 0.05 in the Chinese Han population were identified from the National Center for Biotechnology Information dbSNPs database to evaluate their association with T2DM. METHODS Polymerase chain reaction-restriction fragment length polymorphism was performed to test the genotypes in T2DM patients (n = 540) and normal controls (n = 604). RESULTS The variant genotypes rs2920502CC, rs3856806CT, rs3856806CT/TT, and rs4240711AG/GG were associated with T2DM. Furthermore, the prevalences of haplotype GTC and CTG in PPAR-γ and GTAC in RXR-α were less frequent in cases (17.1%, 2.6%, and 2.4%, respectively) than in controls (22.3%, 3.8%, and 6.6%, respectively), whereas GTGT in RXR-α was more frequent in cases (6.9%) than in controls (4.4%) (P < 0.05 for both two-sided χ(2) test and thousand times permutation tests). Patients with genotype CT/TT of rs3856806 and genotype AG/GG of rs4240711 had higher levels of serum adiponectin than those with the genotype CC and genotype AA (P = 0.026 and 0.021, respectively). Model X2 X5 X6 X7 (rs3856806, rs3132291, rs4240711, and rs4842194) was the best model with the highest test balanced accuracy (0.5764) (cross-validation consistency = 10/10) in the multifactor dimensionality reduction method. CONCLUSIONS The PPAR-γ and RXR-α gene variants associated with the development of T2DM in this study must be investigated in a larger population to reveal any potential effects on metabolism.
Collapse
Affiliation(s)
- Ying Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Manning AK, LaValley M, Liu CT, Rice K, An P, Liu Y, Miljkovic I, Rasmussen-Torvik L, Harris TB, Province MA, Borecki IB, Florez JC, Meigs JB, Cupples LA, Dupuis J. Meta-analysis of gene-environment interaction: joint estimation of SNP and SNP × environment regression coefficients. Genet Epidemiol 2011; 35:11-8. [PMID: 21181894 PMCID: PMC3312394 DOI: 10.1002/gepi.20546] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Genetic discoveries are validated through the meta-analysis of genome-wide association scans in large international consortia. Because environmental variables may interact with genetic factors, investigation of differing genetic effects for distinct levels of an environmental exposure in these large consortia may yield additional susceptibility loci undetected by main effects analysis. We describe a method of joint meta-analysis (JMA) of SNP and SNP by Environment (SNP × E) regression coefficients for use in gene-environment interaction studies. METHODS In testing SNP × E interactions, one approach uses a two degree of freedom test to identify genetic variants that influence the trait of interest. This approach detects both main and interaction effects between the trait and the SNP. We propose a method to jointly meta-analyze the SNP and SNP × E coefficients using multivariate generalized least squares. This approach provides confidence intervals of the two estimates, a joint significance test for SNP and SNP × E terms, and a test of homogeneity across samples. RESULTS We present a simulation study comparing this method to four other methods of meta-analysis and demonstrate that the JMA performs better than the others when both main and interaction effects are present. Additionally, we implemented our methods in a meta-analysis of the association between SNPs from the type 2 diabetes-associated gene PPARG and log-transformed fasting insulin levels and interaction by body mass index in a combined sample of 19,466 individuals from five cohorts.
