1
|
Gao J, Huang W, Zhao S, Wang R, Wang Z, Ye J, Lin L, Cai W, Mi Y. Polo-like kinase 1 inhibitor NMS-P937 represses nasopharyngeal carcinoma progression via induction of mitotic abnormalities. J Biochem Mol Toxicol 2024; 38:e23590. [PMID: 38037286 DOI: 10.1002/jbt.23590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/05/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Polo-like kinase 1 (PLK1) inhibitor NMS-P937 is a targeted therapeutic agent with good preclinical efficacy in various human cancers, and its therapeutic effect on nasopharyngeal carcinoma (NPC) remains to be determined. Here, to explore biological activity of NMS-P937 in NPC, multiple types of NPC cells were utilized. We tested IC50 values, carried out flow cytometry, western blot analysis analysis, immunofluorescence, and constructed subcutaneous xenograft mouse models. We found that treatment with NMS-P937 increased the proportion of G2/M phase NPC cells, where CyclinB1 expression was upregulated and CyclinE1 expression was downregulated. Besides, NMS-P937 treatment-induced NPC cell apoptosis with increased cleavage of PARP and caspase-3. Mechanistically, NMS-P937 treatment led to aberrant mitosis, causing increased reactive oxygen species (ROS) levels. ROS scavenger N-acetylcysteine partially reversed ROS levels induced by NMS-P937. Furthermore, NMS-P937 administration restrained NPC xenografts growth in nude mice. Overall, NMS-P937 suppressed NPC cell proliferation and increased ROS levels, causing cell cycle abnormalities and apoptosis. NMS-P937 holds great promise as a therapeutic agent for treating nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Jing Gao
- Department of Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Fujian, China
| | - Weirong Huang
- Department of Medical Oncology, Xiamen Key Laboratory of Thoracic Tumor Diagnosis and Treatment, School of Clinical Medicine, Institute of Lung Cancer, The First Affiliated Hospital of Xiamen University, Fujian Medical University, Fujian, China
| | - Senxia Zhao
- Department of Medical Oncology, Xiamen Key Laboratory of Thoracic Tumor Diagnosis and Treatment, School of Clinical Medicine, Institute of Lung Cancer, The First Affiliated Hospital of Xiamen University, Fujian Medical University, Fujian, China
| | - Rong Wang
- School of Medicine, Guangxi University, Nanning, China
| | - Zhilin Wang
- Department of Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Fujian, China
| | - Juanping Ye
- Department of Medical Oncology, Xiamen Key Laboratory of Thoracic Tumor Diagnosis and Treatment, School of Clinical Medicine, Institute of Lung Cancer, The First Affiliated Hospital of Xiamen University, Fujian Medical University, Fujian, China
| | - Lie Lin
- Department of Radiotherapy, The First Affiliated Hospital of Xiamen University, Fujian, China
| | - Weifeng Cai
- Department of Medical Oncology, Xiamen Key Laboratory of Thoracic Tumor Diagnosis and Treatment, School of Clinical Medicine, Institute of Lung Cancer, The First Affiliated Hospital of Xiamen University, Fujian Medical University, Fujian, China
| | - Yanjun Mi
- Department of Medical Oncology, Xiamen Key Laboratory of Thoracic Tumor Diagnosis and Treatment, School of Clinical Medicine, Institute of Lung Cancer, The First Affiliated Hospital of Xiamen University, Fujian Medical University, Fujian, China
| |
Collapse
|
2
|
Ahanin EF, Sager RA, Backe SJ, Dunn DM, Dushukyan N, Blanden AR, Mate NA, Suzuki T, Anderson T, Roy M, Oberoi J, Prodromou C, Nsouli I, Daneshvar M, Bratslavsky G, Woodford MR, Bourboulia D, Chisholm JD, Mollapour M. Catalytic inhibitor of Protein Phosphatase 5 activates the extrinsic apoptotic pathway by disrupting complex II in kidney cancer. Cell Chem Biol 2023; 30:1223-1234.e12. [PMID: 37527661 PMCID: PMC10592443 DOI: 10.1016/j.chembiol.2023.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/11/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023]
Abstract
Serine/threonine protein phosphatase-5 (PP5) is involved in tumor progression and survival, making it an attractive therapeutic target. Specific inhibition of protein phosphatases has remained challenging because of their conserved catalytic sites. PP5 contains its regulatory domains within a single polypeptide chain, making it a more desirable target. Here we used an in silico approach to screen and develop a selective inhibitor of PP5. Compound P053 is a competitive inhibitor of PP5 that binds to its catalytic domain and causes apoptosis in renal cancer. We further demonstrated that PP5 interacts with FADD, RIPK1, and caspase 8, components of the extrinsic apoptotic pathway complex II. Specifically, PP5 dephosphorylates and inactivates the death effector protein FADD, preserving complex II integrity and regulating extrinsic apoptosis. Our data suggests that PP5 promotes renal cancer survival by suppressing the extrinsic apoptotic pathway. Pharmacologic inhibition of PP5 activates this pathway, presenting a viable therapeutic strategy for renal cancer.
Collapse
Affiliation(s)
- Elham F Ahanin
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Diana M Dunn
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Natela Dushukyan
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Adam R Blanden
- Department of Neurology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Nilamber A Mate
- Department of Chemistry, Syracuse University, Syracuse, NY 13210, USA
| | - Tamie Suzuki
- Department of Chemistry, Syracuse University, Syracuse, NY 13210, USA
| | - Tyler Anderson
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; College of Health Professions, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Merin Roy
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jasmeen Oberoi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Chrisostomos Prodromou
- School of Life Sciences, Biochemistry and Biomedicine, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Imad Nsouli
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Michael Daneshvar
- Department of Urology, University of California, California, Irvine, CA 92868, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | - John D Chisholm
- Department of Chemistry, Syracuse University, Syracuse, NY 13210, USA.
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
3
|
A Dual Role for FADD in Human Precursor T-Cell Neoplasms. Int J Mol Sci 2022; 23:ijms232315157. [PMID: 36499482 PMCID: PMC9738522 DOI: 10.3390/ijms232315157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
A reduction in FADD levels has been reported in precursor T-cell neoplasms and other tumor types. Such reduction would impact on the ability of tumor cells to undergo apoptosis and has been associated with poor clinical outcomes. However, FADD is also known to participate in non-apoptotic functions, but these mechanisms are not well-understood. Linking FADD expression to the severity of precursor T-cell neoplasms could indicate its use as a prognostic marker and may open new avenues for targeted therapeutic strategies. Using transcriptomic and clinical data from patients with precursor T-cell neoplasms, complemented by in vitro analysis of cellular functions and by high-throughput interactomics, our results allow us to propose a dual role for FADD in precursor T-cell neoplasms, whereby resisting cell death and chemotherapy would be a canonical consequence of FADD deficiency in these tumors, whereas deregulation of the cellular metabolism would be a relevant non-canonical function in patients expressing FADD. These results reveal that evaluation of FADD expression in precursor T-cell neoplasms may aid in the understanding of the biological processes that are affected in the tumor cells. The altered biological processes can be of different natures depending on the availability of FADD influencing its ability to exert its canonical or non-canonical functions. Accordingly, specific therapeutic interventions would be needed in each case.
Collapse
|
4
|
Liu Y, Li X, Zhou X, Wang J, Ao X. FADD as a key molecular player in cancer progression. Mol Med 2022; 28:132. [DOI: 10.1186/s10020-022-00560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractCancer is a leading disease-related cause of death worldwide. Despite advances in therapeutic interventions, cancer remains a major global public health problem. Cancer pathogenesis is extremely intricate and largely unknown. Fas-associated protein with death domain (FADD) was initially identified as an adaptor protein for death receptor-mediated extrinsic apoptosis. Recent evidence suggests that FADD plays a vital role in non-apoptotic cellular processes, such as proliferation, autophagy, and necroptosis. FADD expression and activity of are modulated by a complicated network of processes, such as DNA methylation, non-coding RNA, and post-translational modification. FADD dysregulation has been shown to be closely associated with the pathogenesis of numerous types of cancer. However, the detailed mechanisms of FADD dysregulation involved in cancer progression are still not fully understood. This review mainly summarizes recent findings on the structure, functions, and regulatory mechanisms of FADD and focuses on its role in cancer progression. The clinical implications of FADD as a biomarker and therapeutic target for cancer patients are also discussed. The information reviewed herein may expand researchers’ understanding of FADD and contribute to the development of FADD-based therapeutic strategies for cancer patients.
