1
|
Yang X, Ma B, Liu Y, Zhou J, Guo J, Peng Y, Bai Y, Wu J, Hu D. SSBP1 positively regulates RRM2, affecting epithelial mesenchymal transition and cell cycle arrest in human lung adenocarcinoma cells. Cell Signal 2025; 127:111552. [PMID: 39643024 DOI: 10.1016/j.cellsig.2024.111552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Progression of lung adenocarcinoma (LUAD) is frequently associated with alterations in epithelial-mesenchymal transition (EMT) and cell cycle. Our study analyzed the Cancer Genome Atlas (TCGA) database and identified a positive correlation between high expression of SSBP1 in LUAD tumor tissues and poor prognosis (p < 0.05), with an AUC of 0.853, suggesting that SSBP1 could serve as a prognostic biomarker. In vitro experiments, including siRNA-mediated SSBP1 knockdown and subsequent cell cloning and Transwell assays, revealed significant inhibition of proliferation, migration, and cell cycle progression in LUAD cells (p < 0.05). In vivo mouse model experiments further confirmed that SSBP1 knockdown inhibits tumor burden (p < 0.05). Mechanistic investigations, integrating pathway enrichment analysis with molecular biology techniques, identified RRM2 as a downstream target of SSBP1, and RRM2 knockdown similarly suppressed LUAD cell proliferation, migration, and cell cycle progression (p < 0.05). These findings indicate that SSBP1 promotes EMT and cell cycle progression in LUAD cells by positively regulating RRM2, thereby accelerating disease progression. Collectively, our study not only confirms the potential role of SSBP1 in LUAD but also provides a theoretical foundation for therapeutic strategies targeting the SSBP1/RRM2 axis, potentially offering new therapeutic targets for LUAD patients.
Collapse
Affiliation(s)
- Xingyu Yang
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Bingfeng Ma
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Yafeng Liu
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Jiawei Zhou
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Jianqiang Guo
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Yuanyuan Peng
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Ying Bai
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, School of Medicine, Anhui University of Science and Technology, Huainan City, China.
| | - Jing Wu
- Joint Research Center for Occupational Medicine and Health of IHM, School of Medicine, Anhui University of Science and Technology, Huainan City, China.
| | - Dong Hu
- The First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), School of Medicine, Huainan City, China; Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei City, China.
| |
Collapse
|
2
|
Minutentag IW, Seneda AL, Barros-Filhos MC, de Carvalho M, Souza VGP, Hasimoto CN, Moraes MPT, Marchi FA, Lam WL, Reis PP, Drigo SA. Discovery of Novel miRNAs in Colorectal Cancer: Potential Biological Roles and Clinical Utility. Noncoding RNA 2023; 9:65. [PMID: 37987361 PMCID: PMC10660700 DOI: 10.3390/ncrna9060065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023] Open
Abstract
Deregulated miRNAs are associated with colorectal cancer (CRC), with alterations depending on the tumor location. Novel tissue-specific miRNAs have been identified in different tumors and are associated with cancer. We used miRMaster to identify novel miRNAs in CRC from the TCGA and GEO data (discovery and validation groups). We used TCGA data from five tissues to analyze miRNA tissue specificity. miRDB was used to predict miRNA targets, and the UCSC Xena Browser was used to evaluate target expression. After successive analyses, we identified 15 novel miRNAs with the same expression patterns in CRC in both the discovery and validation groups. Four molecules (nov-miR-13844-5p, nov-miR-7154-5p, nov-miR-5035-3p, and nov-miR-590-5p) were differentially expressed in proximal and distal CRC. The nov-miR-3345-5p and nov-miR-13172-3p, which are upregulated in tumors, are only expressed in colorectal tissues. These molecules have been linked to a worse prognosis in right-sided colon and rectal carcinomas. An analysis revealed an association between eight novel miRNAs and 81 targets, mostly cancer-related genes, with varying expression based on tumor location. These findings provide new miRNAs with potential biological relevance, molecular biomarkers, and therapeutic targets for CRC treatment.
Collapse
Affiliation(s)
- Iael Weissberg Minutentag
- Department of Surgery and Orthopedics, Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.L.S.); (C.N.H.)
- Experimental Research Unity (UNIPEX), São Paulo State University (UNESP), Botucatu 18618-687, Brazil;
| | - Ana Laura Seneda
- Department of Surgery and Orthopedics, Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.L.S.); (C.N.H.)
- Experimental Research Unity (UNIPEX), São Paulo State University (UNESP), Botucatu 18618-687, Brazil;
| | - Mateus C. Barros-Filhos
- Centro Internacional de Pesquisa (CIPE)—A. C. Camargo Cancer Center, São Paulo 01508-010, Brazil
| | - Márcio de Carvalho
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Vanessa G. P. Souza
- Experimental Research Unity (UNIPEX), São Paulo State University (UNESP), Botucatu 18618-687, Brazil;
- Department of Genetics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Claudia N. Hasimoto
- Department of Surgery and Orthopedics, Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.L.S.); (C.N.H.)
| | - Marcelo P. T. Moraes
- Department of Surgery and Orthopedics, Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.L.S.); (C.N.H.)
- Department of Pathology, Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Fabio A. Marchi
- Department of Head and Neck Surgery, Medical School and São Paulo State Cancer Institute (ICESP), University of São Paulo (USP), São Paulo 01246-903, Brazil
| | - Wan L. Lam
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada
| | - Patricia P. Reis
- Department of Surgery and Orthopedics, Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.L.S.); (C.N.H.)
- Experimental Research Unity (UNIPEX), São Paulo State University (UNESP), Botucatu 18618-687, Brazil;
| | - Sandra A. Drigo
- Department of Surgery and Orthopedics, Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (A.L.S.); (C.N.H.)
- Experimental Research Unity (UNIPEX), São Paulo State University (UNESP), Botucatu 18618-687, Brazil;
| |
Collapse
|
3
|
Cervino AS, Collodel MG, Lopez IA, Roa C, Hochbaum D, Hukriede NA, Cirio MC. Xenopus Ssbp2 is required for embryonic pronephros morphogenesis and terminal differentiation. Sci Rep 2023; 13:16671. [PMID: 37794075 PMCID: PMC10551014 DOI: 10.1038/s41598-023-43662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
The nephron, functional unit of the vertebrate kidney, is specialized in metabolic wastes excretion and body fluids osmoregulation. Given the high evolutionary conservation of gene expression and segmentation patterning between mammalian and amphibian nephrons, the Xenopus laevis pronephric kidney offers a simplified model for studying nephrogenesis. The Lhx1 transcription factor plays several roles during embryogenesis, regulating target genes expression by forming multiprotein complexes with LIM binding protein 1 (Ldb1). However, few Lhx1-Ldb1 cofactors have been identified for kidney organogenesis. By tandem- affinity purification from kidney-induced Xenopus animal caps, we identified single-stranded DNA binding protein 2 (Ssbp2) interacts with the Ldb1-Lhx1 complex. Ssbp2 is expressed in the Xenopus pronephros, and knockdown prevents normal morphogenesis and differentiation of the glomus and the convoluted renal tubules. We demonstrate a role for a member of the Ssbp family in kidney organogenesis and provide evidence of a fundamental function for the Ldb1-Lhx1-Ssbp transcriptional complexes in embryonic development.
