1
|
Ren S, Liao X, Liu F, Li J, Gao X, Yu B. Exploring the Latent Information in Spatial Transcriptomics Data via Multi-View Graph Convolutional Network Based on Implicit Contrastive Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413545. [PMID: 40304359 DOI: 10.1002/advs.202413545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/09/2025] [Indexed: 05/02/2025]
Abstract
Latest developments in spatial transcriptomics enable thoroughly profiling of gene expression while preserving tissue microenvironment. Connecting gene expression with spatial arrangement is key for precise spatial domain identification, enhancing the comprehension of tissue microenvironments and biological processes. However, accurately analyzing spatial domains with similar gene expression and histological features is still challenging. This study introduces STMIGCL, a novel framework that leverages a multi-view graph convolutional network and implicit contrastive learning. First, it creates neighbor graphs from gene expression and spatial coordinates, and then combines these with gene expression through multi-view learning to learn low-dimensional representations. To further refine the obtained low-dimensional representations, a graph contrastive learning method with contrastive enhancement in the latent space is employed, aiming to better capture critical information in the data and improve the accuracy and discriminative power of the embeddings. Finally, an attention mechanism is used to adaptively integrate different views, capturing the importance of spots in various views to obtain the final spot representation. Experimental data confirms that STMIGCL significantly enhances spatial domain recognition precision and outperforms all baseline methods in tasks such as trajectory inference and Spatially Variable Genes (SVGs) recognition.
Collapse
Affiliation(s)
- Sheng Ren
- School of Data Science, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Xingyu Liao
- School of Computer Science, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Farong Liu
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Jie Li
- School of Data Science, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Bin Yu
- School of Data Science, Qingdao University of Science and Technology, Qingdao, 266061, China
- School of Artificial Intelligence and Data Science, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
2
|
Liu F, Ren S, Li J, Lv H, Jiang F, Bin Yu. SGTB: A graph representation learning model combining transformer and BERT for optimizing gene expression analysis in spatial transcriptomics data. Comput Biol Chem 2025; 118:108482. [PMID: 40306096 DOI: 10.1016/j.compbiolchem.2025.108482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/05/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
In recent years, spatial transcriptomics (ST) has emerged as an innovative technology that enables the simultaneous acquisition of gene expression information and its spatial distribution at the single-cell or regional level, providing deeper insights into cellular interactions and tissue organization, this technology provides a more holistic view of tissue organization and intercellular dynamics. However, existing methods still face certain limitations in data representation capabilities, making it challenging to fully capture complex spatial dependencies and global features. To address this, this paper proposes an innovative spatial multi-scale graph convolutional network (SGTB) based on large language models, integrating graph convolutional networks (GCN), Transformer, and BERT language models to optimize the representation of spatial transcriptomics data. The Graph Convolutional Network (GCN) employs a multi-layer architecture to extract features from gene expression matrices. Through iterative aggregation of neighborhood information, it captures spatial dependencies among cells and gene co-expression patterns, thereby constructing hierarchical cell embeddings. Subsequently, the model integrates an attention mechanism to assign weights to critical features and leverages Transformer layers to model global relationships, refining the ability of learned representations to reflect variations in spatial patterns. Finally, the model incorporates the BERT language model, mapping cell embeddings into textual inputs to exploit its deep semantic representation capabilities for high-dimensional feature extraction. These features are then fused with the embeddings generated by the Transformer, further optimizing feature learning for spatial transcriptomics data. This approach holds significant application value in improving the accuracy of tasks such as cell type classification and gene regulatory network construction, providing a novel computational framework for deep mining of spatial multi-scale biological data.
Collapse
Affiliation(s)
- Farong Liu
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China; School of Data Science, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Sheng Ren
- School of Data Science, Qingdao University of Science and Technology, Qingdao 266061, China; Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Jie Li
- School of Data Science, Qingdao University of Science and Technology, Qingdao 266061, China; Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Haoyang Lv
- School of Data Science, Qingdao University of Science and Technology, Qingdao 266061, China; Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Fenghui Jiang
- Editorial Office of Journal of Qingdao University of Science and Technology (Natural Science Edition), Qingdao University of Science and Technology, Qingdao 266061, China.
| | - Bin Yu
- School of Data Science, Qingdao University of Science and Technology, Qingdao 266061, China; Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao 266061, China.
| |
Collapse
|
3
|
Wang Y, Liu Z, Ma X. MuCST: restoring and integrating heterogeneous morphology images and spatial transcriptomics data with contrastive learning. Genome Med 2025; 17:21. [PMID: 40082941 PMCID: PMC11907906 DOI: 10.1186/s13073-025-01449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 03/07/2025] [Indexed: 03/16/2025] Open
Abstract
Spatially resolved transcriptomics (SRT) simultaneously measure spatial location, histology images, and transcriptional profiles of cells or regions in undissociated tissues. Integrative analysis of multi-modal SRT data holds immense potential for understanding biological mechanisms. Here, we present a flexible multi-modal contrastive learning for the integration of SRT data (MuCST), which joins denoising, heterogeneity elimination, and compatible feature learning. MuCST accurately identifies spatial domains and is applicable to diverse datasets platforms. Overall, MuCST provides an alternative for integrative analysis of multi-modal SRT data ( https://github.com/xkmaxidian/MuCST ).
Collapse
Affiliation(s)
- Yu Wang
- School of Computer Science and Technology, Xidian University, No.2 South Taibai Road, Xi'an, 710071, Shaanxi, China
- Key Laboratory of Smart Human-Computer Interaction and Wearable Technology of Shaanxi Province, Xidian University, No.2 South Taibai Road, Xi'an, 710071, Shaanxi, China
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China
| | - Xiaoke Ma
- School of Computer Science and Technology, Xidian University, No.2 South Taibai Road, Xi'an, 710071, Shaanxi, China.
- Key Laboratory of Smart Human-Computer Interaction and Wearable Technology of Shaanxi Province, Xidian University, No.2 South Taibai Road, Xi'an, 710071, Shaanxi, China.
| |
Collapse
|
4
|
Lin L, Wang H, Chen Y, Wang Y, Xu Y, Chen Z, Yang Y, Liu K, Ma X. STMGraph: spatial-context-aware of transcriptomes via a dual-remasked dynamic graph attention model. Brief Bioinform 2024; 26:bbae685. [PMID: 39764614 PMCID: PMC11704419 DOI: 10.1093/bib/bbae685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/20/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Spatial transcriptomics (ST) technologies enable dissecting the tissue architecture in spatial context. To perceive the global contextual information of gene expression patterns in tissue, the spatial dependence of cells must be fully considered by integrating both local and non-local features by means of spatial-context-aware. However, the current ST integration algorithm ignores for ST dropouts, which impedes the spatial-aware of ST features, resulting in challenges in the accuracy and robustness of microenvironmental heterogeneity detecting, spatial domain clustering, and batch-effects correction. Here, we developed an STMGraph, a universal dual-view dynamic deep learning framework that combines dual-remask (MASK-REMASK) with dynamic graph attention model (DGAT) to exploit ST data outperforming pre-existing tools. The dual-remask mechanism masks the embeddings before encoding and decoding, establishing dual-decoding-view to share features mutually. DGAT leverages self-supervision to update graph linkage relationships from two distinct perspectives, thereby generating a comprehensive representation for each node. Systematic benchmarking against 10 state-of-the-art tools revealed that the STMGraph has the optimal performance with high accuracy and robustness on spatial domain clustering for the datasets of diverse ST platforms from multi- to sub-cellular resolutions. Furthermore, STMGraph aggregates ST information cross regions by dual-remask to realize the batch-effects correction implicitly, allowing for spatial domain clustering of ST multi-slices. STMGraph is platform independent and superior in spatial-context-aware to achieve microenvironmental heterogeneity detection, spatial domain clustering, batch-effects correction, and new biological discovery, and is therefore a desirable novel tool for diverse ST studies.
Collapse
Affiliation(s)
- Lixian Lin
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Haoyu Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Yuxiao Chen
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Yuanyuan Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Yujie Xu
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Zhenglin Chen
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Yuemin Yang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Kunpeng Liu
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Xiaokai Ma
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| |
Collapse
|
5
|
Heldring M, Duijndam B, Kyriakidou A, van der Meer O, Tedeschi M, van der Laan J, van de Water B, Beltman J. Interdependency of estradiol-mediated ERα activation and subsequent PR and GREB1 induction to control cell cycle progression. Heliyon 2024; 10:e38406. [PMID: 39583845 PMCID: PMC11582769 DOI: 10.1016/j.heliyon.2024.e38406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 11/26/2024] Open
Abstract
Various groups of chemicals that we encounter in every-day life are known to disrupt the endocrine system, such as estrogen mimics that can disturb normal cellular development and homeostasis. To understand the effect of estrogen on intracellular protein dynamics and how this relates to cell proliferation, we aimed to develop a quantitative description of transcription factor complexes and their regulation of cell cycle progression in response to estrogenic stimulation. We designed a mathematical model that describes the dynamics of three proteins, GREB1, PR and TFF1, that are transcriptionally activated upon binding of 17β-estradiol (E2) to estrogen receptor alpha (ERα). Calibration of this model to imaging data monitoring the expression dynamics of these proteins in MCF7 cells suggests that transcriptional activation of GREB1 and PR depends on the association of the E2-ERα complex with both GREB1 and PR. We subsequently combined this ER signaling model with a previously published cell cycle model and compared this to quantification of cell cycle durations in MCF7 cells following nuclei tracking based on images segmented with deep neural networks. The resulting model predicts the effect of GREB1 and PR knockdown on cell cycle progression, thus providing mechanistic insight in the molecular interactions between ERα-regulated proteins and their relation to cell cycle progression. Our findings form a valuable basis to further investigate the pharmacodynamics of endocrine disrupting chemicals and their influence on cellular behavior.
Collapse
Affiliation(s)
- M.M. Heldring
- Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - B. Duijndam
- Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
- Section on Pharmacology, Toxicology and Kinetics, Medicines Evaluation Board, Graadt van Roggenweg 500, 3531 AH, Utrecht, the Netherlands
| | - A. Kyriakidou
- Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - O.M. van der Meer
- Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - M. Tedeschi
- Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - J.W. van der Laan
- Section on Pharmacology, Toxicology and Kinetics, Medicines Evaluation Board, Graadt van Roggenweg 500, 3531 AH, Utrecht, the Netherlands
| | - B. van de Water
- Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - J.B. Beltman
- Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| |
Collapse
|
6
|
Fan G, Xie T, Yang M, Li L, Tang L, Han X, Shi Y. Spatial analyses revealed S100P + TFF1 + tumor cells in spread through air spaces samples correlated with undesirable therapy response in non-small cell lung cancer. J Transl Med 2024; 22:917. [PMID: 39385235 PMCID: PMC11462816 DOI: 10.1186/s12967-024-05722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
Spread through air spaces (STAS) is a recognized aggressive pattern in lung cancer, serving as a crucial risk factor for postoperative recurrence. However, its phenotype and related spatial structure have remained elusive. To address these limitations, we conducted a comprehensive study based on spatial data, analyzing over 30,000 spots from 14 non-STAS samples and one STAS sample. We observed increased proliferation activities and angiogenesis in STAS, identifying S100P as a potential biomarker for STAS. Furthermore, our investigation into the heterogeneity of STAS tumor cells revealed a subset identified as S100P + TFF1 +, exhibiting a negative impact on patients' survival in public datasets. This subtype exhibited the highest activities in the TGFb and hypoxia, suggesting its potential pro-tumor role within the tumor microenvironment. To assess the role of S100P + TFF1 + tumor cells in therapy response, we included data from two clinical trial cohorts (BPI-7711 for EGFR-TKI therapy and ORIENT-3 for immunotherapy). The presence of S100P + TFF1 + tumor cells correlated with worse responses to both EGFR-TKI therapy and immunotherapy. Notably, TFF1 emerged as a serum marker for predicting EGFR-TKI response. Cell-cell communication analysis revealed that the TGFb signaling pathway was the most activated in S100P + TFF1 + tumor cells, with TGFB2-TGFBR2 identified as the main ligand-receptor pair. This was further validated by multiplex immunofluorescence performed on twenty NSCLC samples. In summary, our study identified S100P as the biomarker for STAS and highlighted the adverse role of S100P + TFF1 + tumor cells in survival outcomes.