Collapse
Affiliation(s)
- Alisa K Manning
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bhagat N, Agrawal M, Luthra K, Vikram NK, Misra A, Gupta R. Evaluation of single nucleotide polymorphisms of Pro12Ala in peroxisome proliferator-activated receptor-γ and Gly308Ala in tumor necrosis factor-α genes in obese Asian Indians: a population-based study. Diabetes Metab Syndr Obes 2010; 3:349-56. [PMID: 21437104 PMCID: PMC3047964 DOI: 10.2147/dmsott.s13514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND A population-based case control study was performed to determine the associations of Pro12Ala polymorphism in peroxisome proliferator-activated receptor-γ (PPARG) and Gly308Ala polymorphism in tumor necrosis factor-α (TNFA) genes in obese subjects. PATIENTS AND METHODS Of 1,400 eligible subjects, ≧20 years, we recruited only 1,127. For extreme phenotype case-control design, we evaluated 201 subjects with body mass index (BMI) ≧30 kg/m(2) (Group 1) and 143 with BMI <20 kg/m(2) (Group 2). Clinical, anthropometric, biochemical, and nutritional details and polymorphisms were estimated. RESULTS In Group 1, the dietary intake of calories and fats was higher, physical activity was lower, and prevalence of truncal obesity, hypertension, high total cholesterol, low high-density lipoprotein cholesterol, and diabetes was greater than in Group 2. There were no homozygous polymorphisms of either gene. Heterozygous Pro12Ala polymorphism in PPARG was found in 15 (7.5%) subjects in Group 1 and 3 (2.1%) subjects in Group 2 (P = 0.028), and heterozygous Gly308Ala polymorphism in TNFA was found in 19 (9.5%) in Group 1 and 7 (4.9%) in Group 2 (P = 0.115). Presence of heterozygous polymorphism in PPARG and TNFA-predicted obesity with univariate odds ratio ([OR], 95% confidence intervals) of 2.25 (1.32-3.84, P = 0.003) and 1.48 (1.10-1.99, P = 0.009) and with multivariate OR 1.74 (1.03-2.93, P = 0.038) and 1.46 (1.05-2.03, P = 0.024), respectively. The addition of dietary and physical activity variables did not result in significant change. CONCLUSION Obese Asian Indians have greater prevalence of heterozygous polymorphisms of Pro12Ala in PPARG and Gly308Ala in TNFA genes.
Collapse
Affiliation(s)
- Namita Bhagat
- Department of Home Science, University of Rajasthan, Jaipur, Rajasthan, India
- Department of Medicine, Fortis Escorts Hospital, Jaipur, Rajasthan, India
| | - Mukta Agrawal
- Department of Home Science, University of Rajasthan, Jaipur, Rajasthan, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Naval K Vikram
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Anoop Misra
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Rajeev Gupta
- Department of Medicine, Fortis Escorts Hospital, Jaipur, Rajasthan, India
- Correspondence: Rajeev Gupta, Department of Medicine, Fortis Escorts Hospital, Malviya Nagar, Jaipur 302017, India, Fax +91 141 4008151, Email
| |
Collapse
|
36
|
Hsieh MC, Lin KD, Tien KJ, Tu ST, Hsiao JY, Chang SJ, Lin SR, Shing SJ, Chen HC. Common polymorphisms of the peroxisome proliferator-activated receptor-gamma (Pro12Ala) and peroxisome proliferator-activated receptor-gamma coactivator-1 (Gly482Ser) and the response to pioglitazone in Chinese patients with type 2 diabetes mellitus. Metabolism 2010; 59:1139-44. [PMID: 20045142 DOI: 10.1016/j.metabol.2009.10.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Accepted: 10/16/2009] [Indexed: 10/20/2022]
Abstract
We investigated the effects of the common polymorphisms in the peroxisome proliferator-activated receptor-gamma (PPAR-gamma; Pro12Ala) and in PPAR-gamma coactivator-1(PGC-1; Gly482Ser) genes on the response to pioglitazone in Chinese with type 2 diabetes mellitus. A total of 250 patients with type 2 diabetes mellitus were treated with pioglitazone (30 mg/d) for 24 weeks without a change in previous medications. All patients were genotyped for the PPAR-gamma Pro12Ala and PGC-1 Gly482Ser polymorphisms. The Ala12Ala and Pro12Ala genotypes (26.0% vs 13.5%, P = .025) and Ala allele (15.6% vs 7.3%, P = .008) were significantly more frequent in pioglitazone responders than in nonresponders. The distribution of PGC-1 genotypes and alleles was not significantly different between responders and nonresponders. The decrease in fasting glucose (50.4 +/- 52.2 vs 43.3 +/- 51.7 mg/dL, P < .001) and hemoglobin A(1c) (0.57% +/- 1.44% vs 0.35% +/- 1.10%, P = .004) levels was significantly greater in subjects with the Ala12 carriers (Pro12Ala and Ala12Ala) than in those without the allele (Pro12Pro). Baseline fasting glucose and triglyceride levels were related to the response of pioglitazone. Only the PPAR-gamma Pro12Ala polymorphism was found to be associated with the response of pioglitazone by multiple logistic regression analysis. The PPAR-gamma Pro12Ala gene polymorphism is associated with the response to pioglitazone in Chinese patients with type 2 diabetes mellitus. These findings may be helpful for targeted treatment of diabetes by identifying patients who are likely to respond to pioglitazone.