Collapse
Affiliation(s)
- Ailen S Cervino
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA, Buenos Aires, Argentina
| | - Mariano G Collodel
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA, Buenos Aires, Argentina
| | - Ivan A Lopez
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA, Buenos Aires, Argentina
| | - Carolina Roa
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA, Buenos Aires, Argentina
| | - Daniel Hochbaum
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Cecilia Cirio
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Schuster SL, Arora S, Wladyka CL, Itagi P, Corey L, Young D, Stackhouse BL, Kollath L, Wu QV, Corey E, True LD, Ha G, Paddison PJ, Hsieh AC. Multi-level functional genomics reveals molecular and cellular oncogenicity of patient-based 3' untranslated region mutations. Cell Rep 2023; 42:112840. [PMID: 37516102 PMCID: PMC10540565 DOI: 10.1016/j.celrep.2023.112840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/05/2023] [Accepted: 07/05/2023] [Indexed: 07/31/2023] Open
Abstract
3' untranslated region (3' UTR) somatic mutations represent a largely unexplored avenue of alternative oncogenic gene dysregulation. To determine the significance of 3' UTR mutations in disease, we identify 3' UTR somatic variants across 185 advanced prostate tumors, discovering 14,497 single-nucleotide mutations enriched in oncogenic pathways and 3' UTR regulatory elements. By developing two complementary massively parallel reporter assays, we measure how thousands of patient-based mutations affect mRNA translation and stability and identify hundreds of functional variants that allow us to define determinants of mutation significance. We demonstrate the clinical relevance of these mutations, observing that CRISPR-Cas9 endogenous editing of distinct variants increases cellular stress resistance and that patients harboring oncogenic 3' UTR mutations have a particularly poor prognosis. This work represents an expansive view of the extent to which disease-relevant 3' UTR mutations affect mRNA stability, translation, and cancer progression, uncovering principles of regulatory functionality and potential therapeutic targets in previously unexplored regulatory regions.
Collapse
Affiliation(s)
- Samantha L Schuster
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA; Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Cynthia L Wladyka
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Pushpa Itagi
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Lukas Corey
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Dave Young
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Lori Kollath
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Qian V Wu
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Lawrence D True
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Gavin Ha
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Patrick J Paddison
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA; Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Andrew C Hsieh
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA; Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
5
|
Bang S, Son H, Cha H, Song K, Park H, Kim H, Ko JY, Myung J, Paik S. Immunohistochemical Analysis of Single-Stranded DNA Binding Protein 2 in Non-Melanoma Skin Cancers. Biomedicines 2023; 11:1818. [PMID: 37509458 PMCID: PMC10376428 DOI: 10.3390/biomedicines11071818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Single-stranded DNA binding protein 2 (SSBP2) is a tumor suppressor candidate. In this study, the expression level and clinicopathological significance of SSBP2 in squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) were evaluated. We also identified biological pathways associated with a set of genes potentially related to SSBP2. Immunohistochemistry (IHC) was performed on 70 SCC and 146 BCC cases to assess SSBP2 expression semi-quantitatively. In addition, the associations between SSBP2 expression and clinicopathological characteristics were analyzed. Gene ontology (GO) enrichment analysis was performed using publicly available data and web-based bioinformatics tools. Compared with BCC, SCC had a significantly low SSBP2 expression (p < 0.001). In total, 12 (17.1%) of the 70 SCC cases and 30 (20.5%) of the 146 BCC cases showed low SSBP2 expression. Among SCC cases, ulceration (p = 0.005) and a deep level of invasion (p = 0.012) showed an association with low SSBP2 expression. Local recurrence was slightly more common in the SCC subgroup with low SSBP2 expression, although the difference was not significant (p = 0.058). Using GO enrichment analysis, we identified several biological functions performed by a set of 36 genes in SCC. SSBP2 evaluation using IHC can be helpful in the differential diagnosis of SCC and BCC. SSBP2 expression was associated with tumor invasiveness in SCC.
Collapse
Affiliation(s)
- Seongsik Bang
- Department of Pathology, Seoul Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Hwangkyu Son
- Department of Pathology, Seoul Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Hyebin Cha
- Department of Pathology, Seoul Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Kihyuk Song
- Department of Pathology, Seoul Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Hosub Park
- Department of Pathology, Seoul Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Hyunsung Kim
- Department of Pathology, Seoul Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Joo Yeon Ko
- Department of Dermatology, Seoul Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Jaekyung Myung
- Department of Pathology, Seoul Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Seungsam Paik
- Department of Pathology, Seoul Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| |
Collapse
|
6
|
Cervino AS, Collodel MG, Lopez IA, Hochbaum D, Hukriede NA, Cirio MC. Xenopus Ssbp2 is required for embryonic pronephros morphogenesis and terminal differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.15.537039. [PMID: 37090653 PMCID: PMC10120741 DOI: 10.1101/2023.04.15.537039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The nephron, functional unit of the vertebrate kidney, is specialized in metabolic wastes excretion and body fluids osmoregulation. Given the high evolutionary conservation of gene expression and segmentation patterning between mammalian and amphibian nephrons, the Xenopus laevis pronephric kidney offers a simplified model for studying nephrogenesis. The Lhx1 transcription factor plays several roles during embryogenesis, regulating target genes expression by forming multiprotein complexes with LIM binding protein 1 (Ldb1). However, few Lhx1-Ldb1 cofactors have been identified for kidney organogenesis. By tandem-affinity purification from kidney-induced Xenopus animal caps, we identified s ingle- s tranded DNA b inding p rotein 2 (Ssbp2) interacts with the Ldb1-Lhx1 complex. Ssbp2 is expressed in the Xenopus pronephros, and knockdown prevents normal morphogenesis and differentiation of the glomus and the convoluted renal tubules. We demonstrate a role for a member of the Ssbp family in kidney organogenesis and provide evidence of a fundamental function for the Ldb1-Lhx1-Ssbp transcriptional complexes in embryonic development.
Collapse
|
7
|
Tang X, Wang Z, Wang J, Cui S, Xu R, Wang Y. Functions and regulatory mechanisms of resting hematopoietic stem cells: a promising targeted therapeutic strategy. Stem Cell Res Ther 2023; 14:73. [PMID: 37038215 PMCID: PMC10088186 DOI: 10.1186/s13287-023-03316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/29/2023] [Indexed: 04/12/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are the common and essential precursors of all blood cells, including immune cells, and they are responsible for the lifelong maintenance and damage repair of blood tissue homeostasis. The vast majority (> 95%) of HSCs are in a resting state under physiological conditions and are only activated to play a functional role under stress conditions. This resting state affects their long-term survival and is also closely related to the lifelong maintenance of hematopoietic function; however, abnormal changes may also be an important factor leading to the decline of immune function in the body and the occurrence of diseases in various systems. While the importance of resting HSCs has attracted increasing research attention, our current understanding of this topic remains insufficient, and the direction of clinical targeted treatments is unclear. Here, we describe the functions of HSCs, analyze the regulatory mechanisms that affect their resting state, and discuss the relationship between resting HSCs and different diseases, with a view to providing guidance for the future clinical implementation of related targeted treatments.
Collapse
Affiliation(s)
- Xinyu Tang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenzhen Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingyi Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Siyuan Cui
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruirong Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China.
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yan Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China.
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
8
|
Hussainy M, Korsching SI, Tresch A. Pseudotime analysis reveals novel regulatory factors for multigenic onset and monogenic transition of odorant receptor expression. Sci Rep 2022; 12:16183. [PMID: 36171231 PMCID: PMC9519747 DOI: 10.1038/s41598-022-20106-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
During their maturation from horizontal basal stem cells, olfactory sensory neurons (OSNs) are known to select exactly one out of hundreds of olfactory receptors (ORs) and express it on their surface, a process called monogenic selection. Monogenic expression is preceded by a multigenic phase during which several OR genes are expressed in a single OSN. Here, we perform pseudotime analysis of a single cell RNA-Seq dataset of murine olfactory epithelium to precisely align the multigenic and monogenic expression phases with the cell types occurring during OSN differentiation. In combination with motif analysis of OR gene cluster-associated enhancer regions, we identify known and novel transcription (co-)factors (Ebf1, Lhx2, Ldb1, Fos and Ssbp2) and chromatin remodelers (Kdm1a, Eed and Zmynd8) associated with OR expression. The inferred temporal order of their activity suggests novel mechanisms contributing to multigenic OR expression and monogenic selection.