Collapse
Affiliation(s)
- Guangyu Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Mengwei Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Le Tang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
7
|
Lutz F, Han SY, Büyücek S, Möller K, Viehweger F, Schlichter R, Menz A, Luebke AM, Bawahab AA, Reiswich V, Kluth M, Hube-Magg C, Hinsch A, Weidemann S, Lennartz M, Dum D, Bernreuther C, Lebok P, Sauter G, Marx AH, Simon R, Krech T, Fraune C, Gorbokon N, Burandt E, Minner S, Steurer S, Clauditz TS, Jacobsen F. Expression of Trefoil Factor 1 (TFF1) in Cancer: A Tissue Microarray Study Involving 18,878 Tumors. Diagnostics (Basel) 2024; 14:2157. [PMID: 39410561 PMCID: PMC11475926 DOI: 10.3390/diagnostics14192157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Trefoil factor 1 (TFF1) plays a role in the mucus barrier. Methods: To evaluate the prevalence of TFF1 expression in cancer, a tissue microarray containing 18,878 samples from 149 tumor types and 608 samples of 76 normal tissue types was analyzed through immunohistochemistry (IHC). Results: TFF1 staining was detectable in 65 of 149 tumor categories. The highest rates of TFF1 positivity were found in mucinous ovarian carcinomas (76.2%), colorectal adenomas and adenocarcinomas (47.1-75%), breast neoplasms (up to 72.9%), bilio-pancreatic adenocarcinomas (42.1-62.5%), gastro-esophageal adenocarcinomas (40.4-50.0%), neuroendocrine neoplasms (up to 45.5%), cervical adenocarcinomas (39.1%), and urothelial neoplasms (up to 24.3%). High TFF1 expression was related to a low grade of malignancy in non-invasive urothelial carcinomas of the bladder (p = 0.0225), low grade of malignancy (p = 0.0003), estrogen and progesterone receptor expression (p < 0.0001), non-triple negativity (p = 0.0005) in invasive breast cancer of no special type, and right-sided tumor location (p = 0.0021) in colorectal adenocarcinomas. Conclusions: TFF1 IHC has only limited utility for the discrimination of different tumor entities given its expression in many tumor entities. The link between TFF1 expression and parameters of malignancy argues for a relevant biological role of TFF1 in cancer. TFF1 may represent a suitable therapeutic target due to its expression in only a few normal cell types.
Collapse
Affiliation(s)
- Florian Lutz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Soo-Young Han
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Seyma Büyücek
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Florian Viehweger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Ria Schlichter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Andreas M. Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Ahmed Abdulwahab Bawahab
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah 21589, Saudi Arabia;
| | - Viktor Reiswich
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
- Institute of Pathology, Clinical Center Osnabrueck, 49078 Osnabrueck, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Andreas H. Marx
- Department of Pathology, Academic Hospital Fuerth, 90766 Fuerth, Germany;
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
- Institute of Pathology, Clinical Center Osnabrueck, 49078 Osnabrueck, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
- Institute of Pathology, Clinical Center Osnabrueck, 49078 Osnabrueck, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Till S. Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| |
Collapse
|
8
|
Liu W, Wang B, Bai Y, Liang X, Xue L, Luo J. SpaGIC: graph-informed clustering in spatial transcriptomics via self-supervised contrastive learning. Brief Bioinform 2024; 25:bbae578. [PMID: 39541189 PMCID: PMC11562840 DOI: 10.1093/bib/bbae578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/30/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Spatial transcriptomics technologies enable the generation of gene expression profiles while preserving spatial context, providing the potential for in-depth understanding of spatial-specific tissue heterogeneity. Leveraging gene and spatial data effectively is fundamental to accurately identifying spatial domains in spatial transcriptomics analysis. However, many existing methods have not yet fully exploited the local neighborhood details within spatial information. To address this issue, we introduce SpaGIC, a novel graph-based deep learning framework integrating graph convolutional networks and self-supervised contrastive learning techniques. SpaGIC learns meaningful latent embeddings of spots by maximizing both edge-wise and local neighborhood-wise mutual information of graph structures, as well as minimizing the embedding distance between spatially adjacent spots. We evaluated SpaGIC on seven spatial transcriptomics datasets across various technology platforms. The experimental results demonstrated that SpaGIC consistently outperformed existing state-of-the-art methods in several tasks, such as spatial domain identification, data denoising, visualization, and trajectory inference. Additionally, SpaGIC is capable of performing joint analyses of multiple slices, further underscoring its versatility and effectiveness in spatial transcriptomics research.
Collapse
Affiliation(s)
- Wei Liu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| | - Bo Wang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| | - Yuting Bai
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| | - Xiao Liang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| | - Li Xue
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| |
Collapse
|
9
|
Chen X, Sun H, Yang C, Wang W, Lyu W, Zou K, Zhang F, Dai Z, He X, Dong H. Bioinformatic analysis and experimental validation of six cuproptosis-associated genes as a prognostic signature of breast cancer. PeerJ 2024; 12:e17419. [PMID: 38912044 PMCID: PMC11192027 DOI: 10.7717/peerj.17419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/28/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Breast carcinoma (BRCA) is a life-threatening malignancy in women and shows a poor prognosis. Cuproptosis is a novel mode of cell death but its relationship with BRCA is unclear. This study attempted to develop a cuproptosis-relevant prognostic gene signature for BRCA. METHODS Cuproptosis-relevant subtypes of BRCA were obtained by consensus clustering. Differential expression analysis was implemented using the 'limma' package. Univariate Cox and multivariate Cox analyses were performed to determine a cuproptosis-relevant prognostic gene signature. The signature was constructed and validated in distinct datasets. Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) were also conducted using the prognostic signature to uncover the underlying molecular mechanisms. ESTIMATE and CIBERSORT algorithms were applied to probe the linkage between the gene signature and tumor microenvironment (TME). Immunotherapy responsiveness was assessed using the Tumor Immune Dysfunction and Exclusion (TIDE) web tool. Real-time quantitative PCR (RT-qPCR) was performed to detect the expressions of cuproptosis-relevant prognostic genes in breast cancer cell lines. RESULTS Thirty-eight cuproptosis-associated differentially expressed genes (DEGs) in BRCA were mined by consensus clustering and differential expression analysis. Based on univariate Cox and multivariate Cox analyses, six cuproptosis-relevant prognostic genes, namely SAA1, KRT17, VAV3, IGHG1, TFF1, and CLEC3A, were mined to establish a corresponding signature. The signature was validated using external validation sets. GSVA and GSEA showed that multiple cell cycle-linked and immune-related pathways along with biological processes were associated with the signature. The results ESTIMATE and CIBERSORT analyses revealed significantly different TMEs between the two Cusig score subgroups. Finally, RT-qPCR analysis of cell lines further confirmed the expressional trends of SAA1, KRT17, IGHG1, and CLEC3A. CONCLUSION Taken together, we constructed a signature for projecting the overall survival of BRCA patients and our findings authenticated the cuproptosis-relevant prognostic genes, which are expected to provide a basis for developing prognostic molecular biomarkers and an in-depth understanding of the relationship between cuproptosis and BRCA.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Hening Sun
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Changcheng Yang
- Department of The First Affiliated Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Wei Wang
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Wenzhi Lyu
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Kejian Zou
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Fan Zhang
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Zhijun Dai
- Department of The First Affiliated Hospital, Zhejiang University, Hangzhou City, Zhejiang Province, China
| | - Xionghui He
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| | - Huaying Dong
- Department of Hainan General Hospital, Hainan Medical College, Haikou City, Hainan Province, China
| |
Collapse
|
10
|
Cheng TC, Wu JH, Zhu B, Gao HY, Zheng L, Chen WX. Identification of a novel five ferroptosis-related gene signature as a promising prognostic model for breast cancer. J Cancer Res Clin Oncol 2023; 149:16779-16795. [PMID: 37728703 PMCID: PMC10645672 DOI: 10.1007/s00432-023-05423-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Breast cancer (BCa) is a major challenge for women's health worldwide. Ferroptosis is closely related to tumorigenesis and cancer progression. However, the prognostic value of ferroptosis-related genes in BCa remains unclear, and more accurate prognostic models are urgently needed. METHODS Gene expression profiles and clinical information of BCa patients were collected from public databases. LASSO and multivariate Cox regression analysis were utilized to construct the prognostic gene signature. Kaplan-Meier plotter, receiver operating characteristic (ROC) curves, and nomogram were used to validate the prognostic value of the gene signature. Gene set enrichment analysis was performed to explore the molecular functions and signaling pathways. RESULTS Differentially expressed ferroptosis-related genes between BCa samples and normal tissues were obtained. A novel five-gene signature including BCL2, SLC40A1, TFF1, APOOL, and PRAME was established for prognosis prediction. Patients stratified into high-risk or low-risk group displayed significantly different survival. Kaplan-Meier and ROC curves showed a good performance for survival prediction in different cohorts. Biological function analysis revealed that the five-gene signature was associated with cancer progression, immune infiltration, immune response, and drug resistance. Nomogram including the five-gene signature was established. CONCLUSION A novel five ferroptosis-related gene signature and nomogram could be used for prognostic prediction in BCa.
Collapse
Affiliation(s)
- Tian- Cheng Cheng
- Department of Breast Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglongxiang, Changzhou, 213000, Jiangsu Province, China
- Graduate School, Bengbu Medical College, Bengbu, 233000, Anhui Province, China
| | - Jia-Hao Wu
- Department of Breast Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglongxiang, Changzhou, 213000, Jiangsu Province, China
- Graduate School, Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Bei Zhu
- Department of Breast Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglongxiang, Changzhou, 213000, Jiangsu Province, China
| | - Hai-Yan Gao
- Department of Breast Surgery, The Affiliated Changzhou Tumor Hospital of Soochow University, Changzhou, 213000, Jiangsu Province, China
| | - Lin Zheng
- Department of Breast Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglongxiang, Changzhou, 213000, Jiangsu Province, China.
| | - Wei-Xian Chen
- Department of Breast Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglongxiang, Changzhou, 213000, Jiangsu Province, China.
- Post-Doctoral Working Station, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, ChangzhouJiangsu Province, 213000, China.
| |
Collapse
|
11
|
Wang B, Luo J, Liu Y, Shi W, Xiong Z, Shen C, Long Y. Spatial-MGCN: a novel multi-view graph convolutional network for identifying spatial domains with attention mechanism. Brief Bioinform 2023; 24:bbad262. [PMID: 37466210 DOI: 10.1093/bib/bbad262] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
MOTIVATION Recent advances in spatial transcriptomics technologies have enabled gene expression profiles while preserving spatial context. Accurately identifying spatial domains is crucial for downstream analysis and it requires the effective integration of gene expression profiles and spatial information. While increasingly computational methods have been developed for spatial domain detection, most of them cannot adaptively learn the complex relationship between gene expression and spatial information, leading to sub-optimal performance. RESULTS To overcome these challenges, we propose a novel deep learning method named Spatial-MGCN for identifying spatial domains, which is a Multi-view Graph Convolutional Network (GCN) with attention mechanism. We first construct two neighbor graphs using gene expression profiles and spatial information, respectively. Then, a multi-view GCN encoder is designed to extract unique embeddings from both the feature and spatial graphs, as well as their shared embeddings by combining both graphs. Finally, a zero-inflated negative binomial decoder is used to reconstruct the original expression matrix by capturing the global probability distribution of gene expression profiles. Moreover, Spatial-MGCN incorporates a spatial regularization constraint into the features learning to preserve spatial neighbor information in an end-to-end manner. The experimental results show that Spatial-MGCN outperforms state-of-the-art methods consistently in several tasks, including spatial clustering and trajectory inference.
Collapse
Affiliation(s)
- Bo Wang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410083, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410083, China
| | - Ying Liu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410083, China
| | - Wanwan Shi
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410083, China
| | - Zehao Xiong
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410083, China
| | - Cong Shen
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410083, China
| | - Yahui Long
- Singapore Immunology Network(SIgN), Agency for Science, Technology and Research(A*STAR), 138648, Singapore
| |
Collapse
|
12
|
Minegishi K, Dobashi Y, Koyama T, Ishibashi Y, Furuya M, Tsubochi H, Ohmoto Y, Yasuda T, Nomura S. Diagnostic utility of trefoil factor families for the early detection of lung cancer and their correlation with tissue expression. Oncol Lett 2023; 25:139. [PMID: 36909373 PMCID: PMC9996639 DOI: 10.3892/ol.2023.13725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/22/2022] [Indexed: 02/23/2023] Open
Abstract
Trefoil factors (TFFs) are upregulated in numerous types of cancer, including those of the breast, the colon, the lung and the pancreas, suggesting their potential utility as biomarkers for screening. In the present study, the clinical relevance of serum or urinary TFFs as biomarkers were comprehensively evaluated and the correlation with TFF expression levels in lung cancer tissue was examined. Serum and urine were collected from 199 patients with lung cancer and 198 healthy individuals. Concentrations of serum and urinary TFF1, TFF2 and TFF3 were measured using ELISA and the potential of TFF levels to discriminate between cancer and non-cancer samples was evaluated. In 100 of the cancer cases, expression of TFF1-3 was analyzed using immunohistochemical staining of paraffin sections. Furthermore, the relationship between TFF levels and clinicopathological factors among these cancer cases was analyzed using immunohistochemistry of tissue specimens, quantified and statistically analyzed. While serum levels of all TFFs measured using ELISA were significantly higher in patients with lung cancer compared with those in healthy individuals, urinary TFFs were lower. Areas under the curve (AUC) of the receiver operating characteristic curves for serum/urinary TFF1, TFF2 and TFF3 were 0.709/0.594, 0.722/0.501 and 0.663/0.665, respectively. Furthermore, the combination of serum TFF1, TFF2, TFF3 and urinary TFF1 and TFF3 demonstrated the highest AUC (0.826). In the clinicopathological analysis, serum TFF1 was higher in the early pathological T-stage (pTis/1/2) compared with the later stage (pT3/4) and TFF2 was higher in the pN0/1 than the pN2 group. With regards to the histological types, urinary TFF1 was higher in squamous cell carcinoma than adenocarcinoma (AC), but TFF2 tended to be higher in AC. Using immunohistochemical analysis, although TFF1 and TFF3 expression showed positive correlation with serum concentrations, TFF2 was inversely correlated. In conclusion, serum and urinary TFF levels are promising predictive biomarkers, and their measurements provide a useful in vivo and non-invasive diagnostic screening tool. In particular, TFF1 and TFF3 could be surrogate markers of clinicopathological profiles of human lung cancer.
