1
|
Taqi M, ul Rasool H, Zaka Haider M, Al Muderis M. Significance of Biogenetic Markers in Giant Cell Tumor Differentiation and Prognosis: A Narrative Review. Diagnostics (Basel) 2024; 15:39. [PMID: 39795567 PMCID: PMC11719472 DOI: 10.3390/diagnostics15010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Giant cell tumor of bone (GCTB) is a locally aggressive tumor. It accounts for only 5% of all bony tumors. Early diagnosis, and follow-up for recurrence is often difficult due to a lack of biogenetic markers. Giant cells are multinucleated epithelioid cells derived from macrophages. Histologically, giant cells are also present in other pathologies of bone, e.g., aneurysmal bone cyst, chondroblastoma, giant cell granuloma, and malignant giant cell tumor, etc. Similarly, radiographic findings overlap with other osteolytic lesions, making the diagnosis and prognosis of giant cell tumor very challenging. Aims and Objectives: The purpose of this study was to explore biological and genetic markers which can be used for detection, differentiation, recurrence, and prognosis of GCTB. This will help to better understand the clinical outcome of GCTB and minimize the need for interventions. Methods: We conducted a literature search using Google, Google Scholar, PubMed, Wiley Library, Medline, Clinical trials.org, and Web of Science. Our search strategy included MeSH terms and key words for giant cell tumor and biogenetic markers from date of inception to September 2020. After excluding review articles, 246 duplicates, and non-relevant articles, we included 24 articles out of 1568 articles, summarizing the role of biogenetic markers in the prognosis of GCT. Results: P63 is 98.6% sensitive and relatively specific for GCT as compared to other multinucleated giant cells containing neoplasms. MDM2 (mouse double minute 2 homolog), IGF1 (insulin-like growth factor 1), STAT1 (signal transducer and activator of transcription 1), and RAC1 (Ras-related C3 botulinum toxin substrate 1) are associated with GCTB recurrence, and might serve as biomarkers for it. Increased expression of the proteins STAT5B, GRB2, and OXSR1 was related to a higher probability of metastasis. H3F3A and H3F3B mutation analysis appears to be a highly specific, although less sensitive, diagnostic tool for the distinction of giant cell tumor of bone (GCTB) and chondroblastoma from other giant cell-containing tumors. A neutrophil to lymphocyte ratio (NLR) > 2.70, platelet to lymphocyte ratio (PLR) > 215.80, lymphocyte to monocyte ratio (LMR) ≤ 2.80, and albumin to globulin ratio (AGR) < 1.50 were significantly associated with decreased disease-free survival (DFS) (p < 0.05). Large amounts of osteoclast-related mRNA (cathepsin K, tartrate-resistant acid phosphatase, and matrix metalloproteinase9) in GCTs (p < 0.05) are associated with the grade of bone resorption. We propose that subarticular primary malignant bone sarcomas with H3.3 mutations represent true malignant GCTB, even in the absence of a benign GCTB component. IMP3 and IGF2 might be potential biomarkers for GCT of the spine in regulating the angiogenesis of giant cell tumor of bone and predicting patients' prognosis. Conclusions: This review study shows serological markers, genetic factors, cell membrane receptor markers, predictive markers for malignancy, and prognostic protein markers which are highly sensitive for GCT and relatively specific for giant cell tumor. MDM2, IGF1, STAT1, RAC1 are important makers in determining recurrence, while P63 and H3F3A differentiate GCT from other giant cell-containing tumors. STAT5B, GRB2, and OXSR1 are significant in determining the prognosis of GCT. Apart from using radiological and histological parameters, we can add them to tumor work-up for definitive diagnosis and prognosis.
Collapse
Affiliation(s)
- Muhammad Taqi
- Orthopedic Surgery, Macquarie University Hospital, Sydney, NSW 2113, Australia
| | - Haseeb ul Rasool
- Internal Medicine Department, Icahn School of Medicine Mount Sinai, New York, NY 10029, USA
| | - Mobeen Zaka Haider
- Internal Medicine Department, Carle Foundation Hospital, Urbana, IL 61801, USA
| | - Munjed Al Muderis
- Orthopedic Surgery, Macquarie University Hospital, Sydney, NSW 2113, Australia
| |
Collapse
|
2
|
Ferrena A, Zhang X, Shrestha R, Zheng D, Liu W. Six3 and Six6 jointly control diverse target genes in multiple cell populations over developmental trajectories of mouse embryonic retinal progenitor cells. PLoS One 2024; 19:e0308839. [PMID: 39446806 PMCID: PMC11500937 DOI: 10.1371/journal.pone.0308839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 08/01/2024] [Indexed: 10/26/2024] Open
Abstract
How tissue-specific progenitor cells generate adult tissues is a puzzle in organogenesis. Using single-cell RNA sequencing of control and Six3 and Six6 compound-mutant mouse embryonic eyecups, we demonstrated that these two closely related transcription factors jointly control diverse target genes in multiple cell populations over the developmental trajectories of mouse embryonic retinal progenitor cells. In the Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP) graph of control retinas, naïve retinal progenitor cells had two major trajectories leading to ciliary margin cells and retinal neurons, respectively. The ciliary margin trajectory was from naïve retinal progenitor cells in the G1 phase directly to ciliary margin cells, whereas the neuronal trajectory went through an intermediate neurogenic state marked by Atoh7 expression. Neurogenic retinal progenitor cells (Atoh7+) were still proliferative; early retinal neurons branched out from Atoh7+ retina progenitor cells in the G1 phase. Upon Six3 and Six6 dual deficiency, both naïve and neurogenic retinal progenitor cells were defective, ciliary margin differentiation was enhanced, and multi-lineage neuronal differentiation was disrupted. An ectopic neuronal trajectory lacking the Atoh7+ state led to ectopic neurons. Additionally, Wnt signaling was upregulated, whereas FGF signaling was downregulated. Notably, Six3 and Six6 proteins occupied the loci of diverse genes that were differentially expressed in distinct cell populations, and expression of these genes was significantly altered upon Six3 and Six6 dual deficiency. Our findings provide deeper insight into the molecular mechanisms underlying early retinal differentiation in mammals.
Collapse
Affiliation(s)
- Alexander Ferrena
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Xusheng Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Rupendra Shrestha
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
- The Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
- The Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
3
|
Qu L, Xin Y, Feng J, Ren X, Li Z, Chen X, Miao G, Chen J, Sun C, Lu Y. Downregulation of PRKCI inhibits osteosarcoma cell growth by inactivating the Akt/mTOR signaling pathway. Front Oncol 2024; 14:1389136. [PMID: 39015499 PMCID: PMC11249533 DOI: 10.3389/fonc.2024.1389136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
PRKCI is abnormally expressed in various cancers, but its role in osteosarcoma is unknown. This study aimed to explore the biological function of PRKCI in osteosarcoma and its potential molecular mechanism. PRKCI expression was evaluated in osteosarcoma cell lines using Western blot analysis and reverse transcription PCR. The CCK-8 assay, colony formation assay, flow cytometry, Transwell assay, and wound-healing assay were used to detect the proliferation, colony-forming capacity, cell cycle, migration, and invasion of osteosarcoma cells when PRKCI was overexpressed or knocked down. The interaction between PRKCI and SQSTM1 was explored using immunoprecipitation. Finally, the protein molecule expression of the Akt/mTOR signaling pathway in osteosarcoma was detected when PRKCI was knocked down. Our study found that PRKCI was overexpressed in osteosarcoma cell lines. The overexpression of PRKCI promoted the proliferation and colony-forming capacity of osteosarcoma cells, while silencing PRKCI inhibited the proliferation, colony-forming capacity, migration, and invasion of osteosarcoma cells and arrested the cell cycle at the G2/M phase. Both PRKCI and SQSTM1 were overexpressed in osteosarcoma. The expression of PRKCI was only related to histological type, while that of SQSTM1 was not related to clinical characteristics. The expression of PRKCI and SQSTM1 in osteosarcoma was higher than that in chondrosarcoma. Knockdown of PRKCI inhibited the proliferation of osteosarcoma cells by inactivating the Akt/mTOR signaling pathway, suggesting that PRKCI was a potential target for osteosarcoma therapy.
Collapse
Affiliation(s)
- Liujing Qu
- Department of Clinical Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yu Xin
- Department of Medical Laboratory, Qingdao Sixth People’s Hospital, Qingdao, China
| | - Jieni Feng
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaolei Ren
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zuming Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xueru Chen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangyan Miao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Jiankun Chen
- The Third Comprehensive Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Chengming Sun
- Department of Clinical Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yue Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Yu H, Luo C, Linghu R, Yang J, Wu H. Ezrin Contributes to the Damage of Airway Epithelial Barrier Related to Diabetes Mellitus. J Inflamm Res 2024; 17:2609-2621. [PMID: 38689797 PMCID: PMC11060175 DOI: 10.2147/jir.s449487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
Background Diabetes mellitus predisposes individuals to respiratory infections. The airway epithelial barrier provides defense against inhaled antigens and pathogens. Ezrin, is a component of the membrane-cytoskeleton that maintains the cellular morphology, intercellular adhesion, and barrier function of epithelial cells. This study aimed to explore the role of ezrin in airway epithelial barrier damage and correlate its expression and activation with diabetes mellitus. Methods This study was performed in a murine model of diabetes mellitus and with human bronchial epithelial BEAS-2B cells using real-time PCR, Western blotting, immunohistochemical and immunofluorescence staining. Ezrin was knocked down in BEAS-2B cells using siRNA. Ezrin phosphorylation levels were measured to determine activation status. The integrity of the airway epithelial barrier was assessed in vivo by characterizing morphological structure, and in vitro in BEAS-2B cells by measuring tight junction protein expression, transepithelial electrical resistance (TER) and permeability. Results We demonstrated that ezrin expression levels were lower in the lung tissue and airway epithelium of diabetic mice than those in control mice. The morphological structure of the airway epithelium was altered in diabetic mice. High glucose levels downregulated the expression and distribution of ezrin and connexin 43, reduced the expression of tight junction proteins, and altered the epithelial barrier characteristics of BEAS-2B cells. Ezrin knockdown had effects similar to those of high glucose levels. Moreover, a specific inhibitor of ezrin Thr567 phosphorylation (NSC305787) inhibited epithelial barrier formation. Conclusion These results demonstrate that ezrin expression and activation are associated with airway epithelial damage in diabetes mellitus. These findings provide new insights into the molecular pathogenesis of pulmonary infections in diabetes mellitus and may lead to novel therapeutic interventions for airway epithelial barrier damage.
Collapse
Affiliation(s)
- Hongmei Yu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Cheng Luo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ru Linghu
- Department of Internal Medicine, Hospital of Chongqing University, Chongqing, People’s Republic of China
| | - Juan Yang
- Department of Respiratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, People’s Republic of China
| | - Haiqiao Wu
- Department of Respiratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, People’s Republic of China
| |
Collapse
|
5
|
Han Y, Bagchi P, Yun CC. Regulation of the intestinal Na +/H + exchanger NHE3 by AMP-activated kinase is dependent on phosphorylation of NHE3 at S555 and S563. Am J Physiol Cell Physiol 2024; 326:C50-C59. [PMID: 38047302 PMCID: PMC11192475 DOI: 10.1152/ajpcell.00540.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023]
Abstract
Electroneutral NaCl transport by Na+/H+ exchanger 3 (NHE3, SLC9A3) is the major Na+ absorptive mechanism in the intestine and decreased NHE3 activity contributes to diarrhea. Patients with diabetes often experience gastrointestinal adverse effects and medications are often a culprit for chronic diarrhea in type 2 diabetes (T2D). We have shown previously that metformin, the most widely prescribed drug for the treatment of T2D, induces diarrhea by inhibition of Na+/H+ exchanger 3 (NHE3) in rodent models of T2D. Metformin was shown to activate AMP-activated protein kinase (AMPK), but AMPK-independent glycemic effects of metformin are also known. The current study is undertaken to determine whether metformin inhibits NHE3 by activation of AMPK and the mechanism by which NHE3 is inhibited by AMPK. Inhibition of NHE3 by metformin was abolished by knockdown of AMPK-α1 or AMPK-α2. AMPK activation by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) phosphorylated NHE3 at S555. S555 is the primary site of phosphorylation by protein kinase A (PKA), but AMPK phosphorylated S555 independently of PKA. Using Mass spectrometry, we found S563 as a newly recognized phosphorylation site in NHE3. Altering either S555 or S563 to Ala was sufficient to block the inhibition of NHE3 activity by AMPK. NHE3 inhibition is dependent on ubiquitination by the E3 ubiquitin ligase Nedd4-2 and metformin was shown to induce NHE3 internalization via Nedd4-2-mediated ubiquitination. AICAR did not increase NHE3 ubiquitination when S555 or S563 was mutated. We conclude that AMPK activation inhibits NHE3 activity and NHE3 inhibition is associated with phosphorylation of NHE3 at S555 and S563.NEW & NOTEWORTHY We show that AMP-activated protein kinase (AMPK) phosphorylates NHE3 at S555 and S563 to inhibit NHE3 activity in intestinal epithelial cells. Phosphorylation of NHE3 by AMPK is necessary for ubiquitination of NHE3.