Collapse
Affiliation(s)
- Mohammad Hussainy
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Institute of Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Sigrun I Korsching
- Institute of Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Achim Tresch
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany. .,Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany. .,Center for Data and Simulation Science, University of Cologne, Cologne, Germany.
| |
Collapse
|
9
|
Loss of Single-Stranded DNA Binding Protein 2 Expression Is Associated with Aggressiveness and Poor Overall Survival in Patients with Invasive Breast Carcinoma. Diagnostics (Basel) 2022; 12:diagnostics12020487. [PMID: 35204577 PMCID: PMC8871390 DOI: 10.3390/diagnostics12020487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 02/12/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Single-stranded DNA binding protein 2 (SSBP2) is involved in the DNA damage response and the maintenance of genome stability. Previous studies have suggested that SSBP2 has a tumor suppressor function or oncogenic function. Loss of SSBP2 expression has been reported in various tumors. However, the role of SSBP2 expression in invasive breast carcinoma has not been reported. Methods: Immunohistochemical staining for SSBP2 was performed on tissue microarrays consisting of 491 invasive breast carcinoma cases. The result of nuclear SSBP2 staining was stratified as either negative or positive. Then, we investigated the correlations between SSBP2 expression and various clinicopathological parameters and patient outcomes. Results: Loss of nuclear SSBP2 expression was observed in 61 cases (12.4%) of 491 invasive breast carcinomas. Loss of nuclear SSBP2 expression was significantly correlated with larger tumor size (p < 0.001, chi-squared test), higher histological grade (p = 0.016, Cochran–Armitage trend test), higher pathological T stage (p < 0.001, Cochran–Armitage trend test), estrogen receptor status (p < 0.001, chi-squared test), and molecular subtype (p < 0.001, chi-squared test). Kaplan–Meier survival analysis revealed that patients with loss of nuclear SSBP2 expression had worse overall survival (p = 0.013, log-rank test). However, loss of nuclear SSBP2 expression was not correlated with recurrence-free survival (p = 0.175, log-rank test). Conclusions: Loss of nuclear SSBP2 expression was associated with adverse clinicopathological characteristics and poor patient outcomes. SSBP2 acts as a tumor suppressor in invasive breast carcinoma and may be used as a prognostic biomarker.
Collapse
|
10
|
Steers NJ, Gupta Y, D’Agati VD, Lim TY, DeMaria N, Mo A, Liang J, Stevens KO, Ahram DF, Lam WY, Gagea M, Nagarajan L, Sanna-Cherchi S, Gharavi AG. GWAS in Mice Maps Susceptibility to HIV-Associated Nephropathy to the Ssbp2 Locus. J Am Soc Nephrol 2022; 33:108-120. [PMID: 34893534 PMCID: PMC8763192 DOI: 10.1681/asn.2021040543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/27/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND To gain insight into the pathogenesis of collapsing glomerulopathy, a rare form of FSGS that often arises in the setting of viral infections, we performed a genome-wide association study (GWAS) among inbred mouse strains using a murine model of HIV-1 associated nephropathy (HIVAN). METHODS We first generated F1 hybrids between HIV-1 transgenic mice on the FVB/NJ background and 20 inbred laboratory strains. Analysis of histology, BUN, and urinary NGAL demonstrated marked phenotypic variation among the transgenic F1 hybrids, providing strong evidence for host genetic factors in the predisposition to nephropathy. A GWAS in 365 transgenic F1 hybrids generated from these 20 inbred strains was performed. RESULTS We identified a genome-wide significant locus on chromosome 13-C3 and multiple additional suggestive loci. Crossannotation of the Chr. 13 locus, including single-cell transcriptomic analysis of wildtype and HIV-1 transgenic mouse kidneys, nominated Ssbp2 as the most likely candidate gene. Ssbp2 is highly expressed in podocytes, encodes a transcriptional cofactor that interacts with LDB1 and LMX1B, which are both previously implicated in FSGS. Consistent with these data, older Ssbp2 null mice spontaneously develop glomerulosclerosis, tubular casts, interstitial fibrosis, and inflammation, similar to the HIVAN mouse model. CONCLUSIONS These findings demonstrate the utility of GWAS in mice to uncover host genetic factors for rare kidney traits and suggest Ssbp2 as susceptibility gene for HIVAN, potentially acting via the LDB1-LMX1B transcriptional network.
Collapse
Affiliation(s)
- Nicholas J. Steers
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Yask Gupta
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Vivette D. D’Agati
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Tze Y. Lim
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Natalia DeMaria
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Anna Mo
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Judy Liang
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Kelsey O. Stevens
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Dina F. Ahram
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Wan Yee Lam
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Mihai Gagea
- Department of Veterinary Medicine and Surgery, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Lalitha Nagarajan
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Ali G. Gharavi
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
11
|
Bang S, Kim H, Jang K, Paik SS, Shin SJ. The loss of nuclear expression of single-stranded DNA binding protein 2 of gastric adenocarcinoma and its prognostic role: Analysis of molecular subtype. PLoS One 2020; 15:e0236896. [PMID: 32745119 PMCID: PMC7398516 DOI: 10.1371/journal.pone.0236896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/15/2020] [Indexed: 01/10/2023] Open
Abstract
Single-stranded DNA binding protein 2 (SSBP2) is ubiquitously expressed, with several studies reporting it to be a tumor suppressor. We investigated SSBP2 expression and its clinicopathological significance in gastric cancer. SSBP2 expression was examined by immunohistochemistry in 539 gastric cancer sections. The cases were divided into three subtypes, namely, Epstein–Barr virus-associated (EBV), microsatellite unstable, and others (microsatellite stable and EBV negative), based on the molecular classification of The Cancer Genome Atlas (TCGA). Cases were also divided into two subgroups according to the amplification status of human epidermal growth factor receptor 2 (HER2). Most cases showed SSBP2 positivity, and only 24 (4.5%) cases displayed negative nuclear expression. Loss of nuclear expression correlated significantly with high pT category (P = 0.001), nodal metastasis (P = 0.002), and stage of progression (P = 0.005), with no correlation between molecular characteristics and SSBP2 expression. All HER2 amplification cases displayed positive SSBP2 expression. Negative SSBP2 cases showed significantly shorter recurrence-free survival (RFS) compared to positive SSBP2 cases (P = 0.008). Loss of nuclear expression of SSBP2 was significantly associated with shorter RFS in the microsatellite stable and EBV negative groups (P = 0.002), as well as the HER2 negative group (P = 0.007). However, there were no statistically significant differences in multivariate analyses. Loss of nuclear expression of SSBP2 was a poor prognostic factor, associated with stage of progression and recurrence, and showed no significant difference in molecular characteristics, including TCGA subtype and HER2 status.
Collapse
Affiliation(s)
- Seongsik Bang
- Departments of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Hyunsung Kim
- Departments of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Kiseok Jang
- Departments of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Seung Sam Paik
- Departments of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
12
|
Prognostic prediction of a 12-methylation gene-based risk score system on pancreatic adenocarcinoma. Oncol Lett 2020; 20:85-98. [PMID: 32565937 PMCID: PMC7285752 DOI: 10.3892/ol.2020.11575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) accounts for ~85% of all pancreatic cancer cases and is associated with a less favorable prognosis. Aberrant DNA methylation may influence the progression of PAAD by inducing abnormal gene expression. Methylation data of PAAD samples with prognosis information were obtained from The Cancer Genome Atlas (training set) and European Bioinformatics Institute Array Express databases (validation sets). Using the limma package, the differentially methylated genes in the training dataset were screened. Combined with the Weighted Gene Co-expression Network Analysis package, the co-methylated genes in key modules were identified. Then, a cor.test function in R software was applied to explore the functions of key the methylated genes. Correlation analyses of the expression levels and methylation levels of key methylated genes were performed, followed by identification of methylated genes associated with prognosis using Univariate Cox regression analysis. The optimal combination of prognosis related methylated genes was determined using a Cox-Proportional Hazards (Cox-PH) model. Subsequently, the risk score prognostic prediction system was constructed by combining the Cox-PH prognosis coefficients of the selected optimized genes. Based on the constructed risk score system, samples in all datasets were divided into high and low risk samples and the survival status was compared using survival curves. Furthermore, the correlation between independent prognostic factors and the risk score system was determined using the survival package. A total of 50 genes associated with prognosis of PAAD and a 12-gene optimal combination were obtained, including: CCAAT/enhancer binding protein α, histone cluster 1 H4E, STAM binding protein-like 1, phospholipase D3, centrosomal protein 55, ssDNA binding protein 4, glutamate AMPA receptor subunit 1, switch-associated protein 70, adenylate-cyclase activating polypeptide 1 receptor 1, yippee-like 3, homeobox C4 and insulin-like growth factor binding protein 1. Subsequently, a risk score prognostic prediction system of these 12 genes was constructed and validated. In addition, pathological N category, radiotherapy and risk status were identified as independent prognostic factors. Overall, the risk score prognostic prediction system constructed in the present study may be effective for predicting the prognosis of patients with PAAD.