Collapse
|
5
|
Park YH, Han CW, Jeong MS, Jang SB. DED Interaction of FADD and Caspase-8 in the Induction of Apoptotic Cell Death. J Microbiol Biotechnol 2022; 32:1034-1040. [PMID: 35879276 PMCID: PMC9628938 DOI: 10.4014/jmb.2206.06003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 12/15/2022]
Abstract
Fas-associated death domain (FADD) is an adapter molecule that bridges the interaction between receptor-interacting protein 1 (RIP1) and aspartate-specific cysteine protease-8 (caspase-8). As the primary mediator of apoptotic cell death, caspase-8 has two N-terminal death-effector domains (DEDs) and it interacts with other proteins in the DED subfamily through several conserved residues. In the tumor necrosis receptor-1 (TNFR-1)-dependent signaling pathway, apoptosis is triggered by the caspase-8/FADD complex by stimulating receptor internalization. However, the molecular mechanism of complex formation by the DED proteins remains poorly understood. Here, we found that direct DED-DED interaction between FADD and caspase-8 and the structure-based mutations (Y8D/I128A, E12A/I128A, E12R/I128A, K39A/I128A, K39D/I128A, F122A/I128A, and L123A/I128A) of caspase-8 disrupted formation of the stable DED complex with FADD. Moreover, the monomeric crystal structure of the caspase-8 DEDs (F122A/I128A) was solved at 1.7 Å. This study will provide new insight into the interaction mechanism and structural characteristics between FADD and caspase-8 DED subfamily proteins.
Collapse
Affiliation(s)
- Young-Hoon Park
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Chang Woo Han
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Mi Suk Jeong
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Se Bok Jang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea,Corresponding author Phone: +82-51-510-2523 Fax: +82-51-581-2544 E-mail:
| |
Collapse
|
6
|
Chiappa M, Petrella S, Damia G, Broggini M, Guffanti F, Ricci F. Present and Future Perspective on PLK1 Inhibition in Cancer Treatment. Front Oncol 2022; 12:903016. [PMID: 35719948 PMCID: PMC9201472 DOI: 10.3389/fonc.2022.903016] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Polo-like kinase 1 (PLK1) is the principle member of the well conserved serine/threonine kinase family. PLK1 has a key role in the progression of mitosis and recent evidence suggest its important involvement in regulating the G2/M checkpoint, in DNA damage and replication stress response, and in cell death pathways. PLK1 expression is tightly spatially and temporally regulated to ensure its nuclear activation at the late S-phase, until the peak of expression at the G2/M-phase. Recently, new roles of PLK1 have been reported in literature on its implication in the regulation of inflammation and immunological responses. All these biological processes are altered in tumors and, considering that PLK1 is often found overexpressed in several tumor types, its targeting has emerged as a promising anti-cancer therapeutic strategy. In this review, we will summarize the evidence suggesting the role of PLK1 in response to DNA damage, including DNA repair, cell cycle progression, epithelial to mesenchymal transition, cell death pathways and cancer-related immunity. An update of PLK1 inhibitors currently investigated in preclinical and clinical studies, in monotherapy and in combination with existing chemotherapeutic drugs and targeted therapies will be discussed.
Collapse
Affiliation(s)
- Michela Chiappa
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Serena Petrella
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Giovanna Damia
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Federica Guffanti
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Francesca Ricci
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| |
Collapse
|
7
|
Li Y, Wang H, Zhang Z, Tang C, Zhou X, Mohan C, Wu T. Identification of polo-like kinase 1 as a therapeutic target in murine lupus. Clin Transl Immunology 2022; 11:e1362. [PMID: 35024139 PMCID: PMC8733964 DOI: 10.1002/cti2.1362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/21/2021] [Accepted: 11/29/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction The signalling cascades that contribute to lupus pathogenesis are incompletely understood. We address this by using an unbiased activity‐based kinome screen of murine lupus. Methods An unbiased activity‐based kinome screen (ABKS) of 196 kinases was applied to two genetically different murine lupus strains. Systemic and renal lupus were evaluated following in vivo PLK1blockade. The upstream regulators and downstream targets of PLK1 were also interrogated. Results Multiple signalling cascades were noted to be more active in murine lupus spleens, including PLK1. In vivo administration of a PLK1‐specific inhibitor ameliorated splenomegaly, anti‐dsDNA antibody production, proteinuria, BUN and renal pathology in MRL.lpr mice (P < 0.05). Serum IL‐6, IL‐17 and kidney injury molecule 1 (KIM‐1) were significantly decreased after PLK1 inhibition. PLK1 inhibition reduced germinal centre and marginal zone B cells in the spleen, but changes in T cells were not significant. In vitro, splenocytes were treated with anti‐mouse CD40 Ab or F(ab’)2 fragment anti‐mouse IgM. After 24‐h stimulation, IL‐6 secretion was significantly reduced upon PLK1 blockade, whereas IL‐10 production was significantly increased. The phosphorylation of mTOR was assessed in splenocyte subsets, which revealed a significant change in myeloid cells. PLK1 blockade reduced phosphorylation associated with mTOR signalling, while Aurora‐A emerged as a potential upstream regulator of PLK1. Conclusion The Aurora‐A → PLK1 → mTOR signalling axis may be central in lupus pathogenesis, and emerges as a potential therapeutic target.
Collapse
Affiliation(s)
- Yaxi Li
- Department of Biomedical Engineering University of Houston Houston TX USA
| | - Hongting Wang
- Department of Biomedical Engineering University of Houston Houston TX USA
| | - Zijing Zhang
- Department of Biomedical Engineering University of Houston Houston TX USA.,Institute of Animal Husbandry and Veterinary Science Henan Academy of Agricultural Sciences Zhengzhou Henan China
| | - Chenling Tang
- Department of Biomedical Engineering University of Houston Houston TX USA
| | - Xinjin Zhou
- Department of Pathology Baylor University Medical Center at Dallas Dallas TX USA
| | - Chandra Mohan
- Department of Biomedical Engineering University of Houston Houston TX USA
| | - Tianfu Wu
- Department of Biomedical Engineering University of Houston Houston TX USA
| |
Collapse
|
8
|
Iliaki S, Beyaert R, Afonina IS. Polo-like kinase 1 (PLK1) signaling in cancer and beyond. Biochem Pharmacol 2021; 193:114747. [PMID: 34454931 DOI: 10.1016/j.bcp.2021.114747] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
PLK1 is an evolutionary conserved Ser/Thr kinase that is best known for its role in cell cycle regulation and is expressed predominantly during the G2/S and M phase of the cell cycle. PLK1-mediated phosphorylation of specific substrates controls cell entry into mitosis, centrosome maturation, spindle assembly, sister chromatid cohesion and cytokinesis. In addition, a growing body of evidence describes additional roles of PLK1 beyond the cell cycle, more specifically in the DNA damage response, autophagy, apoptosis and cytokine signaling. PLK1 has an indisputable role in cancer as it controls several key transcription factors and promotes cell proliferation, transformation and epithelial-to-mesenchymal transition. Furthermore, deregulation of PLK1 results in chromosome instability and aneuploidy. PLK1 is overexpressed in many cancers, which is associated with poor prognosis, making PLK1 an attractive target for cancer treatment. Additionally, PLK1 is involved in immune and neurological disorders including Graft versus Host Disease, Huntington's disease and Alzheimer's disease. Unfortunately, newly developed small compound PLK1 inhibitors have only had limited success so far, due to low therapeutic response rates and toxicity. In this review we will highlight the current knowledge about the established roles of PLK1 in mitosis regulation and beyond. In addition, we will discuss its tumor promoting but also tumor suppressing capacities, as well as the available PLK1 inhibitors, elaborating on their efficacy and limitations.