Collapse
Affiliation(s)
- Yiran Han
- Gastroenterology Research, Atlanta Veterans Administration Medical Center, Decatur, Georgia, United States
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory University, Atlanta, Georgia, United States
| | - C Chris Yun
- Gastroenterology Research, Atlanta Veterans Administration Medical Center, Decatur, Georgia, United States
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
6
|
Han Y, Srinivasan S, Yun CC. Inhibition of protein kinase C-α and activation of ezrin by Lactobacillus acidophilus restore Na +/H + exchange activity and fluid absorption in db/db mice. Am J Physiol Endocrinol Metab 2023; 325:E214-E226. [PMID: 37467022 PMCID: PMC10511175 DOI: 10.1152/ajpendo.00145.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023]
Abstract
Gastrointestinal (GI) complications, including diarrhea, constipation, and gastroparesis, are common in patients with diabetes. Dysregulation of the Na+/H+ exchanger NHE3 in the intestine is linked to diarrhea and constipation, and recent studies showed that NHE3 expression is reduced in type 1 diabetes and metformin causes diarrhea in the db/db mouse model of type 2 diabetes (T2D) via inhibition of NHE3. In this study, we investigated whether NHE3 expression is altered in type 2 diabetic intestine and the underlying mechanism that dysregulates NHE3. NHE3 expression in the brush border membrane (BBM) of the intestine of diabetic mice and humans was decreased. Protein kinase C (PKC) activation is associated with pathologies of diabetes, and immunofluorescence (IF) analysis revealed increased BBM PKCα abundance. Inhibition of PKCα increased NHE3 BBM abundance and NHE3-mediated intestinal fluid absorption in db/db mice. Previous studies have shown that Lactobacillus acidophilus (LA) stimulates intestinal ion transporters. LA increased NHE3 BBM expression and mitigated metformin-mediated inhibition of NHE3 in vitro and in vivo. To understand the underlying mechanism of LA-mediated stimulation of NHE3, we used Caco-2bbe cells overexpressing PKCα that mimic the elevated state of PKCα in T2D. LA diminished PKCα BBM expression, increased phosphorylation of ezrin, and the interaction of NHE3 with NHE regulatory factor 2 (NHERF2). In addition, inhibition of PKCι blocked phosphorylation of ezrin and activation of NHE3 by LA. These findings demonstrate that NHE3 is downregulated in T2D, and LA restores NHE3 expression via regulation of PKCα, PKCι, and ezrin.NEW & NOTEWORTHY We used mouse models of type 2 diabetes (T2D) and human patient-derived samples to show that Na+/H+ exchanger 3 (NHE3) expression is decreased in T2D. We show that protein kinase C-α (PKCα) is activated in diabetes and inhibition of PKCα increased NHE3 expression and mitigates diarrhea. We show that Lactobacillus acidophilus (LA) stimulates NHE3 via inhibition of PKCα and phosphorylation of ezrin.
Collapse
Affiliation(s)
- Yiran Han
- Gastroenterology Research, Atlanta Veterans Administration Medical Center, Decatur, Georgia, United States
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Shanthi Srinivasan
- Gastroenterology Research, Atlanta Veterans Administration Medical Center, Decatur, Georgia, United States
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - C Chris Yun
- Gastroenterology Research, Atlanta Veterans Administration Medical Center, Decatur, Georgia, United States
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
7
|
Jin J, Cong J, Lei S, Zhang Q, Zhong X, Su Y, Lu M, Ma Y, Li Z, Wang L, Zhu N, Yang J. Cracking the code: Deciphering the role of the tumor microenvironment in osteosarcoma metastasis. Int Immunopharmacol 2023; 121:110422. [PMID: 37302370 DOI: 10.1016/j.intimp.2023.110422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor in children and adolescents. It is characterized by a rapid progression, poor prognosis, and early pulmonary metastasis. Over the past 30 years, approximately 85% of patients with osteosarcoma have experienced metastasis. The five-year survival of patients with lung metastasis during the early stages of treatment is less than 20%. The tumor microenvironment (TME) not only provides conditions for tumor cell growth but also releases a variety of substances that can promote the metastasis of tumor cells to other tissues and organs. Currently, there is limited research on the role of the TME in osteosarcoma metastasis. Therefore, to explore methods for regulating osteosarcoma metastasis, further investigations must be conducted from the perspective of the TME. This will help to identify new potential biomarkers for predicting osteosarcoma metastasis and assist in the discovery of new drugs that target regulatory mechanisms for clinical diagnosis and treatment. This paper reviews the research progress on the mechanism of osteosarcoma metastasis based on TME theory, which will provide guidance for the clinical treatment of osteosarcoma.
Collapse
Affiliation(s)
- Jiamin Jin
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guangxi, Guilin 541001, China; Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Jiacheng Cong
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Shangbo Lei
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Qiujin Zhang
- Department of Immunology, Guilin Medical University, Guilin 541199, China
| | - Xinyi Zhong
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Yingying Su
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Mingchuan Lu
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Yifen Ma
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Zihe Li
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Liyan Wang
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guangxi, Guilin 541001, China
| | - Ningxia Zhu
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China.
| | - Jinfeng Yang
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guangxi, Guilin 541001, China; Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
8
|
Ferrena A, Zhang X, Shrestha R, Zheng D, Liu W. Six3 and Six6 jointly regulate the identities and developmental trajectories of multipotent retinal progenitor cells in the mouse retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539288. [PMID: 37205402 PMCID: PMC10187238 DOI: 10.1101/2023.05.03.539288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Formation, maintenance, and differentiation of tissue-specific progenitor cells are fundamental tasks during organogenesis. Retinal development is an excellent model for dissecting these processes; mechanisms of retinal differentiation can be harnessed for retinal regeneration toward curing blindness. Using single-cell RNA sequencing of embryonic mouse eye cups in which transcription factor Six3 was conditionally inactivated in peripheral retinas on top of germline deletion of its close paralog Six6 ("DKO"), we identified cell clusters and then inferred developmental trajectories in the integrated dataset. In control retinas, naïve retinal progenitor cells had two major trajectories leading to ciliary margin cells and retinal neurons, respectively. The ciliary margin trajectory was directly from naïve retinal progenitor cells at G1 phase, and the retinal neuron trajectory was through a neurogenic state marked by Atoh7 expression. Upon Six3 and Six6 dual deficiency, both naïve and neurogenic retinal progenitor cells were defective. Ciliary margin differentiation was enhanced, and multi-lineage retinal differentiation was disrupted. An ectopic neuronal trajectory lacking the Atoh7+ state led to ectopic neurons. Differential expression analysis not only confirmed previous phenotype studies but also identified novel candidate genes regulated by Six3/Six6 . Six3 and Six6 were jointly required for balancing the opposing gradients of the Fgf and Wnt signaling in the central-peripheral patterning of the eye cups. Taken together, we identify transcriptomes and developmental trajectories jointly regulated by Six3 and Six6, providing deeper insight into molecular mechanisms underlying early retinal differentiation.
Collapse
|
9
|
Tabrizi MEA, Gupta JK, Gross SR. Ezrin and Its Phosphorylated Thr567 Form Are Key Regulators of Human Extravillous Trophoblast Motility and Invasion. Cells 2023; 12:cells12050711. [PMID: 36899847 PMCID: PMC10000480 DOI: 10.3390/cells12050711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023] Open
Abstract
The protein ezrin has been shown to enhance cancer cell motility and invasion leading to malignant behaviours in solid tumours, but a similar regulatory function in the early physiological reproduction state is, however, much less clear. We speculated that ezrin may play a key role in promoting first-trimester extravillous trophoblast (EVT) migration/invasion. Ezrin, as well as its Thr567 phosphorylation, were found in all trophoblasts studied, whether primary cells or lines. Interestingly, the proteins were seen in a distinct cellular localisation in long, extended protrusions in specific regions of cells. Loss-of-function experiments were carried out in EVT HTR8/SVneo and Swan71, as well as primary cells, using either ezrin siRNAs or the phosphorylation Thr567 inhibitor NSC668394, resulting in significant reductions in both cell motility and cellular invasion, albeit with differences between the cells used. Our analysis further demonstrated that an increase in focal adhesion was, in part, able to explain some of the molecular mechanisms involved. Data collected using human placental sections and protein lysates further showed that ezrin expression was significantly higher during the early stage of placentation and, importantly, clearly seen in the EVT anchoring columns, further supporting the potential role of ezrin in regulating migration and invasion in vivo.
Collapse
Affiliation(s)
| | - Janesh K. Gupta
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK
- Fetal Medicine Centre, Birmingham Women’s NHS Foundation Trust, Birmingham B15 2TT, UK
| | - Stephane R. Gross
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
- Correspondence: ; Tel.: +44-0121-204-3467
| |
Collapse
|
10
|
Lei MML, Leung CON, Lau EYT, Leung RWH, Ma VWS, Tong M, Lu YY, Huang CY, Zhu QH, Ng IOL, Ma S, Lee TKW. SCYL3, as a novel binding partner and regulator of ROCK2, promotes hepatocellular carcinoma progression. JHEP Rep 2022; 5:100604. [PMCID: PMC9691429 DOI: 10.1016/j.jhepr.2022.100604] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/28/2022] Open
Abstract
Background & Aims SCY1-like pseudokinase 3 (SCYL3) was identified as a binding partner of ezrin, implicating it in metastasis. However, the clinical relevance and functional role of SCYL3 in cancer remain uncharacterized. In this study, we aimed to elucidate the role of SCYL3 in the progression of hepatocellular carcinoma (HCC). Methods The clinical significance of SCYL3 in HCC was evaluated in publicly available datasets and by qPCR analysis of an in-house HCC cohort. The functional significance and mechanistic consequences of SCYL3 were examined in SCYL3-knockdown/overexpressing HCC cells. In vivo tumor progression was evaluated in Tp53KO/c-MycOE mice using the sleeping beauty transposon system. Potential downstream pathways were investigated by co-immunoprecipitation, western blotting analysis and immunofluorescence staining. Results SCYL3 is often overexpressed in HCC; it is preferentially expressed in metastatic human HCC tumors and is associated with worse patient survival. Suppression of SCYL3 in HCC cells attenuated cell proliferation and migration as well as in vivo metastasis. Intriguingly, endogenous SCYL3 overexpression increased tumor development and metastasis in Tp53KO/c-MycOE mice. Mechanistic investigations revealed that SCYL3 physically binds and regulates the stability and transactivating activity of ROCK2 (Rho kinase 2) via its C-terminal domain, leading to the increased formation of actin stress fibers and focal adhesions. Conclusions These findings reveal that SCYL3 plays a critical role in promoting the progression of HCC and have implications for developing new therapeutic strategies to tackle metastatic HCC. Impact and implications SCYL3 was first reported to be a binding partner of a metastasis-related gene, ezrin. To date, the clinical relevance and functional role of SCYL3 in cancer remain uncharacterized. Herein, we uncover its crucial role in liver cancer progression. We show that it physically binds and regulates the stability and transactivating activity of ROCK2 leading to HCC tumor progression. Our data provide mechanistic insight that SCYL3-mediated ROCK2 protein stability plays a pivotal role in growth and metastasis of HCC cells. Targeting SCYL3/ROCK2 signaling cascade may be a novel therapeutic strategy for treatment of HCC patients. SCYL3 was found to be overexpressed in HCC and was associated with metastasis and poor survival in human tumors. SCYL3 is critically involved in the regulation of HCC progression and metastasis. We identified ROCK2 as the binding partner of SCYL3. SCYL3 physically binds and regulates the stability and transactivating activity of ROCK2 via its C-terminal domain.
Collapse
Key Words
- scyl3
- rock2
- hepatocellular carcinoma
- protein stability
- metastasis
- chx, cycloheximide
- ev, empty vector
- geo, gene expression omnibus
- hcc, hepatocellular carcinoma
- hrd motif, histidine-arginine-aspartic acid motif
- htvi, hydrodynamic tail vein injection
- mlc2, myosin light chain 2
- ntc, non-target control
- oe, overexpression
- qpcr, quantitative pcr
- rock2, rho kinase 2
- sb, sleeping beauty
- scyl3, scy1-like pseudokinase 3
- scyl3-δc, scyl3 mutant with deletion of the c-terminal domain
- scyl3 oe, scyl3-overexpressing
- sg, single-guide
- sh, short-hairpin
- tcga, the cancer genome atlas
Collapse
Affiliation(s)
- Martina Mang Leng Lei
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Carmen Oi Ning Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | | | - Rainbow Wing Hei Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Victor Wan San Ma
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Man Tong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Yin Ying Lu
- Comprehensive Liver Cancer Center, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Chen Yang Huang
- Comprehensive Liver Cancer Center, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Qiao Hua Zhu
- Department of Interventional Radiology and Oncology, Shunde Hospital, Southern Medical University, Shunde, China
| | - Irene Oi Lin Ng
- Department of Pathology, Queen Mary Hospital, The University of Hong Kong, Hong Kong,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong,Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong,State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong,Corresponding author. Address: Room 805, Block Y, Department of Applied Biology and Chemical Technology, Lee Shau Kee Building, The Hong Kong Polytechnic University, Hong Kong. Tel.: (852) 3400-8799, fax: (852) 2364-9932.
| |
Collapse
|
11
|
Sirikaew N, Pruksakorn D, Chaiyawat P, Chutipongtanate S. Mass Spectrometric-Based Proteomics for Biomarker Discovery in Osteosarcoma: Current Status and Future Direction. Int J Mol Sci 2022; 23:ijms23179741. [PMID: 36077137 PMCID: PMC9456544 DOI: 10.3390/ijms23179741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Due to a lack of novel therapies and biomarkers, the clinical outcomes of osteosarcoma patients have not significantly improved for decades. The advancement of mass spectrometry (MS), peptide quantification, and downstream pathway analysis enables the investigation of protein profiles across a wide range of input materials, from cell culture to long-term archived clinical specimens. This can provide insight into osteosarcoma biology and identify candidate biomarkers for diagnosis, prognosis, and stratification of chemotherapy response. In this review, we provide an overview of proteomics studies of osteosarcoma, indicate potential biomarkers that might be promising therapeutic targets, and discuss the challenges and opportunities of mass spectrometric-based proteomics in future osteosarcoma research.