Collapse
Affiliation(s)
- Ming-Chia Hsieh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Medical University/Chung-Ho Memorial Hospital, Kaohsiung 807, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ruchat SM, Rankinen T, Weisnagel SJ, Rice T, Rao DC, Bergman RN, Bouchard C, Pérusse L. Improvements in glucose homeostasis in response to regular exercise are influenced by the PPARG Pro12Ala variant: results from the HERITAGE Family Study. Diabetologia 2010; 53:679-89. [PMID: 20043145 PMCID: PMC2840709 DOI: 10.1007/s00125-009-1630-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 11/17/2009] [Indexed: 11/30/2022]
Abstract
AIMS/HYPOTHESIS Exercise training improves glucose homeostasis, but large inter-individual differences are reported, suggesting a role of genetic factors. We investigated whether variants either confirmed or newly identified as diabetes susceptibility variants through genome-wide association studies (GWAS) modulate changes in phenotypes derived from an IVGTT in response to an endurance training programme. METHODS We analysed eight polymorphisms in seven type 2 diabetes genes (CDKAL1 rs7756992; CDKN2A and CDKN2B rs10811661 and rs564398; HHEX rs7923837; IGF2BP2 rs4402960; KCNJ11 rs5215; PPARG rs1801282; and TCF7L2 rs7903146) in a maximum of 481 sedentary, non-diabetic white individuals, who participated in a 20-week endurance training programme. Associations were tested between the variants and changes in IVGTT-derived phenotypes. RESULTS The only evidence of association with training response was found with PPARG rs1801282 (Pro12Ala). We observed that Ala carriers experienced greater increase in overall glucose tolerance (Deltaglucose disappearance index Ala/Ala 0.22 +/- 0.22, Pro/Ala 0.14 +/- 0.06, Pro/Pro 0.004 +/- 0.03; p = 0.0008), glucose effectiveness (Ala/Ala 0.28 +/- 0.41, Pro/Ala 0.44 +/- 0.14, Pro/Pro 0.09 +/- 0.06; p = 0.004), acute insulin response to glucose (Ala/Ala 64.21 +/- 37.73, Pro/Ala -11.92 +/- 40.30, Pro/Pro -46.30 +/- 14.70; p = 0.03) and disposition index (Ala/Ala 551.8 +/- 448.5, Pro/Ala 534.6 +/- 218.3, Pro/Pro -7.44 +/- 88.18; p = 0.003). CONCLUSIONS/INTERPRETATION Compared with Pro/Pro individuals, PPARG Ala carriers experienced greater improvements in glucose and insulin metabolism in response to regular endurance training. However, we did not find evidence of association between type 2 diabetes susceptibility variants recently identified through GWAS and glucose homeostasis response to exercise. Our results extend those of previous studies showing that Ala carriers appear to be more responsive to beneficial health effects of lifestyle interventions.
Collapse
Affiliation(s)
- S.-M. Ruchat
- Department of Social and Preventive Medicine, PEPS - Laval University, 2300 rue de la Terrasse, Quebec, QC, Canada G1V 0A6
- Lipid Research Center, CHUL Research Center, Quebec, QC, Canada
| | - T. Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - S. J. Weisnagel
- Department of Social and Preventive Medicine, PEPS - Laval University, 2300 rue de la Terrasse, Quebec, QC, Canada G1V 0A6
- Lipid Research Center, CHUL Research Center, Quebec, QC, Canada
| | - T. Rice
- Division of Biostatistics, Washington University, St Louis, MO, USA
| | - D. C. Rao
- Division of Biostatistics, Washington University, St Louis, MO, USA
| | - R. N. Bergman
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - C. Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - L. Pérusse
- Department of Social and Preventive Medicine, PEPS - Laval University, 2300 rue de la Terrasse, Quebec, QC, Canada G1V 0A6
- Lipid Research Center, CHUL Research Center, Quebec, QC, Canada
- Nutraceuticals and Functional Foods Institute (INAF), Quebec, QC, Canada
| |
Collapse
|
38
|