Collapse
Affiliation(s)
- Styliani Iliaki
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| | - Inna S Afonina
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
9
|
Shakeel I, Basheer N, Hasan GM, Afzal M, Hassan MI. Polo-like Kinase 1 as an emerging drug target: structure, function and therapeutic implications. J Drug Target 2021; 29:168-184. [PMID: 32886539 DOI: 10.1080/1061186x.2020.1818760] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/04/2020] [Accepted: 08/29/2020] [Indexed: 12/22/2022]
Abstract
Polo-like kinase 1 (PLK1) is a conserved mitotic serine-threonine protein kinase, functions as a regulatory protein, and is involved in the progression of the mitotic cycle. It plays important roles in the regulation of cell division, maintenance of genome stability, in spindle assembly, mitosis, and DNA-damage response. PLK1 is consist of a N-terminal serine-threonine kinase domain, and a C-terminal Polo-box domain (regulatory site). The expression of PLK1 is controlled by transcription repressor in the G1 stage and transcription activators in the G2 stage of the cell cycle. Overexpression of PLK1 results in undermining of checkpoints causes excessive cellular division resulting in abnormal cell growth, leading to the development of cancer. Blocking the expression of PLK1 by an antibody, RNA interference, or kinase inhibitors, causes a subsequent reduction in the proliferation of tumour cells and induction of apoptosis in tumour cells without affecting the healthy cells, suggesting an attractive target for drug development. In this review, we discuss detailed information on expression, gene and protein structures, role in different diseases, and progress in the design and development of PLK1 inhibitors. We have performed an in-depth analysis of the PLK1 inhibitors and their therapeutic implications with special focus to the cancer therapeutics.
Collapse
Affiliation(s)
- Ilma Shakeel
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Neha Basheer
- Institute of Neuroimmunology, Slovak Republic Bratislava, Bratislava, Slovakia
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Mohammad Afzal
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
10
|
Raab CA, Raab M, Becker S, Strebhardt K. Non-mitotic functions of polo-like kinases in cancer cells. Biochim Biophys Acta Rev Cancer 2021; 1875:188467. [PMID: 33171265 DOI: 10.1016/j.bbcan.2020.188467] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Inhibitors of mitotic protein kinases are currently being developed as non-neurotoxic alternatives of microtubule-targeting agents (taxanes, vinca alkaloids) which provide a substantial survival benefit for patients afflicted with different types of solid tumors. Among the mitotic kinases, the cyclin-dependent kinases, the Aurora kinases, the kinesin spindle protein and Polo-like kinases (PLKs) have emerged as attractive targets of cancer therapeutics. The functions of mammalian PLK1-5 are traditionally linked to the regulation of the cell cycle and to the stress response. Especially the key role of PLK1 and PLK4 in cellular growth and proliferation, their overexpression in multiple types of human cancer and their druggability, make them appealing targets for cancer therapy. Inhibitors for PLK1 and PLK4 are currently being tested in multiple cancer trials. The clinical success of microtubule-targeting agents is attributed not solely to the induction of a mitotic arrest in cancer cells, but also to non-mitotic effects like targeting intracellular trafficking on microtubules. This raises the question whether new cancer targets like PLK1 and PLK4 regulate critical non-mitotic functions in tumor cells. In this article we summarize the important roles of PLK1-5 for the regulation of non-mitotic signaling. Due to these functions it is conceivable that inhibitors for PLK1 or PLK4 can target interphase cells, which underscores their attractive potential as cancer drug targets. Moreover, we also describe the contribution of the tumor-suppressors PLK2, PLK3 and PLK5 to cancer cell signaling outside of mitosis. These observations highlight the urgent need to develop highly specific ATP-competitive inhibitors for PLK4 and for PLK1 like the 3rd generation PLK-inhibitor Onvansertib to prevent the inhibition of tumor-suppressor PLKs in- and outside of mitosis. The remarkable feature of PLKs to encompass a unique druggable domain, the polo-box-domain (PBD) that can be found only in PLKs offers the opportunity for the development of inhibitors that target PLKs exclusively. Beyond the development of mono-specific ATP-competitive PLK inhibitors, the PBD as drug target will support the design of new drugs that eradicate cancer cells based on the mitotic and non-mitotic function of PLK1 and PLK4.
Collapse
Affiliation(s)
| | - Monika Raab
- Department of Gynecology, Goethe-University, Frankfurt, Germany
| | - Sven Becker
- Department of Gynecology, Goethe-University, Frankfurt, Germany
| | - Klaus Strebhardt
- Department of Gynecology, Goethe-University, Frankfurt, Germany; German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Frankfurt am Main, Frankfurt, Germany.
| |
Collapse
|
11
|
Liccardi G, Ramos Garcia L, Tenev T, Annibaldi A, Legrand AJ, Robertson D, Feltham R, Anderton H, Darding M, Peltzer N, Dannappel M, Schünke H, Fava LL, Haschka MD, Glatter T, Nesvizhskii A, Schmidt A, Harris PA, Bertin J, Gough PJ, Villunger A, Silke J, Pasparakis M, Bianchi K, Meier P. RIPK1 and Caspase-8 Ensure Chromosome Stability Independently of Their Role in Cell Death and Inflammation. Mol Cell 2019; 73:413-428.e7. [PMID: 30598363 PMCID: PMC6375735 DOI: 10.1016/j.molcel.2018.11.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/31/2018] [Accepted: 11/07/2018] [Indexed: 01/17/2023]
Abstract
Receptor-interacting protein kinase (RIPK) 1 functions as a key mediator of tissue homeostasis via formation of Caspase-8 activating ripoptosome complexes, positively and negatively regulating apoptosis, necroptosis, and inflammation. Here, we report an unanticipated cell-death- and inflammation-independent function of RIPK1 and Caspase-8, promoting faithful chromosome alignment in mitosis and thereby ensuring genome stability. We find that ripoptosome complexes progressively form as cells enter mitosis, peaking at metaphase and disassembling as cells exit mitosis. Genetic deletion and mitosis-specific inhibition of Ripk1 or Caspase-8 results in chromosome alignment defects independently of MLKL. We found that Polo-like kinase 1 (PLK1) is recruited into mitotic ripoptosomes, where PLK1's activity is controlled via RIPK1-dependent recruitment and Caspase-8-mediated cleavage. A fine balance of ripoptosome assembly is required as deregulated ripoptosome activity modulates PLK1-dependent phosphorylation of downstream effectors, such as BUBR1. Our data suggest that ripoptosome-mediated regulation of PLK1 contributes to faithful chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Gianmaria Liccardi
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Laura Ramos Garcia
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Tencho Tenev
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Alessandro Annibaldi
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Arnaud J Legrand
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - David Robertson
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Rebecca Feltham
- The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Holly Anderton
- The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Maurice Darding
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK; Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College, London WC1E 6BT, UK
| | - Nieves Peltzer
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College, London WC1E 6BT, UK
| | - Marius Dannappel
- Institute for Genetics, Centre for Molecular Medicine (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Hannah Schünke
- Institute for Genetics, Centre for Molecular Medicine (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Luca L Fava
- Division of Dev. Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, A-6020, Austria
| | - Manuel D Haschka
- Division of Dev. Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, A-6020, Austria
| | - Timo Glatter
- Proteomics Core Facility, Biocentrum of the University of Basel, Basel, Switzerland; Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043 Marburg, Germany
| | - Alexey Nesvizhskii
- Department of Pathology, Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Schmidt
- Proteomics Core Facility, Biocentrum of the University of Basel, Basel, Switzerland
| | - Philip A Harris
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Peter J Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Andreas Villunger
- Division of Dev. Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, A-6020, Austria; Tyrolean Cancer Research Institute, A-6020 Innsbruck, Austria
| | - John Silke
- Institute for Genetics, Centre for Molecular Medicine (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Manolis Pasparakis
- Institute for Genetics, Centre for Molecular Medicine (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Katiuscia Bianchi
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK; Barts Cancer Institute, Queen Mary, John Vane Science Centre, University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
12
|
Mouasni S, Tourneur L. FADD at the Crossroads between Cancer and Inflammation. Trends Immunol 2018; 39:1036-1053. [PMID: 30401514 DOI: 10.1016/j.it.2018.10.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022]
Abstract
Initially described as an adaptor molecule for death receptor (DR)-mediated apoptosis, Fas-associated death domain (FADD) was later implicated in nonapoptotic cellular processes. During the last decade, FADD has been shown to participate and regulate most of the signalosome complexes, including necrosome, FADDosome, innateosome, and inflammasome. Given the role of these signaling complexes, FADD has emerged as a new actor in innate immunity, inflammation, and cancer development. Concomitant to these new roles, a surprising number of mechanisms deemed to regulate FADD functions have been identified, including post-translational modifications of FADD protein and FADD secretion. This review focuses on recent knowledge of the biological roles of FADD, a pleiotropic molecule having multiple partners, and its impact in cancer, innate immunity, and inflammation.