Collapse
Affiliation(s)
- Kentaro Minegishi
- Department of Thoracic Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Saitama 330-8500, Japan
| | - Yoh Dobashi
- Department of Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Saitama 330-8500, Japan.,Department of Pathology, School of Medicine, International University of Health and Welfare Hospital, Nasushiobara, Tochigi 329-2763, Japan
| | - Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Yuko Ishibashi
- Department of Surgery, Breast Surgery, Tokyo Women's Medical University, Adachi Medical Center, Adachi, Tokyo 123-8558, Japan
| | - Miki Furuya
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hiroyoshi Tsubochi
- Department of Thoracic Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Saitama 330-8500, Japan
| | - Yasukazu Ohmoto
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Tokushima 770-8505, Japan
| | - Tomohiko Yasuda
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.,Department of Gastrointestinal Surgery, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba 270-1694, Japan
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
13
|
Local augmented graph neural network for multi-omics cancer prognosis prediction and analysis. Methods 2023; 213:1-9. [PMID: 36933628 DOI: 10.1016/j.ymeth.2023.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/30/2022] [Accepted: 02/25/2023] [Indexed: 03/17/2023] Open
Abstract
Cancer prognosis prediction and analysis can help patients understand expected life and help clinicians provide correct therapeutic guidance. Thanks to the development of sequencing technology, multi-omics data, and biological networks have been used for cancer prognosis prediction. Besides, graph neural networks can simultaneously consider multi-omics features and molecular interactions in biological networks, becoming mainstream in cancer prognosis prediction and analysis. However, the limited number of neighboring genes in biological networks restricts the accuracy of graph neural networks. To solve this problem, a local augmented graph convolutional network named LAGProg is proposed in this paper for cancer prognosis prediction and analysis. The process follows: first, given a patient's multi-omics data features and biological network, the corresponding augmented conditional variational autoencoder generates features. Then, the generated augmented features and the original features are fed into a cancer prognosis prediction model to complete the cancer prognosis prediction task. The conditional variational autoencoder consists of two parts: encoder-decoder. In the encoding phase, an encoder learns the conditional distribution of the multi-omics data. As a generative model, a decoder takes the conditional distribution and the original feature as inputs to generate the enhanced features. The cancer prognosis prediction model consists of a two-layer graph convolutional neural network and a Cox proportional risk network. The Cox proportional risk network consists of fully connected layers. Extensive experiments on 15 real-world datasets from TCGA demonstrated the effectiveness and efficiency of the proposed method in predicting cancer prognosis. LAGProg improved the C-index values by an average of 8.5% over the state-of-the-art graph neural network method. Moreover, we confirmed that the local augmentation technique could enhance the model's ability to represent multi-omics features, improve the model's robustness to missing multi-omics features, and prevent the model's over-smoothing during training. Finally, based on genes identified through differential expression analysis, we discovered 13 prognostic markers highly associated with breast cancer, among which ten genes have been proved by literature review.
Collapse
|
14
|
Feng D, Li W, Wu W, Kahlert UD, Gao P, Hu G, Huang X, Shi W, Li H. Chromatin Regulator-Related Gene Signature for Predicting Prognosis and Immunotherapy Efficacy in Breast Cancer. JOURNAL OF ONCOLOGY 2023; 2023:2736932. [PMID: 36755810 PMCID: PMC9902130 DOI: 10.1155/2023/2736932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/22/2022] [Accepted: 11/24/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Many studies have found that chromatin regulators (CRs) are correlated with tumorigenesis and disease prognosis. Here, we attempted to build a new CR-related gene model to predict breast cancer (BC) survival status. METHODS First, the CR-related differentially expressed genes (DEGs) were screened in normal and tumor breast tissues, and the potential mechanism of CR-related DEGs was determined by function analysis. Based on the prognostic DEGs, the Cox regression model was applied to build a signature for BC. Then, survival and receiver operating characteristic (ROC) curves were performed to validate the signature's efficacy and identify its independent prognostic value. The CIBERSORT and tumor immune dysfunction and exclusion (TIDE) algorithms were used to assess the immune cells infiltration and immunotherapy efficacy for this signature, respectively. Additionally, a novel nomogram was also built for clinical decisions. RESULTS We identified 98 CR-related DEGs in breast tissues and constructed a novel 6 CR-related gene signature (ARID5A, ASCL1, IKZF3, KDM4B, PRDM11, and TFF1) to predict the outcome of BC patients. The prognostic value of this CR-related gene signature was validated with outstanding predictive performance. The TIDE analysis revealed that the high-risk group patients had a better response to immune checkpoint blockade (ICB) therapy. CONCLUSION A new CR-related gene signature was built, and this signature could provide the independent predictive capability of prognosis and immunotherapy efficacy for BC patients.
Collapse
Affiliation(s)
- Dongxu Feng
- Department of General Surgery, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Chongming District, Shanghai 202150, China
| | - Wenbing Li
- Department of General Surgery, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Chongming District, Shanghai 202150, China
| | - Wei Wu
- Department of General Surgery, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Chongming District, Shanghai 202150, China
| | - Ulf Dietrich Kahlert
- University Clinic for General, Visceral, Vascular-and Transplantation Surgery, Faculty of Medicine, Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Pingfa Gao
- Department of General Surgery, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Chongming District, Shanghai 202150, China
| | - Gangfeng Hu
- Department of General Surgery, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Chongming District, Shanghai 202150, China
| | - Xia Huang
- Department of General Surgery, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Chongming District, Shanghai 202150, China
| | - Wenjie Shi
- University Clinic for General, Visceral, Vascular-and Transplantation Surgery, Faculty of Medicine, Otto-von-Guericke-University, Magdeburg 39120, Germany
- University Hospital for Gynaecology, Pius-Hospital, University Medicine Oldenburg, Oldenburg 26121, Germany
| | - Huichao Li
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266555, Shandong, China
| |
Collapse
|
15
|
Xu C, Jin X, Wei S, Wang P, Luo M, Xu Z, Yang W, Cai Y, Xiao L, Lin X, Liu H, Cheng R, Pang F, Chen R, Su X, Hu Y, Wang G, Jiang Q. DeepST: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Res 2022; 50:e131. [PMID: 36250636 PMCID: PMC9825193 DOI: 10.1093/nar/gkac901] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 01/29/2023] Open
Abstract
Recent advances in spatial transcriptomics (ST) have brought unprecedented opportunities to understand tissue organization and function in spatial context. However, it is still challenging to precisely dissect spatial domains with similar gene expression and histology in situ. Here, we present DeepST, an accurate and universal deep learning framework to identify spatial domains, which performs better than the existing state-of-the-art methods on benchmarking datasets of the human dorsolateral prefrontal cortex. Further testing on a breast cancer ST dataset, we showed that DeepST can dissect spatial domains in cancer tissue at a finer scale. Moreover, DeepST can achieve not only effective batch integration of ST data generated from multiple batches or different technologies, but also expandable capabilities for processing other spatial omics data. Together, our results demonstrate that DeepST has the exceptional capacity for identifying spatial domains, making it a desirable tool to gain novel insights from ST studies.
Collapse
Affiliation(s)
- Chang Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Xiyun Jin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Songren Wei
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangdong 523335, China
| | - Pingping Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Meng Luo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Zhaochun Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Wenyi Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Yideng Cai
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Lixing Xiao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Xiaoyu Lin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Hongxin Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Rui Cheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Fenglan Pang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Rui Chen
- Department of Forensic Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Xi Su
- ChinaFoshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Guohua Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin 150076, China
| |
Collapse
|
16
|
Zhang W, Zhang D, Cheng Y, Liang X, Wang J. Runx1 regulates Tff1 expression to expedite viability of retinal microvascular endothelial cells in mice with diabetic retinopathy. Exp Eye Res 2022; 217:108969. [PMID: 35114215 DOI: 10.1016/j.exer.2022.108969] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/04/2022]
Abstract
Diabetic retinopathy (DR) represents a major complication of diabetes, and molecular mechanisms related to vascular dysfunction, particularly endothelial dysfunction, in DR remains unclear. In the present work, we generated a DR animal model using mice and a cell model in mouse retinal microvascular endothelial cells (mRMECs) to examine the role of Trefoil factor family 1 (Tff1) in DR. Tff1 was poorly expressed in DR mice and high glucose (HG)-treated mRMECs. Overexpression of Tff1 significantly attenuated streptozotocin-induced retinal proliferation and angiogenesis in DR mice and reduced the secretion of inflammatory factors. In HG-treated mRMECs, overexpression of Tff1 remarkably reduced the proliferation and angiogenesis of mRMECs. In further experiments, we found that Tff1 was transcriptionally repressed by Runt-related transcription factor 1 (Runx1) directly, and Tff1 expression was indirectly modulated by Runx1 via the core-binding factor subunit beta (CBF-β)/nuclear factor, erythroid 2/microRNA-423-5p axis and the CBF-β/estrogen receptor 1 (ESR1) axis. Moreover, Tff1 could inhibit the activation of NF-κB signaling pathway, which in turn attenuated retinal endothelial cell proliferation and angiogenesis. It was thus proposed that Runx1/Tff1/NF-κB axis may be a potential target for the treatment strategy of DR, and further studies are needed.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Ophthalmology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030012, Shanxi, PR China; Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China.
| | - Dingguo Zhang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, PR China
| | - Yan Cheng
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
| | - Xing Liang
- Department of Ophthalmology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030012, Shanxi, PR China
| | - Jingjing Wang
- Department of Ophthalmology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030012, Shanxi, PR China
| |
Collapse
|
17
|
Influence of breast cancer risk factors on proliferation and DNA damage in human breast glandular tissues: role of intracellular estrogen levels, oxidative stress and estrogen biotransformation. Arch Toxicol 2021; 96:673-687. [PMID: 34921608 PMCID: PMC8837527 DOI: 10.1007/s00204-021-03198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/09/2021] [Indexed: 12/03/2022]
Abstract
Breast cancer etiology is associated with both proliferation and DNA damage induced by estrogens. Breast cancer risk factors (BCRF) such as body mass index (BMI), smoking, and intake of estrogen-active drugs were recently shown to influence intratissue estrogen levels. Thus, the aim of the present study was to investigate the influence of BCRF on estrogen-induced proliferation and DNA damage in 41 well-characterized breast glandular tissues derived from women without breast cancer. Influence of intramammary estrogen levels and BCRF on estrogen receptor (ESR) activation, ESR-related proliferation (indicated by levels of marker transcripts), oxidative stress (indicated by levels of GCLC transcript and oxidative derivatives of cholesterol), and levels of transcripts encoding enzymes involved in estrogen biotransformation was identified by multiple linear regression models. Metabolic fluxes to adducts of estrogens with DNA (E-DNA) were assessed by a metabolic network model (MNM) which was validated by comparison of calculated fluxes with data on methoxylated and glucuronidated estrogens determined by GC– and UHPLC–MS/MS. Intratissue estrogen levels significantly influenced ESR activation and fluxes to E-DNA within the MNM. Likewise, all BCRF directly and/or indirectly influenced ESR activation, proliferation, and key flux constraints influencing E-DNA (i.e., levels of estrogens, CYP1B1, SULT1A1, SULT1A2, and GSTP1). However, no unambiguous total effect of BCRF on proliferation became apparent. Furthermore, BMI was the only BCRF to indeed influence fluxes to E-DNA (via congruent adverse influence on levels of estrogens, CYP1B1 and SULT1A2).
Collapse
|
18
|
Dombroski JA, Hope JM, Sarna NS, King MR. Channeling the Force: Piezo1 Mechanotransduction in Cancer Metastasis. Cells 2021; 10:2815. [PMID: 34831037 PMCID: PMC8616475 DOI: 10.3390/cells10112815] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/25/2022] Open
Abstract
Cancer metastasis is one of the leading causes of death worldwide, motivating research into identifying new methods of preventing cancer metastasis. Recently there has been increasing interest in understanding how cancer cells transduce mechanical forces into biochemical signals, as metastasis is a process that consists of a wide range of physical forces. For instance, the circulatory system through which disseminating cancer cells must transit is an environment characterized by variable fluid shear stress due to blood flow. Cancer cells and other cells can transduce physical stimuli into biochemical responses using the mechanosensitive ion channel Piezo1, which is activated by membrane deformations that occur when cells are exposed to physical forces. When active, Piezo1 opens, allowing for calcium flux into the cell. Calcium, as a ubiquitous second-messenger cation, is associated with many signaling pathways involved in cancer metastasis, such as angiogenesis, cell migration, intravasation, and proliferation. In this review, we discuss the roles of Piezo1 in each stage of cancer metastasis in addition to its roles in immune cell activation and cancer cell death.