Collapse
Affiliation(s)
- Nutnicha Sirikaew
- Musculoskeletal Science and Translational Research (MSTR) Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research (MSTR) Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Parunya Chaiyawat
- Musculoskeletal Science and Translational Research (MSTR) Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (P.C.); (S.C.)
| | - Somchai Chutipongtanate
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Correspondence: (P.C.); (S.C.)
| |
Collapse
|
12
|
Barik GK, Sahay O, Paul D, Santra MK. Ezrin gone rogue in cancer progression and metastasis: An enticing therapeutic target. Biochim Biophys Acta Rev Cancer 2022; 1877:188753. [PMID: 35752404 DOI: 10.1016/j.bbcan.2022.188753] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 12/12/2022]
Abstract
Cancer metastasis is the primary cause of morbidity and mortality in cancer as it remains the most complicated, devastating, and enigmatic aspect of cancer. Several decades of extensive research have identified several key players closely associated with metastasis. Among these players, cytoskeletal linker Ezrin (the founding member of the ERM (Ezrin-Radixin-Moesin) family) was identified as a critical promoter of metastasis in pediatric cancers in the early 21st century. Ezrin was discovered 40 years ago as a aminor component of intestinal epithelial microvillus core protein, which is enriched in actin-containing cell surface structures. It controls gastric acid secretion and plays diverse physiological roles including maintaining cell polarity, regulating cell adhesion, cell motility and morphogenesis. Extensive research for more than two decades evinces that Ezrin is frequently dysregulated in several human cancers. Overexpression, altered subcellular localization and/or aberrant activation of Ezrin are closely associated with higher metastatic incidence and patient mortality, thereby justifying Ezrin as a valuable prognostic biomarker in cancer. Ezrin plays multifaceted role in multiple aspects of cancer, with its significant contribution in the complex metastatic cascade, through reorganizing the cytoskeleton and deregulating various cellular signaling pathways. Current preclinical studies using genetic and/or pharmacological approaches reveal that inactivation of Ezrin results in significant inhibition of Ezrin-mediated tumor growth and metastasis as well as increase in the sensitivity of cancer cells to various chemotherapeutic drugs. In this review, we discuss the recent advances illuminating the molecular mechanisms responsible for Ezrin dysregulation in cancer and its pleiotropic role in cancer progression and metastasis. We also highlight its potential as a prognostic biomarker and therapeutic target in various cancers. More importantly, we put forward some potential questions, which we strongly believe, will stimulate both basic and translational research to better understand Ezrin-mediated malignancy, ultimately leading to the development of Ezrin-targeted cancer therapy for the betterment of human life.
Collapse
Affiliation(s)
- Ganesh Kumar Barik
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Osheen Sahay
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Debasish Paul
- Laboratory of Cancer Biology and Genetics, Centre for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Manas Kumar Santra
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
13
|
Effect of Ezrin on regulating trophoblast cell invasion via PKC signaling pathway in unexplained recurrent spontaneous abortion. Reprod Biol 2022; 22:100634. [DOI: 10.1016/j.repbio.2022.100634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022]
|
14
|
Cotranslational interaction of human EBP50 and ezrin overcomes masked binding site during complex assembly. Proc Natl Acad Sci U S A 2022; 119:2115799119. [PMID: 35140182 PMCID: PMC8851480 DOI: 10.1073/pnas.2115799119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
Multiprotein assemblages are the intracellular workhorses of many physiological processes. Assembly of constituents into complexes can be driven by stochastic, domain-dependent, posttranslational events in which mature, folded proteins specifically interact. However, inaccessibility of interacting surfaces in mature proteins (e.g., due to "buried" domains) can obstruct complex formation. Mechanisms by which multiprotein complex constituents overcome topological impediments remain enigmatic. For example, the heterodimeric complex formed by EBP50 and ezrin must address this issue as the EBP50-interacting domain in ezrin is obstructed by a self-interaction that occupies the EBP50 binding site. Here, we show that the EBP50-ezrin complex is formed by a cotranslational mechanism in which the C terminus of mature, fully formed EBP50 binds the emerging, ribosome-bound N-terminal FERM domain of ezrin during EZR mRNA translation. Consistent with this observation, a C-terminal EBP50 peptide mimetic reduces the cotranslational interaction and abrogates EBP50-ezrin complex formation. Phosphorylation of EBP50 at Ser339 and Ser340 abrogates the cotranslational interaction and inhibits complex formation. In summary, we show that the function of eukaryotic mRNA translation extends beyond "simple" generation of a linear peptide chain that folds into a tertiary structure, potentially for subsequent complex assembly; importantly, translation can facilitate interactions with sterically inaccessible domains to form functional multiprotein complexes.
Collapse
|
15
|
Ge W, Goga A, He Y, Silva PN, Hirt CK, Herrmanns K, Guccini I, Godbersen S, Schwank G, Stoffel M. miR-802 Suppresses Acinar-to-Ductal Reprogramming During Early Pancreatitis and Pancreatic Carcinogenesis. Gastroenterology 2022; 162:269-284. [PMID: 34547282 DOI: 10.1053/j.gastro.2021.09.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/25/2021] [Accepted: 09/14/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive tumor that is almost uniformly lethal in humans. Activating mutations of KRAS are found in >90% of human PDACs and are sufficient to promote acinar-to-ductal metaplasia (ADM) during tumor initiation. The roles of miRNAs in oncogenic Kras-induced ADM are incompletely understood. METHODS The Ptf1aCre/+LSL-KrasG12D/+ and Ptf1aCre/+LSL-KrasG12D/+LSL-p53R172H/+ and caerulein-induced acute pancreatitis mice models were used. mir-802 was conditionally ablated in acinar cells to study the function of miR-802 in ADM. RESULTS We show that miR-802 is a highly abundant and acinar-enriched pancreatic miRNA that is silenced during early stages of injury or oncogenic KrasG12D-induced transformation. Genetic ablation of mir-802 cooperates with KrasG12D by promoting ADM formation. miR-802 deficiency results in de-repression of the miR-802 targets Arhgef12, RhoA, and Sdc4, activation of RhoA, and induction of the downstream RhoA effectors ROCK1, LIMK1, COFILIN1, and EZRIN, thereby increasing F-actin rearrangement. mir-802 ablation also activates SOX9, resulting in augmented levels of ductal and attenuated expression of acinar identity genes. Consistently with these findings, we show that this miR-802-RhoA-F-actin network is activated in biopsies of pancreatic cancer patients and correlates with poor survival. CONCLUSIONS We show miR-802 suppresses pancreatic cancer initiation by repressing oncogenic Kras-induced ADM. The role of miR-802 in ADM fills the gap in our understanding of oncogenic Kras-induced F-actin reorganization, acinar reprogramming, and PDAC initiation. Modulation of the miR-802-RhoA-F-actin network may be a new strategy to interfere with pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Wenjie Ge
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Algera Goga
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Yuliang He
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, Zürich, Switzerland
| | - Pamuditha N Silva
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | | | - Karolin Herrmanns
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Ilaria Guccini
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Svenja Godbersen
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Gerald Schwank
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland; Medical Faculty, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
16
|
Abstract
Osteosarcoma is the most common primary bone malignancy in adolescents. Its high propensity to metastasize is the leading cause for treatment failure and poor prognosis. Although the research of osteosarcoma has greatly expanded in the past decades, the knowledge and new therapy strategies targeting metastatic progression remain sparse. The prognosis of patients with metastasis is still unsatisfactory. There is resonating urgency for a thorough and deeper understanding of molecular mechanisms underlying osteosarcoma to develop innovative therapies targeting metastasis. Toward the goal of elaborating the characteristics and biological behavior of metastatic osteosarcoma, it is essential to combine the diverse investigations that are performed at molecular, cellular, and animal levels from basic research to clinical translation spanning chemical, physical sciences, and biology. This review focuses on the metastatic process, regulatory networks involving key molecules and signaling pathways, the role of microenvironment, osteoclast, angiogenesis, metabolism, immunity, and noncoding RNAs in osteosarcoma metastasis. The aim of this review is to provide an overview of current research advances, with the hope to discovery druggable targets and promising therapy strategies for osteosarcoma metastasis and thus to overcome this clinical impasse.
Collapse
Affiliation(s)
- Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Gao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
De Martino V, Rossi M, Battafarano G, Pepe J, Minisola S, Del Fattore A. Extracellular Vesicles in Osteosarcoma: Antagonists or Therapeutic Agents? Int J Mol Sci 2021; 22:12586. [PMID: 34830463 PMCID: PMC8619425 DOI: 10.3390/ijms222212586] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma (OS) is a skeletal tumor affecting mainly children and adolescents. The presence of distance metastasis is frequent and it is localized preferentially to the lung, representing the main reason for death among patients. The therapeutic approaches are based on surgery and chemotherapeutics. However, the drug resistance and the side effects associated with the chemotherapy require the identification of new therapeutic approaches. The understanding of the complex biological scenario of the osteosarcoma will open the way for the identification of new targets for its treatment. Recently, a great interest of scientific community is for extracellular vesicles (EVs), that are released in the tumor microenvironment and are important regulators of tumor proliferation and the metastatic process. At the same time, circulating extracellular vesicles can be exploited as diagnostic and prognostic biomarkers, and they can be loaded with drugs as a new therapeutic approach for osteosarcoma patients. Thus, the characterization of OS-related EVs could represent a way to convert these vesicles from antagonists for human health into therapeutic and/or diagnostic agents.
Collapse
Affiliation(s)
- Viviana De Martino
- Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, Sapienza University, 00185 Rome, Italy; (V.D.M.); (J.P.); (S.M.)
| | - Michela Rossi
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.R.); (G.B.)
| | - Giulia Battafarano
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.R.); (G.B.)
| | - Jessica Pepe
- Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, Sapienza University, 00185 Rome, Italy; (V.D.M.); (J.P.); (S.M.)
| | - Salvatore Minisola
- Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, Sapienza University, 00185 Rome, Italy; (V.D.M.); (J.P.); (S.M.)
| | - Andrea Del Fattore
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.R.); (G.B.)
| |
Collapse
|
18
|
Epithelial-to-Mesenchymal Plasticity in Circulating Tumor Cell Lines Sequentially Derived from a Patient with Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13215408. [PMID: 34771571 PMCID: PMC8582537 DOI: 10.3390/cancers13215408] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/10/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Metastasis is a complex dynamic multistep process; however, our knowledge is still limited. Very few circulating tumor cells (CTCs) are metastatic precursor cells and represent the intermediate stage of metastasis. Epithelial–mesenchymal plasticity (EMP) has crucial roles in tissue development and homeostasis, and also in metastasis formation. In this study, we explored the EMP phenotype of a unique series of CTC lines, obtained from a patient with colon cancer during the disease course and treatment, by detecting markers involved in the epithelial–mesenchymal and mesenchymal–epithelial (MET) transitions. This study shows that these colon CTC lines have acquired only few mesenchymal features to migrate and intravasate, whereas an increase of MET-related markers was observed, suggesting that metastasis-competent CTCs need to revert quickly to the epithelial phenotype to reinitiate a tumor at a distant site. Abstract Metastasis is a complicated and only partially understood multi-step process of cancer progression. A subset of cancer cells that can leave the primary tumor, intravasate, and circulate to reach distant organs are called circulating tumor cells (CTCs). Multiple lines of evidence suggest that in metastatic cancer cells, epithelial and mesenchymal markers are co-expressed to facilitate the cells’ ability to go back and forth between cellular states. This feature is called epithelial-to-mesenchymal plasticity (EMP). CTCs represent a unique source to understand the EMP features in metastatic cascade biology. Our group previously established and characterized nine serial CTC lines from a patient with metastatic colon cancer. Here, we assessed the expression of markers involved in epithelial–mesenchymal (EMT) and mesenchymal–epithelial (MET) transition in these unique CTC lines, to define their EMP profile. We found that the oncogenes MYC and ezrin were expressed by all CTC lines, but not SIX1, one of their common regulators (also an EMT inducer). Moreover, the MET activator GRHL2 and its putative targets were strongly expressed in all CTC lines, revealing their plasticity in favor of an increased MET state that promotes metastasis formation.
Collapse
|
19
|
Shoaib Z, Fan TM, Irudayaraj J. Osteosarcoma mechanobiology and therapeutic targets. Br J Pharmacol 2021; 179:201-217. [PMID: 34679192 PMCID: PMC9305477 DOI: 10.1111/bph.15713] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 11/28/2022] Open
Abstract
Osteosarcoma (OS) is the one of the most common primary tumors of bone with less than a 20% 5-year survival rate after the development of metastases. OS is highly predisposed in Paget's disease (PD) of bone, and both have common characteristic skeletal features due to rapid bone remodeling. OS prognosis is location dependent which further emphasizes the likely contribution of the bone microenvironment in its pathogenesis. Mechanobiology is the phenomenon when mechanical cues from the changing physical microenvironment of bone are transduced to biological pathways through mechanosensitive cellular components. Mechanobiology-driven therapies have been used for curbing tumor progression by direct alteration of the physical microenvironment or inhibition of metastasis-associated mechanosensitive proteins. This review emphasizes the contribution of mechanobiology to OS progression, and sheds light on current mechanobiology-based therapies and potential new targets for improving disease management. Additionally, the variety of 3D models currently used to study OS mechanobiology are summarized.