Gouda HN, Sagoo GS, Harding AH, Yates J, Sandhu MS, Higgins JPT. The association between the peroxisome proliferator-activated receptor-gamma2 (PPARG2) Pro12Ala gene variant and type 2 diabetes mellitus: a HuGE review and meta-analysis. Am J Epidemiol 2010; 171:645-55. [PMID: 20179158 PMCID: PMC2834889 DOI: 10.1093/aje/kwp450] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The peroxisome proliferator-activated receptor-γ gene (PPARG) has been implicated in the etiology of type 2 diabetes mellitus and has been investigated in numerous epidemiologic studies. In this Human Genome Epidemiology review, the authors assessed this relation in an updated meta-analysis of 60 association studies. Electronic literature searches were conducted on September 14, 2009. Population-based cohort, case-control, cross-sectional, or genome-wide association studies reporting associations between the PPARG Pro12Ala gene variant (rs1801282) and type 2 diabetes were included. An updated literature-based meta-analysis involving 32,849 type 2 diabetes cases and 47,456 controls in relation to the PPARG Pro12Ala variant was conducted. The combined overall odds ratio, calculated by per-allele genetic model random-effects meta-analysis for type 2 diabetes and the Pro12Ala polymorphism, was 0.86 (95% confidence interval: 0.81, 0.90). The analysis indicated a moderate level of heterogeneity attributable to genuine variation in gene effect size (I2 = 37%). This may reflect the variation observed between ethnic populations and/or differences in body mass index. Work on PPARG Pro12Ala should now focus on the observed heterogeneity in the magnitude of the association between populations. Further investigations into gene-gene and gene-environment interactions may prove enlightening.
Collapse
Affiliation(s)
- Hebe N Gouda
- Department of Public Health and Primary Care, University ofCambridge, Cambridge CB2 0SR, UK.
| | | | | | | | | | | |
Collapse
|
39
|
Corleto VD, Pagnini C, Margagnoni G, Guagnozzi D, Torre MS, Martorelli M, Latiano A, Annese V, Caprilli R, Delle Fave G. IL-1beta-511 and IL-1RN*2 polymorphisms in inflammatory bowel disease: An Italian population study and meta-analysis of European studies. Dig Liver Dis 2010; 42:179-184. [PMID: 19643686 DOI: 10.1016/j.dld.2009.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 05/22/2009] [Accepted: 06/23/2009] [Indexed: 12/11/2022]
Abstract
BACKGROUND Several studies have tried to find possible associations between genetic polymorphisms and inflammatory bowel disease prevalence and/or phenotype. Our objectives were to test the frequency and phenotypic association of two polymorphisms of the interleukin-1 pathway, IL-1beta-511 and IL-1RN*2, in inflammatory bowel disease patients and controls from an Italian population, and to compare our data with previously published similar studies in Europe. METHODS We screened 290 inflammatory bowel disease patients (178 ulcerative colitis and 112 Crohn's disease) and 106 controls for IL-1beta-511 and IL-1RN*2 polymorphisms by polymerase chain reaction (PCR)-based methods. The prevalence of the IL-1beta-511 and IL-1RN*2 polymorphisms in European inflammatory bowel disease patients was calculated by a meta-analysis of previously published studies using the Mantel-Haenszel method. RESULTS No correlation between the IL-1 polymorphisms and inflammatory bowel disease prevalence was found in our study population. Crohn's disease patients with the IL-1beta-511 mutation had a higher rate of complicated disease. A trend for an association between the IL-1RN*2 mutation and a higher risk for inflammatory bowel disease has been found only in studies with Northern European populations. CONCLUSIONS The IL-1beta-511 mutation can be associated with complex disease behaviour in Italian Crohn's disease patients. The IL-1RN*2 mutation may play a role in Northern European people with inflammatory bowel disease.