Collapse
Affiliation(s)
| | | | | | - Michael R. King
- King Lab, Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37235, USA; (J.A.D.); (J.M.H.); (N.S.S.)
| |
Collapse
|
19
|
Fan J, Feng Y, Cheng Y, Wang Z, Zhao H, Galan EA, Liao Q, Cui S, Zhang W, Ma S. Multiplex gene quantification as digital markers for extremely rapid evaluation of chemo-drug sensitivity. PATTERNS 2021; 2:100360. [PMID: 34693378 PMCID: PMC8515010 DOI: 10.1016/j.patter.2021.100360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/29/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022]
Abstract
Current administrations for precision drug uses are limited in evaluation speed. Here, we propose the use of multiplex gene-based digital markers for the extremely rapid personalized prediction of individual sensitivity to cancer drugs. We first screen the transcriptional profiles by applying two to three gene filters and scoring genes by their impact on drug sensitivity and finalize the gene lists by K-nearest neighbors cross-validation. The digital markers are cancer type dependent, are composed of tens to hundreds of gene expressions, and are rapidly quantified by reverse transcription quantitative real-time PCR (qRT-PCR) within 1–3 h after tumor sampling. The area under the receiver operating characteristic curve reached 0.88 when testing the performance of digital markers on organoids derived from colorectal cancer patient tumors. The algorithm and corresponding graphic user interface were developed to demonstrate the promise of digital markers for extremely rapid drug recommendation. Non-targeted multiplex genes are screened as digital markers for drug sensitivity Transcription level cohort of 10s to 100s genes predicts drug sensitivity Digital markers are quantified using qRT-PCR within 1–3 h Digital markers guide extremely rapid chemo-drug uses after patient hospitalization
In clinical cancer medicine, many patients require immediate chemotherapy after hospitalization. Current administrations for precision drug uses are limited in evaluation speed, including genomic sequencing and tumor organoid evaluation. An extremely rapid evaluation protocol is in high demand to realize drug recommendation within a few hours after tumor sampling. In this work, we have proposed an approach for extremely rapid and personalized drug recommendation.
Collapse
Affiliation(s)
- Jiaqi Fan
- Tsinghua University, Shenzhen International Graduate School (SIGS), Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China.,Institute for Brain and Cognitive Sciences (THUIBCS), Tsinghua University, Beijing 100084, China
| | - Yilin Feng
- Tsinghua University, Shenzhen International Graduate School (SIGS), Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China
| | - Yifan Cheng
- Tsinghua University, Shenzhen International Graduate School (SIGS), Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China
| | - Zitian Wang
- Tsinghua University, Shenzhen International Graduate School (SIGS), Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China
| | - Haoran Zhao
- Tsinghua University, Shenzhen International Graduate School (SIGS), Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China
| | - Edgar A Galan
- Tsinghua University, Shenzhen International Graduate School (SIGS), Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China
| | - Quanxing Liao
- Department of Abdominal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Shuzhong Cui
- Department of Abdominal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Weijie Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shaohua Ma
- Tsinghua University, Shenzhen International Graduate School (SIGS), Shenzhen 518055, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen 518055, China.,Institute for Brain and Cognitive Sciences (THUIBCS), Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
Minegishi K, Dobashi Y, Tsubochi H, Hagiwara K, Ishibashi Y, Nomura S, Nakamura R, Ohmoto Y, Endo S. TFF-1 Functions to Suppress Multiple Phenotypes Associated with Lung Cancer Progression. Onco Targets Ther 2021; 14:4761-4777. [PMID: 34531663 PMCID: PMC8439977 DOI: 10.2147/ott.s322697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction Trefoil Factor (TFF) is a member of a protein family comprised of three isoforms, of which TFF-1 exhibits antithetical functions; promotion or suppression of cell proliferation, survival and invasion, depending on the cancer type. However, the pathobiological function of TFF-1 in lung carcinoma has been still unclear. Methods We examined the expression and secretion of TFF-1 using cultured human lung carcinoma cells by immunoblotting, immunofluorescence, enzyme-linked immunosorbent assay and quantitative real-time PCR analyses. The effects of TFF-1 on various phenotypes were analyzed in two cell lines, including those transfected with cDNA encoding TFF-1. Cell proliferation and death were examined by hemocytometer cell counting and by colorimetric viability/cytotoxicity assay. Cell cycle profile, migration and invasion were also examined by flow cytometry, wound healing assay and Matrigel Transwell assay, respectively. The effect of TFF-1 overexpression was confirmed by additional transfection of TFF-1-specific siRNA. Results Endogenous TFF-1 protein expression and secretion into the media were observed exclusively in adenocarcinoma-derived cell lines. Forced overexpression of TFF-1 drove cell cycle transition, while the proliferation decreased by 19% to 25% due to increased cell death. This cell death was predominantly caused by apoptosis, as assessed by the activation of caspase 3/7. Cell migration was also suppressed by 71% to 82% in TFF-1-transfected cells. The suppressive effect of TFF-1 on proliferation and migration was restored by transfection of TFF-1 siRNA. Moreover, invasion was also suppressed to 77% to 83% in TFF-1-transfected cells. Conclusion These findings reveal that TFF-1 functions as a suppressor of cancer proliferation by induction of apoptosis, cell migration and invasion and thus may provide a synergistic target for potential treatment strategies for human lung carcinoma.
Collapse
Affiliation(s)
- Kentaro Minegishi
- Department of Thoracic Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Yoh Dobashi
- Department of Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan.,Department of Pathology, School of Medicine, International University of Health and Welfare, Tochigi, Japan
| | - Hiroyoshi Tsubochi
- Department of Thoracic Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Koichi Hagiwara
- Division of Pulmonary Medicine, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Yuko Ishibashi
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Breast Surgery, Hospital of the National Center for the Global Health and Medicine, Tokyo, Japan
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ritsuko Nakamura
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yasukazu Ohmoto
- Tokushima University Industry-University R&D Startup Leading Institute, Tokushima, Japan
| | - Shunsuke Endo
- Department of Thoracic Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| |
Collapse
|
21
|
Hoffmann W. Trefoil Factor Family (TFF) Peptides and Their Links to Inflammation: A Re-evaluation and New Medical Perspectives. Int J Mol Sci 2021; 22:ijms22094909. [PMID: 34066339 PMCID: PMC8125380 DOI: 10.3390/ijms22094909] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
Trefoil factor family peptides (TFF1, TFF2, TFF3), together with mucins, are typical exocrine products of mucous epithelia. Here, they act as a gastric tumor suppressor (TFF1) or they play different roles in mucosal innate immune defense (TFF2, TFF3). Minute amounts are also secreted as endocrine, e.g., by the immune and central nervous systems. As a hallmark, TFF peptides have different lectin activities, best characterized for TFF2, but also TFF1. Pathologically, ectopic expression occurs during inflammation and in various tumors. In this review, the role of TFF peptides during inflammation is discussed on two levels. On the one hand, the expression of TFF1-3 is regulated by inflammatory signals in different ways (upstream links). On the other hand, TFF peptides influence inflammatory processes (downstream links). The latter are recognized best in various Tff-deficient mice, which have completely different phenotypes. In particular, TFF2 is secreted by myeloid cells (e.g., macrophages) and lymphocytes (e.g., memory T cells), where it modulates immune reactions triggering inflammation. As a new concept, in addition to lectin-triggered activation, a hypothetical lectin-triggered inhibition of glycosylated transmembrane receptors by TFF peptides is discussed. Thus, TFFs are promising players in the field of glycoimmunology, such as galectins and C-type lectins.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
22
|
Spadazzi C, Mercatali L, Esposito M, Wei Y, Liverani C, De Vita A, Miserocchi G, Carretta E, Zanoni M, Cocchi C, Bongiovanni A, Recine F, Kang Y, Ibrahim T. Trefoil factor-1 upregulation in estrogen-receptor positive breast cancer correlates with an increased risk of bone metastasis. Bone 2021; 144:115775. [PMID: 33249323 DOI: 10.1016/j.bone.2020.115775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
Bone is one of the most preferred sites of metastatic spread from different cancer types, including breast cancer. However, different breast cancer subtypes exhibit distinct metastatic behavior in terms of kinetics and anatomic sites of relapse. Despite advances in the diagnosis, the identification of patients at high-risk of bone recurrence is still an unmet clinical need. We conducted a retrospective analysis, by gene expression and immunohistochemical assays, on 90 surgically resected breast cancer samples collected from patients who experienced no evidence of distant metastasis, bone or visceral metastasis in order to identify a primary tumor-derived marker of bone recurrence. We identified trefoil factor-1 (pS2 or TFF1) as strictly correlated to bone metastasis from ER+ breast cancer. In silico analysis was carried out to confirm this observation, linking gene expression data with clinical characteristics available from public clinical datasets. Then, we investigated TFF1 function in ER+ breast cancer tumorigenesis and bone metastasis through xenograft in vivo models of MCF 7 breast cancer with gain and loss of function of TFF1. As a response to microenvironmental features in primary tumors, TFF1 expression could modulate ER+ breast cancer growth, leading to a less proliferative phenotype. Our results showed it may not play a role in late stages of bone metastasis, however further studies are warranted to understand whether it could contribute in the early-stages of the metastatic cascade. In conclusion, TFF1 upregulation in primary ER+ breast cancer could be useful to identify patients at high-risk of bone metastasis. This could help clinicians in the identification of patients who likely can develop bone metastasis and who could benefit from personalized treatments and follow-up strategies to prevent metastatic disease.
Collapse
Affiliation(s)
- Chiara Spadazzi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Mark Esposito
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Chiara Liverani
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Alessandro De Vita
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Giacomo Miserocchi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | | | - Michele Zanoni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Claudia Cocchi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Federica Recine
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| |
Collapse
|
23
|
De Palma FDE, Del Monaco V, Pol JG, Kremer M, D’Argenio V, Stoll G, Montanaro D, Uszczyńska-Ratajczak B, Klein CC, Vlasova A, Botti G, D’Aiuto M, Baldi A, Guigó R, Kroemer G, Maiuri MC, Salvatore F. The abundance of the long intergenic non-coding RNA 01087 differentiates between luminal and triple-negative breast cancers and predicts patient outcome. Pharmacol Res 2020; 161:105249. [DOI: 10.1016/j.phrs.2020.105249] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
|
24
|
Hoffmann W. Trefoil Factor Family (TFF) Peptides and Their Diverse Molecular Functions in Mucus Barrier Protection and More: Changing the Paradigm. Int J Mol Sci 2020; 21:ijms21124535. [PMID: 32630599 PMCID: PMC7350206 DOI: 10.3390/ijms21124535] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Trefoil factor family peptides (TFF1, TFF2, TFF3) are typically co-secreted together with mucins. Tff1 represents a gastric tumor suppressor gene in mice. TFFs are also synthesized in minute amounts in the immune and central nervous systems. In mucous epithelia, they support rapid repair by enhancing cell migration ("restitution") via their weak chemotactic and anti-apoptotic effects. For a long time, as a paradigm, this was considered as their major biological function. Within recent years, the formation of disulfide-linked heterodimers was documented for TFF1 and TFF3, e.g., with gastrokine-2 and IgG Fc binding protein (FCGBP). Furthermore, lectin activities were recognized as enabling binding to a lipopolysaccharide of Helicobacter pylori (TFF1, TFF3) or to a carbohydrate moiety of the mucin MUC6 (TFF2). Only recently, gastric TFF1 was demonstrated to occur predominantly in monomeric forms with an unusual free thiol group. Thus, a new picture emerged, pointing to diverse molecular functions for TFFs. Monomeric TFF1 might protect the gastric mucosa as a scavenger for extracellular reactive oxygen/nitrogen species. Whereas, the TFF2/MUC6 complex stabilizes the inner layer of the gastric mucus. In contrast, the TFF3-FCGBP heterodimer (and also TFF1-FCGBP) are likely part of the innate immune defense of mucous epithelia, preventing the infiltration of microorganisms.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
25
|
Matsubara D, Yoshimoto T, Soda M, Amano Y, Kihara A, Funaki T, Ito T, Sakuma Y, Shibano T, Endo S, Hagiwara K, Ishikawa S, Fukayama M, Murakami Y, Mano H, Niki T. Reciprocal expression of trefoil factor-1 and thyroid transcription factor-1 in lung adenocarcinomas. Cancer Sci 2020; 111:2183-2195. [PMID: 32237253 PMCID: PMC7293082 DOI: 10.1111/cas.14403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 12/25/2022] Open
Abstract
Molecular targeted therapies against EGFR and ALK have improved the quality of life of lung adenocarcinoma patients. However, targetable driver mutations are mainly found in thyroid transcription factor‐1 (TTF‐1)/NK2 homeobox 1 (NKX2‐1)‐positive terminal respiratory unit (TRU) types and rarely in non‐TRU types. To elucidate the molecular characteristics of the major subtypes of non‐TRU‐type adenocarcinomas, we analyzed 19 lung adenocarcinoma cell lines (11 TRU types and 8 non‐TRU types). A characteristic of non‐TRU‐type cell lines was the strong expression of TFF‐1 (trefoil factor‐1), a gastric mucosal protective factor. An immunohistochemical analysis of 238 primary lung adenocarcinomas resected at Jichi Medical University Hospital revealed that TFF‐1 was positive in 31 cases (13%). Expression of TFF‐1 was frequently detected in invasive mucinous (14/15, 93%), enteric (2/2, 100%), and colloid (1/1, 100%) adenocarcinomas, less frequent in acinar (5/24, 21%), papillary (7/120, 6%), and solid (2/43, 5%) adenocarcinomas, and negative in micropapillary (0/1, 0%), lepidic (0/23, 0%), and microinvasive adenocarcinomas or adenocarcinoma in situ (0/9, 0%). Expression of TFF‐1 correlated with the expression of HNF4‐α and MUC5AC (P < .0001, P < .0001, respectively) and inversely correlated with that of TTF‐1/NKX2‐1 (P < .0001). These results indicate that TFF‐1 is characteristically expressed in non‐TRU‐type adenocarcinomas with gastrointestinal features. The TFF‐1‐positive cases harbored KRAS mutations at a high frequency, but no EGFR or ALK mutations. Expression of TFF‐1 correlated with tumor spread through air spaces, and a poor prognosis in advanced stages. Moreover, the knockdown of TFF‐1 inhibited cell proliferation and soft‐agar colony formation and induced apoptosis in a TFF‐1‐high and KRAS‐mutated lung adenocarcinoma cell line. These results indicate that TFF‐1 is not only a biomarker, but also a potential molecular target for non‐TRU‐type lung adenocarcinomas.