Collapse
Affiliation(s)
- Zunaira Shoaib
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, IL, USA.,Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA.,Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
20
|
Xi M, Tang W. Knockdown of Ezrin inhibited migration and invasion of cervical cancer cells in vitro. Int J Immunopathol Pharmacol 2021; 34:2058738420930899. [PMID: 32674647 PMCID: PMC7370327 DOI: 10.1177/2058738420930899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cervical cancer is the fourth most common malignancy in women. The aim of this study was to investigate the functions of Ezrin in cervical cancer cells. Two cervical cancer cell lines, SiHa and CaSki, were cultured in vitro. Following the knockdown of Ezrin using siRNA, real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis were applied to analyze Ezrin expression at the messenger RNA (mRNA) and protein levels. Subsequently, wound healing assay, transwell assay, and sulforhodamine B (SRB) assay were used to detect the migration, invasion, and viability of cervical cancer cells, respectively. Results revealed that Ezrin siRNA can notably inhibit the migration and invasion of SiHa and CaSki cells (P < 0.05). However, knockdown of Ezrin shows no effects on the viability of SiHa and CaSki cells (P < 0.05). It is indicated that Ezrin plays a possible role in promoting the migration and invasion of cervical cancer cells and may be a therapeutic target to prevent metastasis of cervical cancer.
Collapse
Affiliation(s)
- Meili Xi
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenbin Tang
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Targeting Mechanotransduction in Osteosarcoma: A Comparative Oncology Perspective. Int J Mol Sci 2020; 21:ijms21207595. [PMID: 33066583 PMCID: PMC7589883 DOI: 10.3390/ijms21207595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Mechanotransduction is the process in which cells can convert extracellular mechanical stimuli into biochemical changes within a cell. While this a normal process for physiological development and function in many organ systems, tumour cells can exploit this process to promote tumour progression. Here we summarise the current state of knowledge of mechanotransduction in osteosarcoma (OSA), the most common primary bone tumour, referencing both human and canine models and other similar mesenchymal malignancies (e.g., Ewing sarcoma). Specifically, we discuss the mechanical properties of OSA cells, the pathways that these cells utilise to respond to external mechanical cues, and mechanotransduction-targeting strategies tested in OSA so far. We point out gaps in the literature and propose avenues to address them. Understanding how the physical microenvironment influences cell signalling and behaviour will lead to the improved design of strategies to target the mechanical vulnerabilities of OSA cells.
Collapse
|
22
|
Pharmacologic Inhibition of Ezrin-Radixin-Moesin Phosphorylation is a Novel Therapeutic Strategy in Rhabdomyosarcoma. Sarcoma 2020; 2020:9010496. [PMID: 33005093 PMCID: PMC7508224 DOI: 10.1155/2020/9010496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/13/2020] [Accepted: 08/31/2020] [Indexed: 11/24/2022] Open
Abstract
Intermediate and high-risk rhabdomyosarcoma (RMS) patients have poor prognosis with available treatment options, highlighting a clear unmet need for identification of novel therapeutic strategies. Ezrin-radixin-moesin (ERM) family members are membrane-cytoskeleton linker proteins with well-defined roles in tumor metastasis, growth, and survival. ERM protein activity is regulated by dynamic changes in the phosphorylation at a conserved threonine residue in their C-terminal actin-binding domain. Interestingly, ERM family member, ezrin, has elevated expression in the RMS tissue. Despite this, the translational scope of targeting ERM family proteins in these tumors through pharmacological inhibition has never been considered. This study investigates the inhibition of ERM phosphorylation using a small molecule pharmacophore NSC668394 as a potential strategy against RMS. Upon in vitro treatment with NSC668394, RMS cells exhibit a dose-dependent decrease in cell viability and proliferation, with induction of caspase-3 cleavage and apoptosis. siRNA-mediated knockdown of individual ERM protein expression revealed that each regulates RMS survival to a different degree. In vivo administration of NSC668394 in RMS xenografts causes significant decrease in tumor growth, with no adverse effect on body weight. Collectively, this study highlights the importance of the active conformation of ERM proteins in RMS progression and survival and supports pharmacologic inhibition of these proteins as a novel therapeutic approach.
Collapse
|
23
|
Qureshi-Baig K, Kuhn D, Viry E, Pozdeev VI, Schmitz M, Rodriguez F, Ullmann P, Koncina E, Nurmik M, Frasquilho S, Nazarov PV, Zuegel N, Boulmont M, Karapetyan Y, Antunes L, Val D, Mittelbronn M, Janji B, Haan S, Letellier E. Hypoxia-induced autophagy drives colorectal cancer initiation and progression by activating the PRKC/PKC-EZR (ezrin) pathway. Autophagy 2020; 16:1436-1452. [PMID: 31775562 PMCID: PMC7469473 DOI: 10.1080/15548627.2019.1687213] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 10/11/2019] [Accepted: 10/21/2019] [Indexed: 12/20/2022] Open
Abstract
In solid tumors, cancer stem cells (CSCs) or tumor-initiating cells (TICs) are often found in hypoxic niches. Nevertheless, the influence of hypoxia on TICs is poorly understood. Using previously established, TIC-enrichedpatient-derived colorectal cancer (CRC) cultures, we show that hypoxia increases the self-renewal capacity of TICs while inducing proliferation arrest in their more differentiated counterpart cultures. Gene expression data revealed macroautophagy/autophagy as one of the major pathways induced by hypoxia in TICs. Interestingly, hypoxia-induced autophagy was found to induce phosphorylation of EZR (ezrin) at Thr567 residue, which could be reversed by knocking down ATG5, BNIP3, BNIP3L, or BECN1. Furthermore, we identified PRKCA/PKCα as a potential kinase involved in hypoxia-induced autophagy-mediated TIC self-renewal. Genetic targeting of autophagy or pharmacological inhibition of PRKC/PKC and EZR resulted in decreased tumor-initiating potential of TICs. In addition, we observed significantly reduced in vivo tumor initiation and growth after a stable knockdown of ATG5. Analysis of human CRC samples showed that p-EZR is often present in TICs located in the hypoxic and autophagic regions of the tumor. Altogether, our results establish the hypoxia-autophagy-PKC-EZR signaling axis as a novel regulatory mechanism of TIC self-renewal and CRC progression. Autophagy inhibition might thus represent a promising therapeutic strategy for cancer patients. ABBREVIATIONS ATG: autophagy related; BECN1: beclin 1; BNIP3: BCL2 interacting protein 3; BNIP3L: BCL2 interacting protein 3 like; CQ: chloroquine; CSC: cancer stem cells; CRC: colorectal cancer; HIF1A/HIF-1α: hypoxia inducible factor 1 subunit alpha; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PRKC/PKC: protein kinase C; SQSTM1/p62: sequestosome 1; TICs: tumor-initiating cells.
Collapse
Affiliation(s)
- Komal Qureshi-Baig
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Diana Kuhn
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elodie Viry
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Laboratory of Experimental Cancer Research, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Vitaly I. Pozdeev
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Martine Schmitz
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Fabien Rodriguez
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Pit Ullmann
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Eric Koncina
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Martin Nurmik
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Petr V. Nazarov
- Proteome and Genome Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Nikolaus Zuegel
- Department of Surgery, Centre Hospitalier Emile Mayrisch, Esch-sur-Alzette, Luxembourg
| | - Marc Boulmont
- Department of Surgery, Centre Hospitalier Emile Mayrisch, Esch-sur-Alzette, Luxembourg
| | | | - Laurent Antunes
- Integrated Biobank of Luxembourg, Dudelange, Luxembourg
- Department of Anatomic and Molecular Pathology, Laboratoire National de Santé (LNS), Dudelange, Luxembourg
| | - Daniel Val
- Department of Anatomic and Molecular Pathology, Laboratoire National de Santé (LNS), Dudelange, Luxembourg
| | - Michel Mittelbronn
- Department of Anatomic and Molecular Pathology, Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Luxembourg Centre of Neuropathology (LCNP), Dudelange, Luxembourg
| | - Bassam Janji
- Laboratory of Experimental Cancer Research, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Serge Haan
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
24
|
SNAIL Promotes Metastatic Behavior of Rhabdomyosarcoma by Increasing EZRIN and AKT Expression and Regulating MicroRNA Networks. Cancers (Basel) 2020; 12:cancers12071870. [PMID: 32664538 PMCID: PMC7408994 DOI: 10.3390/cancers12071870] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a predominant soft tissue tumor in children and adolescents. For high-grade RMS with metastatic involvement, the 3-year overall survival rate is only 25 to 30%. Thus, understanding the regulatory mechanisms involved in promoting the metastasis of RMS is important. Here, we demonstrate for the first time that the SNAIL transcription factor regulates the metastatic behavior of RMS both in vitro and in vivo. SNAIL upregulates the protein expression of EZRIN and AKT, known to promote metastatic behavior, by direct interaction with their promoters. Our data suggest that SNAIL promotes RMS cell motility, invasion and chemotaxis towards the prometastatic factors: HGF and SDF-1 by regulating RHO, AKT and GSK3β activity. In addition, miRNA transcriptome analysis revealed that SNAIL-miRNA axis regulates processes associated with actin cytoskeleton reorganization. Our data show a novel role of SNAIL in regulating RMS cell metastasis that may also be important in other mesenchymal tumor types and clearly suggests SNAIL as a promising new target for future RMS therapies.
Collapse
|
25
|
Zhang X, Flores LR, Keeling MC, Sliogeryte K, Gavara N. Ezrin Phosphorylation at T567 Modulates Cell Migration, Mechanical Properties, and Cytoskeletal Organization. Int J Mol Sci 2020; 21:ijms21020435. [PMID: 31936668 PMCID: PMC7013973 DOI: 10.3390/ijms21020435] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/24/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
Ezrin, a member of the ERM (ezrin/radixin/moesin) family of proteins, serves as a crosslinker between the plasma membrane and the actin cytoskeleton. By doing so, it provides structural links to strengthen the connection between the cell cortex and the plasma membrane, acting also as a signal transducer in multiple pathways during migration, proliferation, and endocytosis. In this study, we investigated the role of ezrin phosphorylation and its intracellular localization on cell motility, cytoskeleton organization, and cell stiffness, using fluorescence live-cell imaging, image quantification, and atomic force microscopy (AFM). Our results show that cells expressing constitutively active ezrin T567D (phosphomimetic) migrate faster and in a more directional manner, especially when ezrin accumulates at the cell rear. Similarly, image quantification results reveal that transfection with ezrin T567D alters the cell’s gross morphology and decreases cortical stiffness. In contrast, constitutively inactive ezrin T567A accumulates around the nucleus, and although it does not impair cell migration, it leads to a significant buildup of actin fibers, a decrease in nuclear volume, and an increase in cytoskeletal stiffness. Finally, cell transfection with the dominant negative ezrin FERM domain induces significant morphological and nuclear changes and affects actin, microtubules, and the intermediate filament vimentin, resulting in cytoskeletal fibers that are longer, thicker, and more aligned. Collectively, our results suggest that ezrin’s phosphorylation state and its intracellular localization plays a pivotal role in cell migration, modulating also biophysical properties, such as membrane–cortex linkage, cytoskeletal and nuclear organization, and the mechanical properties of cells.
Collapse
|
26
|
Sphingosine 1-Phosphate (S1P)/ S1P Receptor Signaling and Mechanotransduction: Implications for Intrinsic Tissue Repair/Regeneration. Int J Mol Sci 2019; 20:ijms20225545. [PMID: 31703256 PMCID: PMC6888058 DOI: 10.3390/ijms20225545] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022] Open
Abstract
Tissue damage, irrespective from the underlying etiology, destroys tissue structure and, eventually, function. In attempt to achieve a morpho-functional recover of the damaged tissue, reparative/regenerative processes start in those tissues endowed with regenerative potential, mainly mediated by activated resident stem cells. These cells reside in a specialized niche that includes different components, cells and surrounding extracellular matrix (ECM), which, reciprocally interacting with stem cells, direct their cell behavior. Evidence suggests that ECM stiffness represents an instructive signal for the activation of stem cells sensing it by various mechanosensors, able to transduce mechanical cues into gene/protein expression responses. The actin cytoskeleton network dynamic acts as key mechanotransducer of ECM signal. The identification of signaling pathways influencing stem cell mechanobiology may offer therapeutic perspectives in the regenerative medicine field. Sphingosine 1-phosphate (S1P)/S1P receptor (S1PR) signaling, acting as modulator of ECM, ECM-cytoskeleton linking proteins and cytoskeleton dynamics appears a promising candidate. This review focuses on the current knowledge on the contribution of S1P/S1PR signaling in the control of mechanotransduction in stem/progenitor cells. The potential contribution of S1P/S1PR signaling in the mechanobiology of skeletal muscle stem cells will be argued based on the intriguing findings on S1P/S1PR action in this mechanically dynamic tissue.
Collapse
|
27
|
Zhan XH, Jiao JW, Zhang HF, Xu XE, He JZ, Li RL, Zou HY, Wu ZY, Wang SH, Wu JY, Liao LD, Wang JJ, Cheng YW, Zhang K, Neufeld G, Xu LY, Li EM. LOXL2 Upregulates Phosphorylation of Ezrin to Promote Cytoskeletal Reorganization and Tumor Cell Invasion. Cancer Res 2019; 79:4951-4964. [PMID: 31409639 DOI: 10.1158/0008-5472.can-19-0860] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/11/2019] [Accepted: 08/08/2019] [Indexed: 02/05/2023]
Abstract
Lysyl oxidase-like 2 (LOXL2), a copper-dependent enzyme of the lysyl oxidase family and its nonsecreted, catalytically dead spliced isoform L2Δ13, enhance cell migration and invasion, stimulate filopodia formation, modulate the expression of cytoskeletal genes, and promote tumor development and metastasis in vivo. We previously showed that LOXL2 reorganizes the actin cytoskeleton in esophageal squamous cell carcinoma (ESCC) cells, however, the underlying molecular mechanisms were not identified. Here, using interactome analysis, we identified ezrin (EZR), fascin (FSCN1), heat shock protein beta-1 (HSPB1), and tropomodulin-3 (TMOD3) as actin-binding proteins that associate with cytoplasmic LOXL2, as well as with its L2Δ13 variant. High levels of LOXL2 and L2Δ13 and their cytoskeletal partners correlated with poor clinical outcome in patients with ESCC. To better understand the significance of these interactions, we focused on the interaction of LOXL2 with ezrin. Phosphorylation of ezrin at T567 was greatly reduced following depletion of LOXL2 and was enhanced following LOXL2/L2Δ13 reexpression. Furthermore, LOXL2 depletion inhibited the ability of ezrin to promote tumor progression. These results suggest that LOXL2-induced ezrin phosphorylation, which also requires PKCα, is critical for LOXL2-induced cytoskeletal reorganization that subsequently promotes tumor cell invasion and metastasis in ESCC. In summary, we have characterized a novel molecular mechanism that mediates, in part, the protumorigenic activity of LOXL2. These findings may enable the future development of therapeutic agents targeting cytoplasmic LOXL2. SIGNIFICANCE: LOXL2 and its spliced isoform L2Δ13 promote cytoskeletal reorganization and invasion of esophageal cancer cells by interacting with cytoplasmic actin-binding proteins such as ezrin.