Collapse
|
13
|
Kim H, Kim Y, Bang S, Park S, Jee S, Sim J, Shin SJ, Paik SS, Jang K. Low Expression of Single-stranded DNA Binding Protein 2 (SSBP2) Predicts Unfavourable Postoperative Outcomes in Patients With Clear Cell Renal Cell Carcinoma. In Vivo 2020; 34:101-107. [PMID: 31882468 DOI: 10.21873/invivo.11750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Single-stranded DNA binding protein 2 (SSBP2) is a subunit of a single-stranded DNA binding complex, which is involved in the maintenance of hematopoietic stem cells and stress responses. Numerous studies have suggested that SSBP2 functions as a tumor suppressor and is silenced through a pathway mediated by promoter hypermethylation. However, the role of SSBP2 in human renal cell carcinoma has not been reported, to date. Herein, we investigated the clinicopathological significance of SSBP2 expression in clear cell renal cell carcinoma (ccRCC). MATERIALS AND METHODS We constructed tissue micro arrays consisting of 173 ccRCC tissues, and SSBP2 expression was evaluated semi-quantitatively based on the staining intensity and the proportion of stained cells. Regarding statistical analysis, the tissues were divided into two groups according to SSBP2 expression, and correlation of SSBP2 expression with various clinicopathological characteristics and patient outcomes was evaluated. RESULTS Low SSBP2 expression was observed in 114 of 175 (65.9%) of ccRCC cases, and low SSBP2 expression was significantly correlated with larger tumor size (p=0.005, Chi-square test), higher WHO/ISUP histological grade (p<0.001, Chi-square test), tumor necrosis (p=0.008, Chi-square test), sarcomatoid change (p=0.021, Chi-square test), and higher pT AJCC stage (p=0.002, Chi-square test). Kaplan-Meier survival curves revealed that patients with low SSBP2 expression had worse recurrence-free survival (p=0.041, log-rank test). CONCLUSION ccRCC with low SSBP2 expression was associated with adverse clinicopathological characteristics and poor patient outcomes.
Collapse
Affiliation(s)
- Hyunsung Kim
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Yeseul Kim
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Seongsik Bang
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Seongeon Park
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Seungyun Jee
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Jongmin Sim
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Su-Jin Shin
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Seung Sam Paik
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Kiseok Jang
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Wang H, Wang Z, Tang Q, Yan XX, Xu W. Crystal structure of the LUFS domain of human single-stranded DNA binding Protein 2 (SSBP2). Protein Sci 2019; 28:788-793. [PMID: 30676665 DOI: 10.1002/pro.3581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 11/09/2022]
Abstract
The human single-stranded DNA binding Protein 2 (SSBP2) is a tumor suppressor implicated in multiple cancer forms. The SSBP2 and related SSBP3/SSBP4 proteins are predicted to be intrinsically disordered excepted for their highly conserved N-terminal LUFS (LUG/LUH, Flo8, and SSBP/SSDP) domain. LUFS domains are found in a number of proteins including some transcriptional co-repressors. Although LUFS domains contain an N-terminal Lis homology (LisH) motif that typically forms a stable dimer, no 3D structure of any LUFS domain is available. Here, we report a crystal structure of the LUFS domain of human SSBP2 at 1.52 Å resolution. We show that the SSBP2 LUFS domain forms a homo-tetramer and reveal how an alpha-helix C-terminal to the LisH motif mediates SSBP2 tetramerization (dimerization of dimers). Conservation of the tetramerization interface among LUFS domains suggests that other LUFS domains may also form tetramers in similar manners.
Collapse
Affiliation(s)
- Hongyang Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,Department of Biological Structure, University of Washington School of Medicine, Seattle, Washington, DC 98195
| | - Zhizhi Wang
- Department of Biological Structure, University of Washington School of Medicine, Seattle, Washington, DC 98195
| | - Qun Tang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Xiao-Xue Yan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Wenqing Xu
- Department of Biological Structure, University of Washington School of Medicine, Seattle, Washington, DC 98195
| |
Collapse
|
15
|
Kim H, Kim Y, Chung Y, Abdul R, Sim J, Ahn H, Shin SJ, Paik SS, Kim HJ, Jang K, Choi D. Single-stranded DNA binding protein 2 expression is associated with patient survival in hepatocellular carcinoma. BMC Cancer 2018; 18:1244. [PMID: 30541499 PMCID: PMC6291933 DOI: 10.1186/s12885-018-5158-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 11/29/2018] [Indexed: 11/10/2022] Open
Abstract
Background SSBP2, single-stranded DNA binding protein 2, is a subunit of the ssDNA-binding complex that is involved in the maintenance of genome stability. The majority of previous studies have suggested a tumor-suppressive role of SSBP2, which is silenced by promoter hypermethylation in several human malignancies, such as hematologic malignancies, prostate cancer, esophageal squamous cell carcinoma, ovarian cancer, and gallbladder cancer. However, an oncogenic role of SSBP2 has been suggested in glioblastoma patients. We investigated the clinicopathologic significance of SSBP2 expression in hepatocellular carcinoma. Methods We constructed tissue microarrays consisting of 21 normal liver parenchyma and 213 hepatocellular carcinoma tissues with corresponding adjacent non-neoplastic tissues. SSBP2 expression was investigated by immunohistochemistry, and positive expression was defined as more than 10% of the tumor cells to show nuclear staining. We then analyzed the correlations between SSBP2 expression and various clinicopathologic characteristics, and further studied the role of SSBP2 in cell growth and migration. Results Hepatocytes were negative for SSBP2 immunohistochemistry in all normal liver samples, whereas the nuclei of normal bile duct epithelium and sinusoidal endothelium were immunoreactive. Positive immunoreactivity was found in one (0.6%) out of 180 non-neoplastic liver tissue samples adjacent to the tumor and in 16 (8.5%) out of 189 hepatocellular carcinomas. Positive SSBP2 expression was significantly correlated with tumor multifocality (P = 0.027, chi-square test), high histologic grade (P = 0.003, chi-square test), and frequent vascular invasion (P = 0.001, chi-square test). Kaplan-Meier survival curves revealed that patients with SSBP2 expression had poor prognosis in both disease-free and overall survival (P = 0.004 and P = 0.026, respectively, log-rank test). SSBP2-positive tumors also had a higher Ki-67 proliferation index (P < 0.001, t-test). Furthermore, downregulation of SSBP2 in the Huh7 cell line inhibited cell migration (P = 0.022, t-test) with altered expression of epithelial-mesenchymal transition markers. Conclusions The minority of hepatocellular carcinomas expressed SSBP2 by immunohistochemistry, whereas normal hepatocytes were negative. SSBP2-positive hepatocellular carcinomas were significantly associated with aggressive phenotypes and poor clinical outcome.