Collapse
Affiliation(s)
- Daisuke Matsubara
- Division of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan.,Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Taichiro Yoshimoto
- Division of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Manabu Soda
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Amano
- Division of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Atsushi Kihara
- Division of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Toko Funaki
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takeshi Ito
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuji Sakuma
- Division of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Tomoki Shibano
- Department of Thoracic Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Shunsuke Endo
- Department of Thoracic Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Koichi Hagiwara
- Department of Respiratory Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Shumpei Ishikawa
- Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masashi Fukayama
- Human Pathology Department, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Toshiro Niki
- Division of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
26
|
Jahan R, Shah A, Kisling SG, Macha MA, Thayer S, Batra SK, Kaur S. Odyssey of trefoil factors in cancer: Diagnostic and therapeutic implications. Biochim Biophys Acta Rev Cancer 2020; 1873:188362. [PMID: 32298747 DOI: 10.1016/j.bbcan.2020.188362] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
Trefoil factors 1, 2, and 3 (TFFs) are a family of small secretory molecules involved in the protection and repair of the gastrointestinal tract (GI). TFFs maintain and restore epithelial structural integrity via transducing key signaling pathways for epithelial cell migration, proliferation, and invasion. In recent years, TFFs have emerged as key players in the pathogenesis of multiple diseases, especially cancer. Initially recognized as tumor suppressors, emerging evidence demonstrates their key role in tumor progression and metastasis, extending their actions beyond protection. However, to date, a comprehensive understanding of TFFs' mechanism of action in tumor initiation, progression and metastasis remains obscure. The present review discusses the structural, functional and mechanistic implications of all three TFF family members in tumor progression and metastasis. Also, we have garnered information from studies on their structure and expression status in different organs, along with lessons from their specific knockout in mouse models. In addition, we highlight the emerging potential of using TFFs as a biomarker to stratify tumors for better therapeutic intervention.
Collapse
Affiliation(s)
- Rahat Jahan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA
| | - Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA
| | - Sophia G Kisling
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA
| | - Muzafar A Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA; Department of Otolaryngology-Head & Neck Surgery, University of Nebraska Medical Center, NE, 68198, USA; Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir, India -191201
| | - Sarah Thayer
- Division of Surgical Oncology, Department of Surgery, University of Nebraska Medical Center, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, NE, 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE 68198, USA.
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE, 68198, USA.
| |
Collapse
|
27
|
Heuer J, Heuer F, Stürmer R, Harder S, Schlüter H, Braga Emidio N, Muttenthaler M, Jechorek D, Meyer F, Hoffmann W. The Tumor Suppressor TFF1 Occurs in Different Forms and Interacts with Multiple Partners in the Human Gastric Mucus Barrier: Indications for Diverse Protective Functions. Int J Mol Sci 2020; 21:ijms21072508. [PMID: 32260357 PMCID: PMC7177788 DOI: 10.3390/ijms21072508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022] Open
Abstract
TFF1 is a protective peptide of the Trefoil Factor Family (TFF), which is co-secreted with the mucin MUC5AC, gastrokine 2 (GKN2), and IgG Fc binding protein (FCGBP) from gastric surface mucous cells. Tff1-deficient mice obligatorily develop antropyloric adenoma and about 30% progress to carcinomas, indicating that Tff1 is a tumor suppressor. As a hallmark, TFF1 contains seven cysteine residues with three disulfide bonds stabilizing the conserved TFF domain. Here, we systematically investigated the molecular forms of TFF1 in the human gastric mucosa. TFF1 mainly occurs in an unusual monomeric form, but also as a homodimer. Furthermore, minor amounts of TFF1 form heterodimers with GKN2, FCGBP, and an unknown partner protein, respectively. TFF1 also binds to the mucin MUC6 in vitro, as shown by overlay assays with synthetic 125I-labeled TFF1 homodimer. The dominant presence of a monomeric form with a free thiol group at Cys-58 is in agreement with previous studies in Xenopus laevis and mouse. Cys-58 is likely highly reactive due to flanking acid residues (PPEEEC58EF) and might act as a scavenger for extracellular reactive oxygen/nitrogen species protecting the gastric mucosa from damage by oxidative stress, e.g., H2O2 generated by dual oxidase (DUOX).
Collapse
Affiliation(s)
- Jörn Heuer
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Franziska Heuer
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - René Stürmer
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Sönke Harder
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Nayara Braga Emidio
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Markus Muttenthaler
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Dörthe Jechorek
- Institute of Pathology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Frank Meyer
- Department of Surgery, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
28
|
Znalesniak EB, Salm F, Hoffmann W. Molecular Alterations in the Stomach of Tff1-Deficient Mice: Early Steps in Antral Carcinogenesis. Int J Mol Sci 2020; 21:ijms21020644. [PMID: 31963721 PMCID: PMC7014203 DOI: 10.3390/ijms21020644] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
TFF1 is a peptide of the gastric mucosa co-secreted with the mucin MUC5AC. It plays a key role in gastric mucosal protection and repair. Tff1-deficient (Tff1KO) mice obligatorily develop antropyloric adenoma and about 30% progress to carcinomas. Thus, these mice represent a model for gastric tumorigenesis. Here, we compared the expression of selected genes in Tff1KO mice and the corresponding wild-type animals (RT-PCR analyses). Furthermore, we systematically investigated the different molecular forms of Tff1 and its heterodimer partner gastrokine-2 (Gkn2) in the stomach (Western blot analyses). As a hallmark, a large portion of murine Tff1 occurs in a monomeric form. This is unexpected because of its odd number of seven cysteine residues. Probably the three conserved acid amino acid residues (EEE) flanking the 7th cysteine residue allow monomeric secretion. As a consequence, the free thiol of monomeric Tff1 could have a protective scavenger function, e.g., for reactive oxygen/nitrogen species. Furthermore, a minor subset of Tff1 forms a disulfide-linked heterodimer with IgG Fc binding protein (Fcgbp). Of special note, in Tff1KO animals a homodimeric form of Gkn2 was observed. In addition, Tff1KO animals showed strongly reduced Tff2 transcript and protein levels, which might explain their increased sensitivity to Helicobacter pylori infection.
Collapse
|
29
|
Han Y, Nakayama J, Hayashi Y, Jeong S, Futakuchi M, Ito E, Watanabe S, Semba K. Establishment and characterization of highly osteolytic luminal breast cancer cell lines by intracaudal arterial injection. Genes Cells 2020; 25:111-123. [PMID: 31849141 DOI: 10.1111/gtc.12743] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/18/2019] [Accepted: 12/05/2019] [Indexed: 01/01/2023]
Abstract
Bone is one of the most common metastatic sites of breast cancer, and bone metastasis profoundly affects the quality of life of breast cancer patients. Bone metastasis is commonly observed among all the subtypes of breast cancer; however, its molecular mechanism has been analyzed only in triple-negative subtype of breast cancer (TNBC). To characterize the molecular mechanisms of bone metastasis of luminal breast cancer, we established a bone-metastatic model of the MCF7, luminal breast cancer cell line, with enhanced osteolytic activity by intracaudal arterial injection (CAI). Pathological analysis of the established cell lines revealed that they exhibited fierce osteolytic ability by promoting osteoclast differentiation and activity. The signature genes extracted from highly osteolytic MCF7 cell lines were differed from those of bone-metastatic TNBC cell lines. Our results suggest that unique mechanisms of osteolysis in bone-metastatic lesions of luminal breast cancer. In addition, several up-regulated genes in MCF7-BM (Bone Metastasis) 02 cell lines correlated with poor prognosis with luminal breast cancer patients. Our findings support further study on the bone-metastatic mechanisms of luminal breast cancer.
Collapse
Affiliation(s)
- Yuxuan Han
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Jun Nakayama
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.,Computational Bio-Big Data Open Innovation Lab. (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Yusuke Hayashi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Seongmoon Jeong
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Mitsuru Futakuchi
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Emi Ito
- Department of Biomolecular Profiling, Translational Research Center, Fukushima Medical University, Fukushima, Japan
| | - Shinya Watanabe
- Department of Biomolecular Profiling, Translational Research Center, Fukushima Medical University, Fukushima, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.,Department of Cell Factory, Translational Research Center, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
30
|
Zhong G, Lou W, Shen Q, Yu K, Zheng Y. Identification of key genes as potential biomarkers for triple‑negative breast cancer using integrating genomics analysis. Mol Med Rep 2019; 21:557-566. [PMID: 31974598 PMCID: PMC6947886 DOI: 10.3892/mmr.2019.10867] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 08/30/2019] [Indexed: 12/19/2022] Open
Abstract
Triple-negative breast cancer (TNBC) accounts for the worst prognosis of all types of breast cancers due to a high risk of recurrence and a lack of targeted therapeutic options. Extensive effort is required to identify novel targets for TNBC. In the present study, a robust rank aggregation (RRA) analysis based on genome-wide gene expression datasets involving TNBC patients from the Gene Expression Omnibus (GEO) database was performed to identify key genes associated with TNBC. A total of 194 highly ranked differentially expressed genes (DEGs) were identified in TNBC vs. non-TNBC. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analysis was utilized to explore the biological functions of the identified genes. These DEGs were mainly involved in the biological processes termed positive regulation of transcription from RNA polymerase II promoter, negative regulation of apoptotic process, response to drug, response to estradiol and negative regulation of cell growth. Genes were mainly involved in the KEGG pathway termed estrogen signaling pathway. The aberrant expression of several randomly selected DEGs were further validated in cell lines, clinical tissues and The Cancer Genome Atlas (TCGA) cohort. Furthermore, all the top-ranked DEGs underwent survival analysis using TCGA database, of which overexpression of 4 genes (FABP7, ART3, CT83, and TTYH1) were positively correlated to the life expectancy (P<0.05) of TNBC patients. In addition, a model consisting of two genes (FABP7 and CT83) was identified to be significantly associated with the overall survival (OS) of TNBC patients by means of Cox regression, Kaplan-Meier, and receiver operating characteristic (ROC) analyses. In conclusion, the present study identified a number of key genes as potential biomarkers involved in TNBC, which provide novel insights into the tumorigenesis of TNBC at the gene level and may serve as independent prognostic factors for TNBC prognosis.
Collapse
Affiliation(s)
- Guansheng Zhong
- Department of Thyroid and Breast Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Weiyang Lou
- Program of Innovative Therapeutics, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310014, P.R. China
| | - Qinyan Shen
- Department of Surgical Oncology, Dongyang People's Hospital of Zhejiang, Dongyang, Zhejiang 322100, P.R. China
| | - Kun Yu
- Department of Thyroid and Breast Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yajuan Zheng
- Department of Thyroid and Breast Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
31
|
Busch M, Klein S, Große-Kreul J, Scheiner O, Metz K, Stephan H, Dünker N. p53, miR-34a and EMP1-Newly Identified Targets of TFF3 Signaling in Y79 Retinoblastoma Cells. Int J Mol Sci 2019; 20:ijms20174129. [PMID: 31450568 PMCID: PMC6747266 DOI: 10.3390/ijms20174129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/22/2022] Open
Abstract
Trefoil factor family peptide 3 (TFF3) is supposed to have tumor suppressive functions in retinoblastoma (RB), but the functional pathway is not completely understood. In the study presented, we investigated the downstream pathway of TFF3 signaling in Y79 RB cells. Results from pG13-luciferase reporter assays and western blot analyses indicate induced p53 activity with an upregulation of miR-34a after TFF3 overexpression. Expression levels of the predicted miR-34a target epithelial membrane protein 1 (EMP1) are reduced after TFF3 overexpression. As revealed by WST-1 assay, BrdU, and DAPI cell counts viability and proliferation of Y79 cells significantly decrease following EMP1 knockdown, while apoptosis levels significantly increase. Opposite effects on Y79 cells’ growth could be shown after EMP1 overexpression. Caspase assays showed that EMP1 induced apoptosis after overexpression is at least partially caspase-3/7 dependent. Colony formation and soft agarose assays, testing for anchorage independent growth, revealed that EMP1 overexpressing Y79 cells have a significantly higher ability to form colonies. In in ovo chicken chorioallantoic membrane (CAM) assays inoculated EMP1 overexpressing Y79 cells form significantly larger CAM tumors. Moreover, miR-34a overexpression increases sensitivity of Y79 cells towards RB chemotherapeutics, however, without involvement of EMP1. In summary, the TFF3 signaling pathway in Y79 RB cells involves the activation of p53 with downstream induction of miR-34a and subsequent inhibition of EMP1.