Collapse
|
40
|
De Silva NMG, Frayling TM. Novel biological insights emerging from genetic studies of type 2 diabetes and related metabolic traits. Curr Opin Lipidol 2010; 21:44-50. [PMID: 19956073 DOI: 10.1097/mol.0b013e328334fdb6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW In the past 3 years, genome-wide association studies have identified many tens of common genetic variants associated with metabolic diseases and traits. Although much further research is needed to identify the target genes, the associations between gene variants and diseases are already providing biological insights. The purpose of this review is to update the reader with the most relevant findings, with a particular emphasis on type 2 diabetes (T2D) and glucose metabolism, and discuss some of the biological implications of the genetic findings. RECENT FINDINGS Largely through recent genome-wide association studies, we now know of approximately 20 gene variants associated with T2D, 10 with body mass index (BMI) and obesity, four with fasting glucose levels in the normoglycaemic population and over 30 with lipid levels. These findings are stimulating many new important areas of research related to metabolic diseases. For T2D and glucose metabolism, we discuss a number of aspects and implications of the genetic findings, including the observations that T2D gene variants are not usually in or near obvious candidate genes, highlighting the poor prior knowledge of the biology of the disease; most T2D gene variants are associated with beta-cell function rather than insulin resistance; there is a difference between genes that influence variation in normal glucose levels compared with those influencing onset and progression of diabetes; and there is a genetic link between diabetes and foetal growth. SUMMARY Genetic studies in the past 3 years have provided a greatly increased knowledge of the regions of the genome involved in adverse metabolic consequences. There are now over 100 common genetic variants reproducibly associated with metabolic traits, including reduced beta-cell function, obesity, increased lipid levels and increased glucose levels. These genetic findings are already altering perceptions of how these traits develop and interact to result in diseases such as T2D.
Collapse
Affiliation(s)
- N Maneka G De Silva
- Genetics of Complex Traits, Institute of Biomedical and Clinical Science, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, UK
| | | |
Collapse
|
41
|
Menzaghi C, Trischitta V. Genetics of serum resistin: a paradigm of population-specific regulation? Diabetologia 2010; 53:226-8. [PMID: 19882136 DOI: 10.1007/s00125-009-1589-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 10/05/2009] [Indexed: 10/20/2022]
Affiliation(s)
- C Menzaghi
- Research Unit of Diabetes and Endocrine Diseases, IRCCS Casa Sollievo della Sofferenza, Viale Padre Pio, 71013 San Giovanni Rotondo, FG, Italy.
| | | |
Collapse
|
42
|
Investigation of association of PPARγ gene Pro12Ala polymorphism with metabolic syndrome variables. Proc Nutr Soc 2010. [DOI: 10.1017/s0029665110003319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Florez JC. Novel genetic findings applied to the clinic in type 2 diabetes. ENDOCRINOLOGIA Y NUTRICION : ORGANO DE LA SOCIEDAD ESPANOLA DE ENDOCRINOLOGIA Y NUTRICION 2009; 56 Suppl 4:21-25. [PMID: 20629226 DOI: 10.1016/s1575-0922(09)73512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- Jose C Florez
- Center for Human Genetic Research and Diabetes Center (Diabetes Unit), Massachusetts General Hospital, Boston 02114, USA.
| |
Collapse
|
44
|
Prudente S, Morini E, Trischitta V. Insulin signaling regulating genes: effect on T2DM and cardiovascular risk. Nat Rev Endocrinol 2009; 5:682-93. [PMID: 19924153 DOI: 10.1038/nrendo.2009.215] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a complex disorder that has a heterogeneous genetic and environmental background. In this Review, we discuss the role of relatively infrequent polymorphisms of genes that regulate insulin signaling (including the K121Q polymorphism of ENPP1, the G972R polymorphism of IRS1 and the Q84R polymorphism of TRIB3) in T2DM and other conditions related to insulin resistance. The biological relevance of these three polymorphisms has been very thoroughly characterized both in vitro and in vivo and the available data indicate that they all affect insulin signaling and action as well as insulin secretion. They also affect insulin-mediated regulation of endothelial cell function. In addition, several reports indicate that the effects of all three polymorphisms on the risk of T2DM and cardiovascular diseases related to insulin resistance depend on the clinical features of the individual, including their body weight and age at disease onset. Thus, these polymorphisms might be used to demonstrate how difficult it is to ascertain the contribution of relatively infrequent genetic variants with heterogeneous effects on disease susceptibility. Unraveling the role of such variants might be facilitated by improving disease definition and focusing on specific subsets of patients.