Collapse
Affiliation(s)
- Hyunsung Kim
- Departments of Pathology, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - Yeseul Kim
- Departments of Pathology, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - Yumin Chung
- Departments of Pathology, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - Rehman Abdul
- Departments of Pathology, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - Jongmin Sim
- Departments of Pathology, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - Hyein Ahn
- Departments of Pathology, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - Su-Jin Shin
- Departments of Pathology, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - Seung Sam Paik
- Departments of Pathology, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - Han Joon Kim
- Departments of Surgery, College of Medicine, Hanyang University222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - Kiseok Jang
- Departments of Pathology, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea.
| | - Dongho Choi
- Departments of Surgery, College of Medicine, Hanyang University222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea.
| |
Collapse
|
16
|
Wang Y, Wang X, Flores ER, Yu J, Chang S. Dysfunctional telomeres induce p53-dependent and independent apoptosis to compromise cellular proliferation and inhibit tumor formation. Aging Cell 2016; 15:646-60. [PMID: 27113195 PMCID: PMC4933665 DOI: 10.1111/acel.12476] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2016] [Indexed: 01/09/2023] Open
Abstract
Aging is associated with progressive telomere shortening, resulting in the formation of dysfunctional telomeres that compromise tissue proliferation. However, dysfunctional telomeres can limit tumorigenesis by activating p53-dependent cellular senescence and apoptosis. While activation of both senescence and apoptosis is required for repress tumor formation, it is not clear which pathway is the major tumor suppressive pathway in vivo. In this study, we generated Eμ-myc; Pot1b(∆/∆) mouse to directly compare tumor formation under conditions in which either p53-dependent apoptosis or senescence is activated by telomeres devoid of the shelterin component Pot1b. We found that activation of p53-dependent apoptosis plays a more critical role in suppressing lymphoma formation than p53-dependent senescence. In addition, we found that telomeres in Pot1b(∆/∆) ; p53(-/-) mice activate an ATR-Chk1-dependent DNA damage response to initiate a robust p53-independent, p73-dependent apoptotic pathway that limited stem cell proliferation but suppressed B-cell lymphomagenesis. Our results demonstrate that in mouse models, both p53-dependent and p53-independent apoptosis are important to suppressing tumor formation.
Collapse
Affiliation(s)
- Yang Wang
- Department of Laboratory Medicine Yale University School of Medicine New Haven CT USA
| | - Xinwei Wang
- University of Pittsburgh School of Medicine University of Pittsburgh Cancer Institute Hillman Cancer Center Research Pavilion Pittsburgh PA USA
| | - Elsa R. Flores
- Department of Molecular & Cellular Oncology Department of Translational Molecular Pathology Graduate School of Biomedical Sciences U.T. MD Anderson Cancer Center Houston TX USA
| | - Jian Yu
- University of Pittsburgh School of Medicine University of Pittsburgh Cancer Institute Hillman Cancer Center Research Pavilion Pittsburgh PA USA
| | - Sandy Chang
- Department of Laboratory Medicine Yale University School of Medicine New Haven CT USA
- Departments of Pathology and Molecular Biophysics and Biochemistry Yale University School of Medicine New Haven CT USA
| |
Collapse
|
17
|
Hewitt KJ, Johnson KD, Gao X, Keles S, Bresnick EH. The Hematopoietic Stem and Progenitor Cell Cistrome: GATA Factor-Dependent cis-Regulatory Mechanisms. Curr Top Dev Biol 2016; 118:45-76. [PMID: 27137654 PMCID: PMC8572122 DOI: 10.1016/bs.ctdb.2016.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Transcriptional regulators mediate the genesis and function of the hematopoietic system by binding complex ensembles of cis-regulatory elements to establish genetic networks. While thousands to millions of any given cis-element resides in a genome, how transcriptional regulators select these sites and how site attributes dictate functional output is not well understood. An instructive system to address this problem involves the GATA family of transcription factors that control vital developmental and physiological processes and are linked to multiple human pathologies. Although GATA factors bind DNA motifs harboring the sequence GATA, only a very small subset of these abundant motifs are occupied in genomes. Mechanistic studies revealed a unique configuration of a GATA factor-regulated cis-element consisting of an E-box and a downstream GATA motif separated by a short DNA spacer. GATA-1- or GATA-2-containing multiprotein complexes at these composite elements control transcription of genes critical for hematopoietic stem cell emergence in the mammalian embryo, hematopoietic progenitor cell regulation, and erythroid cell maturation. Other constituents of the complex include the basic helix-loop-loop transcription factor Scl/TAL1, its heterodimeric partner E2A, and the Lim domain proteins LMO2 and LDB1. This chapter reviews the structure/function of E-box-GATA composite cis-elements, which collectively constitute an important sector of the hematopoietic stem and progenitor cell cistrome.
Collapse
Affiliation(s)
- Kyle J. Hewitt
- University of Wisconsin School of Medicine and Public Health, Department of Cell and Regenerative Biology, Carbone Cancer Center, Madison, WI 53705,UW-Madison Blood Research Program
| | - Kirby D. Johnson
- University of Wisconsin School of Medicine and Public Health, Department of Cell and Regenerative Biology, Carbone Cancer Center, Madison, WI 53705,UW-Madison Blood Research Program
| | - Xin Gao
- University of Wisconsin School of Medicine and Public Health, Department of Cell and Regenerative Biology, Carbone Cancer Center, Madison, WI 53705,UW-Madison Blood Research Program
| | - Sunduz Keles
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health
| | - Emery H. Bresnick
- University of Wisconsin School of Medicine and Public Health, Department of Cell and Regenerative Biology, Carbone Cancer Center, Madison, WI 53705,UW-Madison Blood Research Program,Corresponding author:
| |
Collapse
|
18
|
Haney SL, Hlady RA, Opavska J, Klinkebiel D, Pirruccello SJ, Dutta S, Datta K, Simpson MA, Wu L, Opavsky R. Methylation-independent repression of Dnmt3b contributes to oncogenic activity of Dnmt3a in mouse MYC-induced T-cell lymphomagenesis. Oncogene 2015; 34:5436-5446. [PMID: 25639876 PMCID: PMC4533871 DOI: 10.1038/onc.2014.472] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/28/2014] [Accepted: 11/25/2014] [Indexed: 12/16/2022]
Abstract
DNA methyltransferase 3A (DNMT3A) catalyzes cytosine methylation of mammalian genomic DNA. In addition to myeloid malignancies, mutations in DNMT3A have been recently reported in T-cell lymphoma and leukemia, implying a possible involvement in the pathogenesis of human diseases. However, the role of Dnmt3a in T-cell transformation in vivo is poorly understood. Here we analyzed the functional consequences of Dnmt3a inactivation in a mouse model of MYC-induced T-cell lymphomagenesis (MTCL). Loss of Dnmt3a delayed tumorigenesis by suppressing cellular proliferation during disease progression. Gene expression profiling and pathway analysis identified upregulation of 17 putative tumor suppressor genes, including DNA methyltransferase Dnmt3b, in Dnmt3a-deficient lymphomas as molecular events potentially responsible for the delayed lymphomagenesis in Dnmt3a(Δ/Δ) mice. Interestingly, promoter and gene body methylation of these genes was not substantially changed between control and Dnmt3a-deficient lymphomas, suggesting that Dnmt3a may inhibit their expression in a methylation-independent manner. Re-expression of both wild type and catalytically inactive Dnmt3a in Dnmt3a(Δ/Δ) lymphoma cells in vitro inhibited Dnmt3b expression, indicating that Dnmt3b upregulation may be directly repressed by Dnmt3a. Importantly, genetic inactivation of Dnmt3b accelerated lymphomagenesis in Dnmt3a(Δ/Δ) mice, demonstrating that upregulation of Dnmt3b is a relevant molecular change in Dnmt3a-deficient lymphomas that inhibits disease progression. Collectively, our data demonstrate an unexpected oncogenic role for Dnmt3a in MTCL through methylation-independent repression of Dnmt3b and possibly other tumor suppressor genes.