Collapse
Affiliation(s)
- Xiu-Hui Zhan
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - Ji-Wei Jiao
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - Hai-Feng Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Xiu-E Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, China
| | - Jian-Zhong He
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, China
| | - Run-Liu Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - Hai-Ying Zou
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - Zhi-Yong Wu
- Department of Tumor Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - Shao-Hong Wang
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - Jian-Yi Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - Lian-Di Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, China
| | - Juan-Juan Wang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, China
| | - Yin-Wei Cheng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| | - Kai Zhang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Gera Neufeld
- Technion Integrated Cancer Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China.
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China.
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| |
Collapse
|
28
|
Ma Z, Peng J, Yu D, Park JS, Lin H, Xu B, Lu C, Fan H, Waldor MK. A streptococcal Fic domain-containing protein disrupts blood-brain barrier integrity by activating moesin in endothelial cells. PLoS Pathog 2019; 15:e1007737. [PMID: 31071198 PMCID: PMC6529018 DOI: 10.1371/journal.ppat.1007737] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/21/2019] [Accepted: 03/27/2019] [Indexed: 01/04/2023] Open
Abstract
Streptococcus equi subsp. zooepidemicus (SEZ) is a zoonotic pathogen capable of causing meningitis in humans. The mechanisms that enable pathogens to traverse the blood-brain barrier (BBB) are incompletely understood. Here, we investigated the role of a newly identified Fic domain-containing protein, BifA, in SEZ virulence. BifA was required for SEZ to cross the BBB and to cause meningitis in mice. BifA also enhanced SEZ translocation across human Brain Microvascular Endothelial Cell (hBMEC) monolayers. Purified BifA or its Fic domain-containing C-terminus alone were able to enter into hBMECs, leading to disruption of monolayer barrier integrity. A SILAC-based proteomic screen revealed that BifA binds moesin. BifA’s Fic domain was required for its binding to this regulator of host cell cytoskeletal processes. BifA treatment of hBMECs led to moesin phosphorylation and downstream RhoA activation. Inhibition of moesin activation or moesin depletion in hBMEC monolayers abrogated BifA-mediated increases in barrier permeability and SEZ’s capacity to translocate across monolayers. Thus, BifA activation of moesin appears to constitute a key mechanism by which SEZ disrupts endothelial monolayer integrity to penetrate the BBB. Streptococcus equi subsp. zooepidemicus (SEZ) is an important animal pathogen and can cause meningitis in humans. Little is known about how this Group C streptococcal species penetrates the blood-brain barrier (BBB). We identified bifA, a gene that is critical for SEZ to cause meningitis in mice and to penetrate a human brain endothelial monolayer in a tissue culture model. BifA’s Fic domain enables the protein to enter into endothelial monolayers and to bind to moesin, a cytoskeletal regulatory protein, leading to its activation. Preventing moesin activation abolished BifA-induced barrier leakiness and SEZ’s capacity to penetrate a monolayer barrier. Together, our findings suggest that SEZ meningitis depends on BifA, a Fic-domain protein that manipulates moesin-dependent signaling to modulate BBB permeability.
Collapse
Affiliation(s)
- Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Jie Peng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Dandan Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Joseph S. Park
- Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Bin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chengping Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- * E-mail: (HF); (MKW)
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- * E-mail: (HF); (MKW)
| |
Collapse
|
29
|
Jia M, Yan X, Jiang X, Wu Y, Xu J, Meng Y, Yang Y, Shan X, Zhang X, Mao S, Gu W, Pavlidis S, Barnes PJ, Adcock IM, Huang M, Yao X. Ezrin, a Membrane Cytoskeleton Cross-Linker Protein, as a Marker of Epithelial Damage in Asthma. Am J Respir Crit Care Med 2019; 199:496-507. [PMID: 30290132 PMCID: PMC6376623 DOI: 10.1164/rccm.201802-0373oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 10/03/2018] [Indexed: 12/31/2022] Open
Abstract
RATIONALE Bronchial epithelial cell damage occurs in patients with bronchial asthma. Ezrin, a membrane-cytoskeleton protein, maintains cellular morphology and intercellular adhesion and protects the barrier function of epithelial cells. OBJECTIVES To study the role of ezrin in bronchial epithelial cells injury and correlate its expression with asthma severity. METHODS Levels of ezrin were measured in exhaled breath condensate (EBC) and serum in patients with asthma and BAL fluid (BALF) from a mouse model of asthma by ELISA. The regulation of IL-13 on ezrin protein levels was studied in primary bronchial epithelial cells. Ezrin knockdown using shRNA was studied in human bronchial epithelial 16HBE cells. MEASUREMENTS AND MAIN RESULTS Ezrin levels were decreased in asthmatic EBC (92.7 ± 34.99 vs. 150.5 ± 10.22 pg/ml, P < 0.0001) and serum (700.7 ± 55.59 vs. 279.2 ± 25.83 pg/ml, P < 0.0001) compared with normal subjects. Levels were much lower in uncontrolled (P < 0.001) and partly controlled patients (P < 0.01) compared with well-controlled subjects. EBC and serum ezrin levels correlated with lung function in patients with asthma and serum ezrin levels were negatively correlated with serum IL-13 and periostin. IL-13-induced downregulation of ezrin expression in primary bronchial epithelial cells was significantly attenuated by the Janus tyrosine kinase 2 inhibitor, TG101348. Ezrin knockdown changed 16HBE cell morphology, enlarged intercellular spaces, and increased their permeability. Ezrin expression was decreased in the lung tissue and BALF of "asthmatic" mice and negatively correlated with BALF IL-13 level. CONCLUSIONS Ezrin downregulation is associated with IL-13-induced epithelial damage and might be a potential biomarker of asthma control.
Collapse
Affiliation(s)
- Man Jia
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyi Yan
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Respiratory Medicine, Nanjing Jiangning Hospital, Nanjing, China
| | - Xinyu Jiang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunhui Wu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiayan Xu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yaqi Meng
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Yang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xia Shan
- Department of Respiratory Medicine, Nanjing Jiangning Hospital, Nanjing, China
| | - Xiuwedi Zhang
- Department of Respiratory Medicine, Nanjing Jiangning Hospital, Nanjing, China
| | - Shan Mao
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing, China
| | - Wei Gu
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing, China
| | - Stelios Pavlidis
- Data Science Institute, Imperial College London, London, United Kingdom; and
| | - Peter J. Barnes
- Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ian M. Adcock
- Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Yao
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
30
|
Ghaffari A, Hoskin V, Turashvili G, Varma S, Mewburn J, Mullins G, Greer PA, Kiefer F, Day AG, Madarnas Y, SenGupta S, Elliott BE. Intravital imaging reveals systemic ezrin inhibition impedes cancer cell migration and lymph node metastasis in breast cancer. Breast Cancer Res 2019; 21:12. [PMID: 30678714 PMCID: PMC6345049 DOI: 10.1186/s13058-018-1079-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/12/2018] [Indexed: 12/26/2022] Open
Abstract
Background Limited understanding of the cancer biology of metastatic sites is a major factor contributing to poor outcomes in cancer patients. The regional lymph nodes are the most common site of metastasis in most solid cancers and their involvement is a strong predictor of relapse in breast cancer (BC). We have previously shown that ezrin, a cytoskeletal–membrane linker protein, is associated with lymphovascular invasion and promotes metastatic progression in BC. However, the efficacy of pharmacological inhibition of ezrin in blocking cancer cell migration and metastasis remains unexplored in BC. Methods We quantified ezrin expression in a BC tissue microarray (n = 347) to assess its correlation with risk of relapse. Next, we developed a quantitative intravital microscopy (qIVM) approach, using a syngeneic lymphatic reporter mouse tumor model, to investigate the effect of systemic ezrin inhibition on cancer cell migration and metastasis. Results We show that ezrin is expressed at significantly higher levels in lymph node metastases compared to matched primary tumors, and that a high tumor ezrin level is associated with increased risk of relapse in BC patients with regional disease. Using qIVM, we observe a subset of cancer cells that retain their invasive and migratory phenotype at the tumor-draining lymph node. We further show that systemic inhibition of ezrin, using a small molecule compound (NSC668394), impedes the migration of cancer cells in vivo. Furthermore, systemic ezrin inhibition leads to reductions in metastatic burden at the distal axillary lymph node and lungs. Conclusions Our findings demonstrate that the tumor ezrin level act as an independent biomarker in predicting relapse and provide a rationale for therapeutic targeting of ezrin to reduce the metastatic capacity of cancer cells in high-risk BC patients with elevated ezrin expression. Electronic supplementary material The online version of this article (10.1186/s13058-018-1079-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abdi Ghaffari
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada. .,Cancer Research Institute, Division of Cancer Biology and Genetics, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada.
| | - Victoria Hoskin
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada.,Cancer Research Institute, Division of Cancer Biology and Genetics, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Gulisa Turashvili
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - Sonal Varma
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - Jeff Mewburn
- Cancer Research Institute, Division of Cancer Biology and Genetics, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Graeme Mullins
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada.,Cancer Research Institute, Division of Cancer Biology and Genetics, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada.,Cancer Research Institute, Division of Cancer Biology and Genetics, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | | | - Andrew G Day
- Kingston General Hospital Research Institute, Kingston, Canada
| | | | - Sandip SenGupta
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - Bruce E Elliott
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada. .,Cancer Research Institute, Division of Cancer Biology and Genetics, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
31
|
Halova I, Bambouskova M, Draberova L, Bugajev V, Draber P. The transmembrane adaptor protein NTAL limits mast cell chemotaxis toward prostaglandin E2. Sci Signal 2018; 11:11/556/eaao4354. [DOI: 10.1126/scisignal.aao4354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemotaxis of mast cells is one of the crucial steps in their development and function. Non–T cell activation linker (NTAL) is a transmembrane adaptor protein that inhibits the activation of mast cells and B cells in a phosphorylation-dependent manner. Here, we studied the role of NTAL in the migration of mouse mast cells stimulated by prostaglandin E2 (PGE2). Although PGE2 does not induce the tyrosine phosphorylation of NTAL, unlike IgE immune complex antigens, we found that loss of NTAL increased the chemotaxis of mast cells toward PGE2. Stimulation of mast cells that lacked NTAL with PGE2 enhanced the phosphorylation of AKT and the production of phosphatidylinositol 3,4,5-trisphosphate. In resting NTAL-deficient mast cells, phosphorylation of an inhibitory threonine in ERM family proteins accompanied increased activation of β1-containing integrins, which are features often associated with increased invasiveness in tumors. Rescue experiments indicated that only full-length, wild-type NTAL restored the chemotaxis of NTAL-deficient cells toward PGE2. Together, these data suggest that NTAL is a key inhibitor of mast cell chemotaxis toward PGE2, which may act through the RHOA/ERM/β1-integrin and PI3K/AKT axes.
Collapse
|
32
|
Tao ZW, Zou PA. Adenovirus-mediated small interfering RNA targeting ezrin induces apoptosis and inhibits metastasis of human osteosarcoma MG-63 cells. Biosci Rep 2018; 38:BSR20180351. [PMID: 29899165 PMCID: PMC6131204 DOI: 10.1042/bsr20180351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/23/2018] [Accepted: 06/11/2018] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma is a disease prone to recurrence and metastasis, and adenovirus expression vector is frequently studied as a therapeutic target of osteosarcoma in recent years. The present study attempts to explore the effect of adenovirus-mediated siRNA targetting ezrin on the proliferation, migration, invasion, and apoptosis of human osteosarcoma MG-63 cells. Human osteosarcoma MG-63 cell line was selected for construction of recombinant adenovirus vector. The mRNA and protein levels of ezrin, Bcl2-associated X protein (Bax), B cell lymphoma-2 (Bcl-2), p21, p53, Caspase-3, matrix metalloproteinase (MMP) 2 (MMP-2) and MMP-9, Cyclin D1, and cyclin-dependent kinase 4a (CDK4a) were determined. Through ELISA, the levels of Caspase-3, MMP-2 and MMP-9 were examined. Finally, human osteosarcoma MG-63 cell viability, growth, invasion, migration, and apoptosis were detected. Initially, adenovirus expression vector of ezrin was constructed by ezrin 2 siRNA sequence. Adenovirus-mediated siRNA targetting ezrin reduced expression of ezrin in MG-63 cells. The results revealed that adenovirus-mediated siRNA targetting ezrin elevated expression levels of Bax, p21, p53, and Caspase-3, Cyclin D1, and CDK4a and reduced expression levels of Bcl-2, MMP-2 and MMP-9. Furthermore, adenovirus-mediated siRNA targetting ezrin inhibited human osteosarcoma MG-63 cell viability, growth, invasion, and migration, and promoted apoptosis. Our study demonstrates that adenovirus-mediated siRNA targetting ezrin can induce apoptosis and inhibit the proliferation, migration, and invasion of human osteosarcoma MG-63 cells.