Collapse
Affiliation(s)
- Sabrina Prudente
- IRCCS Casa Sollievo della Sofferenza, Mendel Institute, Rome, Italy
| | | | | |
Collapse
|
45
|
De Cosmo S, Motterlini N, Prudente S, Pellegrini F, Trevisan R, Bossi A, Remuzzi G, Trischitta V, Ruggenenti P. Impact of the PPAR-gamma2 Pro12Ala polymorphism and ACE inhibitor therapy on new-onset microalbuminuria in type 2 diabetes: evidence from BENEDICT. Diabetes 2009; 58:2920-9. [PMID: 19720797 PMCID: PMC2780880 DOI: 10.2337/db09-0407] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Cross-sectional studies found less microalbuminuria in type 2 diabetic patients with the Ala12 allele of the peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) Pro12Ala polymorphism. We prospectively evaluated the association between Pro12Ala polymorphism (rs1801282) and new-onset microalbuminuria. RESEARCH DESIGN AND METHODS Pro12Ala polymorphism was genotyped by TaqMan-based assay in genomic DNA of 1,119 consenting patients from BErgamo NEphrologic DIabetic Complications Trial (BENEDICT)-a prospective, randomized trial evaluating ACE inhibition effect on new-onset microalbuminuria (albuminuria 20-200 microg/min in at least two of three consecutive overnight urine collections in two consecutive visits) in hypertensive type 2 diabetes with albuminuria <20 microg/min at inclusion. RESULTS Baseline characteristics of Ala (Ala/Ala or Ala/Pro) carriers and Pro/Pro homozygotes were similar, with a nonsignificant trend to lower albuminuria (P = 0.1107) in the 177 Ala carriers. Over a median (interquartile range) of 44.0 (17.1-51.9) months, 7 (4%) Ala carriers and 86 (9.1%) Pro/Pro homozygotes developed microalbuminuria (hazard ratio [HR] 0.45 [95% CI 0.21-0.97]; P = 0.042). Final albuminuria was significantly lower in Ala carriers than Pro/Pro homozygotes (7.3 +/- 9.1 vs. 10.5 +/- 24.9 microg/min, respectively), even after adjustment for baseline albuminuria (P = 0.048). Baseline and follow-up blood pressure and metabolic control were similar in both groups. Incidence of microalbuminuria was significantly decreased by ACE versus non-ACE inhibitor therapy in Pro/Pro homozygotes (6.3 vs. 11.9%, respectively, HR 0.46 [0.29-0.72]; P < 0.001). CONCLUSIONS In type 2 diabetes, the Ala allele protects from worsening albuminuria and new-onset microalbuminuria, and ACE inhibition blunts the excess risk of microalbuminuria associated with the Pro/Pro genotype. Evaluating Pro12Ala polymorphism may help identifying patients at risk who may benefit the most from early renoprotective therapy.
Collapse
Affiliation(s)
- Salvatore De Cosmo
- Unit of Endocrinology, IRCCS “Casa Sollievo della Sofferenza,” San Giovanni Rotondo, Italy
| | - Nicola Motterlini
- Clinical Research Center for Rare Diseases “Aldo & Cele Daccò,” Mario Negri Institute for Pharmacological Research, Bergamo, Italy
| | - Sabrina Prudente
- Research Unit of Diabetes and Endocrine Diseases, IRCCS “Casa Sollievo della Sofferenza,” San Giovanni Rotondo, Italy
- IRCCS “Casa Sollievo della Sofferenza,” Mendel Institute, Rome, Italy
| | - Fabio Pellegrini
- Unit of Biostatistics, IRCCS “Casa Sollievo della Sofferenza,” San Giovanni Rotondo, Italy
| | - Roberto Trevisan
- Unit of Diabetology, Azienda Ospedaliera Ospedali Riuniti di Bergamo, Bergamo, Italy
| | - Antonio Bossi
- Unit of Diabetology, Treviglio Hospital, Treviglio, Italy
| | - Giuseppe Remuzzi
- Clinical Research Center for Rare Diseases “Aldo & Cele Daccò,” Mario Negri Institute for Pharmacological Research, Bergamo, Italy
- Unit of Nephrology, Azienda Ospedaliera Ospedali Riuniti di Bergamo, Bergamo, Italy
- Corresponding author: Giuseppe Remuzzi,
| | - Vincenzo Trischitta
- Research Unit of Diabetes and Endocrine Diseases, IRCCS “Casa Sollievo della Sofferenza,” San Giovanni Rotondo, Italy
- IRCCS “Casa Sollievo della Sofferenza,” Mendel Institute, Rome, Italy
- Department of Medical Pathophysiology, “Sapienza” University, Rome, Italy
| | - Piero Ruggenenti
- Clinical Research Center for Rare Diseases “Aldo & Cele Daccò,” Mario Negri Institute for Pharmacological Research, Bergamo, Italy
- Unit of Nephrology, Azienda Ospedaliera Ospedali Riuniti di Bergamo, Bergamo, Italy