Collapse
Affiliation(s)
- Staci L. Haney
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ryan A. Hlady
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jana Opavska
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - David Klinkebiel
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Samuel J. Pirruccello
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Melanie A. Simpson
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska, USA
| | - Lizhao Wu
- Department of Microbiology and Molecular Genetics, Rutgers New Jersey Medical School-Cancer Center, Newark, NJ, USA
| | - Rene Opavsky
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Center for Lymphoma and Leukemia Research, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
19
|
Xu-Monette ZY, Tu M, Jabbar KJ, Cao X, Tzankov A, Visco C, Cai Q, Montes-Moreno S, An Y, Dybkaer K, Chiu A, Orazi A, Zu Y, Bhagat G, Richards KL, Hsi ED, Choi WW, van Krieken JH, Huh J, Ponzoni M, Ferreri AJ, Zhao X, Møller MB, Farnen JP, Winter JN, Piris MA, Miranda RN, Medeiros LJ, Young KH. Clinical and biological significance of de novo CD5+ diffuse large B-cell lymphoma in Western countries. Oncotarget 2015; 6:5615-5633. [PMID: 25760242 PMCID: PMC4467390 DOI: 10.18632/oncotarget.3479] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 01/02/2015] [Indexed: 12/11/2022] Open
Abstract
CD5 is a pan-T-cell surface marker and is rarely expressed in diffuse large B-cell lymphoma (DLBCL). Large-scale studies of de novo CD5+ DLBCL are lacking in Western countries. In this study by the DLBCL Rituximab-CHOP Consortium, CD5 was expressed in 5.5% of 879 DLBCL patients from Western countries. CD5+ DLBCL was associated with higher frequencies of >1 ECOG performance status, bone marrow involvement, central nervous system relapse, activated B-cell-like subtype, Bcl-2 overexpression, and STAT3 and NF-κB activation, whereas rarely expressed single-stranded DNA-binding protein 2 (SSBP2), CD30 or had MYC mutations. With standard R-CHOP chemotherapy, CD5+ DLBCL patients had significantly worse overall survival (median, 25.3 months vs. not reached, P< .0001) and progression-free survival (median, 21.3 vs. 85.8 months, P< .0001) than CD5- DLBCL patients, which was independent of Bcl-2, STAT3, NF-κB and the International Prognostic Index. Interestingly, SSBP2 expression abolished the prognostic significance of CD5 expression, suggesting a tumor-suppressor role of SSBP2 for CD5 signaling. Gene-expression profiling demonstrated that B-cell receptor signaling dysfunction and microenvironment alterations are the important mechanisms underlying the clinical impact of CD5 expression. This study shows the distinctive clinical and biological features of CD5+ DLBCL patients in Western countries and underscores important pathways with therapeutic implications.
Collapse
Affiliation(s)
- Zijun Y. Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meifeng Tu
- Peking University Cancer Hospital and Institute, Beijing, China
| | - Kausar J. Jabbar
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin Cao
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Qingqing Cai
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Yuji An
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - April Chiu
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Attilio Orazi
- Weill Medical College of Cornell University, New York, NY, USA
| | - Youli Zu
- The Methodist Hospital, Houston, TX, USA
| | - Govind Bhagat
- Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA
| | | | | | - William W.L. Choi
- University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong, China
| | | | - Jooryung Huh
- Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | | | | | - Xiaoying Zhao
- Zhejiang University School of Medicine, Second University Hospital, Hangzhou, China
| | | | | | - Jane N. Winter
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Miguel A. Piris
- Hospital Universitario Marques de Valdecilla, Santander, Spain
| | - Roberto N. Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken H. Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas School of Medicine, Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
20
|
Kimoto M, Tsubota T, Uchino K, Sezutsu H, Takiya S. LIM-homeodomain transcription factor Awh is a key component activating all three fibroin genes, fibH, fibL and fhx, in the silk gland of the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 56:29-35. [PMID: 25449130 DOI: 10.1016/j.ibmb.2014.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 11/03/2014] [Accepted: 11/09/2014] [Indexed: 06/04/2023]
Abstract
In the silkworm Bombyx mori, three fibroin genes, fibroin-heavy-chain (fibH), fibroin-light-chain (fibL) and fibrohexamerin (fhx), are coexpressed only in the posterior silk gland (PSG) cells, while the sericin genes encoding silk glue proteins are expressed in the middle silk gland (MSG) cells. Silk gland factor-2 (SGF-2) is a PSG-specific activator complex of fibH, composed of a LIM-homeodomain protein, Awh, and its cofactors, Ldb and Lcaf. We investigated whether SGF-2 can activate other fibroin genes using transgenic silkworms. The genes for Ldb and Lcaf were expressed ubiquitously in various tissues, while the gene for Awh was expressed strictly specific in PSG of the wild type silkworms. Misexpression of Awh in transgenic silkworms induced ectopic expression of fibL and fhx as well as fibH in MSG. Coincidently with the induction of fibL and fhx by Awh, binding of SGF-2 to the promoter of fibL and fhx was detected in vitro, and SGF-2 binds directly to the fhx core promoter. Ectopic expression of the fibroin genes was observed at high levels in the middle part of MSG. Moreover, fibL and fhx were induced in the anterior silk gland (ASG) of the transgenic silkworms, but fibH was not. These results indicate that Awh is a key activator of all three fibroin genes, and the activity is probably regulated in conjunction with additional factors.
Collapse
Affiliation(s)
- Mai Kimoto
- Graduate School of Life Science, Hokkaido University, Japan
| | - Takuya Tsubota
- Transgenic Silkworm Research Unit, National Institute of Agrobiological Sciences, Owashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Keiro Uchino
- Transgenic Silkworm Research Unit, National Institute of Agrobiological Sciences, Owashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Hideki Sezutsu
- Transgenic Silkworm Research Unit, National Institute of Agrobiological Sciences, Owashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Shigeharu Takiya
- Graduate School of Life Science, Hokkaido University, Japan; Division of Biological Sciences and Center for Genome Dynamics, Faculty of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.
| |
Collapse
|
21
|
Li J, Kurasawa Y, Wang Y, Clise-Dwyer K, Klumpp SA, Liang H, Tailor RC, Raymond AC, Estrov Z, Brandt SJ, Davis RE, Zweidler-McKay P, Amin HM, Nagarajan L. Requirement for ssbp2 in hematopoietic stem cell maintenance and stress response. THE JOURNAL OF IMMUNOLOGY 2014; 193:4654-62. [PMID: 25238756 DOI: 10.4049/jimmunol.1300337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transcriptional mechanisms governing hematopoietic stem cell (HSC) quiescence, self-renewal, and differentiation are not fully understood. Sequence-specific ssDNA-binding protein 2 (SSBP2) is a candidate acute myelogenous leukemia (AML) suppressor gene located at chromosome 5q14. SSBP2 binds the transcriptional adaptor protein Lim domain-binding protein 1 (LDB1) and enhances LDB1 stability to regulate gene expression. Notably, Ldb1 is essential for HSC specification during early development and maintenance in adults. We previously reported shortened lifespan and greater susceptibility to B cell lymphomas and carcinomas in Ssbp2(-/-) mice. However, whether Ssbp2 plays a regulatory role in normal HSC function and leukemogenesis is unknown. In this study, we provide several lines of evidence to demonstrate a requirement for Ssbp2 in the function and transcriptional program of hematopoietic stem and progenitor cells (HSPCs) in vivo. We found that hematopoietic tissues were hypoplastic in Ssbp2(-/-) mice, and the frequency of lymphoid-primed multipotent progenitor cells in bone marrow was reduced. Other significant features of these mice were delayed recovery from 5-fluorouracil treatment and diminished multilineage reconstitution in lethally irradiated bone marrow recipients. Dramatic reduction of Notch1 transcripts and increased expression of transcripts encoding the transcription factor E2a and its downstream target Cdkn1a also distinguished Ssbp2(-/-) HSPCs from wild-type HSPCs. Finally, a tendency toward coordinated expression of SSBP2 and the AML suppressor NOTCH1 in a subset of the Cancer Genome Atlas AML cases suggested a role for SSBP2 in AML pathogenesis. Collectively, our results uncovered a critical regulatory function for SSBP2 in HSPC gene expression and function.