Collapse
Affiliation(s)
- Zhi-Wei Tao
- Bone and Soft Tissue Sarcoma Department, Jiangxi Cancer Hospital, Nanchang 330029, P.R. China
| | - Ping-An Zou
- Bone and Soft Tissue Sarcoma Department, Jiangxi Cancer Hospital, Nanchang 330029, P.R. China
| |
Collapse
|
33
|
Leiphrakpam PD, Brattain MG, Black JD, Wang J. TGFβ and IGF1R signaling activates protein kinase A through differential regulation of ezrin phosphorylation in colon cancer cells. J Biol Chem 2018; 293:8242-8254. [PMID: 29599290 DOI: 10.1074/jbc.ra117.001299] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/14/2018] [Indexed: 01/30/2023] Open
Abstract
Aberrant cell survival plays a critical role in cancer progression and metastasis. We have previously shown that ezrin, a cAMP-dependent protein kinase A-anchoring protein (AKAP), is up-regulated in colorectal cancer (CRC) liver metastasis. Phosphorylation of ezrin at Thr-567 activates ezrin and plays an important role in CRC cell survival associated with XIAP and survivin up-regulation. In this study, we demonstrate that in FET and GEO colon cancer cells, knockdown of ezrin expression or inhibition of ezrin phosphorylation at Thr-567 increases apoptosis through protein kinase A (PKA) activation in a cAMP-independent manner. Transforming growth factor (TGF) β signaling inhibits ezrin phosphorylation in a Smad3-dependent and Smad2-independent manner and regulates pro-apoptotic function through ezrin-mediated PKA activation. On the other hand, ezrin phosphorylation at Thr-567 by insulin-like growth factor 1 receptor (IGF1R) signaling leads to cAMP-dependent PKA activation and enhances cell survival. Further studies indicate that phosphorylated ezrin forms a complex with PKA RII, and dephosphorylated ezrin dissociates from the complex and facilitates the association of PKA RII with AKAP149, both of which activate PKA yet lead to either cell survival or apoptosis. Thus, our studies reveal a novel mechanism of differential PKA activation mediated by TGFβ and IGF1R signaling through regulation of ezrin phosphorylation in CRC, resulting in different cell fates. This is of significance because TGFβ and IGF1R signaling pathways are well-characterized tumor suppressor and oncogenic pathways, respectively, with important roles in CRC tumorigenesis and metastasis. Our studies indicate that they cross-talk and antagonize each other's function through regulation of ezrin activation. Therefore, ezrin may be a potential therapeutic target in CRC.
Collapse
Affiliation(s)
- Premila D Leiphrakpam
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Michael G Brattain
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198; Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198; Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Jing Wang
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198; Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198; Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198.
| |
Collapse
|
34
|
Ferreira ÉR, Bonfim-Melo A, Cordero EM, Mortara RA. ERM Proteins Play Distinct Roles in Cell Invasion by Extracellular Amastigotes of Trypanosoma cruzi. Front Microbiol 2017; 8:2230. [PMID: 29209287 PMCID: PMC5702390 DOI: 10.3389/fmicb.2017.02230] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/30/2017] [Indexed: 12/03/2022] Open
Abstract
The protozoan parasite Trypanosoma cruzi is the causative agent of Chagas' disease. In mammalian hosts, T. cruzi alternates between trypomastigote and amastigote forms. Additionally, trypomastigotes can differentiate into amastigotes in the extracellular environment generating infective extracellular amastigotes (EAs). Ezrin-radixin-moesin (ERM) are key proteins linking plasma membrane to actin filaments, the major host cell component responsible for EA internalization. Our results revealed that depletion of host ezrin and radixin but not moesin inhibited EAs invasion in HeLa cells. ERM are recruited and colocalize with F-actin at EA invasion sites as shown by confocal microscopy. Invasion assays performed with cells overexpressing ERM showed increased EAs invasion in ezrin and radixin but not moesin overexpressing cells. Finally, time-lapse experiments have shown altered actin dynamics leading to delayed EA internalization in ezrin and radixin depleted cells when compared to control or moesin depleted cells. Altogether, these findings show distinct roles of ERM during EAs invasion, possibly regulating F-actin dynamics and plasma membrane interplay.
Collapse
Affiliation(s)
- Éden R Ferreira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alexis Bonfim-Melo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Esteban M Cordero
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.,Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Renato A Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
35
|
He Y, Ma J, Ye X. A support vector machine classifier for the prediction of osteosarcoma metastasis with high accuracy. Int J Mol Med 2017; 40:1357-1364. [PMID: 28901446 PMCID: PMC5627885 DOI: 10.3892/ijmm.2017.3126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 08/29/2017] [Indexed: 12/02/2022] Open
Abstract
In this study, gene expression profiles of osteosarcoma (OS) were analyzed to identify critical genes associated with metastasis. Five gene expression datasets were screened and downloaded from Gene Expression Omnibus (GEO). Following assessment by MetaQC, the dataset GSE9508 was excluded for poor quality. Subsequently, differentially expressed genes (DEGs) between metastatic and non-metastatic OS were identified using meta‑analysis. A protein-protein interaction (PPI) network was constructed with information from Human Protein Reference Database (HPRD) for the DEGs. Betweenness centrality (BC) was calculated for each node in the network and top featured genes ranked by BC were selected out to construct support vector machine (SVM) classifier using the training set GSE21257, which was then validated using the other three independent datasets. Pathway enrichment analysis was performed for the featured genes using Fisher's exact test. A total of 353 DEGs were identified and a PPI network including 164 nodes and 272 edges was then constructed. The top 64 featured genes ranked by BC were included in the SVM classifier. The SVM classifier exhibited high prediction accuracies in all of the 4 datasets, with accuracies of 100, 100, 92.6 and 100%, respectively. Further analysis of the featured genes revealed that 11 Gene Ontology (GO) biological pathways and 5 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were significantly over-represented, including the regulation of cell proliferation, regulation of apoptosis, pathways in cancer, regulation of actin cytoskeleton and the TGF-β signaling pathway. On the whole, an SVM classifier with high prediction accuracy was constructed and validated, in which key genes associated with metastasis in OS were also revealed. These findings may promote the development of genetic diagnostic methods and may enhance our understanding of the molecular mechanisms underlying the metastasis of OS.
Collapse
Affiliation(s)
- Yunfei He
- Department of Orthopaedics, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai 200003
- Department of Orthopaedics, Lanzhou General Hospital of Lanzhou Military Command Region, Lanzhou, Gansu 730050, P.R. China
| | - Jun Ma
- Department of Orthopaedics, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai 200003
| | - Xiaojian Ye
- Department of Orthopaedics, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai 200003
| |
Collapse
|
36
|
Wu VM, Mickens J, Uskoković V. Bisphosphonate-Functionalized Hydroxyapatite Nanoparticles for the Delivery of the Bromodomain Inhibitor JQ1 in the Treatment of Osteosarcoma. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25887-25904. [PMID: 28731328 PMCID: PMC5794714 DOI: 10.1021/acsami.7b08108] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Osteosarcoma (OS) is one of the most common neoplasia among children, and its survival statistics have been stagnating since the combinatorial anticancer therapy triad was first introduced. Here, we report on the assessment of the effect of hydroxyapatite (HAp) nanoparticles loaded with medronate, the simplest bisphosphonate, as a bone-targeting agent and JQ1, a small-molecule bromodomain inhibitor, as a chemotherapeutic in different 2D and 3D K7M2 OS in vitro models. Both additives decreased the crystallinity of HAp, but the effect was more intense for medronate because of its higher affinity for HAp. As the result of PO43--NH+ binding, JQ1 shielded the surface phosphates of HAp and pushed its surface charge to more positive values, exhibiting the opposite effect from calcium-blocking medronate. In contrast to the faster and more exponential release of JQ1 from monetite, its release from HAp nanoparticles followed a zero-order kinetics, but 98% of the payload was released after 48 h. The apoptotic effect of HAp nanoparticles loaded with JQ1, with medronate and with both JQ1 and medronate, was selective in 2D culture: pronounced against the OS cells and nonexistent against the healthy fibroblasts. While OS cell invasion was significantly inhibited by all of the JQ1-containing HAp formulations, that is, with and without medronate, all of the combinations of the targeting compound, medronate, and the chemotherapeutic, JQ1, delivered using HAp, but not HAp alone, inhibited OS cell migration from the tumor spheroids. JQ1 delivered using HAp had an effect on tumor migration, invasion, and apoptosis even at extremely low, subnanomolar concentrations, at which no effect of JQ1 per se was observed, meaning that this form of delivery could help achieve a multifold increase of this drug's efficacy. More than 80% of OS cells internalized JQ1-loaded HAp nanoparticles after 24 h of coincubation, suggesting that this augmentation of the activity of JQ1 may be due to the intracellular delivery and sustained release of the drug enabled by HAp. In addition to the reduction of the OS cell viability, the reduction of the migration and invasion radii was observed in OS tumor spheroids challenged with even JQ1-free medronate-functionalized HAp nanoparticles, demonstrating a definite anticancer activity of medronate alone when combined with HAp. The effect of medronate-functionalized JQ1-loaded HAp nanoparticles was most noticeable against OS cells differentiated into an osteoblastic lineage, in which case they surpassed in effect pure JQ1 and medronate-free compositions. The activity of JQ1 was mediated through increased Ezrin expression and decreased RUNX2 expression and was MYC and FOSL1 independent, but these patterns of gene expression changed in cells challenged with the nanoparticulate form of delivery, having been accompanied by the upregulation of RUNX2 and downregulation of Ezrin in OS cells treated with medronate-functionalized JQ1-loaded HAp nanoparticles.
Collapse
Affiliation(s)
- Victoria M. Wu
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, California 92618-1908, United States
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, Illinois 60607-7052, United States
| | - Jarrett Mickens
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, Illinois 60607-7052, United States
| | - Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, California 92618-1908, United States
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, Illinois 60607-7052, United States
- Corresponding Author:
| |
Collapse
|
37
|
Hinojosa LS, Holst M, Baarlink C, Grosse R. MRTF transcription and Ezrin-dependent plasma membrane blebbing are required for entotic invasion. J Cell Biol 2017; 216:3087-3095. [PMID: 28774893 PMCID: PMC5626544 DOI: 10.1083/jcb.201702010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/06/2017] [Accepted: 07/12/2017] [Indexed: 12/20/2022] Open
Abstract
Entosis is a nonapoptotic form of cell death initiated by actomyosin-dependent homotypic cell-in-cell invasion that can be observed in malignant exudates during tumor progression. We previously demonstrated formin-mediated actin dynamics at the rear of the invading cell as well as nonapoptotic plasma membrane (PM) blebbing in this cellular motile process. Although the contractile actin cortex involved in bleb-driven motility is well characterized, a role for transcriptional regulation in this process has not been studied. Here, we explore the impact of the actin-controlled MRTF-SRF (myocardin-related transcription factor-serum response factor) pathway for sustained PM blebbing and entotic invasion. We find that cortical blebbing is tightly coupled to MRTF nuclear shuttling to promote the SRF transcriptional activity required for entosis. Furthermore, PM blebbing triggered SRF-mediated up-regulation of the metastasis-associated ERM protein Ezrin. Notably, Ezrin is sufficient and important to sustain bleb dynamics for cell-in-cell invasion when SRF is suppressed. Our results highlight the critical role of the actin-regulated MRTF transcriptional pathway for bleb-associated invasive motility, such as during entosis.
Collapse
Affiliation(s)
- Laura Soto Hinojosa
- Institute of Pharmacology, Biochemisch-Pharmakologisches Centrum Marburg, University of Marburg, Marburg, Germany.,Deutsche Forschungsgemeinschaft Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, University of Marburg, Marburg, Germany
| | - Manuel Holst
- Institute of Pharmacology, Biochemisch-Pharmakologisches Centrum Marburg, University of Marburg, Marburg, Germany
| | - Christian Baarlink
- Institute of Pharmacology, Biochemisch-Pharmakologisches Centrum Marburg, University of Marburg, Marburg, Germany
| | - Robert Grosse
- Institute of Pharmacology, Biochemisch-Pharmakologisches Centrum Marburg, University of Marburg, Marburg, Germany .,Deutsche Forschungsgemeinschaft Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, University of Marburg, Marburg, Germany
| |
Collapse
|
38
|
Abstract
Cellular heterogeneity is a common feature in breast cancer, yet an understanding of the coexistence and regulation of various tumor cell subpopulations remains a significant challenge in cancer biology. In the current study, we approached tumor cell heterogeneity from the perspective of Wnt pathway biology to address how different modes of Wnt signaling shape the behaviors of diverse cell populations within a heterogeneous tumor landscape. Using a syngeneic TP53-null mouse model of breast cancer, we identified distinctions in the topology of canonical Wnt β-catenin-dependent signaling activity and non-canonical β-catenin-independent Ror2-mediated Wnt signaling across subtypes and within tumor cell subpopulations in vivo. We further discovered an antagonistic role for Ror2 in regulating canonical Wnt/β-catenin activity in vivo, where lentiviral shRNA depletion of Ror2 expression augmented canonical Wnt/β-catenin signaling activity across multiple basal-like models. Depletion of Ror2 expression yielded distinct phenotypic outcomes and divergent alterations in gene expression programs among different tumors, despite all sharing basal-like features. Notably, we uncovered cell state plasticity and adhesion dynamics regulated by Ror2, which influenced Ras Homology Family Member A (RhoA) and Rho-Associated Coiled-Coil Kinase 1 (ROCK1) activity downstream of Dishevelled-2 (Dvl2). Collectively, these studies illustrate the integration and collaboration of Wnt pathways in basal-like breast cancer, where Ror2 provides a spatiotemporal function to regulate the balance of Wnt signaling and cellular heterogeneity during tumor progression.