Collapse
Affiliation(s)
- Maike Busch
- Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, University of Duisburg-Essen, 45122 Essen, Germany.
| | - Stefan Klein
- Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, University of Duisburg-Essen, 45122 Essen, Germany
| | - Jan Große-Kreul
- Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, University of Duisburg-Essen, 45122 Essen, Germany
| | - Oliver Scheiner
- Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, University of Duisburg-Essen, 45122 Essen, Germany
| | - Klaus Metz
- Institute of Pathology, Medical Faculty, University of Duisburg-Essen, 45122 Essen, Germany
| | - Harald Stephan
- Division of Haematology and Oncology, Children's Hospital, University of Duisburg-Essen, 45122 Essen, Germany
| | - Nicole Dünker
- Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, University of Duisburg-Essen, 45122 Essen, Germany
| |
Collapse
|
32
|
Aberrant DNA Polymerase Beta Enhances H. pylori Infection Induced Genomic Instability and Gastric Carcinogenesis in Mice. Cancers (Basel) 2019; 11:cancers11060843. [PMID: 31216714 PMCID: PMC6627457 DOI: 10.3390/cancers11060843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 11/16/2022] Open
Abstract
H. pylori is a significant risk factor of gastric cancer that induces chronic inflammation and oxidative DNA damage to promote gastric carcinoma. Base excision repair (BER) is required to maintain the genome integrity and prevent oxidative DNA damage. Mutation in DNA polymerase beta (Pol β) impacts BER efficiency and has been reported in approximately 30-40% of gastric carcinoma tumors. In this study, we examined whether reduced BER capacity associated with mutation in the POLB gene, along with increased DNA damage generated by H. pylori infection, accelerates gastric cancer development. By infecting a Pol β mutant mouse model that lacks dRP lyase with H. pylori, we show that reactive oxygen and nitrogen species (RONS) mediated DNA damage is accumulated in Pol β mutant mice (L22P). In addition, H. pylori infection in Leu22Pro (L22P) mice significantly increases inducible nitric oxide synthesis (iNOS) mediated chronic inflammation. Our data show that L22P mice exhibited accelerated H. pylori induced carcinogenesis and increased tumor incidence. This work shows that Pol β mediated DNA repair under chronic inflammation conditions is an important suppressor of H. pylori induced stomach carcinogenesis.
Collapse
|
33
|
Fabisiak A, Bartoszek A, Kardas G, Fabisiak N, Fichna J. Possible application of trefoil factor family peptides in gastroesophageal reflux and Barrett's esophagus. Peptides 2019; 115:27-31. [PMID: 30831146 DOI: 10.1016/j.peptides.2019.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 02/16/2019] [Accepted: 02/24/2019] [Indexed: 12/14/2022]
Abstract
Gastroesophageal reflux disease (GERD) is a chronic disorder of the digestive tract characterised mainly by a heartburn. Being one of the most common gastrointestinal diseases, the prevalence of GERD reaches up to 25.9% in Europe. Barrett's esophagus (BE) is an acquired condition characterized by the replacement of the normal stratified squamous epithelium with metaplastic columnar epithelium. BE is believed to develop mainly from chronic GERD and is the most important risk factor of esophageal adenocarcinoma. Despite the availability of drugs such as proton pomp inhibitors and antacids, GERD is still a burden to local economy and impairs health-related quality of life in patients. Also, the endoscopic surveillance in patients with BE is burdensome and expensive what drives the need for biomarker of intestinal metaplasia and dysplasia. Trefoil factor family (TFF), consisting of TFF1, TFF2 and TFF3 peptides is gaining more and more attention due to its unique biochemical features and numerous functions. In this review the role of TFF1, TFF2 and TFF3 as potential treatment option and/or biomarker in the upper GI tract is discussed with particular focus on GERD and BE.
Collapse
Affiliation(s)
- Adam Fabisiak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland; Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, Poland
| | - Adrian Bartoszek
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Grzegorz Kardas
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Natalia Fabisiak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland; Department of Gastroenterology, Faculty of Military Medicine, Medical University of Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
34
|
Pegg HJ, Harrison H, Rogerson C, Shore P. The RUNX Transcriptional Coregulator, CBFβ, Suppresses Migration of ER + Breast Cancer Cells by Repressing ERα-Mediated Expression of the Migratory Factor TFF1. Mol Cancer Res 2019; 17:1015-1023. [PMID: 30655324 DOI: 10.1158/1541-7786.mcr-18-1039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/13/2018] [Accepted: 01/08/2019] [Indexed: 11/16/2022]
Abstract
Core binding factor β (CBFβ), the essential coregulator of RUNX transcription factors, is one of the most frequently mutated genes in estrogen receptor-positive (ER+) breast cancer. Many of these mutations are nonsense mutations and are predicted to result in loss of function, suggesting a tumor suppressor role for CBFβ. However, the impact of missense mutations and the loss of CBFβ in ER+ breast cancer cells have not been determined. Here we demonstrate that missense mutations in CBFβ accumulate near the Runt domain-binding region. These mutations inhibit the ability of CBFβ to form CBFβ-Runx-DNA complexes. We further show that deletion of CBFβ, using CRISPR-Cas9, in ER+ MCF7 cells results in an increase in cell migration. This increase in migration is dependent on the presence of ERα. Analysis of the potential mechanism revealed that the increase in migration is driven by the coregulation of Trefoil factor 1 (TFF1) by CBFβ and ERα. RUNX1-CBFβ acts to repress ERα-activated expression of TFF1. TFF1 is a motogen that stimulates migration and we show that knockdown of TFF1 in CBFβ-/- cells inhibits the migratory phenotype. Our findings reveal a new mechanism by which RUNX1-CBFβ and ERα combine to regulate gene expression and a new role for RUNX1-CBFβ in the prevention of cell migration by suppressing the expression of the motogen TFF1. IMPLICATIONS: Mutations in CBFβ contribute to the development of breast cancer by inducing a metastatic phenotype that is dependent on ER.
Collapse
Affiliation(s)
- Henry J Pegg
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Hannah Harrison
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Connor Rogerson
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Paul Shore
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
35
|
TREFOIL FACTOR FAMILY 1 EXPRESSION CORRELATES WITH CLINICAL OUTCOME IN PATIENTS WITH RETINOBLASTOMA. Retina 2018; 38:2422-2428. [DOI: 10.1097/iae.0000000000001881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Omar OM, Soutto M, Bhat NS, Bhat AA, Lu H, Chen Z, El-Rifai W. TFF1 antagonizes TIMP-1 mediated proliferative functions in gastric cancer. Mol Carcinog 2018; 57:1577-1587. [PMID: 30035371 DOI: 10.1002/mc.22880] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/04/2018] [Accepted: 07/19/2018] [Indexed: 12/20/2022]
Abstract
Tissue inhibitor matrix metalloproteinase-1 (TIMP1) is one of four identified members of the TIMP family. We evaluated the role of TIMP1 in gastric cancer using human and mouse tissues along with gastric organoids and in vitro cell models. Using quantitative real-time RT-PCR, we detected significant overexpression of TIMP1 in the human gastric cancer samples, as compared to normal stomach samples (P < 0.01). We also detected overexpression of Timp1 in neoplastic gastric lesions of the Tff1-knockout (KO) mice, as compared to normal stomach tissues. Reconstitution of TFF1 in human gastric cancer cell lines led to a significant decrease in the mRNA expression level of TIMP1 (P < 0.05). In vitro analysis demonstrated that TIMP1 mRNA expression is induced by TNF-α and activation of NF-κB whereas inhibition of NF-κB using BAY11-7082 led to inhibition of NF-κB and downregulation of TIMP1. Western blot analysis confirmed the decrease in TIMP1 protein level following reconstitution of TFF1. By using immunofluorescence, we showed nuclear localization of NF-κB and expression of TIMP1 in gastric organoids established from the Tff1-KO stomach where reconstitution of Tff1 using recombinant protein led to a notable reduction in the expression of both NF-κB and TIMP1. Using EDU assay, as a measure of proliferating cells, we found that TIMP1 promotes cellular proliferation whereas TFF1 reconstitution leads to a significant decrease in cellular proliferation (P < 0.05). In summary, our findings demonstrate overexpression of TIMP1 in mouse and human gastric cancers through NF-kB-dependent mechanism. We also show that TFF1 suppresses NF-κB and inhibits TIMP1-mediated proliferative potential in gastric cancer.
Collapse
Affiliation(s)
- Omar M Omar
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mohammed Soutto
- Department of Veterans Affairs, Miami Healthcare System, Miami, Florida.,Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Nadeem S Bhat
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Ajaz A Bhat
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Division of Translational Medicine, Research Branch, Sidra Medicine, Doha
| | - Heng Lu
- Department of Veterans Affairs, Miami Healthcare System, Miami, Florida
| | - Zheng Chen
- Department of Veterans Affairs, Miami Healthcare System, Miami, Florida.,Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Wael El-Rifai
- Department of Veterans Affairs, Miami Healthcare System, Miami, Florida.,Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
37
|
Yamaguchi J, Yokoyama Y, Kokuryo T, Ebata T, Enomoto A, Nagino M. Trefoil factor 1 inhibits epithelial-mesenchymal transition of pancreatic intraepithelial neoplasm. J Clin Invest 2018; 128:3619-3629. [PMID: 29809170 DOI: 10.1172/jci97755] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 05/24/2018] [Indexed: 12/30/2022] Open
Abstract
The tumor-suppressive role of trefoil factor family (TFF) members in gastric carcinogenesis has been suggested, but their significance and mechanisms in other digestive diseases remain elusive. To clarify the role of TFF1 in pancreatic carcinogenesis, we performed IHC on human samples, transfected siRNA against TFF1 into pancreatic cancer cell lines, and employed mouse models in which PanIN development and loss of TFF1 occur simultaneously. In human samples, the expression of TFF1 was specifically observed in pancreatic intraepithelial neoplasm (PanIN), but was frequently lost in the invasive component of pancreatic ductal adenocarcinoma (PDAC). When the expression of TFF1 was suppressed in vitro, pancreatic cancer cell lines showed enhanced invasive ability and features of epithelial-mesenchymal transition (EMT), including upregulated Snail expression. TFF1 expression was also observed in PanIN lesions of Pdx-1 Cre; LSL-KRASG12D (KC) mice, a model of pancreatic cancer, and loss of TFF1 in these mice resulted in the expansion of PanIN lesions, an EMT phenotype in PanIN cells, and an accumulation of cancer-associated fibroblasts (CAFs), eventually resulting in the development of invasive adenocarcinoma. This study indicates that the acquisition of TFF1 expression is an early event in pancreatic carcinogenesis and that TFF1 might act as a tumor suppressor to prevent EMT and the invasive transformation of PanIN.
Collapse
Affiliation(s)
| | | | - Toshio Kokuryo
- Division of Surgical Oncology, Department of Surgery, and
| | - Tomoki Ebata
- Division of Surgical Oncology, Department of Surgery, and
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masato Nagino
- Division of Surgical Oncology, Department of Surgery, and
| |
Collapse
|
38
|
TFF1 Promotes EMT-Like Changes through an Auto-Induction Mechanism. Int J Mol Sci 2018; 19:ijms19072018. [PMID: 29997345 PMCID: PMC6073196 DOI: 10.3390/ijms19072018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 02/07/2023] Open
Abstract
Trefoil factor 1 (TFF1) is a small secreted protein expressed in the gastrointestinal tract where, together with the other two members of its family, it plays an essential role in mucosal protection and repair against injury. The molecular mechanisms involved in the protective function of all three TFF proteins are not fully elucidated. In this paper, we investigated the role of TFF1 in epithelial to mesenchymal transition (EMT) events. The effects of TFF1 on cellular models in normoxia and/or hypoxia were evaluated by western blot, immunofluorescence, qRT-PCR and trans-well invasion assays. Luciferase reporter assays were used to assess the existence of an auto-regulatory mechanism of TFF1. The methylation status of TFF1 promoter was measured by high-resolution melting (HRM) analysis. We demonstrate a TFF1 auto-induction mechanism with the identification of a specific responsive element located between −583 and −212 bp of its promoter. Our results suggest that TFF1 can regulate its own expression in normoxic, as well as in hypoxic, conditions acting synergistically with the hypoxia-inducible factor 1 (HIF-1α) pathway. Functionally, this auto-induction mechanism seems to promote cell invasion and EMT-like modifications in vitro. Additionally, exogenously added human recombinant TFF1 protein was sufficient to observe similar effects. Together, these findings suggest that the hypoxic conditions, which can be induced by gastric injury, promote TFF1 up-regulation, strengthened by an auto-induction mechanism, and that the trefoil peptide takes part in the epithelial-mesenchymal transition events eventually triggered to repair the damage.