Collapse
Affiliation(s)
- June Li
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Yasuhiro Kurasawa
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Yang Wang
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Sherry A Klumpp
- Department of Veterinary Medicine and Surgery, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Hong Liang
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Ramesh C Tailor
- Department of Radiation Physics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Aaron C Raymond
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030; Graduate Program in Genes and Development, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Zeev Estrov
- Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Stephen J Brandt
- Department of Medicine, Vanderbilt University, Nashville, TN 37232; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232; Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232; Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232
| | - Richard E Davis
- Department of Lymphoma and Myeloma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Patrick Zweidler-McKay
- Division of Pediatrics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Hesham M Amin
- Department of Hematopathology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030; and
| | - Lalitha Nagarajan
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030; Graduate Program in Genes and Development, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030; Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030; Graduate Program in Human Molecular Genetics, Center for Stem Cell and Developmental Biology, and Center for Cancer Genetics and Genomics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
22
|
Nakachi I, Rice JL, Coldren CD, Edwards MG, Stearman RS, Glidewell SC, Varella-Garcia M, Franklin WA, Keith RL, Lewis MT, Gao B, Merrick DT, Miller YE, Geraci MW. Application of SNP microarrays to the genome-wide analysis of chromosomal instability in premalignant airway lesions. Cancer Prev Res (Phila) 2013; 7:255-65. [PMID: 24346345 DOI: 10.1158/1940-6207.capr-12-0485] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chromosomal instability is central to the process of carcinogenesis. The genome-wide detection of somatic chromosomal alterations (SCA) in small premalignant lesions remains challenging because sample heterogeneity dilutes the aberrant cell information. To overcome this hurdle, we focused on the B allele frequency data from single-nucleotide polymorphism microarrays (SNP arrays). The difference of allelic fractions between paired tumor and normal samples from the same patient (delta-θ) provides a simple but sensitive detection of SCA in the affected tissue. We applied the delta-θ approach to small, heterogeneous clinical specimens, including endobronchial biopsies and brushings. Regions identified by delta-θ were validated by FISH and quantitative PCR in heterogeneous samples. Distinctive genomic variations were successfully detected across the whole genome in all invasive cancer cases (6 of 6), carcinoma in situ (3 of 3), and high-grade dysplasia (severe or moderate; 3 of 11). Not only well-described SCAs in lung squamous cell carcinoma, but also several novel chromosomal alterations were frequently found across the preinvasive dysplastic cases. Within these novel regions, losses of putative tumor suppressors (RNF20 and SSBP2) and an amplification of RASGRP3 gene with oncogenic activity were observed. Widespread sampling of the airway during bronchoscopy demonstrated that field cancerization reflected by SCAs at multiple sites was detectable. SNP arrays combined with delta-θ analysis can detect SCAs in heterogeneous clinical sample and expand our ability to assess genomic instability in the airway epithelium as a biomarker of lung cancer risk.
Collapse
Affiliation(s)
- Ichiro Nakachi
- University of Colorado, Anschutz Medical Campus, 12700, East 19th Avenue, RC2 9th Floor, Aurora, CO 80045.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bachinski LL, Baggerly KA, Neubauer VL, Nixon TJ, Raheem O, Sirito M, Unruh AK, Zhang J, Nagarajan L, Timchenko LT, Bassez G, Eymard B, Gamez J, Ashizawa T, Mendell JR, Udd B, Krahe R. Most expression and splicing changes in myotonic dystrophy type 1 and type 2 skeletal muscle are shared with other muscular dystrophies. Neuromuscul Disord 2013; 24:227-40. [PMID: 24332166 DOI: 10.1016/j.nmd.2013.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/30/2013] [Accepted: 11/07/2013] [Indexed: 12/20/2022]
Abstract
The prevailing pathomechanistic paradigm for myotonic dystrophy (DM) is that aberrant expression of embryonic/fetal mRNA/protein isoforms accounts for most aspects of the pleiotropic phenotype. To identify aberrant isoforms in skeletal muscle of DM1 and DM2 patients, we performed exon-array profiling and RT-PCR validation on the largest DM sample set to date, including Duchenne, Becker and tibial muscular dystrophy (NMD) patients as disease controls, and non-disease controls. Strikingly, most expression and splicing changes in DM patients were shared with NMD controls. Comparison between DM and NMD identified almost no significant differences. We conclude that DM1 and DM2 are essentially identical for dysregulation of gene expression, and DM expression changes represent a subset of broader spectrum dystrophic changes. We found no evidence for qualitative splicing differences between DM1 and DM2. While some DM-specific splicing differences exist, most of the DM splicing differences were also seen in NMD controls. SSBP3 exon 6 missplicing was observed in all diseased muscle and led to reduced protein. We conclude there is no widespread DM-specific spliceopathy in skeletal muscle and suggest that missplicing in DM (and NMD) may not be the driving mechanism for the muscle pathology, since the same pathways show expression changes unrelated to splicing.
Collapse
Affiliation(s)
- Linda L Bachinski
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keith A Baggerly
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Valerie L Neubauer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tamara J Nixon
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Olayinka Raheem
- Department of Neurology, Tampere University Hospital and Medical School, Tampere, Finland
| | - Mario Sirito
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anna K Unruh
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiexin Zhang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lalitha Nagarajan
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lubov T Timchenko
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Guillaume Bassez
- Neuromuscular Reference Center, Henri Mondor University Hospital, INSERM U955, East-Paris University, Créteil, France
| | - Bruno Eymard
- Reference Center for Neuromuscular Diseases, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France
| | - Josep Gamez
- Neuromuscular Disorders Clinic, Neurology Department, Hospital General Vall d'Hebron, Barcelona, Spain
| | - Tetsuo Ashizawa
- Department of Neurology, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Jerry R Mendell
- Division of Child Neurology, Nationwide Childrens Hospital, Ohio State University College of Medicine, Columbus, OH, USA
| | - Bjarne Udd
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Folkhälsan Institute of Genetics and Department of Medical Genetics, University of Helsinki, Finland; Department of Neurology, Vasa Central Hospital, Finland
| | - Ralf Krahe
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate Programs in Human & Molecular Genetics, University of Texas at Houston Graduate School in Biomedical Sciences, Houston, TX, USA; Graduate Programs in Genes & Development, University of Texas at Houston Graduate School in Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
24
|
Ohno K, Sawada JI, Takiya S, Kimoto M, Matsumoto A, Tsubota T, Uchino K, Hui CC, Sezutsu H, Handa H, Suzuki Y. Silk gland factor-2, involved in fibroin gene transcription, consists of LIM homeodomain, LIM-interacting, and single-stranded DNA-binding proteins. J Biol Chem 2013; 288:31581-91. [PMID: 24022586 DOI: 10.1074/jbc.m113.514471] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SGF-2 binds to promoter elements governing posterior silk gland-specific expression of the fibroin gene in Bombyx mori. We purified SGF-2 and showed that SGF-2 contains at least four gene products: the silkworm orthologues of LIM homeodomain protein Awh, LIM domain-binding protein (Ldb), a sequence-specific single-stranded DNA-binding protein (Lcaf), and the silk protein P25/fibrohexamerin (fhx). Using co-expression of these factors in Sf9 cells, Awh, Ldb, and Lcaf proteins were co-purified as a ternary complex that bound to the enhancer sequence in vitro. Lcaf interacts with Ldb as well as Awh through the conserved regions to mediate transcriptional activation in yeast. Misexpression of Awh in transgenic silkworms induces ectopic expression of the fibroin gene in the middle silk glands, where Ldb and Lcaf are expressed. Taken together, this study demonstrates that SGF-2 is a multisubunit activator complex containing Awh. Moreover, our results suggest that the Ldb·Lcaf protein complex serves as a scaffold to facilitate communication between transcriptional control elements.
Collapse
Affiliation(s)
- Kaoru Ohno
- From the National Institute for Basic Biology, 38 Nishigonaka, Myodaiji-cho, Okazaki 444-8585
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Essential role for Dnmt1 in the prevention and maintenance of MYC-induced T-cell lymphomas. Mol Cell Biol 2013; 33:4321-33. [PMID: 24001767 DOI: 10.1128/mcb.00776-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
DNA cytosine methylation is an epigenetic modification involved in the transcriptional repression of genes controlling a variety of physiological processes, including hematopoiesis. DNA methyltransferase 1 (Dnmt1) is a key enzyme involved in the somatic inheritance of DNA methylation and thus plays a critical role in epigenomic stability. Aberrant methylation contributes to the pathogenesis of human cancer and of hematologic malignancies in particular. To gain deeper insight into the function of Dnmt1 in lymphoid malignancies, we genetically inactivated Dnmt1 in a mouse model of MYC-induced T-cell lymphomagenesis. We show that loss of Dnmt1 delays lymphomagenesis by suppressing normal hematopoiesis and impairing tumor cell proliferation. Acute inactivation of Dnmt1 in primary lymphoma cells rapidly induced apoptosis, indicating that Dnmt1 is required to sustain T-cell lymphomas. Using high-resolution genome-wide profiling, we identified differentially methylated regions between control and Dnmt1-deficient lymphomas, demonstrating a locus-specific function for Dnmt1 in both maintenance and de novo promoter methylation. Dnmt1 activity is independent of the presence of Dnmt3a or Dnmt3b in de novo promoter methylation of the H2-Ab1 gene. Collectively, these data show for the first time that Dnmt1 is critical for the prevention and maintenance of T-cell lymphomas and contributes to aberrant methylation by both de novo and maintenance methylation.