Collapse
|
39
|
Li M, Feng YM, Fang SQ. Overexpression of ezrin and galectin-3 as predictors of poor prognosis of cervical cancer. ACTA ACUST UNITED AC 2017; 50:e5356. [PMID: 28355349 PMCID: PMC5423742 DOI: 10.1590/1414-431x20165356] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 11/24/2016] [Indexed: 12/19/2022]
Abstract
The aim of this study was to explore the correlation of ezrin and galectin-3 expressions with prognosis in cervical cancer. The immunohistochemical method was applied to detect ezrin and galectin-3 expressions in normal cervix tissues (n=30), cervicitis tissues (n=28), cervical intraepithelial neoplasia (CIN) tissues (classified as I-III, n=89), and cervical carcinoma tissues (n=84). Follow-up was conducted for 5 to 78 months to analyze the correlation of protein expressions with prognosis. Ezrin and galectin-3 expressions in cervical cancer were significantly higher than in normal cervix, cervicitis and CIN (all P<0.05), and expressions in CIN were significantly higher than in normal cervix and cervicitis (both P<0.05). The expressions of ezrin and galectin-3 were both related with histological grade, deep myometrial invasion and lymph node metastasis (all P<0.05). Spearman analysis showed that ezrin expression was positively correlated with galectin-3 expression in cervical cancer (r=0.355, P<0.05). The survival rate of patients with high expressions of ezrin and galectin-3 was significantly lower than those with low expressions of proteins (both P<0.05). The expressions of ezrin and galectin-3, histological grade, depth of stromal invasion, and lymph node metastasis are risk factors affecting the survival rate of patients with cervical cancer. The expressions of ezrin and galectin-3 were correlated with the development of cervical cancer, and overexpressions of those proteins were indicative of poor prognosis in patients with cervical cancer.
Collapse
Affiliation(s)
- M Li
- Department of Obstetrics, The Second People's Hospital of Huaian, Huaian, Jiangsu Province, China
| | - Y M Feng
- Department of Obstetrics, The Second People's Hospital of Huaian, Huaian, Jiangsu Province, China
| | - S Q Fang
- Department of Obstetrics, The Second People's Hospital of Huaian, Huaian, Jiangsu Province, China
| |
Collapse
|
40
|
Bou G, Liu S, Sun M, Zhu J, Xue B, Guo J, Zhao Y, Qu B, Weng X, Wei Y, Lei L, Liu Z. CDX2 is essential for cell proliferation and polarity in porcine blastocysts. Development 2017; 144:1296-1306. [PMID: 28219949 DOI: 10.1242/dev.141085] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 02/03/2017] [Indexed: 01/18/2023]
Abstract
The role of CDX2 in trophectoderm (TE) cells has been extensively studied, yet the results are contradictory and species specific. Here, CDX2 expression and function were explored in early porcine embryos. Notably, siRNA-mediated gene knockdown and lentivirus-mediated TE-specific gene regulation demonstrated that CDX2 is essential for the maintenance of blastocyst integrity by regulating the BMP4-mediated blastocyst niche and classic protein kinase C (PKC)-mediated TE polarity in mammalian embryos. Mechanistically, CDX2-depleted porcine embryos stalled at the blastocyst stage and exhibited apoptosis and inactive cell proliferation, possibly resulting from BMP4 downregulation. Moreover, TE cells in CDX2-depleted blastocysts displayed defective F-actin apical organization associated with downregulation of PKCα (PRKCA). Collectively, these results provide further insight into the functional diversity of CDX2 in early mammalian embryos.
Collapse
Affiliation(s)
- Gerelchimeg Bou
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.,College of Animal Science, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Shichao Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Mingju Sun
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiang Zhu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Binghua Xue
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jia Guo
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yueming Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Bo Qu
- Life Science and Biotechnique Research Center, Northeast Agricultural University, Harbin 150030, China
| | - Xiaogang Weng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yanchang Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China .,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China
| |
Collapse
|
41
|
Zhang A, Yan T, Wang K, Huang Z, Liu J. PI3Kα isoform-dependent activation of RhoA regulates Wnt5a-induced osteosarcoma cell migration. Cancer Cell Int 2017; 17:27. [PMID: 28289332 PMCID: PMC5310072 DOI: 10.1186/s12935-017-0396-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/04/2017] [Indexed: 01/06/2023] Open
Abstract
Background We have reported that the phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway mediated Wnt5a-induced osteosarcoma cell migration. However, the signaling pathways regulating Wnt5a/PI3K/Akt-mediated cell migration remains poorly defined in osteosarcoma cells. Methods We evaluated the activations of RhoA, Rac1 and Cdc42 in osteosarcoma MG-63 and U2OS cells with small G-protein activation assay. Boyden chamber assays were used to confirm the migration of cells transfected indicated constructs or siRNA specific against RhoA. A panel of inhibitors of PI3K and Akt treated osteosarcoma cells and blocked kinase activity. Western blotting and RhoA activation assay were employed to measure the effect of kinase inhibitors and activations of RhoA and Akt. Results We found that Wnt5a had a potent stimulatory effect on RhoA activation, but not on Rac1 and Cdc42 activations. Wnt5a-induced cell migration was largely abolished by siRNA specific against RhoA. DN-RhoA (GFP-RhoA-N19) was also capable of retarding Wnt5a-induced cell migration, but the overexpression of CA-RhoA (GFP-RhoA-V14) was not able to accelerate cell migration. The Wnt5a-induced activation of RhoA was mostly blocked by pretreatment of LY294002 (PI3K inhibitor) and MK-2206 (Akt inhibitor). Furthermore, we found that the Wnt5a-induced activation of RhoA was mostly blocked by pretreatment of HS-173 (PI3Kα inhibitor). Lastly, the phosphorylation of Akt (p-Ser473) was not altered by transfection with siRNA specific against RhoA or DN-RhoA (GFP-RhoA-N19). Conclusions Taken together, we demonstrate that RhoA acts as the downstream of PI3K/Akt signaling (specific PI3Kα, Akt1 and Akt2 isoforms) and mediated Wnt5a-induced the migration of osteosarcoma cells. Electronic supplementary material The online version of this article (doi:10.1186/s12935-017-0396-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ailiang Zhang
- Spine Surgery, Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
| | - Ting Yan
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, School of Public Health, Nanjing Medical University, Nanjing, 211166 Jiangsu China
| | - Kun Wang
- Spine Surgery, Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
| | - Zhihui Huang
- Spine Surgery, Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
| | - Jinbo Liu
- Spine Surgery, Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
| |
Collapse
|
42
|
Feng J, Lan R, Cai G, Lin J, Wang X, Lin J, Han D. Verification of TREX1 as a promising indicator of judging the prognosis of osteosarcoma. J Orthop Surg Res 2016; 11:150. [PMID: 27881153 PMCID: PMC5122164 DOI: 10.1186/s13018-016-0487-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/31/2016] [Indexed: 01/09/2023] Open
Abstract
Background The study aimed to explore the correlation between the expression of TREX1 and the metastasis and the survival time of patients with osteosarcoma as well as biological characteristics of osteosarcoma cells for the prognosis judgment of osteosarcoma. Method The correlation between the expression of TREX1 protein and the occurrence of pulmonary metastasis in 45 cases of osteosarcoma was analyzed. The CD133+ and CD133− cell subsets of osteosarcoma stem cells were sorted by the flow cytometry. The tumorsphere culture, clone formation, growth curve, osteogenic and adipogenic differentiation, tumor-formation ability in nude mice, sensitivity of chemotherapeutic drugs, and other cytobiology behaviors were compared between the cell subsets in two groups; the expressions of stem cell-related genes Nanog and Oct4 were compared; The expressions of TREX1 protein and mRNA were compared between the cell subsets in two groups. The data was statistically analyzed. The measurement data between the two groups were compared using t test. The count data between the two groups were compared using χ2 test and Kaplan–Meier survival analysis. A P value <0.05 indicated that the difference was statistically significant. Results The expression of TREX1 protein in patients with osteosarcoma in the metastasis group was significantly lower than that in the non-metastasis group. The difference was statistically significant (P < 0.05). Up to the last follow-up visit, the former average survival time was significantly lower than that of the latter, and the difference was statistically significant (P < 0.05). The expression of TREX1 in human osteosarcoma CD133+ cell subsets was significantly lower than that in CD133- cell subsets. Stemness-related genes Nanog and Oct4 were highly expressed in human osteosarcoma CD133+ cell subsets with lower expression of TREX1; the biological characteristics identification experiment showed that human CD133+ cell subsets with low TREX1 expression could form tumorspheres, the number of colony forming was more, the cell proliferation ability was strong, the osteogenic and adipogenic differentiation potential was big, the tumor-forming ability in nude mice was strong, and the sensibility of chemotherapeutics drugs on cisplatin was low. Conclusions The expression of TREX1 may be related to metastasis in patients with osteosarcoma. The expression of TREX1 was closely related to the cytobiology characteristics of osteosarcoma stem cell. TREX1 can play an important role in the occurrence and development processes. And, TREX1 is expected to become an effective new index for the evaluation of the prognosis.
Collapse
Affiliation(s)
- Jinyi Feng
- Department of Central Laboratory, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Ruilong Lan
- Department of Central Laboratory, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.,Fujian Key Laboratory of Radiation Biology, Fujian Medical University, Fuzhou, Fujian, China.,Fujian Key Laboratory of Individualized Active Immunotherapy, Fujian Medical University, Fuzhou, Fujian, China
| | - Guanxiong Cai
- Department of Central Laboratory, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Jinluan Lin
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xinwen Wang
- Department of Central Laboratory, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Jianhua Lin
- Department of Central Laboratory, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China. .,Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.
| | - Deping Han
- Department of Central Laboratory, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
43
|
Yao Q, Pei Y, Zhuo H, Xie B. Influence of ezrin-shRNA in combination with HSP70 on the apoptosis and proliferation of osteosarcoma cells. Oncol Lett 2016; 12:3441-3448. [PMID: 27900018 PMCID: PMC5103965 DOI: 10.3892/ol.2016.5103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/26/2016] [Indexed: 12/04/2022] Open
Abstract
Ezrin and heat shock protein (HSP)70 have been reported to regulate cell apoptosis and tumor development of osteosarcoma. However, there has not been reported the synergy effect of knocking down ezrin and overexpressing HSP70. In the present study, two vectors, pGFP-V-RS-shRNA and pGFP-V-RS-shRNA-HSP70, were constructed and transfected into LM8 cells [denoted as small hairpin (sh)RNA group and dual group, respectively]. The apoptosis rates in these two transfected groups were significantly higher than those in the control group (empty vector) (P=0.036), while significantly lower proliferation rates were observed in these two groups (P=0.023). The cytotoxic T lymphocyte activity on target LM8 tumor cells in the dual group was significantly higher than in other groups, with cytotoxicity as high as 55.56±2.10%. Further studies revealed that the transfection of ezrin-shRNA/HSP70 also suppressed tumor formation in vivo in nude mice. A lower cluster of differentiation (CD)4/CD8 ratio was detected in the tumor formed by injecting cells in the dual group (P=0.006). Furthermore, the serum level of interleukin-4 in the dual group was significantly decreased, while the serum level of interferon-γ was significantly increased, compared with the other two groups (P=0.004). Simultaneously knocking down ezrin and overexpressing HSP70 promotes cellular apoptosis and suppresses the proliferation of osteosarcoma cells in vitro, and enhances the tumor killing effects of HSP70-induced immune killing.
Collapse
Affiliation(s)
- Qin Yao
- Central Laboratory, Zhongshan Hospital Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Yihua Pei
- Central Laboratory, Zhongshan Hospital Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Huiqin Zhuo
- Central Laboratory, Zhongshan Hospital Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Bozhen Xie
- Department of Spine Surgery, Zhongshan Hospital Xiamen University, Xiamen, Fujian 361004, P.R. China
| |
Collapse
|
44
|
Chang YJ, Cheng YW, Lin RK, Huang CC, Chen WTL, Ke TW, Wei PL. Thrombomodulin Influences the Survival of Patients with Non-Metastatic Colorectal Cancer through Epithelial-To-Mesenchymal Transition (EMT). PLoS One 2016; 11:e0160550. [PMID: 27512995 PMCID: PMC4981396 DOI: 10.1371/journal.pone.0160550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 07/21/2016] [Indexed: 12/29/2022] Open
Abstract
Background Treatment resistance and metastasis are the major causes of death among patients with colorectal cancer (CRC). Approximately 20% of surgically treated patients ultimately develop metastases during the follow-up period. Currently, the TNM system is the only available prognostic test. Therefore, the identification of new markers for CRC remains important. Thrombomodulin (TM), a glycoprotein, is involved in angiogenesis and has been linked to many malignant diseases. However, the function of TM in CRC remains unclear. Methods A total of 170 patients with CRC participated in this study. TM expression was analyzed via immunohistochemistry. Univariate (Kaplan-Meier) analysis was used to analyze patient outcomes, including overall survival (OS) and disease-free survival (DFS). TM expression was manipulated using shRNA or an overexpression system. Transwell migration assays, wound healing migration assays, and the xCELLigence biosensor system were used to detect cell proliferative and migratory capacities. Results TM expression in the tumor tissues significantly and positively correlated with the DFS and OS of non-metastatic patients with CRC (ps = 0.036 and 0.0218, respectively). Suppression of TM expression increased the proliferation and migration of DLD-1 cells. TM overexpression reduced the cells’ proliferative and migratory capacities. Cyclooxygenase (COX)-2 expression was up-regulated following TM silencing. Furthermore, the association between the migration of colon cancer cells and the levels of TM and epithelial-to-mesenchymal transition (EMT) markers (fibronectin, vimentin and ezrin) was confirmed in HT29 and DLD-1 cells. Conclusions Our study demonstrates that patients with non-metastatic CRC display low TM expression in their tumors and exhibit reduced DFS and OS. The enhanced expression of mesenchymal markers and COX-2 may be involved in the mechanisms that underlie recurrence in patients with cancer displaying low TM expression.