Collapse
Affiliation(s)
- Sara Mouasni
- Department of Infection, Immunity and Inflammation, Cochin Institute, 75014 Paris, France; INSERM, U1016, Paris, France; CNRS, UMR8104, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Léa Tourneur
- Department of Infection, Immunity and Inflammation, Cochin Institute, 75014 Paris, France; INSERM, U1016, Paris, France; CNRS, UMR8104, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
13
|
Deregulated FADD expression and phosphorylation in T-cell lymphoblastic lymphoma. Oncotarget 2018; 7:61485-61499. [PMID: 27556297 PMCID: PMC5308666 DOI: 10.18632/oncotarget.11370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/11/2016] [Indexed: 12/14/2022] Open
Abstract
In the present work, we show that T-cell lymphoblastic lymphoma cells exhibit a reduction of FADD availability in the cytoplasm, which may contribute to impaired apoptosis. In addition, we observe a reduction of FADD phosphorylation that inversely correlates with the proliferation capacity and tumor aggressiveness. The resultant balance between FADD-dependent apoptotic and non-apoptotic abilities may define the outcome of the tumor. Thus, we propose that FADD expression and phosphorylation can be reliable biomarkers with prognostic value for T-LBL stratification.
Collapse
|
14
|
Park YH, Jeong MS, Jang SB. Structural insights of homotypic interaction domains in the ligand-receptor signal transduction of tumor necrosis factor (TNF). BMB Rep 2017; 49:159-66. [PMID: 26615973 PMCID: PMC4915230 DOI: 10.5483/bmbrep.2016.49.3.205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Indexed: 11/21/2022] Open
Abstract
Several members of tumor necrosis factor receptor (TNFR) superfamily that these
members activate caspase-8 from death-inducing signaling complex (DISC) in TNF
ligand-receptor signal transduction have been identified. In the extrinsic
pathway, apoptotic signal transduction is induced in death domain (DD)
superfamily; it consists of a hexahelical bundle that contains 80 amino acids.
The DD superfamily includes about 100 members that belong to four subfamilies:
death domain (DD), caspase recruitment domain (CARD), pyrin domain (PYD), and
death effector domain (DED). This superfamily contains key building blocks: with
these blocks, multimeric complexes are formed through homotypic interactions.
Furthermore, each DD-binding event occurs exclusively. The DD superfamily
regulates the balance between death and survival of cells. In this study, the
structures, functions, and unique features of DD superfamily members are
compared with their complexes. By elucidating structural insights of DD
superfamily members, we investigate the interaction mechanisms of DD domains;
these domains are involved in TNF ligand-receptor signaling. These DD
superfamily members play a pivotal role in the development of more specific
treatments of cancer. [BMB Reports 2016; 49(3): 159-166]
Collapse
Affiliation(s)
- Young-Hoon Park
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| | - Mi Suk Jeong
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| | - Se Bok Jang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University; Genetic Engineering Institute, Pusan National University, Busan 46241, Korea
| |
Collapse
|
15
|
Rideout HJ, Re DB. LRRK2 and the "LRRKtosome" at the Crossroads of Programmed Cell Death: Clues from RIP Kinase Relatives. ADVANCES IN NEUROBIOLOGY 2017; 14:193-208. [PMID: 28353285 DOI: 10.1007/978-3-319-49969-7_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since its cloning and identification in 2004, considerable gains have been made in the understanding of the basic functionality of leucine-rich repeat kinase 2 (LRRK2), including its kinase and GTPase activities, its protein interactors and subcellular localization, and its expression in the CNS and peripheral tissues. However, the mechanism(s) by which expression of mutant forms of LRRK2 lead to the death of dopaminergic neurons of the ventral midbrain remains largely uncharacterized. Because of its complex domain structure, LRRK2 exhibits similarities with multiple protein families including ROCO proteins, as well as the RIP kinases. Cellular models in which mutant LRRK2 is overexpressed in neuronal-like cell lines or in primary neurons have found evidence of apoptotic cell death involving components of the extrinsic as well as intrinsic death pathways. However, since the expression of LRRK2 is comparatively quite low in ventral midbrain dopaminergic neurons, the possibility exists that non-cell autonomous signaling also contributes to the loss of these neurons. In this chapter, we will discuss the different neuronal death pathways that may be activated by mutant forms of LRRK2, guided in part by the behavior of other members of the RIP kinase protein family.
Collapse
Affiliation(s)
- Hardy J Rideout
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Soranou Efessiou 4, Athens, 115 27, Greece.
| | - Diane B Re
- EHS Department and Motor Neuron Center, Columbia University, 722 W 168th Street Suite 1107-b, New York, NY, 10032, USA
| |
Collapse
|
16
|
Cebrián A, Gómez Del Pulgar T, Fernández-Aceñero MJ, Borrero-Palacios A, Del Puerto-Nevado L, Martínez-Useros J, Marín-Arango JP, Caramés C, Vega-Bravo R, Rodríguez-Remírez M, Manzarbeitia F, García-Foncillas J. Decreased PLK1 expression denotes therapy resistance and unfavourable disease-free survival in rectal cancer patients receiving neoadjuvant chemoradiotherapy. Pathol Res Pract 2016; 212:1133-1137. [PMID: 27712975 DOI: 10.1016/j.prp.2016.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/02/2016] [Accepted: 09/19/2016] [Indexed: 12/12/2022]
Abstract
AIM Polo-like kinase 1 (Plk1) plays a key role in mitotic cell division and DNA damage repair. It has been observed that either up-regulated or down-regulated Plk1 could induce mitotic defects that results in aneuploidy and tumorigenesis, probably depending on the context. Few previous reports have associated Plk1 expression with prognosis and response to radiotherapy in rectal carcinomas. The aim of this study is to investigate the prognostic impact of Plk1 expression and its role in predicting response to neoadjuvant cheomoradiotherapy in rectal cancer. METHODS AND RESULTS Immunohistochemical analysis of Plk1 expression was performed in the pre-treatment tumour specimens from 75 rectal cancer patients. We analysed the assocation between Plk1 expression and clinicopathological parameters, pathologic response and outcome. Opposed to previous reports on this issue, low expression of Plk1 was significantly associated with a high grade of differentiation (P=0.0007) and higher rate of distant metastasis (P=0.014). More importantly, decreased levels of Plk1 were associated with absence of response after neoadjuvant therapy (P=0.049). Moreover, low Plk1 expression emerged as an unfavourable prognostic factor for disease-free survival in the non-responder group of patients (P=0.037). CONCLUSIONS Decreased Plk1 expression was associated with poor pathologic response and worse disease-free survival in rectal cancer patients receiving neoadjuvant chemoradiotherapy, suggesting Plk1 as a clinically relevant marker to predict chemoradiotherapy response and outcome.