Collapse
|
26
|
Identification of interconnected markers for T-cell acute lymphoblastic leukemia. BIOMED RESEARCH INTERNATIONAL 2013; 2013:210253. [PMID: 23956970 PMCID: PMC3727179 DOI: 10.1155/2013/210253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/04/2013] [Indexed: 12/11/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a complex disease, resulting from proliferation of differentially arrested immature T cells. The molecular mechanisms and the genes involved in the generation of T-ALL remain largely undefined. In this study, we propose a set of genes to differentiate individuals with T-ALL from the nonleukemia/healthy ones and genes that are not differential themselves but interconnected with highly differentially expressed ones. We provide new suggestions for pathways involved in the cause of T-ALL and show that network-based classification techniques produce fewer genes with more meaningful and successful results than expression-based approaches. We have identified 19 significant subnetworks, containing 102 genes. The classification/prediction accuracies of subnetworks are considerably high, as high as 98%. Subnetworks contain 6 nondifferentially expressed genes, which could potentially participate in pathogenesis of T-ALL. Although these genes are not differential, they may serve as biomarkers if their loss/gain of function contributes to generation of T-ALL via SNPs. We conclude that transcription factors, zinc-ion-binding proteins, and tyrosine kinases are the important protein families to trigger T-ALL. These potential disease-causing genes in our subnetworks may serve as biomarkers, alternative to the traditional ones used for the diagnosis of T-ALL, and help understand the pathogenesis of the disease.
Collapse
|
27
|
Extensive gene-specific translational reprogramming in a model of B cell differentiation and Abl-dependent transformation. PLoS One 2012; 7:e37108. [PMID: 22693568 PMCID: PMC3365017 DOI: 10.1371/journal.pone.0037108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/15/2012] [Indexed: 01/19/2023] Open
Abstract
To what extent might the regulation of translation contribute to differentiation programs, or to the molecular pathogenesis of cancer? Pre-B cells transformed with the viral oncogene v-Abl are suspended in an immortalized, cycling state that mimics leukemias with a BCR-ABL1 translocation, such as Chronic Myelogenous Leukemia (CML) and Acute Lymphoblastic Leukemia (ALL). Inhibition of the oncogenic Abl kinase with imatinib reverses transformation, allowing progression to the next stage of B cell development. We employed a genome-wide polysome profiling assay called Gradient Encoding to investigate the extent and potential contribution of translational regulation to transformation and differentiation in v-Abl-transformed pre-B cells. Over half of the significantly translationally regulated genes did not change significantly at the level of mRNA abundance, revealing biology that might have been missed by measuring changes in transcript abundance alone. We found extensive, gene-specific changes in translation affecting genes with known roles in B cell signaling and differentiation, cancerous transformation, and cytoskeletal reorganization potentially affecting adhesion. These results highlight a major role for gene-specific translational regulation in remodeling the gene expression program in differentiation and malignant transformation.
Collapse
|
28
|
Fiorina P, Jurewicz M, Vergani A, Petrelli A, Carvello M, D'Addio F, Godwin JG, Law K, Wu E, Tian Z, Thoma G, Kovarik J, La Rosa S, Capella C, Rodig S, Zerwes HG, Sayegh MH, Abdi R. Targeting the CXCR4-CXCL12 axis mobilizes autologous hematopoietic stem cells and prolongs islet allograft survival via programmed death ligand 1. THE JOURNAL OF IMMUNOLOGY 2010; 186:121-31. [PMID: 21131428 DOI: 10.4049/jimmunol.1000799] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Antagonism of CXCR4 disrupts the interaction between the CXCR4 receptor on hematopoietic stem cells (HSCs) and the CXCL12 expressed by stromal cells in the bone marrow, which subsequently results in the shedding of HSCs to the periphery. Because of their profound immunomodulatory effects, HSCs have emerged as a promising therapeutic strategy for autoimmune disorders. We sought to investigate the immunomodulatory role of mobilized autologous HSCs, via target of the CXCR4-CXL12 axis, to promote engraftment of islet cell transplantation. Islets from BALB/c mice were transplanted beneath the kidney capsule of hyperglycemic C57BL/6 mice, and treatment of recipients with CXCR4 antagonist resulted in mobilization of HSCs and in prolongation of islet graft survival. Addition of rapamycin to anti-CXCR4 therapy further promoted HSC mobilization and islet allograft survival, inducing a robust and transferable host hyporesponsiveness, while administration of an ACK2 (anti-CD117) mAb halted CXCR4 antagonist-mediated HSC release and restored allograft rejection. Mobilized HSCs were shown to express high levels of the negative costimulatory molecule programmed death ligand 1 (PD-L1), and HSCs extracted from wild-type mice, but not from PD-L1 knockout mice, suppressed the in vitro alloimmune response. Moreover, HSC mobilization in PD-L1 knockout mice failed to prolong islet allograft survival. Targeting the CXCR4-CXCL12 axis thus mobilizes autologous HSCs and promotes long-term survival of islet allografts via a PD-L1-mediated mechanism.
Collapse
Affiliation(s)
- Paolo Fiorina
- Transplantation Research Center, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhong Z, Ma H, Taniguchi-Ishigaki N, Nagarajan L, Becker CG, Bach I, Becker T. SSDP cofactors regulate neural patterning and differentiation of specific axonal projections. Dev Biol 2010; 349:213-24. [PMID: 21056553 DOI: 10.1016/j.ydbio.2010.10.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 10/25/2010] [Accepted: 10/29/2010] [Indexed: 10/18/2022]
Abstract
The developmental activity of LIM homeodomain transcription factors (LIM-HDs) is critically controlled by LIM domain-interacting cofactors of LIM-HDs (CLIM, also known as NLI or LDB). CLIM cofactors associate with single-stranded DNA binding proteins (SSDPs, also known as SSBPs) thereby recruiting SSDP1 and/or SSDP2 to LIM-HD/CLIM complexes. Although evidence has been presented that SSDPs are important for the activity of specific LIM-HD/CLIM complexes, the developmental roles of SSDPs are unclear. We show that SSDP1a and SSDP1b mRNAs are widely expressed early during zebrafish development with conspicuous expression of SSDP1b in sensory trigeminal and Rohon-Beard neurons. SSDP1 and CLIM immunoreactivity co-localize in these neuronal cell types and in other structures. Over-expression of the N-terminal portion of SSDP1 (N-SSDP1), which contains the CLIM-interaction domain, increases endogenous CLIM protein levels in vivo and impairs the formation of eyes and midbrain-hindbrain boundary. In addition, manipulation of SSDP1 via N-SSDP1 over-expression or SSDP1b knock down impairs trigeminal and Rohon-Beard sensory axon growth. We show that N-SSDP1 is able to partially rescue the inhibition of axon growth induced by a dominant-negative form of CLIM (DN-CLIM). These results reveal specific functions of SSDP in neural patterning and sensory axon growth, in part due to the stabilization of LIM-HD/CLIM complexes.
Collapse
Affiliation(s)
- Zhen Zhong
- Centre for Neuroregeneration, School of Biomedical Sciences, University of Edinburgh, The Chancellor's Building, Edinburgh EH16 4SB, UK
| | | | | | | | | | | | | |
Collapse
|