| | | |
Collapse
|
46
|
Grant RW, Hivert M, Pandiscio JC, Florez JC, Nathan DM, Meigs JB. The clinical application of genetic testing in type 2 diabetes: a patient and physician survey. Diabetologia 2009; 52:2299-2305. [PMID: 19727660 PMCID: PMC3829642 DOI: 10.1007/s00125-009-1512-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 07/30/2009] [Indexed: 11/25/2022]
Abstract
AIMS/HYPOTHESIS Advances in type 2 diabetes genetics have raised hopes that genetic testing will improve disease prediction, prevention and treatment. Little is known about current physician and patient views regarding type 2 diabetes genetic testing. We hypothesised that physician and patient views would differ regarding the impact of genetic testing on motivation and adherence. METHODS We surveyed a nationally representative sample of US primary care physicians and endocrinologists (n = 304), a random sample of non-diabetic primary care patients (n = 152) and patients enrolled in a diabetes pharmacogenetics study (n = 89). RESULTS Physicians and patients favoured genetic testing for diabetes risk prediction (79% of physicians vs 80% of non-diabetic patients would be somewhat/very likely to order/request testing, p = 0.7). More patients than physicians (71% vs 23%, p < 0.01) indicated that a 'high risk' result would be very likely to improve motivation to adopt preventive lifestyle changes. Patients favoured genetic testing to guide therapy (78% of patients vs 48% of physicians very likely to request/recommend testing, p < 0.01) and reported that genetic testing would make them 'much more motivated' to adhere to medications (72% vs 18% of physicians, p < 0.01). Many physicians (39%) would be somewhat/very likely to order genetic testing before published evidence of clinical efficacy. CONCLUSIONS/INTERPRETATION Despite the paucity of current data, physicians and patients reported high expectations that genetic testing would improve patient motivation to adopt key behaviours for the prevention or control of type 2 diabetes. This suggests the testable hypothesis that 'genetic' risk information might have greater value to motivate behaviour change compared with standard risk information.
Collapse
Affiliation(s)
- R W Grant
- Division of General Medicine, Massachusetts General Hospital, 50 Staniford St, 9th floor, Boston, MA, 02114, USA.
- Harvard Medical School, Boston, MA, USA.
| | - M Hivert
- Division of General Medicine, Massachusetts General Hospital, 50 Staniford St, 9th floor, Boston, MA, 02114, USA
| | - J C Pandiscio
- Division of General Medicine, Massachusetts General Hospital, 50 Staniford St, 9th floor, Boston, MA, 02114, USA
| | - J C Florez
- Diabetes Research Center (Diabetes Unit), Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - D M Nathan
- Diabetes Research Center (Diabetes Unit), Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - J B Meigs
- Division of General Medicine, Massachusetts General Hospital, 50 Staniford St, 9th floor, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
47
|
Jeninga EH, Gurnell M, Kalkhoven E. Functional implications of genetic variation in human PPARgamma. Trends Endocrinol Metab 2009; 20:380-7. [PMID: 19748282 DOI: 10.1016/j.tem.2009.04.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 04/15/2009] [Accepted: 04/15/2009] [Indexed: 12/25/2022]
Abstract
The peroxisome proliferator-activated receptor gamma (PPARgamma) plays a key role in the regulation of lipid and glucose metabolism. Human genetic evidence supporting this view comes from the study of both common (e.g. the Pro12Ala polymorphism) and rare (loss-of-function mutations) variants in the gene encoding PPARgamma. Indeed, patients harbouring mutant PPARgamma exhibit familial partial lipodystrophy type 3 and an extreme monogenic form of the metabolic syndrome. The recent elucidation of the crystal structure of the full-length PPARgamma-RXRalpha heterodimer bound to DNA has shed new light on the functional consequences of these genetic PPARgamma alterations and provides novel insights as to why different perturbations of receptor function unite in a common pathway of metabolic dysfunction.