Collapse
|
39
|
TFF1 and TFF3 mRNAs Are Higher in Blood from Breast Cancer Patients with Metastatic Disease than Those without. JOURNAL OF ONCOLOGY 2018; 2018:4793498. [PMID: 29977293 PMCID: PMC6011051 DOI: 10.1155/2018/4793498] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 03/03/2018] [Accepted: 04/11/2018] [Indexed: 12/15/2022]
Abstract
Introduction Breast cancer metastasis occurs when tumor cells dissociate from the primary tumor and migrate to distant organs through the peripheral bloodstream or lymphatic drainage. Circulating tumor cells (CTCs) originate from primary sites or metastases and circulate in the patients' bloodstream. Molecular assays for the detection and molecular characterization of CTCs can serve as a liquid biopsy and can represent an alternative to invasive biopsies as a source of tumor tissue in the metastatic patients. Patients and Methods We analyzed the presence of CTCs in the peripheral blood of 50 breast cancer patients by quantitative real-time reverse transcriptase polymerase chain reaction (RT-qPCR) to detect trefoil factor family (TFF) 1 and 3 genes. Results We found significant difference in the level of both TFF1 and TFF3 mRNA in the blood of nonmetastatic versus metastatic breast cancer patients (p= 0.001 and p= 0.038, respectively). TFF1 mRNA was detected at higher levels in 34.6% of metastatic breast cancer patients as compared to 0% of nonmetastatic (p= 0.002). As regards TFF3 mRNA, it was detected at higher levels in 46.2% of metastatic breast cancer patients as compared to 4% of nonmetastatic (p= 0.026). Moreover, we found that the high level of both TFF1 and TFF3 mRNA was related to estrogen status of the patients. The detection of high level of TFF1 mRNA in CTCs was associated with bone metastases (77.8%), while that of TFF3 was related to lymph node involvement (75%) and lung metastases (68.8%). Conclusion The combined measurement of both TFF1 and TFF3 mRNA level for differentiation of metastatic from nonmetastatic breast cancer gave 57.69% sensitivity and 83.3% specificity.
Collapse
|
40
|
Tolušić Levak M, Mihalj M, Koprivčić I, Lovrić I, Novak S, Bijelić N, Baus-Lončar M, Belovari T, Kralik K, Pauzar B. Differential Expression of TFF Genes and Proteins in Breast Tumors. Acta Clin Croat 2018; 57:264-277. [PMID: 30431719 PMCID: PMC6532012 DOI: 10.20471/acc.2018.57.02.06] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SUMMARY – The objective of this study was to determine differential expression of TFF1, TFF2 and TFF3 genes and proteins in breast tumor subtypes. In addition, we investigated the correlation between TFF genes within tumor subgroups, and TFF genes with clinical and pathologic characteristics of the tumor. Study group included 122 patients with surgically removed breast tumors. Samples were investigated using qRT-PCR and immunohistochemistry. TFF1 and TFF3 genes and proteins were expressed in breast tumors, while the levels of TFF2 gene and protein expression were very low or undetectable. TFF1 was significantly more expressed in benign tumors, while TFF3 was more expressed in malignant tumors. Gene and protein expression of both TFF1 and TFF3 was greater in lymph node-negative tumors, hormone positive tumors, tumors with moderate levels of Ki67 expression, and in grade II tumors. A strong positive correlation was found between TFF1 and TFF3 genes, and the expression of both negatively correlated with Ki67 and the level of tumor histologic differentiation. Our results suggest that TFF1 and TFF3, but not TFF2, may have a role in breast tumor pathogenesis and could be used in the assessment of tumor differentiation and malignancy.
Collapse
Affiliation(s)
| | - Martina Mihalj
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Ivan Koprivčić
- Department of Anatomy and Neuroscience, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Department of Surgery, Osijek University Hospital Centre, Osijek, Croatia
| | - Ivana Lovrić
- Department of Histology and Embryology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Department of Anatomy, Histology and Embryology, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Sanja Novak
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Nikola Bijelić
- Department of Histology and Embryology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Mirela Baus-Lončar
- Department of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Tatjana Belovari
- Department of Histology and Embryology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Kristina Kralik
- Department of Medical Statistics and Informatics, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Biljana Pauzar
- Department of Histology and Embryology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Department of Clinical Cytology, Osijek University Hospital Centre, Osijek, Croatia
| |
Collapse
|
41
|
Kirk J, Shah N, Noll B, Stevens CB, Lawler M, Mougeot FB, Mougeot JLC. Text mining-based in silico drug discovery in oral mucositis caused by high-dose cancer therapy. Support Care Cancer 2018; 26:2695-2705. [PMID: 29476419 DOI: 10.1007/s00520-018-4096-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/04/2018] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Oral mucositis (OM) is a major dose-limiting side effect of chemotherapy and radiation used in cancer treatment. Due to the complex nature of OM, currently available drug-based treatments are of limited efficacy. OBJECTIVES Our objectives were (i) to determine genes and molecular pathways associated with OM and wound healing using computational tools and publicly available data and (ii) to identify drugs formulated for topical use targeting the relevant OM molecular pathways. METHODS OM and wound healing-associated genes were determined by text mining, and the intersection of the two gene sets was selected for gene ontology analysis using the GeneCodis program. Protein interaction network analysis was performed using STRING-db. Enriched gene sets belonging to the identified pathways were queried against the Drug-Gene Interaction database to find drug candidates for topical use in OM. RESULTS Our analysis identified 447 genes common to both the "OM" and "wound healing" text mining concepts. Gene enrichment analysis yielded 20 genes representing six pathways and targetable by a total of 32 drugs which could possibly be formulated for topical application. A manual search on ClinicalTrials.gov confirmed no relevant pathway/drug candidate had been overlooked. Twenty-five of the 32 drugs can directly affect the PTGS2 (COX-2) pathway, the pathway that has been targeted in previous clinical trials with limited success. CONCLUSIONS Drug discovery using in silico text mining and pathway analysis tools can facilitate the identification of existing drugs that have the potential of topical administration to improve OM treatment.
Collapse
Affiliation(s)
- Jon Kirk
- Department of Oral Medicine, Cannon Research Center, Carolinas HealthCare System, Charlotte, NC, USA.,Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Nirav Shah
- Department of Oral Medicine, Cannon Research Center, Carolinas HealthCare System, Charlotte, NC, USA
| | - Braxton Noll
- Department of Oral Medicine, Cannon Research Center, Carolinas HealthCare System, Charlotte, NC, USA
| | - Craig B Stevens
- Department of Oral Medicine, Cannon Research Center, Carolinas HealthCare System, Charlotte, NC, USA
| | - Marshall Lawler
- Department of Oral Medicine, Cannon Research Center, Carolinas HealthCare System, Charlotte, NC, USA
| | - Farah B Mougeot
- Department of Oral Medicine, Cannon Research Center, Carolinas HealthCare System, Charlotte, NC, USA
| | - Jean-Luc C Mougeot
- Department of Oral Medicine, Cannon Research Center, Carolinas HealthCare System, Charlotte, NC, USA. .,Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
42
|
Mansouri V, Rezaei Tavirani S, Zadeh-Esmaeel MM, Rostami-Nejad M, Rezaei-Tavirani M. Comparative study of gastric cancer and chronic gastritis via network analysis. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2018; 11:343-351. [PMID: 30425814 PMCID: PMC6204252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
AIM In this study the significant differentially expressed genes (DEGs) related to gastric cancer (GC) and chronic gastritis were screened to introduce common and distinctive genes between the two diseases. BACKGROUND Diagnosis of gastric cancer as a mortal disease and chronic gastritis the stomach disorder which can be considered as risk factor of GCs required safe and effective molecular biomarkers. METHODS Microarray profiles were downloaded from Gene Expression Omnibus (GEO) and analyzed via GEO2R. The candidate DEGs plus relevant genes from STRING database were interacted by Cytoscape software version 3.6.0 the central nodes were determined and analyzed. RESULTS JUN, GAPDH, FOS, TP53, PRDM10, VEGFA, and CREB1 as central nodes and TFF1 and ERG1 as the top changed expressed genes were determined as critical nodes related to gastric cancer. GAPDH, PRDM10, TP53, JUN, AKT1, EGFR, MAPK1, EGF, DECR1, and MYC were identified as common remarkable genes between GC and chronic gastritis. CONCLUSION Identification of distinctive and common genes between GC and chronic gastritis can be useful in the early stage detection of disease and reducing risk of GCs.
Collapse
Affiliation(s)
- Vahid Mansouri
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Rezaei Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Gonzaga IM, Soares Lima SC, Nicolau MC, Nicolau-Neto P, da Costa NM, de Almeida Simão T, Hernandez-Vargas H, Herceg Z, Ribeiro Pinto LF. TFF1 hypermethylation and decreased expression in esophageal squamous cell carcinoma and histologically normal tumor surrounding esophageal cells. Clin Epigenetics 2017; 9:130. [PMID: 29296124 PMCID: PMC5738900 DOI: 10.1186/s13148-017-0429-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is one of the 10 most incident cancer types in the world, and it is mainly associated with tobacco and alcohol consumption. ESCC mortality rates stand very close to its incidence, which is a direct consequence of a late diagnosis and an inefficient treatment. Although this scenery is quite alarming, the major molecular alterations that drive this carcinogenesis process remain unclear. We have previously shown through the first ESCC methylome analysis that TFF1 promoter is frequently hypermethylated in ESCC. Here, to evaluate TFF1 methylation as a potential biomarker of early ESCC diagnosis, we investigated the status of TFF1 promoter methylation and its expression in ESSC and histologically normal tumor surrounding tissue of ESCC patients in comparison to healthy esophagus of non-cancer individuals. Results Analysis of TFF1 promoter methylation, and gene and protein expression in 65 ESCC patients and 88 controls revealed that TFF1 methylation levels were already increased in histologically normal tumor surrounding tissue of ESCC patients when compared to healthy esophagus of non-cancer individuals. This increase in DNA methylation was followed by the reduction of TFF1 mRNA expression. Interestingly, TFF1 expression was capable of distinguishing tumor surrounding normal tissue from normal mucosa of healthy individuals with 92% accuracy. In addition, TFF1 protein was undetectable both in tumor and surrounding mucosa by immunohistochemistry, while submucosa glands of the healthy esophagus showed positive staining. Furthermore, treatment of TE-1 and TE-13 ESCC cell lines with decitabine led to a reduction of promoter methylation and consequent upregulation of TFF1 gene and protein expression. Finally, using TCGA data we showed that TFF1 loss is observed in ESCC, but not in esophageal adenocarcinoma, highlighting the different molecular mechanisms involved in the development of each histological subtype of esophageal cancer. Conclusions This study shows that TFF1 expression is silenced in early phases of ESCC development, which seems to be mediated at least in part by promoter hypermethylation, and provides the basis for the use of TFF1 expression as a potential biomarker for early ESCC detection.
Collapse
Affiliation(s)
- Isabela Martins Gonzaga
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer, Coordenação de Pesquisa, Rua André Cavalcanti, 37–6° andar, Bairro de Fátima, Rio de Janeiro, Rio de Janeiro CEP: 20231-050 Brazil
| | - Sheila Coelho Soares Lima
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer, Coordenação de Pesquisa, Rua André Cavalcanti, 37–6° andar, Bairro de Fátima, Rio de Janeiro, Rio de Janeiro CEP: 20231-050 Brazil
| | - Marina Chianello Nicolau
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer, Coordenação de Pesquisa, Rua André Cavalcanti, 37–6° andar, Bairro de Fátima, Rio de Janeiro, Rio de Janeiro CEP: 20231-050 Brazil
| | - Pedro Nicolau-Neto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer, Coordenação de Pesquisa, Rua André Cavalcanti, 37–6° andar, Bairro de Fátima, Rio de Janeiro, Rio de Janeiro CEP: 20231-050 Brazil
| | - Nathalia Meireles da Costa
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer, Coordenação de Pesquisa, Rua André Cavalcanti, 37–6° andar, Bairro de Fátima, Rio de Janeiro, Rio de Janeiro CEP: 20231-050 Brazil
| | - Tatiana de Almeida Simão
- Departamento de Bioquímica, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. 28 de Setembro 87 fundos, Vila Isabel, Rio de Janeiro, CEP: 20551-013 Brazil
| | - Hector Hernandez-Vargas
- Epigenetics Group, Section of Mechanisms of Carcinogenesis, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372, CEDEX 08 Lyon, France
| | - Zdenko Herceg
- Epigenetics Group, Section of Mechanisms of Carcinogenesis, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372, CEDEX 08 Lyon, France
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer, Coordenação de Pesquisa, Rua André Cavalcanti, 37–6° andar, Bairro de Fátima, Rio de Janeiro, Rio de Janeiro CEP: 20231-050 Brazil
- Departamento de Bioquímica, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. 28 de Setembro 87 fundos, Vila Isabel, Rio de Janeiro, CEP: 20551-013 Brazil
| |
Collapse
|
44
|
Soutto M, Saleh M, Arredouani MS, Piazuelo B, Belkhiri A, El-Rifai W. Loss of Tff1 Promotes Pro-Inflammatory Phenotype with Increase in the Levels of RORγt+ T Lymphocytes and Il-17 in Mouse Gastric Neoplasia. J Cancer 2017; 8:2424-2435. [PMID: 28900479 PMCID: PMC5595071 DOI: 10.7150/jca.19639] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/18/2017] [Indexed: 12/27/2022] Open
Abstract
Background: TFF1 deficiency induces a mucosal pro-inflammatory phenotype that contributes to gastric tumorigenesis in mouse and human. Methods: We utilized the Tff1-KO mouse model to assess the impact of TFF1 loss on immune cells infiltration in the stomach. We used single cell suspension, flow cytometry, immunohistochemistry, and quantitative PCR (qPCR) assays. Results: The Tff1-KO gastric mucosa demonstrated high chronic inflammatory scores (score: 3-4) at age 2 months, which exacerbated at age 8 months (score: 4-6). We next used single-cell suspensions for flow cytometry analysis of total leukocytes (CD45+ cells), total T lymphocytes (CD45+CD3+cells), T cell subsets (CD4+, CD8+, and CD3+CD4-CD8-cells), and monocytes/macrophages (CD45+F4/80+cells). The results demonstrated an age-dependent (2 → 8 month age) significant increase of leukocytes (p<0.05), T cells (p<0.05), and monocytes/macrophages (p<0.001) in the gastric mucosa of the Tff1-KO mice, as compared to Tff1-WT. A similar increase was observed in blood samples (p<0.05). Using ionomycin to activate CD4+ splenocytes, the results indicated that Tff1-KO CD4+ splenocytes secreted higher levels of IL-17A (p<0.05 at 2 and p<0.001 at 8 months) and IL-17F (p<0.05 at 2 and 8 months) than Tff1-WT splenocytes. Conversely, Tff1-KO CD8+-cells secreted less IL-17F, but comparable levels of IL-17A. In addition, we detected a significant upregulation of Il-17 mRNA expression in gastric tissues in the Tff1-KO, as compared to Tff1-WT (p<0.001). Conclusions: The results identify TFF1 loss as a major pro-inflammatory step that modulates the tumor microenvironment and immune cell infiltration in the stomach. Furthermore, the data suggest that the increase of IL-17A and IL-17F in Th17 cells, derived from CD4+ T cells, reflects the chronic inflammation in gastric mucosa, whereas the absence of change of IL-17A and decrease of IL-17F in CD8+Tc17 cells suggest loss of cytotoxic function of CD8+Tc17 cells during gastric tumorigenesis of the Tff1-KO mice.