Collapse
Affiliation(s)
- Arancha Cebrián
- Translational Oncology Division, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", 28040 Madrid Spain.
| | - Teresa Gómez Del Pulgar
- Translational Oncology Division, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", 28040 Madrid Spain
| | - Maria Jesús Fernández-Aceñero
- Pathology Department, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", 28040 Madrid Spain
| | - Aurea Borrero-Palacios
- Translational Oncology Division, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", 28040 Madrid Spain
| | - Laura Del Puerto-Nevado
- Translational Oncology Division, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", 28040 Madrid Spain
| | - Javier Martínez-Useros
- Translational Oncology Division, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", 28040 Madrid Spain
| | - Juan Pablo Marín-Arango
- Translational Oncology Division, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", 28040 Madrid Spain
| | - Cristina Caramés
- Translational Oncology Division, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", 28040 Madrid Spain
| | - Ricardo Vega-Bravo
- Pathology Department, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", 28040 Madrid Spain
| | - María Rodríguez-Remírez
- Translational Oncology Division, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", 28040 Madrid Spain
| | - Felix Manzarbeitia
- Pathology Department, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", 28040 Madrid Spain
| | - Jesús García-Foncillas
- Translational Oncology Division, Oncohealth Institute, Health Research Institute FJD-UAM, University Hospital "Fundacion Jimenez Diaz", 28040 Madrid Spain
| |
Collapse
|
17
|
Tumor suppressor genes and their underlying interactions in paclitaxel resistance in cancer therapy. Cancer Cell Int 2016; 16:13. [PMID: 26900348 PMCID: PMC4761208 DOI: 10.1186/s12935-016-0290-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 02/12/2016] [Indexed: 01/01/2023] Open
Abstract
Objectives Paclitaxel (PTX) is frequently used in the clinical treatment of solid tumors. But the PTX-resistance is a great obstacle in cancer treatment. Exploration of the mechanisms of drug resistance suggests that tumor suppressor genes (TSGs) play a key role in the response of chemotherapeutic drugs. TSGs, a set of genes that are often inactivated in cancers, can regulate various biological processes. In this study, an overview of the contribution of TSGs to PTX resistance and their underlying relationship in cancers are reported by using GeneMANIA, a web-based tool for gene/protein function prediction. Methods Using PubMed online database and Google web site, the terms “paclitaxel resistance” or “taxol resistance” or “drug resistance” or “chemotherapy resistance”, and “cancer” or “carcinoma”, and “tumor suppressor genes” or “TSGs” or “negative regulated protein” or “antioncogenes” were searched and analyzed. GeneMANIA data base was used to predict gene/protein interactions and functions. Results We identified 22 TSGs involved in PTX resistance, including BRCA1, TP53, PTEN, APC, CDKN1A, CDKN2A, HIN-1, RASSF1, YAP, ING4, PLK2, FBW7, BLU, LZTS1, REST, FADD, PDCD4, TGFBI, ING1, Bax, PinX1 and hEx. The TSGs were found to have direct and indirect relationships with each other, and thus they could contribute to PTX resistance as a group. The varied expression status and regulation function of the TSGs on cell cycle in different cancers might play an important role in PTX resistance. Conclusion A further understanding of the roles of tumor suppressor genes in drug resistance is an important step to overcome chemotherapy tolerance. Tumor suppressor gene therapy targets the altered genes and signaling pathways and can be a new strategy to reverse chemotherapy resistance.
Collapse
|
18
|
Shen ZJ, Malter JS. Determinants of eosinophil survival and apoptotic cell death. Apoptosis 2015; 20:224-34. [PMID: 25563855 DOI: 10.1007/s10495-014-1072-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Eosinophils (Eos) are potent inflammatory cells and abundantly present in the sputum and lung of patients with allergic asthma. During both transit to and residence in the lung, Eos contact prosurvival cytokines, particularly IL-3, IL-5 and GM-CSF, that attenuate cell death. Cytokine signaling modulates the expression and function of a number of intracellular pro- and anti-apoptotic molecules. Both intrinsic mitochondrial and extrinsic receptor-mediated pathways are affected. This article discusses the fundamental role of the extracellular and intracellular molecules that initiate and control survival decisions by human Eos and highlights the role of the cis-trans isomerase, Pin1 in controlling these processes.
Collapse
Affiliation(s)
- Zhong-Jian Shen
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9072, USA,
| | | |
Collapse
|
19
|
Modulatory role of the anti-apoptotic protein kinase CK2 in the sub-cellular localization of Fas associated death domain protein (FADD). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2885-96. [PMID: 26253696 DOI: 10.1016/j.bbamcr.2015.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 07/28/2015] [Accepted: 08/01/2015] [Indexed: 12/30/2022]
Abstract
The Fas associated death domain protein (FADD) is the key adaptor molecule of the apoptotic signal triggered by death receptors of the TNF-R1 superfamily. Besides its crucial role in the apoptotic machinery, FADD has proved to be important in many biological processes like tumorigenesis, embryonic development or cell cycle progression. In a process to decipher the regulatory mechanisms underlying FADD regulation, we identified the anti-apoptotic kinase, CK2, as a new partner and regulator of FADD sub-cellular localization. The blockade of CK2 activity induced FADD re-localization within the cell. Moreover, cytoplasmic FADD was increased when CK2β was knocked down. In vitro kinase and pull down assays confirmed that FADD could be phosphorylated by the CK2 holoenzyme. We found that phosphorylation is weak with CK2α alone and optimal in the presence of stoichiometric amounts of CK2α catalytic and CK2β regulatory subunit, showing that FADD phosphorylation is undertaken by the CK2 holoenzyme in a CK2β-driven fashion. We found that CK2 can phosphorylate FADD on the serine 200 and that this phosphorylation is important for nuclear localization of FADD. Altogether, our results show for the first time that multifaceted kinase, CK2, phosphorylates FADD and is involved in its sub-cellular localization. This work uncovered an important role of CK2 in stable FADD nuclear localization.
Collapse
|
20
|
Lee SY, Jang C, Lee KA. Polo-like kinases (plks), a key regulator of cell cycle and new potential target for cancer therapy. Dev Reprod 2015; 18:65-71. [PMID: 25949173 PMCID: PMC4282265 DOI: 10.12717/dr.2014.18.1.065] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/10/2014] [Accepted: 02/15/2014] [Indexed: 11/17/2022]
Abstract
Cell cycle process is regulated by a number of protein kinases and among them, serine/threonine kinases carry phosphate group from ATP to substrates. The most important three kinase families are Cyclin-dependent kinase (Cdk), Polo-like kinase (Plk), and Aurora kinase. Polo-like kinase family consists of 5 members (Plk1-Plk5) and they are involved in multiple functions in eukaryotic cell division. It regulates a variety of aspects such as, centrosome maturation, checkpoint recovery, spindle assembly, cytokinesis, apoptosis and many other features. Recently, it has been reported that Plks are related to tumor development and over-expressed in many kinds of tumor cells. When injected the anti-Plk antibody into human cells, the cells show aneuploidy, and if inhibit Plks, most of the mitotic cell division does not proceed properly. For that reasons, many inhibitors of Plk have been recently emerged as new target for remedy of the cancer therapeutic research. In this paper, we reviewed briefly the characteristics of Plk families and how Plks work in regulating cell cycles and cancer formation, and the possibilities of Plks as target for cancer therapy.