Collapse
Affiliation(s)
- Ellen H Jeninga
- Department of Metabolic and Endocrine Diseases, UMC Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | | | | |
Collapse
|
48
|
Mirzaei H, Akrami SM, Golmohammadi T, Doosti M, Heshmat R, Nakhjavani M, Amiri P. Polymorphism of Pro12Ala in the Peroxisome Proliferator-Activated Receptor γ2 Gene in Iranian Diabetic and Obese Subjects. Metab Syndr Relat Disord 2009; 7:453-8. [DOI: 10.1089/met.2008.0099] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Hassan Mirzaei
- Department of Hygiene, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Clinical Biochemistry, School of Medicine, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Akrami
- Endocrinology and Metabolism Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Medical Genetics Department, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Taghi Golmohammadi
- Department of Clinical Biochemistry, School of Medicine, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Doosti
- Department of Clinical Biochemistry, School of Medicine, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Heshmat
- Endocrinology and Metabolism Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Manouchehr Nakhjavani
- Endocrinology and Metabolism Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Parvin Amiri
- Endocrinology and Metabolism Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Avery P, Mousa SS, Mousa SA. Pharmacogenomics in type II diabetes mellitus management: Steps toward personalized medicine. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2009; 2:79-91. [PMID: 23226037 PMCID: PMC3513204 DOI: 10.2147/pgpm.s5806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Indexed: 01/01/2023]
Abstract
Advances in genotype technology in the last decade have put the pharmacogenomics revolution at the forefront of future medicine in clinical practice. Discovery of novel gene variations in drug transporters, drug targets, effector proteins and metabolizing enzymes in the form of single-nucleotide polymorphisms (SNPs) continue to provide insight into the biological phenomena that govern drug efficacy and toxicity. To date, novel gene discoveries extracted from genome-wide association scans and candidate gene studies in at least four antidiabetic drug classes have helped illuminate possible causes of interindividual variability in response. Inadequate protocol guidelines for pharmacogenomics studies often leads to poorly designed studies, making it hard to formulate a definitive conclusion regarding the clinical relevance of the information at hand. These issues, along with the ethical, social, political, legislative, technological, and economic challenges associated with pharmacogenomics have only delayed its entry to mainstream clinical practice. On the other hand, these issues are being actively pursued and rapid progress is being made in each area which assures the possibility of gaining widespread acceptance in clinical practice.
Collapse
Affiliation(s)
- Peter Avery
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | | | | |
Collapse
|
50
|
Mattei J, Parnell LD, Lai CQ, Garcia-Bailo B, Adiconis X, Shen J, Arnett D, Demissie S, Tucker KL, Ordovas JM. Disparities in allele frequencies and population differentiation for 101 disease-associated single nucleotide polymorphisms between Puerto Ricans and non-Hispanic whites. BMC Genet 2009; 10:45. [PMID: 19682384 PMCID: PMC2734553 DOI: 10.1186/1471-2156-10-45] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 08/14/2009] [Indexed: 12/21/2022] Open
Abstract
Background Variations in gene allele frequencies can contribute to differences in the prevalence of some common complex diseases among populations. Natural selection modulates the balance in allele frequencies across populations. Population differentiation (FST) can evidence environmental selection pressures. Such genetic information is limited in Puerto Ricans, the second largest Hispanic ethnic group in the US, and a group with high prevalence of chronic disease. We determined allele frequencies and population differentiation for 101 single nucleotide polymorphisms (SNPs) in 30 genes involved in major metabolic and disease-relevant pathways in Puerto Ricans (n = 969, ages 45–75 years) and compared them to similarly aged non-Hispanic whites (NHW) (n = 597). Results Minor allele frequency (MAF) distributions for 45.5% of the SNPs assessed in Puerto Ricans were significantly different from those of NHW. Puerto Ricans carried risk alleles in higher frequency and protective alleles in lower frequency than NHW. Patterns of population differentiation showed that Puerto Ricans had SNPs with exceptional FST values in intronic, non-synonymous and promoter regions. NHW had exceptional FST values in intronic and promoter region SNPs only. Conclusion These observations may serve to explain and broaden studies on the impact of gene polymorphisms on chronic diseases affecting Puerto Ricans.
Collapse
Affiliation(s)
- Josiemer Mattei
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|