Collapse
Affiliation(s)
- Mohammed Soutto
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232.,Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Mohamed Saleh
- Divison of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt 35516
| | - Mohamed S Arredouani
- Division of Urology, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115
| | - Blanca Piazuelo
- Division of Gastroenterology, Hepatology, & Nutrition, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Abbes Belkhiri
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Wael El-Rifai
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232.,Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
45
|
Klimov S, Rida PC, Aleskandarany MA, Green AR, Ellis IO, Janssen EA, Rakha EA, Aneja R. Novel immunohistochemistry-based signatures to predict metastatic site of triple-negative breast cancers. Br J Cancer 2017; 117:826-834. [PMID: 28720841 PMCID: PMC5589983 DOI: 10.1038/bjc.2017.224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/23/2017] [Accepted: 06/21/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Although distant metastasis (DM) in breast cancer (BC) is the most lethal form of recurrence and the most common underlying cause of cancer related deaths, the outcome following the development of DM is related to the site of metastasis. Triple negative BC (TNBC) is an aggressive form of BC characterised by early recurrences and high mortality. Athough multiple variables can be used to predict the risk of metastasis, few markers can predict the specific site of metastasis. This study aimed at identifying a biomarker signature to predict particular sites of DM in TNBC. METHODS A clinically annotated series of 322 TNBC were immunohistochemically stained with 133 biomarkers relevant to BC, to develop multibiomarker models for predicting metastasis to the bone, liver, lung and brain. Patients who experienced metastasis to each site were compared with those who did not, by gradually filtering the biomarker set via a two-tailed t-test and Cox univariate analyses. Biomarker combinations were finally ranked based on statistical significance, and evaluated in multivariable analyses. RESULTS Our final models were able to stratify TNBC patients into high risk groups that showed over 5, 6, 7 and 8 times higher risk of developing metastasis to the bone, liver, lung and brain, respectively, than low-risk subgroups. These models for predicting site-specific metastasis retained significance following adjustment for tumour size, patient age and chemotherapy status. CONCLUSIONS Our novel IHC-based biomarkers signatures, when assessed in primary TNBC tumours, enable prediction of specific sites of metastasis, and potentially unravel biomarkers previously unknown in site tropism.
Collapse
Affiliation(s)
- Sergey Klimov
- Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | | | - Mohammed A Aleskandarany
- Department of Cellular Pathology, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham NG5 1PB, UK
| | - Andrew R Green
- Department of Cellular Pathology, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham NG5 1PB, UK
| | - Ian O Ellis
- Department of Cellular Pathology, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham NG5 1PB, UK
| | - Emiel Am Janssen
- Department of Pathology, Stavanger University Hospital, Stavanger N-4011, Norway
| | - Emad A Rakha
- Department of Cellular Pathology, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham NG5 1PB, UK
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
46
|
Ishibashi Y, Ohtsu H, Ikemura M, Kikuchi Y, Niwa T, Nishioka K, Uchida Y, Miura H, Aikou S, Gunji T, Matsuhashi N, Ohmoto Y, Sasaki T, Seto Y, Ogawa T, Tada K, Nomura S. Serum TFF1 and TFF3 but not TFF2 are higher in women with breast cancer than in women without breast cancer. Sci Rep 2017; 7:4846. [PMID: 28687783 PMCID: PMC5501858 DOI: 10.1038/s41598-017-05129-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/24/2017] [Indexed: 12/31/2022] Open
Abstract
Breast cancer remains a common malignancy in women, but the take-up for breast cancer screening programs in Japan is still low, possibly due to its perceived inconvenience. TFF1 and TFF3 are expressed in both breast cancer tissue and normal breast. Serum trefoil proteins were reported as cancer screening markers for gastric, prostate, lung, pancreatic cancer and cholangio carcinoma. The purpose of this study was to examine whether serum trefoil proteins could be screening biomarkers for breast cancer. Serum trefoil proteins in 94 breast cancer patients and 84 health check females were measured by ELISA. Serum TFF1 and TFF3 were significantly higher and serum TFF2 was significantly lower in breast cancer patients. Area under the curve of receiver operating characteristic of TFF1, TFF2, and TFF3 was 0.69, 0.83, and. 0.72, respectively. AUC of the combination of TFF1, TFF2, and TFF3 was 0.96. Immunohistochemically, TFF1 expression was positive in 56.5% and TFF3 was positive in 73.9% of breast cancers, while TFF2 was negative in all tumors. Serum TFF1 had positive correlation with expression of TFF1 in breast cancer tissue. Serum concentrations of TFF1 and TFF3 but not TFF2 are higher in women with breast cancer than in women without breast cancer.
Collapse
Affiliation(s)
- Yuko Ishibashi
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Ohtsu
- Center of Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masako Ikemura
- Department of Pathology, The University of Tokyo Hospital, Tokyo, Japan
| | - Yasuko Kikuchi
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takayoshi Niwa
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kotoe Nishioka
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Uchida
- Breast Center, International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| | - Hirona Miura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Susumu Aikou
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | - Yasukazu Ohmoto
- Otsuka Pharmaceutical Tokusima Research Institute, Tokyo, Japan
| | - Takeshi Sasaki
- Department of Pathology, The University of Tokyo Hospital, Tokyo, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshihisa Ogawa
- Breast Center, Dokkyo Medical University Koshigaya Hospital, Tokyo, Japan
| | - Keiichiro Tada
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
47
|
Mammary Gland Cell Culture of Macaca fascicularis as a Reservoir for Stem Cells. HAYATI JOURNAL OF BIOSCIENCES 2017. [DOI: 10.1016/j.hjb.2017.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
48
|
Thurber AE, Nelson M, Frost CL, Levin M, Brackenbury WJ, Kaplan DL. IK channel activation increases tumor growth and induces differential behavioral responses in two breast epithelial cell lines. Oncotarget 2017; 8:42382-42397. [PMID: 28415575 PMCID: PMC5522074 DOI: 10.18632/oncotarget.16389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 03/08/2017] [Indexed: 12/26/2022] Open
Abstract
Many potassium channel families are over-expressed in cancer, but their mechanistic role in disease progression is poorly understood. Potassium channels modulate membrane potential (Vmem) and thereby influence calcium ion dynamics and other voltage-sensitive signaling mechanisms, potentially acting as transcriptional regulators. This study investigated the differential response to over-expression and activation of a cancer-associated potassium channel, the intermediate conductance calcium-activated potassium channel (IK), on aggressive behaviors in mammary epithelial and breast cancer cell lines. IK was over-expressed in the highly metastatic breast cancer cell line MDA-MB-231 and the spontaneously immortalized breast epithelial cell line MCF-10A, and the effect on cancer-associated behaviors was assessed. IK over-expression increased primary tumor growth and metastasis of MDA-MB-231 in orthotopic xenografts, demonstrating for the first time in any cancer type that increased IK is sufficient to promote cancer aggression. The primary tumors had similar vascularization as determined by CD31 staining and similar histological characteristics. Interestingly, despite the increased in vivo growth and metastasis, neither IK over-expression nor activation with agonist had a significant effect on MDA-MB-231 proliferation, invasion, or migration in vitro. In contrast, IK decreased MCF-10A proliferation and invasion through Matrigel but had no effect on migration in a scratch-wound assay. We conclude that IK activity is sufficient to promote cell aggression in vivo. Our data provide novel evidence supporting IK and downstream signaling networks as potential targets for cancer therapies.
Collapse
Affiliation(s)
- Amy E. Thurber
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Michaela Nelson
- Department of Biology, University of York, Heslington, York, UK
| | | | - Michael Levin
- Biology Department, and Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts, USA
| | | | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
49
|
Chaudhary S, Krishna BM, Mishra SK. A novel FOXA1/ ESR1 interacting pathway: A study of Oncomine™ breast cancer microarrays. Oncol Lett 2017; 14:1247-1264. [PMID: 28789340 PMCID: PMC5529806 DOI: 10.3892/ol.2017.6329] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 07/05/2016] [Indexed: 12/28/2022] Open
Abstract
Forkhead box protein A1 (FOXA1) is essential for the growth and differentiation of breast epithelium, and has a favorable outcome in breast cancer (BC). Elevated FOXA1 expression in BC also facilitates hormone responsiveness in estrogen receptor (ESR)-positive BC. However, the interaction between these two pathways is not fully understood. FOXA1 and GATA binding protein 3 (GATA3) along with ESR1 expression are responsible for maintaining a luminal phenotype, thus suggesting the existence of a strong association between them. The present study utilized the Oncomine™ microarray database to identify FOXA1:ESR1 and FOXA1:ESR1:GATA3 co-expression co-regulated genes. Oncomine™ analysis revealed 115 and 79 overlapping genes clusters in FOXA1:ESR1 and FOXA1:ESR1:GATA3 microarrays, respectively. Five ESR1 direct target genes [trefoil factor 1 (TFF1/PS2), B-cell lymphoma 2 (BCL2), seven in absentia homolog 2 (SIAH2), cellular myeloblastosis viral oncogene homolog (CMYB) and progesterone receptor (PGR)] were detected in the co-expression clusters. To further investigate the role of FOXA1 in ESR1-positive cells, MCF7 cells were transfected with a FOXA1 expression plasmid, and it was observed that the direct target genes of ESR1 (PS2, BCL2, SIAH2 and PGR) were significantly regulated upon transfection. Analysis of one of these target genes, PS2, revealed the presence of two FOXA1 binding sites in the vicinity of the estrogen response element (ERE), which was confirmed by binding assays. Under estrogen stimulation, FOXA1 protein was recruited to the FOXA1 site and could also bind to the ERE site (although in minimal amounts) in the PS2 promoter. Co-transfection of FOXA1/ESR1 expression plasmids demonstrated a significantly regulation of the target genes identified in the FOXA1/ESR1 multi-arrays compared with only FOXA1 transfection, which was suggestive of a synergistic effect of ESR1 and FOXA1 on the target genes. In summary, the present study identified novel FOXA1, ESR1 and GATA3 co-expressed genes that may be involved in breast tumorigenesis.
Collapse
Affiliation(s)
- Sanjib Chaudhary
- Cancer Biology Laboratory, Gene Function and Regulation Group, Institute of Life Sciences, Bhubaneswar, Odisha 751023, India
| | - B Madhu Krishna
- Cancer Biology Laboratory, Gene Function and Regulation Group, Institute of Life Sciences, Bhubaneswar, Odisha 751023, India
| | - Sandip K Mishra
- Cancer Biology Laboratory, Gene Function and Regulation Group, Institute of Life Sciences, Bhubaneswar, Odisha 751023, India
| |
Collapse
|
50
|
Reduction of the tumorigenic potential of human retinoblastoma cell lines byTFF1overexpression involves p53/caspase signaling and miR-18a regulation. Int J Cancer 2017; 141:549-560. [DOI: 10.1002/ijc.30768] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/08/2017] [Accepted: 04/05/2017] [Indexed: 12/25/2022]
|