Collapse
Affiliation(s)
- Su-Yeon Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seoul 135-081, Republic of Korea
| | - Chuljoon Jang
- Department of Biomedical Science, College of Life Science, CHA University, Seoul 135-081, Republic of Korea
| | - Kyung-Ah Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seoul 135-081, Republic of Korea
| |
Collapse
|
21
|
García-Fuster MJ, García-Sevilla JA. Monoamine receptor agonists, acting preferentially at presynaptic autoreceptors and heteroreceptors, downregulate the cell fate adaptor FADD in rat brain cortex. Neuropharmacology 2014; 89:204-14. [PMID: 25286119 DOI: 10.1016/j.neuropharm.2014.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/26/2014] [Accepted: 09/15/2014] [Indexed: 11/13/2022]
Abstract
FADD is a crucial adaptor of death receptors that can engage apoptosis or survival actions (e.g. neuroplasticity) through its phosphorylated form (p-FADD). Although FADD was shown to participate in receptor mechanisms related to drugs of abuse, little is known on its role in the signaling of classic neurotransmitters (dopamine, noradrenaline, and serotonin) in brain. This study assessed the modulation of FADD (and p-FADD/FADD ratio, as an index of neuroplasticity) and FLIP-L (a neuroprotective FADD interacting partner), as well as the role of MEK-ERK signaling, after activation of monoamine auto/heteroreceptors by selective agonists in rat cortex. Acute depletion of monoamines with reserpine, but not with AMPT or PCPA, reduced FADD (28%) and increased p-FADD/FADD ratio (1.34-fold). Activation of presynaptic α2A-adrenoceptors (UK-14304 and clonidine), 5-HT1A receptors (8-OH-DPAT), and D2 dopamine receptor (bromocriptine) dose-dependently decreased FADD (up to 54%) and increased p-FADD (up to 29%) and p-FADD/FADD ratios (up to 2.93-fold), through specific receptor mechanisms. Activation of rat 5-HT1B autoreceptor in axon terminals by CP-94253 did not modulate FADD forms. Activation of postsynaptic D1 dopamine receptor by SKF-81297 also reduced FADD (25%) and increased p-FADD (32%). Disruption of MEK-ERK activation with SL327 did not modify clonidine (α2A-adrenoceptor)-induced FADD inhibition, indicating that agonist effect was not dependent on ERK signaling. The various monoamine receptor agonists and antagonists did not alter FLIP-L content, or the activation of executioner caspase-3 and PARP-1 cleavage, indicating that the agonists attenuated apoptotic signals and promoted neuroplasticity through FADD regulation. These novel results indicate that inhibition of pro-apoptotic FADD adaptor could function as a common signaling step in the initial activation of monoamine receptors in the brain.
Collapse
Affiliation(s)
- M Julia García-Fuster
- Neurobiology of Drug Abuse Group, IUNICS/IdISPa, University of the Balearic Islands, Spain; Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), Palma de Mallorca, Spain.
| | - Jesús A García-Sevilla
- Laboratory of Neuropharmacology, IUNICS/IdISPa, University of the Balearic Islands, Spain; Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), Palma de Mallorca, Spain
| |
Collapse
|
22
|
Patel S, Murphy D, Haralambieva E, Abdulla ZA, Wong KK, Chen H, Gould E, Roncador G, Hatton C, Anderson AP, Banham AH, Pulford K. Increased Expression of Phosphorylated FADD in Anaplastic Large Cell and Other T-Cell Lymphomas. Biomark Insights 2014; 9:77-84. [PMID: 25232277 PMCID: PMC4159367 DOI: 10.4137/bmi.s16553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/03/2014] [Indexed: 01/02/2023] Open
Abstract
FAS-associated protein with death domain (FADD) is a major adaptor protein involved in extrinsic apoptosis, embryogenesis, and lymphocyte homeostasis. Although abnormalities of the FADD/death receptor apoptotic pathways have been established in tumorigenesis, fewer studies have analyzed the expression and role of phosphorylated FADD (pFADD). Our identification of FADD as a lymphoma-associated autoantigen in T-cell lymphoma patients raises the possibility that pFADD, with its correlation with cell cycle, may possess role(s) in human T-cell lymphoma development. This immunohistochemical study investigated pFADD protein expression in a range of normal tissues and lymphomas, particularly T-cell lymphomas that require improved therapies. Whereas pFADD was expressed only in scattered normal T cells, it was detected at high levels in T-cell lymphomas (eg, 84% anaplastic large cell lymphoma and 65% peripheral T cell lymphomas, not otherwise specified). The increased expression of pFADD supports further study of its clinical relevance and role in lymphomagenesis, highlighting phosphorylation of FADD as a potential therapeutic target.
Collapse
Affiliation(s)
- Suketu Patel
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, UK
| | - Derek Murphy
- Center for Human Proteomics, Royal College of Surgeons in Ireland, Dublin, Ireland. ; School of Biological Sciences, Dublin Institute of Technology, Dublin, Ireland. ; Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Hong Chen
- Center for Human Proteomics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Edith Gould
- Center for Human Proteomics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Giovanna Roncador
- Monoclonal Antibodies Unit, Biotechnology Programme, Spanish National Cancer Research Center, Madrid, Spain
| | - Chris Hatton
- Department of Hematology, John Radcliffe Hospital, Oxford, UK
| | - Amanda P Anderson
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, UK
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, UK
| | - Karen Pulford
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, UK
| |
Collapse
|
23
|
Matthess Y, Raab M, Knecht R, Becker S, Strebhardt K. Sequential Cdk1 and Plk1 phosphorylation of caspase-8 triggers apoptotic cell death during mitosis. Mol Oncol 2014; 8:596-608. [PMID: 24484936 PMCID: PMC5528627 DOI: 10.1016/j.molonc.2013.12.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/20/2013] [Indexed: 11/27/2022] Open
Abstract
Caspase-8 is crucial for cell death induction, especially via the death receptor pathway. The dysregulated expression or function of caspase-8 can promote tumor formation, progression and treatment resistance in different human cancers. Here, we show procaspase-8 is regulated during the cell cycle through the concerted inhibitory action of Cdk1/cyclin B1 and polo-like kinase 1 (Plk1). By phosphorylating S387 in procaspase-8 Cdk1/cyclin B1 generates a phospho-epitope for the binding of the PBD of Plk1. Subsequently, S305 in procaspase-8 is phosphorylated by Plk1 during mitosis. Using an RNAi-based strategy we could demonstrate that the extrinsic cell death is increased upon Fas-stimulation when endogenous caspase-8 is replaced by a mutant (S305A) mimicking the non-phosphorylated form. Together, our data show that sequential phosphorylation by Cdk1/cyclin B1 and Plk1 decreases the sensitivity of cells toward stimuli of the extrinsic pathway during mitosis. Thus, the clinical Plk1 inhibitor BI 2536 decreases the threshold of different cancer cell types toward Fas-induced cell death.