Collapse
Affiliation(s)
- Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Ya-Wen Cheng
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology,Taipei Medical University, Taipei, Taiwan, ROC
| | - Ruo-Kai Lin
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan, ROC
| | - Chi-Chou Huang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
- Department of Surgery, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - William Tzu-Liang Chen
- Division of Colorectal Surgery, Department of Surgery, China Medical University Hospital, Taichung, Taiwan, ROC
| | - Tao-Wei Ke
- Division of Colorectal Surgery, Department of Surgery, China Medical University Hospital, Taichung, Taiwan, ROC
- Institute of Medicine, Chung-Shan Medical University, Taichung, Taiwan, ROC
| | - Po-Li Wei
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology,Taipei Medical University, Taipei, Taiwan, ROC
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan, ROC
- Cancer Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan, ROC
- * E-mail:
| |
Collapse
|
45
|
Ren L, Mendoza A, Zhu J, Briggs JW, Halsey C, Hong ES, Burkett SS, Morrow J, Lizardo MM, Osborne T, Li SQ, Luu HH, Meltzer P, Khanna C. Characterization of the metastatic phenotype of a panel of established osteosarcoma cells. Oncotarget 2016; 6:29469-81. [PMID: 26320182 PMCID: PMC4745740 DOI: 10.18632/oncotarget.5177] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/25/2015] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma (OS) is the most common bone tumor in pediatric patients. Metastasis is a major cause of mortality and morbidity. The rarity of this disease coupled with the challenges of drug development for metastatic cancers have slowed the delivery of improvements in long-term outcomes for these patients. In this study, we collected 18 OS cell lines, confirmed their expression of bone markers and complex karyotypes, and characterized their in vivo tumorgenicity and metastatic potential. Since prior reports included conflicting descriptions of the metastatic and in vivo phenotypes of these models, there was a need for a comparative assessment of metastatic phenotypes using identical procedures in the hands of a single investigative group. We expect that this single characterization will accelerate the study of this metastatic cancer. Using these models we evaluated the expression of six previously reported metastasis-related OS genes. Ezrin was the only gene consistently differentially expressed in all the pairs of high/low metatstatic OS cells. We then used a subtractive gene expression approach of the high and low human metastatic cells to identify novel genes that may be involved in OS metastasis. PHLDA1 (pleckstrin homology-like domain, family A) was identified as one of the genes more highly expressed in the high metastatic compared to low metastatic cells. Knocking down PHLDA1 with siRNA or shRNA resulted in down regulation of the activities of MAPKs (ERK1/2), c-Jun N-terminal kinases (JNK), and p38 mitogen-activated protein kinases (MAPKs). Reducing the expression of PHLDA1 also delayed OS metastasis progression in mouse xenograft models.
Collapse
Affiliation(s)
- Ling Ren
- Molecular Oncology Section - Metastasis Biology Group, Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Arnulfo Mendoza
- Molecular Oncology Section - Metastasis Biology Group, Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Jack Zhu
- Genetic Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Joseph W Briggs
- Molecular Oncology Section - Metastasis Biology Group, Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Charles Halsey
- Molecular Pathology Unit, Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Ellen S Hong
- Molecular Oncology Section - Metastasis Biology Group, Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Sandra S Burkett
- Comparative Molecular Cytogenetics Core Facility, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - James Morrow
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michael M Lizardo
- Molecular Oncology Section - Metastasis Biology Group, Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Tanasa Osborne
- National Institute of Environmental Health, Research Triangle Park, North Carolina, USA
| | - Samuel Q Li
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Hue H Luu
- Department of Orthopedic Surgery & Rehabilitation Medicine, University of Chicago, Medicine & Biological Sciences, Chicago, USA
| | - Paul Meltzer
- Genetic Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Chand Khanna
- Molecular Oncology Section - Metastasis Biology Group, Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
46
|
Sun W, Ma X, Shen J, Yin F, Wang C, Cai Z. Bioinformatics analysis of differentially expressed pathways related to the metastatic characteristics of osteosarcoma. Int J Mol Med 2016; 38:466-74. [PMID: 27353415 PMCID: PMC4935462 DOI: 10.3892/ijmm.2016.2657] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 06/03/2016] [Indexed: 12/17/2022] Open
Abstract
In this study, gene expression data of osteosarcoma (OSA) were analyzed to identify metastasis-related biological pathways. Four gene expression data sets (GSE21257, GSE9508, GSE49003 and GSE66673) were downloaded from Gene Expression Omnibus (GEO). An analysis of differentially expressed genes (DEGs) was performed using the Significance Analysis of Microarray (SAM) method. Gene expression levels were converted into scores of pathways by the Functional Analysis of Individual Microarray Expression (FAIME) algorithm and the differentially expressed pathways (DEPs) were then disclosed by a t-test. The distinguishing and prediction ability of the DEPs for metastatic and non-metastatic OSA was further confirmed using the principal component analysis (PCA) method and 3 gene expression data sets (GSE9508, GSE49003 and GSE66673) based on the support vector machines (SVM) model. A total of 616 downregulated and 681 upregulated genes were identified in the data set, GSE21257. The DEGs could not be used to distinguish metastatic OSA from non-metastatic OSA, as shown by PCA. Thus, an analysis of DEPs was further performed, resulting in 14 DEPs, such as NRAS signaling, Toll-like receptor (TLR) signaling, matrix metalloproteinase (MMP) regulation of cytokines and tumor necrosis factor receptor-associated factor (TRAF)-mediated interferon regulatory factor 7 (IRF7) activation. Cluster analysis indicated that these pathways could be used to distinguish between metastatic OSA from non-metastatic OSA. The prediction accuracy was 91, 66.7 and 87.5% for the data sets, GSE9508, GSE49003 and GSE66673, respectively. The results of PCA further validated that the DEPs could be used to distinguish metastatic OSA from non-metastatic OSA. On the whole, several DEPs were identified in metastatic OSA compared with non-metastatic OSA. Further studies on these pathways and relevant genes may help to enhance our understanding of the molecular mechanisms underlying metastasis and may thus aid in the development of novel therapies.
Collapse
Affiliation(s)
- Wei Sun
- Department of Orthopedics, Shanghai General Hospital, Nanjing Medical University, Shanghai 200072, P.R. China
| | - Xiaojun Ma
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Jiakang Shen
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Fei Yin
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | | | - Zhengdong Cai
- Department of Orthopedics, Shanghai General Hospital, Nanjing Medical University, Shanghai 200072, P.R. China
| |
Collapse
|
47
|
Morrow JJ, Mendoza A, Koyen A, Lizardo MM, Ren L, Waybright TJ, Hansen RJ, Gustafson DL, Zhou M, Fan TM, Scacheri PC, Khanna C. mTOR Inhibition Mitigates Enhanced mRNA Translation Associated with the Metastatic Phenotype of Osteosarcoma Cells In Vivo. Clin Cancer Res 2016; 22:6129-6141. [PMID: 27342399 DOI: 10.1158/1078-0432.ccr-16-0326] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/20/2016] [Accepted: 06/13/2016] [Indexed: 12/20/2022]
Abstract
PURPOSE To successfully metastasize, tumor cells must respond appropriately to biological stressors encountered during metastatic progression. We sought to test the hypothesis that enhanced efficiency of mRNA translation during periods of metastatic stress is required for metastatic competence of osteosarcoma and that this metastasis-specific adaptation is amenable to therapeutic intervention. EXPERIMENTAL DESIGN We employ novel reporter and proteomic systems that enable tracking of mRNA translation efficiency and output in metastatic osteosarcoma cells as they colonize the lungs. We test the potential to target mRNA translation as an antimetastatic therapeutic strategy through pharmacokinetic studies and preclinical assessment of the prototypic mTOR inhibitor, rapamycin, across multiple models of metastasis. RESULTS Metastatic osteosarcoma cells translate mRNA more efficiently than nonmetastatic cells during critical stressful periods of metastatic colonization of the lung. Rapamycin inhibits translational output during periods of metastatic stress, mitigates lung colonization, and prolongs survival. mTOR-inhibiting exposures of rapamycin are achievable in mice using treatment schedules that correspond to human doses well below the MTDs defined in human patients, and as such are very likely to be tolerated over long exposures alone and in combination with other agents. CONCLUSIONS Metastatic competence of osteosarcoma cells is dependent on efficient mRNA translation during stressful periods of metastatic progression, and the mTOR inhibitor, rapamycin, can mitigate this translation and inhibit metastasis in vivo Our data suggest that mTOR pathway inhibitors should be reconsidered in the clinic using rationally designed dosing schedules and clinical metrics related to metastatic progression. Clin Cancer Res; 22(24); 6129-41. ©2016 AACR.
Collapse
Affiliation(s)
- James J Morrow
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio.,Pediatric Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Arnulfo Mendoza
- Pediatric Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Allyson Koyen
- Pediatric Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Michael M Lizardo
- Pediatric Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Ling Ren
- Pediatric Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Timothy J Waybright
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Ryan J Hansen
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado.,Pharmacology Shared Resource, University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, Colorado
| | - Daniel L Gustafson
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado.,Pharmacology Shared Resource, University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, Colorado
| | - Ming Zhou
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, Illinois
| | - Peter C Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Chand Khanna
- Pediatric Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
48
|
Abstract
Osteosarcoma (OS) is a deadly bone malignancy affecting mostly children and adolescents. OS has outstandingly complex genetic alterations likely due to p53-independent genomic instability. Based on analysis of recent published research we claim existence of various genetic mechanisms of osteosarcomagenesis conferring great variability to different OS properties including metastatic potential. We also propose a model explaining how diverse genetic mechanisms occur and providing a framework for future research. P53-independent preexisting genomic instability, which precedes and frequently causes TP53 genetic alterations, is central in our model. In addition, our analyses reveal a possible cooperation between aberrantly activated HIF-1α and AP-1 genetic pathways in OS metastasis. We also review the involvement of noncoding RNA genes in OS metastasis.
Collapse
Affiliation(s)
- Vadim V Maximov
- Lautenberg Center for Immunology & Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Rami I Aqeilan
- Lautenberg Center for Immunology & Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.,Department of Molecular Virology, Immunology & Medical Genetics, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
49
|
Resistin, a fat-derived secretory factor, promotes metastasis of MDA-MB-231 human breast cancer cells through ERM activation. Sci Rep 2016; 6:18923. [PMID: 26729407 PMCID: PMC4700449 DOI: 10.1038/srep18923] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/30/2015] [Indexed: 01/08/2023] Open
Abstract
Resistin, an adipocyte-secreted factor, is known to be elevated in breast cancer patients. However, the molecular mechanism by which resistin acts is not fully understood. The aim of this study was to investigate whether resistin could stimulate invasion and migration of breast cancer cells. Here, we report that resistin stimulated invasion and migration of breast cancer cells as well as phosphorylation of c-Src. Inhibition of c-Src blocked resistin-induced breast cancer cell invasion. Resistin increased intracellular calcium concentration, and chelation of intracellular calcium blocked resistin-mediated activation of Src. Resistin also induced phosphorylation of protein phosphatase 2A (PP2A). Inhibition of c-Src blocked resistin-mediated PP2A phosphorylation. In addition, resistin increased phosphorylation of PKCα. Inhibition of PP2A enhanced resistin-induced PKCα phosphorylation, demonstrating that PP2A activity is critical for PKCα phosphorylation. Resistin also increased phosphorylation of ezrin, radixin, and moesin (ERM). Additionally, ezrin interacted with PKCα, and resistin promoted co-localization of ezrin and PKCα. Either inhibition of c-Src and PKCα or knock-down of ezrin blocked resistin-induced breast cancer cells invasion. Moreover, resistin increased expression of vimentin, a key molecule for cancer cell invasion. Knock-down of ezrin abrogated resistin-induced vimentin expression. These results suggest that resistin play as a critical regulator of breast cancer metastasis.
Collapse
|
50
|
Fluid shear triggers microvilli formation via mechanosensitive activation of TRPV6. Nat Commun 2015; 6:8871. [PMID: 26563429 PMCID: PMC4660203 DOI: 10.1038/ncomms9871] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 10/12/2015] [Indexed: 12/15/2022] Open
Abstract
Microvilli are cellular membrane protrusions present on differentiated epithelial cells, which can sense and interact with the surrounding fluid environment. Biochemical and genetic approaches have identified a set of factors involved in microvilli formation; however, the underlying extrinsic regulatory mechanism of microvilli formation remains largely unknown. Here we demonstrate that fluid shear stress (FSS), an external mechanical cue, serves as a trigger for microvilli formation in human placental trophoblastic cells. We further reveal that the transient receptor potential, vanilloid family type-6 (TRPV6) calcium ion channel plays a critical role in flow-induced Ca2+ influx and microvilli formation. TRPV6 regulates phosphorylation of Ezrin via a Ca2+-dependent phosphorylation of Akt; this molecular event is necessary for microvillar localization of Ezrin in response to FSS. Our findings provide molecular insight into the microvilli-mediated mechanoresponsive cellular functions, such as epithelial absorption, signal perception and mechanotransduction. Microvilli on epithelial cells can sense the surrounding fluid environment, but the regulatory mechanism behind their formation is mostly unknown. Here Miura et al. show that fluid shear stress serves as a trigger for microvilli formation via activation of the calcium ion channel TRPV6.
Collapse
|