Collapse
Affiliation(s)
- Yves Matthess
- Department of Obstetrics and Gynecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Monika Raab
- Department of Obstetrics and Gynecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; Head and Neck Center, UKE Hamburg, Martinistr. 52, 20246 Hamburg, Germany
| | - Rainald Knecht
- Head and Neck Center, UKE Hamburg, Martinistr. 52, 20246 Hamburg, Germany
| | - Sven Becker
- Department of Obstetrics and Gynecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Klaus Strebhardt
- Department of Obstetrics and Gynecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
24
|
Ottman R, Nguyen C, Lorch R, Chakrabarti R. MicroRNA expressions associated with progression of prostate cancer cells to antiandrogen therapy resistance. Mol Cancer 2014; 13:1. [PMID: 24387052 PMCID: PMC3896800 DOI: 10.1186/1476-4598-13-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/11/2013] [Indexed: 12/13/2022] Open
Abstract
Background Development of resistance to androgen deprivation therapy (ADT) is a major obstacle for the management of advanced prostate cancer. Therapies with androgen receptor (AR) antagonists and androgen withdrawal initially regress tumors but development of compensatory mechanisms including AR bypass signaling leads to re-growth of tumors. MicroRNAs (miRNAs) are small regulatory RNAs that are involved in maintenance of cell homeostasis but are often altered in tumor cells. Results In this study, we determined the association of genome wide miRNA expression (1113 unique miRNAs) with development of resistance to ADT. We used androgen sensitive prostate cancer cells that progressed to ADT and AR antagonist Casodex (CDX) resistance upon androgen withdrawal and treatment with CDX. Validation of expression of a subset of 100 miRNAs led to identification of 43 miRNAs that are significantly altered during progression of cells to treatment resistance. We also show a correlation of altered expression of 10 proteins targeted by some of these miRNAs in these cells. Conclusions We conclude that dynamic alterations in miRNA expression occur early on during androgen deprivation therapy, and androgen receptor blockade. The cumulative effect of these altered miRNA expression profiles is the temporal modulation of multiple signaling pathways promoting survival and acquisition of resistance. These early events are driving the transition to castration resistance and cannot be studied in already developed CRPC cell lines or tissues. Furthermore our results can be used a prognostic marker of cancers with a potential to be resistant to ADT.
Collapse
Affiliation(s)
| | | | | | - Ratna Chakrabarti
- Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida, USA.
| |
Collapse
|
25
|
Kim H, Lee HJ, Oh Y, Choi SG, Hong SH, Kim HJ, Lee SY, Choi JW, Su Hwang D, Kim KS, Kim HJ, Zhang J, Youn HJ, Noh DY, Jung YK. The DUSP26 phosphatase activator adenylate kinase 2 regulates FADD phosphorylation and cell growth. Nat Commun 2014; 5:3351. [PMID: 24548998 PMCID: PMC3948464 DOI: 10.1038/ncomms4351] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/30/2014] [Indexed: 01/16/2023] Open
Abstract
Adenylate kinase 2 (AK2), which balances adenine nucleotide pool, is a multi-functional protein. Here we show that AK2 negatively regulates tumour cell growth. AK2 forms a complex with dual-specificity phosphatase 26 (DUSP26) phosphatase and stimulates DUSP26 activity independently of its AK activity. AK2/DUSP26 phosphatase protein complex dephosphorylates fas-associated protein with death domain (FADD) and regulates cell growth. AK2 deficiency enhances cell proliferation and induces tumour formation in a xenograft assay. This anti-growth function of AK2 is associated with its DUSP26-stimulating activity. Downregulation of AK2 is frequently found in tumour cells and human cancer tissues showing high levels of phospho-FADD(Ser194). Moreover, reconstitution of AK2 in AK2-deficient tumour cells retards both cell proliferation and tumourigenesis. Consistent with this, AK2(+/-) mouse embryo fibroblasts exhibit enhanced cell proliferation with a significant alteration in phospho-FADD(Ser191). These results suggest that AK2 is an associated activator of DUSP26 and suppresses cell proliferation by FADD dephosphorylation, postulating AK2 as a negative regulator of tumour growth.
Collapse
Affiliation(s)
- Hyunjoo Kim
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
- These authors contributed equally to this work
| | - Ho-June Lee
- Department of Discovery Oncology, Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, USA
- These authors contributed equally to this work
| | - Yumin Oh
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Seon-Guk Choi
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Se-Hoon Hong
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Hyo-Jin Kim
- Department of Discovery Oncology, Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, USA
| | - Song-Yi Lee
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Ji-Woo Choi
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | - Deog Su Hwang
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Key-Sun Kim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | - Hyo-Joon Kim
- Department of Biochemistry, Hanyang University, Ansan, Kyeonggi-do 425-791, Korea
| | - Jianke Zhang
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Hyun-Jo Youn
- Department of Surgery, Chonbuk National University Medical School, Jeonju 561-180, Korea
| | - Dong-Young Noh
- Department of Surgery, Seoul National University College of Medicine, Seoul 110-744, Korea
| | - Yong-Keun Jung
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| |
Collapse
|
26
|
Oh J, Malter JS. Pin1-FADD interactions regulate Fas-mediated apoptosis in activated eosinophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:4937-45. [PMID: 23606538 PMCID: PMC3652414 DOI: 10.4049/jimmunol.1202646] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abnormally long-lived eosinophils (Eos) are the major inflammatory component of allergic responses in the lungs of active asthmatics. Eos recruited to the airways after allergen exposure produce and respond to IL-5 and GM-CSF, enhancing their survival. Prosurvival signaling activates Pin1, a peptidyl-prolyl cis-trans isomerase that binds to Bax and prevents its activation. How long-lived Eos, despite the continued presence of GM-CSF or IL-5, eventually undergo apoptosis to end allergic inflammation remains unclear. In this study, we show that Pin1 location, activity, and protein interactions are jointly influenced by Fas and the prosurvival cytokine IL-5. Fas signaling strongly induced the phosphorylation of FADD at Ser(194) and Pin1 at Ser(16), as well as their nuclear accumulation. Phospho-mimic Ser(194)Glu FADD mutants accelerated Eos apoptosis compared with wild-type or Ser(194)Ala mutants. Downstream of FADD phosphorylation, caspase 8, 9, and 3 cleavage, as well as Eos apoptosis induced by Fas, were reduced by constitutively active Pin1 and enhanced by Pin1 inhibition. Pin1 was activated by IL-5, whereas simultaneous IL-5 and anti-Fas treatment modestly reduced peptidyl isomerase activity but induced Pin1 to associate with FADD after its phosphorylation at Ser(194). Mechanistically, Pin1-mediated isomerization facilitated the subsequent dephosphorylation of Ser(194) FADD and maintenance of cytoplasmic location. In vivo-activated bronchoalveolar Eos obtained after allergen challenge showed elevated survival and Pin1 activity that could be reversed by anti-Fas. Therefore, our data suggest that Pin1 is a critical link between FADD-mediated cell death and IL-5-mediated prosurvival signaling.
Collapse
Affiliation(s)
- Jiyoung Oh
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9072, USA
| | | |
Collapse
|
27
|
Lee EW, Seo J, Jeong M, Lee S, Song J. The roles of FADD in extrinsic apoptosis and necroptosis. BMB Rep 2013; 45:496-508. [PMID: 23010170 DOI: 10.5483/bmbrep.2012.45.9.186] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fas-associated protein with death domain (FADD), an adaptor that bridges death receptor signaling to the caspase cascade, is indispensible for the induction of extrinsic apoptotic cell death. Interest in the non-apoptotic function of FADD has greatly increased due to evidence that FADD-deficient mice or dominant-negative FADD transgenic mice result in embryonic lethality and an immune defect without showing apoptotic features. Numerous studies have suggested that FADD regulates cell cycle progression, proliferation, and autophagy, affecting these phenomena. Recently, programmed necrosis, also called necroptosis, was shown to be a key mechanism that induces embryonic lethality and an immune defect. Supporting these findings, FADD was shown to be involved in various necroptosis models. In this review, we summarize the mechanism of extrinsic apoptosis and necroptosis, and discuss the in vivo and in vitro roles of FADD in necroptosis induced by various stimuli.
Collapse
Affiliation(s)
- Eun-Woo Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea.
| | | | | | | | | |
Collapse
|
28
|
O'Donovan DS, MacFhearraigh S, Whitfield J, Swigart LB, Evan GI, Mc Gee MM. Sequential Cdk1 and Plk1 phosphorylation of protein tyrosine phosphatase 1B promotes mitotic cell death. Cell Death Dis 2013; 4:e468. [PMID: 23348582 PMCID: PMC3563996 DOI: 10.1038/cddis.2012.208] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/09/2012] [Accepted: 11/12/2012] [Indexed: 01/20/2023]
Abstract
Mitotic cell death following prolonged arrest is an important death mechanism that is not completely understood. This study shows that Protein Tyrosine Phosphatase 1B (PTP1B) undergoes phosphorylation during mitotic arrest induced by microtubule-targeting agents (MTAs) in chronic myeloid leukaemia cells. Inhibition of cyclin-dependent kinase 1 (Cdk1) or polo-like kinase 1 (Plk1) during mitosis prevents PTP1B phosphorylation, implicating these kinases in PTP1B phosphorylation. In support of this, Cdk1 and Plk1 co-immunoprecipitate with endogenous PTP1B from mitotic cells. In addition, active recombinant Cdk1-cyclin B1 directly phosphorylates PTP1B at serine 386 in a kinase assay. Recombinant Plk1 phosphorylates PTP1B on serine 286 and 393 in vitro, however, it requires a priming phosphorylation by Cdk1 at serine 386 highlighting a novel co-operation between Cdk1 and Plk1 in the regulation of PTP1B. Furthermore, overexpression of wild-type PTP1B induced mitotic cell death, which is potentiated by MTAs. Moreover, mutation of serine 286 abrogates the cell death induced by PTP1B, whereas mutation of serine 393 does not, highlighting the importance of serine 286 phosphorylation in the execution of mitotic cell death. Finally, phosphorylation on serine 286 enhanced PTP1B phosphatase activity. Collectively, these data reveal that PTP1B activity promotes mitotic cell death and is regulated by the co-operative action of Cdk1 and Plk1 during mitotic arrest.
Collapse
Affiliation(s)
- D S O'Donovan
- UCD School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - S MacFhearraigh
- UCD School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - J Whitfield
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - L B Swigart
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - G I Evan
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - M M Mc Gee
- UCD School of Biomolecular and Biomedical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
29
|
Park YH, Jeong MS, Park HH, Jang SB. Formation of the death domain complex between FADD and RIP1 proteins in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:292-300. [PMID: 22922561 DOI: 10.1016/j.bbapap.2012.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/06/2012] [Accepted: 08/06/2012] [Indexed: 10/28/2022]
Abstract
Fas-associated death domain (FADD) protein is an adapter molecule that bridges the interactions between membrane death receptors and initiator caspases. The death receptors contain an intracellular death domain (DD) which is essential to the transduction of the apoptotic signal. The kinase receptor-interacting protein 1 (RIP1) is crucial to programmed necrosis. The cell type interplay between FADD and RIP1, which mediates both necrosis and NF-κB activation, has been evaluated in other studies, but the mechanism of the interaction of the FADD and RIP1 proteins remain poorly understood. Here, we provided evidence indicating that the DD of human FADD binds to the DD of RIP1 in vitro. We developed a molecular docking model using homology modeling based on the structures of FADD and RIP1. In addition, we found that two structure-based mutants (G109A and R114A) of the FADD DD were able to bind to the RIP1 DD, and two mutations (Q169A and N171A) of FADD DD and four mutations (G595, K596, E620, and D622) of RIP1 DD disrupted the FADD-RIP1 interaction. Six mutations (Q169A, N171A, G595, K596, E620, and D622) lowered the stability of the FADD-RIP1 complex and induced aggregation that structurally destabilized the complex, thus disrupting the interaction.
Collapse
Affiliation(s)
- Young-Hoon Park
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
| | | | | | | |
Collapse
|
30
|
Xiong F, Lin Y, Han Z, Shi G, Tian L, Wu X, Zeng Q, Zhou Y, Deng J, Chen H. Plk1-mediated phosphorylation of UAP56 regulates the stability of UAP56. Mol Biol Rep 2012; 39:1935-42. [PMID: 21637952 DOI: 10.1007/s11033-011-0940-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
Abstract
Polo-like kinase 1 (Plk1) is a conserved serine/threonine protein kinase that plays pivotal roles during the cell cycle and cell proliferation. Although a number of important targets have been identified, the mechanism of Plk1-regulated pathways and the bulk of the Plk1 interactome are largely unknown. Here, we demonstrate that Plk1 interacts with the DExH/D RNA helicase, UAP56. The protein levels of UAP56 and Plk1 are inversely correlated during the cell cycle. We also show that Plk1 phosphorylates UAP56 in vitro and in vivo and that Plk1-dependent phosphorylation of UAP56 triggers ubiquitination and degradation of UAP56 through proteasomes. This result suggests that Plk1-mediated phosphorylation of UAP56 regulates the stability of UAP56. Our results will be helpful in further understanding mRNA metabolism, cell cycle progression, and the link between mRNA metabolism and cellular function.
Collapse
Affiliation(s)
- Fuyin Xiong
- Beijing Institute of Biotechnology, Beijing 100071, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jang MS, Lee SJ, Kang NS, Kim E. Cooperative phosphorylation of FADD by Aur-A and Plk1 in response to taxol triggers both apoptotic and necrotic cell death. Cancer Res 2011; 71:7207-15. [PMID: 21978935 DOI: 10.1158/0008-5472.can-11-0760] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Administration of the antimitotic chemotherapeutic taxol is known to cause accumulation of the mitotic kinase Aurora-A (Aur-A). Here, we report that Aur-A phosphorylates S203 of the Fas associated with death domain protein (FADD) in response to taxol treatment. In addition, polo-like kinase 1 (Plk1) failed to phosphorylate the Aur-A-unphosphorylatable FADD substitution mutant S203A, indicating that phosphorylation of S203 by Aur-A serves to prime FADD for Plk1-mediated phosphorylation at S194. The double-phosphorylation-mimicking mutant form of FADD, FADD-S194D/S203D (FADD-DD), recruited caspase-8, activating the caspase-dependent cell death pathway. FADD-DD also dissociated the cell death protein RIP1 from FADD, resulting in activation of RIP1 and triggering of caspase-independent cell death. Consistent with its death-promoting potential, FADD-DD showed robust tumor suppressor activity. However, single-phosphorylation-mimicking mutant forms of FADD, FADD-S194D/S203A (FADD-DA) and FADD-S194A/S203D (FADD-AD), were incapable of carrying out such functions, indicating that double phosphorylation of FADD is critical for the execution of cell death and tumor suppression. Collectively, our data show the existence of cooperative actions between Aur-A and Plk1 mitotic kinases in response to taxol, providing a molecular explanation for the action mechanism of taxol.
Collapse
Affiliation(s)
- Moon-Sun Jang
- College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Korea
| | | | | | | |
Collapse
|
32
|
Ouyang Y, Petritsch C, Wen H, Jan L, Jan YN, Lu B. Dronc caspase exerts a non-apoptotic function to restrain phospho-Numb-induced ectopic neuroblast formation in Drosophila. Development 2011; 138:2185-96. [PMID: 21558368 DOI: 10.1242/dev.058347] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Drosophila neuroblasts have served as a model to understand how the balance of stem cell self-renewal versus differentiation is achieved. Drosophila Numb protein regulates this process through its preferential segregation into the differentiating daughter cell. How Numb restricts the proliferation and self-renewal potentials of the recipient cell remains enigmatic. Here, we show that phosphorylation at conserved sites regulates the tumor suppressor activity of Numb. Enforced expression of a phospho-mimetic form of Numb (Numb-TS4D) or genetic manipulation that boosts phospho-Numb levels, attenuates endogenous Numb activity and causes ectopic neuroblast formation (ENF). This effect on neuroblast homeostasis occurs only in the type II neuroblast lineage. We identify Dronc caspase as a novel binding partner of Numb, and demonstrate that overexpression of Dronc suppresses the effects of Numb-TS4D in a non-apoptotic and possibly non-catalytic manner. Reduction of Dronc activity facilitates ENF induced by phospho-Numb. Our findings uncover a molecular mechanism that regulates Numb activity and suggest a novel role for Dronc caspase in regulating neural stem cell homeostasis.
Collapse
Affiliation(s)
- Yingshi Ouyang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|